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Abstract

Dados dos grafos G y H con igual cantidad de v�ertices, el problema de
encontrar un subgrafo com�un a ambos grafos que maximize la cantidad de
aristas se denomina problema de subgrafo m�aximo por aristas (MCESP).
Una de�nici�on equivalente es encontrar una asignaci�on f : VG −→ VH uno a
uno que maximize la cardinalidad de f , donde la cardinalidad se de�ne como
|{uv ∈ EG : f(u)f(v) ∈ EH}|. Se sabe que este problema es NP-completo
en el caso general.

La mayor��a de los trabajos relacionados con el MCESP hasta el d��a de
hoy se centraron en obtener algoritmos e�cientes para computar asignaciones
de cardinalidades aceptables. Dado el escaso estudio de la complejidad del
MCESP en la literatura nos proponemos contribuir a dicha �area.

En este trabajo exploramos el comportamiento de la complejidad del
MCESP cuando los grafos de entrada son restringidos a diversas familias,
centr�andonos en distinguir los casos NP-completos de los polinomiales. Al-
gunas de las familias estudiadas son grafos bipartitos, split, de intervalos,
cografos, �arboles y grillas. Por otro lado relacionamos el MCESP con el
problema de isomor�smo de grafos y la clase de complejidad GI. Por �ultimo
estudiamos aspectos generales del comportamiento de las asignaciones y asig-
naciones �optimas.
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Abstract

Given two graphs G and H with the same number of vertices, the
problem of �nding a common subgraph of both graphs that maximizes
the number of edges is called maximum common-edge subgraph problem
(MCESP). An equivalent de�nition is to �nd a 1-1 mapping f : VG −→ VH
that maximizes the cardinality of f , where the cardinality is de�ned as
|{uv ∈ EG : f(u)f(v) ∈ EH}|. This problem is known to be NP-complete
in the general case.

Most of the works related with MCESP up to day were aimed to ob-
tain e�cient algorithms for computing mappings with reasonable cardinality.
Given the limited study of theMCESP complexity in the literature, we pro-
pose ourselves to contribute to this area.

In this work we explore the behavior of MCESP complexity when the
input graphs are restricted to diverse families, focusing on distinguishing the
NP-complete cases from polynomial cases. Some of the studied families are
bipartite, split, interval, cographs, trees and grid graphs. On the other hand
we relate the MCESP with the graph isomorphism problem and the GI
complexity class. Finally we study general behavioral aspects of mappings
and optimal mappings.
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CHAPTER 1

Getting the grip

1.1. Introduction

An optimization problem de�nes a set of feasible solutions for each in-
stance and an evaluation function that assigns a value to each solution,
generally the goal is to maximize or minimize this value. Many optimization
problems may be solved without computing power, for example, we can use
calculus to maximize or minimize a di�erentiable function. Of course this is
not always the case, the hypothesis required for calculus are very restrictive
for many problems, for instance many problems involve discrete variables or
structures, such as integer numbers, graphs or schedules - these are called
combinatorial optimization problems.

Many of combinatorial optimization problems were found throughout the
human history and few of them were solved by hand. With the introduction
of computing power many of these problems were solved using existing or
new algorithms, nevertheless some of these problems turned out to be re-
ally di�cult even with the most advanced computing systems at the time.
Di�erent approaches were used to give at least some reasonable solution to
these problems, such as heuristic or randomized algorithms.

A notion of time complexity was developed in the 70s, suprisingly enough
this notion seems to capture exactly the �di�cult� problems. These ideas
were formalized using the Turing Machine computing model and became
powerful analysis tools, this way the NP-completeness theory was founded.
Nowadays when facing a new combinatorial optimization problem one uses
these techniques to get a better understanding of how di�cult a problem may
be, using this analysis one may de�ne a more suitable strategy for solving
the problem. Although many complexity notions were introduced since the
NP-completeness theory, this is still one of the most widely used.

Naturally a new trend in the scienti�c community appeared, namely to
classify the problems in �di�cult� and �not di�cult�. Many results are classi-
�cations of restrictions of one problem, where a restriction of a combinatorial
problem is a combinatorial problem with the same evaluation function, and
where the set of feasible solutions is a subset of the original feasible solu-
tions set. Our goal in this work is to contribute to such classi�cation of one
problem in the graph theory �eld.

A graph is basically a set of vertices with edges connecting them. Many
combinatorial optimization problems may be formulated as a query to a
graph, which is constructed using a given instance of the problem. Some-
times those graphs to be queried have certain interesting properties, these
properties de�ne a graph class. Every class has its own properties, and these
can be exploited in the research of faster algorithms or, on the negative side,

1



2 1. GETTING THE GRIP

stating that a query on such graph class is �di�cult�. This is one of the main
motivations to study graph theory and explore the complexity of di�erent
queries on di�erent graph families. In this work we will usually skip the real
problem and go straight to well know graph classes.

A subgraph of a graph is a graph that can be obtained after removing
some vertices and edges from the original graph. A very studied problem is
to decide whether a graph is a subgraph of another graph, this is known to
be a �di�cult� problem. One possible generalization of this problem is, given
two graphs, �nd the largest common subgraph, where we measure its size as
the edge count, this generalization is also called the maximum common edge
subgraph problem. This problem was �rst introduced by Bokhari in [4],
where he studied how to assign modules to array processors in order to
reduce the communication time between these modules. In [12] a polyhedral
approach was explored to this problem. In these works some complexity
results were given, but a classi�cation was not the main goal. To our best
knowledge this is the �rst complexity classi�cation oriented work.

1.2. Preliminaries

1.2.1. Mathematical notation used in this work. Given A,B sets
we de�ne A ⊆ B if each element from A also belongs to B, we de�ne A = B if
A ⊆ B and B ⊆ A. If A ⊆ B and B 6= A we note A ⊂ B. We de�ne A∪B =
{x : x ∈ A or x ∈ B}, A∩B = {x : x ∈ A and x ∈ B}, �nally we note A∪̇B
to the set A∪B if A∩B = ∅. We denote A×B = {(a, b) : a ∈ A and b ∈ B}.
We denote A \B = {x : x ∈ A and x /∈ B}, and A4B = A ∪B \ (A ∩B).
Given a universe U and a set A ⊆ U we note A = {x : x ∈ U and x /∈ A},
if obvious we omit the de�nition of U . We note P(A) = {B : B ⊆ A}. We
say that f ∈ P(A × B) is a mapping or function if for each a ∈ A there is
exactly one pair (a, b) ∈ f , we note this pair f(a) = b. If f ∈ P(A×B) is a
function we note f : A −→ B. Given f : A −→ B, if for each b ∈ B there is
exists exactly one a ∈ A such that f(a) = b we say that f is a bijection or
1-1 mapping, and we note f−1(b) = a. If X ⊆ A and f : A −→ B we note
f(X) := {f(x) : x ∈ X}. Finally, given f : A −→ B and X ⊆ A, we note
f
∣∣
X

: X −→ B the function de�ned by f
∣∣
X

(x) = f(x) for each x ∈ X, and

we call f
∣∣
X

the restriction of f to X or f restricted to X.

1.2.2. Basic graph theory. A directed graph is a pair G := (V,E),
where V is a �nite set of vertices and E ⊆ V ×V is the set of edges. We denote
m := |E| and n := |V |, if needed we add the subindex G to disambiguate.
We write V = VG = V (G) and E = EG = E(G). If (u, v) ∈ E we write
uv = (u, v) and we say that u and v are neighbors. A pair G = (V,E) where
E ⊆ {{u, v} : u, v ∈ V } is called undirected graph. For v ∈ V we de�ne the
open neighbor set of v as N(v) := {u ∈ V : uv ∈ E}, and the degree of v
as deg(v) := |N(v)|. If G = (V,E), V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′) then
(V ′, E′) is a subgraph of G, if E′ = E ∩ (V ′ × V ′) then we say that (V ′, E′)
is an induced subgraph of G and we note G[V ′] := (V ′, E′).

If G,H are graphs we de�ne the union of G and H as G ∪ H :=
(VG∪̇VH , EG∪̇EH). The join of G and H, G ⊕ H is G ∪ H where each
vertex of G is neighbor of each vertex of H. Finally the cartesian product of
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G and H, written G×H, is the graph (VG × VH , E) where ((u, x), (v, y)) is
an edge if and only if either u = v and xy ∈ EH , or x = y and uv ∈ EG.

Given a graphG = (V,E), the adjacency matrix ofG, Adj(G) ∈ {0, 1}n×n
is such that the entry ij is 1 if and only if there is an edge from vi to vj
in the case of directed graphs, and simply an edge between i and j in the
case of undirected graphs. Note that Adj(G) is a symmetric matrix in the
undirected case.

A complete graph Kn = (V,E) is a graph with |V | = n such that each
pair or di�erent vertices are connected. Note that we have n(n−1)/2 = |E|.

A cycle is a graph Cn = (V,E) with n ≥ 3 and V = {v1, . . . , vn} such
that E = {v1v2, v2v3, . . . , vn−1vn, vnv1}. Given G a graph a circuit of length
k in G is a sequence of vertices v1, . . . , vk such that vivi+1 ∈ E for 1 ≤ i ≤ k
and vkv1 ∈ E.

A path is graph Pn = (V,E) with V = {v1, . . . , vn} such that E =
{v1v2, v2v3, . . . , vn−1vn}.

A 4-neighbor grid is a graph given by the cartesian product of two paths.
Other grid graphs will be introduced in Section 4.1.

A graph G = (V,E) is connected if for each pair u, v ∈ V there is a
sequence of vertices u = v1, . . . , vk = v such that vi, vi+1 ∈ E for 1 ≤ i ≤
k − 1. If k is the smallest possible value for such sequence, v1, . . . , vk is a
shortest path between u and v, and we note dist(u, v) = k.

