
UNIVERSIDAD DE BUENOS AIRES

FACULTAD DE CIENCIAS EXACTAS Y NATURALES

DEPARTAMENTO DE COMPUTACIÓN

Uso de clientes híbridos Kad-BitTorrent para
compartir contenidos.

Tesis presentada para optar al título de
Licenciado en Ciencias de la Computación

Damián Alberto Vicino

Director: Dr. Claudio Righetti

Codirector: Dra. Isabelle Chrisment

Asesor externo: Ing. Juan Pablo Timpanaro

Jurado: Ing. Alejandro Furfaro, Lic. Rodolfo Baader

Buenos Aires, 2012

USO DE CLIENTES HÍBRIDOS KAD-BITTORRENT PARA COMPARTIR
CONTENIDOS.

La aplicación para compartir archivos en redes peer to peer BitTorrent tiene su foco en optimizar la propa-
gación de contenido, esto la hace muy atractiva respecto de sus competidores, para evitar el uso de recursos
centralizados al momento de transferir archivos, BitTorrent utiliza Tablas de Hash Distribuidas basadas en
Kademlia que permiten encontrar fuentes del contenido sabiendo el hash de su metadata. Por otro lado, la
red eMule que también provee transferencia de archivos sobre redes peer to peer, utilizando un protocolo
de transferencia de archivos conocido como eDonkey 2000 (ED2K) basado en colas de prioridad, posee
una solida implementación de Kademlia llamada Kad. Esta implementación provee un servicio de doble
indice, con el cual no solo indexa fuentes, ademas es usada para indexar y buscar contenido en base a
claves. Nuestro trabajo, estudia la posibilidad de implementar un cliente híbrido compatible con ambas
redes peer to peer, el cual pueda explotar las ventajas de indexación de Kad, al mismo tiempo que la ve-
locidad de propagación de contenido de BitTorrent. Para ello desarrollamos un prototipo, el cual soporta
indexación de contenido usando Kad, transferencia usando BitTorrent y es retro-compatible con los clientes
que implementan estas tecnologías actualmente. Usando este prototipo, medimos tiempos y velocidades de
propagación de contenido en clusters de nodos mixtoss para concluir que el desarrollo es factible y ben-
eficia ampliamente a los usuarios. Finalmente describimos los cambios necesarios para que el prototipo
desarrollado pueda ser distribuido a usuarios finales.

Keywords: Kad, BitTorrent, Distributed Hash Table (DHT), Peer to peer (P2P) Architecture, Performance,
Security.

USING KAD-BITTORRENT HYBRID CLIENTS TO SHARE CONTENTS.

BitTorrent is a fast, popular, P2P file-sharing application focused on fast propagation of content. Its track-
erless approach uses a DHT based on Kademlia to search for sources when the hash of the metadata of
the content to transfer is known. On the other hand, the eMule network use the old ED2K protocol for
file-sharing including a system of priorized queues, but indexation is done through a solid Kademlia based
DHT, named Kad. The Kad DHT stands for a search engine, wich provides an extra level to map key-
words to file identifiers. We propose an hybrid approach, compatible with both P2P file-sharing networks,
which has the Kad advantages on indexation and the BitTorrent throughput for transfer while maintaining
backward compatibility with both of these networks. To validate our proposal we developed a prototype
which supports content indexation provided by the Kad network and is able to transfer files using the Bit-
Torrent protocol without losing retro-compatibility. Using this prototype, we measured the propagation of
new content in clusters of aMule clients, BitTorrent clients, hybrid clients, and a mix of them. Comparing
the propagation velocity of content propagation in each scenario, we conclude the development of a full
implementation would significantly benefit the users. Finally we describe the evolution the prototype needs
before being distributed as production quality software.

Keywords: Kad, BitTorrent, DHT, P2P Architecture, Performance, Security.

AGRADECIMIENTOS

Al Dr. Claudio Righetti, por motivarme a investigar, a iniciar una carrera científica y apoyarme a lo largo
de este proceso.

A la Dra. Isabelle Chrisment, quien fue mi directora y guiá en la pasantía que dio origen a este trabajo, y
luego siguió de cerca mis avances con todos los problemas que la distancia acarrea.

Al Ing. Juan Pablo Timpanaro, que tuve el agrado de conocer en mi estadia en Francia y que desde entonces
se convirtio en un gran amigo y apoyo a la distancia.

A los miembros del jurado, Ing. Alejandro Furfaro y Lic. Rodolfo Baader que revisaron detalladamente mi
trabajo, aportando comentarios y sugerencias para lograr el resultado actual.

A mi esposa Danila, mi hermana Nidia, y mi gran amigo Matias Celani por acompañarme en todos mis
proyectos, empujar para que las cosas salgan y ayudarme siempre con cualquier cosa que necesite.

A mi familia, que estuvo conmigo siempre.

A mis compañeros de estudio, en especial a Luis Agustín Nieto, Matias Gonzalez, Wenceslao Zuloaga,
Cynthia Bonomi, Gabriel Barbuto, sin los cuales no hubiera llegado nunca hasta esta instancia.

A los docentes del DC, que me transmitieron sus conocimientos y experiencias a lo largo de todos estos
años.

Al BSD User Group del DC y la comunidad BSD Argentina por las charlas y eventos compartidos.

CONTENTS

1. Introduction . 1

1.1 Content-sharing distribution models . 1

1.2 P2P Networks . 2

1.3 Content Indexation in P2P . 2

1.4 eMule vs BitTorrent . 2

1.5 Objectives . 3

1.6 Document Structure . 3

2. Related work . 5

2.1 Introduction . 5

2.2 DHT . 5

2.2.1 Kademlia system for indexation . 6

2.2.2 The eMule implementation: Kad . 6

2.2.3 The BitTorrent implementations - Mainline and Vuze 6

2.3 Ed2k . 6

2.3.1 eMule . 7

2.3.2 aMule . 7

2.4 BitTorrent . 8

2.4.1 The BitTorrent client . 9

2.4.2 Vuze (formerly azureus) . 9

2.4.3 rTorrent . 9

2.4.4 libtorrent-rasterbar . 9

2.5 Summary . 10

3. hMule: a Kad-BitTorrent hybrid client . 11

3.1 Introduction . 11

3.2 Overview . 11

3.3 Requirements analysis . 12

3.3.1 Use cases . 12

3.3.2 List of compatibility requirements . 13

3.4 Possible approaches and evaluation . 13

3.4.1 An hybrid client using libraries for Kad, BitTorrent and ed2k 13

3.4.2 Extending a BitTorrent client to use Kad-DHT 14

3.4.3 Extending an eMule client to support BitTorrent as transfer protocol 14

3.4.4 Chosen approach . 15

3.5 Changes proposed to the aMule client . 15

3.5.1 Protocol changes . 15

3.5.2 Application changes . 16

3.6 Current implementation details . 16

3.6.1 Initializing and shutting down the application . 17

3.6.2 Starting a download from Kad . 17

3.6.3 Strategies for referee . 19

3.6.4 Starting a download from info-file . 19

3.6.5 Sharing a new file . 19

3.6.6 Additional changes . 19

3.7 Summary . 19

4. Experimentation . 21

4.1 Introduction . 21

4.2 Experiment goals . 21

4.3 PlanetLab . 22

4.4 Experiment design . 22

4.5 Experiment development . 23

4.5.1 hMule changes to retrieve internal information 23

4.6 Setup of the nodes . 24

4.7 Results . 24

4.7.1 Implemented functionalities validation . 24

4.7.2 Content propagation speed . 25

4.7.2.1 Full content propagation of newly published content. 25

4.7.2.2 Content propagation when adding a new peer to a previously propagated
content. 27

4.7.3 Sustainability of transfer rates . 27

4.7.4 Evaluation of wasted payload transfer before switching protocols 28

4.7.4.1 Info-file exchange is provided . 28

4.7.4.2 Info-file exchange is not provided . 29

4.8 Experimentation conclusions . 29

5. Conclusions . 31

6. Future work . 33

6.1 Simulation of massive adoption . 33

6.2 Hybrid download using sparse files . 33

6.3 Multi-file multi-protocol content support and collections 33

6.4 Handle the fake SHA1 detection error . 34

6.5 Fake SHA1 earlier detection . 34

6.6 Torrent Fast Resume support . 34

6.7 Thread safeness . 34

Appendix 35

1. Installation guide . 37

2. User guide . 38

2.1. New configuration parameters . 38

2.2. Connection to Mainline DHT . 38

2.3. New files . 38

3. Known Issues . 38

4. Most relevant new classes documentation . 39

4.1. torrent::CTorrent Class Reference . 39

4.1.1. Detailed Description . 40

4.1.2. Constructor & Destructor Documentation 40

4.1.3. Member Function Documentation . 40

4.2. torrent::MD4ToHash Struct Reference . 43

4.2.1. Detailed Description . 44

4.3. torrent::SHA1ToHash Struct Reference . 44

4.3.1. Detailed Description . 44

4.4. torrent::filenameToHash Struct Reference . 44

4.4.1. Detailed Description . 44

4.5. torrent::CTorrentMuleMapping Class Reference 44

4.5.1. Detailed Description . 45

4.5.2. Member Typedef Documentation . 45

4.5.3. Constructor & Destructor Documentation 46

4.5.4. Member Function Documentation . 46

4.6. torrent::CTorrentStrategy Class Reference . 54

4.6.1. Detailed Description . 55

4.6.2. Constructor & Destructor Documentation 55

4.6.3. Member Function Documentation . 56

4.7. torrent::CNoTorrentStrategy Class Reference . 57

4.7.1. Detailed Description . 57

4.7.2. Constructor & Destructor Documentation 57

4.7.3. Member Function Documentation . 58

4.8. torrent::CTorrentAlwaysFallToBTStrategy Class Reference 58

4.8.1. Detailed Description . 58

4.8.2. Constructor & Destructor Documentation 59

4.8.3. Member Function Documentation . 59

List of Terms . 61

List of Acronyms . 63

LIST OF FIGURES

1.1 Client-server content distribution . 1

1.2 Peer-to-peer content distribution . 1

3.1 All clients interaction and the DHT they collaborate with. 12

3.2 Sequence diagram of an hMule search and transfer using BitTorrent protocol 16

3.3 Sequence diagram for how objects interact to start a transfer in hMule when a peer providing
BitTorrent transfers is available . 18

4.1 Propagation of 1KB files in a 32 nodes set . 25

4.2 Propagation of 1MB files in a 32 nodes set . 25

4.3 Propagation of 30MB files in a 32 nodes set . 26

4.4 Propagation of 300MB files in a 32 nodes set . 26

4.5 Accumulated download ratio normalized for 30MB files 27

4.6 Accumulated download progress normalized for 30MB files 27

4.7 Accumulated download ratio normalized for 300MB files 28

4.8 Accumulated download progress normalized for 300MB files 28

LIST OF TABLES

3.1 Interaction of clients without hMule . 11

4.1 Content propagation of a new node in a seed-like environment. 27

1. INTRODUCTION

Since the beginning of the Internet one of its most popular uses has been file-sharing between users.

In early days, a Client/Server (C/S) model was adequate to handle file-sharing among users (i.e. a FTP
server could contain all the files and users could retrieve the files as needed). After the big worldwide
expansion of the Internet the resources required to provide central FTP servers became too expensive and
a new set of technologies for sharing files needed to be developed. An alternative approach was found in
P2P models. Within these models, users transfer files between themselves, avoiding a central server and
therefore scaling more quickly and efficiently.

1.1 Content-sharing distribution models

Fig. 1.1: Client-server content distribution Fig. 1.2: Peer-to-peer content distribution

The two most used models for content-distribution using Internet are the C/S and the P2P models. The
C/S model has scalability issues because it centralized resources nature. On the other hand P2P has more
difficulties for retrieve content and sources given its decentralized implementation.

Figure 1.1 illustrates the C/S model. The producer uploads the content to a central server and links it from a
website providing this content. The consumer searches this content in the website and downloads it directly
from the server.

In the P2P model, as depicted by figure 1.2, transfers are done between users without central server, even,
in some cases for indexation. Let’s consider the following scenario: a user shares a tutorial BitTorrent video
using the eMule P2P network; the user selects content to be publish in the network (for which he/she will
be the only available source). Then the eMule client creates a set of keywords (BitTorrent and Tutorial
for our example), which along with the content itself are indexed in a distributed hash table named Kad in
the following manner: Keywords –>Content –>Source. A second user can search in the Kad distributed
hash table for the content through keywords that will provide him a content ID. Once the client obtains the

2 1. Introduction

content ID, it searches for sources providing the content and starts the transfer from the found sources.

1.2 P2P Networks

We adopt the definitions of P2P and Pure-P2P from [11]:

A distributed network architecture may be called a Peer-to-Peer (P-to-P, P2P,...) network
if the participants share a part of their own hardware resources (processing power, storage
capacity, network link capacity, printers,...). These shared resources are necessary to provide
the service and content offered by the network (e.g. file sharing or shared workspaces for
collaboration).

The participants of such a network are thus resource (service and content) providers as
well as resource (service and content) requesters (Servent-concept).

A distributed network architecture has to be classified as a Pure-Peer-to-Peer network, if it
is firstly a Peer-to-Peer network (...) and secondly if any single, arbitrary chosen Terminal En-
tity can be removed from the network without having the network suffering any loss of network
service.

P2P turned popular when traffic bottlenecks generated by using a central point for data transfer (the server)
became notoriously expensive, specially for free of charge content distribution where the provider should
pay large bandwidth charges.

Three different approaches were used in P2P network designs: pure P2P1 where users never need to interact
with a centralized resource (i.e. gnutella, freenet), statically centralized hybrid P2P where users transfer the
files between each other but coordination between peers is decided by a central known resource (i.e. eDon-
key2000) and dynamically centralized P2P where a small subset of selected peers work as coordinators,
usually called super-nodes (i.e. Kazaa).

We are particularly interested in the pure P2P design which doesn’t need anything but users joining the
network to be in service.

1.3 Content Indexation in P2P

Due to the distributed nature of P2P systems, there is challenge on implementing a distributed indexation
mechanism so all participants could search for content in the network. One effective solution is to use
a distributed data structure, such as a DHT[16]. DHT provides the same abstract interface than normal
hash tables, allowing the association between keys and values, which can be used to provide a search-by-
key service. Also, the DHT implementations should cover the following properties: decentralization, fault
tolerance and be high scalability.

Within a pure P2P approach, we need to consider two associations: between keywords and content, and
between content and sources. A user searches for a given content through keywords, and once the content
is found, the user will search for sources providing that content so as to download it. A two-level indexation
DHT is adequate to fulfill this double indexation.

Kademlia is one of the most popular DHT implementations for P2P content-sharing. Both, eMule and
BitTorrent, follow the Kademlia specification for their DHT implementations.

1.4 eMule vs BitTorrent

The most popular content-sharing technologies at the moment are the eMule and BitTorrent networks.
1 Also known as decentralized file sharing network.

