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í

Abstract

(

Cell-DEVS es un formalismo para describir modelos celulares que se diferencia de los autómatas
celulares tradicionales por la expresividad que provee para defmir el avance del tiempo. Cell-DEVS se ha
utilizado para modelar varias aplicaciones: tráfico, incendios forestales, inyección de flujo y otras. Pero la
ejecución de modelos Cell-DEVS grandes y complejos requiere un poder de cómputo que muchas veces
una sola computadora no provee, pero que sí se puede obtener utilizando ejecución paralela y distribuida.
Por este motivo se hicieron modificaciones a Cell-DEVS que dieron origen a Paralle1 Cell-DEVS, un
fonna1ismo revisado que extiende Cell-DEVS para simulación en paralelo. El presente trabajo define un
mecanismo de simulación que permite ejecutar modelos Paralle1 Cell-DEVS en ambiente paralelos,
haciendo énfasis en aquellos que son distribuidos.

Cell-DEVS is a fonna1ism intended to mode1 cell spaces. It describes cellu1ar mode1s using timing de1ay
constructions, allowing simple definition of comp1ex timing. Large Cell-DEVS mode1s require a
computing power that their execution in a standalone machine is not feasib1e. As paralle1 and distributed
environments became more accessib1e, the Cell-DEVS fonna1ism was revised to permit paralle1
specification of these mode1s. This work defmes a new simu1ation mechanism suited for distributed
environments and presents a too1 for the simu1ation of Paralle1 DEVS and Cell-DEVS mode1s on a
network of computers.
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1
Introduction

Simulation is a powerful tool for studying complex systems, with quite a range of uses, from new system
testing to physical phenomena understanding. The simulation process begins with a problem to solve or
understand. It rnight be the case of a train company trying to develop a new strategy for cargo storage and
railway tracks usage or a chemist trying to understand a complex process of physical diffusion. From the
the observation of a real system entities are identified, and an abstract representation, a model, is
constructed. Once the model is constructed, it needs to be executed. This is done by a simulator, which
consists of a computer system that executes the model's instructions to generate its behavior. To complete
the cyc1e, the results obtained are compared to those of the real system for model validation. It is often the
case that a modeler is only interested in a few aspects of the real system. In such a case, an experimental
frame captures the modeler's objectives and defmes the scope ofthe model.

/

Experi mental Frame

SimulaHon
Relation

Modeling
Relation

Figure 1 : The basic entities and their relationships [ZeiOO]

The basic entities are linked by two relations [ZeiOO]:

o modeling relation. Links the real system and model, defming how well the model represents the
system or entity being modeled. In general terms a model can be considered valid if the data generated by
the model agrees with the data produced by the real system in an experimental frame of interest.

o simulation relation. Links the model and simulator. It represents how faithfully the simulator is able
to carry out the instructions of the model.

There exist at present quite a number of simulation techniques and paradigms. Among these, the DEVS
formalism [Zei76, ZeiOO] provides a framework for the construction of hierarchical models in a modular
manner, allowing for model reuse and reducing development and testing time time. In DEVS a model is
specified as a black box with a state and a duration for that state. When the duration time for the state
expires, an output event is sent, an internal transition takes place and the model changes its current state.
A change of state can also occur when an external event is received. Then, a complete model is defmed
by describing the set of sta tes a model goes through, the internal and external transition functions, the
output function and the state duration function. DEVS models can be put together by linking the outputs
of a model to inputs of other models to form coupled models. Models made out of only one component
are called atomic.

( 4
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DEVS not only proposes a framework for model construction, but also defmes an abstract simulation
mechanism that is independent of the model itself. This mechanism is a high level description of how the
simulation of DEVS models should be executed by a simulator. Two kinds of simulators are defmed,
one for atomic and another one for coupled models, this latter one known as a coordinator. These
simulators progress through the simulation by exchanging messages as described by the abstract
simulation mechanism.

In [WaiOl] the Timed Cell-DEVS formalism was presented. Cell-DEVS is a formalism based on DEVS
for the simulation of cellular models. A traditional cellular automaton is a lattice of cells, each of which
has a value and a local rule that defmes how to obtain a new value based on the cell's current state and the
values its neighbors. Cells are updated synchronously all at the same time. Timed Cell-DEVS takes a
different approach. It defmes a cell as a DEVS model and a cellular automaton as a coupled model, and
introduces a new way of defming the timing of each cell which is more flexible than the traditional
synchronous approach. In Timed Cell-DEVS each cell defmes its own update delay, giving the modeler
more precision and reducing the execution time.

To simulate DEVS and Cell-DEVS models a toolkit, CD++, was developed [Rod99]. CD++ has been
used to simulate a variety of models including: traffic, forest fires, ants and watershed simulation
[AmeOO]. Simple models are easily handled by the too1. However, the execution of complex models
requires a computing power that stand alone computers do not provide, but that can be provided by
parallel and distributed systems.

Not only parallel execution was being demanded for Cell-DEVS but also for DEVS models. In [Ch094a]
the Parallel DEVS formalism was introduced. This formalism is a revision of DEVS that eliminates
serialization constraints that made it unsuitable for parallel execution. Similarly, Parallel Cell-DEVS
[WaiOOa] was introduced as a revised version of Cell-DEVS that elirninates serialization constraints and
inconsistencies with zero delay cells and multiple simultaneous events.

This work presents changes to CD++ to ron Parallel DEVS and Parallel Cell-DEVS models on a
distributed environment, providing a tool that will not only reduce execution times but also allow larger
models. To begin, a new abstract simulator will be presented because the Parallel DEVS simulator
introduced in [Ch094b], though well suited for an implementation on a parallel system with shared
memory, does not allow for an efficient implementation over a network of computers. Basically, the
simulator in [Ch094b] does not distinguish messages sent over the network from those sent between
objects on the same process, incurring in an unnecessary overhead. Therefore, there was a need to extend
it for distributed environments. This work addresses this issues.

In parallel simulation, the execution is divided into a set of Logical Processes, each running on a different
CPU. Each Logical Processes hosts a set of simulation objects. For flexibility, the new parallel simulator
was designed as a layered architecture application. The topmost layer implements the abstract simulator,
the middle layer carries out all required synchronization in the Logical Process level, and the lowest layer
is in charge of communications. For the middleware, the Warped project [Mar97] was selected. Warped
provides an API for running parallel simulation. There are three approaches to synchronization between
Logical Processes: optimistic, pessimistic, and no synchronization (application level synchronization) and
Warped currently provides two of these. A Time Warp kemel implements the optimistic Time Warp
protocol, and a No Time kemel [Ra098] implements an unsynchronized protoco1. The parallel simulator
has be en written to support both kemels and is currently being ron with the No Time keme1.

The fmal release of parallel CD++ runs both, distributed and standalone simulation. For simple and small
models, the standalone version performs well. For complex and big models the distributed version is
preferred. The development was carried out in Linux machines. Testing has been done on different Linux
clusters at the Universidad de Buenos Aires and at the University of Carleton in Ottawa.

This work is organized as follows. The first two chapters, Chapter 2 and 3, present the DEVS, Parallel
DEVS, Cell-DEVS and Parallel Cell-DEVS formalisms. In chapter 4, the new abstract simulator suited
for distributed environments is introduced. Chapter 5 will make a short presentation of synchronization
techniques for parallel discrete event systems, introducing the optirnistic, pessirnistic and unsynchronized
protocols. After this presentation, Chapter 6 will introduce CD++ and Chapter 7 the parallel version, with
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special mentíon of implementation issues using the Warped kemels. A first set of results is presented in
Chapter 8.

After the first results, some bottlenecks were detected, so the simulator was revised. These revisions are
presented in Chapter 9. Chapter 10 makes evaluates the performance of the two simulators and analyses
other factor affecting performance, such as model workload and choice of partitíon.

Chapter 11 introduces a chernical diffusion model and further performance analysis. Finally the
conc1usions follow.

6
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2
The DEVS and Parallel DEVS formalisms

2.1 The original DEVS formalism

Systems whose variables are discrete and the time advance is continuos are known as DEDS - Discrete
Events Dynamic Systems, as opposed to CVDS - Continuous Variable Dynamic Systems [Wai98]. A
simulation mechanism for DEDS systerns assumes that the system will only change its state at discrete
time points upon the occurrence of an event. An event is formally defmed as a change of state that takes
place at time specific point oftime ti E R.

DEVS [Zei76, ZeiOO] is a formalism for modeling and simulating DEDS systems. It defmes a way of
specifying systems whose states either change upon the reception of an input event or the expiration of a
time delay. It also allows for hierarchical decomposition of the model by defming a way to couple
existing DEVS models.

The original DEVS model is a structure:

DEVS = < X, Y, S, tSext, tSint, A, ta>
where

X is the set of external events

y is the set of output events

S is the set of sequential states;

sext: Q x X ~ S is the external state transition function;

where Q := {(s, e) I s E S, O S'e S'ta(s) } and e is the elapsed time since the last state transition.

is the internal state transition function;

A:S~Y is the output function;

ta:S~Ro+uco is the time advance function;

The semantics for this defmition are as follows. At any given time, a DEVS model is in a state s E S and
in the absence of external events, it will remain in that state for a period of time as defmed by ta(s).
Transitions that occur due to the expiration of ta(s) are called internal transitions. When an internal
transition takes place, the system outputs the value A(s), and changes to state 4nt(s}. A state transition can
also happen when an external event occurs. In this case, the new state is given by tS ex/s, e, x) where s is
the current sta te, e the time elapsed since the last transition and x the external input value.

The ta(s) function can take any real value between O and cc, A state for which ta(s) = O is called a
transient state. On the other hand, ifta(s) = 00, the system will stay in that state forever unless an external
event is received. In such a case, s is called a passive state. Figure 2 illustrates this defmition, and Figure
3 shows how to defme a CPU model with DEVS.

7
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Figure 2: DEVS Semantics

A computer processor can be specified as a DEVS model. A processor would have to states: busy and
available. So

s = { busy, available}

Jobs will constitute the set of input events and output events. A job arriving on an input port will change
the processor state to busy. Once the job has been processed it will be sent as an output event. Jobs will
be identified with a natural numbers, hence

X=N

Y=N

Assuming no job arrives while the processor is busy and that the model keeps an internal variable with
the id of the job its processing, then the external transition function is defmed as follows:

t5exl (x, e)
{

s = busy
jobId =x

}

A job will occupy the processor during a random time with a given Poisson distribution, so the time
advance function is

ta ( busy ) = Poissoni)
ta (available) = ex>

Ifthe processor is available, then it will remain in that state until an external event arrives.

When the processing time has expired, a state transition will take place. At this time, the output function
is called followed by the internal transition function. Continuing with our description,

A( busy ) = jobId

t5exl (busy) = available

An internal transition from the available to busy state will never happen because available is a passive
state.

Figure 3 : Definition o/ a CPU using DEVS
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DEVS models can be put together to form coupled models.

A coupled model is a structure:

DN = < Xself, Yself, D, {M¡}, {I¡}, (Z¡), select)

where

D is a set of components.

for each i in D,

M¡ is a component.

for each i in D u {self},

I¡ is the set of influencees of i.

for eachj in I¡

Z¡ ,j is a function, the i - to -j output-input translation

select is a tie-breaker function.

This structure is subject to the constraints that for each i in D,

M¡ = < Xi, Y¡, S¡, ~ exl, ~ ints A;, taJ is a DEVS model

I¡ is a subset of D u {self}, i is not in I;,

select : subset of D ~ D

such that for any non-empty subset E,

select ( E) E E

A coupled model groups several DEVS models together into a compound model that can be regarded, due
to the closure property, as another DEVS model. This allows for hierarchical model construction. A
DEVS model that is not constructed as a coupled model is known as an atomic model.

A coupled model can have its own input and output events, as defined by the Xself and Yself sets. Upon
receiving an external event, the coupled model has to redirect the input to one or more of its components.
In addition, when a component produces an output, this has to be mapped as another's component input
or as an output of the coupled model itself. All these input-output mappings are defmed by the Z function.

When models are coupled together, ambiguity arises if there are more multiple components scheduled for
an internal transition at the same time. If the first component to make its internal transition produces an
output that maps to an external event for another component that is already scheduled for an internal
transition, then it is not clear which transition this second component should execute first. There two
alternatives: to execute the external transition frrst with e = ta(s) and then the interna! transition, or to
execute the internal transition first followed by the external transition with e = O. The way the DEVS
formalism solves this is by the use of the select function. This function defines an order on the
components so that only one component of the group of irnminent models is allowed to be with e = O.The
other irnminent models will be divided in two groups: those that receive an external output from this

9
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model, and the rest. The first group will execute their external transitions functions with e = ta(s) and the
second group will be irnminent during the next sirnulation cycle, which may require again the use of the
select function to decide which model will execute first,

This tie-breaking approach is a potential source of errors since the serialization produce may not reflect
the correct system's behavior upon the occurrence of simultaneous events. In addition, the serialization
reduces the possibility of a speed up in a parallel environrnent. For these reasons, the parallel DEVS
fonnalism was revised giving place to the Parallel DEVS fonnalism.

2.2 The Parallel DEVS formalism

The Parallel DEVS fonnalism [Ch094al keeps all the nice properties of the DEVS fonnalism and
eliminates all the serialization constraints that made sirnultaneous execution in a parallel environrnent not
feasible.

Chow required that the following properties hold:

• Collision handling: the behavior of a collision must be controllable by the modeler.

• Parallelism: the fonnalism must not use any serialization function that prohibits possible
concurrencies.

• Uniformity: the hierarchical construction must have unifonn behavior: different hierarchical
constructs of the same model must display the same behavior.

In DEVS, neither the first nor the second condition hold. Parallel DEVS resolves these issues.

As in DEVS, a P-DEVS model is described as a set ofbasic and coupled models. Atomic models are still
the most basic constructions, which can be combined with other models into coupled models. A Parallel-
DEVS coupled model satisfies the closure property [Ch094b l, so it can used as another basic model.
Therefore, Parallel-DEVS preserves the hierarchical properties ofthe original DEVS fonnalism.

A basic Parallel DEVS is a structure:

DEVS = < X M, Y M, S, oext » Oint, Oco", A" ta)
where

X M = {(p,v)1 p E IPorts, v E X p} is the set of input ports and values;

y M = {(p,v)1 p E OPorts, v E Yp } is the set of output ports and values;

S is the set of sequential states;

is the external state transition function;

is the internal state transition function;

is the confluent transition function;

is the output function;

ta " S ~ R, + u 00 is the time advance function;

with Q ,'= { (s, e) I s E S , O S'e S'ta(s) } the set of total states.

The differences between the DEVS and Parallel-DEVS fonnalism are the following:

10
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• The model interface has be en extended to include ports and values. A model will now have
input and output ports through which all interaction with the environment takes place.
Events determine values appearing on such ports. A model receives outside events through
its input ports. Upon reception of such events, the model description must determine how it
responds to them. In addition, internal events arising within the model change its state, and
manifest themselves as events on the output ports to be transmitted to other model
components.

• The external and output functions no longer handle one event at a time. Instead, bags of
events are now being handled, allowing then for simultaneous processing of multiple events.

• A new transition function has been defrned, the confluent function tScon.This function will
defrne a new model's state when there is a collision between internal and external
transitions. Basically, this function will allow the modeler to specify how the model should
behave in the presence of collisions.

The semantics ofthe Parallel-DEVS definition are then as follows. At any given time, a basic model is in
a state s and in the absence of external events, it will remain in that state for a period of time as defrned by
ta(s). When an internal transition takes place, the system outputs the value A(s), and changes to state
4nt(s}. If one or more external events E = { XI .. Xn / X E XM} occurs before ta(s) expires, i.e., when the
system is in total state (s, e) with e ~ ta(s), the new state will be given by tSex¡(s,e,E).When an external and
internal transition collide, i.e. external events E arrives when e = ta(s), the new system's state could
either be given by tSex¡(4nls),e,E) or 4nl tSex¡(s,e,E»).To avoid a fix behavior, the modeler can define the
most appropiate behavior with the 4o¡iffunction. Then, in the Parallel DEVS formalism, in the presence of
collisions the new system's state will be the one defrned by 4on¡(s,E).

A Parallel DEVS coupled model is defined by:

CM = <x, y, D, {M di d E D}, EJe, EOe, JC>
where

x = {(p,v)1 p E JPorts, v E X P } is the set of input ports and values;

y = {(P,v)1p E OPorts, v E Y P } is the set of output ports and values;

D is the set of the component names;

The following constraints apply to the components:

Components are DEVS models:

for eachd ED

M d = (X a . Y dS, tSext , tSinl,tScon,A, ta) is a DEVS basic structure

with X d = {(p,v)1p E JPorts, v E X p} ;

y d = {(P,v)1p E OPorts, v E Yp} ;

The couplings are subject to the following conditions:

• external input couplings (EJC) connect external inputs to component inputs:

EJC!;; {((N, ip p), (d, ipd)) I iPN e Iñorts, d ED, ip ¿ e H'orts.]

• external output couplings (EOC) connect component outputs to external outputs:

11
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• internal couplings (le) connect component outputs to component inputs:

le ~{((a, op a), (b, ip b)) la, b E D, op a E OPorts a, ip b E lPorts b}

No direct feedback loop s are allowed, i.e., no output port of a component may be
connected to an input port of the same component,

((d, opcJ, (e, ipcJ) E le implies d ~e.

• Range inclusion constraints: the values sent from a source port must be within the
range of accepted values of a destination port, i.e.,

The Parallel-DEVS defmition eliminated the select function. Ifthere multiple imminent components, then
all their outputs will be first collected and mapped to their influencees. Then, the corresponding transition
function will be executed for each model.

As an example, a generator-processor-transducer (gpt) model will be shown. The aim of this model is to
calculate the usage of a given processor. It is made of three atornic models:

• A generator that generates new jobs at random time intervals.
• A processor that consumes the jobs that the generator produces.
• A transducer: a model that will keep count of the number of jobs processed and the time it

took to process each job.

The generator has two input ports: start and stop, and an output port out. Whenever a new job is
generated, a new event is sent through the out port. The processor has one output port in and an output
port out. A new job is received through the in port and when it has been processed after an elapsed time t,
an event is sent through the out port. The transducer has two input ports: arriv and solved, and one output
port resulto When an event is recevied through arriv a timer is started and a job count is increased by one.
When an event is received through the solved port the counter is stoped. After an pre-defmed observation
period of time, the processor usage is sent through the out port. The whole coupled has two input ports
start and stop, and two output ports out and result. The couplings are shown in Figure 4.

12
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Figure 4: The GPT coupled modelo [ZeiOO]
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3
The Cell-DEVS and Parallel Cell-DEVS formalisms

3.1 Cellular Automata

Cellular Automata are used to describe real systems that can be represented as a cell space. A cellular au-
tomaton is an infmite regular n-dimensionallattice whose cells can take one fmite value. The states in the
lattice are updated according to a local rule in a simultaneous and synchronous way. The cell states
change in discrete time steps as dictated by a local transition function using the present cell state and a
fmite set of nearby cells (called the neighborhood of the cell) .

•

•
•

•

Cell's Neighborhood

Figure 5 : Sketch o/ a Cellular Automaton [WaiOOaJ

When cellular automata are used to simulate complex systems, large amounts of compute time are
required, and the use of a fixed interval discrete time base poses restrictions in the precision of the model.
The Timed Cell-DEVS formalism [Wai98] tries to solve these problems by using the DEVS paradigm to
defme a cell space where each cell is defmed as a DEVS atomic model. The goal is to build discrete
event cell spaces, improving their defmition by making the tirning specification more expressive.

3.2 The Timed Cell-DEVS formalism

Cell-DEVS defmes a cells as DEVS atomic models. A Cell-DEVS atomic model is defmed by [Wai98]:

TDC = <X, Y,l, S, 8, N, d, 8inb 8exb "C, A, D >

where

X is a set of extemal input events;

y is a set of external output events;

1 represents the model's modular interface;

S is the set of sequential states for the cell;

8 is the cell state defmition;

N is the set of states for the input events;

d is the delay for the cell;

14
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is the internal transition function;

is the external transition function;

is the local computation function;

is the output function; and

D is the state's duration function.

A cell uses a set of input values N to compute its future state, which is obtained by applying the local
computation function T. A delay function is associated with each cell, deferring the output of the new
state to the neighbor cells. There are two types of delays: inertial and transport delays. When a transport
delayed is used, the future value will be added to a queue sorted by output time. Therefore, all previous
values that were scheduled for output but that have not yet been sent, will be kept. On the contrary,
inertial delays use a preemptive policy: any previous scheduled output value, unless the same as the new
computed one, will be deleted and the new one will be scheduled. This activation of the local computation
is carried by the O.XI function.

After the basic behavior for a cell is defmed, the complete cell space will be constructed by building a
coupled Cell-DEVS model:

GCC = < Xlist, Ylist, 1,X, Y,n, {t¡,....t.}. N, e, B, Z, select>

where

Xlist

Ylist

1

X

Y

n

{t., ... ,tn}

N

C

B

Z

select

is the input coupling list;

is the output coupling list;

represents the definition of the interface for the modular
model;

is the set of external input events;

is the set of external output events;

is the dimension ofthe cell space;

is the number of cells in each of the dimensions;

is the neighborhood set;

is the cell space;

is the set of border cells;

is the translation function; and

is the tie-breaking function for simultaneous events.

This specification defines a coupled model composed of an array of atomic cells. Each cell is connected
to the cells defined in the neighborhood, but as the cell space is finite, either the borders are provided with
a different neighborhood than the rest of the space, or they are "wrapped", meaning that cells in one
border are connected with those in the opposite one. Finally, the Z function defines the internal and
external coupling of cells in the model. This function translates the outputs of m-th output port in cell Cij
into values for the m-th input port of cell Cid. Each output port will correspond to one neighbor and each
input port will be associated with one cell in the inverse neighborhood.
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Ce1l's connections

~T 1(S)=S d
Ce1l definition

Figure 6 : Informal definition of a Cell-DEVS model [Wai98]

The select function serves the same purpose as in the original DEVS models: to tie-break between
irnminent components.