A tree T = (V,E) is a connected graph such that Ci is not a subgraph
of T for any 3 ≤ i ≤ n. A rooted tree T is a tree with a distinguished vertex
or node r called root. If (a, b) ∈ E(T ) we say that a is the parent of b and b
the child of a when dist(r, a) < dist(r, b). We call a leaf to a node without
child nodes, and internal node to any node that has at least one child.

Given a graph G = (V,E), an independent set of G is a set I ⊆ V such
that no two vertices in I are neighbors.

A bipartite graph is a graph whose set of vertices may be partitioned into
two independent sets.

Let n, k ∈ N0, we denote Kn,k = (Vn∪Vk, E) the graph with independent
sets Vn, Vk of size n and k respectively, such that vw ∈ E if and only if v ∈ Vn
and w ∈ Vk or viceversa. We call Kn,k an (n, k)-complete bipartite graph.

For a graph G we de�ne the complement graph G := (V,E) where E :=
{uv : uv /∈ E and u 6= v}. If G is a graph class, we de�ne co-G the class of
graphs whose complement is in G.

Given a graph family F , we say that G is F-free if G has no induced
subgraph in F . Given a graph G and F ∈ F for a �xed �nite family F
we can take all the induced subgraphs of G with |V (F )| vertices, this is(|V (G)|
|V (F )|

)
∈ O(|V (G)||V (F )|), since F is �xed checking if the subgraph is F is

polynomial. Therefore we have that for each �nite family F we can decide
if a graph G is F-free in polynomial time.

A chordal graph is a {Ci}-free graph for i ≥ 4. A split graph G = (V,E)
is a graph such that there is a partition of VG into Kn and I, where I is an
independent set. Alternatively, G is a split graph if and only if G and G are
chordal [7].

A cograph is a graph that can be constructed using the following rules

• A graph with a single vertex is a cograph.
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• IfG,H are cographs with disjoint vertex set thenG∪H is a cograph.
• If G is a cograph then G is a cograph.

Another recursive de�nition is

• ({v}, ∅) is a cograph.
• If G and H are cographs then G⊕H is a cograph.
• If G and H are cographs then G ∪H is a cograph.

Alternatively, a graph G is a cograph if and only if G is P4-free [6].
Given a set family F = {F1, . . . , Fn} the intersection graph I(F) :=

(F , E) is such that FiFj ∈ E if and only if Fi ∩ Fj 6= ∅. A interval graph is
the intersection graph of {I1, . . . , In} where Ii = [ai, bi] ⊂ R. A subclass of
interval graphs will be studied in Chapter 4.

1.2.3. Complexity theory. In this section we give a short introduction
to algorithmic complexity theory, we suggest [8] for a more comprehensive
reading. First we give some formal de�nitions assuming the reader is familiar
with basic notions of what a Turing Machine (TM) and Non Deterministic
Turing Machine (NDTM) are, then we give some examples and conclude
this section with an introduction to Graph-Isomorphism problem and its
complexity.

Given Σ a �nite set of symbols which we call alphabet, we say that a
�nite ordered sequence of elements or characters of Σ is a string. We note
the set of all strings of Σ as Σ∗. A language over Σ is a set L ⊆ Σ∗. If there
exists a TM that accepts L we say that L is decidable or computable. If L
is computable such that there is a TMM and a polynomial P such thatM
decides if s ∈ L in T (s) steps with T (s) ≤ P (|s|) for each s ∈ Σ∗ then we say
thatM is polynomial, or that there is a polynomial algorithm for L. If there
is a NDTM that computes L in a time bounded by a polynomial in the size
of the input, we say that L is NP. Given the languages L and L′, if there
is a mapping f : L −→ L′ computable in polynomial time, and s ∈ L if and
only if f(s) ∈ L′, then we note L ≤P L′ and we say that L is polynomially
reducible to L′. Given L′, if for each L ∈ NP we have L ≤P L′ then we say
that L′ is NP-hard. The set of languages NP-complete is de�ned as the
intersection of NP-hard and NP.

An alternative and more used de�nition is based on decision problems.
A decision problem Π is to answer Yes or No for each valid input or instance
for Π, if there is an algorithm that �nishes in a polynomial number of steps
on the size of the input then we say that Π is a polynomial problem or
tractable. If Π admits a positive certi�cate for each Yes instance, that is,
some extra information that can be used to check if the answer is indeed
Yes in polynomial time, then we say that Π is NP. If the same holds for
negative certi�cates and No instances, then we say that Π is co-NP. Given
the problems Π′ and Π, if we can transform in polynomial time any instance
I of Π into some instance I ′ of Π′ such that I is a Yes instance if and only
if I ′ is a Yes instance, then we say that Π is reducible to Π′, and we note
Π ≤P Π′. If Π ≤P Π′ for each Π ∈ NP we say that Π′ is NP-hard. Finally
the set of NP-complete problems are those in NP and in NP-hard.

For example, any polynomial problem is NP, because we may use the
same input as a positive certi�cate, and run the polynomial algorithm to
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check if the answer is indeed Yes. On the other hand, if we can solve
in polynomial time some NP-hard problem then we are able to solve in
polynomial time any NP problem, of course solving polynomially some
NP-hard problem it is not an easy task. Nowadays in the scienti�c com-
munity there is a wide belief that there is no polynomial time algorithm
for solving some NP-complete problem. Actually the question of whether
P = NP or P 6= NP is one of the most important open problems in com-
plexity theory up to day. In 1971 a breakthrough was made by Stephen
A. Cook when he proved in [5] that the boolean satis�ability problem is
NP-complete. In USSR a similar work was published in 1973 by Leonid
A. Levin, where six di�erent NP-complete problems were given [11]. After
this result many problems were proved to be NP-complete using polyno-
mial reductions. Knowing that some problem is NP-hard usually is a good
�ag to stop searching for exact polynomial algorithms, and suggests to ex-
plore other approaches, like approximation algorithms, integer programming
techniques, heuristics or exponential algorithms with low exponents or good
average running time. The complexity of many problems was extensively
studied for di�erent restrictions, yielding some useful classi�cation in poly-
nomial cases and NP-hard cases. The goal of this work is to study the
complexity of one particular problem and classify restrictions of this prob-
lem into polynomial and NP-hard.

For example, given a boolean formula the Boolean-Satisfiability

problem is to decide if there is an assignment to its variables such that the
formula is true under such assignment, this problem is NP-complete. An-
other well known NP-complete example is theMaximum-Clique problem,
which consists of �nding the largest complete subgraph in the input graph, its
decision version is to decide if there is a complete subgraph of size at least
k in G. Another well known NP-complete problem is the Travelling-
Salesman problem, which given a complete graph with an edge weight
function w : E −→ Q≥0, is to decide if there is a cycle that contains all
the vertices and the sum of all edges on the cycle is less or equal than some
value. The optimization version of this problem is to �nd the cycle with
the smallest edge sum possible. As we stated before, to prove that some
problem is NP-complete we can make a polynomial reduction from another
NP-complete problem, we will do this many times in this work, introducing
more NP-complete problems. Many NP-complete problems are not related
directly to graph theory, for the interested reader we suggest the appendix
of [8].

Two graphs, G = (V,E) and H = (V ′, E′), are isomorphic if there is a
1-1 mapping f : V −→ V ′ such that uv ∈ E if and only if f(u)f(v) ∈ E′.
The Graph-Isomorphism problem is to decide if two graphs are isomor-
phic. Clearly a 1-1 mapping may be used as a positive certi�cate, hence
this problem is NP. In [8] the authors mentioned this problem and stated
that its complexity is yet unkown. Nowadays, 3 decades later, Graph-
Isomorphism has its own complexity class because no one was able to give
a polynomial algorithm or show that it is NP-complete. Although in prac-
tice this problem admits very fast algorithms and many techniques were
introduced since 1979, for example, in [13] and [15] are presented exact
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algorithms that in the worst case have exponential running time, but in
practical applications they perform well. The most studied approaches are
based on computing some information on both graphs and compare it, this
usually provides a fast mechanism to state that two graphs are not isomor-
phic, but �nding an exhaustive list of what information to compute to get
an exact and fast algorithm is a major task. Another widespread approach
is to compare the graphs directly.

The class GI is the set of problems that can be solved with a polyno-
mial reduction to Graph-Isomorphism, a problem is GI-hard if there is
a polynomial reduction from any GI problem to this problem, and a prob-
lem is GI-complete if it is GI and GI-hard. In this work we will use only
polynomial-time Turing reductions, which were described above. For a more
comprehensive reading on GI and related classes, based on other reductions
and hierarchies, we suggest [16] and [10].

In [16] the author states that Graph-Isomorphism is not likely to be
NP-complete, based on the observation that the counting version of Graph-
Isomorphism, which counts the number of di�erent isomorphisms is as dif-
�cult as the decision problem. This is not the case with NP-complete prob-
lems and the related counting class #P, where Yes solutions are counted.
He mentions that most counting versions of NP-complete problems are
#P−complete, and at the time of writing it is not even known if #P is
included in the polynomial hierarchy. Since the results presented in [16],
more related work was done and the belief that GI is not in NP-complete
became wide spreaded, a summary of possible arguments may be found in [2].

In this work we will show some of the relations between one particular
problem and the GI class.

1.2.4. Maximum common edge subgraph problem.

De�nition 1.2.1. Given two graphs G = (VG, EG), H = (VH , EH) with
nG = nH and a 1-1 mapping f : VG −→ VH . We de�ne γf to be the
cardinality of f , given by γf := |{uv ∈ EG : f(u)f(v) ∈ EH}|. If obvious,
we ommit the f subindex. We denote Γ(G,H) = maxf{γf} and Ψ(G,H) =
minf{γf}.