1.5. Objectives 3

On the one hand, eMule uses the ed2K protocol for file transfers and a Kademlia-based implementation
named Kad for content indexing. On the other hand, the BitTorrent protocol applies a tit-for-tat based
algorithm for file transfers and 2 Kademlia-based DHTs for its distributed trackers, along with a central
tracker option.

In recent work, Timpanaro et al.[13] compares the file transfer protocols of eMule and BitTorrent evaluating
strengths and weaknesses of them. They show that BitTorrent outperforms the ED2K protocol for file
transfers, while the indexations mechanism of eMule has several benefits over those used in the BitTorrent
network in terms of security.

1.5 Objectives

Our main objective is to evaluate our proposal of an hybrid client which merges together the benefits of Kad
for indexation mechanism along with BitTorrent transfer protocol to speed up the transfers.

To validate our approach and obtain the non trivial to see requirements, we developed a functional prototype.
This prototype (named hMule) has all functionalities needed to join Kad network, transfer content using
BitTorrent, detect when to call each protocol and fairly uses both networks to avoid been banned in any of
the them.

1.6 Document Structure

The report is organized as follows. Chapter 2 presents how file-sharing service is provided using current
implementations of eMule and BitTorrent compatible applications. Chapter 3 discuss hMule development.
We start with architecture decisions, after that, we describe the changes and extensions to the protocols
and logging introduced. Chapter 4 shows the experimentation design, the results obtained and its analysis.
Chapter 5 exposes the conclusions. Chapter 6 provides some ideas for future work in the hMule project.
Finally, the appendices include an installation guide, a user guide, a troubleshooting for known issues, docu-
mentation of the most relevant new classes implemented and some scripts developed in the experimentation
phase.

4 1. Introduction

2. RELATED WORK

2.1 Introduction

A file-sharing service is composed of 3 steps: (1) a user searches for files that suits his/her needs using
keywords; (2) he/she selects which files from the search results he/she would like to obtain and asks for the
list of sources; (3) at last he/she asks to the sources for the content of the files.

In the client/server approach, the first step is accomplished using a site like www.yahoo.com, www.
google.com, www.download.com, etc. or links provided by email, IRC or another channel. The
second step is provided by the server which has the content itself or a secondary server providing a portal
with the index of the content and resources location. Finally, on the third step, the transfer is granted by ftp,
http or a similar protocol.

There are different approaches to P2P with slight variants. We will focus on two of the available P2P
technologies, eMule and BitTorrent.

For the first step, the eMule Kad network has a first level index that maps keywords to file identifiers while
BitTorrent uses web sites that publish info-files containing the metadata needed for the second step (pretty
much like the C/S approach). The second step for eMule is handled by a second level index in Kad while
BitTorrent uses an implementation of DHT that maps file metadata to sources. Both networks can also use
centralized coordination servers1 in some cases. This behavior is implemented for backward compatibility
reasons, it allows interaction with clients which were developed before the introduction of DHTs. In the
last step, each client uses it own protocol for transfer.

2.2 Distributed Hash Table (DHT)

The DHT[16][5] is a distributed data structure which virtually acts as a normal hash table, but the imple-
mentation is distributed along several nodes. To avoid centralization of resources, each key-value pairs is
stored among a set of the participants of the network in a way so all peers handle similar load of data and
transfer.

A DHT needs to have the following properties:

• Decentralization: Every peer has the same duties

• Fault tolerance: Connection and disconnection of peers do not affect service uptime

• Scalability: The system supports a large number of peers

Several architectures were proposed, such as Chord[12], Pastry[10], Tapestry[17], Kademlia[7]. They as-
sign a unique identifier to each key and each value, and a function to evaluate the distance between two
identifiers. When searching for a specific key, the closest peers (the so called replica set) to a key are
queried. The same approach is used when storing a new value: it is stored in the closest peers, so as to
assure fault tolerance against peers that go offline.

Kademlia is one of the most popular DHT implementations for P2P content-sharing. The identifiers are
randomly generated and a XOR metric evaluates the distance between identifiers. It is used in the distributed
BitTorrent trackers and the indexation scheme of the eMule/Kad network.

1 Know in BitTorrent as trackers and in eMule as eDonkey servers

www.yahoo.com
www. google.com
www. google.com
www.download.com

6 2. Related work

2.2.1 Kademlia system for indexation

Kademlia is a general purpose P2P DHT based on XOR metrics originally proposed by Maymounkov et
al.[7]. In Kademlia every node has a 160-bit identifier randomly generated before joining the network. The
distance between two nodes is defined as the XOR operation between each of the node’s IDs. This distance,
when the operation in a fully populated tree of 160 bits that is equivalent to the height of the smallest tree
that contains both nodes.

For each i between 0 to 160, every <ip, port, id> triplets of nodes that are in distance 2i and 2i+1 from itself
are saved and called K-buckets. When a new node joins the network, it looks for itself and starts taking note
of the closest nodes. It keeps record of the k closest known nodes(usually k = 20). These known nodes are
used to route query messages to the other nodes.

To store information in Kademlia, a 160 bits key is created and the nodes which IDs are the closest to the
key value will store data for that key. To locate the stored data, the closest nodes to the key identifying the
data should be found. To locate a node by its identifier you should ask to the closest nodes you know, they
will reply with the closest nodes they know and you iterate with the new closest nodes to the target until
you reach the target node.

2.2.2 The eMule implementation: Kad

The eMule network uses a variation of Kademlia called Kad where the size of the keys is 128 bits[9]
(since eMule uses MD4 hashes as identifiers for files to keep compatibility with ED2K networks). Kad has
two index levels to provide the fully double indexation mechanism. The first level maps MD4 hashes of
keywords to file identifiers (MD4 of the file contents) and the second level maps those file identifiers to the
sources that share the file.

Previous work[13][14] has shown that Kad has a more reliable Kademlia implementation in terms of secu-
rity than BitTorrent DHTs.

2.2.3 The BitTorrent implementations - Mainline and Vuze

There are two Kademlia implementations for BitTorrent’s DHT: Mainline or Vuze, both incompatible be-
tween themselves. All content in BitTorrent has a metadata file associated. This file, known as info-file,
contains all the necessary information to fulfill the transfer.

Both implementations of DHT use 160 bits keys for indexing as proposed in the first paper describing
Kademlia[7] since BitTorrent uses as key the sha1 hash of the info-file also known as the info-hash. The
BitTorrent DHT implementations only have one level of indexation that maps content identifiers to peers,
which is the reason why they need to access the web or other channels to find the file identifiers in order to
fulfill the first step in a file sharing service.

The links in the web proving the info-hash to start the info-file transfer are called magnet-links and follow
an standard defined by the magnet-uri project[8].

2.3 Ed2k

The ED2K protocol was developed originally for the eDonkey2000 network. Each file is divided into 9.28
MB parts, additionally those pieces are split in blocks of 180 KB each. Each peer has two queues for
transfers: one to handle requests for transfer from consumers (upload queue) and another to track requests
send to others for parts needed (download queue). All requests are part-wise, but recovery from interrupted
transfers uses block information.

2.3. Ed2k 7

When a peer asks for a part to another peer, the peer providing the file replies announcing how many
users asked beforehand and waits until finishing with those previous requests to start the transfer of the
requested piece of data. Improvements related to peer exchange and credit systems were implemented in
some alternative clients (i.e. eMule[6]).

The original eDonkey2000 client was shut down in 2006 because of legal issues [1] [2]. Since then, eMule
took the central place in the scene when talking about standardization and protocol changes and most the
clients claiming to be compatible with eDonkey2000 are actually compatible with eMule nowadays.

As consequence of the legal issues, all the original indexing servers where shutdown when eDonkey2000
was, nevertheless there are some free implementations around that allow final users to run their own server.

2.3.1 eMule

The eMule client is an eDonkey2000 open source alternative for windows started in 2002. Since then, eMule
has been expanding the original ED2K protocol with new non-official functionalities like peer exchange,
credit systems and protocol obfuscation[6].

The eDonkey2000 network used P2P just for transfer and a centralized index services based on a set of
servers distributed around the world. Around 2003 some countries started auditing and regulating Internet
content transfers. Starting in 2004 P2P file sharing communities were prosecuted in some countries because
users indexed copyrighted material for distribution. In some cases, the local governments took action to
censor or block the central index (i.e. Kazaa [1] [2]). The servers who had content indexed that was
considered illegal by the country where the server was running were shutdown) having a worldwide impact
on the users (those transferring legally or not). Since then, the P2P content-sharing networks had to evolve
into pure P2P to avoid being compromised by conflicts or blackout of a few nodes.

The eMule project developed the Kad DHT based in Kademlia with two index levels, one for mapping file
identifiers to peers, and one to map keywords to file identifiers; so search for content can be done inside
the network[9]. The Kad guidelines for implementation of clients making use of the Kad network are very
strict, it is not allowed to index anything but files shared using ED2K protocol. The source code is available
under GPLv2+ in VC++ and can be obtained from http://www.emule-project.com.

2.3.2 aMule

The aMule client is a fork of xMule, a multiplatform open source alternative implementation compatible
with eMule. It is the second most used client with active development nowadays.

The original fully monolithic architecture has been replaced with a modular one using ECP2 to separate
the core functionality from other components that provide different kinds of user interfaces. Nevertheless,
there is still the option to get a monolithic build from the same source code.

The aMule components are:

• aMule Daemon: Handles all the file-sharing work and can be connected to any user interface provided
by aMule from a local or remote origin.

• aMule Remote GUI: Similar to eMule GUI and implemented using wxWidgets library.

• aMule Web: A service that provides user interface using HTTP protocol, it’s based on PHP code so
it can be easily extended by webdevelopers.

• aMule Cmd: A simple user interface for command line.

2 External Connection Protocol

http://www.emule-project.com

8 2. Related work

• aMule: The monolithic version that resembles a Daemon + Remote Gui squashed together in a single
binary.

The source code is available under GPLv2+ in C++ with wxWidgets library and can be obtained from
http://www.amule.org.

2.4 BitTorrent

Pareto efficiency is a concept from economics. In a Pareto efficient economic allocation, no one can be
made better off without making at least one individual worse off. Given an initial allocation of goods
among a set of individuals, a change to a different allocation that makes at least one individual better off
without making any other individual worse off is called a Pareto improvement. An allocation is defined as
Pareto efficient when no further Pareto improvements can be made.

To achieve Pareto efficiency, BitTorrent protocol uses tit-for-tat strategy. An agent using this strategy will
first cooperate, then subsequently replicate an opponent’s previous action. If the opponent previously was
cooperative, the agent is cooperative. If not, the agent is not.

The first implementation of BitTorrent had centralized resources called trackers that were responsible of
providing the means to set together peers interested in an specific content, creating what we call swarms.
The participants of a swarm follow a set of defined rules to maximize availability of content and redistribute
the cost of upload and download between them [4].

After some years, a trackerless implementation was provided using Kademlia implementations, being Vuze
and Mainline the most popular ones. The trackerless implementation of BitTorrent has only the ability to
find sources for files when the info-hash is known. Nowadays, most clients, when processing an info-file
which includes a tracker, after request a list of nodes to it check in any DHT to find more peers. A secondary
network for keyword search is needed and the web is the most used for this mean.

BitTorrent transfer strategies are divided in 2 groups, those to select which piece to download, and those to
chose which peer to choke/unchoke. Choking is a temporary refusal of transfer to another peer, although
transfer from that peer are not blocked.

• Piece selection

– Strict priority: Once a subpiece of a piece has been obtained, transferring the remaining sub-
piece of that piece has priority over anything else.

– Rarest first: When starting the transfer of any piece, but the first downloaded, the less available
piece is requested.

– Random first piece: The first piece of the transfer is selected randomly.

– End game mode: Once all sub-pieces which a peer doesn’t have are actively being requested it
sends requests for all sub-pieces to all peers.

• Choking algorithms used

– Pareto efficiency: BitTorrent tries to maximize the reciprocate of upload connections.

– BitTorrent choking algorithm: BitTorrent unchokes a fixed amount of peers to try to saturate
upload capacity, decision is based in download rate.

– Optimistic unchoking: Every 3 cycles, a single peer is unchocked to check if there is some
better option than keep going with those peers already unchoked.

– Anti-snubbing: If not getting data from a peer for a minute, that peer is chocked.

– Upload only: Once the download is complete and there is no download rates in which to base
decisions, the upload rate is used to maximize availability.

http://www.amule.org

2.4. BitTorrent 9

Changes to the BitTorrent protocol are proposed and decided by the community in www.bittorrent.
org.

It is important to notice from previous description of Kad and ED2K network that keys in Kad come from
MD4 hashes while in the other hand BitTorrent tracking sites index content structured in directories and files
as a whole using as key the SHA1 hash of the info-file that describes the files and their relative location.
This has an impact in the way we index BitTorrent info-hashes since they have 160bits and Kad only has
128bits reserved for keys.

2.4.1 The BitTorrent client

BitTorrent is the official client originally developed by Bram Cohen and the protocol specification is pub-
licly available in the BitTorrent site (http://www.bittorrent.org).

BitTorrent uses Mainline DHT to map info-hashes to peers providing its info-file. The search for the file by
keywords is handled outside of BitTorrent using the Web or other channels.

In previous work BitTorrent transfer speed was compared with eMule in several scenarios showing that the
download strategies used by BitTorrent perform better than those used by eMule[14].

BitTorrent was originally developed in Python in 2001 and licensed under MIT. Since version 4 the code
was closed by BitTorrent Inc.. However, several open-source alternative clients were developed before the
code was closed as µTorrent, azureus and rTorrent.

2.4.2 Vuze (formerly azureus)

Vuze is one of the most deployed alternatives to BitTorrent clients. Their developers implemented a lot of
extra features that are not in BitTorrent standard, also they provide an easy interface to develop third party
plug-ins.

The Kademlia based DHT used by Vuze is not Mainline, neither it is compatible with it.

The source code is developed in Java under an hybrid license having some components under proprietary
license and some under GPLv3. The open source pieces of code can be downloaded from http://dev.
vuze.com/.

2.4.3 rTorrent

The rTorrent is a command line BitTorrent client whose core is also released as libtorrent (rakshasa) and
used to implement other clients.

The source code is available under GPLv2+ in C++ and can be obtained from http://libtorrent.
rakshasa.no.

2.4.4 libtorrent-rasterbar

LibTorrent-rasterbar is a library implementing the BitTorrent protocol and a set of related tools needed to
build a complete client in a few lines of code, including session management, plugins management, DHT
access, metadata exchange and persistence of the content. The build from source code offers the option to
generate Python and Ruby bindings.

LibTorrent-rasterbar allows to externally define extensions to the protocol through its API.

The source code is available under BSD license in C++ and can be obtained from http://www.rasterbar.
com/products/libtorrent/.

www.bittorrent.org
www.bittorrent.org
http://www.bittorrent.org
http://dev.vuze.com/
http://dev.vuze.com/
http://libtorrent.rakshasa.no
http://libtorrent.rakshasa.no
http://www.rasterbar.com/products/libtorrent/
http://www.rasterbar.com/products/libtorrent/

10 2. Related work

2.5 Summary

We introduced the concept of DHT and described a few implementations of it based in Kademlia spec-
ifications. Most remarkable difference between the DHT implementations is that Kad has two levels of
indexation while others only have one. Having only one level of indexation is not enough to provide pure
P2P content-sharing.