The use of the select function introduces similar problems to those described for coupled DEVS models:
lack of parallelism exploitation and a probable inconsistency with the real system. In addition, the timed
Cell-DEVS was restricted to one input from each input port. Such restriction disallows [WaiOOa]:

• zero-delay transitions
• external DEVS models sending two simultaneous events to the same cell.

To forbid zero-delay transitions is too restrictive, and so is allowing only one event per external model,
specially after the Parallel DEVS formalism allowed a basic model to send more than one event at a time.
These were enough reasons to revise Cell-DEVS and the Parallel Cell-DEVS formalism was proposed.

3.3 The Parallel Cell-DEVS formalism

A parallel Cell-DEVS basic model can be formally defmed as:

TDC = <X', Y,l, S, 8, N, d, binb bexb beon, r, 'teon, 'A, D >

where

In this case, #T < 00 /\ T E {N,Z, R, (o,l}} u {<l>};

X~T;

Y~T;

1 = < 11, f..lx,f..ly,px, py >. Here, 11 E N, 11< 00 is the neighborhood's size, f..lx,f..lyE N, f..lx,f..ly

< 00 is the number of other input/output ports, and V j E [1,11], i E {X, Y}, p/ is a defmition of

a port (input or output respectively), with p/ = { (N/. T/) / V j E [1, 11+f..li], N/ E [i1' iT]+~]

(port name), y T/ E I¡ (port type)}, where I¡ = { x / x E X if X } or I¡ = { x / x E Y if i = Y } ;

S~T;

8= { (s, phase, oqueue, f, a) /

s E S is the status value for the cell,

s' E S is an intermediate status value for the cell;

phase E {active, passive},
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oqueue = { ((v1,0"1), ... ,(vm,O"m» / m E N /\ m <(0) /\ \:f (i E N, i E [1,m]), Vi E S /\ O"i

E RO+uoo};

f e T; and

O" E RO + u 00 } ;

N E ST]+¡.t;

d E RO +, d < 00;

Oexl: QxX' ~ 8, Q = { (s, e) / s E 8 x N x d; e E [O, D(s)]};

oeon: 8xX' ~ S;

r: N ~ S x {inertial, transport} x d;

'con: X'xN ~ S x {inertia1, transport} x d;

A: S ~yb; and

D: 8 x N x d ~ RO + U co,

A Cell-DEVS atomic model is a specialization of a Parallel DEVS basic model. The difference between
an atomic model and a Cell-DEVS model is the existence of a cell neighborhood, a delay d and a local
computation function r. The 1interface defines a fixed number of ports for message exchange to neighbor
cells.

Originally, only one kind of delay of a given duration was related with each cell. Now, the local transition
function will return the type and length of the delay, and the cell's outputs will be delayed accordingly.
This redefinition allows to include complex tirning behavior.

In the presence of collisions between internal and external events, the confluent transition function oeon is
activated. It must activate the confluent local transition function 'con, whose goal is to analyze the present
values for the input bags, and to provide a unique set of input values for the cell. In this way, the cell will
compute the next state by using the values chosen by the modeler. Basically, what 'con does is to choose
members from the bag, and update the inputs for the cell. After, it deletes the unnecessary members of the
bag.

The following figure shows a sketch of the contents of each cell.

aqueue OIIT::::J

s' f

D D D
Figure 7: Cell's definition [WaiOOaJ

Atomic Cell -DEVS models can be put together to form coupled Cell-DEVS models. A parallel Cell-
DEVS coupled model can be represented as:
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GCC = < Xlist, Ylist, 1,X, Y, n, {t., ...,t.,}, N, C, B, Z>

Xlist is the input coupling list;

Ylist is the output coupling list;

1represents the definition of the interface for the modular model;

X is the set of external input events;

y is the set of external output events;

n is the dimension of the cell space;

[t.,...,t.,} is the number of cells in each ofthe dimensions;

N is the neighborhood set;

C is the cell space;

B is the set ofborder cells; and

Z is the translation function.

C = { e; / e E 11\ e, = < lo Xc' Ye>s.,Nc' dc' OintoOextc'oconc,'to 'tconcAC' Dc> },
where Cc is a parallel Cell-DEVS atomic model, and I = { (i., ...,in) / (ik E N 1\ ik E [1, t¡J) V k E [1, nj},

That is, each cell in the space is a parallel Cell-DEVS atomic cell using the ocooand 'tconfunctions to avoid
collisions.

As stated in [WaiOOa], the following lemmas apply.

Lemma 1
The Parallel Cell-DEVS models are equivalent to parallel DEVS models.

Lemma2
Closure under coupling for parallel Cell-DEVS models: a coupled parallel Cell-DEVS model IS

equivalent to a basic parallel Cell-DEVS model.

This two lemmas imply that within a coupled Parallel DEVS model, a Cell-DEVS model can be used as if
it were a basic Parallel DEVS model. This property will be used in the next section, when the abstract
simulator is described, to prove that the abstract simulator for Parallel DEVS models will also execute
Parallel Cell-DEVS models.

If a parallel Cell-DEVS model can be viewed as parallel DEVS model, then it should be possible to
define its corresponding t5 ext, t5 int» t5cont, and A, functions. The semantics for these functions will be now
presented.

Note: cqueue is a list of pairs (delay, value) sorted by ascending order of delay. These are the values
scheduled for output. The following operations are defined for the queue:

first: the first pair.

head: the set ofpairs from the front ofthe queue with minimum delay.

tail: queue - head

add: adds a new pair to the queue.
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a = O; oqueue * {0}; phase = active

'v' i E [1, m], a¡ E cqueue, a..o = a..o - headroqueue.o);
a = head( cqueue.c);

cqueue = tail( cqueue);

a = O; oqueue = {0}; phase = active

a = 00 /\ phase = passive

1..:

a = O;

out = { a..v I a¡ E head(queue) };

Oext:

(s', transport) = T(Nc); e = D(S x N x d); phase = active;

s * s' => (s = s' /\ 'v' i E [1,m] a¡ E aqueue, a¡. a = a¡.a - e /\ a = a - e; add(aqueue, <s', d> /\ f= s)

(s', transport) = T(Nc); a * O; e = D(S x N x d); phase = passive;

s * s' => (s = s' /\ a = d /\ phase = active /\ addrcqueue, <s', d» /\ f= s)

(s', inertial) = T(Nc); a * O; e = D(S x Nx d); phase = passive;

s*s' => (s=s' /\ phase = active /\ a=d /\ f=s)

N, = Tcon(Xb
); (s', inertial) = T(Nc); a * O; e = D(S x N x d); phase = active;

3.3 Cell-DEVS Quantization

Recently, a theory of quantized models was developed [Zei98a, Zei98b]. When using a quantized model,
after a cell's state value will be only infonned to its neighbors if its difference with the previous value is
greater than a given quantum. This idea is shown in Figure 8. Here, a continuos curve is represented by
the crossings of an equal spaced set ofboundaries, separated by the quantum size. A quantizer checks for
boundary crossings whenever a change in a model takes place. Only when such a crossing occurs, a new
value is sent to the receiver. This operation reduces substantially the frequency of message updates, while
potentially incurring into error.
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State s

timet

r--------------------
I

[JL~ ~B
I

I Quantizer
I~--------------------
Figure 8 : Quantization (Zeigler et al 1999)

In [WaiOOb] several experimental tests were done in order to analyze the behavior of quantized Cell-
DEVS models. The results showed that quantization reduced both, the total number of messages sent and
the execution time, but introduced an error. The error obtained is a function of the local computing
function, the number of simulation steps and the quantum. Since the future input values for a cell depend
on the present results, a nonlinear error may be observed. The error magnitude will depend on the cell's
neighborhood size. It was shown in [WaiOOb]that as the quantum gets higher, the error gets bigger.

Choosing an adequate quantum will then depend on the precision desired.

When quantization is used with a quantum value d, o.X! is defined as:

(s', transport) = 't(Ne); e = D(8 x N x d); phase = active;

s * value(s',d) =>
(s = s' 1\ V i E [l,m] a¡ E oqueue, a., O'= aj.O'- e 1\ O'= O'- e; add/crqueue, <s', d> 1\ f= s)

(s', transport) = 't(Ne); O'* O; e = D(8 x Nx d); phase = passive;

s * value( s',d) => ( s = s' 1\ O'= d 1\ phase = active 1\ add( cqueue, <s', d> 1\ f = s )

(s', inertial) = 't(Ne); O'* O; e = D(8 x Nx d); phase = passive;

s * value(s',d) => (s = s' 1\ phase = active 1\ O'= d 1\ f= s )

N, = 'teon(Xb
); (s', inertial) = 't(Ne); O'* O; e = D(8 x N x d); phase = active;

s*value(s',d) => s=s' 1\ (f*s' => O'queue={0}1\0'=d 1\ f=s)

where

value(v,d) = v' such that :3 q E N / v' = q.d 1\ v' :::;v.

i.e. the lowest boundary as defined by the quantum size.

(

e.g.: value(23.45, 0.1) = 23.4 valuef 550, 100) = 500
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4
Abstract simulator for distributed Parallel-DEVS

The DEVS fonnalism separates the model from the actual simulator. In [Cho94b] an abstract simulator
for the Parallel DEVS fonnalism was presented. Though well suited for shared memory parallel
environments, this abstract simulator does not distinguish between intra-process messages and inter-
process messages. Distributed environments have an important communications overhead that affects
inter-process messages. To keep this overhead low, this type ofmessages should be rninirnized

A new abstract simulator suitable for distributed environments has been developed and is presented next.

4.1 Parallel DEVS Abstract Simulators

The simulation of DEVS models is carried out by Processors that drive the sirnulation forward by
exchanging messages. There are two types of Processors: Simulators, driving the simulation of atomic
models, and Coordinators, in charge of executing coupled models and coordinating the activities of all
their dependants. Processors are organized in a hierarchy that resembles the model hierarchy, as show in
Figure 9.

Model Abstract Sirnulator

Coupled
Model Coordinator

Atornic
Dependant 1

Atornic
Dependant 2

Atornic
Dependant 3 Simulator 1 Simulator 2 Simulator 3

Figure 9 : Correspondence between the model and the DEVS processors

In the same way a coupled model has a set of components, every coordinator has a set of child
Processors, one for each component of the coupled model. When a simulation is ron in distributed
fashion, each machine will run one a Logical Process that will host one or more Processors. Under these
assumptions, a coordinator's children need not be executing on the same Logical Process. Then every
message sent to child Processors running on a different Logical Process will require inter-process
communication. Figure l Oía) illustrates this case. It shows a coordinator sending a message to its 8
children distributed on two machines. Four inter-process messages are required for the four children
running on processor l. From now on, Processors that are running on the same Logical Process will be
called local to each other.

When the number of children Processors is high (as it usually is for coupled Cell-DEVS), the number of
messages sent across the network will be significant. This can be avoided if every coupled model has
more than one coordinator. Figure lO(b) illustrates this case. For the same coupled model, there are two
coordinators, one in Logical Process O and another one in Logical Process 1. In this case, only one
message is sent over the network.

So, to reduce inter-process messages, coupled models will require a coordinator on each Logical Process
where a child Processor is running. Children Processors will send messages to the local coordinator,
which will decide how to handle the received messages. But care should be taken because the existence of
multiple coordinators for one coupled model can cause duplicate messages. To avoid this, there will be
only one coordinator that will communicate with the parent' s model. This specialized coordinator will be
a master coordinator and the others will be slaves.
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(a)

(b)
Figure 10 : (a) A single coordinator sending a message to all its child processor. Dashed fines =
interprocess messages. (b) A master- slave pair sending messages to all their children processors.

When master and slave coordinators are used, Processors are organized in a hierarchy, which does not
have a one to one correspondence with the model hierarchy . Therefore a parent child-relationship that
takes into account the existence of master and slave coordinators is defined as follows:

a. for each simulator, the parent coordinator will be the parent's modellocal Processor (it is guaranteed
that this will exist)

b. for each slave coordinator, the parent coordinator will be the model's master coordinator.

c. for each master coordinator, the parent coordinator will be the parent's modellocal processor; just
as if it were a simulator.

At the beginning of the simulation, each simulator will be assigned to a Logical Process. Then for each
coupled model, a coordinator will be placed in every Logical Process where there is a simulator or a
master coordinator that corresponds to a component of the model. One of the coordinators will be
designated as master coordinator.

The simulation is message driven. Processors exchange messages of the form (type, time) and can belong
to one of two categories: synchronization messages and content messages.

Synchronization messages:
(@, t) Collect message
(*, t) Internal message
(Done, t) Done message

Content messages:
(q, t)
(y, t)

External message
Output message

In addition, a Processor has a set of intemal variables to keep the time of the simulation:

22



CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models - Alejandro Troccoli

ti. = Time of last transition
tN = Time o/ next change

and a bag to temporarily store the external messages ( q, t).

At any instant t, a Processor is said to be irnminent if t = tN

A simulation cyc1e starts when the topmost coordinator sends a (@, t) message. This message tells all the
irnminent simulators to execute their output functions. At the same time, coordinators will make the
necessary translations of the resulting (y, t) messages to (q, t) messages that are sent to a model's
influencees. When a Processor has finished sending its outputs, it sends a (done, t) message to its parent
coordinator. When the topmost coordinator receives a (done, t) all the outputs have been processed, so it
sends a (*, t) message to trigger the execution of a model's transition function.

A simulator receiving a (", t) message will execute one of the three transition functions of its associated
atomic model: 4nt, 6'''''1' or 40n . If the model is irnminent and has not received any external event, then 4nt
is executed. If the model is not irnminent and has received external events, then 6'''''1 is executed. Finally, if
a model is irnminent and received external events, 40n is executed, which will decide which of the
external or internal transition function should be executed.

A coordinator receiving a (*, t) message will forward this message to all its dependants that are either
irnminent or that have received external events.

(@, t)
( *, t)

( q, t) (y, t)

ation msgs
~~

n
•..•..
~ DEVS PROCESSOR•...•

Content msgs

Synchroniz

(done, t)

Figure 11: Messages a DEVS processor receives and sends

The complete behavior of a Processor is defined by how it handles each of these messages. To
completely defme the abstract simulator, the behavior of the simulator, master coordinator, slave
coordinator and root coordinator will be described.

The simulator is responsible ofinvoking the atomic model's A(s), 6'''''1' 4nl, 40n functions. The description
that follows is based on the one in [Ch094b], with some minar changes:
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SIMULATOR

when a ( @ , t ) message is received

if t = tN then

y:= A(s)

send (y , t ) to the parent coordinator

send ( done, t ) to the parent coordinator

end if

else raise error

end when

SIMULATOR

when a ( q , t ) message is received

lock the bag

Add event q to the bag

unlock the bag

end when

SIMULATOR

when a ( * , t ) message is received

case ti. :<;; t < tN

e := t - tr

s:= Oexls, e, bag)

empty bag

end case

case t = tN and bag is empty

s:= 4nl s )
end case

case t = tN and bag not is empty

s := 40n( s, bag)

empty bag

end case

case t> tNor t < ti.

raise error

end case

tr:= t

tN:= ta (s)

send ( done, tN) to parent coordinator

end when
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The (". t) message is received when a model's transition function must be executed. The transition
function to be executed will depend on t and the content's of the bag. If t < tN, then it is not the time for
an intemal transition, and it must be the case that the bag is not empty and 5exl should be executed. If t =
tN>it is the time for an intemal transition. If no extemal messages have been received then 4nl' is
executed, but if there are external messages, then 40n should be called instead.

Now the master coordinator will be described. A coordinator, whether master or slave, drives the
simulation of a coupled model. Each coordinator has a set of child Processors. The role of the
coordinator is to keep track of the imminent Processors and to translate output events to input events.

For a master coordinator the set of child Processors is made of:

• the set of slave coordinators
• the set of local simulators and master coordinators that correspond to components of the

coupled model.

To simplify the following description it is necessary to define the function coordinator.

coordinator : M x P ~ e
where

M is a coupled model
P is a Processor
e is a coordinator ( master or slave)

coordinator ( M, j) = i , where i is the coordinator associated to coupled M that is local to child j. The
following restrictions apply for the function to be well defmed:

j is a DEVS processor associated to a dependant of M

i is one of the coordinators associated with M

MASTER COORDINATOR

when a ( @ , t ) message is received from parent coordinator

if t = tN then

tL:= t

for all imminent child processors i with minimum tN

send ( @, t ) to child i

cache i in the synchronize set

end for

wait until ( done, t),s have been received from all imminent processors

send ( done, t ) to parent coordinator

end if

else raise error

end when

When a master coordinator receives an output message, two cases need to be distinguished:

an output message (y , t) received from a slave coordinator

an output message (y , i, t) forwarded from a slave coordinator that received ( y , t) from a local
child i.
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MASTER COORDINATOR

when a ( y , t ) message is received from child i

for all influencees,j of child i

if j is a local processor

q:= z¡J(Y)

send ( q, t) to childj

cache j in the synchronize set

else

s : = coordinator( self, j)

if s ¡¡; slave-sync set then

send (y, i, t) to s

cache s in the slave-sync set

cache s in the synchronize set

end if

end if

end for

if self E I¡ ( Yis to be transmitted upward) then

y : = Z¡. self (y )

send (y, t) to parent coordinator

end if

clear slave-sync set

end when

when a ( y , i, t ) message is received from a slave s

cache s in the slave-sync set and proceed as if a (y , t) message had been received from child i

end when

Here slave-sync is used to avoid forwarding an output message twice to a slave coordinator. It is
important to note that instead of forwarding a (q, t) message to a slave coordinator, a (y, i, t) is sent. A
slave coordinator might be the parent coordinator for more than one of the influencees of i. If (q , t)
messages were to be forwarded, then there will be one (q, t) message for each influencee of i. For Cell-
DEVS models, this can be an important overhead. Instead, just one (y, i, t) message is sent across the
network. The recipient slave coordinator will generate the appropiate (q, t) messages.

As mentioned in [Cho94b], all children ready for a transition are cached in a synchronize set to later
distinguish active from inactive components.
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MASTER COORDINATOR

when a ( q , t ) message is received from parent coordinator

lock the bag

Add event q to the bag

unlock the bag

end when

MASTER COORDINATOR

when a ( * , t) message is received from parent coordinator

if tL:<:;t:<:;tN

for all q E bag

for all receivers of q, j E ¡sel[

if j is a local processor

q := Zselfj (q)

send ( q, t) to j

cache j in the synchronize set

else

s := coordinator( self, j)

if s ~ slave-sync set then

send ( q , t ) to s

cache s in the slave-sync set

cache s in the synchronize set

end if

end if

end for

clear slave-sync set

end for

empty bag

for all i in the synchronize set

send ( *, t ) to i

end for

wait until all ( done, tN)'s are received

tL:= t

tN: = minimum of components' tN 's

clear the synchronize set

send ( done, tN) to parent coordinator

else raise an error

end when

When a coordinator receives a (*,t) two actions must be taken. First, all external events that were stored
in the bag need to be forwarded to the corresponding models. If an external event needs to be routed
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down to a slave coordinator the z translation is not be applied. Instead, the original q message is sent.
Therefore, care must be taken not to forward a message twice to a slave coordinator. Here again, the
slave-sync is used for that purpose.

In a second phase, all processors in the synchronize set are sent a (*, t) message.

The slave coordinator will be introduced next. It differs from the master coordinator in only one way:
when a message needs to be sent a pracessor that is not local, it will be sent to the master coordinator
instead.

For a slave coordinator, the set of child pracessors is made of

• the set of local simulators and master coordinators that correspond to components of the
coupled model.

SLAVE COORDINATOR

when a ( @ , t ) message is received from master coordinator

if t = tNthen

ti= t

for all imminent child processors i with minimum tN

send ( @, t) to child i

cache i in the synchronize set

end for

wait until ( done, t)'s have been received from all imminent processors

send ( done, t ) to master coordinator

end if

else raise error

end when

As it can be noticed, there is no difference on how both master and slave coordinators handle a (@, t).

28



CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models - Alejandro Troccoli

SLAVE COORDINATOR

when a (y , t) message is received from child i

sent to master := false

for all influencees,} of child i

if} is a local processor

«= z¡j(Y)

send ( q, t) to child}

cache} in the synchronize set

else

if not sent to master

send (y, t) to master coordinator

sent to master.' = true

end if

end if

end for

if self E I¡ ( Yis to be transmitted upward) then

if not sent to master

send (y, t) to master coordinator

end if

end if

end when

when a (y , i, t) message is received from master coordinator

sent to master.' = true

proceed as if a ( y , t ) message had been received from child i

end when

When an output event is received from a child i, the slave coordinator sorts the message to the
influencees of i. If any influencee is local, the z function is applied a ( q , t ) message is sent. If there are
non-local influencees, then the output event is sent to the master coordinator, who will then sort the
message to other slave coordinators if necessary. Only one ( y , t ) message should be forwarded to the
master coordinator.

When the slave coordinator receives an output event that has been forwarded by the master coordinator
on behalf of child i, it will handle the event as if i had been local, but no ( y, t ) messages will be
forwarded back to the master coordinator ifthere is a non-local influencee. This is to avoid infinite loops
of messages being forwarded back and forth.
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SLAVE COORDINATOR

when a ( q , t) message is received from master coordinator

lock the bag

Add event q to the bag

unlock the bag

end when

SLAVE COORDINATOR

when a ( * , t ) message is received from master coordinator

if tL ::; t::; tN

for al! q E bag

for al! receivers of q, ) E Iself

if) is a local processor

e= zself,j(q)

send ( q, t) to)

cache) in the synchronize set

else

do nothing

end if

end for

end for

empty bag

for al! i in the synchronize set

send ( *, t ) to i

end for

wait until al! (done, tN)'s are received

te= t

tN.' = mínimum of components' tN 's

c1ear the synchronize set

send ( done, tN) to master coordinator

else raise an error

end when

The root coordinator is a special processor that is above the topmost coordinator. It is responsible for
driving the simulation and advancing the virtual simulation time. The root coordinator can also handle
external events which are stored in a sorted queue of events.
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ROOT COORDINATOR

load queue of external events and sort them by arrival time.

t:= mínimum of tNoftopmost coordinator and tNof queue.

while t ,r CX)

if t = tNof queue

for all q in queue with time t

send ( q , t ) to topmost coordinator

end for

end if

if t = tNoftopmost coordinator

send ( @, t ) to topmost coordinator

wait until ( done, t) is received from it

end if

send ( *, t ) to topmost coordinator

wait until ( done, t) is received from it

end while

raise simulation completed

The abstract simulator has be en now completely defmed. This abstract simulator will be able to handle
both, Parallel DEVS and Parallel Cell-DEVS models.
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5
Parallel Simulation

When running parallel and distributed simulation, the whole model is divided among a set of Logical
Process, each of which will execute on a different CPU. In general terms, each Logical Process will host
one or more simulation objects. For the present discussion, those simulation objects will be any of the
three DEVS Processors: simulators, master and slave coordinators.