De�nition 1.2.2. Maximum common edge subgraph problem
(MCESP). Given two undirected graphs G and H with the same number
of vertices, the MCESP asks for a 1-1 mapping f : V (G) −→ V (H) such
that γf = Γ(G,H). The decision version of MCESP is, given an instance
(G,H, k) with |V (G)| = |V (H)|, decide if Γ(G,H) ≥ k.

Naturally a similar problem arises, instead of asking for the 1-1 mapping
of the largest cardinality we may ask for the smallest cardinality.

De�nition 1.2.3. Minimum common edge subgraph problem
(MinCESP). Given two undirected graphs G and H with the same number
of vertices, the MinCESP asks for a 1-1 mapping f : V (G) −→ V (H) such
that γf = Ψ(G,H). The decision version of MinCESP is, given an instance
(G,H, k) with |V (G)| = |V (H)|, decide if Ψ(G,H) ≤ k.

We will show several relations between MinCESP and MCESP in Sec-
tion 2.1, these will be useful to relate complexity results of both problems.
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Observation 1.2.1. MCESP ∈ NP and MinCESP ∈ NP.

Proof. Given a 1-1 map f : V (G) −→ V (H), γf can be computed in
O(m). �

If G and H are graph classes, we will denote MCESP(G,H) to the
MCESP problem with one input graph restricted to G and the other to
H, same notation will be used for MinCESP.

Given G a graph, the Hamiltonian-Circuit problem consists in de-
ciding if there is a Hamiltonian circuit in G, that is, a circuit that contains
all the vertices of G exactly once. This is equivalent to say that Cn is a
subgraph of G. The Hamiltonian-Path problem consists in deciding if
there is a Hamiltonian path in G, that is, a path that contains all the ver-
tices of G exactly once. This is equivalent to say that Pn is a subgraph of
G. The Maximum-Clique problem consists in �nding the largest complete
subgraph of G, its decision version is, given k ∈ N, decide if Kk is a subgraph
of G. In [8] these three problems are shown to be NP-complete.

Proposition 1.2.1. The MCESP is NP-complete.

In the following we give three alternative proofs.

Proof 1. Deciding if a graph G admits a Hamiltonian circuit is deciding
if Cn is a subgraph of G, this gives a trivial reduction from Hamiltonian-

Circuit. Given a graph G with n vertices, if Γ(G,Cn) ≥ n then all the edges
of Cn contributed to the solution. Since the solution has an associated 1-1
mapping f : V (Cn) −→ V (G), if Cn is the circuit v1 . . . , vn then f(vi)f(vi+1)
for 1 ≤ i ≤ n−1 and f(vn)f(v1) are adjacent in G. This forms a circuit in G
of length n, therefore G admits a Hamiltonian Circuit. Reciprocally, if there
is a Hamiltonian Circuit v1, . . . , vn in G, and the cycle of Cn is w1, . . . , wn, we
de�ne f(wi) = vi for 1 ≤ i ≤ n, clearly all the edges of Cn are contributing
to γf , then Γ(G,Cn) ≥ γf = n. �

Proof 2. The second proof consists in reducing from Hamiltonian-

Path, the arguments are ommited since the proof is essentially the same. �

Proof 3. Deciding if a graph G with n vertices contains a complete
subgraph of k vertices is the same as deciding if

Γ(G,Kk ∪Kn−k) ≥ k(k − 1)/2,

this leads to a trivial reduction from Maximum-Clique. Given an instance
(G, k) of Maximum-Clique, if Γ(G,Kk ∪Kn−k) ≥ k(k − 1)/2 then all the
edges of Kk are contributing to the solution, take the associated 1-1 mapping
f : V (Kk ∪Kn−k) −→ V (G), denote

V (Kk ∪Kn−k) = {v1, . . . , vk, vk+1, . . . , vn}
where vivj are adjacent if and only if i, j ≤ k, then the induced subgraph
G[{f(v1), . . . , f(vk)}] must be complete, otherwise some edge ofKk wouldn't
contribute. This implies that G contains a complete graph of k vertices. Re-
ciprocally, if G has a clique with k or more vertices, then this clique contains
a complete subgraph of k vertices, we can map injectively the vertices of
Kk on this complete subgraph and extend it to a 1-1 mapping arbitrarily,
leading to γf = k(k − 1)/2 ≤ Γ(G,Kk ∪Kn−k). �
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Note that these three proofs give us the following

Corollary 1.2.1. If G is a class of graphs where Hamiltonian-Circuit,
Hamiltonian-Path or Maximum-Clique is NP-complete, then MCESP

is NP-complete if we restrict one of the input graphs to G.

Furthermore, the idea of the proof which uses a reduction fromMaximum-

Clique leads us to the following

Theorem 1.2.1. If H is a class of graphs closed for addition of isolated
vertices, i.e. if (V,E) ∈ H then (V ∪ {v}, E) ∈ H for v /∈ V , and G is
a class of graphs such that deciding if H ∈ H is a subgraph of G ∈ G is
NP-complete, then MCESP(G,H) is NP-complete.

Proof. Let H ∈ H and G ∈ G, we are to decide if H is a subgraph
of G. If nH > nG the answer is clearly No, therefore suppose nH ≤ nG.
Add nG − nH isolated vertices to H, name the resulting the graph H ′. By
hypothesis H ′ ∈ H and by construction nH′ = nG. If Γ(H ′, G) ≥ mH then
Γ(H ′, G) = mH , because in H ′ there are only mH edges. Hence H ′ is a
subgraph of G and by construction H is a subgraph of H ′, therefore H is
a subgraph of G. Reciprocally if H is a subgraph of G, then H ′ is also a
subgraph of G, yielding Γ(H ′, G) = mH′ = mH . �

The ease of the reductions used in this �rst results leads us to think
that MCESP is a very di�cult problem compared to other NP-complete
problems.

1.3. About this work

In this chapter we gave the basic notions for understanding this work,
introducing the required de�nitions and basic results. There is no precedence
order between Chapter 2, Chapter 3 and Chapter 4, so the reading may be
in any order.

In Chapter 2 we explore general results related to MCESP and the be-
havior of 1-1 mappings. The main result of Section 2.1 is thatMCESP(G,H)
is NP-complete if and only if MCESP(co-G, co-H) is NP-complete, to
achieve this result we relate the complexities of MinCESP andMCESP. In
Section 2.2 we explore the behavior of 1-1 mappings when both graphs are re-
stricted to have same number of edges and vertices, within this class of graphs
we de�ne a graph distance function related to MCESP. In Section 2.3 we
formalize the fact thatMCESP is a generalization of Graph-Isomorphism
and relate the GI complexity with MCESP.

In Chapter 3 we study the MCESP problem when one of the graphs
is a complete bipartite graph. We explore the problem complexity when
the second graph is unrestricted, complete bipartite, cograph, bipartite and
union of stars. We prove that the �rst case is NP-complete and we give
some observations on the bipartite case, which are partial results that may
be used to prove that the restriction is NP-complete or give a polynomial
time algorithm. On the positive side, we give polynomial time algorithms
for the rest of the restrictions.

In Chapter 4 we explore more restrictions to both graphs. In Section 4.1
we show that MCESP is NP-complete when one graph is a grid and the
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other is a union of grids, this holds for grids with 4, 6 and 8 neighbors. We
extend this idea to honeycomb grids. In the remaining part of Chapter 4 we
explore the cases when both graphs are restricted to split graphs, conntected
proper interval graphs, trees and unions of paths. We also explore the case
when the �rst graph is bipartite and the second a complete bipartite with
isolated vertices. For all of these restrictions we prove that MCESP is
NP-complete.





CHAPTER 2

Mapping Structure

In this chapter we explore general results related to MCESP and the
behavior of 1-1 mappings. In Section 2.1 we show a relation between Γ(G,H)
and Ψ(G,H) which enables us relate the complexities of MinCESP and
MCESP, based on this result we prove that Γ(G,H) = Γ(G,H)+mH−mG.
Using these relations we observe that MCESP(G,H) is NP-complete if and
only if MCESP(co-G, co-H) is NP-complete. In Section 2.2 we explore the
behavior of 1-1 mappings when both graphs are restricted to have same
number of edges and vertices, we prove some technical results that enable us
to show a distance function related to MCESP. Finally in Section 2.3 we
formalize the fact thatMCESP is a generalization of Graph-Isomorphism
and relate the GI complexity with MCESP.

2.1. General results on Γ

Theorem 2.1.1. If G and H are two graphs with nG = nH , then Γ(G,H) =
mG −Ψ(G,H).

Proof. Let Γ(G,H) = t, then there is a 1-1 mapping f : VG −→ VH
such that its cardinality is t. Let T be the graph whose edge set are the
edges that are in G and in H via f , de�ne E1 := EG \ ET , E2 := EH \ ET .
Since the edges of T are those in G and H we have that ET , E1 and E2 are
pairwise disjoint sets. Consider H, the edges from E1 are clearly contained
in H under the mapping f , and the edges of T and E2 are not in H under
f . Using the mapping f for (G,H) we have Ψ(G,H) ≤ γf (G,H) = |E1| =
|EG \ ET | = mG − Γ(G,H).