We introduced the ideas behind ED2K and BitTorrent transfer protocols. Furthermore, we survey a set of
implementation of those protocols, some as clients and others as libraries.

In following chapter, this concepts and survey will be used to support the architecture decisions taken in
prototype design and implementation.

3. HMULE: A KAD-BITTORRENT HYBRID CLIENT

3.1 Introduction

We introduce our global vision of how today *Mule and BitTorrent clients interact with other components
and between themselves as well as our expectations towards an hybrid approach with hMule [15]. After
we reviewed the global interaction of the pieces, we present a set of use cases and a list of compatibility
requirements from it.

The use cases are bound to specific clients (*Mule, hMule, BitTorrent) so we don’t oversight the issues that
can rise in other clients as results of our changes.

After the requirements are completely described, we explain why we chose to extend the aMule client and
the architectural changes proposed to it in order to fulfill these requirements.

Finally, we introduce the protocol changes and analyze how they are compatible with all the scenarios we
required.

We keep the internals of experimentation development for next chapter, after discussing our experimentation
plan.

3.2 Overview

In table 3.1 we see how different clients interact when seeking content and sources, for the subsequent
file-transfer.

We can observe that BitTorrent clients need to search by keyword in the Web or in another external resource
to retrieve the info-file or the info-hash. Those peers who obtain the info-file can join a swarm using
a tracker and avoid being connected to any global DHT sharing only with those connected to the same
tracker. Sometimes, users are required to login to join a (private) tracker.

The peers having only the info-hash (using magnet links most of the time) have to join a DHT (Vuze or
Mainline) to look for peers sharing the wanted content or ask to a known peer if it has the info-file (using
peers known from other swarm can work). Vuze client can join both DHT’s so they have access to more
peers to share with than those peers who only connect to mainline DHT. It’s important to notice that any
swarm can be joined by any client using BitTorrent protocol, the only resource that is not shared between

Client Lookup by keyword Search sources Transfer protocol
aMule Kad Kad ED2K
eMule ed2k-server ed2k-server

third party (magnet from Web, irc, mail...)
BitTorent third party (magnet from Web, irc, mail...) Mainline BitTorrent
µTorrent tracker
rTorrent swarm
Vuze Vuze search engine Vuze DHT BitTorrent

third party (magnet from Web, IRC, mail...) Mainline
tracker
swarm

Tab. 3.1: Interaction of clients without hMule

12 3. hMule: a Kad-BitTorrent hybrid client

Fig. 3.1: All clients interaction and the DHT they collaborate with.

all of them is the DHT.

Most *Mule clients search by keywords in Kad, some users don’t use this feature and prefer to use similar
indexing servers that those that were used by eDonkey2000. After a file has been chosen from the list of
results provided by Kad when looking up by keywords, another query is sent to Kad looking for sources.
When a set of sources is obtained, the consumer asks to be subscribed into the upload queue of each source
for the desired file. *Mule clients reply this request by providing the metadata of the file, which contains
information about the content such as format, name, size, and several others. Then they queue the request
for transfer in its upload queue.

The difference between BitTorrent and *Mule about the order of the steps taken to obtain metadata is
important, because it changes assumptions in the protocols, i.e. The BitTorrent info-file is a unique metadata
for a content, while the metadata for *Mule transfers can have as many as detected sources providing it.

In figure 3.1 we can see how we expect our developed client to interact with all those networks and get the
best out of each. Also we plan to work as a kind of bridge of content between networks, providing to both
networks what we obtained from any of them.

3.3 Requirements analysis

3.3.1 Use cases

We categorize our cases by participants involved in the interaction

• Request started by an hMule client using Kad

– Start a query from Kad with a keyword to get possible files.

– When Kad replies to the query, prompt the user to select the file to download.

– Start a query in Kad with the selected file to get sources.

– For each source

∗ query source for metadata about the file.

3.4. Possible approaches and evaluation 13

∗ when the client replying us is an hMule client, metadata should include enough informa-
tion to identify the file as content in the BitTorrent network The download will be added
to BitTorrent’s transfer queues, and a swarm will be joined using the peer providing the
metadata as entry point.

∗ otherwise metadata should be added to the ED2K queue.

– If BitTorrent protocol was not used, when transfer is complete, generate and store the info-file
and info-hash to provide it in future transfers.

• Request by hMule to BitTorrent network having info-file or info-hash

– User introduces the info-file or info-hash.

– Start download using BitTorrent protocol, trackers and Mainline DHT if needed.

– When transfer is complete, compute Kad metadata and keywords.

– Publish in Kad.

• Publish original new content from hMule

– Compute BitTorrent info-file of the new content to be able to reply to BitTorrent requests for
info-file from peers that only have the info-hash and register the Mainline DHT.

– Compute Kad metadata and keywords.

– Publish in Kad.

3.3.2 List of compatibility requirements

• hMule should be able to join Kad to search and publish content.

• hMule should be able to obtain content from info-files, info-hashes, ed2k-links, and make it available
for all other *Mule clients by Kad.

• hMule should be able to transfer content to other clients using BitTorrent transfer protocol whenever
possible (hMule or BitTorrent peers).

• hMule should be compatible with previous *Mule and BitTorrent clients:

– It should be agnostic about transfer protocol when publishing content in Kad, meaning that a
content should not have to be searched with different criteria depending on the transfer protocol
desired to be used and Kad should return a valid result set for all kinds of user.

– It should share the published files to old *Mule clients using the ED2K transfer protocol.

– It should be able to join swarms with other BitTorrent clients using trackers or Mainline DHT.

3.4 Possible approaches and evaluation

To fulfill the requirements of the project several approaches were studied to combine them into a solution.

3.4.1 An hybrid client using libraries for Kad, BitTorrent and ed2k

Obtaining the Kad source code from eMule to use it as library is possible since other clients using Kad
already had the need to do that, but extracting the ED2K transfer protocol and session components is
unpractical, since eMule is tightly coupled between these functionalities and its main application loop.
Also we couldn’t find any open source libraries providing ED2K protocol, so it should be stripped from
some *Mule.

14 3. hMule: a Kad-BitTorrent hybrid client

Given that libraries providing Kad and ED2K functionalities were not available for production or needed
exhaustive work to be extracted from original implementation, we can’t build our own prototype based in
just libraries. We suggest then, to start form a BitTorrent client and build over it the needed functionalities
to interact with other eMule-compatible clients, or to start from a eMule-compatible client and build over it
the BitTorrent transfer mechanisms.

3.4.2 Extending a BitTorrent client to use Kad-DHT

We can use Vuze and implement a plugin to access Kad from it. Kad file identifiers are smaller (128
bits) than the files used to communicate metadata between BitTorrent peers (known as info-files) which
has no fixed length and can take several bytes. The difference of length in the metadata needed to start a
download brings up the necessity to define a new identifier for those contents provided using BitTorrent
or a change to the Kad structure. The Kad structure of a DHT can’t be changed by one single client. The
problem about variable lenght of identification of content in BitTorrent was also noticed by the BitTorrent
DHTs developers, so they indexed their DHT implementations using info-hashes of 160 bits (info-hash).
BitTorrent already provides a protocol to exchange info-files between peers. To use the info-file exchange
you need to know the info-hash and at least one source providing the content. To take advantage of the
info-file exchange protocol we need the info-hash, which doesn’t fit into the 128 bits of Kad keys. There is
no direct translation to compute an info-hash from the Kad identifier without losing backward compatibility
with Kad or BitTorrent.

To overcome these problems we thought to include the info-hash as a keyword when publishing the file,
but some clients drop keywords or override them when other publication for the same file arrives (probably
from an old client that doesn’t provide this information). As we (at least until our client becomes popular
enough) are a small minority in the network, there is a high probability that our info-hash gets eclipsed by
other clients providing the same content.

The solution we came up for the issue matching Kad file identifiers to info-files was to implement a new
protocol message that has a 128 bits identifier. The peers that share the file ask for the info-file to clients
identified as sources by Kad and if a client replies with the info-file, content transfer can be started using
BitTorrent protocol.

This approach only provides a shared index between networks that got misleading info for both kind of
users, those using BitTorrent can find transfers that can only be acquired using ED2K protocol and those
using ED2K can find content that can only be acquired using BitTorrent protocol for transfers. Those
clients following strictly the eMule guidelines of use for Kad will ban us from the network, they are the
most deployed in the network right now. So, we should need an implementation of ED2K protocol to get
and provide files when there is no BitTorrent sources to avoid the exclusion from Kad.

We could try to filter results in our client so only those available for BitTorrent transfer appear, but filtering
is complex because it can not be done without asking each source of each result what application version
got installed. Asking to all sources for all results is overwhelming, and registering if the file is provided or
not by an hybrid as a keyword in Kad is not possible for the same reasons that info-hashes can’t.

3.4.3 Extending an eMule client to support BitTorrent as transfer protocol

Libraries providing BitTorrent were evaluated and both of them provide a good start for a BitTorrent client.
The Kad protocol is working in any eMule client, but we still need a way to map the 128 bits identifiers
to the 160 bits info-hashes to use the info-file exchange extension in BitTorrent libraries. This can be
introduced as a libtorrent extension or hooked to some eMule operation when bootstrapping downloads.

We also know that eMule clients asks every new source added for metadata. We can take advantage of this
by extending the eMule protocol. So when our client replies, it also comes up with the info-hash we require.

3.5. Changes proposed to the aMule client 15

3.4.4 Chosen approach

We decided to expand an eMule-compatible client to support BitTorrent as an alternative transfer protocol.

• We use aMule as an eMule-compatible client since our experimentation infrastructure is based on
Linux and also because the aMule project has a more modular architecture than eMule.

• We use libtorrent-rasterbar to provide the BitTorrent protocol. It has a complete high level interface
to handle sessions, individual torrents and peers, and also it has access to low level interfaces to
do adjustments when needed. The implementation is based on the widely known Boost libraries
that makes it easily portable to other operating systems it provides interfaces to develop extensions.
Extentions for Mainline DHT, metadata exchange between peers, µpnp and IPFilters are already
offered by the library.

3.5 Changes proposed to the aMule client

We got to retrieve the BitTorrent metadata from peers. When a file is added to the download queue in
an aMule, it asks every source for the metadata. There is no need to implement a message to explicitly
request the info-hash since OP_REQUIRE_FILENAME is sent to all known sources and expect several
asynchronous replies with different kinds of metadata such as user comments, media tags, etc. We should
be able to reply the request for metadata with one more asynchronous message including info-hash and
peer’s port used for BitTorrent protocol. If a peer replies with the info-hash, that is enough to say it pro-
vides BitTorrent services and an info-file exchange request should be sent to this peer using the already
implemented methods in the LibTorrent-rasterbar.

3.5.1 Protocol changes

• The new message providing the info-hash and the openned port number to listen for BitTorrent proto-
col messages will be implemented as part of eMule extended protocol and the message will be named
OP_BTIH.

• Some extra messages should be defined in the EC protocol to check Torrent specific stats, add new
downloads starting from info-files, info-hash or magnet links, disable or enable Mainline DHT sup-
port.

In figure 3.2 we can see a simple flow of messages intervening in the download of a file in the modified
client hMule when the file is obtained using the BitTorrent protocol for transfer.

The changes in messages are numbered:

• The new implemented message, providing the info-hash and which port is open for listening to Bit-
Torrent protocol, is sent from sources having hMule

• The info-file is requested to the peer who provided the info-hash to the announced port using BitTor-
rent metadata-extension.

• The info-file is obtained using BitTorrent metadata exchange extension

• The swarm is joined and the content to start the transfer.

16 3. hMule: a Kad-BitTorrent hybrid client

Fig. 3.2: Sequence diagram of an hMule search and transfer using BitTorrent protocol

3.5.2 Application changes

• To reply with OP_BITH, an internal dictionary that maps eMule file IDs to BitTorrent metadata
hashes should be maintained internally. This dictionary should persist between sessions since torrent
metadata coming from different sources has different metadata hash for the same content and we
don’t want to lose the original swarms.

• To provide backward compatibility, when a file was fully transferred using ED2K protocol, the info-
file is generated and it is added to the dictionary. So users with hMule client can retrieve info-file and
info-hash to use the BitTorrent protocol. An external torrent file should be able to be added to the
session. After being fully transferred using BitTorrent protocol, the file should be published in Kad
and the dictionary updated.

• A class should be defined to wrap the LibTorrent-rasterbar and a coordinator between transfer proto-
cols should be defined to avoid overlap of efforts and keep on deciding which protocol suits better at
every time. This coordinator should provide a simple way to change strategies for experimental uses.

• A translation between wxWidgets structures and Boost ones should be provided in some cases.

• Building scripts should be modified to provide a non-hybrid built and to detect the required libraries.

3.6 Current implementation details

The interface between aMule and LibTorrent-rasterbar was implemented defining a namespace torrent that
contains a class Torrent to handle the wrapping joint with a class TorrentMuleMapping that keeps track of
the metadata relations.

The TorrentMuleMapping class is internally represented as 3 unordered maps to index the relations (used
when searching by key) and a vector (used to iterate those relations). The relations have 4 fields, a
CMD4hash1, a SHA1hash2, a boost::filesystem::path that should point the info-file and a status of download

1 Type of identifier used for files in aMule
2 Type of identifier used for the BitTorrent content

3.6. Current implementation details 17

enum. Several getters and update methods are defined to access the container, including constant iteration.

The Torrent class is implemented as a singleton and contains internally the libtorrent session, an instance
of TorrentMuleMapping and methods to wrap the libtorrent behavior as createMetadataForFile (which
generates the torrent metadata for a known file). Torrent class also initializes and calls the TorrentStrategy
used to select protocols for transfer, which is selected in the app’s configuration file.

3.6.1 Initializing and shutting down the application

The main application class, called amuleApp, has an OnInit method and an OnExit method that are called
at start and end of the application run. There are also specific methods for subapplication customization of
those methods.

When an application is launched and OnInit is called, aMule reads all the preferences of the user from
the configuration file, initializes the DownloadQueue and UploadQueue, reads a set of metadata files called
PartMet files to register the current metadata in the download queue. There are some extra activities handled
in the OnInit method based in configuration, i.e. join eDonkey2000 servers and start running Kad. They try
to join the chosen networks and, as soon as they connect, they start looking for sources for all the queued
downloads.

Once all ports for aMule connections are open, the Torrent class instance is created setting the ports for
BitTorrent connections (by default port 7000, but tries others if that one is taken). The Torrent class uses
two configuration options to select where to persist the info-files and where to persist the dictionary between
sessions. The strategy chosen is read from the configuration file only once, so if you want to change it,
session should be restarted.

After the download queue is completly loaded, the method refreshMetadata in the Torrent class is called.
This method iterates the TorrentMuleMap to load all the metadata known from previous sessions, then
checks the torrent directory defined in the configuration for info-files that are not mapped yet and loads
them. This works as a dropping directory for those not using the amulecmd UI.