Logical Processes (LPs) communicate by using time-stamped events that move the simulation forward. In
order to obtain correct results, LPs must process messages in strict1y non-decreasing timestamp order.
Each LP has an input queue ofmessages to process. Figure 12 shows two LPs, each with one event in its
input queue. Both events are processed simultaneously, and as a result of processing C with time 2, a new
event D is generated for LP 1 with time stamp 5. But LP 1 has already processed an event with timestamp
8 so the simulation is incorrect. Such an error is called a causality error.

Queue:
C2

LP 1 LP2

Figure 12: Execution o/ the first queued message does not always guarantee correct results.

Therefore, either LPs must agree on a synchronization mechanisms, or the application programmer has to
ensure the application will keep the LPs synchronize.

Queue:
B8 D5

For event driven simulation, there are three types of synchronization strategies:

1. No synchronization at all (synchronization is ensured by the application).
2. Optimistic synchronization.
3. Pessimistic (conservative) synchronization.

The first approach assumes all messages will always arrive in the order defined by their time-stamp, and
no out of order message will ever be received. It is an optimistic strategy that relies on the
synchronization being handled by the simulation objects instead of the logical process themselves. It is a
very efficient implementation that does not require event queues; each event is processed as soon as it
arrives.

The other two rely on synchronization being handled by the LPs. Input events are queued in order of
earliest time-stamp and the following two constraints must be always valid [ZeiOO]:

• All outputs resulting from the processing of an input event must have a time-stamp greater or equal
to the input time. This means processing can't proceed backwards in time.

• Messages must be processed in order oftime-stamps in the queues.

Optimistic and conservative schemes differ on the way they enforce the second constraint. In conservative
schemes the time-stamped order constraint is never violated. On the other hand, optimistic schemes allow
a temporary violation that must be repaired before the final simulation output is presented.

32



CD++, a tool for simulating ParaIlel DEYS and ParaIlel CeIl DEYS models - Alejandro Troccoli

5.1 Conservative synchronization

The conservative approach is illustrated in Figure 13, where there are two Logical Process LP1 and LP2
with queues of time stamped messages.

Starting in the upper left comer, LP 1 has a message with timestamp 3 and LP 2 has an earliest message
with timestamp 1. Therefore, LP 1 can not execute its message because there is a potential risk of LP 2
producing an output with timestamp less than 3. Conservative schemes must therefore fmd a way to
determine when it is safe to process input events. If a LP has an unprocessed event with timestamp t and
no event with earlier timestamp can be received, then the event can be safely processed. A LP that has in
its queue an unprocessed event from all the other LPs can safely process the one with lowest timestamp
because future messages will have a later timestamp. This process can be repeated as long as there are
unprocessed messages from all the other LPs. But if this is not so, there is a risk of deadlock.

D D ,a3 el 1 .r>
114 Qe 5 Q Qc6

f 9

D D
d'2

eS
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Figure 13: LPs with conservative synchronization [ZeiOO]

To avoid deadlock, each LP provides a time in the irnmediate future up to which it promises not to send
input events. This is done through null messages. An LP will send a null message to other LPs with a
lookahead time up to which it is safe to process messages. In Figure 13, the lookahead for LP 2 is 1.
Therefore, when LP 1 receives a null message with this lookahead time, it knows it must not process
message (a,3). Large lookahead values are needed to gain advantages over sequential simulation, but
unfortunately, such large lookaheads are difficult to fmd in many representations ofreality.

A safe lookahead value is the timestamp of the first unprocessed message in the input queue. If after
processing an event all Logical Processes send a null message with the timestamp of the next input event,
a deadlock will be rare. There is only one case in which a deadlock may occur, and that is the case when
all LPs are about to process an input event with the same time stamp.

Null messages can increase the simulation overhead considerably. An improvement on the described
mechanism is to send null messages on demando When a process is about to block, it will request the next
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events from the LPs it does not have a timestamp. This reduces the number of null messages being sent,
but increases the overhead.

5.2 Op timis tic synchronization

The optimistic schemes process their input queues as fast as they can. If a message out of place in the
time-stamp order of processing is received, usually known as a straggler, a recovery and rollback
mechanism is started to rectify this situation.

Figure 14 shows such a situation. In the upper left hand comer, LP1 and LP2 have arrived at the situation
where LP2 has processed events (d,l) and (e,5) and sent input events (d',5) and (e',6) to LPl. Now, LP1
processes event (a,3) which causes it send an input (a',3) to LP2 as shown in the middle. However, since
LP2 has already processed event (e,5), the new input (a' ,3) a straggler.
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Figure 14: Event processing in an optimistic scheme

To rectify an abnormal situation, an anti-message such as (e' ,6) that annihilates the effects of already sent
messages must be sent. To be able to return to a previous state, each simulation object must maintain a
queue of already processed inputs and their outputs, and a queue of previous states. When an anti-
message is received, the queues are restored to the anti-message time and new anti-messages are sent for
every output sent that should not have been sent. This starts a chain reaction of rollbacks. An optimization
technique known as lazy cancellation delays the anti-messages until the simulation object is sure the
previous output must be cancelled. It rnight be the case that the previous and new output are the same, so
nothing should be done.

The overhead for running an optimistic scheme is quite considerable. There is a memory overhead
because three queue must be kept: input events, output events and state. And there is a processing
overhead during rollbacks, too. In addition, a fossil collection mechanism that will delete those queue
elements that are no longer required must be conveyed to avoid exhausting system resources. Logical
process have a local time know as Local Virtual Time. There is also a Global Virtual Time, the time of
the system, that is equal to the least LVT. After a number of simulation cyc1es, LPs will exchange their
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LVTs and the GVT will be deterrnined. This GVT is broadcasted, triggering the fossil collection process
on each LP. All those input events, output events and states that have a time-stamp earlier than the GVT
can be safely deleted. A high GVT ca1culation frequency saves memory but genera tes a big processing
overhead. On the contrary, a low frequency will generate less processing overhead and require more
memory.

The protocoljust described is known as TimeWarp and was proposed by Jefferson [Jeff87]
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6
CD++

CD++ [Rod99] is a tool for running DEVS and Cell-DEVS models according to the original DEVS
formalismo

The tool is built as a hierarchy of c1asses, each of them related with a simulation entity. Atomic models
can be prograrnmed and incorporated into a basic c++ c1ass hierarchy. Coupled and Cell-DEVS models
do not need prograrnming. Instead, the tool provides a specification language that allows the modeler to
defme the model's coupling, inc1uding the initial values and external events, and the local transition rules
for Cell-DEVS models.

Figure 15: CD++ Models and Processors.

Figure 15 shows the c1ass hierarchy. This c1ass hierarchy implements the model theoretical defmition
presented in the previous section. New atomic models must be incorporated to the c1ass hierarchy as
subc1asses of the Atomic Model c1ass.

6.1Atomic model definition

A new atomic model is created by inc1uding a new class that inherits from Atomic. In doing so, the
following methods may be overloaded:

• initFunction: this method is invoked when the simulation starts. It allows to defme initial values and to
execute any initialization procedure for the model. When this method is executed, the value of sigma next
scheduled event) is set to infmite and the model phase to passive. The sigma variable is used to
implement the duration function: it stores the time up to the next event in the model. This variable is
related with the elapsed time value, which is maintained by an independent simulation mechanism.

• externalFunction: this method is invoked when an external event arrives from an input port.

• internalFunction: this method is started when the value of sigma is zero, since an internal event has
occurred.

• outputFunction: this method executes before the internal function, allowing to provide outputs for the
model.

After defming these functions, new models can be incorporated to the modelling c1ass hierarchy. Finally,
the model must be registered using the method MainSimulator.registerNewAtomicsO. The following
primitives can be used in defming the atomic's model behavior:
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• holdln(state, time): a model executing this sentence will remain in state during time. When the time is
consumed (sigma = O), the model executes the intemal transition. This macro was included to make easy
the definition of the duration function.

• passivateO: the model enters in passive mode (phase = passive; sigma
reactivated by an extemal event.

injinite) and it will be

• sendOutput(time, port, value): it sends an output message through the given port.

• statei]: it retums the present model phase.
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7
Parallel CD++

The main goal of this work has been to extend CD++ into Parallel CD++, a tool for the simulation of
Parallel DEVS and Parallel Cell-DEVS models on a distributed environment. For this to be accomplished
in a modular and portable fashion, a layered architecture was chosen. The topmost layer implements the
abstract simulator, the middle layer carries out all required synchronization in the Logical Process level,
and the lowest layer is in charge of communications.

For the middleware, the Warped project [Mar97] was selected. Warped provides an API for running
parallel simulation. Two simulation kemels are currently provided for parallel and distributed simulation:
a TimeWarp kernel and a NoTime kernel. The first one implements the TimeWarp protocol as defined by
Jefferson's paper [Jeff87]; the second is an unsynchronized kernel.

For the distributed simulation kernels, Warped uses MPI for the message passing. The complete layered
architecture is shown in Figure 16.

MODEL

Parallel CD++

WARPED

MPI

Figure 16 : Parallel CD++ layered architecture

7.1 Synchronization for the Parallel DEVS abstract simulator

To choose between the TimeWarp and NoTime kernels, the abstract simulator of section 4 was analyzed.
The following properties were observed:

• During a simulation cycle, all messages carry the same timestamp t.
• The root coordinator is the only Processor that will advance the time.

In fact, each simulation cycle starts with the root coordinator sending a (@, t). After all the (done,t)
messages from the child processors have been received, it sends a (*, t) message and when all the
corresponding (done,t) messages are sent back again, the simulation cycle finishes. Only then, the time
is advanced.

In the scope of the abstract simulator, a message will only be considered a straggler if its timestamp t is
less than the LVT of the receiving object. The following lemma holds.

Lemma3
The abstract simulator of Section 4 can not produce a straggler message.

Proof
Warped and MPI guarantee that when two or more events are sent from a source object S to a destination
object D they preserve the same ordering upon arrival to D.

Assume a message m with timestamp ts is sent by a simulation object S to a simulation object D with
timestamp td, with ts < td. Since all messages carry the timestamp of the simulation cycle being executed,
it must be the case that the current simulation cycle either corresponds to time tdor to time ts.
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If it is the first case, i.e. the current cyc1e's time is t,¡, then the root coordinator has sent a message with
timestamp td. And the root coordinator would only send such a message after receiving a (done, tJ
message from all the components that were active at time ts, and S would have only sent a (done, tJ upon
fmishing its simulation cyc1e. The fact that m has time t, < td is a contradiction, because S could have
never sent a message timestamped t, after sending (done, tJ.

Now, if it is the second case, i.e. the current cyc1e's time is t" then it is impossible for D to have a
timestamp td < ts because the root coordinator has not yet sent a message with timestamp td.

Having proved that the abstract simulator of Section 4 can not produce a straggler message, then no
synchronization mechanism at the LP level is needed, because the synchronization is provided by the
abstract simulator itself. Then, the NoTime kernel can be used safely.

7.2 Warped API

The Warped system is implemented in c++ and utilizes the object oriented capabilities ofthe language to
provide an application interface. It provides base c1asses for simulation objects (Warped objects), events
and object's states. The user creates its own application by creating new c1asses that derive from the ones
provided. The benefit of this type of design is that the end user can redefine functions without directly
changing the kernel code. Though this interface was designed to be used with the TimeWarp protocol, it
is simple to switch from one kernel to another. Figure 17 shows the Warped API.

class TimeWarp (

// Methods the user defines
virtual void initialize();
virtual void finalize();
virtual void executeProcess();
BasicState* allocateState();

//Simulation kernel services
void sendEvent (BasicEvent * );
BasicEvent* getEvent();

class BasicEvent {

int size;
Vtime sendTime;
Vtime recvTime;

int sender;
int dest;

class BasicState (

BasicState* copyState( BasicState*);

Figure 17: Warped API

In Warped, objects are modeled as entities which send and receive events to and from each other, and act
on these events by applying them to their internal state. Thus, the kernel provides basic functions for the
application to send and receive events. Since the TimeWarp protocol requires periodic state saving for a
potential rollback and recovery process, Warped provides an interface for defming each object's state.
Other facilities the Warped API provides inc1ude the possibility ofhaving user defme the data each event
will carry.

In return, the user application must provided several functions to the kernel. The most important function
defmes what each simulation object does in each simulation cyc1e. Other functions define such things as
how to initialize and destroy each simulation object.
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7.3An overview of Parallel CD++

Following the original design of CD++, Parallel CD++ provides an API for users to defme new atomic
models. The original CD++ atomic's model interface was changed slightly to satisfy the Parallel DEVS
formalismo The new interface allows simultaneous external events to be handled together, defmes a
confluent function and requires the user to give a defmition of a model's state (Figure 18).

class Atomic {

// Methods the user should define
Model& internalFunction();
Model& externalFunction (MessageBag&)
Model& outputFunction();
Model& confluentFunction() ;
ModelState* allocateState();

//Simulation kernel services
void sendOutput ( Port&, BasicMsgValue* );
const Vtime& lastChange();
void holdln( state, Vtime );

} ;

Figure 18 : The Atomic class

In addition, Parallel CD++ pro vides a way of allowing the user to defme the data carried by output and
external events, which in CD++ to real numbers (Figure 19 ).

class BasicMsgValue
{
public:

BasicMsgValue();
virtual -BasicMsgValue();
virtual int valueSize() const;
virtual string asString() const;
virtual BasicMsgValue* clone() const;
BasicMsgValue(const BasicMsgValue& );

};

class RealMsgValue : public BasicMsgValue
{
public:

RealMsgValue() ;
RealMsgValue( const Value& val);

Value v;

int valueSize() const;
string asString() const ;
BasicMsgValue* clone() const;
RealMsgValue(const RealMsgValue& );

};

Figure 19: The BasicValue classfor defining the contents of external and output events.

To ron parallel and distributed simulation, it is required that the user defmes the set of available machines
and a model partition. The set of available machines must be defmed as specified by MPI, either by the
use of procgroup file or by adding the corresponding entries to machines.ARCH. Details on how this is
done are provided in the Parallel CD++ User's guide.

To defme the model partition, Parallel CD++ requires that the user specifies a machine for each atomic
model. For Cell-DEVS models, the user has to defme the location of each cell or cell-range. This is done
through a partition file, which is specified as a command line parameter, allowing for the defmition of
different partitions for the same model.

Parallel CD++ has been compiled and tested with both, the NoTime and TimeWarp kernel. Since the
Parallel DEVS abstract simulator provides a synchronization mechanism that guarantees in order
execution of events, the NoTime kernel was adopted for the final release, being this kernel more efficient
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in the use of system resourees. Still, the possibility of ehanging the Parallel DEVS abstraet simulator
meehanism for exploiting the full eapabilities of the Time Warp protoeol is left open to further
exploration.

The NoTime kemel ean also be eompiled to run in standalone mode without using MPI. Parallel CD++
supports eompilation for standalone exeeution as wel1.

Further details are provided in the User's guide.
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8
Preliminary Results

The main motivation for this work was to make CD++ run faster by means of parallel execution.
Therefore, the results to be presented in this chapter will show how execution time of different models
changes with different configurations. But as it will be seen, it is not always the case that adding more
machines to a simulation will reduce the execution time. After a first set of results was obtained, some
bottlenecks were identified in the master-slave abstract simulator of section 4, and a new one, which will
be explained in the next section, was proposed.

The simulations were carried out with the Alpha network of the RADS group at the Systems and
Computing Engineering Department of the University of Carleton. The Alpha network consists of 14
Pentium machines with 128Mb ofRAM running Red Hat Linux 6.2.
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Figure 20: The RADS measurement networks

8.1An extended version of the GPT model

The parallel simulator was first tested with an extended version of the Generator-Producer- Transducer
model (GPT). The GPT model simulates a CPU receiving jobs and ca1culates its throughput and loado It
consists of a generator, a queue, a processor and a transducer, as shown in Figure 21. The generator
outputs jobs periodically. When a new job id is sent through the out port, it is received by the queue and
the transducer. If the queue is empty, the job will directIy be forwarded to the processor; otherwise, the
job will be queued till the processor is released. When the processor fmishes a job it sends its id through
its out port to the transducer and the queue. If the queue has jobs waiting, it will send the next job to the
processor. Meanwhile, the transducer will compute the tumaround time and update the throughput and
CPU usage values, which it will output periodically.
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GPT

throughput

cpuusage

Figure 21: The GPT model

The CD++ definition ofthis model is shown in Figure 22.

00 It.op l
01 components : Queue@queue Processor@CPU Transducer@transducer Generator@generator
02 Out , throughput
03 Out : cpuusage
04 Link out@generator arrived@transducer
05 Link out@generator in@queue
06 Link out@queue in@processor
07 Link out@processor done@queue
08 Link out@processor solved@transducer
09 Link throughput@transducer throughput
10 Link cpuusage@transducer cpuusage

Figure 22 : Definition o/ the GPT model

The extended version of the GPT model consists of several instances of the GPT model just shown. In
addition, all random variables that were present in the model definition were eliminated to obtain
comparable results. Tests were conducted with 12, 48 and 96 instances, running on 1 to 12 machines.
Figure 23 shows the execution times for this model.

-+-12 Copies
__ 48 Copies

--.11I-96 copies

120

100

u 80.,
.!!!.

60.,
E

40¡::

20

O
O 5 10 15

Number of machines

Figure 23: Execution time in seconds 0/12, 48, and 96 copies

As it can be seen, the execution times did not behave as expected. As more machines are added, the
execution times increases. To verify if the cornmunications overhead was being the cause for such an
increase in the running time, the model was rewritten to increase the execution workload. This would
increase the computing time at each simulation cycle. If the computing time for a simulation cycle is
greater than the cornmunications overhead, then it is expected that adding more machines will reduce the
overall simulation time. The new results confirm this hypothesis and are shown in Figure 24.
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Figure 24: Execution time in seconds of 12,48, and 96 copies of the GPT model witñ an increased
workload on 1 to 12 machines,for a simulation virtual time of 10 minutes. Results show the minimum

time ofthree runs independent runs.

8.2 Results for a heat diffusion model

The parallel simulator was also tested using a heat diffusion model. In this model, a surface is
represented by a 100 x 100 cellular space where each cell contains a temperature value. Initially, all cells
have a different value, and as the simulation progresses, the temperature of a cell is updated to the
average temperature of the neighborhood.

The model definition using CD++ is shown in Figure 25. Line 2 defines the top model with only one
component: the heat surface. Between lines 4 and 16 this model is defined as a 100 x 100 cell space with
a standard nine cells neighborhood and a local transition function called heat-rule, which is later defined
in lines 18 and 19. The initial values are read form the me calor.map.

01 lt.op l
02 components surface
03
04 (surface]
05 type, cell
06 width, 100
07 height, 100
09 delay: transport
10 defaultDelayTime : 100
11 border: wrapped
12 neighbors: eur race (-1, -1) surface (-1, O) eur+ace (-1,1)
13 neighbors: surface (O, -1) surface (O, O) surface (0,1)
14 neighbors: surface (1, -1) surface (1, O) eur zace (1,1)
15 initialmapvalues: calor.map
16 localtransition: heat-rule
17
18 [heat-rulel
19 rule, { «0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1) + (0,1) + (1,-1) + (1,0) + (1,1)) /9} 10000 {t}

Figure 25 : Definition of the heat diffusion model

Figure 26 shows a model partition for running the heat diffusion model on 4 machines. A total of 10000
simulators have been assigned to 4 CPUs.

01 o surface(O,O) .. (24,49)
02 o surface(25,0) .. (49,49)
03 1 surface (50, O) .. (74,49)
04 1 surface(75,0) .. (99,49)
05 2 surface(O, 50) .. (24,99)
06 2 surface(25,50) .. (49,99)
07 3 surface(50, 50) .. (74,99)
08 3 surface(75,50) .. (99,99)

Figure 26 : A model partition for 4 processors

The heat diffusion model was run on 1, 2, 4 and 8 machines, for a virtual time of 2 minutes and using
quantum values ofO.001, 0.01 and 0.1. When a quantum size ofO.1 was used, the simulation ended after
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a 44sec of simulation time (virtual time) because the model reached a stable state. The execution times
are shown in Figure 27.
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Figure 27: Execution timefor the simulation of the lOOxlOO heat diffusion model
during a virtual time of 2 minutes.

It can be observed that:

• When the same quantum is used, adding more machines does not necessarily reduce the
simulation time. For all quantum values, the transition from 4 to 8 machines did not reduce the
execution time.

• As the quantum is increased there is a reduction in the execution time (b)

After these results, the abstract simulator of section 4 was studied thoroughly to determine the causes for
the unexpected behavior, especially for the time increase observed in the transition from 4 machines to 8
machines. As explained in the next chapter, it was determined that the master coordinator was acting as a
bottleneck.
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9
A revised abstract simulator.

When executing Cell-DEVS models in parallel, there is an invariant that is independent of the abstract
simulator being used: adding more machines to a simulation increases the number of cells that have a
neighbor running in a different Logical Process. As an example, Figure 28 shows how the number of
remote cells varies for the 1OOx100 heat diffusion model.

HiX .
1 O
2 400
4 784
8 1168

Figure 28: Number of cells with remote neighbors
when different partitions are used.