Let g : VG −→ VH the 1-1 mapping such that γg = Ψ(G,H). Let R be

the graph whose edge set are the edges that are in G and in H via g, de�ne
E1 := EG \ ER, E2 := EH \ ER. Since the edges of R are those in G and

H we have that ER, E1 and E2 are pairwise disjoint sets. Consider H = H,
the edges from E1 are clearly contained in H under the mapping g, and the
edges of R and E2 are not in H under g. Using the mapping g for (G,H)
we have

Γ(G,H) ≥ γg(G,H) = |E1| = |EG \ ER| = mG −Ψ(G,H).

Therefore Ψ(G,H) ≥ mG − Γ(G,H). �

Corollary 2.1.1. Given G and H graph classes, then MCESP(G,H) is
NP-complete if and only if MinCESP(G, co-H) is NP-complete.

11
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Proof. First we prove MCESP(G,H) ≤P MinCESP(G, co-H). Let
(k,G,H) be an instance of MCESP(G,H) where G ∈ G and H ∈ H, con-
struct the instance (mG− k,G,H) for MinCESP(G, co-H), then using The-
orem 2.1.1

Γ(G,H) ≥ k ⇐⇒ mG −Ψ(G,H) ≥ k ⇐⇒ mG − k ≥ Ψ(G,H).

In the following we prove that MinCESP(G, co-H) ≤P MCESP(G,H). Let
(k,G,H) be an instance ofMinCESP(G, co-H) where G ∈ G and H ∈ co-H,
construct the instance (mG − k,G,H) for MCESP(G,H), then

Ψ(G,H) ≤ k ⇐⇒ mG − Γ(G,H) ≤ k ⇐⇒ mG − k ≤ Γ(G,H).

�

De�nition 2.1.1. We call Gn,m the family of graphs with n vertices and m
edges.

Corollary 2.1.2. If G and H are graphs with nG = nH , then Γ(G,H) =
Γ(G,H) +mH −mG, and Ψ(G,H) = Ψ(G,H) +mH −mG. Observe that if
G,H ∈ Gn,m then Γ(G,H) = Γ(G,H), and Ψ(G,H) = Ψ(G,H).

Proof. Observe using Theorem 2.1.1 that

Γ(G,H) = mG −Ψ(G,H)

Γ(G,H) = mH −Ψ(G,H)

therefore we get Ψ(G,H) = Ψ(G,H)+mH −mG. In the same way we prove
Γ(G,H) = Γ(G,H) +mH −mG. �

Observation 2.1.1. Given G and H graph classes, then MCESP(co-G,H)
is NP-complete if and only if MCESP(G, co-H) is NP-complete. Also note
that MCESP(G,H) is NP-complete if and only if MCESP(co-G, co-H) is
NP-complete. Furthermore, this relation holds for the polynomial case, in
the sense thatMCESP(G,H) admits a polynomial time algorithm if and only
if MCESP(co-G, co-H) admits a polynomial time algorithm.

2.2. A distance between graphs using MCESP

De�nition 2.2.1. Let G,H ∈ Gn,m, we de�ne dist(G,H) := m− Γ(G,H).

Lemma 2.2.1. If G,H,H ′ ∈ Gn,m with |EH 4 EH′ | = 2, then |Γ(G,H) −
Γ(G,H ′)| ≤ 1.

Proof. Assume w.l.o.g. Γ(G,H) ≥ Γ(G,H ′) and |Γ(G,H)−Γ(G,H ′)| >
1, then we have Γ(G,H) > 1+Γ(G,H ′). Let f : VG −→ VH be the 1-1 map-
ping such that γf = Γ(G,H). Since |EH 4 EH′ | = 2 we lose at most one
common-edge by using f as mapping for (G,H ′) instead of (G,H), hence
γf (G,H ′) ≥ γf (G,H)− 1, then

1 + Γ(G,H ′) ≥ 1 + γf (G,H ′) ≥ γf (G,H) = Γ(G,H),

a contradiction.
�
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Let G,H ∈ Gn,m such that Γ(G,H) < m, let f : VG −→ VH be an
optimal 1-1 mapping. Consider the operation of deleting an edge uv ∈ EH

such that f−1(u)f−1(v) /∈ EG from EH and adding an edge f(x)f(y) /∈ EH

such that xy ∈ EG to the edges ofH, we denoteH ′ to the obtained graph. By
de�nition we get Γ(G,H)+1 = γf (G,H ′), furthermore, since |EH4EH′ | = 2
we conclude by Lemma 2.2.1 that Γ(G,H) + 1 = Γ(G,H ′) = γf (G,H ′).
Repeating this argument we can transform H into an isomorphic graph of G,
if we only use the operations de�ned before, this algorithm takes dist(G,H)
operations.

Proposition 2.2.1. The function dist : G2n,m −→ N is a distance over Gn,m
considering the graph isomorphism as equality.

Proof. Let G,H ∈ Gn,m, recall from De�nition 1.2.1 that Γ(G,H) =
|{uv ∈ EG : f(u)f(v) ∈ EH}| ≤ m, then dist(G,H) ≥ 0.

We have dist(G,H) = 0 ⇐⇒ m − Γ(G,H) = 0 ⇐⇒ there is a 1-1
mapping f : VG −→ VH such that |{uv ∈ EG : f(u)f(v) ∈ EH}| = m ⇐⇒
[uv ∈ EG ⇐⇒ f(u)f(v) ∈ EH ], using that both graphs are in Gn,m we get
that G is isomorphic to H.

Let G,H,F ∈ Gn,m, using the above procedure we can transform G
into F in dist(G,F ) steps and then F into H in dist(F,H) steps, on the
other hand we can transform G into H in dist(G,H) steps. This procedure
improves the distance by exactly one unit at each step, then dist(G,H) ≤
dist(G,F ) + dist(F,H).

The symmetry holds trivially. �

2.3. Graph Isomorphism

The next proposition shows thatMCESP is a generalization of Graph-
Isomorphism.

Proposition 2.3.1. If Graph-Isomorphism is GI-complete when restricted
to the class of graphs H, then MCESP is GI-hard when both graphs are re-
stricted to H.

Proof. Given G,H ∈ H, then G is isomorphic to H if and only if
there is a 1-1 mapping f : VG −→ VH such that uv ∈ EG if and only if
f(u)f(v) ∈ EH . Since f is a 1-1 mapping we have nG = nH , and by the
edge conservation property of f we have that mG = mH . Thus, deciding if
there is an isomorphism is equivalent to decide if nG = nH , Γ(G,H) = mG

and mG = mH . �

Observation 2.3.1. There are classes of graphs such that if both input
graphs are restricted to such class, the MCESP is NP-complete, but the
complexity of Graph-Isomorphism with the same restriction is unkown,
for instance, this happens with bipartite graphs. This is similar to what hap-
pens with Subgraph-Isomorphism problem and Graph-Isomorphism.





CHAPTER 3

Complexity over Complete Bipartite graphs

In this chapter we study the MCESP problem when one of the graphs
is a complete bipartite graph. We explore the problem complexity when
the second graph is unrestricted, complete bipartite, cograph, bipartite and
union of stars. We prove that the �rst case is NP-complete and we give some
observations on the bipartite case, these observations are partial results that
may be used in further research of the complexity of this restriction. On
the positive side, we give polynomial time algorithms for the rest of the
restrictions.

3.1. Complete Bipartite vs. arbitrary graph

Given a graph G, the problem of �nding a set of vertices S ⊆ VG such
that the number of edges between S and VG \ S is maximized, is called the
Max-Cut problem. In [8] Max-Cut is shown to be NP-complete. The
Max-Cut problem can be restated as to �nd a maximum edge bipartite
subgraph of G. The decision version of this problem consists in deciding if
there is a cut (or bipartite subgraph) of edge size greater or equal to k.

Proposition 3.1.1. The MCESP(G,H) with the restriction H = Kn,k is
NP-complete.

Proof. Recall from Observation 1.2.1 that MCESP ∈ NP. In the fol-
lowing we prove that Max-Cut ≤P MCESP. Let (G, k) be an instance of
Max-Cut decision problem, where k ∈ N and G is an arbitrary graph. Con-
sider the instances I0, . . . , I|V | = (K0,|V |, G), (K1,|V |−1, G), . . . , (K|V |,0, G) for
MCESP, we note Γi = MCESP(Ii), take the instance Ii that maximizes Γi

over all the instances. By de�nition Γi is the edge count of the maximum
common subgraph of Ki,|V |−i and G. Therefore the answer for Max-Cut is
Yes if Γi ≥ k and No otherwise. For completion we must remark that if B
is a bipartite subgraph of G and {V1, V2} any bipartition of VB, we can add
{v1, . . . , vt} isolated vertices to V1 until we get t + |V1| + |V2| = |VG|, this
is a subgraph of Kt+|V1|,|V2| and a subgraph of G; since the isolated vertices
do not in�uence the edge count, it is enough to consider those instances for
MCESP. �

In [3] the authors proved that for split, tripartite and co-bipartite Max-

Cut is NP-complete, a tripartite graph is one that admits a partition of its
vertices into three independent sets. Using the same ideas of the proof of
Proposition 3.1.1 we get the following

Corollary 3.1.1. MCESP(Kn,k, G) for G chordal, split, tripartite or co-
bipartite graph is NP-complete.

15
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Figure 3.2.1. Arbitrary 1-1 mapping g : V (Kn,k) −→
V (Ks,t) and the edges contributing to γg.

3.2. Complete Bipartite vs. Complete Bipartite graph

Consider the graphs Kn,k,Ks,t such that k + n = s+ t, we can suppose
without loss of generality that n ≤ k, t ≤ s, and t ≤ n. Let us note
Vn = {v1, . . . , vn}, Vk = {vn+1, . . . , vn+k}, Vt = {w1, . . . , wt}, and Vs =
{wt+1, . . . , wt+s}.