Then aMule calls reloadFiles method in SharedFilesList class to update the metadata of the shared files, this
method was modified so it calls addFilesFromDirectory method of the Torrent class to update the info-files
and the information in the TorrentMuleMap.

When the application shutdowns, it calls OnExit method which handles the persistence between sessions
and shutdown of services. We modified the OnExit method to include info-files and MuleToTorrentMap in
the set of objects to persist and call the shutdown methods for the BitTorrent session.

3.6.2 Starting a download from Kad

In previous section, we showed the flow of messages intervening in a search for a file in Kad and its transfer
between hMule clients using BitTorrent protocol (fig. 3.2).

In figure 3.3 we show how different objects collaborate to start a transfer with an Id obtained from Kad but
using BitTorrent as transfer protocol.

Firstly, user provides the Id of the file to be downloaded to hMuleApp (the class running the main loop
in the application), hMuleApp calls to the ED2K DownloadQueue singleton object to add the Id. The
DownloadQueue calls to the Kad object to find sources. For each source that Kad finds, it calls the Down-
loadQueue to inform of it. When DowloadQueue receives a new source, it tries to contact it sending an
OP_REQUIRE_FILENAME message which is used to request for the metadata of the file. If the source
uses the extended eMule protocol, it will reply with several message with different information as idv3,
comments, filename and others. If the source can transfer the file using BitTorrent protocol, it also sends
an OP_BT_IH message which carries the info-hash of the file we want to transfer and the listening port
for BitTorrent interactions. When a OP_BT_IH message is received by hMule, the info-hash of the file

18 3. hMule: a Kad-BitTorrent hybrid client

Fig. 3.3: Sequence diagram for how objects interact to start a transfer in hMule when a peer providing BitTorrent
transfers is available

is known, so a request for info-file is sent to that peer. After info-file is obtained, the Id, info-hash and
info-file are introduced into the TorrentMuleMapping object so the strategy starts deciding what to do about
protocols.

While hMule doesn’t receive an OP_BT_IH message it just transfers using the ED2K protocol.

Hooks:

• When our client receives metadata from sources, it processes it using the processFileInfo method in
DownloadClient class. This one was modified to check for OP_BT_IH messages. If any OP_BT_IH
messsage were received, the information contained is passed to the Torrent class using the addTor-
rentUsingSHA1AndPeer method. This method adds the ip and port of the peer that provided the
information and the info-hash of the file to the BitTorrent session and asks to the known peer for the
info-file exchange.

• The main loop of the application has a second thread to process asynchronous tasks. Every time a
loop is completed the process method of download and upload queues is called. A call to the process
method in Torrent class was added to the loop so asynchronous alerts from LibTorrent-rasterbar can
be attended and TorrentStrategy can switch protocols as needed.

• After a file is fully downloaded using BitTorrent protocol, a FINISH_DOWNLOAD alert is received
by the TorrentStrategy object. If the MD4 hash of the content matches the identifier of the file, it is
flagged as completely downloaded and moved to the incoming directory, otherwise the file pieces are
checked using AICH and those pieces that failed the verification process are downloaded again.

Notice that the identifier we publish in Kad for a content doesn’t change according to the protocols available
to transfer it. The unique identifier allows us to switch between transfer protocols at any time during the

3.7. Summary 19

transfer without the need for another search. Also it should allow us to implement the use of both networks
simultaneously to download a single content.

3.6.3 Strategies for referee

The referee described in previous section is an abstract class which should be subclassed. Two basic strate-
gies were implemented.

The first one saves metadata given by others, provides the OP_BT_IH replies to other peers requesting it
and transfers content to others but doesn’t use BitTorrent protocol to download content. This strategy was
named NoTorrentStrategy and can be selected in the configuration file by setting strategy=0.

The second strategy handles the full transfer using BitTorrent protocol when the info-file is obtained from
another peer. This strategy was named AlwaysFallToTorrentStrategy and can be selected in the configuration
file by setting strategy=1.

3.6.4 Starting a download from info-file

When an info-file is provided from the web or another source, it needs to be added to the LibTorrent-
rasterbar session to be downloaded. After finished downloading the content, it is published in Kad.

The file path can be provided in the add command of amulecmd or dropping the file in the torrent directory
configured. If the use of mainline DHT is enabled, add command also allows the use of magnet links.

Mainline DHT can be enabled using connect mainline command in aMulecmd.

3.6.5 Sharing a new file

When a new file is added in the sharing directory and reload button or reload command is executed,
the SharedFilesList’s reload method is called. We extended the code so a similar operation is called in
Torrent class to create the necesary info-files.

3.6.6 Additional changes

Autoconf scripts have been modified to check for the new libraries needed in the software. An –enable-
torrent option has been added to the ./configure script so users can choose to build the original aMule client
or our modified version.

3.7 Summary

To provide the prototype we started choosing the scenarios on which we expect our client to work. Distilled
from those scenarios, we provided a list of use cases and actors with the compatibility requirements needed
to interact against them.

When our survey of requirements was completed, we evaluated how we could combine the different libraries
and clients described in previous chapter to cover these use cases. Firstly, we decided to start our prototype
forking from aMule code base. Secondly, we choosen to use LibTorrent-rasterbar for the BitTorrent protocol
and mechanisms. Finally, for the glue between networks, we extended the eMule protocol with a new
message which notifies the info-hash associated to a file when metadata is required between peers.

After explain how we planned to develop our prototype, we describe how we put everything together. We
show the way hMule clients collaborate to produce a transfer between them using the right protocols. Some

20 3. hMule: a Kad-BitTorrent hybrid client

important changes are hooked to initialization and shutting down events, where application had to handle
new connections and sessions. Two strategy classes, which decide when to use each transfer protocol and
how they collaborate to each other, are provided. Also, we supply an abstract strategy class, which may be
easily extended for research and development of new collaborative schemes.

More details about the final implementation can be found in the appendices where a user guide, an installa-
tion guide and some fragments of code for most relevant classes are shown.

4. EXPERIMENTATION

4.1 Introduction

In this chapter we explain how we conducted a set of experiments for our hybrid client using hMule.

The chapter is structured as follows. Firstly, we explain our experimentation goals. Secondly, we introduce
PlanetLab as our experimentation workbench and the limitations we found when using it. Thirdly, we
present the procedure used to run each experiment. Then, we describe the variables we are measured and
the final setup of the experimentation workbench. Finally, we show the obtained results and analyze them.

4.2 Experiment goals

We conducted a series of experiments aiming to compare hMule’s performance against the normal aMule
client, in which we expect hMule to outperform aMule.

Our experiments have several goals:

• Validate implementation functionalities. Is our new client compatible with other clients using Kad?
Is it compatible with other clients using BitTorrent protocol? We deployed some hMule peers, looked
for content to obtain and then share it using the different alternatives the client provides: Kad, ED2K
link, info-file with tracker, info-hash with mainline. After checking compatibility with previous
clients, we checked whether swarms were maintained when hMule provides content downloaded
from BitTorrent networks and files get published in Kad. Finally, we tested that files obtained from
ED2K networks get transferred using BitTorrent protocol by any other hMule clients.

• Compare content propagation speed.

– Full-content propagation of newly published content. How much time does it take for ev-
ery single peer to complete the download? We aim to measure how fast a new content gets
propagated within a set of peers starting from a single source.

– Content propagation when adding a new peer to a previously propagated content. In the
previous item, we described the situation of a content that was just published in the network and
several peers asking for it. In that case we were interested in providing complete transfer to as
many users as possible as soon as the content gets published, because most of the contents are
requested by the majority of the users in the first few hours or minutes since its publishing, and
only one source can provide it at that time. This creates a bottleneck for the distribution. This
issue usually disappears after a few days or hours of the original publication time and we get into
a different scenario where there is more sources than consumers. For the second scenario we
did some measures when we added only one new node asking for a content already distributed
in a set of nodes.

• Compare sustainability of transfer rates. We expect the nodes to maximize the accumulated trans-
ferred data between them as long as possible. This measure was used to try to understand how smartly
the clients are obtaining resources and distributing the transfer load. Accumulated upload rate was
also measured, but given that we are transferring data between nodes in a cluster, the output and
input will always be equal (only a small packet lost difference). We use the upload measure only for
experiment results validation.

Also, we measured the progress in every peer and accumulated it. We used this measure to check
how many useful data was propagated at a given time.

22 4. Experimentation

• Evaluation of wasted payload transfer. We measured how long (and how much) was payload trans-
fer before the protocol was switched. We expect that this measure will motivate the implementation
of new strategies in the future.

4.3 PlanetLab

PlanetLab[3] is a global research network that supports the development of new network services. Plan-
etLab currently consists of 1137 nodes at 544 sites providing Linux nodes where researchers can deploy
their experiments for distributed storage, network mapping, peer-to-peer systems, distributed hash tables,
etcetera.

For final users planet lab looks pretty much like a set of virtual machines connected to the Internet using a
Fedora Linux distribution. Each node comes with a clean installation of just an operating system in a 8GB
hard disk and the access to a root user account.

We were able to get 64 nodes from PlanetLab to use in our work. Some of those nodes usually have
frequent outages and after they come back they usually come back as a clean installation. After a few
weeks of dropping unstable nodes from our list we got 40 nodes with both clients installed and running in
a stable environment.

When we started taking measures we noticed that PlanetLab bandwidth was too high for a standard resi-
dential user and it was even a problem for measuring the progress of the transfers, having in some nodes
download and upload rates over 10Mbps.

After we did this experience, we tried to throttle down the bandwidth using the well known Linux Advanced
Routing & Traffic Control = LARTC (LARTC)1 traffic shaping tool. LARTC is a set of networking tools
that provides a series of services, including traffic shaping and network behavior simulation to provide very
realistic experimentation scenarios.

We found out that PlanetLab’s virtualization does not currently support running LARTC commands because
PlanetLab nodes run a single shared kernel that all slices use, so it restricts which syscalls you can use, even
when you have a root account. In consequence the shaping using LARTC was not possible.

Another tool we tried was Trickle2. The advantage of Trickle over LARTC is that it is able to shape in
user-space without the need of any special privilege. Anyway, Trickle requires a specific library linking
scheme to work, and we found out that aMule was not completely compliant with it.

After we failed to shape the traffic bandwidth outside the application in several ways, we decided to limit it
internally in the code. This approach is more error-prune and hard to check in terms of the trustiness of the
data. We introduced a log on which every 15 seconds, the total download rate, total upload rate, payload
download rate and payload upload rate were registered. The main purpose of this log was to validate that
our client never uses more bandwidth than what it should. We noticed in some nodes that peaks over the
allowed limit may occasionally appear, but never more than a 20% of the allowed bandwidth and never more
than 1 or 2 per experiment. We considered this error in the measures affordable considering the platform
limitations and given that we did several runs of each experiment.

4.4 Experiment design

We deployed aMule and hMule clients in each node provided by PlanetLab after filtering those ones with
frequent outages. All client nodes in this experiment are running the hMule client using Strategy 1 (Al-
waysFallToTorrent), and a normal aMule client as it was distributed at the time we branched the develop-
ment source code base.

1 http://www.lartc.org/
2 http://monkey.org/~marius/pages/?page=trickle

http://www.lartc.org/
http://monkey.org/~marius/pages/?page=trickle

4.5. Experiment development 23

All deployed nodes were using the standard configuration that came with their distribution package. We
limited the bandwidth used for each node to a standard asymmetric kind of connection generally available
in ISPs for home users (cablemodem 1.5Mbps/180Kbps).

We identified one node as the lead in each run of the experiment, this particular node was the one publishing
the content to be transferred at the start of each experiment run. On the lead node we uploaded one file of
the experiment files set, which includes files of 1KB, 1MB, 30MB and 300MB. This sizes are representative
of common transferred files in an aMule network, other common sizes are 650M, 4.7G, 9G and 30G which
we skipped because of space limitations in PlanetLab nodes, anyway we believe they should perform even
better using BitTorrent protocol than smaller ones.

A single run of the experiment consists of a series of coordinated steps:

• We start one client in each node.

• We upload one of the experiment files to the lead node.

• The lead node publishes the content.

• As soon the content is published, all nodes search for the content every 2 minutes until finding a
match for it and starting the downloading process for the file.

• Every 5 seconds the status of the transfer with several other variables is logged in each node (in-
cluding upload bandwidth, download bandwidth, progress of the transfer, downloaded size, parts,
known sources, known complete sources and others), also every 15 seconds a higher grained status is
recorded with accumulative data separated by protocol (including TCP, Kad, peer-exchange, packets
lost, etc).

• After a defined time (where at least 80% of the nodes completed the transfer) we shutdown all nodes.

• We download all nodes logs to a centralized place and merge them into a single experiment log for
later analysis.

• All data recorded in internal structures is flushed so next time the client runs, it starts brand new.

• Configuration files are put in place for the next run.

• And we start again.

4.5 Experiment development

4.5.1 hMule changes to retrieve internal information

A few changes had to be introduced in the hMule client to extract experimental data. We modified the
strategy AlwaysFallToTorrent to log the values of several session variables in the libtorrent session every 5
seconds in the Process method.

The logged variables were:

• Upload rate.

• Download rate.

• Upload payload rate (the upload rate considering only useful content transferred with no protocol
overhead).

• Download payload rate (the download rate considering only useful content transferred with no pro-
tocol overhead).

24 4. Experimentation

• Progress.

• Known peers in swarm.

• Unchocked peers.

• Download total transferred bytes.

• Upload total transferred bytes.

Also all the debugging messages previously defined in the client for strategies using BitTorrent protocol
were enabled at the time of the experiment.

This included a set of interesting alerts logged when:

• Metadata is asked to another peer.

• Metadata is obtained at first time and when it is provided to another peer.

• The switching protocol is called.

• A transfer is finished using BitTorrent protocol and the client needs to enter maintenance activities to
republish in aMule network as fully downloaded.

4.6 Setup of the nodes

Since most of the nodes in PlanetLab have exactly the same operating system (Fedora Linux 8) and libraries
deployed, we created a similar machine in our lab and we built everything locally. Once it worked as
expected, we rsynced all binaries and libraries to every node. After deploying all the applications, we
developed a set of bash scripts that reproduced the whole process described in the experiment design.

We scheduled several runs of each of the experiments using crontab daemon. The nodes clock difference
was measured for reference since crontab was used to launch the experiments. The highest difference we
found between the clocks was 2 seconds. Considering all obtained results are in the scale of hours or at
least tens of minutes, the clock differences were treated as not significant enough.

In some runs of experiments we noticed that some nodes freeze and don’t start the downloads because they
don’t find any sources, neither uploads to any other node using aMule. Those nodes which repeatedly had
this behavior were removed from the experimentation valid nodes lists. We suspect there was an issue in
those nodes opening the necessary TCP/UDP ports.

The aMule configuration was reset after each run to avoid favoritism from the credit system after different
runs of the experiment.

4.7 Results

4.7.1 Implemented functionalities validation

We have deployed mixed setups with different ratios of aMule/hMule clients. After we tested that all our
nodes can share the content between them, we did a second experiment where popular content was searched
in the Kad network and downloaded by all our peers.