It is important not to ignore these figures because when a cell sends an output (y, t), this value has to be
forwarded to all neighbor cells, which can be local or remote. For remote cells, a message through the
network is required. The abstract simulator of section 4, though well suited for dealing efficientIy with
(@, t), ( *, t) and ( done, t) messages, does not handle (y, t) messages very efficientIy. In fact, when a
slave coordinator determines that a (y , t) message should be forwarded to another coordinator, it just
forwards the (y , t) message to the master coordinator which will then forward it to the corresponding
recipients. Thus, an output message whose fmal recipient is a slave coordinator will make two hops: one
from the originating slave coordinator to the master coordinator, and a second one from the master
coordinator to the fmal slave recipient. Figure 29 shows how an output message from cell (25,0) is
forwarded to cell (25,49). The dashed lines represent messages sent over the network.

Coordinator O
(master)

2: (y,t)

Coordinator 1 Coordinator 3

1: (y,t)
4: (q,t)

(25,0) (25,49)

Figure 29 : Master - Slave coordinator output relaying.

This way of relaying messages between coordinators has a negative impact on:

• The master coordinator, who receives all output messages, even those that are not addressed to
models in his Logical Process.

• The number of messages being sent over the network, which is almost doubled due to message
relaying.

Figure 28 shows that for 8 machines, if all cells have an output to send, then the master coordinator will
receive 1168 messages. Ofthese messages, 1022 will then be forwarded to a slave coordinator.

To reduce this overhead, a different approach can be taken. When a slave coordinator has an output
message to a remote model, it could send it directIy to the recipient's coordinator, without going through
the master coordinator. In this way, the relaying is avoided, as shown in Figure 30.
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Coordinator O
(master)

Coordinator 1

2: (y,t)
----- ... Coordinator 3

1: (y,t)
3: (q,t)

(25,0) (25,49)

Figure 30: Revised output relaying.

Though simple as it may seem, this new way of relaying messages requires a complete new abstract
simulator because it is not enough to change the way output messages are handled.

Section 4 mentioned that during a simulation cycle:

1. A (@, t) is sent to all irnrninent components.
2. All irnminent components send their outputs (y, t) which are sorted into ( q, t) messages. Now, all

those components that received a ( q, t) are also imrninent.
3. A ( * , t) is sent to all imrninent components.

When centralized relaying of messages is used, the master coordinator has complete knowledge of who
the active slave coordinators are (these are the coordinator that should received the (* , t) message ). In
Figure 29, the master coordinator knows that the coordinator 3 will be imrninent and should receive a
(* , t). Instead, when distributed relaying is used, the master coordinator does not know who the active
slave coordinators are. As Figure 30 shows, the master coordinator does not know coordinator 3 has
received an output message. If coordinator 3 had not received a (@, t), then the master coordinator
would not know coordinator 3 is now irnrninent.

The solution to this problem is to have the master coordinator send a ( * , t) to all slave coordinators.
Those that are not irnrninent would just respond with a (done, t) doing nothing else. This would work if
the message passing interface (MPI) would guarantee that all messages are delivered in the same order
they are sent. But unfortunately, this is not so. MPI can guarantee that if two messages are sent from
Logical Process 1 to Logical Process 2, they will arrive in the same order they were sent. But if two
messages are sent from Logical Process 1 to Logical Process 2, and a third message is sent from Logical
Process 1 to Logical Process 3, there is no guarantee those two first messages will arrive before the third
one. This can lead to a special situation were a ( * , t) is received before a (y , t) message as shown in
Figure 31.

In Figure 31, coordinator 1 first sends a (y, t) message to coordinator 3 and then a (done, t) message to
coordinator o. However, the (done, t) message is received before coordinator 3 receives the (y,t)
message. Then the master coordinator sends a (done, t) and receives a (*,t) that is forwarded to
coordinator 1 and 3. Coordinator 3 may end up receiving the (*,t) message before the (y,t) message,
producing incorrect results. The problern here is that no coordinator knows when all the sorting of output
messages has concluded. This was not a problem with the abstract simulator of section 4 because the
master coordinator did know.

A correct abstract simulator would delay the (done, t) messages until all outputs have been received. One
first solution would be to acknowledge a (y,t) message, but this again, leads to an enorrnous number of
messages being sent.

Instead, the following approach will be taken:
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2. When a slave coordinator receives a (@, t), any generated (y, t )messages will directly be sent to
the corresponding coordinator.

3. After a slave coordinator has sent all the (y, t), a new ( $, t) message will be sent to all the other
coordinators (except to the master). This new message, called output synchronization, is a way of
telling the other coordinators that no more output messages will be sent.

4. After a slave coordinator has sent all its ( $, t) messages and received the ( $, t) messages from the
other coordinators, a (done, t) message will be sent.

In this way, when the master coordinator receives all the (done, t), a (*, t) message can be safely sent.

4: (dOne,t~ ~ 5: (*,t)

3: (done,t) " .•

"

Coordinator °
(master)

.... .... .... .... ....
•••••••••••

6: (* ,t)

Coordinator 1

2: (y,t)
-----.,. 2: (y,t) (7)

-----.,.
Coordinator 3

1: (y,t)

(25,0) (25,49)

Figure 31: A (*,t) message is received before a (y,t) message
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9.1 Revised abstraet simulator

The new abstract simulator will be defined next. Only message handlers that have changed will be
presented.

MASTER COORDINATOR

when a ( @ , t) message is received from parent coordinator

if t = tN then

te= t

for all slave processors i

send ( @, t) to slave i

end for

for all other irnminent child processors i with minimum tN

send ( @, t ) to child i

cache s in the synchronize set

end for

wait until ( done, t),s have been received from all imrninent processors

send ( done, t) to parent coordinator

end if

else raise error

end when

The master coordinator will send a ( @ , t) message to all slave coordinators, whether they are irnminent
or not. Then, when all ( done, t) messages have been received it can be sure output sorting has fmished.
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MASTER COORDINATOR

when a (y , t) message is received from child i

for all influencees,j of child i

if j is a local processor

q:= z¡J(Y)

send ( q, t) to childj

cache j in the synchronize set

else

s := coordinator( selj, j)

if s (t: slave-sync set then

send (y, i, t) to s

cache s in the slave-sync set

end ir
end ir

end fo

ir self E I¡ ( Y is to be transmitted upward) then

y:= Z¡, self (y)

send (y, t) to parent coordinator

end if

c1ear slave-sync set

end when

when a (y , i, t) message is received from a slave s

cache s in the slave-sync set and proceed as if a (y , t) message had been received from child i

end when

For (y, t) messages, the master coordinator behaves almost as previously defined. The only difference is
that it is no longer necessary to cache s in the synchronize set.
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MASTER COORDINATOR

when a ( * , t) message is received from parent coordinator

if tL ::::;t::::;tN

for all q E bag

for all receivers of q, j E Iself

if j is a local processor

q t= Zselfj(q)

send ( q, t) to j

cache j in the synchronize set

else

s "= coordinator( selj, j)

if s \i!: slave-sync set then

send ( q , t ) to s

cache s in the slave-sync set

end if

end if

end for

clear slave-sync set

end for

empty bag

for all slave processor s

send ( *, t ) to s

end for

for all i in the synchronize set

send ( *, t ) to i

end for

wait until all ( done, tN)'S are received

tL:= t

tN,'= minimum of components' tN's

clear the synchronize set

send ( done, tN) to parent coordinator

else raise an error

end when

As with ( @ , t ) messages, the new master coordinator will forward ( * , t ) messages to all slaves
because there might be some slaves that will execute an external transition which the master coordinator
does not about.

The new slave coordinator will be described next. Quite a few changes have been introduced. To begin
with, a slave coordinator will receive ( @ , t ) and ( * , t ) messages even if it is not irnminent, so a check
should is done to determine if the slave coordinator should actually do something. Second, outputs to
remo te cells are routed to the corresponding coordinators. And fmally, a new message, ( $ , t) has been
added and should be handled.
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SLAVE COORDINATOR

when a ( @ , t ) message is received from master coordinator

if t = tN then

tL:= t
for all imminent child processors i with minimum tN

send ( @, t ) to child i

cache i in the synchronize set

end for

wait until ( done, t )'s have been received from all irnminent processors

send ( $, t) to all slave coordinators

wait until ( $, t )'s have been received from all slave coordinators

send ( done, t ) to master coordinator

else

send ( $, t) to all slave coordinators

wait until ( S, t )'s have been received from all slave coordinators

send ( done, t ) to master coordinator

end if

end when

The slave coordinator should only respond to a ( @ , t ) with a ( done, t ) when it can assure it will
receive no longer receive ( y , t ) messages from other slaves. To ensure this, ( $, t ) messages where
introduced. When a slave coordinator has received a ( done, t ) from all its child processors it can be sure
it will not send any more (y , t ) messages. Hence, it sends all other slaves a ( $, t ) message to indicate
this condition. Then a slave coordinator should wait to receive all ( $, t ) messages before sending a (
done, t ) message.

The event that has been changed the most is when outputs messages ( y , t ) are received. Again, it is
necessary to distinguish two types of output messages: those that are received from local children
processors and those that are received from the master or other slaves coordinators.
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SLAVE COORDINATOR

when a (y , t) message is received from child i

for all influencees,} of child i

if} is a local processor

q := z¡J(Y)

send ( q, t) to child}

cache} in the synchronize set

else

s := coordinator( selj,})

if s ~ slave-sync set then

send (y , t ) to s

cache s in the slave-sync set

end if

end if

end for

if self E I¡ ( Y is to be transmitted upward) then

if parent ~ slave-sync

send (y, t) to master coordinator

end if

end if

clear slave-sync

end when

when a (y , i, t) message is received frorn master or slave coordinators

for all influencees,} of child i

if} is a local processor

q:= z¡J(Y)

send ( q, t) to child}

cache} in the synchronize set

end if

end for

end when

When an output event is received from a child i, the slave coordinator sorts the message to the
influencees of i. If any influencee is local, the z function is applied a ( q , t ) message is sent. If there are
non-local influencees, then the output event is sent to the corresponding coordinator. Because these non-
local influencees can be under the same coordinator care should be taken to avoid forwarding duplicate
( y , t ) messages. This accomplished using a slave-sync set which keeps track of those coordinators that
have received the message. Output messages received from other coordinators are sorted as external
events to the local children.

It remains to define how the slave coordinator will handle internal transition messages. However, there
will be no changes here. It might be the case that a slave coordinator that receives a ( *, t ) message has
no imminent dependants, but in this case, the synchronize set will be empty and the existing pracedure
will work.
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SLAVE COORDINATOR

when a ( * , t) message is received from master coordinator

if tL ::; i s tN

for all q E bag

for all receivers of q, } E Iself

if} is a local processor

q := zself,j(q)

send ( q, t) to}

cache} in the synchronize set

else

do nothing

end if

end for

end for

empty bag

for all i in the synchronize set

send ( *, t ) to i

end for

wait until all ( done, tN)'S are received

ti= t

tN:= minimum of components' tN'S

clear the synchronize set

send ( done, tN) to master coordinator

else raise an error

end when

9.2 Synchronization for the revised Parallel DEVS abstract simulator

In Section 7 it was proved that the abstract simulator of Section 4 could be executed using no
synchronization at the logical process level (i.e. without producing a straggler message). For the new
abstract simulator to be able to execute using the same unsynchronized protocol, it should be proved that
it will not produce a straggler message.

As defmed earlier, a straggler message is a message whose timestamp is les s than the recipients current
time. For this definition, the proof of section 7 still holds, so the Warped NoTime kemel can still be used.
It is important to notice however, that the absence of straggler messages does not guarantee correctness
during a simulation cycle.

During a simulation cycle all messages carry the same timestamp, so there are no stragglers at the logical
process level. However, as it was noticed in Figure 31, there was a potential risk of having straggler
messages at the application level, i.e. a message that has a correct timestamp but that is received out of
phase. This was corrected introducing the ( $ , t) messages.
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10
Performance analysis

In this section further results about the performance of Parallel Cell-DEVS models will be presented.
First, the effects of quantization will be discussed. Following, the performance of the revised simulator
will be compared against the performance of the original one. Then, other factors affecting the
performance of distributed simulation will be introduced. In particular, model partitioning and workload
will be analyzed.

10.1 The effect of quantization

The use of a quantizer reduces significantly the number of active cells. Because most of the results in this
section will be related to the heat diffusion model, it is important to understand how the use of a quantizer
impacts on model execution.

Figure 32 shows how the average number of active cells on each simulation cycle of the 100 x 100 heat
diffusion varies with the quantum size.

0.001 9975

Quantum size Active cells
O 10000

_________º:Q! +....__._____6262
0.1 1922

Figure 32 : Average number of active cells in each simulation cycle

When no quantum is used, all 10000 cells are active during each cycle. As the quantum size increases,
cells reach a stable value more rapidly and then there are less active cells. This number of active cells has
a direct impact on execution time because:

I more active cells = more workload = more tim~

Having understand this, it will possible then to discuss how the workload affects the performance of
distributed execution.

10.2 Revised simulator vs Original simulator

Figure 33 shows the execution times for the heat diffusion model using both, the original and the revised
simulators.
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Figure 33: Execution times of the heat diffusion model using the original and revised simulators.

As it is shown, the revised simulator improved the execution times considerably, especially for 4 and 8
machines and quantum sizes ofO and 0.001.

Figure 34 shows a further comparison between the original and revised simulators.
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Figure 34: Further comparisons between the original and revised simulators

Again, the revised simulator outperformed the original one for all quantum sizes. Some exceptions are
observed for executions on 1 and 2 machines. For 4 and 8 machines, the improvement is significant for
heavy load models, such as those of quantum size Oand 0.001.

10.2 The effect of the choice of partition
Another factor that can affect the performance of the parallel simulator is the choice of model partition. A
fair partition distributes the execution load evenly through out the machines. So far, all the results shown
for the heat diffusion model were obtained with a fair partition. Tests were also conducted with a set of
uneven partitions as shown in Figure 35.

1 Machine 2 Machines 4 Machines 8 Machines
Figure 35: Uneven partitions: each colored area runs on a different machines

The execution times when this set partitions is used are shown Figure 36.
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Figure 36: Execution times for uneven partitions

As expected, the choice of uneven partitions causes a slowdown as more machines are used. There is one
exception, this is the transition from 4 to 8 machines. The reason for this is that the partition for 8
machines is almost even, as it will be shown next.
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10.4 A metric for model parallelism
To asses if a model is suitable for parallel execution, a parallelism metric has been developed. This
measure has its greatest value when all of the machines have the same load, i.e. there is simultaneous
execution; and its least value when all the simulation is done by only one of the available machines.

In Parallel DEVS, one way to determine how much activity there is on each simulation cyc1e is to count
the number of received ( *, t) messages. If in addition this information is obtained for each logical
process and each simulation cyc1e, a c1ear picture ofhow much activity is taking place can be drawn. The
expression

Count( LPnum' t)

will be used to denote the number of (*, t) messages received by LP number LPnum during the simulation
cyc1e at time t.

But counting the messages by itself does not give the sort of metric being sought, it just gives the number
of messages. For a better measure, it can be assumed that the processing of each ( *, t) will require the
same computing time. Then, assuming also an homogeneous set of machines, the execution time for each
simulation cyc1e will be given by

CycleTime(t) = e- Max~~mLPs-l(Count(Lp¡,t))

That is to say, the execution time of a simulation cyc1e will be equal to the time it takes the LP that
receives the highest number of ( *, t). The constant e is the time it takes for a cell to process a ( *, t). For
the purpose of evaluating how even the workload is, it can be ignored. Once the cyc1e time is known, the
CPU usage at each LP can be obtained by dividing the used time by the cyc1e time

U. (LP ) Count(L~um,t)sage t = ------'-----'=.:.......:...
tlum' CycleTime(t)

The LP with the maximum number of messages will have a usage measure of 1. If all the LPs receive the
same number of ( *, t) messages then all LPs will have a CPU usage of 1, being this the case of
maximum parallelism. The CPU usage of all LP's can be averaged to give a measure for the whole
system.

The parallelism metric will depend on two factors: the model and its partition. For maximum parallelism
to be achieved the model has to be partitioned in a way that all LPs will have an equal number of active
models. For some models, such a partition might exist, but for some others, it might not. Most probably,
the load of each LP will vary with time. Model partitions in Parallel CD++ are static.

This metric was used to asses the suitability of the heat diffusion model for parallel execution. The results
are shown in Figure 37.
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Figure 37: Parallelism metric for the heat diffusion model

Figure 37 (a) shows the parallelism value for the heat diffusion model when the even set ofpartitions are
used. The executions with quantum sizes of O and 0.001 show a perfect value of 1. This means that all
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Logical Process have the same number of active cells during the whole simulation and maximum
parallelism is achieved. Highly parallel models should show a reduction in the execution times as more
machines are added. As Figure 33 shows, this is the case.

When quantum sizes ofO.01 and 0.1 are used, a reduction in the model parallelism is observed. This is so
because as the simulation progresses there are more cells that reach a stable state and become inactive,
and the distribution ofthis inactive cells is not necessarily even.

Figure 37(b) shows the parallelism value when the uneven partition of Figure 35 is used. It can be
observed that the parallelism is drastically reduced for 2 and 4 machines, and gets high again for 8
machines. The uneven partitions cause an uneven distribution of the load and hence a reduction in the
parallelism. This causes a slowdown in the model execution as it was shown in Figure 36. The partition
for the 8 machines case is not so uneven, as the parallelism metric shows.

As a subproduct, the evolution of the parallelism through the whole simulation process can be obtained.
Figure 38 shows the how the parallelism evolves when the even set ofpartitions is used.
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Figure 38: Parallelism evolutionfor the heat diffusion model when even partitions are used.
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For quantum sizes of O and 0.001, the parallelism keeps a constant value of 1 during the whole
simulation. This is not the case for quantum sizes ofO.01 and 0.1. In this cases, the parallelism starts at 1
and then varies as cells reach a stable value.

Figure 39 shows how the parallelism evolves for the heat diffusion model when the set of uneven
partitions is used.
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Figure 39: Parallelism evolutionfor the heat diffusion model when uneven partitions are used.

Here, for quantum sizes of O and 0.001, the parallelism value also keeps constant during the whole
simulation, but not with a value of 1. The behavior for quantum sizes ofO.Ol and 0.1 is similar to the one
observed in Figure 38.

To conc1ude this section, it is important to mention that the parallelism metric so far discussed is only
another tool to asses how well a model may execute in parallel. This metric does not take into account
network traffic, which for certain models and partitions, may impact more on performance than an even
workload distribution.
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11
A flow-injection Cell-DEVS model

In this section, a Cell-DEVS model for a flow-injection system will be presented. This model has be en
developed together with people working at the Laboratorio de Análisis de Trazas - Facultad de Ciencias
Exactas y Naturales - Universidad de Buenos Aires.

11. 1 Flow injection analysis

Flow-injection methods are analytical methods used for automated sample analysis of liquid samples. In a
flow injection analyser, a small, fixed volume of a liquid sample is injected as a discrete zone using an
injection device into a liquid carrier which flows through a narrow tube. As a result of convection at the
beginning, and later ofaxial and radial diffusion, this sample is progressively dispersed into the carrier as
it is transported along the tube. The addition of reagents at different confluence points (which mix with
the sample as a result of radial dispersion) produces reactive or detectable species which can be sensed by
flow-through detection devices. Figure 40 presents a simple flow-injection apparatus.

A>- -1---------.

R2
Figure 40 : A FIA manifold.

This device (called a FIA manifold) consists of a peristaltic pump (P) that adds carrier solution (A) into a
valve (1) that connects to a tube called a reactor (R2). At the end of the tube a detector is placed to sense
a specific property of the flowing solution. The valve can be tumed to allow the flow of the sample (B)
into the reactor. The sample is he Id in the loop L and when the valve is rotated its contents flow into the
reactor, where chemical activity will usually take place between the sample and the carrier solution. As a
result, a change will be observed in the signal produced by D, making it possible to quantify the sample
after comparing the results with those obtained by known samples.

In a FI system convective transport yields a parabolic velocity profile with molecules at the tube walls
having speed zero and those at the center having twice the average velocity. At the same time, the
presence of concentration gradients develops axial and radial diffusion of sample molecules. It has been
reported that in FI systems of practical interest, axial molecular diffusion has almost no influence in the
overall dispersion, but radial diffusion is the main contributor. For a pump proving a net flow of q mIlmin
in a coil of radius a, the average flow velocity is given by:

q
(Equation 1)

At a point at distance r from the center, the flow velocity is described by:

(Equation 2)
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As mentioned in [AIT98], it is very difficult, if not impossible, to correlate the experimentally obtained
response curve with the actual spatial mass distribution of the system. This is a consequence of the
selected method of measurement, which fixes spatially and temporally the point of detection. Under these
circumstances, any event occurred before the detection point is inferred from the response curve profile.
Therefore, this detection approach is a powerful tool for predicting response curves, but ignores the
processes leading to the generation of such response. In [AIT98] a method for continuously monitoring a
FI system was proposed. A FI system using nitric acid as the carrier solution, water as the injected sample
and a digital conductimeter with a couple of wires at both ends of the carrier stream detector was used to
follow the radial mass distribution of the sample zone.
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Figure 41: FIA manifold for continuously monitoring. P = pump; 1= loop; L = reactor; W=waste; A,
B = detection points. Punctual detection: suitable detector in point B; integrated detection: Pt wires
located at points A-B. [AIT98]

When the water sample is injected, it acts as a blocking disc, and no electric conductance is measured. As
convective transport and diffusion gradient forces the water sample to be released from the walls, causing
a reduction of the blocking area and allowing electric current to flow, conductivity values different from
zero are measured. Figure 42 shows the characteristic conductivity curve obtained by such a system.
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Figure 42: Characteristic conductivity curve [AIT98]

11.2 A Cell-DEVS model for flow-injection

As mentioned, it is impossible to analyze the detailed behavior of the changes in the mass distribution
profile. Therefore, we decided to build a Cell-DEVS model describing the integrated conductivity flow-
injection system (ICM) in detail. In this way, the internal complex behavior can be analyzed by studying
the simulated results. The ICM system consists of a 0.025 cm radius tube, a 10.75 cm loop and a 9,25
reactor coil . We assumed the total tube length of the tube to be of 20cm. For this system, a cell space of
25 rows and 200 colurnns was defmed, each cell representing a 0.001 x 0.1 cm of a half tube section. Row
O represents the center of the tube and row 24 the section of the tube touching its walls and the value of
each cell will represent the nitric acid concentration.