Proposition 3.2.1. Let f : Vn ∪ Vk −→ Vs ∪ Vt such that f(vi) = wi, then
tk = γf = Γ(Kn,k,Ks,t).

Proof. We have t ≤ n and t+ s = n+ k, then s ≥ k. Note that for all
v ∈ Vn deg(v) = k and for all w ∈ Vt deg(w) = s. Therefore, since f maps t
vertices from Vn to Vt and k vertices from Vk to Vs we get tk = γf .

We next prove that any 1-1 mapping g has cardinality less or equal to tk.
Note ab the number of vertices mapped from set Va to Vb, where a ∈ {n, k}
and b ∈ {s, t}. The following holds:

t ≤ n ≤ k ≤ s
nt ≤ t
kt ≤ t
ks ≤ k

nt + kt = t.

In Figure 3.2.1 the dotted lines represents the mapping of g, and the shaded
area represents the edges that are part of γg. Therefore γg = nskt + ksnt =
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min{ns, ks}t + (ks − min{ns, ks})nt + (ns − min{ns, ks})kt. Consider the
following cases

• ns ≤ ks: then γg = nst+ (ks− ns)nt ≤ nst+ (ks− ns)t = kst ≤ kt.
• ns > ks: then γg = kst+ (ns − ks)kt ≤ kst+ (ns − ks)t = nst ≤ kt.

�

3.3. Complete Bipartite vs. Cographs

We already saw a relation of Max-Cut and MCESP restricted to com-
plete bipartite graphs, as we saw in the analyzed cases, when Max-Cut

is NP-complete so is MCESP restricted to complete bipartite graphs. In
[3] it was shown that Max-Cut restricted to cographs is polynomial. In
the following we present a polynomial dynamic programming algorithm for
MCESP(Kn,k, G) where G is a cograph. Recall from Subsection 1.2.2 that
cographs may be de�ned in the following recursive manner

• ({v}, ∅) is a cograph.
• If G and H are cographs then G⊕H is a cograph.
• If G and H are cographs then G ∪H is a cograph.

Using this de�nition we may represent every cograph G with a cotree, which
is a rooted tree whose leaves are nodes of G, and interior nodes represent
unions or joins of the cographs represented by its child subtrees. We assume
that the input is given as a binary cotree, for details on cographs we suggest
the fundational work [6].

Intuitively our algorithm considers all the possible instances of MCESP

for each subtree of the cotree that may �t in the input complete bipartite
graph and have the correct number of vertices. We then de�ne two recursive
rules, for the join and the union of two cographs, each of these rules are
polynomially computable given the optimal solution of the subinstances,
which are calculated and stored in runtime memory. Before the algorithm
and its analysis we introduce one well-known technical result, for the sake of
completeness we give a proof.

De�nition 3.3.1. A full binary tree (FBT) is a binary rooted tree where
each node is either a leaf or it is parent of exactly two nodes.

Lemma 3.3.1. (FBT Theorem) Any non-empty FBT with n internal nodes
has exactly n+ 1 leaves.

Proof. If n = 0 we have one isolated vertex which is a leave. If n = 1
then we have two leaves. Let T be an FBT with n + 1 internal nodes, let
x be an internal node with two child leaves, remove these two leaves, this
yields an FBT with n internal nodes because the only node that is no longer
internal is x. By inductive hypothesis this tree has n + 1 leaves, if we add
back the removed leaves, x becomes an internal node and the leaf count is
increased by 1, therefore we get n+ 2 leaves for T . �

Proposition 3.3.1. There is a polynomial time algorithm for MCESP when
restricted to complete bipartite graphs and cographs.

Proof. Let G a cograph represented by a cotree T where T is a FBT,
and Kn,k the input complete bipartite graph, we will make recursion on T .
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The base case is given by Γ(({v}, ∅),K1,0) = 0. In the recursive step, suppose
we are making an operation onH and J where both are cographs represented
by subtrees of T , and we have the values Γ(Ks,t, H) and Γ(Kl,r, J) for each
s + t = nH (a), l + r = nJ (b), l + s = n (c) and t + r = k (d). We call Vk
to the subset of k vertices of Kn,k and Vn to the subset of n vertices, where
Vn and Vk are independent sets and {Vn, Vk} is a partition of the vertices of
Kn,k. In both recursions Vl ∪ Vs will be mapped to Vn and Vt ∪ Vr to Vk.

In case of G = H ∪ J no new edges were added when making the union,
this is illustrated in Figure 3.3.1, we de�ne f : V (Kn,k) −→ VG such that

γf = max{Γ(Ks,t, H) + Γ(Kl,r, J) : (a),(b),(c),(d)}.

To see that γf = Γ suppose there is a 1-1 mapping g : VG −→ V (Kn,k) such
that γg > γf , since there are no edges between H and J we can analyze g

∣∣
VH

and g
∣∣
VJ

independently. We have that

γ
g
∣∣∣
VH

≤ Γ(Ks,t, H)

where s = |{v ∈ VH : g(v) ∈ Vn}| and t = nH − s. In the same way

γ
g
∣∣∣
VJ

≤ Γ(Kl,r, J)

where l = |{v ∈ VJ : g(v) ∈ Vn}| and r = nJ − l. Thus we have

Γ(Ks,t, H) + Γ(Kl,r, J) ≥ γ
g
∣∣∣
VH

+ γ
g
∣∣∣
VJ

= γg > γf ,

a contradiction because of the de�nition of f . It is easy to see that there
are at most (nG + 1)(nJ + 1) possible combinations for s, t, l and r, since
nG ≤ n+k and nJ ≤ n+k we have at most (n+k+1)2 possible combinations.

In case of G = H ⊕ J , nHnJ edges between H and J were added when
joining, this is represented in Figure 3.3.2. We de�ne f : V (Kn,k) −→ VG
such that

γf (G,Kn,k) = max{sr + tl + Γ(Ks,t, H) + Γ(Kl,r, J) : (a),(b),(c),(d)}.

We can see that γf = Γ using the same idea as before, the only thing that
changes is the need of considering the new tl+sr edges that are added to γg,
where g is the 1-1 mapping used for the contradiction proof. Again we have
at most (n+ k + 1)2 combinations for the complete bipartite subinstances.

Since T is FBT and Lemma 3.3.1, we apply these rules to exactly n+k−1
interior nodes. When we compute the optimal values for each child node we
can save the results to avoid recomputing them, this may be done using a
matrix of size (n+k−1)×(n+k+1)×(n+k+1), where the �rst coordinate
denote the interior node of T , and the last two coordinates are related to the
possible complete bipartite graphs for that node. With this strategy each
node requires O((n + k)2) steps to take the maximum value, using this for
n+ k − 1 interior nodes this algorithm turns out to be O((n+ k)3).

�
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Figure 3.3.1. Recursive step for H ∪ J . The 1-1 mapping
f : V (Kn,k) −→ V (H ∪ J) where H and J are cographs, the
shaded area represents edges that form part of γf .

Figure 3.3.2. Recursive step for H ⊕ J . The 1-1 mapping
f : V (Kn,k) −→ V (H ⊕ J) where H and J are cographs, the
shaded area represents edges that form part of γf .

3.4. Complete Bipartite vs. Bipartite graph

In this section we give partial results related toMCESP when one grpah
is bipartite and the second a complete bipartite graph. We were not able to
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�nd a polynomial time algorithm neither give an NP-completeness proof for
this restriction. Nevertheless we think this restriction is NP-complete due
to the reformulation of the problem given in Lemma 3.4.1.

Let Kn,k and G such that |V (G)| = n + k and G a bipartite graph, let
t := min{n, k}. Since G is a bipartite graph we have

Adj(G) =

(
0 B
BT 0

)
with B ∈ {0, 1}|V1|×|V2| for some V1 and V2 independent sets of G that
partition VG. Note that t ≤ |V1| or t ≤ |V2|, this can be proved trivially by
contradiction. Consider selecting t rows or columns from B, and note this
selection S. The value of the selection S, v(S) is the sum of all the numbers
in the selection, except those appearing in the position ij if the row i and
column j are in S. We will note the set of rows in S with R and C to the
set of columns in S.

Lemma 3.4.1. Let Kn,k and G such that |V (G)| = n+ k and G a bipartite
graph, let t := min{n, k}, then maxS:|S|=t{v(S)} = Γ(Kn,k, G).

Proof. First, given a selection S we show how to construct an associ-
ated 1-1 mapping f , then we give an observation that enables us to get a
selection for any 1-1 mapping, �nally we show that γf = v(S), where f is
the associated mapping to S and vice versa.

Suppose S is a selection of size t for the matrix B ∈ {0, 1}|V1|×|V2|,
and assume the vertices of G indexed by the positions of Adj(G), that is,
v1 corresponds to the �rst row and the �rst column of Adj(G), v2 to the
second and so on. Suppose n = t, de�ne f : VG −→ V (Kk,n) as follows,
for each selected row i let f(vi) ∈ Vn, and for each selected column j let
f(vj+|V1|) ∈ Vn, and map the remaining vertices to Vk such that f is a 1-1
mapping, this is well de�ned since n = t. A reverse construction gives a
selection for every 1-1 mapping.

The edges vw ∈ EG that are contributing to γf are exactly those where
f(v) ∈ Vn and f(w) ∈ Vk. Therefore each vertex v ∈ VG such that f(v) ∈ Vn
is an endpoint of deg(v) − |{w ∈ N(v) : f(w) ∈ Vn}| contributing edges.
Note that if an edge has an endpoint on v and is not contributing to γf , this
will neccesarily have an endpoint on other vertex w such that f(w) ∈ Vn,
then

γf =
∑

v:f(v)∈Vn

deg(v)− |{w ∈ N(v) : f(w) ∈ Vn}|
2

.