First we ran searches in Kad sequentially, one node at the time, waiting several minutes after each search
to start the following one. When the last one started to download it was verified that it was using only
BitTorrent resources.

4.7. Results 25

Next, we repeated the test but starting downloads from all the nodes simultaneously. We observed, in this
scenario, that the swarm wasn’t joined by all possible peers since they join when a peer asks for metadata
to others. When download is started, none of them can provide an info-file. Anyway, when at least one
source finished the download, if a new peer asks for the same content afterwards it will gather all those
peers together in a swarm.

Two more tests were run where peers running hMule successfully downloaded content using magnet links
or info-files from the web. To keep new downloaders joining the peers in the original swarm, the original
info-file should be provided since the same file can have more than one info-file associated. So, after
downloading a content from BitTorrent networks, it was published in Kad. Then, a mixed set of peers
searched for it in Kad and downloaded it using any of the 2 protocols. Those peers using BitTorrent transfer
protocol joined the original swarm with peers using any BitTorrent client. This has validated that our client
publishes in Kad the original info-file obtained from the BitTorrent networks when using them.

Tests also showed that downloads stale if the whole swarm goes offline when a file started download using
BitTorrent protocol and AlwaysFallToTorrentStrategy. Anyway, after a new peer connects (or some of the
previous reconnect) the transfer is resumed using the new peers detected in the aMule network.

Given the nature of PlanetLab limitation about using limit for bandwidth we could not measure how the
protocols compete with each other for resources when working in an hybrid situation. We suggest that
when using BitTorrent protocol, to maximize the odds of getting the files fast, a low limit should be applied
over ED2K connections. This way, you can keep maintaining your position in the queue and use the most
bandwidth in the protocol, which provides a faster download. In our implementation the internal limit
bandwidth could be set in each protocol independently. Anyway, limiting both of them with specific values
while externally not limited at all, will perform the same as having 2 different clients running.

4.7.2 Content propagation speed

4.7.2.1 Full content propagation of newly published content.

Fig. 4.1: Propagation of 1KB files in a 32 nodes set Fig. 4.2: Propagation of 1MB files in a 32 nodes set

Files with just 1 KB of content always transferred faster than the metadata exchange for protocol switch
in hMule. That means that the transfer in hMule had a small overhead (a few bytes) over the aMule client
because of the unused require for metadata. Figure 4.1 shows how a 1K file gets propagated to 32 nodes for
both clients as reference.

Figure 4.2 presents a slight advantage for the first 10 nodes in which the transfer of a 1MB file is completed
when using hMule rather than aMule. Anyway when the quantity of nodes requesting the file is more than
10, the completion takes one third of the time taken when using aMule. The plot includes the time taken

26 4. Experimentation

Fig. 4.3: Propagation of 30MB files in a 32 nodes set Fig. 4.4: Propagation of 300MB files in a 32 nodes set

by peers to recognize each other as hMule compatible and the time used to exchange metadata to start the
transfer, this takes up to 2 minutes.

The transfer using aMule shows a step-like pattern. We think this is because the first few nodes which
asked for the file are getting equal quantity of transfer bandwidth from the original peer. This transfer is
not fragmented. The file has a single piece of 1MB, so there is no place for optimization of distribution in
aMule. After a while, each transfer completes for each peer that was at the top of the queue, giving us the
first step in the chart.

After the first set of peers completed the download, it takes some time for others to notice them as new
providers. So, the second set of peers in the queue to be processed doesn’t use them. That is why we see
that every step in the stair got pretty much the same quantity of nodes. This suggests that the quantity of
completed nodes doesn’t increase the availability of content right away. Given enough time, the peers who
completed the download will be seen as new sources for the other peers. In the meantime a lot of usable
transfer capability is wasted.

When using BitTorrent protocol, sometimes we had to wait for a few seconds or minutes before the hMule
clients recognize each other as such and transfer the info-file between them before starting the transfer.
Content of 1MB is small enough to avoid being break down into pieces by BitTorrent, same as in aMule.
Anyway, BitTorrent’s strategy worked a lot better, it was able to propagate to 32 nodes in one third of the
time taken by aMule.

In figure 4.3 we used files with 30MB of content for 32 peers. In this case the file in aMule is split in 4
pieces giving the queue more freedom to behave and try to optimize the propagation. However, all runs took
between 7 and 8 hours to propagate to 32 peers while it took 3 to 4 hours in hMule for the same amount of
nodes when using BitTorrent protocol for transfer.

In this case both protocols have issues with the last piece. They couldn’t increment its availability enough.
Since almost all nodes have bottleneck to get the last piece, they all end almost at the same time. It is
important to notice that the slope of BitTorrent protocol is higher than the one of ED2K protocol, probably
because the pieces size is smaller.

When using bigger files in figure 4.4 there was no win for any client running aMule and all clients completed
the download between 15 and 16 hours. In the other hand, using BitTorrent protocol, a small set of nodes is
prioritized to generate seeds (3 in this case) and then, those nodes help to speed up all others. Those using
hMule could complete the transfer in less than half of the time taken by those using aMule.

Last plot shows that, when the file is bigger, BitTorrent strategies to provide availability are more effective
to avoid bottleneck in the last piece, while ED2K has no improve at all.

4.7. Results 27

Client 1KB 1MB 30M 300M
aMule 12s 44s 17m 38m
hMule 12s 44s 12m 28m

Tab. 4.1: Content propagation of a new node in a seed-like environment.

4.7.2.2 Content propagation when adding a new peer to a previously propagated content.

In table 4.1 we can see there is no improvement in the use of BitTorrent protocol when transferring small
files. However, the BitTorrent protocol keeps the throughput saturated for more time and there is an impor-
tant improvement when transferring larger files.

4.7.3 Sustainability of transfer rates

Fig. 4.5: Accumulated download ratio normalized for
30MB files

Fig. 4.6: Accumulated download progress normal-
ized for 30MB files

Figure 4.5 compares the accumulated transfer rate between both clients for a 30MB file distribution. The
normalization for transfer rate is based in the max upload bandwidth, so value of 1 would be all nodes
uploading at full upload capacities.

Figure 4.6 compares the payload distributed at a given time in each client for a 30MB file distribution.
hMule outperforms aMule in the whole distribution by using BitTorrent protocol for transfers.

Measures of progress and transfer rates were taken every 15 seconds in every node. The stepped curve in
progress accumulation is due to the progress increasing only when a full part or pieces is completed and the
almost simultaneous finish of them by several clients at the same time.

For this distribution, we can see how BitTorrent is accumulating more bandwidth allocation than aMule
most of the time, sometimes getting up to 75% of available bandwidth. In the other hand, aMule use is
more predictable and stable in the use of the resources.

In figures 4.7 and 4.8 we compare the accumulated transfer rate between both and the payload distributed
at a given time in each client, but this time, for 300MB file distributions.

When running for a larger file, we see the amount of transferred payload is equal for both clients several
times until around 40% of the payload distributed. After 40% of transfer is distributed, hMule rate raises
considerably as a consequence of the rarest first strategy, at that time all pieces can be consumed by any

28 4. Experimentation

Fig. 4.7: Accumulated download ratio normalized for
300MB files

Fig. 4.8: Accumulated download progress normal-
ized for 300MB files

other peer needing it and none is waiting for specific pieces to get available. In the other hand, aMule’s
queue system doesn’t increase the availability of pieces needed by others, so those pieces are not populated.

This creates a competition between aMule clients for the pieces needed, while there is a lot of pieces already
fully propagated. So, bandwidth use in aMule still increases after some time, but it is only based on quantity
of nodes with parts required after they obtain them.

4.7.4 Evaluation of wasted payload transfer before switching protocols

4.7.4.1 Info-file exchange is provided

In *Mule networks there is a set of hashes, called AICH, to early detect when a file is not going to match
the expected content. A similar set of hashes is produced in BitTorrent when using merkle.

When hMule uses AlwaysFallToTorrentStrategy, it starts downloading using ED2K until it recognizes at
least one peer using hMule providing the content and an info-file is obtained. After hMule gets the info-file,
it drops the downloaded data using ED2K and starts using BitTorrent protocol for transfer. We wanted to
evaluate, if given this scenario, it is useful to try to recover any data already downloaded by ED2K protocol
using merkle for torrent validation of the recovered data. The transfer of the merkle torrent metadata and
the effort of hashing for validation should be justified by the quantity of data downloaded.

As we said before, 1KB files don’t switch protocol so they are not considered in this analysis. When
transferring 1MB files, up to 3 nodes don’t switch protocol, 50% to 70% of them switched before 20KBs
were transfered and, in some runs, all other nodes transfered something between 20KBs and 110KBs before
switching. Since the algorithm we use to switch protocols doesn’t take in account the size of the file at all,
there was no different results for transfers of 30MBs or 300MBs, we got some outliners but never over
200KBs. These results for transfers that are already published in both protocols at the start of the transfer
suggest the reuse of ED2K downloaded data isn’t worth the effort. Anyway, in a different strategy it should
be considered the use of AICH and merkle should avoid a lot of unnecessary retransfer of data, if both
protocols are allowed to switch between themselves back and forth given a metric on the availability of
sources in each network.

4.8. Experimentation conclusions 29

4.7.4.2 Info-file exchange is not provided

When using large files, over 100MBs, we noticed that the time taken for the lead node to generate the
info-file and its associated info-hash at the beginning of transfer takes several seconds. When launching all
nodes simultaneously the client publishes in Kad as soon as possible even before the info-hash completes its
creation. This behavior made possible for some nodes to ask for the file before it was available for transfer
using BitTorrent since we included the info-hash as extension to the negotiation phase when registering in
ED2K queue.

The easiest path to take is just to delay Kad publishing until the info-file is fully processed. However, there
is a special scenario where this behavior is recognized by other peers as unfair use of the network resources
and we can get banned from Kad. All nodes requesting for a file should be listed as nodes providing the
file, then if you start downloading a file using hMule from an aMule source you should be published as a
source of the file, but until at least one node using hMule gets a complete download of the file it can’t even
start to process the info-file.

Therefore, we evaluated three approaches to avoid this issue in the case we should keep publishing in Kad
as soon as possible, but allowing other peers to start using BitTorrent protocol as soon as possible too.

Firstly, we thought to add a TAG telling the file will be available for transfer using BitTorrent protocol in
the Kad publishing, but we dropped this approach after validating that most client implementations don’t
republish any TAG they don’t recognize as a defense mechanism, so while using this approach we lost the
special TAGs in several experiment runs.

Secondly, we thought about re-asking all nodes after a few minutes based on the reported size of the file,
given that we get the file size in the ED2K metadata at the time we join the queue. Asking several times the
same node for metadata when being already registered in the queue can be interpreted as a denial of service
attack by some implementations of the original client and we want to avoid being banned from the network
at all costs.

Thirdly, the option we finally suggest is to create a new service in the client where a node can register
as waiting for the info-file and when the metadata is fully processed it notifies the change to every node
waiting. This request is called only on those nodes identified as hMule clients, this service can be hooked
to the actual request for metada service.

The implementation for the changes proposed is not immediate at all. For our research we just adjusted
our experiment to avoid the problem. We knew in our experiment which nodes were supposed to get the
info-file. If they didn’t get a reply with it when asking from at least 1 node, we forced a relook into Kad
and reask for metadata of those nodes. We also had to check this behavior didn’t blacklist our own nodes
from each other which never happened because nodes never asked for metadata more than once.

4.8 Experimentation conclusions

The experimentation workbench that we used was not flexible enough to handle traffic shaping properly.
Anyway, we could conduct several experiments to validate the functionalities implemented really work.

We had a real small set of peers to experiment which showed improvements in all the scenarios for hMule.
Reproduction of same set of experiments in a massive quantity of nodes may not be possible until the client
gets massively adopted, but simulation or emulation tactics may help to get performance estimations in
those scenarios.

The introduction of recovery mechanisms based in merkle or AICH may not be useful for small files. In the
other hand, in the case of large files which had transferred several parts using ED2K should be implemented
in next version to avoid retransfer of considerable payload.

30 4. Experimentation

5. CONCLUSIONS

Based on the results of the experimentation, we can conclude our developed client is stable and can be used
for the evaluation of strategies. The client works fine not only with several others hMule clients, but also
when others peers involved in the transfer were aMule clients showing retro-compatibility.

Also, the results obtained in the experimentation show that hMule outperforms aMule when distributing
large files, even using a simple strategy as AlwaysFallToTorrent. When using small files the difference was
not so significant.

PlanetLab limitations prevented us to measure how the competition for bandwidth when both transfer pro-
tocols are active can impact in global performance. We think this is an important measure that needs to be
taken using nodes with common users specifications and the ability to apply quality of service on it.

Given that we only had access to a few tens of nodes while real contents distributed using P2P have as many
as tens of thousands of nodes, we suggest to use the taken measures as reference for the implementation of
a simulator to determine how implementation could impact Kad if massively adopted.

Analysis of wasted transfer payload because protocol switching suggests that using merkle and AICH is not
necessary for small files (less than 1MB of content when using a CableModem connection). This is faster to
keep downloading in ED2K protocol if close to finish or just redownload the whole file using BitTorrent if
download rate is too low. In the other hand, when the wasted transfer payload is large because there was no
hMule sources providing info-file of the content earlier in the transfer, the merkle validation of the content
should be implemented to avoid unnecessary retransfers.

Finally, to produce an implementation ready for final users, we suggest two strategies: First one should
introduce the ability to switch back to ED2K protocol for transfer when not getting enough sources or
download rate from BitTorrent protocol, the threshold of sources or download rate may be set by user con-
figuration or an algorithm can be developed. Second one should use both transfer protocols together, ini-
tially using BitTorrent protocol, but when there is still unused bandwidth it should try to connect to standard
eMule-compatible clients using ED2K. Implementation of the second strategy needs a lot of coordination
between both protocols to avoid overlap efforts and minimize the waste introduced by the differences in
alignment of pieces and parts.

32 5. Conclusions

6. FUTURE WORK

6.1 Simulation of massive adoption

For evaluation of use in higher swarms a DEvS model should be written and validated. Once the model is
validated, we should be able to evaluate the advantages of adoption at great scale of the client.

http://thepiratebay.se/ is known as the most popular torrent provider. We were monitoring the
PirateBay using a script that checked PirateBay website every hour to see which was the most popular
torrent and how many seeds it had, we found out that the most popular torrents in pirate bay use to have
around 30000 seeds.

Since we don’t have the resources to get a cluster of 30000+ nodes around the world to deploy hMule to get
real world results, we looked up for some alternatives. An interesting alternative is the use of simulation
that interacts with real clients for model, and tools for emulation of nodes, which can be provided using
CD++.

6.2 Hybrid download using sparse files

One of the main problems to switch protocol in a download is to keep the downloaded data, aMule and
LibTorrent-rasterbar can use “sparse file” for saving. When using "sparse file", before starting the download
the client reserves the whole space of the content and starts writing everything in the position it will have
when the download completes. Using the "sparse file" is reasonable to switch protocols without problems,
it will only require a full recheck of the pieces hash at the start to know what the other protocol has already
downloaded.