61



CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models - Alejandro Troccoli

Tube wall

mi

·······················1

Row24;.._ _ + _ -_ _._--_.

Figure 43 : Correspondence between the cell-space and the actual tube

Figure 43 shows in light gray a tube section representing a cell. This is a longitudinal cut of the tube. The
final aim is to build a 3 dimensional space representing a cylindrical section of the tube, but in this case
each cell represent a flat section.

To deal with convective transport and radial diffusion at the same time, the model reacts in two phases:
transport and diffusion. The local computing function simulates the transport phase, and all cells are
connected to an external generator sending an event which triggers the diffusion phase. The model is built
as a coupled DEVS model with two components: a Cell-DEVS (namedfia) representing the tube, and an
atornic model (named generator). The generator has one output port (out) to send the diffusion triggering
event. This port is mapped to the diffuse input port of the fia model (line 2). This means all ouput events
sent through the out port will be received as external events by the fia model through the diffuse port.

00 [Top]
01 components fia generator@ConstGenerator
02 link : out@generator diffuse@fia
03
04 [generator]
05 frecuency : 00:00:00:014

Figure 44 : Components ofthe DEVS model

The frequency of diffuse events is defined by Equation 3. This equation computes the the characteristic
distance a partic1e of a given solution of diffusion coefficient e will travel in dt seconds.

ds = ·,12 . e .dt (Equation 3)

Solving the equation for e = 3,5 x 10 -5 cm/s and ds = 0.001 cm, we obtain a dt of 14ms. We used for the
ds value the cell height to fmd out how long it would take for two cells to diffuse homogeneously. We did
not take into account the cell width because axial diffusion can be ignored.

05 [fia]
06 in : diffuse
07 width : 200
08 height : 25
09 delay: inertial
10 border: nowrapped
11 neighbors : fia(-l,-l) fia(-l,O) fia(-l,l)
12 neighbors : fia(O,-1} fia(O,O} fia(O,l}
13 neighbors : fia(l,-l} fia(l,O} fia(l,l}
14 localtransition: transport

Figure 45 : Definition of the FIA coupled cell model

Figure 45 shows the defmition ofthe parameters for the coupled Cell-DEVSfia. Line 6 defines the diffuse
input port, and lines 7 and 8 defme the cell space dirnensions. Line 9 sets the cell delay type to inertial.
An inertial delay cell that has a scheduled future value f will preempt this value if upon receiving an
external event and evaluating the local transition rules a new future value jj, withf *- jj, is obtained. In this
case, jj will be scheduled as the future value with a given delay d. Line 10 defines non-wrapped borders
and lines 11 to 13 define a cell's neighborhood shape. Finally, line 14 defines the sets the local transition
function rules, which is defmed in Figure 45.
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18 [transportl
19 rule : { (0,-1) } { 0.1 / ( 22.57878 * ( 1 - power( cellPos(O) * 0.001 + 0.0005 t 2)

/ 0.000625 » * 1000 } ( cellpos(l) != O }
20 rule : { 0.8 } { 0.1 / ( 22.57878 * ( 1 - power( cellPos(O) * 0.001 + 0.0005 , 2) /

0.000625 » * 1000 } { cellpos (1) = O }

Figure 46 : The local transition rules

The convective transport has been arbitrarly been defmed in the direction of increasing column values, so
that in visual representations the carrier will be seen flowing from left to right. Being this the case, a local
transition rule for the transport phase should set a cell's value to the current value of its (0,-1) neighbor
cel!. The rate at which this is done depends on the velocity of the flow at the cell, which, as mentioned
before, has its maximum at the centre of the tube and decreases towards its walls. This is stated in the first
transport rule in line 19. As mentioned in section 2, a local transition rule has three components, a value, a
delay and a condition. For this rule, this components are:

Value: (O, -1) } //The value of the cell's left neighbor

De1ay: { 0.1 / ( 22.57878 *
/ 0.000625 » * 1000

1 - power( cellPos(O) * 0.001 + 0.0005 , 2)

Condition: cellpos (1) != O }

The delay is ca1culated using equations 1 and 2. For a pump with a constant flow of 1,33rnl/min, the
average velocity is 11,29 cm/s. This value can be substituted in equation 2 and multiplied by 2 to yield the
number 22.57878 shown in the delay expression. In addition, for equation 2 to be solved, we also need to
know the distance to the center of the tube. CD++ pro vides a built in function called cellpos that returns a
requested coordinate of the cell whose value is being sought. For a 2 dimensional model, cellpos(O)
retums the cell's row. Consequently,

cellPos(O) * 0.001 + 0.0005

is the distance of the centre of the cell to the centre of the tube and therefore,

( 22.57878 * ( 1 - power( cellPos(O) * 0.001 + 0.0005 , 2) / 0.000625 »

is the solution to equation 2, for a = 0.025 cm. Having the velocity of flow v(r), the delay will be the time
in milliseconds for a partic1e moving at speed v(r) cm/s to travel across a 0.1 cm cel!. This time is given
by the expression

0.1 / v(r) * 1000

conc1uding our explanation for the delay component of the rule.

The generic rule we have just given is only valid for all cells that have a valid (0,-1) neighbor. The left
border cells (those in column O) do not satisfy this prerequisite, stated in the condition component
cellpos (1) != O, and should therefore have a different rule.

The rule in line 20 is the rule for the left border cells. It simply states that for these cells the new value
should be 0.8, which corresponds to the concentration ofthe carrier solution being pumped into the tube.

Table 1 shows the results of applying equation 2 to ca1culate the delays for each row. It is important to
notice that some adjacent rows have different delay values, as is the case ofrows 2 and 3. This might lead
to the presumption that the convective transport behavior will not be preserved due to an early preemption
a cell's scheduled future value. This is not the case, as we will show.
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Row Delay (ms) Row Delay (ms)
o 4 13 6
1 4 14 7
2 4 15 7
3 5 16 8
4 5 17 9
5 5 18 O
6 5 19 1
7 5 20 4
8 5 21 7
9 5 22 ..:3

10 5 23 8
11 6 24 1 2
12 6

Table 1 - Calculated delays for each row

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models - Alejandro Troccoli

When the simulation starts at time O, a11ce11swill evaluate their local transition functions and schedule
their next change. A ce11in row 2 wi11 schedule an internal transition at time t = 4ms and a ce11in row
three at t = 5ms. So at time t = 4ms, a11ce11sin row 2 will send an output event to their neighbors. Ce11sin
row 3 will receive this event and evaluate the local transition function, which sa s they should take the
value of their left neighbor. But their left neighbor has not changed yet, so the new value wi11be the same
as the previousfuture value. Therefore, they will keep their scheduled internal transition for t = 5 ms. At
this time, a11 ce11s in row 2 with a scheduled internal transition will send th ir new value to their
neighbors. A row 2 cell receiving a new value from its left neighbor will again eva uate its local transition
function, but this time the delay has already expired and there is no future value cheduled, so the result
of this evaluation will be scheduled as the future value for time t = 10 ms.

Figure 47 shows the radial diffusion rules, For a ce11with valid top and bottom eighbors, the diffusion
rule states that the new ce11value will be the average of the three cells. This is the case of the rule in line
22. A delay of 1 ms was chosen. Though a O ms delay would be more appn priate, this is still not
supported in the version of NCD++ for which the model was written. A new vers on that implements the
Parallel Ce11-DEVS formalism has been recently finished, and is currently being t sted. This version wi11
allow O time delays. The other three rules in lines 23 and 24 cover the special case of top and border ce11s.
These cells do not have both, a valid top and bottom neighbor so instead of using hree ce11sto obtain the
average, only two are used.

Figure 47 : Radial diffusion rules.

21 [diffusionl
22 rule : { «-1,0) + (0,0) + (1,0)) /3 } 1 ( cellpos(O) != ° ANDce lpos(O) != 24 }
23 rule : { ((-1,0) + (0,0)) /2 } 1 ( cellpos(O) != ° ANDcellpos(O) = 24 }
24 rule : { ((0,0) + (1,0)) / 2 } 1 ( cellpos(O) = ° ANDcellpos(O) != 24 }

So far we have shown the diffusion rule, but we have not yet defmed that this ru ed should be evaluated
when an external event is received through the diffuse input port. Figure 48 shows Itbe statements that link
the fia model diffuse input port to a ce11's diffuse input port (line 27) and set the diffusion rule to be
evaluated upon the arrival of an external event through this port (line 28).
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[Ha]
27 link: diffuse diffuse@fia(x,y)
28 PortlnTransition : diffuse@fia(x,y) diffusion

Figure 48 : External coupling of the FIA Cell-DEVS modelo

11.3 Simulation results

The described model was run for lOs and the state of the whole cell space was logged every 100ms. A
graphical representation of the model at five different stages is shown in Figure 49. The logged results
were also used to draw the conductivity curve.

To obtain the conductivity of the whole system, we divided the cell space in axial segments, calculated
the resistance of each, and assumed the whole resistance to be the result of combining all segments in
serial mode. We took each segment to be a colurnn of cells and calculated its resistance using equation 4.

Figure 49: Different execution stages of the FIA modelo (1) At time Othe sample (white), has been
injected. The other half ofthe tube contains the carrier solution (dark gray). (2,3,4) The convective
transport makes the sample dispersefaster at the middle ofthe tube than near the walls. (5) The whole
tube now contains the carrier solution only.

[ J
-I

199 24 1

eOI~=o r~o Reell(row,eol)
(Equation 4)

To calculate the resistance, equation 5, which gives the conductivity of each cell, was used. The
resistance of a cell can be obtained by calculating the inverse of the conductivity. All values are known,
being the concentration of nitric acid the one that varies from cell to cell.

G 1 G G Areaeell ( [ )
eell = -- = HNO

J
+ H20 = K HNO

J
• HN03]

Ree/l Lengtheell

(Equation 5)
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Figure 50 : Conduetivity eurve obtained

Figure 50 shows the conductivity curve obtained. For this example the curve is quite similar to the first
part of the measured curve. It is a good starting point for the whole FIA manifold.

11.4 Performance analysis

The results shown for the FIA model were obtained running CD++ on a single machine. The simulation
for 10 seconds of virtual time took more than 5 hours. Performance analysis, however, were conducted
for executions for a virtual time of2 seconds, using 1,2,5 and 10 machines.

In the FIA model, not all cells are active during the whole simulation. At the beginning, active cells
concentrate near left end of the tube, and as the simulation progresses the activity shifts to the right, as
shown in Figure 49. In addition, during the diffusion phase all cells are active.

The model was exeeuted using two different set ofpartitionsfor 1,2,5 and 10 maehines. Partition set 1
divides the tube in equal transversal seetions and assigns eaeh maehine one seetion, as shown in

Figure 51.

(a)
(b)
(c)
(d)

o O O O O O O O O O
O O O O O 1 1 1 1 1
O O 1 1 2 2 3 3 4 4
O 1 2 3 4 5 6 7 8 9

Figure 51: Partition 1: the FIA tube is divided in 10 equal seetions. (a) 1 maehine (b) 2 maehines
(e) 5 maehines (d) 10 maehines

Partition set II divides the tube in 20 equal seetions. Eaeh maehine is assigned a tube seetion from
eaeh end, as shows

Figure 53. Partition II attempts to make workload assignment even by combining sections that are active
at different stages in one machine.

(a)
(b)
(c)
(d)

O O O O O O O O O O O O O O O O O O O O
O O O O O 1 1 1 1 1 1 1 1 1 1 O O O O O
O O 1 1 2 2 3 3 4 4 4 4 3 3 2 2 1 1 O O
O 1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1 O

Figure 53: Partition II: the FIA tube is divided in 20 equal seetions. (a) 1 maehine (b) 2 maehines
(e) 5 maehines (d) 10 maehines
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Figure 55 shows the execution times for the FIA model. As it can be seen, the FIA model does not
experience a reduction in the execution time as did the heat diffusion. But it neither shows a big
slowdown, except for the execution with 2 machines. This suggests the workload shifts from one
machine to the otber. A comparison between Partition 1 and 11, shows this second one shows a better
performance.

Partition I

I
--Q-O
-ill-Q =0.001

Q=0.01
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Figure 55 : Execution times for the FIA modelo
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12
Conclusions and further developments

A tool for the sirnulation of Parallel DEVS and Parallel Cell-DEVS models in distributed environments
has been developed. The development process required:

• A definition of a new abstract simulator suitable for distributed environments.
• A selection of a suitable simulation middleware.
• An application design that would fit both, the rniddleware and the existing CD++ software.

A first abstract simulator specialized coordinators into master and slaves to reduce the number of inter-
process messages required. The prelirninary results showed, however, that the simulator did not perform
well when too many machines were being used. This was due to a bottleneck caused by a centralized
distribution of output messages. A revised sirnulator solved this problem by replacing this centralized
mechanism with a distributed one.

For the rniddleware, the Warped kemels where chosen because they provide a cornmon API for different
kemels. The parallel simulator has been developed to support both the TirneWarp and NoTirne kemels.

Performance analysis were carried on different models: an extended GPT, a heat diffusion model and
flow injection model. These analysis showed that:

• The revised abstract simulator outperformed the original one.
• Performance of parallel simulation is model and partition dependant. In general terms, a model and

partition combination that distribute the workload evenly among the available set of machines will
perform well in distributed environments.

To asses how suitable a model-partition combination is for parallel execution, a parallelism metric was
given. This metric helps to understand how the workload changes during the whole simulation.

There are quite a few topics for further improvement and research.

Firstly, improvements can be made to the Warped middleware. In particular, the NoTirne kemel can be
improved two pack multiple sirnulation messages together into a single batch and send them in one
connection. This will avoid the significant overhead of setting up a connection for each message sent.
Heavy load models send thousands of messages in a simulation cyc1e, so it may be presumed that
message aggregation will improve performance significantly. In addition, the NoTime kemel can be
further irnproved by eliminating the finalization detection mechanism which involves quite a few
messages over the network. This changes, however, will change the NoTime kemel from a general
purpose kemel to one specialized for the Parallel DEVS abstract simulator.

Further studies on different models should be carried out to asses how the workload changes in each case.
This would allow to c1assify applications and help to construct efficient partitions. In addition, this studies
will be a starting point for a dynamic load balance mechanism. Dynamic load balancing can improve
performance. The parallelism metric can be improved to take into account network traffic.

Improvements can be also made to specification language of Cell-DEVS models, which has been left
unchanged. The Parallel Cell-DEVS formalism allows multiple sirnultaneous events, which the current
language can not handle properly.
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CD++
CD++ is a tool for the simulation of Parallel DEVS and Parallel Cell-DEVS models. It runs either
in standalone (1 machine) or in parallel mode over a network of machines. This is CD++ User' s
Guide. A complete understanding ofthe Parallel DEVS and Cell-DEVS models is assumed. Please,
refer to the CD++ scientific report ifnecessary.

1 Installation

CD++ was developed to run in UNIX environments. It has been successfully tested in clusters of
Linux machines running on Pentium processors. It supports both, parallel and standalone
simulation.

The standalone version can also be compiled to run under Windows systems.

The CD++ distribution includes the following utilities:

• Drawlog: draws the evolution of a cellular model.
• Parlog: Counts the number of (*,t) messages received by each LP during each simulation

cycle.
• Logbuffer: required by drawlog and parlog when parallel simulation is used. Sorts the log

messages that are sent to standard output to ensure they are processed in the correct order.
• ToMap: creates the initial state cell map file from a .ma file.
• MakeRand: generates a random initial state cell map file.

1.1 System requirements

The latest version of CD++ is distributed as a .tar.gz file and to install and compile CD++ the
following utilities will be required:

Compiling for UNIX / Linux

• makedepend: current version released with XIIR6 (part ofX-windows software)
• GNU Make makefile utility (part of GNU software)
• g++: the GNU C++ compiler and accompanying libc, version 2.7.0 or later (part of GNU

software)
• an implementation ofMP1 (e.g. MP1CH) (for parallel simulation)
• GNUbison
• GNU flex

Compiling for Windows

To compile CD++ in Windows the CYGWIN tools are required.

• Cygwin: latest version available from http:\\www.cygwin.com. When downloading Cygwin,
select the packages that are listed in Compiling for UNIX / Lima. You will need to get
makedepend also (it is not included in the standard Cygwin distribution)
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1.2 MPI

For paraIlel simulation, an implementation of MPI is required. If MPI is already instaIled in your
system, find out if its includes and lib directories have been already added to the corresponding
environment variables. Otherwise, take note of these directories because they will be required later
on.

If MPI is not instaIled on your system, then it is recornmended you instaIl MPICH version 1.2.0,
which can be downloaded from http://www.mcs.anl.gov/home/lusk/mpich/index.htm1. You
can then instaIl MPICH in a shared location (special permissions will be required) or in your home
directory. Basic instaIlation instructions will be provided.

The instaIlation instructions here presented are based on personal experience instaIling in on Linux
machines. If in doubt, please, check the mpich instaIlation instructions found in install.ps in the
/doc directory.

1. Uncompress the distribution files
gunzip -c mpich.tar.gz I tar xovf

2.Run
./configure

This script will try to set the optimum parameters for compilation on your system. If mpich
will be instaIled in a shared location, then run

./configure -prefix= /usr/local/mpich-1.2.0. (or your preferred location)

4. Compile mpich by running
make >& make.log

This might take several minutes to an hour, depending on your system.

5. Edit the util/machines/machines.LINUX file and set the list of available machines in
the cluster.

6. (Optional) InstaIl mpich on a shared location

make instaIl

Troubleshooting

If the default settings have not been changed, MPICH will use rsh to run the remote
programs. For rsh to work properly, please check

1. Machine names are properly resolved, either using a DNS or the /etc/hosts file.
2. The inet services must be enabled in all the machines.
3. If you want to be able to run rsh without being prompted for a password, you will have

to create a .rhosts file with the names of the machines in the cluster. The .rhost file must
not have any group permissions enabled. Run chmod 600 .rhosts.

4. If the filesystem is not shared between all of the machines in the cluster, then a copy of
CD++ and any model files will be required on each machine.
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1.3 CD++

To install CD++, gunzip and untar the distribution file. On most Linux machines the cornmand

gunzip -c pcd-3.x.x.tar.gz I tar xovf

will just do this.

The following directory structure will be created

CD++
+--------------- warped

+---------------- Time Warp
+---------------- NoTime
+---------------- Sequential
+---------------- common

+--------------- models
+---------------- net
+---------------- airport

you must then edit Makefile.common and set the desired compilation options:

l. Set the source code location. If running parallel simulation, you will also need to indicate the
location of the MPI include and lib files.

#===========================================================================
#MPI Directory Details
export MPIDIR=/home/atroccol/mpich-l.2.0
export LDFLAGS +=-L$(MPIDIR)/lib/
export INCLUDES_CPP += -I$(MPIDIR)/include
#===========================================================================

#CD++ Makefile.comrnon

#===========================================================================
#CD++ Directory Details
export MAINDIR=/home/atroccol/tesis/CD++

Figure 1: Makefíle.common - Setting the source location
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2. Specify whether parallel or stand alone simulation will be used. For stand alone simulation, the
NoTime simulation kemel must be used. For parallel simulation, you can choose from the
TimeWarp and NoTime kemel. Ifnot sure, the NoTime kemel is recommended.

#If running parallel simulation, uncomment the following lines
export DEFINES_CPP += -DMPI
export LIBMPI = -lmpich
#===========================================================================

#===========================================================================
#WARPED CONFIGURATION
#===========================================================================
#Warped Directory Details
#For the TimeWarp kernel uncomment the following
#export DEFINES CPP += -DKERNEL TIMEWARP
#export TWDIR=$(MAINDIR)/warped7Timewarp/src
#export PLIBS += -lTW -1m -lnsl $ (LIBMPI)
#export TWLIB = libTW.a

#For the NoTimeKernel, uncomment the following
export DEFINES CPP += -DKERNEL NOTIME
export TWDIR=$(MAINDIR)/warped7NoTime/src
export PLIBS += -lNoTime -1m -lnsl $(LIBMPI)
export TWLIB = libNoTime.a
#===========================================================================

Figure 2: Makefile.common - Choosing the Warped kernel

3. Decide which atomic models will be inc1uded by removing the necessary cornments.

#######################################################################################
#MODELS
#Let's define here which models we would like to include in our distribution
#Basic models
EXAMPLESOBJS=queue.o main.o generat.o cpu.O transduc.o distri.o com.o linpack.o
register.o

#Uncomment these lines to include the airport models
#DEFINES cpp += -DDEVS AIRPORT
#INCLUDES CPP += -I./models/airport
#LDFLAGS ~= -L./models/airport
#LIBS += -lairport

#Uncomment these lines to include the net models
#DEFINES CPP += -DDEVS NET
#INCLUDES CPP += -I./models/net
#LDFLAGS ~= -L./models/net
#LIBS += -lnet
######################################################################################

Figure 3: Makefile.common - Model selection

After you have edited Makefile.common, you are ready to build CD++. To build CD++ and all the
accompanying utilities, issue the following commands:

make depend
make

Ifyou change any settings in Makefile.common you will need to rebuild CD++ again. To do this,

make c1ean
make
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2 Starting the simulator

Previous versions of CD++ provided two different startup modes: a server mode and a workstation
mode. When running in server mode, the program is started and opens a TCP port through which it
will receive a model's specification. Instead, when the workstation startup is chosen, all settings are
read from files specified in the command line options.

CD++ currently supports the workstation mode only. The server mode option is being developed.

2.1 Workstation Mode

To run CD++, type

./mpirun -np n ./cd++ [-ehlmotdvbfrspqw]

here n indicates the number of machines that will be required. It is important this is the same
number of machines specified in the partition file or the simulation will not work.