On the other hand, v(S) is the sum of all the selected entries in S, except
the entires ij where the row i and column j are in S, thus

v(S) =
∑
r∈R

deg(vr) +
∑
c∈C

deg(vc+|V1|)−
∑
r∈R
c∈C

Brc.

By de�nition of f , the �rst two terms equals to
∑

v:f(v)∈Vn
deg(v). If r ∈ R,

Brc = 1 for some column c if and only if vrvc+|V1| ∈ EG, thus we can rewrite
the last term as∑

r∈R
|{w ∈ N(vr) : w = vc+|V1| for some c ∈ C}|.
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By de�nition of f , c ∈ C if and only if f(vc+|V1|) ∈ Vn, then we rewrite this
term as ∑

r∈R
|{w ∈ N(vr) : f(w) ∈ Vn}|.

In a similar way we can prove that∑
r∈R
c∈C

Brc =
∑
c∈C
|{w ∈ N(vc+|V1|) : f(w) ∈ Vn}|.

Since V1 and V2 are independent sets, we get

2
∑
r∈R
|{w ∈ N(vr) : f(w) ∈ Vn}| =

∑
v:f(v)∈Vn

|{w ∈ N(v) : f(w) ∈ Vn}|,

hence v(S) = γf .
�

Observation 3.4.1. Let B ∈ {0, 1}n×(k+n+1), and for 1 ≤ i ≤ n we have∑k+n+1
j=1 bij > n, given an optimal selection S such that |S| = t ≤ n, then

S ⊆ Rows(B).

Proof. Given t ≤ n, since each column can sum at most n, each row
sums at least n + 1, and we select at most n rows or columns, it is obvious
that any row selection sums more than a selection that contains columns.
Therefore the optimal solution is contained in the row set of B. �

Observation 3.4.2. If G,H are bipartite graphs such that nG = nH = n
and

Γ(Ki,n−i, G) = Γ(Ki,n−i, H) for 0 ≤ i ≤ n,
then not necessarily G and H are isomorphic. Consider

G H

3.5. Complete Bipartite vs. union of Stars

A star graph Si is a graph K1,i with i ≥ 0, if i = 0 then the graph is an
isolated vertex. In this section we present a polynomial dynamic program-
ming algorithm for computing Γ(Kn,k, G) where G is a union of stars. We
think the complexity of this algorithm may be drastically improved, but we
prefer a simpler approach with an easy proof for showing that this case is
polynomial.

Proposition 3.5.1. If G = Sn1 ∪ · · · ∪ Snt such that t +
∑t

i=1 ni = n + k
then MCESP(Kn,k, G) is solvable in polynomial time.

Proof. If we map one star of G in the graph Kn,k we may remove that
star from G and from Kn,k, yielding a graph Kn−i,k−j where i + j is the
number of vertices in the star, after the removal we get a smaller instance
of the same problem. We still need to �nd the value added to γ by that
partial mapping, if the central vertex of the star was mapped to some vertex
on the k side of Kn,k, then we added i edges to γ, if we mapped the central
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vertex to some vertex on the n side, we added j edges to γ. Since we are
maximizing, that value will be max{i, j} if the star has at least one vertex
on each side, and 0 otherwise, we will note this value mij . We are now ready
to write the recursive expression that yields the algorithm.

γ(Kn,k, Sn1 ∪ · · · ∪ Snt) = max{γ(Kn−j,k−i, Sn1 ∪ · · · ∪ Snt−1) +mij :

i+ j = nt + 1 and i, j ≥ 0}.
The fact that γ = Γ follows directly by induction in t. Observe that there are
O(nk) complete bipartite subgraphs of Kn,k, where the equality is taken as
isomorphism. Also there are t ≤ n+k stars, and each star Sl admits at most
l+1 ≤ n+k di�erent con�gurations. Therefore it is enough to use a memory
space ofO

(
nk(n+ k)2

)
for memoization of partial results, and compute each

entry at most one time, therefore this algorithm is polynomial. �



CHAPTER 4

Complexity over additional graph classes

In this chapter we explore more restrictions to both graphs. In Section 4.1
we analyze grid-like graphs based on some existing ideas taken from [12]. We
show MCESP is NP-complete when one graph is a grid and the other is a
union of grids, this holds for grids with 4, 6 and 8 neighbors. This also holds
for honeycomb grids.

In the remaining part of the chapter we explore the cases when both
graphs are restricted to split graphs, conntected proper interval graphs, trees
and unions of paths. We also explore the case when the �rst graph is bipartite
and the second a complete bipartite with isolated vertices. For all of these
restrictions we prove that MCESP is NP-complete.

4.1. Grids

As we stated in Section 1.1, the MCESP was �rst introduced in [4] as
a formulation for a practical problem on array processors. Array processors
are basically a set of partially interconnected processors, not every pair of
processors are connected because of the high growth of links required, which
is O(n2) where n is the number of processors. When a pair of processors are
connected they can share information faster than using the general bus. If we
are given a set of programs to run in parallel and assuming we know how these
programs share information, we are interested in using in the most convinient
way the communication lines between processors. We may represent the
array processor with a graph, having one vertex per processor and an edge
between two vertices if and only if there is a communication line between the
associated processors. In a similar way me can represent the communication
between programs, one vertex per program and an edge between two vertices
if and only if the associated programs share information. Clearly, if there are
more programs than processors we may not map programs onto processors,
so we assume that we have enough processors. Furthermore, if we have
more processors than programs, we can add �dummy� programs that do
nothing and communicate with no other program. Now it should be clear
that solving MCESP for these two graphs is �nding the best possible usage
of communication lines.

In array processors a common con�guration of communication lines has
a grid-like structure. Some complexity results were suggested in [12], in the
following we give the complete proofs based on their ideas. For this purpose
we �rst introduce some de�nitions.

De�nition 4.1.1. A 4-neighbor grid graph Gk,s of k rows and s columns
is the graph given by Pk × Ps. If V (Pk) = {v1, . . . , vk} and V (Ps) =
{u1, . . . , us}, then the ith row of Gk,s is the subgraph induced by {(vi, uj) : 1 ≤

23
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Figure 4.1.1. An example of a 4-neighbor grid graph of size
3× 6, G3,6.

Figure 4.1.2. A 6-neighbor grid graph (a) and an 8-
neighbor grid graph (b), both of size 3× 6.

j ≤ s}, and the jth column is the subgraph induced by {(vi, uj) : 1 ≤ i ≤ k}.
An example is given in Figure 4.1.1.

De�nition 4.1.2. A 6-neighbor grid graph Gk,s is a 4-neighbor grid graph
extended with the edges ((vi, uj), (vi+1, uj+1)) for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤
s− 1. An example is shown in Figure 4.1.2.

De�nition 4.1.3. An 8-neighbor grid graph Gk,s is a 6-neighbor grid graph
extended with the edges ((vi, uj), (vi−1, uj−1)) for 2 ≤ i ≤ k and 2 ≤ j ≤ s.
An example is shown in Figure 4.1.2.

Observation 4.1.1. A 4-neighbor grid graph Gk,s has 2sk − s− k edges.

Theorem 4.1.1. The MCESP is NP-complete when one graph is a 4-
neighbor grid and the second a union of 4-neighbor grids.

Proof. The idea of the proof was given in [12], here we formalize the de-
tails using the proposed reduction. We reduce from 3-Partition [8]. The 3-
Partition problem is, given an integer B and a multiset A = {a1, . . . , a3m}
of integer numbers such that B/4 < ai < B/2 and

∑3m
i=1 ai = mB, we are

to decide if A be partitioned into m disjoint multisets S1, . . . , Sm such that∑
a∈Si

a = B. This problem is NP-complete even if B is bounded by a poly-
nomial onm [8]. Let a∗ := minA, and k := d(2m+1)/a∗e. Let H := G2m,kB

and G :=
⋃3m

i=1G2,kai . Observe that nG =
∑3m

i=1 2kai = 2kmB = nH , also
note that k is bounded by a polynomial in m, hence the sizes of G and H are
bounded by a polynomial inm. In the following we prove that Γ(G,H) ≥ mG

if and only if it is a Yes 3-Partition instance.
Suppose there is a partition S1, . . . , Sm of A such that Si contains ex-

actly 3 elements and each Si sums B. For each 1 ≤ i ≤ m denote Si =
{ai1, ai2, ai3}, map to the (2i − 1)th and 2ith row of H the graphs G2,kai1 ,
G2,kai2 and G2,kai3 secuentially, such that the mapping restricted to those
vertices contributes all the edges of G2,kai1 , G2,kai2 and G2,kai3 . Obvi-

ously this part of the mapping contributes
∑3

j=1 4kaij − 2 − kaij . An



4.1. GRIDS 25

Figure 4.1.3. A mapping yieldingmG edges. The top graph
is H and the bottom is G, the 3-Partition instance is given
by B = 16, A = {5, 5, 5, 5, 6, 6}, one possible solution is
{5, 5, 6}, {5, 6, 5}. Observe that k = d4 + 1/5e = 1.

example of this mapping is shown in Figure 4.1.3. This mapping yields
γf =

∑
a∈A 4ka− 2− ka = mG.

To prove the converse we show that the connected components of G are
arranged by the optimal mapping in double rows of H, afterwards we show
why each such a row has exactly 3 subgraphs of G mapped onto it. We close
the proof showing that by taking sets with the ai's associated to those three
subgraphs yields a Yes certi�cate for 3-Partition.