There are a few issues involving that. Both libraries use different ways to open the file so they should be
unified or the file should be split in 2 or more pieces so it can be opened separately, the point of split should
be wisely selected. The second issue will be to avoid overlap of work, this includes the creation of a map of
pieces overlapping, since pieces in torrent and ED2K have different sizes and will probably not even share
common divisors.

6.3 Multi-file multi-protocol content support and collections

Torrent metadata of a content can include several files and even directories, the most popular content down-
loaded using BitTorrent clients got more than one file. On the other hand eMule provides a kind of file
name .emulecollection containing a list of MD4 hashes of a set of files. After an .emulecollection file is
downloaded the client will read the file and add every listed item to the download queue. It is difficult to
match the 2 approaches (specially because the eMule approach doesn’t have concept of directory structure).

The proposed approach for this issue will be to read the shared files directory. If a directory is there, it
will be shared in torrent as a directory structure in a single torrent file and in ED2K as a eMule-collection.
If the file is downloaded from BitTorrent, an eMule-collection file will be defined where the full directory
structure is downloaded and if downloaded from an eMule-collection a directory will be created with all the
files to be shared in BitTorrent.

http://thepiratebay.se/

34 6. Future work

6.4 Handle the fake SHA1 detection error

Since there is no direct conversion between the ED2K identifier and the info-hash of a file we trust the user
to provide the translation. If a user fakes the info-hash, we will download content that doesn’t match the
original indexed content, but still matches the info-hash. If after we finish a download we fail to validate the
content’s MD4 hash using the original Kad identifier, we throw an error. In a future version this error should
be handled to retry download and blacklist the info-hash or the peer who provided it to avoid repeating the
mistake.

6.5 Fake SHA1 earlier detection

We should be able to find some pieces validated using merkle that when put together have the full content of
an ED2K part. If the ED2K part can not be validated using AICH it means we are downloading content that
matches the provided info-hash but doesn’t match the ED2K identifier and we conclude that the provided
info-hash is fake and the content download should be restarted using a new info-file.

6.6 Torrent Fast Resume support

LibTorrent-rasterbar provides some tools to skip rehashing and management overheads that should be used.

6.7 Thread safeness

Before creating more complex strategies the operations that would be used for them should be checked for
need of locks, specially iteration operations, because most of the code only locks at the start and finish of
the method, and that is not enough in some cases.

APPENDIX

1.. Installation guide 37

1. Installation guide

The procedure to install hMule is pretty straight foward in any Linux or BSD system1.

Step by step install for Ubuntu 11.04 systems:

• Using synaptics, aptitude or apt-get install the following packages.

– libgtk2.0-dev

– libssl-dev

– autoconf

– libtool

– libcrypto++-dev

– autopoint

– bison

• Download wxWidgets 2.9.2 from http://www.wxwidgets.org and unpack it.

• Open a terminal, step into wxWidget’s code directory and run the following commands.

. / c o n f i g u r e −−enable−debug −−enable−u n i c o d e \
−−d i s a b l e −s h a r e d −−p r e f i x = / u s r

make
make i n s t a l l

• Download Boost 1.47+ from http://www.boost.org and unpack it.

• Open a terminal, step into Boost’s code directory and run the following commands.

. / b o o t s t r a p . sh −−with− l i b r a r i e s =system , f i l e s y s t e m −−p r e f i x = / u s r

. / b2

. / b2 i n s t a l l

• Download libtorrent-rasterbar 0.16 from http://www.rasterbar.com/products/libtorrent/
and unpack it.

• Open a terminal, step into libtorrent-raterbar’s code directory and run the following commands, if
you are trying to find a bug there are options in configure that provide logging of every operation
done by the library that can be really useful.

. / c o n f i g u r e −−enable−debug −−p r e f i x = / u s r
make
make i n s t a l l

• Download hMule and unpack it.

• Open a terminal, step into hMule’s code directory and run the following commands.

. / a u t o g e n . sh

. / c o n f i g u r e −−enable− t o r r e n t
make
make i n s t a l l

• There is interesting options that could be added to the configure command in hmule.

1 The software is suppose to build an run in windows also, but was not tested by us in those platforms

http://www.wxwidgets.org
http://www.boost.org
http://www.rasterbar.com/products/libtorrent/

38 Appendix

– –enable-amule-daemon builds amuled, a deamon to run aMule that can be controlled remotely
with amulecmd or amule-gui (best option to use in PlanetLab).

– –enable-amulecmd builds amulecmd, a command line interface to control an amuled.

– –enable-amule-gui builds amule-gui, a gtk GUI for amuled.

– –disable-monolithic prevents the building of the full monolithic client (useful to add when using
any of the previous options).

2. User guide

This guide doesn’t intend to fully cover hMule usage, but to introduce the user to the new functionallities
provided by this implementation, this guide can be complemented by the original user guide of aMule
provided in http://wiki.amule.org.

2.1. New configuration parameters

In aMule configuration file, usually in ∼/.aMule/amule.conf, we defined a new category called Torrent
which has 2 configuration options.

• TorrentDir that defines a directory where the info-files will be saved.

• Strategy that defines the strategy used to decide which protocol to use. So far we got NoTorrentStrat-
egy (using Strategy=0) or AlwaysFallToTorrent (using Strategy=1).

2.2. Connection to Mainline DHT

To connect to or disconnect from Mainline DHT two new commands are provided in aMuleCmd.

• connect mainline

• disconnect mainline

2.3. New files

All files being downloaded using BitTorrent protocol will be stored in Temp directory with the name pro-
vided by the info-file until fully transfered. When the transfer completes, the file will be moved to Incoming
directory. All metadata obtained or generated for BitTorrent transfers will be saved into Torrent directory.

Two new files are recorded in the configuration directory, MTBT.dat contains the MuleToTorrentMap per-
sistance in a plain text format and lt-state.dat contains the state of the session dump benconded as described
in libtorrent-rasterbar’s documentation 2.

3. Known Issues

• In some systems, localization fails and crashes when openning amuled. To disable localization, export
LC_ALL=C before running amuled and you can skip the error at the price of using non localized
version.

2 http://www.rasterbar.com/products/libtorrent/manual.html#load-state-save-state

http://wiki.amule.org
http://www.rasterbar.com/products/libtorrent/manual.html#load-state-save-state

4.. Most relevant new classes documentation 39

• Sometimes, when trying to find updates an http error appears and crashes the app. Starting the app
again should be enough to overcome the problem. The update checking tries once every few days
when starting the app, so nothing breaks if the app is not stopped.

• When shutting down the application sometimes, the app tries to remove some objects more than once
creating a core dump, so it doesn’t affect the next run.

More known bugs can be found in the http://bugs.amule.org/, but only these show up in the
experimentation we have done.

4. Most relevant new classes documentation

4.1. torrent::CTorrent Class Reference

#include <Torrent.h>

Public Member Functions

• void StartTorrentSession ()
• void EndTorrentSession ()
• const int GetPort () const
• void RefreshMetadata ()
• void CreateMetadataForFile (const CMD4Hash fileID, const CPath &filename, const CPath &storeDir)
• void CreateMetadataForFile (const CMD4Hash fileId, boost::filesystem::path filename,

boost::filesystem::path storeDir)
• bool HasBTMetadata (const CMD4Hash fileId) const
• std::string GetBTIHAsString (const CMD4Hash fileId)
• void AddDownloadUsingSHA1AndPeer (const CMD4Hash fileId, std::string SHA1Hash, std::string

peerIP, int port)
• bool AddDownloadUsingTorrentFile (boost::filesystem::path file)
• bool AddDownloadFromMagnet (std::string magnet)
• void Process ()
• uint64 GetCompletedSize (CMD4Hash fileId)
• void StartMainline ()
• void StopMainline ()
• bool IsMainlineConnected ()
• void LoadUnregisteredTorrents ()
• boost::filesystem::path SaveTorrent (libtorrent::create_torrent &t, boost::filesystem::path &filename)
• void GiveUp (CMD4Hash)
• virtual ∼CTorrent ()

Static Public Member Functions

• static CTorrent & GetInstance ()

constant identifying the SwitchToTheMostUsablePeersStrategy.

http://bugs.amule.org/

40 Appendix

Static Public Attributes

• static const int NO_BT = 0
• static const int ALLWAYS_FALL_TO_BT = 1

constant indetifying the NoBtStrategy.

• static const int SWITCH_TO_THE_MOST_USABLE_PEERS = 2
constant identifying the AlwaysFallToBTStrategy.

4.1.1. Detailed Description

Wrap class for torrent functionalities.

It is implemented as a singleton, to get the instance use: Torrent::getInstance() method.

4.1.2. Constructor & Destructor Documentation

4.1.2..1 virtual torrent::CTorrent::∼CTorrent () [virtual]

Destructor

4.1.3. Member Function Documentation

4.1.3..1 bool torrent::CTorrent::AddDownloadFromMagnet (std::string magnet)

Add a download to Torrent queue having a torrent magnet link.

Parameters
magnet A magnet link for torrent.

Returns

true if the file was registered successfully in tmm.

4.1.3..2 void torrent::CTorrent::AddDownloadUsingSHA1AndPeer (const CMD4Hash fileId,
std::string SHA1Hash, std::string peerIP, int port)

Add a download to Torrent queue knowing SHA1 and a peer.

If the file is not in the queue, it is added and the peer is associated hoping to get a full metadata exchange
from it, else the peer is added to the set of known peers for that file.

Parameters
fileId An MD4 identifier for a file known in aMule.

SHA1Hash The SHA1 provided by Kad that identifies the file’s torrent metadata.

4.1.3..3 bool torrent::CTorrent::AddDownloadUsingTorrentFile (boost::filesystem::path file)

Add a download to Torrent queue having a .torrent file.

4.. Most relevant new classes documentation 41

The file is copied into the torrent files directory and an unregistered torrents call is made.

Parameters
file The complete filename for a info-data torrent file.

Returns

true if the file was registered successfully in tmm.

4.1.3..4 void torrent::CTorrent::CreateMetadataForFile (const CMD4Hash fileID, const CPath
& filename, const CPath & storeDir)

Creates torrent Metadata for a file.

Parameters
fileId The MD4 aMule identifier of the file.

filename The name of the file.
storeDir Path where the file is stored

4.1.3..5 void torrent::CTorrent::CreateMetadataForFile (const CMD4Hash fileId,
boost::filesystem::path filename, boost::filesystem::path storeDir)

Creates torrent Metadata for a file.

Parameters
fileId The MD4 aMule identifier of the file.

filename The name of the file.
storeDir Path where the file is stored

4.1.3..6 void torrent::CTorrent::EndTorrentSession ()

Closes all torrent conections and destroy session object.

4.1.3..7 std::string torrent::CTorrent::GetBTIHAsString (const CMD4Hash fileId)

Obtain the SHA1 content identifier for torrent knowing its muleId.

Parameters
fileId An MD4 identifier for a file known in aMule.

Returns

SHA1 torrent content identifier.

4.1.3..8 uint64 torrent::CTorrent::GetCompletedSize (CMD4Hash fileId)

Given a file get an estimation of how much of it was downloaded.

42 Appendix

Parameters
fileId The MD4 hash identification of a file in the aMule Download Queue.

4.1.3..9 static CTorrent& torrent::CTorrent::GetInstance () [static]

constant identifying the SwitchToTheMostUsablePeersStrategy.

Get the instance.

Returns

the single CTorrent instance.

4.1.3..10 const int torrent::CTorrent::GetPort () const

Port for the torrent incomming connections.

This method is used to bootstrap Torrent traffic with known Kad peers.

4.1.3..11 void torrent::CTorrent::GiveUp (CMD4Hash)

If downloading in bt this file, just give up.

Parameters
fileId A MD4 aMule identifier of a file.

4.1.3..12 bool torrent::CTorrent::HasBTMetadata (const CMD4Hash fileId) const

Checks if BT Metadata is known for a file identified with a MD4 aMule identifier.

Parameters
fileId A MD4 aMule identifier of a file.

4.1.3..13 bool torrent::CTorrent::IsMainlineConnected ()

Check if Mainline DHT service is runnning.

Returns

true if the Mainline DHt is running.

4.1.3..14 void torrent::CTorrent::LoadUnregisteredTorrents ()

Checks the ThePrefs::TorrentDir for info-files that are known yet.

This method iterates the dir, and queue all unknown torrents into actual session for download. All Torrents
in the Torrent metadata directory are loaded, it works as a Drop box for Torrents.

4.. Most relevant new classes documentation 43

4.1.3..15 void torrent::CTorrent::Process ()

Process decides the way content should be downloaded.

This method is suppossed to be called in interval ticks as same as CDownloadQueue::Process It reads
Torrent and aMule queues and decides what to start, pause, stop in each of them based in the selected
TorrentStrategy.

4.1.3..16 void torrent::CTorrent::RefreshMetadata ()

Iterates the TorrentMuleMap to load/save metadata.

Loads all the torrents info-files that are known but not loaded in session yet and saves all the torrent info-files
of those that were received but not persisted yet.

4.1.3..17 boost::filesystem::path torrent::CTorrent::SaveTorrent (libtorrent::create_torrent & t,
boost::filesystem::path & filename)

Saves torrent metadata into file.

Parameters
t create_torrent instance of the file to be persisted.

filename The filename of the content.

Returns

filename of the saved info-file torrent metadata.

4.1.3..18 void torrent::CTorrent::StartMainline ()

Starts Mainline DHT service.

4.1.3..19 void torrent::CTorrent::StartTorrentSession ()

Starts the torrent session.

Torrent sessions are a container for all the shared and downloading torrents and handle all the connections
some ports are opened when starting the session and if prefered Mainline DHT is joined too.

4.1.3..20 void torrent::CTorrent::StopMainline ()

Stops Mainline DHT service.