Usage:

values
values
show numbers

./cd++ [-ehlLmotdpPDvbfrsqw]
e: events file (default: none)
h: show this help
1: logs all messages to a log file (default: /dev/null)
L[I*@XYDS]: log modifiers (logs only the specified messages)
m: model file (default : model.ma)
o: output (default: /dev/null)
t: stop time (default: Infinity)
d: set tolerance used to compare real numbers
p: print extra info when the parsing occurs (only for cells models)
D: partition details file (default: /dev/null)
P: parallel partition file (will run parallel simulation)
v: evaluate debug mode (only for cells models)
b: bypass the preprocessor (macros are ignored)
f: flat debug mode (only for flat cells models)
r: debug cell rules mode (only for cells models)
s: show the virtual time when the simulation ends (on stderr)
q: use quantum to compute cell values
y: use dynamic quantum (strategy 1) to compute ce1ls
y: use dynamic quantum (strategy 2) to compute cells
w: sets the width and precision (with form xx-yy) to

j

Figure 4: CD++ command line options

The command line options allowed are:

-efilename: External events filename. If this parameter is omitted, the simulator will not use
external events. The format for external event files is described in section 5.3.
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-Ifilename: Log filename. When this parameter is specified, all messages received by each
DEVS processor will be logged. If filename is omitted (only -1 is specified) all log
activity will be sent to the standard output. But if a filename is given, one log file will be
created for each DEVS processor. The file filename will list all models and the name of
the corresponding logfiles. These file will be named filename.XXX where :xxx is a
number. When this option is used and no addition log modifiers are defined, all received
messages are logged.

The log file format is described in the section 6.2.

-L[I*@XYDS]: allows to define which messages will be logged. This option is use fuI to
reduce the log overhead. The following messages are supported:

I :
*.

Initialisation messages
(*,t) Internal messages.
(@,t) Collect messages
(q,t) External messages
(y,t) Output messages
(done,t) Done messages
All sent messages

@:
X:
y:
D:
S:

When using drawlog, only Y messages are required. Use the -LY option to reduce
execution time.

-mfilename: Model filename. This parameter indicates the name of the file that contains the
model definition. If this parameter is omitted, the simulator will try to load the models
from the model.ma file.

-Pfilename: Partition definition filename. A partition file is used to specify the machine
where each atomic model will run on. Only the location of the atomic models needs to be
specified. CD++ will then determine where the coordinators should be placed.

This file is only required for parallel simulation. If standalone simulation is used, this
setting will be ignored.

The format for a partition file is described in section 5.4.

-ofilename: output filename. This parameter indicates the name of the file that will be used
to store the output generated by the simulator. If this parameter is omitted, the simulator
will not generate any output. If you wish to get the resuIts on standard output, simply
write -o.

The format for the generated output is described in section 6.1.

-Dfilename: debug filename for partition debug information. When this option is used, one
file for each LP will be created. This file will list all the identification of all DEVS
processors running on it.

9/77



cn-. User's Guide

-t: Sets the simulation finishing time. If this parameter is omitted, the simulator will stop
only when there are no more events (internal or external) to process. The format used to
set the time is HH:MM:SS:MS, where:

hoursHH:

MM:

SS:

MS:

minutes (Oto 59)

seconds (Oto 59)

thousandths of second (Oto 999)

-d: Defines the tolerance used to compare real numbers. The value passed with the -d
parameter will be used as the new tolerance value.
By default, the value used is 10-8

•

-pfIlename: Shows additional information when parsing a cell's local transition rules. The
parameter must be accompanied with the name of the file that will be used to store the
detail. This mode is useful when a syntax error occurs on complex rules.
The format used to store the output is showed in the section 6.4.

-vñlename: Enables verbose evaluation of the local transition rules. For each rule that is
evaluated, the result of each function and operator will be showed. In addition, this mode
will cause complete evaluation of the rules, i.e. it doesn't use rule optimization. The
parameter must be accompanied with the filename that will be used to store the
evaluation results.

The format ofthe output generated when this mode is enabled is described in section 6.5.

-b: Bypass the preprocessor. When this parameter is set, the macros will be ignored.

-r: Enables the rule checking mode. When this mode is enabled, the simulator checks for the
existence of multiple valid rules at runtime. If this condition is true, the simulation will be
aborted. This mode is available in standalone mode.

There are a few special cases to consider: if a stochastic model is used (i.e. a model that
uses random numbers generators) it might either happen that multiple rules are be valid or
that none of them is. In any case, the simulator will notify this situation to the user,
showing a warning message on standard output, but the simulation will not be aborted.
For the first case, the first valid rule will be considered. For the second case, the cell will
have an undefined value (?), and the delay time will be the default delay time specified
for the model.
If this parameter is not used when the simulator is invoked, the mode is disabled and only
will be considered the first valid rule.

-s: Show the simulation's finishing time on stderr.

-qvalue: Sets the value for the quantum.

The value used as quantum must be declared next to the parameter-q, for example: to set
the quantum value as 0.01 the parameter must be -q0.001.
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If the quantum value is o or the parameter -q is not used, the use of the quantum will be
disabled, and the value returned by the local computing function will be directIy the value
ofthe cell.

-w: Allows to set the wide and precision of the real values displayed on the outputs (log file,
external events file, evaluation results file, etc).
By default, the wide is 12 characters and the precision is of five digits. Thus, of the 12
characters of wide, 5 will be for the precision, 1 for the decimal point, and the rest will be
used for the integer part that will include a character for the sign ifthe value is negative.
To set new values for the wide and precision, the -w parameter must be used, followed of
the number of characters for the wide, a hyphen, and the number of characters for the
decimal parto For example to use a wide of 10 characters and 3 for the decimal digits, you
must write -wl0-3.
Any numerical value that must be showed by the simulator will be formatted using these
values, and it will be rounded if necessary. Thus, if a cell has the value 7.0007 and the
parameter -w10-3 is declared on the invocation of the simulator, the value showed for
the cell on all outputs will be 7.001, but the internal value stored will not be affected.
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3 Model definition

The simulator requires a model to run. A model is defined using afile (usally a .ma file), which is a
plain text file which details the model components. This section will explain how the structure of
such .ma file.

3.1 Structure of .ma fi/e

A model file is used to define coupled and Cell-DEVS models. Atomic models are added to the
tool at compile time, and if new atomic models need to be defined, they must be code as detailed in
section 80 A model file consists of a set of groups and definition clauses within the groups. A group
is identified by writing its name between square brackets, All lines following a group declaration
are taken to be parameters for that group and are of the form

Id: value

As an example, mygroup is defined below:

[mygroup]
mygroupparameter : value
mygroupparameter2 : value

Figure 5: Defining groups and group parameters

All model files must have a top group identifying the top level coupled model. A small model
example will be now shown, but Section 8 defines more complex models,

3.1.1 Coupled Models

A coupled model is defined in a group that has the model's mane o For a couple model, four
different parameters exist:

Components:

components: model_namel[@atomicclassl] [model_name2[@atomicclass2] 000

Lists the component models that make the coupled model. If this clause is not
specified, an error will occur. A coupled model might have atomic models or other
coupled model as components. For atomic components, an instance name and a class
name must be specified, This allows a coupled model to use more than one instance of
an atomic class. For coupled models, only the model name must be given, This model
name must be defmed as another group in the same file.

Out:
out : portname 1 portname2 o o o

Enumerates the model's output ports. This clause is optional because a model may not
have output ports.
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In:
in : portname 1 portname2 ...

Enumerates the input ports. This clause is also optional because a couple model is not
required to have input ports.

Link:

link: so urce yort[@model] destination yort[@model]

Defines the links between the components and between the components and the
coupled model itself. If name of the model is omitted it is assumed that the port
belongs to the coupled model being defined.

A model definition is shown below.

[top]
components : transducer@Transducer generator@Generator Consumer
Out : out
Link out@generator arrived@transducer
Link out@generator in@Consumer
Link out@Consumer solved@transducer
Link out@transducer out

I

[Consumer]
components queue@Queue processor@Processor
in : in
out : out
Link in in@queue
Link out@queue in@processor
Link out@processor done@queue
Link out@processor out

Figure 6 : Example for the definition of a DEVS coupled model

3.1.2 Atomic models

As it was mentioned before, atomic models must be coded. But an atomic model might have user
defined parameters that must be specified within the .ma file. If this is the case, the parameters are
specified in a group with the model's name (the model's name as defined in the components c1ause,
not the atomic c1ass name).

var namen valuen

[model_name]
var namel : valuel

Figure 7: User defined values for atomic models

The parameter names are defined by the model' s author and must be documented. Each instance of
an atomic model can be configured independently of other instances ofthe same kind.
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The next example shows two instances of the atomic class Processor with different values for the
user defined parameters.

[queue]
preparation 0:0:0:0

[top]
components Queue@queue Processor1@processor Processor2@processor

[processor]
distribution exponential
mean : 10

[processor2]
distribution poisson
mean : 50

Figure 8: Example of setting parameters to DEVS atomic models

3.1.3 Cell DEVS models

Cell DEVS models are a special case of coupled models. Then, when defining a cellular model, all
the coupled model parameters are available. In addition there exist some parameters that are of
cellular models. These parameters define the dimensions of the cell space, the type delay, the
default initial values and the local transition rules.

These parameters are:

type: [CELL I FLAT]

Defines the abstract simulator to be used. If cell is specified, there will be one
DEVS processor for each cell. Instead, if flat is specified, one flat coordinator will
be used. CD++ currently supports the cell option only.

width : integer

Defines the width of the cellular space. As it is the case with height, the width
parameter is provided for backward compatibility and implies that a 2-dimensional
cellular space will be used. For an n-dimensional cell space the dim parameter
should be used. width and height can not be used together with dim. If such a
situation exists, an error will be reported.

height : integer

Defines the height of the cellular space model. The same restrictions that were
given for width apply. For 1 dimension models, height should be set to 1.
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dim : (x¿ x., 000'Xn)

Defines the dimensions of the cellular space,
All the X¡values must be integers,
Dim can not be used together with any of the width and height parameters.

The vector that defines the dimension of the cellular model must have two or more
elements, For an unidimensional cellular model, the following form should be
used: (xo,1)0

When referencing a cell, all references must satisfy:
(Yo, y¡, 000'Yn) O::; y¡ < X¡ V i = 0, 00'n

with y¡ an integer value

In : Defines the input ports for a cellular model.

Out: Defines the output ports the cellular model.

Link: Defines the components coupling. For a coupled cell model, the components are
cells, To define the couplings, cell references must be used for the model name, A
cell reference is of the form:

CoupleCellName(x¡ ,X2,000,Xn)

Valid link definitions are of the form:

Link: outputPort inputPort@cellName (X¡,X2,000,Xn)
Link: outputPort@cellName (X¡,X2,000,Xn)inputPort
Link: outputPort@cellName (X¡,X2,000,Xn)inputPort@cellName (X¡,X2,000,Xn)

Border : [ WRAPPED I NOWRAPPED ]

Defines the type of border for the cellular space. By default, NOWRAPPED is
used, If a nonwrapped border is used, a reference to a cell outside the cellular space
will return the undefined value (?)o

Delay : [ TRANSPORT I INERTIAL ]

Specifies the delay type used for all cells of the model. By default the value
TRANSPORT is assumed,

DefaultDelayTime : integer

Defines the default del ay (in milliseconds) for inputs received from external DEVS
models. If a portInTransition is specified, then this parameter will be ignored for that
cell.
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Neighbors : cellName (XI,I, X2,l, ... ,Xn,1 ) ... cellName (XI,m, X2,m, ... ,Xn.m )

Defines the neighborhood for all the cells of the model. Each cell (XI,i, X2,i, ... ,Xn.¡)

represents a displacement from the centre cell (0,0, .... , O)

A neighborhood can be defined with any valid list of cells and is not restricted to
adjacent cells.

It is possible to use more than one neighbors sentence to define the neighborhood.

Initialvalue : [Real I ? ]

Defines the default initial value for each cell. The symbol ? represents the
undefined value. There are several ways of defining the initial values for each cell.
The parameter initialvalue has the least precedence. If another parameter defines a
new value for the cell, then that value will be used.

InitialRowValue : row, value¡ ...valuewidth

Defines the initial value for all the cells in row i.

Precondition:° :::;row, < Height (where Height is the second element of the dimension
defined with Dim, or the value defined with Height).
Can only be used for bidimensional models. For n-dimensional models the
initialCellsValue or initialMapValue parameters are preferred.

This clause is used for backward compatibility. All values are single digit values in
the set {?, 0, 1,2,3,4,5,6, 7, 8, 9}. The first digit will define the value for the first
cell in the row, the second for second cell and so on. No spaces are allowed
between digits.

InitialRow : row, value¡ ... valuewidth

Same as initialrowvalue, but values can now be any member ofthe set 9t U {?}.
Each value in the list must be separated by a blank space from the next one.

InitialCellsValue :fileName

Defines the filename for the file that contains a list of initial value for cells in the
model. Section 5.1 defines the format for these files. initialcellsvalue can be used
with any size of cellular models and will have more precedence that initialrow and
initialrowvalue.
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InitiaIMap Value :jileName

Defines the filename for the file that contains a map of values that will be used as
the initial state for a cellular model. Section 5.2 defines the format for these files.

LocalTransition : transitionFunctionName

Defines the name of the group that contains the rules for the default local
computing function.

PortInTransition :portName@ cellName (XI, X2, ... ,Xn) transitionFunctionName

It allows to define an alternative local transition for external events. By default, if
this parameter is not used, when an external event is received by a cell its value
will be the future value of the cell with a delay as set by the defaultDelayTime
clause.

Section 9.3 illustrates the use ofthe portInTransition clause.

Zone : transitionFunctionName { range.] ..range.] }

A zone defmes a region of the cellular space that will use a different local
computing function. A zone is defined giving as a set of single cells or cell ranges.
A single cell is defined as (X¡,X2, ... ,Xn), and a range as (X¡,X2, ... ,Xn) .. (Y¡'Y2,Yn). All
cells and cell ranges must be separated by a blank space.

As an example,

zone: pothole { (10,10) .. (13, 13) (1,3)}

tells CD++ that the local transition rule pothole will be used for the cells in the
range (10,10) ..(13,13) and the single cell (1,3). The zone clause will override the
transition defined by the localtransition clause.
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4 Writing local transition functions for cellular models.

Local transition functions for cellular models are defined as groups in the .ma file. They are not
tied to a particular model, so they can be used for more than one cellular model at the same time. A
local transition is made of a set of rules of the form:

rule : result delay { condition }

A rule is composed of three elements: a condition, a delay and a resulto To calculate the new value
for a cell's state, the simulator takes each rule (in the order in that they were defined) and evaluates
the condition clause. If the condition evaluates to true, then the result and delay clause are
evaluated. The result will be the new cell state and will be sent as an output after the obtained
delay. Whether the previous sate values will be still sent as outputs or not will depend on the delay
type of the cells. Inertial delay cells will preempt any scheduled outputs. On the other hand,
transport delay cells will keep them.

Rules whose condition clause evaluates to false are skipped. If all the rules are evaluated without
one having a true condition, then the simulation will be aborted. If there is more than one rule with
a condition that evaluates to true, the first one will be the one that determines the new cell's state. If
the delay clause of a cell evaluates to undefmed, then the simulation will be automatically
cancelled.

4.1 A grammar for writing the rules

The BNF for the grarnmar used for the rules is shown in Figure 9. Words written in bold lowercase
represent terminal s symbols, while those written in uppercase represent non terminals.

OP BOOL and or xor imp eqv

RULELIST

RULE

RULE
I RULE RULELIST

RESULT RESULT { BOOLEXP }

RESULT CONSTANT
I {REALEXP}

BOOLEXP BOOL
( BOOLEXP )
REALRELEXP
not BOOLEXP
BOOLEXP OP BOOL BOOLEXP

REALRELEXP REALEXP OP REL REALEXP
COND_REAL_FUNC{REALEXP)

REALEXP IDREF
I (REALEXP)
I REALEXP OPER REALEXP

IDREF CELLREF
CONSTANT
FUNCTION
portValue{PORTNAME)
send{PORTNAME, REALEXP)
cellPos{REALEXP)

18/77



(

CD++ User's Guide

CONSTANT INT
1 REAL
1 CONSTFUNC
1 ?

FUNCTION UNARY_FUNC (REALEXP)
WITHOUT PARAM FUNC- -BINARY_FUNC(REALEXP, REALEXP)
if(BOOLEXP, REALEXP, REALEXP)
ifu(BOOLEXP, REALEXP, REALEXP, R ALEXP)

(INT, INT REST TUPLA

, INT REST TUPLA
1 )

t 1 f 1 ?

1= 1 1 > 1 < >= <=

+ 1 1 * 1 /

[SIGN] DIGIT {DIGIT}

INT [SIGN] {DIGIT} .DIGIT {DIGIT}

CELLREF

REST TUPLA

BOOL

OP REL

OPER

INT

REAL

SIGN +

o 1 112 314 1 516 1 7 181 9DIGIT

thisPortPORTNAME STRING

LETTER {LETTER}STRING

a 1 b 1 c 1 ... 1 z 1 A 1 B 1 C 1 ... 1 zLETTER

pi 1 e 1 inf 1 grav 1 accel 1 light 1 planck 1 avogadro 1
faraday 1 rydberg 1 euler_gamma 1 bohr_radius 1 boltzmann

CONSTFUNC

bohr_magneton 1 golden 1 catalan 1 amu 1 electron_charge 1

ideal_gas 1 stefan_boltzmann 1 proton_mass 1 electron mass

neutron mass 1 pem

WITHOUT PARAM FUNC = truecount 1 falsecount 1 undefcount 1 time 1 random
randomSign

abs acos 1 acosh 1 asin 1 asinh 1 atan 1 atanh 1 cos
sec 1 sech 1 exp 1 cosh 1 fact 1 fractional 1 ln 1 log
round 1 cotan 1 cosec 1 cosech 1 sigp 1 sin 1 sinh 1

statecount 1 sqrt 1 tan 1 tanh 1 tr~nc 1 truncUpper 1
poisson 1 exponential 1 randInt 1 chi 1 asec 1 acotan
asech 1 acosech 1 nextPrime 1 radToDeg 1 degToRad 1

nth_prime 1 acotanh 1 CtoF 1 CtoK 1 KtoC 1 KtoF 1 FtoC 1
FtoK

UNARY FUNC

comb 1 logn max 1 min 1 power 1 r~mainder 1 root 1 beta

gcd 1 normal 1 f 1 uniform 1 binomial 1
rectToPolar_angle 1 polarToRect_x hip

BINARY FUNC
1 -

gamma 1 lcm
rectToPolar r
polarToRect_y

COND REAL FUNC = even 1 odd 1 isInt 1 isPrime 1 isUndefined
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Figure 9: Grammar used for the definition of a ceU's local transition

Basically, a rule is made ofthree expressions: a result expression, a delay expression and a boolean
expression. The result expression should evaluate to any real value. The delay expression should
also evaluate to any real value that will be truncated to the smallest integer.

4.2 Precedence Order and Associativity of Operators

The precedence order indicates which operation will be solved first. For example ifwe have:

C+B*A

where * and + are the sum and multiplication operations for real numbers, and A, B and C are real
constants, then since * has higher precedence than +, B * A will be evaluated first. The sum will be
evaluate in a second step. The result will be equivalent to solve C + (B * A).

The associativity indicates which of two operations of same precedence will be evaluated first.
Operators are either left associative or right associative. The logical operators AND and OR are left
associative, so the in the expression

CandB or D

will be solved as (C and B) or D

Clauses that are not associative cannot be combined simultaneously without another operator of
different precedence.

The table of precedence and associativities for the rule specification language follows:

Left
Left

Higher
Precedence

Code
AND OR XOR IMP EQV
NOT
= != > < >= <=
+ -
* /
FUNCTION
REAL INT BOOL COUNT? STRING CONSTFUNC

Associativity
Left

Right
Lower

Precendence

Figure 1 - Precedence Order and Associativity used in CD++

4.3 Functions and Constants allowed by the language

4.3.1 Boolean Values

Boolean values in CD++ use trivalent logic.

The trivalent logic use the values T or 1 to represent to the value TRUE, F or O to represent the
FALSE, and ? to represent to the UNDEFINED.
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4.3. 1.1 Boolean Operators

4.3.1.1.1 Operator ANO

The behavior of the operator AND is defined with the following table of truth:

AND T F ?
T T F ?
F F F F
? ? F ?

Figure 10: operator AND truthtable

4.3.1.1.2 Operator OR

The behavior of the operator OR is defined with the following table of truth:

OR T F ?
T T T T
F T F ?
? T ? ?

Figure 11: Operator OR truthtable

4.3.1.1.3 Operator NOT

The behavior of the operator NOT is defined with the following table of truth:

NOT
T F
F T
? ?

Figure 12: Behavior ofthe boolean operator NOT

4.3.1.1.4 Operator XOR

The behavior of the operator XOR is defined with the following table of truth:

XOR T F ?
T F T ?
F T F ?
? ? ? ?

Figure 13: Operator XOR truthtable
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4.3.1.1.5 Operator IMP

IMP represents the logic implication, and its behavior is defined with the following table oftruth:

IMP T F ?
T T F ?
F T T T
? T ? ?

Figure 14: Operator IMP trutbtable

4.3.1.1.6 Operator EQV

EQV represents the equivalence between trivalent logic values, and its behavior is defined with the
following table of truth:

EQV T F ?
T T F F
F F T F
? F F T

Figure 15: Operator EQV trutbtable

4.3.2 Functions and Operations on Real Numbers

4.3.2.1 Re/ational Operators

The relational operators work on real numbers' and retum a boolean value pertaining to the
previously defined trivalent logic. The language used by CD++ allows the use ofthe operators ==,
!=, >, <, >=, <= whose behavior is described next.

As opposed to the traditional definition of these operators, the introduction of an undefined value
makes the definition of a total order impossible because the value ? is not comparable with any
existing real number.

4.3.2.1.1 Operator =

The operator = is used to test for equality of two real numbers.

= ? Real Number
? T ?