Suppose Γ(G,H) ≥ mG, then G must be a subgraph of H. The width
of each connected component of G is greater than the height of H, formally
ka∗ ≥ 2m+ 1, thus the component cannot be mapped vertically on H. Fur-
thermore, the mapping must be �straight�, otherwise we must have a vertex
of degree at least 4 in G, which does not happen. Therefore, each connected
component ofGmust be mapped horizontally. All the subgraphs are mapped
in double rows, and each of these double rows is given by rows 2i− 1 and 2i
for 1 ≤ i ≤ m, to see this observe that each connected component of G is a
subgraph of H, and each vertex of H is part of some connected component
of G via the optimal mapping. If we have a connected component mapped
to the rows 2i and 2i+ 1, there must be another connected component of G
that does not contribute all of its edges to Γ, this is a contradiction.

Finally we need to prove that for 1 ≤ i ≤ m exactly three connected
components of G are assigned to vertices of rows 2i − 1 and 2i in H. Sup-
pose there are c connected components mapped to the subgraph induced
by rows 2i − 1 and 2i, suppose these components are associated to the el-
ements {ai1 , . . . , aic}. If c > 3 then there are

∑c
j=1 4kaij − 2− kaij edges
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contributing in the rows 2i− 1 and 2i of H. Observe that
c∑

j=1

3kaij − 2 >
c∑

j=1

3k
B

4
− 2 = 3kB

c

4
− 2c ≥ 3kB − 2c.

Also note that at least 2(c−1) edges from the rows 2i−1 and 2i are neccesarily
lost due to the separation of the c connected components. Therefore the
available edges on the 2i−1 and 2ith rows are 3kB−2−2(c−1) = 3kB−4−2c,
and we already saw that the contributing edges are more than 3kB−2c, this
is a contradiction, thus c ≤ 3. Finally, since there are m double rows and
3m connected components in G and G is a subgraph of H, every double row
of H must contain exactly 3 connected components of G via the optimal
mapping.

For 1 ≤ i ≤ m construct the multisets Ai := {ai1, ai2, ai3}, such that for
1 ≤ j ≤ 3, G2,kaij is mapped to the double row given by rows 2i− 1 and 2i
of H, this is well de�ned due to above observations of the optimal mapping.
We have

∑
a∈Ai

ka = kB, then
∑

a∈A a = B. Finally since the mapping is
1-1, the multisets A1, . . . , Am form a partition of A, thus, A1, . . . , Am is a
positive certi�cate for 3-Partition. �

Observation 4.1.2. A similar result is shown in Theorem 4.6.1, but note
that here one graph is neccesarily connected, thus we cannot use a trivial
reduction to that NP-complete problem.

Corollary 4.1.1. The MCESP is NP-complete when one graph is a 6-
neighbor grid and the second a union of 6-neighbor grids.

Proof. The essence of the proof is the same as the proof of Theo-
rem 4.1.1. We reduce again from 3-Partition and we encode the problem
in graphs G and H in the same way as before, but using 6-neighbor graphs.
Clearly this gives us a valid MCESP instance since the amount of nodes is
the same as before in each graph. We again ask if G is a subgraph of H. We
only need to observe that, when proving the second implication, i.e. if G is
a subgraph of H then it is a Yes instance for 3-Partition, the connected
components of G are mapped horizontally on H. We already saw that a
connected component of G cannot be mapped vertically on H, because its
longer than the height of H. Hence we need to analyze what happens when
a connected component of G is mapped partially vertically and partially
horizontally, and contributing all its edges. But if this is the case, then one
connected component of G must have a vertex of degree at least 6, which is
a contradiction. �

Corollary 4.1.2. The MCESP is NP-complete when one graph is a 8-
neighbor grid and the second a union of 8-neighbor grids.

Proof. Same as in the above corollary. �

The idea of above proofs may be used for many grid-like graphs, for
example for honeycomb grids. A honeycomb grid is a set of �pasted� C6

graphs as shows the Figure 4.1.4.

Corollary 4.1.3. The MCESP is NP-complete when one graph is a hon-
eycomb grid and the second a union of honeycomb grids.
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Figure 4.1.4. A honeycomb grid of 4 rows and 5 columns.

4.2. Complete Bipartite union isolated vertices vs. Bipartite
graph

De�nition 4.2.1. The maximum edge biclique problem (MPB) asks for the
maximum complete bipratite subgraph of G, the decision version is to decide
if G contains a complete bipartite subgraph of k or more edges.

Proposition 4.2.1. The MCESP is NP-complete when one graph is a
complete bipartite union isolated vertices and the second a bipartite graph.

Proof. In [14] the authors proved that MBP is NP-complete for bi-
partite graphs. We will prove MBP ≤P MCESP. Let I := (G, k) be an
instance of MBP with G a bipartite graph. For 0 ≤ i ≤ |VG|, 0 ≤ j ≤ i
construct the MCESP instances

F = {(Kj,i−j ∪K|V (G)|−i), G, j(i− j))}.

Observe thatMCESP(Kj,i−j∪K|V (G)|−i), G, j(i−j)) is Yes if and only if G
contains a biclique of size j(i− j). Therefore if we have MCESP(f) = Yes

for some f = (H,G, t) ∈ F such that t ≥ k, then we have a biclique of edge
size greater or equal to k in G. Reciprocally if we have a biclique of size
t ≥ k in G, we can take all the instances of F with Ks,l ∪K|V (G)|−s−l where
s+ l = t, and for some of them the MCESP answer must be Yes. �

4.3. Split vs. Split graph

Proposition 4.3.1. The MCESP is NP-complete when we restrict both
inputs to split graphs.

Proof. We reduce from MBP de�ned in De�nition 4.2.1, this prob-
lem was proved to be NP-complete for bipartite graphs in [14]. Let G :=
(V1∪̇V2, E) a bipartite graph with V1 and V2 independent sets, and k ∈ N,
we are to decide if there is a complete bipartite subgraph of edge size at least
k in G.

De�ne a graph G′ := (V ′, E′) with 2n vertices by extending G in the
following way, V ′ := V +

1 ∪̇V
+
2 where V1 ⊂ V +

1 , V2 ⊂ V +
2 and |V +

1 | = |V
+
2 | =

n, add all the possible edges between vertices of V +
1 and all the edges between
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Figure 4.3.1. Construction of split graph G′ from bipartite
graph G. The shaded area represents the complete Kn sub-
graph.

V1 and V2 that appear in G. This construction is illustrated in Figure 4.3.1.
It is clear that G′ is a split graph, where V +

1 induces a complete graph and
V +
2 is an independent set.

For each k ≤ l ≤ n2 consider H l := (W1∪̇W2, EH) where W1 induces
a complete graph of size n, W2 an independent set of size n, and there are
l edges from W1 to W2 such that if we remove the edges from W1 we get
a complete bipartite graph of edge size l union isolated vertices. It must
be noticed that we may obtain l edges with di�erent partitions, and for a
�xed l we have as many partitions as product decompositions of l in two
factors, since there are at most O(l) di�erent decompositions for l, there
are at most O(l) di�erent (non isomorphic) graphs. To distinguish these
graphs we introduce the index j to H l

j , for an example see Figure 4.3.2. This

construction yields O(
∑n2

l=k l) = O(n4) possible graphs H l
j . Consider the

family I := {(G′, H l
j , n(n−1)/2+ l)} of MCESP instances. In the following

we prove that there is a Yes instance I ∈ I for MCESP if and only if G
contains a complete bipartite subgraph of edge size at least k.

Suppose we have a complete bipartite subgraph in G of edge size l ≥ k
with l1 vertices in V1 and l2 in V2, observe that l1l2 = l. Since l ≥ k
there is a graph H l

j = (W1∪̇W2, EH) such that if we remove all the edges
from W1 we get a complete bipartite subgraph with l1 vertices in W1 and
l2 in W2. Denote V +

1 = {v1, . . . , vl1 , vl1+1, . . . , vn} where v1, . . . , vl1+1 are
the vertices of the complete bipartite subgraph of edge size l in V1, and
V +
2 = {u1, . . . , ul2 , ul2+1, . . . , un} with u1, . . . , ul2 the vertices of the same

complete bipartite subgraph. Also note W1 = {a1, . . . , al1 , al1+1, . . . , an}
with a1, . . . , al1 the vertices of highest degree of W1, and

W2 = {b1, . . . , bl2 , bl2+1, . . . , bn}

with b1, . . . , bl2 the vertices with highest degree ofW2. De�ne f : V +
1 ∪̇V

+
2 −→

W1∪̇W2 such that f(vi) = ai for 1 ≤ i ≤ n and f(ur) = br for 1 ≤ r ≤ n.
Clearly f(V +

1 ) = W1, since V
+
1 andW1 induce complete subgraphs and both

have n vertices, these edges contribute n(n − 1)/2 to γf . Furthermore all
the edges with one endpoint in W1 and the other in W2 are covered by f by
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Figure 4.3.2. Example of H l
j family for l = 12. The shaded

area for each graph H12
j is a Kn subgraph.

de�nition, these contribute l to γf , hence

Γ(G′, H) ≥ γf = n(n− 1)/2 + l ≥ n(n− 1)/2 + k.

Suppose we have a Yes instance I ∈ I, then there is a graph Hj
l such

that Γ(G′, H l
j) ≥ n(n − 1)/2 + l, denote f : V (G′) −→ V (H) the optimal

1-1 mapping. Since the graph Hj
l has n(n− 1)/2 + l edges then it must be

a subgraph of G′. If we remove all the edges in V +
1 from G′, remove all the

edges from W1 in H and use the mapping f on these new graphs we obtain
a complete bipartite subgraph in G′ of size l. Since we did not add any edge
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between V +
1 and V +

2 except those in G, this complete bipartite subgraph of
size l ≥ k is a subgraph of G. �

4.4. Proper Interval vs. Proper Interval Graphs

A proper interval graph G is an interval graph that admits a model
without interval inclusions.