The documentation for this class was generated from the following file:

• Torrent.h

4.2. torrent::MD4ToHash Struct Reference

#include <TorrentMuleMapping.h>

44 Appendix

Public Member Functions

• std::size_t operator() (CMD4Hash const &v) const

4.2.1. Detailed Description

Hash function for MuleIdToMetadataRelation indexing

The documentation for this struct was generated from the following file:

• TorrentMuleMapping.h

4.3. torrent::SHA1ToHash Struct Reference

#include <TorrentMuleMapping.h>

Public Member Functions

• std::size_t operator() (libtorrent::sha1_hash const &v) const

4.3.1. Detailed Description

Hash function for BTIdToMetadataRelation indexing

The documentation for this struct was generated from the following file:

• TorrentMuleMapping.h

4.4. torrent::filenameToHash Struct Reference

#include <TorrentMuleMapping.h>

Public Member Functions

• std::size_t operator() (boost::filesystem::path const &v) const

4.4.1. Detailed Description

Hash function for InfoFileToMetadataRelation indexing

The documentation for this struct was generated from the following file:

• TorrentMuleMapping.h

4.5. torrent::CTorrentMuleMapping Class Reference

#include <TorrentMuleMapping.h>

Public Types

• typedef std::vector< MetadataRelation ∗ >::const_iterator const_iterator

4.. Most relevant new classes documentation 45

Public Member Functions

• MetadataRelation ∗ UpdateMetadata (CMD4Hash muleId, libtorrent::sha1_hash torrentId,
boost::filesystem::path torrentFile)

• MetadataRelation ∗ UpdateMetadata (CMD4Hash muleId, libtorrent::sha1_hash torrentId)
• void Erase (CMD4Hash muleId)
• MetadataRelation ∗ UpdateMetadata (libtorrent::sha1_hash torrentId, boost::filesystem::path torrent-

File)
• void SetDownloading (CMD4Hash muleId)
• void SetDownloading (libtorrent::sha1_hash torrentId)
• void SetSharing (CMD4Hash muleId)
• void SetSharing (libtorrent::sha1_hash torrentId)
• void SetRemoved (CMD4Hash muleId)
• void SetRemoved (libtorrent::sha1_hash torrentId)
• bool HasTorrentPath (CMD4Hash muleId) const
• bool HasTorrentPath (libtorrent::sha1_hash torrentId) const
• bool HasTorrentPath (boost::filesystem::path torrentFile) const
• bool HasBTIH (CMD4Hash muleId) const
• bool HasBTIH (libtorrent::sha1_hash torrentId) const
• bool HasBTIH (boost::filesystem::path torrentFile) const
• bool HasMuleIH (CMD4Hash muleId) const
• bool HasMuleIH (libtorrent::sha1_hash torrentId) const
• bool HasMuleIH (boost::filesystem::path torrentFile) const
• const boost::filesystem::path & GetTorrentPath (CMD4Hash muleId) const
• const boost::filesystem::path & GetTorrentPath (libtorrent::sha1_hash torrentId) const
• const libtorrent::sha1_hash & GetBTIH (CMD4Hash muleId) const
• const libtorrent::sha1_hash & GetBTIH (boost::filesystem::path torrentFile) const
• const CMD4Hash & GetMuleIH (libtorrent::sha1_hash torrentId) const
• const CMD4Hash & GetMuleIH (boost::filesystem::path torrentFile) const
• bool IsDownloading (CMD4Hash muleId)
• bool IsDownloading (libtorrent::sha1_hash torrentId)
• bool IsDownloading (boost::filesystem::path &)
• bool IsSharing (CMD4Hash muleId)
• bool IsSharing (libtorrent::sha1_hash torrentId)
• bool IsSharing (boost::filesystem::path &)
• bool WasRemoved (boost::filesystem::path &)
• const_iterator begin () const
• const_iterator end () const
• void Load (boost::filesystem::path filename)
• void Save (boost::filesystem::path filename)
• virtual ∼CTorrentMuleMapping ()

4.5.1. Detailed Description

CTorrentMuleMapping is a container for the MetadataRelations.

4.5.2. Member Typedef Documentation

4.5.2..1 typedef std::vector<MetadataRelation∗>::const_iterator
torrent::CTorrentMuleMapping::const_iterator

Iterator type, only const iteration is allowed.

46 Appendix

4.5.3. Constructor & Destructor Documentation

4.5.3..1 virtual torrent::CTorrentMuleMapping::∼CTorrentMuleMapping () [virtual]

Destructor

4.5.4. Member Function Documentation

4.5.4..1 const_iterator torrent::CTorrentMuleMapping::begin () const

Standard iterator begin

4.5.4..2 const_iterator torrent::CTorrentMuleMapping::end () const

Standard iterator end

4.5.4..3 void torrent::CTorrentMuleMapping::Erase (CMD4Hash muleId)

Erases a MetadataRelation.

Parameters
muleId A MD4 identifier of an aMule known file.

4.5.4..4 const libtorrent::sha1_hash& torrent::CTorrentMuleMapping::GetBTIH (CMD4Hash
muleId) const

Obtain the SHA1 content identifier for torrent knowing its muleId.

Warning

This method assumes you asking for a valid tuple, check before use.

See also

HasBTIH

Parameters
muleId An MD4 identifier for a file known in aMule.

Returns

SHA1 torrent content identifier.

4.5.4..5 const libtorrent::sha1_hash& torrent::CTorrentMuleMapping::GetBTIH (
boost::filesystem::path torrentFile) const

Obtain the SHA1 content identifier for torrent knowing the filename of its info-file.

Warning

This method assumes you asking for a valid tuple, check before use.

4.. Most relevant new classes documentation 47

See also

HasBTIH

Parameters
torrentFile The name of a info-file containing torrent metadata.

Returns

SHA1 torrent content identifier.

4.5.4..6 const CMD4Hash& torrent::CTorrentMuleMapping::GetMuleIH (libtorrent::sha1_hash
torrentId) const

Obtain the MD4 aMule file identifier for torrent knowing the torrent SHA1 content identifier.

Warning

This method assumes you asking for a valid tuple, check before use.

See also

HasMuleIH

Parameters
torrentId An SHA1 identifier for a content known in Torrent.

Returns

MD4 identifier for a file known in aMule.

4.5.4..7 const CMD4Hash& torrent::CTorrentMuleMapping::GetMuleIH (
boost::filesystem::path torrentFile) const

Obtain the MD4 aMule file identifier for torrent knowing the filename of its torrent info-file.

Warning

This method assumes you asking for a valid tuple, check before use.

See also

HasMuleIH

Parameters
torrentFile The name of a info-file containing torrent metadata.

Returns

MD4 identifier for a file known in aMule.

48 Appendix

4.5.4..8 const boost::filesystem::path& torrent::CTorrentMuleMapping::GetTorrentPath (
CMD4Hash muleId) const

Obtain the filename of a torrent info-file knowing its muleId.

Warning

This method assumes you asking for a valid tuple, check before use.

See also

HasTorrentPath

Parameters
muleId An MD4 identifier for a file known in aMule.

Returns

filename of the torrent info-file.

4.5.4..9 const boost::filesystem::path& torrent::CTorrentMuleMapping::GetTorrentPath (
libtorrent::sha1_hash torrentId) const

Obtain the filename of a torrent info-file knowing its torrentId.

Warning

This method assumes you asking for a valid tuple, check before use.

See also

HasTorrentPath

Parameters
torrentId An SHA1 identifier for a content known in Torrent.

Returns

filename of the torrent info-file.

4.5.4..10 bool torrent::CTorrentMuleMapping::HasBTIH (boost::filesystem::path torrentFile)
const

Check if the info-file has some related torrent SHA1 identifier.

Parameters
torrentFile A filename of where the info-file metadata is saved.

Returns

true if the info-file has some related torrent SHA1 identifier.

4.. Most relevant new classes documentation 49

4.5.4..11 bool torrent::CTorrentMuleMapping::HasBTIH (CMD4Hash muleId) const

Check if the muleId has some related torrent SHA1 identifier.

Parameters
muleId A MD4 identifier for a file known in aMule.

Returns

true if the muleId has some related torrent SHA1 identifier.

4.5.4..12 bool torrent::CTorrentMuleMapping::HasBTIH (libtorrent::sha1_hash torrentId)
const

Check if the BT info-hash is declared

Parameters
torrentId A SHA1 identifier for a content known in Torrent.

Returns

true if the BT info-hash is declared.

4.5.4..13 bool torrent::CTorrentMuleMapping::HasMuleIH (CMD4Hash muleId) const

Check if the muleId is declared.

Parameters
muleId A MD4 identifier for a file known in aMule.

Returns

true if the muleId is declared.

4.5.4..14 bool torrent::CTorrentMuleMapping::HasMuleIH (libtorrent::sha1_hash torrentId)
const

Check if the info-file has some related MD4 aMule identifier.

Parameters
torrentId A SHA1 identifier for a content known in Torrent.

Returns

true if the info-file has some related MD4 aMule identifier.

4.5.4..15 bool torrent::CTorrentMuleMapping::HasMuleIH (boost::filesystem::path torrentFile)
const

Check if the info-file has some related MD4 aMule identifier.

50 Appendix

Parameters
torrentFile A filename of where the info-file metadata is saved.

Returns

true if the info-file has some related MD4 aMule identifier.

4.5.4..16 bool torrent::CTorrentMuleMapping::HasTorrentPath (CMD4Hash muleId) const

Check if the muleId has some related torrent metadata info-file.

Parameters
muleId A MD4 identifier for a file known in aMule.

Returns

true if the muleId has some related torrent metadata info-file.

4.5.4..17 bool torrent::CTorrentMuleMapping::HasTorrentPath (boost::filesystem::path
torrentFile) const

Check if the torrentFile is declared

Parameters
torrentFile A filename of where the info-file metadata is saved.

Returns

true if the torrentFile is declared.

4.5.4..18 bool torrent::CTorrentMuleMapping::HasTorrentPath (libtorrent::sha1_hash torrentId
) const

Check if the torrentId has some related torrent metadata info-file.

Parameters
torrentId A SHA1 identifier for a content known in Torrent.

Returns

true if the torrentId has some related torrent metadata info-file.

4.5.4..19 bool torrent::CTorrentMuleMapping::IsDownloading (CMD4Hash muleId)

Check if a file is in Downloading state knowing its MD4 aMule identifier.

Parameters
muleId An MD4 identifier for a file known in aMule.

4.. Most relevant new classes documentation 51

Returns

true if the file is in state Downloading.

4.5.4..20 bool torrent::CTorrentMuleMapping::IsDownloading (boost::filesystem::path &)

Check if a content is in Downloading state knowing its torrent filename.

Parameters
torrentFile The name of a info-file containing torrent metadata.

Returns

true if the file is in state Downloading.

4.5.4..21 bool torrent::CTorrentMuleMapping::IsDownloading (libtorrent::sha1_hash torrentId)

Check if a content is in Downloading state knowing its SHA1 torrent identifier.

Parameters
torrentId An SHA1 identifier for a content known in Torrent.

Returns

true if the file is in state Downloading.

4.5.4..22 bool torrent::CTorrentMuleMapping::IsSharing (CMD4Hash muleId)

Check if a file is in Sharing state knowing its MD4 aMule identifier.

Parameters
muleId An MD4 identifier for a file known in aMule.

Returns

true if the file is in state Sharing.

4.5.4..23 bool torrent::CTorrentMuleMapping::IsSharing (libtorrent::sha1_hash torrentId)

Check if a content is in Sharing state knowing its SHA1 torrent identifier.

Parameters
torrentId An SHA1 identifier for a content known in Torrent.

Returns

true if the file is in state Sharing.

4.5.4..24 bool torrent::CTorrentMuleMapping::IsSharing (boost::filesystem::path &)

Check if a content is in Sharing state knowing its torrent filename.

52 Appendix

Parameters
torrentFile The name of a info-file containing torrent metadata.

Returns

true if the file is in state Sharing.

4.5.4..25 void torrent::CTorrentMuleMapping::Load (boost::filesystem::path filename)

It loads a persisted instance of the class from filename

4.5.4..26 void torrent::CTorrentMuleMapping::Save (boost::filesystem::path filename)

It persists actual instance into filename.

4.5.4..27 void torrent::CTorrentMuleMapping::SetDownloading (CMD4Hash muleId)

Set state of a relation as Downloading.

Parameters
muleId A MD4 identifier for a file known in aMule.

4.5.4..28 void torrent::CTorrentMuleMapping::SetDownloading (libtorrent::sha1_hash torrentId
)

Set state of a relation as Downloading.

Parameters
torrentId A SHA1 identifier for a content known in Torrent.

4.5.4..29 void torrent::CTorrentMuleMapping::SetRemoved (CMD4Hash muleId)

Set state of a relation as Removed.

Parameters
muleId A MD4 identifier for a file known in aMule.

4.5.4..30 void torrent::CTorrentMuleMapping::SetRemoved (libtorrent::sha1_hash torrentId)

Set state of a relation as Removed.

Parameters
torrentId A SHA1 identifier for a content known in Torrent.

4.5.4..31 void torrent::CTorrentMuleMapping::SetSharing (CMD4Hash muleId)

Set state of a relation as Sharing.

4.. Most relevant new classes documentation 53

Parameters
muleId A MD4 identifier for a file known in aMule.

4.5.4..32 void torrent::CTorrentMuleMapping::SetSharing (libtorrent::sha1_hash torrentId)

Set state of a relation as Sharing.

Parameters
torrentId A SHA1 identifier for a content known in Torrent.

4.5.4..33 MetadataRelation∗ torrent::CTorrentMuleMapping::UpdateMetadata (CMD4Hash
muleId, libtorrent::sha1_hash torrentId, boost::filesystem::path torrentFile)

Updates or creates a MetadataRelation.

It looks for MetadataRelations partially containing the data provided and replaces the null data so the
Metadata Relation increases knowledge, it can’t remove info or modify it, only increment it. Usually this
Update is used when a file starts sharing or when a download started in Kad and some peer provided the
info-file metadata for Torrent transfer. (both cases content metadata is completely known).

Parameters
muleId A MD4 identifier of an aMule known file.

torrentId A SHA1 identifier of a torrent known content.
torrentFile A filename of where the info-file metadata is saved to load it again in next session.

Returns

Pointer to the created or updated Metadata Relation.

4.5.4..34 MetadataRelation∗ torrent::CTorrentMuleMapping::UpdateMetadata (CMD4Hash
muleId, libtorrent::sha1_hash torrentId)

Creates a MetadataRelation.

It creates a MetadataRelation with the aMule Identifier and the BT info-hash, but keeps the torrentFile as
NULL. Usually this Update is used when a download started in Kad and some peer provided BTIH, but the
info-file metadata for Torrent transfer was not acquired yet.

Parameters
muleId A MD4 identifier of an aMule known file.

torrentId A SHA1 identifier of a torrent known content.

Returns

Pointer to the created or updated Metadata Relation.

4.5.4..35 MetadataRelation∗ torrent::CTorrentMuleMapping::UpdateMetadata (
libtorrent::sha1_hash torrentId, boost::filesystem::path torrentFile)

Creates a MetadataRelation.

54 Appendix

It creates a MetadataRelation with the BT info-hash and the filename of the info-file containing torrent
metadata and keeps the torrentFile as NULL. Usually this Update is used when a download started in from
mainline or .torrent file and the MD4 identifier for aMule is not known yet.

Parameters
torrentId A SHA1 identifier of a torrent known content.

torrentFile A filename of where the info-file metadata is saved to load it again in next session.

Returns

Pointer to the created or updated Metadata Relation.

4.5.4..36 bool torrent::CTorrentMuleMapping::WasRemoved (boost::filesystem::path &)

Check if a content Was Removed knowing its torrent filename.

Parameters
torrentFile The name of a info-file containing torrent metadata.

Returns

true if the file is in state removed.