Real Number ? = of real number

Figure 16: Bebavior oftbe Relational Operator =

1 From here, when referring to the terrn "Real Number" a value in the set R u {? } will be meant.
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4.3.2.1.2 Operator !=

The operator != is used to test if two real numbers are not equal. Its behavior is defined as follows:

1= ? Real Number
? F ?

Real Number ? =F of real number

Figure 17: Behavior of the Relational Operator !=

4.3.2.1.3 Operator>

The operator > is used to test if a real number is greater than another real number. Its behavior is
defined as follows:

> ? Real Numb
? F ?

Real Number ? > ofreal num

~

~

Figure 18: Behavior of the Relational Operator >

4.3.2.1.4 Operator <

The operator < is used to test if a real number is less then another real number. Its behavior is
defined as follows:

< ? RealNum
? F ?

Real Number ? < ofreal nu

b~

m~

Figure 19: Behavior of the Relational Operator <

4.3.2.1.5 Operator <=

The operator <= is used to test if a real number is les s or equal to another real number. Its behavior
is defined as follows:

<= ? Real Numb
? T ?

Real Number ? ~ ofreal num

~

~

Figure 20 : Behavior of the Relational Operator <=
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4.3.2.1.6 Operator >=

The operator >= is used to test if a real number is greater or equal to another real number. Its
behavior is defined as follows:

>= ? Real Num'
? T ?

Real Number ? ~ ofreal nu:

~

~

Figure 21: Behavior ofthe Relational Operator >=

4.3.2.2 Arithmetic Operators

The traditional arithmetic operators are available. If any of the operands is undefined, then the
result of the operation will be undefined. This is also valid for functions. If any of a function
arguments is undefined, the result of evaluating the function will also be undefined.

The available operators are:

opl + op2
opl- op2
opl /op2
op l * op2

retums the sum of the operators.
retums the difference between the operators.
retums the value ofthe opl divided by op2.
retums the product ofthe operators.

Figure 22: Arithmetic Operators

Division by zero will result to the undefined value.

4.3.2.3 Functions on Real Numbers

4.3.2.3.1 Functions to Verify Properties of Real Numbers

The functions in this section allow to check for special properties of real numbers, such as parity,
primality, etc.

Function Even
Signature:
Description:

Examples:

Function Odd
Signature:
Description:

Examples:

even : Real ---+ Bool
Retums True if the value is integer and even. If the value is undefined
retums Undefined. In any other case it retums False.
even(?) = F
even(3.14) = F
even(3) = F
even(2) = T

odd : Real ---+ Bool
Retums True if the value is integer and odd. If the value is undefined
retums Undefined. In any other case it retums False.
odd(?) = F
odd(3.14) = F
odd(3) = T
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odd(2) = F

Function islnt
Siznature:
Description:

Examples:

Function isPrime
Signature:
Description:
Examples:

Function is Undefined
Signature:
Description:
Examples:

isInt :Real ~ Bool
Retums True if the value is integer and not undefined. Any other case
retums False.
islnt(?) = F
islnt(3.14) = F
islnt(3) = T

isPrime :Real ~ Bool
Retums True ifthe value is a prime number. Any other case retums False.
isPrime(?) = F
isPrime(3 .14) = F
isPrime( 6) = F
isPrime(5) = T

isUndefined :Real ~ Bool
Retums True ifthe value is undefined, else retums False.
isUndefined(?) = T
isUndefined(4) = F

4.3.2.3.2 Mathematical Functions

This section describes commonly used mathematical functions.

4.3.2.3.2.1

Function tan
Signature:
Description:

Examples:

Function sin
Signature:
Description:

Function cos
Signature:
Description:

Function sec
Signature:
Description:

Trigonometric Functions

tan :Real a ~ Real
Retums the tangent of a measured in radians.
For the values near to n/2 radians, retums the constant INF.
If a is undefined then retum undefined.
tan(PI/ 2) = INF
tan(?) =?
tan(P]) = O

sin :Real a ~ Real
Retums the sine of a measured in radians.
If a has the value ? then retums ?

cos : Real a ~ Real
Retums the cosine of a measured in radians.
If a has the value? the retums?

sec : Real a ~ Real
Retums the secant of a measured in radians.
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Function cotan
Siznature:
Deseription:

Function cosec
Signature:
Deseription:

Function atan
Signature:
Deseription:

Function asin
Signature:
Deseription:

Function acos
Signature:
Deseription:

Function asee
Signature:
Deseription:

Function acotan
Signature:
Deseription:

Function sinh
Signature:
Deseription:

If a has the value? then retums?
Ifthe angle is ofthe form n/2 + x.n, with x an :integer number, then retums
the eonstant INF.

cotan :Real a ~ Real
Calculates the eotangent of a.
If a has the value? Then retums ?
If a is zero or multiple of n, then retums INF.

cosec :Real a ~ Real
Calculates the eoseeant of a.
If a has the value ?, then retums?
If a is zero or multiple of n, then retums INF.

atan :Real a ~ Real
Retums the are tangent of a measured in radians, whieh is defined as the
value b sueh tan(b) = a.
If a has the value? Then retums?

asin :Real a ~ Real
Retums the are sine of a measured in radians, whieh is defined as the value
b sueh sin(b) = a.
If a has the value? or if a (i'Ó [-1, 1], then returns ?

acos :Real a ~ Real
Retums the are eosine of a measured in radians, whieh is defined as the
value b sueh eos(b) = a.
If a has the value? or if a (i'Ó [-1, 1], then retums ?

asee : Real a ~ Real
Retums the are seeant of a measured in radians, whieh is defined as the
value b sueh see(b) = a.
If a is undefined (?) or if lal < 1, then retums 1'.

acotan :Real a ~ Real
Retums the are eotangent of a measured in radians, whieh is defined as the
value b sueh eotan(b) = a.
If a is undefined (?), then retums ?

sinh :Real a ~ Real
Retums the hyperbolie sine of a measured in radians.
If a has the value ?, then retums ?
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Function cosh
Siznature:
Deseription:

Function tanh
Signature:
Deseription:

Function sech
Signature:
Deseription:

Function cosech
Signature:
Deseription:

Function atanh
Signature:
Deseription:

Function asinh
Signature:
Deseription:

Function acosh
Signature:
Deseription:

Function asech
Signature:
Deseription:

Function acosech
Signature:

cosh :Real a -+ Real
Retums the hyperbolie eosine of a measured in radians, whieh is defined as
eosh(x) = (eX+ e-X) / 2.
If a has the value ?, then retums ?

tanh :Real a -+ Real
Retums the hyperbolie tangent of a measured in radians, whieh is defined
as sinh(a) / cosh(a).
If a has the value?, then retums ?

sech :Real a -+ Real
Retums the hyperbolie seeant of a measured in radians, whieh is defined
as
1 / eosh(a)
If a has the value ?, then retums ?

cosech :Real a -+ Real
Retums the hyperbolie eoseeant of a measured in radians.
If a has the value ?, then retums ?

atanh :Real a -+ Real
Retums the hyperbolie are tangent of a measured in radians, whieh is
defined as the value b sueh tanh(b) = a.
If a has the value ?, or if its absolute value is greater than 1 (i.e., a i;f [-1,
1]), then retums ?

asinh :Real a -+ Real
Retums the hyperbolie are sine of a measured in radians, whieh is defined
as the value b sueh sinh(b) = a.
If a has the value ?, then retums ?

acosh :Real a -+ Real
Retums the hyperbolie are eosine of a measured In radians, which lS

defined as the value b such cosh(b) = a.
If a has the value ? or is less than 1, then retums ?

asech :Real a -+ Real
Retums the hyperbolie are secant of a measured in radians, which is
defined as the value b such sech(b) = a.
If a is undefined, then retum ? If it is zero, then retums the constant INF.

acosech :Real a -+ Real
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Deseription:

Funetion aeotanh
Siznature:
Deseription:

Funetion hip
Siznature:
Deseription:

Returns the hyperbolie are eosee of a measured in radians, whieh is defined
as the value b sueh eoseeh(b) = a.
If a is undefined, then retums ? If it is zero, then returns the eonstant INF.

acotanh :Real a ~ Real
Retums the hyperbolie are eotangent of a measured in radians, whieh is
defined as the value b sueh eotanh(b) = a.
If a is undefined, then returns ? If is 1 then retums the eonstant INF.

hip :Real el x Real e2 ~ Real
Calculates the hypotenuse of the triangle eomposed by the side el and e2.
If el or e2 are undefined or negatives, then retums ?

4.3.2.3.2.2 Funetions to ealeulate Roots, Powers and Logarithms.

Funetion sqrt
Siznature:
Deseription:

Examples:

Note:

Funetion exp
Siznature:
Deseription:

Examples:

Funetionln
Signature:
Deseription:

Examples:

Note:

Function log
Signature:
Deseription:

sqrt :Real a ~ Real
Retums the square root of a.
If a is undefined or negative, then retums ?
sqrt(4) = 2
sqrt(2) = 1.41421
sqrt(O) = O
sqrt(-2) =?
sqrt(?) =?
sqrt(x) is equivalent to root(x, 2) Vx

exp :Real x ~ Real
Retums the value of e".
If x is undefined, then retum ?
exp(?) =?
exp( -2) = 0.135335
exp(1) = 2.71828
exp(O) = 1

In : Real a ~ Real
Retums the naturallogarithm of a.
If a is undefined or is les s or equal than zero, then retums ?
In(-2) =?
In(O) =?
In(1) = O
ln(?) =?
ln(x) is equivalent to Iogn(x, e) Vx

Iog : Real a ~ Real
Retums the logarithm in base 10 of a.
If a is undefined or less or equal to zero, then returns ?
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Examples:

Note:

Function logn
Siznature:
Description:

Function power
Siznature:
Description:

Function root
Siznature:
Description:

Examples:

Note:

log(3) = 0.477121
log(-2) =?
log(?) =?
10g(0) =?
log(x) is equivalent to logn(x, 10) 'l/x

logn :Real a x Real n ---+ Real
Retums the logarithm in base n of the value a.
If a or n are undefined, negatives or zero, then retums ?
logn(x, e) is equivalent to ln(x) 'l/x
logn(x, 10) is equivalent to log(x) 'l/x

power :Real a x Real b ---+ Real
Retums ab

•

If a or b are undefined or b is not an integer, then retums ?

root :Real a x Real n ---+ Real
Retums the n-root of a.
If a or n are undefined, then retums ? Also, retums this value if a is
negative or n is zero.
root(27, 3) = 3
root(8, 2) = 3
root( 4, 2) = 2
root(2, ?) = ?
root(3, 0.5) = 9
root( -2, 2) = ?
root(O, 4) = O
root(1, 3) = 1
root(4, 3) = 1.5874
root(x, 2) is equivalent to sqrt(x) 'l/x

4.3.2.3.2.3 Functions to calculate GCD, LCM and the Rest o/ the Numeric Division

Function LCM
Signature:
Description:

Function GCD
Signature:
Description:

Function remainder
Signature:

km :Real a x Real b ---+ Real
Retums the Less Common Multiplier between a and b.
If a or b are undefined or non-integers, then returns ?
The value retumed is always integer.

gcd :Real a x Real b ---+ Real
Ca1culates the Greater Common Divisor betweeen a and b.
If a or b are undefined or non-integers, then retums ?
The value retumed is always integer.

remainder :Real a x Real b ---+ Real
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Description:

Examples:

Ca1culates the remaindert of the división between a and b. The retumed
value is: a-n * b, where n is the quotient a/b rounded as an integer.
If a or b are undefined, then retums ?
remainder(l2, 3) = O
remainder(l4, 3) = 2
remainder( 4, 2) = O
remainder(O, y) = O
remainder(x, O)= x
remainder(1.25, 0.3) = 0.05
remainder(l.25, 0.25) = O
remainder(?, 3) = ?
remainder( 5, ?) = ?

'\Iy=F-?

'\Ix

4.3.2.3.3 Functions to Convert Real Values to Integers Values

This section presents functions available to convert real values to integers using the rounding and
truncation techniques as detailed.

Function round
Siznature:
Description:

Examp1es:

Function trunc
Signature:
Description:

Examples:

Function truncUpper
Signature:
Description:

Examp1es:

Function fractional
Signature:
Description:

Examples:

round : Real a ~ Real
Rounds the value a to the nearest integer.
If a is undefined ?, then retums ?
round(4) = 4
round(?) =?
round(4.1) = 4
round( 4.7) = 5
round(-3.6) =-4

trunc: Real x ~ Real
Retums the greater integer number less or equal than x.
If x is undefined, then retums ?
trunc(4) = 4
trunc(?) =?
trunc(4.1) =4
trunc(4.7) = 4

truncUpper: Real x ~ Real
Retums the smallest integer number greater or equal than x.
If x is undefined, then retums ?
truncUpper(4) = 4
truncUpper(?) =?
truncUpper(4.1) = 5
truncUpper(4.7) = 5

fractional :Real a ~ Real
Retums the fractional part of a, inc1uding the signo
If a is undefined then retums ?
fractional( 4.15) = 0.15
fractional(?) = ?
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fractional(-3.6) = -0.6

4.3.2.3.4 Functions to manipulate the Sign of numerical values

Function abs
Siznature:
Description:

Examples:

Function sign
Signature:
Description:

abs : Real a ---+ Real
Returns the absolute value of a.
If a is undefined then returns ?
abs(4.l5) = 4.15
abs(?) =?
abs(-3.6) = 3.6
abs(O) = O

sigo : Real a ---+ Real
Retums the sign of a in the following form:
If a > Othen retums 1.
If a < Othen retums -1.
If a = Othen retums O.
If a = ? then retums ?

Function randomSign
See the section 4.3.2.3.8.

4.3.2.3.5 Functions to manipulate Prime numbers

This functions are used to test for primality. Although they are available, they are quite
complex and can require a lot of time to solve.

Function isPrime
See the section 4.3.2.3.1.

Function nextPrime
Signature:
Description:

Function nth Prime
Siznature:
Description:

oextPrime : Real r ---+ Real
Retums the next prime number greater than r.
If r is undefined then retums ?
If an overflow occur when calculating the next prime number, the constant
INF is returned.

nth Prime: Real n ---+ Real
Retums the nth prime number, considering as the first prime number the
value 2.
If n is undefined or non-integer then returns ?
If an overflow occur when calculating the next prime number, the constant
INF is retumed.
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4.3.2.3.6 Functions to calculate Minimum and Maximums

Function min
Siznature:
Description:

Function max
Signature:
Description:

min :Real a x Real b ~ Real
Return the minimum between a and b.
If a or b are undefined then returns ?

max : Real a x Real b ~ Real
Returns the maximum between a and b.
If a or b are undefined then returns ?

4.3.2.3.7 Conditional Functions

The functions described in this section return a real value that depe ds on the evaluation of a
specified logical condition.

Function if
Signature:
Description:

Examples:

Function ifu
Signature:
Description:

if: Bool e x Real t x Realf ~ Real
If the condition e is evaluated to TRUE, then returns the evaluation of t,
else returns the evaluation off
The values of t and f can even come from the evaluation of any expression
that returns a real value, including another if sentence.
If you wish to return the value 1.5 when the natural logarithm of the cell
(O, O) is zero or negative, or 2 in another case. In this case, it will be
written:

if(ln( (O, O) ) = °or (O, O)< 0, 1.5, 2)
Ifyou wants to return the value ofthe cells (1, 1) + (2, 2) when the cell (O,
O) isn't zero; or the square root of (3, 3) in another case, it will be written:

if( (O, O) != 0, (1, 1) + (2, 2), sqrt(3, 3))
It can also be used for the treatment of a numeric overflow. For example, if
the factorial of the cell (O, 1) produces an overflows, then return -1, else
return the obtained result. In this case, it will be written:

if(fact( (0,1)) =INF, -1, fact( (0,1)))

ifu : Bool e x Real t x Realfx Real u ~ Real
Ifthe condition e is evaluated to TRUE, then returns the evaluation of t. If
it evaluates to FALSE, returns the evaluation of f Else (i.e. is undefined),
returns the evaluation of u.
If you wish to return the value of the cell (O, O) if its value is distinct than
zero and undefined, 1 if the value of the cell is 0, and 1t if the cell has the
undefined value. In this case, it will be invoked:

ifu( (O, O) != 0, (O, O), 1, PI)

4.3.2.3.8 Probabilistic Functions

Examples:

Function randomSign
Signature:
Description:

randomSign : ~ Real
Randomly returns a numerical value that represents a sign (+ 1 or -1), with
equal probability for both values.
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Function random
Signature:
Description:

Note:

Function chi
Signature:
Description:

Function beta
Signature:
Description:

Function exponential
Signature:
Description:

Functionf
Signature:
Description:

Function gamma
Signature:
Description:

Function normal
Signature:
Description:

Function uniform
Signature:
Description:

Note:

random : ---* Real
Retums a random real value pertaining to the i terval (O, 1), with uniform
distribution.
random is equivalent to uniform (O,1).

chi :Real df ---* Real
Returns a random real number with Chi-Squared distribution with df
degree of freedom.
If df is undefined, negative or zero, then retums ?

beta :Real a x Real b ---* Real
Retums a random real number with Beta distribution, with parameters a
and b.
If a or b are undefined or less than 10-37

, then re ms?

exponential :Real av ---* Real
Retums a random real number with Exponential distribution, with average
av.
If av is undefined or negative, then returns ?

f :Real dfn x Real dfd ---* Real
Retums a random real number with F distri ution, with dfn degree of
freedom for de numerator, and dfd for the denominator.
If dfn or dfd are undefined, negatives or zero, then return ?

gamma :Real a x Real b ---* Real
Retums a random real number with Garnma distribution with parameters
(a, b).
If a or b are undefined, negatives or zero, then retums ?

normal: Real JiX Real a---* Real
Retums a random real number with Normal distribution (p, 0), where Ji is
the average, and ais the standard error.
If Ji or zrare undefined, or a is negative, returns ?

uniform :Real a x Real b ---* Real
Retums a random real number with uniform istribution, pertaining to the
interval (a, b).
If a or b are undefined, or a > b, then returns ?
uniform(O, 1) is equivalent to the function random.
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Function binomial
Siznature:
Description:

Function poisson
Siznature:
Description:

Function randlnt
Signature:
Description:

Note:

binomial : Real n x Real p ~ Real
Returns a random number with Binomial distribution, where n is the
number of attempts, and p is the success probability of an event.
If n or pare undefined, n is not integer or negative, or p not pertain to the
interval [O, 1], then return ?
The returned number is always an integer.

poisson : Real n ~ Real
Retum a random number with Poisson distribution, with average n.
If n is undefined or negative, then retums ?
The returned number is always an integer.

randlnt :Real n ~ Real
Retums an integer random number contained in the interval [O, n], with
uniform distribution.
If n is undefined, then retums ?
randlnt(n) is equivalent to round(uniform(O, n)

4.3.2.3.9 Functions to calculate Factorials and Combinatorial

Function fact
Signature:
Description:

Examples:

Function comb
Signature:

Description:

fact : Real a ~ Real
Returns the factorial of a.
If a is undefined, negative or non-integer, then return ?
If an overflow occur when calculating the next prime number, the constant
INF is retumed.
fact(3) = 6
fact(O) = 1
fact(5) = 120
fact(13) = 1.93205e+09
fact(43) =INF

comb : Real a x Real b ~ Real

Returns the combinatory (: )

If a or b are undefined, negatives or zero, or non-integers, then retums ?
This value is also retumed if a < b.
If an overflow occur when calculating the next prime number, the constant
INF is retumed.

4.3.2.4 Functions tor the Gells and his Neighborhood

This section details the functions that allow to count the quantity of cells belonging to the
neighborhood whose state has certain value, as also the function cel/Pos that allows to project an
e1ement of the tupla that references to the cell.
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Function stateCount
Siznature:
Description:

Function trueCount
Siznature:
Description:

Function falseCount
Signature:
Description:

Function undefCount
Signature:
Description:

Function cel/Pos
Signature:
Description:

Examples:

stateCount :Real a ~ Real
Retums the quantity ofneighbors ofthe cell whose state is equal to a.

trueCount : ~ Real
Retums the quantity of neighbors of the cell whose state is 1.
This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

falseCount : ~ Real
Retums the quantity ofneighbors ofthe cell whose state is O.
This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

undefCount : ~ Real
Retums the quantity ofneighbors ofthe cell whose state is undefined (?).
This function is equivalent to stateCount(l) and it is not removed from the
language to offer compatibility with CD++.

cellPos :Real i ~ Real
Retums the ith position inside the tupla that references to the cell. That is to
say, given the cell (xo,x¡, ....x.), then cel/Pos( i ) = x.,
If the value of i is not integer, then it will be automatically truncated.
If i ~ [O, n+ 1), where n is the dimension of the model, it will produce an
errorr that will abort the simulation.
The value retumed always will be an integer.
Given the cell (4, 3, 10,2):
cellPos(O) = 4
cellPos(3.99) = cellPos(3) = 2
cellPos(1.5) = cellPos(1) = 3
cellPos(-l) y cellPos(4) will generate an error.

4.3.2.5 Functions to Get the Simulation Time

Function Time
Signature:
Description:

time: ~ Real
Retums the time of the simulation at the moment in that the rule this being
evaluated, expressed in milliseconds.

4.3.2.6 Functions to Convert Values between different units

4.3.2.6.1 Functions to Convert Degrees to Radians
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Function radToDeg
Siznature:
Description:

Function degToRad
Siznature:
Description:

radToDeg : Real r ~ Real
Converts the value r from radians to degrees.
If r is undefined then retums ?

degToRad : Real r ~ Real
Converts the value r from degrees to radians.
If r is undefined then retums ?

4.3.2.6.2 Functions to Convert Rectangular to Polar Coordinates

Function rectToPolar r
Siznature: rect'I'of'olarj r : Real x x Real y ~ Real
Description: Converts the Cartesian coodinate (x, y) to the polar form (r, 8), and retums

r.
If x or y are undefined then retum ?

Function rectToPolar _angle
Siznature: rectToPolar _angle : Real x x Real y ~ Real
Description: Converts the Cartesian coordinate (x, y) to the polar form (r, 8), and retums

8.
If x or y are undefined then retum ?

Function polarToRect _x
Siznature: polarToRect_x : Real r x Real (J~ Real
Description: Converts the polar coordinate (r, 8) to the Cartesian form (x, y), and retums

x.
If r or (Jare undefined, or r is negative, then retums ?