Proposition 4.4.1. The MCESP is NP-complete for connected proper in-
terval graphs.

Proof. The subgraph isomorphism problem is NP-complete for con-
nected proper interval graphs when both graphs have the same number of
vertices, this result is shown in [9]. Given G and H connected proper inter-
val graphs with nG = nH , deciding if H is a subgraph of G is the same as
deciding if Γ(G,H) ≥ mH . �

4.5. Tree vs. Tree

In [1] the authors proved that MCESP is NP-complete when both
graphs are trees. For completion we reproduce their proof here.

Theorem 4.5.1. MCESP is NP-complete when both input graphs are trees.

Proof. We reduce from 3-Partition [8]. Let B ∈ N, and a multiset
A = {a1, . . . , a3m} of integers such that B/4 < ai < B/2 for 1 ≤ i ≤ 3m

and
∑3m

i=1 ai = mB, an instance of 3-Partition.
A spider is a tree with exactly one node of degree greater than two.

The paths extending from the high-degree center are called hairs. Let T1
be a spider with m hairs, each with B + 3 edges. Let T2 be an extended
star with 3m hairs, where the ith hair has ai + 1 edges. Note that both
T1 and T2 have m(B + 3) edges, T1 has m(3 + B) + 1 vertices, and T2 has
1 +

∑
ai∈A 1 + ai = 1 +m(3 +B) vertices.

A 3-partition of A yields a common subtree on all the vertices of T1 with
only 2m edges missing, or 2 per hair. We claim that any common subtree
must miss at least 2m edges. Suppose that only one edge was missing on a
given hair in T1. The larger remainder of the hair must contain at least B/2
edges, which can then only be matched to two hairs of T2 including the root.
Hence, 3m − 2 of the edges incident to the root of T2 must be eliminated.
Thus, there is a common subtree missing only two edges per hair in T1 if
and only if there is a 3-partition of A. �

4.6. Union of Paths vs. union of Paths

Theorem 4.6.1. The MCESP is NP-complete when both graphs are re-
stricted to union of paths.

Proof. We reduce from 3-Partition. Let B ∈ N, and a multiset
A = {a1, . . . , a3m} of integers such that B/4 < ai < B/2 for 1 ≤ i ≤ 3m

and
∑3m

i=1 ai = mB, an instance of 3-Partition. Construct the graphs

G :=
⋃3m

i=1 Pai+1 and H :=
⋃m

i=1 PB+3, observe that nG =
∑3m

i=1 ai + 1 =
mB+3m =

∑m
i=1B+3 = nH . In the following we prove that Γ(G,H) ≥ mB

if and only if it is a Yes 3-Partition instance.
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Figure 4.6.1. Part of the mapping f , the dotted arrows
shows where a vertex is mapped. The P19 belongs to H and
the rest of the paths to G.

Suppose there is a partition S1, . . . , Sm of A such that Si contains ex-
actly 3 elements and each Si sums B. For each 1 ≤ i ≤ m denote Si =
{ai1, ai2, ai3}, map Pai1+1 on the �rst ai1 + 1 vertices of the ith PB+3 of
H such that the mapping contributes ai1 edges to γf . Then map Pai2+1

to the ith PB+3, beggining at the vertex ai1 + 2, and ending at the vertex
ai1 + ai2 + 2, such that this contributes ai2 edges to γf . Finally map Pai3+1

to the remaining vertices of the ith PB+3 contributing ai3 edges to γf . Then

γf =
∑3m

i=1 ai = mB, because all the edges from G are contributing to γf .
By de�nition Γ(G,H) ≥ γf . An example is illustrated in Figure 4.6.1.

Suppose there is a 1-1 mapping f : VG −→ VH such that γf ≥ mB. Since
mG = mB, G must be a subgraph of H, then each Pai+1 is mapped via f
in such way that all the vertices are contiguous. Take any PB+3 subgraph
of H, we have k di�erent Pai+1 subgraphs of G mapped onto it, label them

Pai1+1, . . . , Paik+1. If k > 3 then there are
∑k

j=1 aij edges contributing from
PB+3. Observe that

k∑
j=1

aij >
k∑

j=1

B

4
=
kB

4
≥ B.

Also note that k − 1 ≥ 3 edges from PB+3 are neccesarily lost due to the
separation of di�erent Paij+1. Since PB+3 has exactly B + 2 edges, and at

least 3 are lost, we cannot contribute more than B−1 edges with PB+3 when
k > 3, hence k ≤ 3. On the other hand, if k < 3 we have that

B + 2−
k∑

j=1

aij > B + 2− kB
2
≥ 2

edges are not contributing from PB+3. Stated in other words, we lose at
least 3 edges in that PB+3. Observe that if k = 3, then we lose at least 2
edges from PB+3 due to separation, and we already saw that no PB+3 may
have k > 3, therefore, if we lose 3 edges in one PB+3 we cannot �balance�
the contributions over the rest of the paths in H, yielding γf < mB, which
is a contradiction. Therefore k is always 3 if γf ≥ mB, furthermore, each
of the paths in H loses exactly 2 edges. De�ne S1, . . . , Sm as Si := {aj :
Paj+1 is mapped to the ith PB+3}, since k = 3 for each PB+3 we get that
each Si has exactly 3 elements, since exactly 2 edges are lost in each PB+3,
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each Si sums B, �nally, since f is a 1-1 mapping, S1, . . . , Sm is a disjoint
partition of A, thus it is a positive certi�cate for 3-Partition.

�



CHAPTER 5

The End

5.1. Conclusions

Our main goal was to study the time complexity behavior of MCESP un-
der di�erent restrictions, aiming to obtain a classi�cation into NP-complete
and polynomial cases. From the the beggining we expected to verify that
MCESP remains NP-hard in many strong restrictions. In Chapter 3 and
Chapter 4 we explored di�erent restrictions and some of them were strong
enough to verify the initial thoughts. Nevertheless we found some polyno-
mial cases where we did not expect them, for example when one graph is
complete bipartite and the second a cograph, this result is detailed in Sec-
tion 3.3. In the following two paragraphs we give a summary of analyzed
restrictions.

In Chapter 3 we worked with one graph restricted to complete bipartite
class. When the second graph belongs to one of the following families

• arbitrary graphs
• split graphs
• chordal graphs (follows directly since split graphs are chordal graphs)
• tripartite graphs
• co-bipartite graphs

then the MCESP is NP-complete. On the other hand, if the second graph
belongs to

• complete bipartite graphs
• cographs
• union of stars

then the problem is polynomial. We were not able to classify the case when
the second graph is a bipartite graph, although some observations of this
restriction were made in Section 3.4, based on those observations we think
this case is NP-hard.

In Chapter 4 we explored more restrictions to both graphs. In Sec-
tion 4.1 we analyzed grid-like graphs based on some existing ideas, proving
that MCESP is NP-complete when one graph is a grid and the other is a
union of grids, this holds for grids with 4, 6 and 8 neighbors. We also noticed
that those ideas may be adapted for the analysis of other grid-like graphs,
like honeycomb grids. In the remaining part of Chapter 4 we showed that
MCESP is NP-complete when the restrictions are

• both graphs are split graphs
• both graphs are connected proper interval graphs
• both graphs are trees
• both graphs are unions of paths
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• one is complete bipartite graph union isolated vertices and the other
a bipartite graph.

While analyzing di�erent aspects of the problem we found some general
results related to MCESP, which were not intensively used to contribute to
the classi�cation of restrictions, therefore we arranged those results in Chap-
ter 2. Here we observed how the MCESP behaves when one graph is com-
plemented and related it with theMinCESP, thus relating the complexity of
both problems. Using this relation of problems, in Observation 2.1.1 we men-
tioned thatMCESP is NP-complete for two graph classes if and only if it is
NP-complete when restricted to the complement of those classes. We gave a
possible graph distance de�nition using the MCESP in Section 2.2. Finally
in Section 2.3 we related the MCESP with Graph-Isomorphism and for-
malized why theMCESP is in fact a generalization of Graph-Isomorphism
problem, and not only of the Subgraph-Isomorphism problem.

5.2. Further Work

The results shown in Chapter 2 are general enough to become a �rst step
for researching how the structure of the mapping behaves under di�erent re-
strictions. For example, in Section 2.2 we saw that restricting graphs to have
the same number of edges gives a notion of a distance over such graph class,
we think that restricting to other classes may lead to interesting and unex-
pected results, relating theMCESP with other problems. Finally, we do not
expect interesting results from relating the Graph-Isomorphism problem
and MCESP, intuitively one may think that the relations are somehow gen-
eralizations of the relations between Graph-Isomorphism and Subgraph-
Isomorphism. Although a more theoretical approach may be chosen, and
explore what kind of relations may be found with the polynomial hierarchy,
we did not studied this �eld in this work, but there might be some relations.

In Chapter 3 some observations were made when one graph is restricted
to complete bipartite and the other to an arbitrary bipartite, we think this
is an NP-hard case, the reason to believe this is the reformulation shown
in Lemma 3.4.1. Despite our beliefs we were not able to prove this, an
interesting work is to search for such a proof.

In Chapter 3 and Chapter 4 we classi�ed some restrictions of MCESP as
polynomial and others as NP-hard. For the NP-hard cases a more re�ned
analyisis would be a classi�cation in approximable or non approximable as-
suming P 6= NP. If a restriction turns out to be approximable, searching the
best possible approximation factor is an interesting work. This is, probably,
the most practical classifcation in the NP-hard class. Another interesting
analysis is to classify whether an NP-hard restriction is Fixed Parameter
Tractable or not.
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