The documentation for this class was generated from the following file:

• TorrentMuleMapping.h

4.6. torrent::CTorrentStrategy Class Reference

#include <TorrentStrategy.h>

Inheritance diagram for torrent::CTorrentStrategy:

torrent::CTorrentStrategy

torrent::CNoTorrentStrategy torrent::CTorrentAlwaysFallToBTStrategy torrent::CTorrentSwitchToTheMostUsablePeersStrategy

Public Member Functions

• CTorrentStrategy (libtorrent::session ∗torrentSession, CTorrentMuleMapping ∗mapping)
• virtual void Process ()=0
• uint64 GetCompletedSize (CMD4Hash fileId)
• virtual void GiveUp (CMD4Hash fileId)
• virtual ∼CTorrentStrategy ()

Protected Member Functions

• void ProcessAlert (std::auto_ptr< libtorrent::alert >)
• virtual void OnReceivedMetadata (libtorrent::metadata_received_alert ∗)
• virtual void OnTorrentResumed (libtorrent::torrent_resumed_alert ∗)

4.. Most relevant new classes documentation 55

• virtual void OnFinishedDownload (libtorrent::torrent_finished_alert ∗)
• void ValidateDownloads ()
• CTorrentStrategy ()

This Vector keeps record of those hashes awaiting validation and how many tries for validation were done.

Protected Attributes

• uint32 m_lastTimeProcessWasRun
• uint32 m_lastTimeAlertsWereProcessed

last time the Process method was called for this strategy.

• uint32 m_lastTimeValidationQueueProcessed
last time the Alerts for torrent asynchronous task were processed.

• libtorrent::session ∗ m_ts
last time the Validation Queue was processed.

• CTorrentMuleMapping ∗ m_tmm
pointer to the active torrent session.

• std::vector< std::pair< CMD4Hash, int > > m_validationQueue
pointer to the Metadata Relation for torrent and amule.

4.6.1. Detailed Description

Abtract class for Transfer protocol selection strategies.

Different strategies can be created to handle the way it is decided to choose transfer protocol and when to
switch to the other one.

4.6.2. Constructor & Destructor Documentation

4.6.2..1 torrent::CTorrentStrategy::CTorrentStrategy (libtorrent::session ∗ torrentSession,
CTorrentMuleMapping ∗ mapping)

Constructor.

Parameters
torrentSession A pointer to the running torrent session.

mapping A pointer to the MetadataRelations between Torrent and aMule.

4.6.2..2 virtual torrent::CTorrentStrategy::∼CTorrentStrategy () [virtual]

Destructor

56 Appendix

4.6.2..3 torrent::CTorrentStrategy::CTorrentStrategy () [protected]

This Vector keeps record of those hashes awaiting validation and how many tries for validation were done.

Prevent default constructor

4.6.3. Member Function Documentation

4.6.3..1 uint64 torrent::CTorrentStrategy::GetCompletedSize (CMD4Hash fileId)

Given a file get an estimation of how much of it was downloaded.

Parameters
fileId The MD4 hash identification of a file in the aMule Download Queue.

4.6.3..2 virtual void torrent::CTorrentStrategy::GiveUp (CMD4Hash fileId) [virtual]

Removes any internal representation of torrents that are no longer needed.

Parameters
fileId The MD4 hash identification of a file in the aMule Download Queue.

Reimplemented in torrent::CTorrentSwitchToTheMostUsablePeersStrategy.

4.6.3..3 virtual void torrent::CTorrentStrategy::OnFinishedDownload (
libtorrent::torrent_finished_alert ∗) [protected, virtual]

Process the received finished download alert

If not overrided by inheritance, it will just do nothing.

4.6.3..4 virtual void torrent::CTorrentStrategy::OnReceivedMetadata (
libtorrent::metadata_received_alert ∗) [protected, virtual]

Process the received metadata alert

If not overrided by inheritance, it will save the received metadata in a torrent file and exit.

4.6.3..5 virtual void torrent::CTorrentStrategy::OnTorrentResumed (
libtorrent::torrent_resumed_alert ∗) [protected, virtual]

Process the received torrent resume alert

If not overrided by inheritance, it will just do nothing.

4.6.3..6 virtual void torrent::CTorrentStrategy::Process () [pure virtual]

Process decides the way content should be downloaded.

4.. Most relevant new classes documentation 57

Abstract method that should read Torrent and aMule queues and decides what to start, pause, stop in each of
them, also decides when alerts from asynchronous operations in torrent should be handled and how should
they be handled.

Implemented in torrent::CTorrentAlwaysFallToBTStrategy, torrent::CNoTorrentStrategy,
and torrent::CTorrentSwitchToTheMostUsablePeersStrategy.

4.6.3..7 void torrent::CTorrentStrategy::ProcessAlert (std::auto_ptr< libtorrent::alert >)
[protected]

Processes the alerts coming from asynchronous torrent tasks.

4.6.3..8 void torrent::CTorrentStrategy::ValidateDownloads () [protected]

Check the torrents that were finished if any of them failed the MD4 check.

The documentation for this class was generated from the following file:

• TorrentStrategy.h

4.7. torrent::CNoTorrentStrategy Class Reference

#include <TorrentStrategy.h>

Inheritance diagram for torrent::CNoTorrentStrategy:

torrent::CNoTorrentStrategy

torrent::CTorrentStrategy

Public Member Functions

• CNoTorrentStrategy (libtorrent::session ∗torrentSession, CTorrentMuleMapping ∗mapping)
• void Process ()
• virtual ∼CNoTorrentStrategy ()

4.7.1. Detailed Description

A strategy that doesn’t use Torrent Protocol for transfers, just noop and back.

4.7.2. Constructor & Destructor Documentation

4.7.2..1 torrent::CNoTorrentStrategy::CNoTorrentStrategy (libtorrent::session ∗ torrentSession,
CTorrentMuleMapping ∗ mapping)

Constructor Overrides CTorrentStrategy so nothing is done.

Parameters
torrentSession A pointer to the running torrent session.

mapping A pointer to the MetadataRelations between Torrent and aMule.

58 Appendix

4.7.2..2 virtual torrent::CNoTorrentStrategy::∼CNoTorrentStrategy () [virtual]

Destructor

4.7.3. Member Function Documentation

4.7.3..1 void torrent::CNoTorrentStrategy::Process () [virtual]

Does nothing.

See also

CTorrentStrategy::Process and CTorrentStrategy::ProcessAlerts

Implements torrent::CTorrentStrategy.

The documentation for this class was generated from the following file:

• TorrentStrategy.h

4.8. torrent::CTorrentAlwaysFallToBTStrategy Class Reference

#include <TorrentStrategy.h>

Inheritance diagram for torrent::CTorrentAlwaysFallToBTStrategy:

torrent::CTorrentAlwaysFallToBTStrategy

torrent::CTorrentStrategy

Public Member Functions

• CTorrentAlwaysFallToBTStrategy (libtorrent::session ∗torrentSession, CTorrentMuleMapping ∗mapping)

• void Process ()

• virtual ∼CTorrentAlwaysFallToBTStrategy ()

4.8.1. Detailed Description

A strategy that Falls to Torrent transfer protocol as soon as BTIH is known

This strategy checks if any peer provided a Info Hash for Torrent transfer and as soon as it is transfered
pauses the download in the aMule download queue and fully transfer the content using BitTorrent transfer
protocol. It is not a very smart strategy but is great for debugging. Check CTorrentStrategy comments.

4.. Most relevant new classes documentation 59

4.8.2. Constructor & Destructor Documentation

4.8.2..1 torrent::CTorrentAlwaysFallToBTStrategy::CTorrentAlwaysFallToBTStrategy (
libtorrent::session ∗ torrentSession, CTorrentMuleMapping ∗ mapping)

Constructor: Same as CTorrentStrategy constructor so far

Parameters
torrentSession A pointer to the running torrent session.

mapping A pointer to the MetadataRelations between Torrent and aMule.

4.8.2..2 virtual torrent::CTorrentAlwaysFallToBTStrategy::∼CTorrentAlwaysFallToBTStrategy (
) [virtual]

Destructor

4.8.3. Member Function Documentation

4.8.3..1 void torrent::CTorrentAlwaysFallToBTStrategy::Process () [virtual]

When new BT info has was received moves the download to Torrent Protocol and start ProcessAlerts

See also

CTorrentStrategy::Process and CTorrentStrategy::ProcessAlerts

Implements torrent::CTorrentStrategy.

The documentation for this class was generated from the following file:

• TorrentStrategy.h

60 Appendix

BIBLIOGRAPHY

[1] Metro-goldwyn-mayer v. grokster ltd., 2004.

[2] Metro-goldwyn-mayer studios inc. v. grokster, ltd., 2005.

[3] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman. Planetlab:
an overlay testbed for broad-coverage services. ACM SIGCOMM Computer Communication Review,
33(3):3–12, 2003.

[4] B. Cohen. Incentives build robustness in bittorrent. In Workshop on Economics of Peer-to-Peer
systems, volume 6, pages 68–72. Citeseer, 2003.

[5] A. Ghodsi. Distributed k-ary system: Algorithms for distributed hash tables. PhD thesis, KTH-Royal
Institute of Technology, 2006.

[6] Y. Kulbak and D. Bickson. The emule protocol specification. eMule project, http://sourceforge. net,
2009.

[7] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the xor
metric. Peer-to-Peer Systems, pages 53–65, 2002.

[8] Gordon Mohr. Magnet v0.1, June 2002.

[9] D. Mysicka and R. Wattenhofer. Reverse engineering of emule-an analysis of the implementation of
kademlia in emule, 2006.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for large-
scale peer-to-peer systems. In Middleware 2001, pages 329–350. Springer, 2001.

[11] R. Schollmeier. A definition of peer-to-peer networking for the classification of peer-to-peer architec-
tures and applications. In Peer-to-Peer Computing, 2001. Proceedings. First International Conference
on, pages 101–102. IEEE, 2001.

[12] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. ACM SIGCOMM Computer Communication Review,
31(4):149–160, 2001.

[13] J.P. Timpanaro, T. Cholez, I. Chrisment, and O. Festor. Bittorrent’s mainline dht security assessment.
In New Technologies, Mobility and Security (NTMS), 2011 4th IFIP International Conference on,
pages 1–5. IEEE.

[14] Juan Pablo Timpanaro, Thibault Cholez, Isabelle Chrisment, and Olivier Festor. When kad meets
bittorrent - building a stronger p2p network. In IPDPS Workshops, pages 1635–1642. IEEE, 2011.

[15] D. Vicino, J. Pablo Timpanaro, I. Chrisment, O. Festor, et al. hmule: an unified kad-bittorrent file-
sharing application. Technical report, INRIA.

[16] K. Wehrle, S. Götz, and S. Rieche. 7. distributed hash tables. Peer-to-Peer systems and applications,
pages 79–93, 2005.

[17] B.Y. Zhao, J. Kubiatowicz, A.D. Joseph, et al. Tapestry: An infrastructure for fault-tolerant wide-area
location and routing. 2001.

62 Bibliography

LIST OF TERMS

aMule A modular opensource multiplatform alternative to eMule. iii, 7, 8, 11, 15–17, 19, 21–29, 31, 33,
38

BitTorrent A fast protocol for P2P content distribution. iii, vii, viii, xi, 1–3, 5, 6, 8–19, 21, 23–29, 31, 33,
38

eMule Nowadays, the most popullar P2P client implementing ED2K protocol and Kad. i, iii, viii, 1–3, 5–7,
9, 11, 13–17, 19, 31, 33

hMule Our prototype for hybrid client study. viii, xi, xiii, 3, 11–13, 15–19, 21–29, 31, 33, 37, 38

info-file A file containing all the metadata needed to transfer contents using BitTorrent protocol. viii, 5, 6,
8, 9, 11–19, 21, 25, 26, 28, 29, 31, 34, 38

info-hash A SHA1 hash of the info-file commonly used as DHTs key. 6, 8, 9, 11, 13–19, 21, 29, 34

Kad An indexing engine based in Kademlia specifications. i, iii, vii, viii, 1, 3, 5–7, 9–14, 16–19, 21, 23–25,
29, 31, 34

Kademlia A DHT based in XOR metrics. i, iii, 2, 3, 5–10

Mainline An implementation of Kademlia specifications for use in BitTorrent . ix, 6, 8, 9, 11, 13, 15, 19,
38

PlanetLab A global research network that supports R+D. 21–25, 31, 38

Vuze A very popular implementation of BitTorrent client which implements its own DHT for search
sources. 6, 8, 9, 11, 14

64 List of Terms

LIST OF ACRONYMS

C/S Client/Server. 1, 5

DHT Distributed Hash Table. i, iii, vii, ix, xi, 2, 3, 5–15, 19, 38

ED2K eDonkey 2000. i, iii, 3, 6, 7, 9–11, 13, 14, 16–18, 21, 25, 26, 28, 29, 31, 33, 34

LARTC Linux Advanced Routing & Traffic Control = LARTC. 22

P2P Peer to peer. i, iii, vii, 1, 2, 5–7, 10, 31

	Introduction
	Content-sharing distribution models
	p2p Networks
	Content Indexation in p2p
	eMule vs BitTorrent
	Objectives
	Document Structure

	Related work
	Introduction
	dht
	Kademlia system for indexation
	The eMule implementation: Kad
	The BitTorrent implementations - Mainline and Vuze

	Ed2k
	eMule
	aMule

	BitTorrent
	The BitTorrent client
	Vuze (formerly azureus)
	rTorrent
	libtorrent-rasterbar

	Summary

	hMule: a Kad-BitTorrent hybrid client
	Introduction
	Overview
	Requirements analysis
	Use cases
	List of compatibility requirements

	Possible approaches and evaluation
	An hybrid client using libraries for kad, BitTorrent and ed2k
	Extending a BitTorrent client to use kad-dht
	Extending an emule client to support BitTorrent as transfer protocol
	Chosen approach

	Changes proposed to the aMule client
	Protocol changes
	Application changes

	Current implementation details
	Initializing and shutting down the application
	Starting a download from kad
	Strategies for referee
	Starting a download from info-file
	Sharing a new file
	Additional changes

	Summary

	Experimentation
	Introduction
	Experiment goals
	PlanetLab
	Experiment design
	Experiment development
	hmule changes to retrieve internal information

	Setup of the nodes
	Results
	Implemented functionalities validation
	Content propagation speed
	Full content propagation of newly published content.
	Content propagation when adding a new peer to a previously propagated content.

	Sustainability of transfer rates
	Evaluation of wasted payload transfer before switching protocols
	Info-file exchange is provided
	Info-file exchange is not provided

	Experimentation conclusions

	Conclusions
	Future work
	Simulation of massive adoption
	Hybrid download using sparse files
	Multi-file multi-protocol content support and collections
	Handle the fake SHA1 detection error
	Fake SHA1 earlier detection
	Torrent Fast Resume support
	Thread safeness

	Appendix
	Installation guide
	User guide
	New configuration parameters
	Connection to mainline dht
	New files

	Known Issues
	Most relevant new classes documentation
	torrent::CTorrent Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	torrent::MD4ToHash Struct Reference
	Detailed Description

	torrent::SHA1ToHash Struct Reference
	Detailed Description

	torrent::filenameToHash Struct Reference
	Detailed Description

	torrent::CTorrentMuleMapping Class Reference
	Detailed Description
	Member Typedef Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	torrent::CTorrentStrategy Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	torrent::CNoTorrentStrategy Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	torrent::CTorrentAlwaysFallToBTStrategy Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	List of Terms
	List of Acronyms