Function polarToRect y
Siznature: polarToRec(y: Real r x Real (J~ Real
Description: Converts the polar coordinate (r, 8) to the Cartesian form (x, y), and retums

y.
If r or (Jare undefined, or r is negative, then retums ?

4.3.2.6.3 Functions to Covert Temperatures between different nits

Function CtoF
Siznature:
Description:

Function CtoK
Signature:
Description:

Function KtoC
Signature:
Description:

CtoF : Real ~ Real
Converts a value expressed in Centigrade degrees to Fahrenheit degrees.
Ifthe value is undefined then retums ?

CtoK : Real ~ Real
Converts a value expressed in Centigrade degrees to Kelvin degrees.
If the value is undefined then retums ?

KtoC : Real ~ Real
Converts a value expressed in Kelvin degrees to Centigrade degrees.
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If the value is undefined then retums ?

Function KtoF
Siznature:
Description:

Function FtoC
Signature:
Description:

Function FtoK
Signature:
Description:

4.3.2.7

KtoF: Real+» Real
Converts a value expressed in Kelvin degrees to Fahrenheit degrees.
If the value is undefined then retums ?

FtoC : Real -+ Real
Converts a value expressed in Fahrenheit degrees to Centigrade degrees.
If the value is undefined then retums ?

FtoK : Real -+ Real
Converts a value expressed in Fahrenheit degrees to Kelvin degrees.
If the value is undefined then retums ?

Functions to manípulate the Values on the Input and Output Potts

Function portValue
Signature:
Description:

portValue: Stringp -+ Real
Retums the last value arrived through the input port p of the cell of the cell
being evaluated. This function will only be available for PortlnTransition
rules (see section 9.3 ) . Other uses will generate an error.

If no message has arrived through port p before portValue is evaluated, an
undefined value (?) will be retumed. Otherwise, the last value received
through the port will be retumed.

When the string "thisPort" is used as the port name, the value received
through the port associated with the current PortlnTransition will be
retumed. For example:

The following mode1 has two different PortlnTransitions

PortlnTransition: portA@cell(O,O)
PortlnTransition: portB@cell(l,l)

functionA
functionB

[functionA]
rule: 10 100 { portValue(portA) > 10 }
rule: O 100 { t }

[functionB]
rule: 10 100 { portValue(portB) > 10 }
rule: O 100 { t }

Figure 23: Example ofuse ofthe function portValue

If we wanted to avoid repeating the same transition twice, we could either
give the two ports the same name or use thisPort as shown next:
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PortlnTransition: portA@cell(O,O)
PortlnTransition: portB@cell(1,1)

functionA
functionA

[functionA]
rule: 10 100
rule: O 100

{ portValue (thisPor't) > 10 }
{ t }

Figure 24 : Example of use of the function portValue with thisPort

Section 9.3 shows an example where the portInTransition c1ause is used.

Function send
Siznature:
Description:

send : String p x Real x ~ O
Sends the value x through the output port p.

If the output port p has not been defined, an error will be raised and the
simulation will be aborted. This function is usually used to send values to
other DEVS models.

send always retums O. This makes it possible to inc1ude the function send
in the result section of a rule without modifying the actual results.

{ (0,0) + send( port1, 15 * log(10) ) } 100 { (0,0) > 10 }

Note: Send is a function of the language that can be used in any
expression, as for example, in the definition of a condition. However, this
is not recornmended because for every condition that is evaluated that
inc1udes the function send, a value will be sent. Instead, send should be
used in the expression for the delay or the value of the cell.

4.3.3 Predefined Constants

The following constants frequently used in the domains of the physics and the chemistry are
available.

Constant Pi
Retums 3.14159265358979323846, which represent the value of n, the relation between the
circumference and the radius ofthe circ1e.

Constant e
Retums 2.7182818284590452353, which represent the value of the base of the natural
logarithms.

Constant INF
This constant represents to the infinite value, although in fact it retums the maximum value
valid for a Double number (in processors Intel 80x86, this number is 1.79769 x 10308

).

Note that if, for example, we make x + INF - INF, where x is any real value, we will get ° as
a result, because the operator + is associative to left, for that will be solved:

(x + INF) - INF = INF - INF = O.
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Note: When being generated a numeric overflows taken place by any operation, it is returned
INF or -INF. For example: power(12333333, 78134577) = INF.

Constant electron mass
Retums the mass ofan electron, which is 9.1093898 x 10-28 grams.

Cons tant proton _mass
Retums the mas s of a proton, which is 1.6726231 x 10-24 grams.

Constant neutron mass
Retums the:mass of a neutron, which is 1.6749286 x 10 -24 grams.

Constant Catalan
co

Retums the Catalan's constant, which lS defined as ¿(-1)k.(2k+lf2, that lS

k=O

approximately 0.9159655941772.

Constant Rydberg
Retums the Rydberg's constant, which is defined as 10.973.731,534/ m.

Constant grav
Retums the gravitational constant, defined as 6,67259 x 10-11 m' I (kg. S2)

Constant bohr radius
Retums the Bohr's radius, defined as 0,529177249 x io" m.

Constant bohr _magneton
Retums the value ofthe Bohr's magneton, defined as 9,2740154 x 10-24 joule / tesla.

Constant Boltzmann
Retums the value ofthe Boltzmann's constant, defined as 1,380658 x 10-23 joule / 0K.

Constant accel
Retums the standard acceleration constant, defined as 9,80665 m / sec",

Constant light
Retums the constant that represents the light speed in a vacuum, defined as 299.792.458 m /
seco

Constant electron _charge
Retums the value ofthe electron charge, defined as 1,60217733 x 10-19 coulomb.

Constant Planck
Retums the Planck's constant, defined as 6,6260755 x 10-34 joule . seco

Constant Avogadro
Retums the Avogadro's number, defined as 6,0221367 x 1023 mols.

Constant amu
Retums the Atomic Mass Unit, defined as 1,6605402 x 10-27 kg.
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Constant pem
Returns the ratio between the proton and electron mass, defined as 1836,152701.

Constant ideal J5as
Returns the constant ofthe ideal gas, defined as 22,41410 litres / mols.

Constant Faraday
Returns the Faraday's constant, defined as 96485,309 coulomb / mol.

Constant Stefan _boltzmann
Returns the Stefan-Boltzmann's constant, defined as 5,67051 x 10-8 Watt / (rrr' . °K4)

Constant golden
1+.J5

Returns the Golden Ratio, defined as ---
2

Constant euler J5amma
Returns the value ofthe Euler's Gamma, defined as 0.5772156649015.

4.4 Techniques to A void the Repetition of Rules

This section describes different techniques that allow to avoid repeating rules. This helps to make
models more readable.

4.4.1 Clause Else

When the c1ause portInTransition is used (see section 9.3), it is possible to use the clause else to
give an alternative rule in case that none ofthe rules evaluates to true.

Figure 25 shows a short example where the Else c1ause is used. The default local transition for the
cells in this model is default rule. In addition, cell (13,13) defines a special funcion to be used
when an external event arrives through port In. If none of the conditions for the rules that make this
functions is satisfied, then the e1se c1ause sets default Jule as the function to be evaluated.

link: in in@demoModel(13,13)
localTransition: default rule
portInTransition: in@demoModel(13,13) another rule

[demoModell
type: cell

[defaul t_rulel
rule:

rule:

[another rulel
rule: 1 1000 {portValue(thisPort) O}

else: default rule

Figure 25 : Example of the EIse clause

The Else c1ause can point to any valid transition function. Care must be taken to avoid circular
references, as in the example shown next.
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[another _rulell
rule: 1 1000 { portValue(thisPort) = ° }
rule: 1.5 1000 {(O,O) S}
rule: 3 1500 { (1,1) + (0,0) >= 1 }
else: another rule2

[another rule2l
rule: 1 1000 { (0,0) + portValue(thisPort) > 3 }
else: another rulel

Figure 26 : A circular reference produced by a bad use of the clause EIse

CD++ will detect the special case shown in Figure 27, where the e/se clause references the same
function being defined.

[another_rulel
rule:
rule:
else: another rule

Figure 27 : Example of a circular reference detected by the simulator

4.4.2 Preprocessor - Using Macros

CD++ has a preprocessor that will expand macros. If macros are not used, the preprocessor can be
disabled using the cornmand line argument -b to speed up model parsing.

Macros are usually defined in separate files that are included in the main .ma file be means of the
preprocessor #include directive, which is of the form

#include( fileN ame)

where fileName is the name of the file that contains the definition of the macros. This file should be
in the same directory where the main .ma file is.

More than one #include directive is allowed in the main .ma file, but no included files can have
themselves the #include directive.

To define a macro, the directives #BeginMacro and #EndMacro are used.

A macro definition has the form:

...definition of the macro ...

#BeginMacro(macroName)

#EndMacro

Figure 28 : Definition of a macro
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Macros can contain any valid text in any number of lines. The only restriction that applies is that
they can not be used in the same file they are defined.

To expand a macro, the #Macro directive should be used in the place were the macro shoudl be
expanded. A #macro directive is of the form

#Macro( macroName)

An included file can contain any number of macro definitions. Any text in these files that is outside
the macro definitions is ignored. If a required macro is not found, an error will be reported.

An #include directive can be placed at any line of the .ma file, as long as the macros therein
defined are used after the #include.

A macro can not make use of another macro.

Within a .ma file, the preprocessor allows comments. Comments begin with a % . All text between
the % and the end of the line is ignored.

% Here begins the rules
Rule : 1 100 {truecount > 1 or (0,0,1) 2 } % Validate the existence

% of another individual.

Figure 29 : A .ma me with comments

Section 9.5 shows a model where macros are used.

For special considerations regarding files created by the preprocessor, please see Appendix B.
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5 Supporting files

5.1 Defining initial cell values using a .val file

Within the definition of a cellular model, the InitialCellValue parameter defines a file name with
the initial values for the cells. This is a plain text file. Each line of t e file defines a value for a
different cell. The format ofthis file is shown in Figure 30.

value 1

value m

Figure 30 : Format of the file used to define the initial values of a ceUular model

The extension .VAL is normally used for this kind of files. The file is processed in sequential
order, so ifthere are two values defined for the same cell, the latest one will be used.

The dimension of the tuple should match the dimensions of the cellular space.

For the definition of the initial values of a cellular model, a single file should be used, which can
not contain initial values for other cellular models.

It is not necessary to define an initial value for each cel1. If no value is defined in this file, then the
value defined by the parameter Initial Value will be used.

Figure 31 shows a short fragment of a .val file for a cellular space of 4 dimensions.

(0,0,0,0)
(1,0,0,0)
(0,0,1,0)
(0,1,2,2)
(1, 4, 1,2)
(1, 3, 2,1)
(0,2,1,1)
(1,1,1,1)
(1,4,1,0)
(1,4,0,1)

?
25
-21
28
= 17= 15.44
-11.5
12.33
33
0.14

Figure 31 : Example of a file for the definition of the initial values for a Cellular Model

5.2Defining initial cell values using a .map file

If the InitiaiMap Value parameter is used, then the initial values for a cellular model are specified in
a .map file. This file contains a map of cell values, as shown in Figure 32.
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I ~~lue~~.
value m

Figure 32 : .map me format

Each value of the .map file will be assigned to a cell starting with the origin cell (0,0 ...,0). For a
three-dimensional cellular model of size (2, 3, 2), the values will be assigned in the following
order:

(0,0,0) (0,0,1) (0,1,0), (0,1,1) (0,2,0) (0,2,1) ... (1,2,0) (1,2,1)

If there are not enough values in the file for all the cells in the model, the simulation will be
aborted. If instead there are more values than cells, the remaining values will be ignored.

The toMap tool creates a .map file from a .val file.

5.3 External events fi/e

External events are defined in a plain text file with one event per line. Each line will be of the
format:

HH:MM:SS:MS PORT VALUE

where:
HH:MM:SS:MS
Port
Value

is the time when the event will occur.
is the name of the port from which the event will arrive.
is the numerical value for the event. Can be a real number or the
undefined value (?).

Example:

00:00:10:00 in 1
00:00:15:00 done 1.5
00:00:30:00 in .271
00:00:31:00 in -4.5
00:00:33:10 inPort ?

Figure 33 : FUe with external events

5.4 Partition file

A partition file is required for parallel simulation. For each atomic model, the partition file defines
the machine that will host its associated simulator. For coupled models, CD++ will decide where
the coordinators will be running.

A partition file, usually referred as a .par file, has lines with the following format:

MachineNumber : modelNamel modeIName2 ceU(x,y) ceU(x,y) ..(x2, y2)

A line starts with a machine number (machine numbers start at O) followed by a space, a colon and
a list ofnames separated by spaces. Different lines may start with the same machine number.
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The list of names following a machine number is the list of atomic instances that will be hosted by
that machine. For cellular models, a single cell may be specified or a range of cells may be given.
A cell range is described with name of the coupled cell model followed by the first cell in the
range, two dots, and the last cell in the range.

As an example, consider the following partial definition of a model:

[superficiel
type : cell
width : 100
height : 100
de1ay : transport
defaultDelayTime : 100
border : wrapped
neighbors superficie(-l,-l}
neighbors : superficie(O,-l)
neighbors : superficie(l,-l}
initialvalue : 24
in : inputCalor inputFrio

superficie(-l,O) superficie(-l,l)
superficie(O,O} superficie(O,l}
superficie (1,O} superficie (1,1)

[topl
components : superficie generadorCalor@Generator gener.adorFrio@Generator
link out@generadorCalor inputCalor@superficie
link : out@generadorFrio inputFrio@superficie

Figure 34 : Partial definition of the heat diffusion model

If we wanted to ron this model in a cluster of nine machines, then the following is a valid partition:

o generadorCalor generadorFrio
o superficie (O,O)•.(32,32)
1 superficie(O,33} ..(32,65)
2 superficie (O,66)..(32,99)
3 superficie(33,O) •.(65,32)
4 superficie(33,33) ..(65,65)
5 superficie(33,66} ••(65,99)
6 superficie(66,O} ..(99,32)
7 superficie (66,33)•.(99,65)
8 superficie (66,66)..(99,99)

Figure 35 : Valid partition for the heat diffusion model over 9 machines

A valid partition must specify one and only one location for each atomic and each cel1. If more than
one machine or no machine is specified for a model, then an error will be raised and the simulation
will be aborted.
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6 Output Files

6.1 Output events

If the cornmand line option -{) is given, all the output events generated by the simulator are written
to the specified file. There will be one event per line, and lines will have the following format:

HH:MM:SS:MS PORT VALUE

Following is a small example ofan output file.

00:00:01:00 out 0.000
00:00:02:00 out 1.000
00:00:03:50 outPort ?
00:00:07:31 outPort 5.143

Figure 36 : Example of an Output file

6.2Format ofthe Log File

A log file keeps a record of all the messages sent between DEVS processors. A log is created when
the -1 cornmand line argument is used. If no log modifiers are specified, all received messages are
logged. Otherwise, only those messages set by the log modifiers will be logged.

When a filename for the log is given, there will be one file per DEVS processor and one file with
the list of all the names of the files that have been created. This latter file will be named with the
name given after the -1 parameter. All other files will be named with the name after the -1
parameter followed by the DEVS processor id.

Each line of the file shows the number of the LP that received the message, the message type, the
time of the event, the sender and the receiver. In addition, messages of type X or Y will include the
port through which the message was received and the value received. For messages of type D, the
remaining type for the next transition will be shown. A ' ... ' for this field will indicate infinity.

The numbers between brackets show the ID of the DEVS processor and are provided for debugging
purposes only.

As an example, the log files for the following model will be shown.

[top]
components : superficie generadorCalor@Generator generadorFrio@Generator
link : out@generadorCalor inputCalor@superficie
link : out@generadorFrio inputFrio@superficie

[superficie]
type : cell
width : 5
height : 5

Figure 37 : Partial definition of the heat diffusion model
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When running this model with the -lcalor.log parameter, the following are the contents of
calor.log.

[logfilesl
ParallelRoot : calor.logOO
top : calor.log29
superficie : calor.log01
superficie (O,O) calor.log02
superficie (O,1) calor.log03
superficie(0,2) calor.log04
superficie(0,3) calor.logOs
superficie(0,4) ca1or.log06
superficie (1,O) calor.log07
superficie (1,1) calor.log08
superficie(1,2) calor.log09
superficie(1,3) calor.log10
superficie(1,4) calor.log11
superficie(2,0) calor.log12
superficie(2,1) calor.log13
superficie(2,2) calor.log14
superficie(2,3) calor.log1s
superficie (2,4) calor.log16
superficie(3,0) calor.log17
superficie (3,1) calor.log18
superficie (3,2) calor.log19
superficie (3,3) calor.log20
superficie(3,4) calor.log21
superficie (4,O) calor.log22
superficie (4,1) calor.log23
superficie(4,2) calor.log24
superficie (4,3) calor.log2s
superficie(4,4) calor.log26
generadorcalor : calor.log27
generadorfrio : calor.log28

Figure 38 : Calor.log

This is a list of the models and their corresponding files. If more than one file is created (as is the
case of coupled models with more than one coordinator), all of them are listed. The log messages
received by the coordinator superficie will be logged into the file calor.logOl, which is shown next.

o I / 00:00:00:000 / top (29) para superficie (01)
O D / 00:00:00:000 / superficie(O,O) (02) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (O,1) (03) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(0,2) (04) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (0,3) (OS) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(0,4) (06) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (1,O) (07) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (1,1) (08) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(1,2) (09) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(1,3) (10) / 00:00:00: 00 para superficie (01)
O D / 00:00:00:000 / superficie (1,4) (11) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (2,O) (12) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(2,1) (13) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(2,2) (14) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(2,3) (15) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(2,4) (16) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(3,0) (17) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (3,1) (18) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(3,2) (19) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(3,3) (20) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie(3,4) (21) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (4,O) (22) / 00:00:00:000 para superficie (01)
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o D / 00:00:00:000 / superficie (4,1) (23) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (4,2) (24) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (4,3) (25) / 00:00:00:000 para superficie (01)
O D / 00:00:00:000 / superficie (4,4) (26) / 00:00:00:000 para superficie (01)
O @ / 00:00:00:000 / top (29) para superficie(Ol)
O y / 00:00:00:000 / superficie (O,O) (02) / out / 24.00 para superficie (01)
O D / 00:00:00:000 / superficie (O,O) (02) / 00:00:00:000 para superficie (01)
O Y / 00:00:00:000 / superficie (O,1) (03) / out / 24.00 para superficie (01)
O D / 00:00:00:000 / superficie (O,1) (03) / 00:00:00:000 para superficie (01)
O Y / 00:00:00:000 / superficie (O,2) (04) / out / 24.00 para superficie (01)
O D / 00:00:00:000 / superficie (0,2) (04) / 00:00:00:000 para superficie (01)
O y / 00:00:00:000 / superficie (O,3) (05) / out / 24.00 para superficie (01)
O D / 00:00:00:000 / superficie(O,3) (05) / 00:00:00:000 para superficie (01)
O Y / 00:00:00:000 / superficie (O,4) (06) / out / 24.00 para superficie (01)
O D / 00:00:00:000 / superficie (O,4) (06) / 00:00:00:000 para superficie (01)......
O X / 00:00:00:000 / top (29) / inputcalor / 1.00 paxa superficie (01)
O X / 00:00:00:000 / top (29) / inputfrio / 1.00 paxa superficie (01)
O * / 00:00:00:000 / top (29) para superficie(Ol)

Figure 39: Fragment of calor.logOl

6.3 Partition Debug Info

The partition debug info file lists all the DEVS processors that are taking part of the simulation,
their IDs and they machine they are running in. This file is useful to were the coordinators for
coupled models are placed. One partition debug info file is created by each LP. The files will be
named with the text after the command line -D argument followed by the LP number.

Figure 41 shows a fragment of a partition debug file generated when running the model described
in Figure 37 with the partition shown next.

O generadorCalor generadorFrio
o superficie (O,O) .• (2,4)
1 superficie(3,O) •. (4,4)

Figure 40 : Partition for the heat diffusion model 011 Figure 37

Model: ParallelRoot
Machines:

Machine: o Procld: o < master >

Model: top
Machines:

Machine: O Procld: 30 < master >

Model: superficie
Machines:

Machine: O Procld: 1 < master >
Machine: 1 Procld: 2 < local >

Model: superficie (O,O)
Machines:

Machine: O Procld: 3 < master >

Model: superficie (3,O)
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Machines:
Machine: 1 ProcId: 18 < local > < master >

Model: superficie (3,1)
Machines:

Machine: 1 ProcId: 19 < local > < master >

Model: superficie (3,2)
Machines:

Machine: 1 ProcId: 20 < local > < master >,

Setting up the logical process
Total objects: 31
Local objects: 11
Total machines: 2

About to create the LP
LP has been created. Now registering processors.

Registering processor superficie(2)
Registering processor superficie (3,O) (18)
Registering processor superficie (3,1) (19)
Registering processor superficie(3,2) (20)
Registering processor superficie (3,3) (21)
Registering processor superficie(3,4) (22)
Registering processor superficie (4,O) (23)
Registering processor superficie (4,1) (24)
Registering processor superficie(4,2) (25)
Registering processor superficie(4,3) (26)
Registering processor superficie(4,4) (27)

Current processors:
Processor Id: 2 Description: superficie

Model Id: 2 superficie (02)
Parent Id: 30

Processor Id: 27 Description: superficie(4,4)
Model Id: 27 superficie(4,4) (27)
Parent Id: 2

All objects have been registeredl
Initializing Object superficie (2): OK
Initializing Object superficie(3,0) (18): OK
Initializing Object superficie(3,1) (19): OK
Initializing Object superficie(3,2) (20): OK
Initializing Object superficie (3,3) (21): OK
Initializing Object superficie(3,4) (22): OK
Initializing Object superficie (4,O) (23): OK
Initializing Object superficie (4,1) (24): OK
Initializing Object superficie (4,2) (25): OK
Initializing Object superficie(4,3) (26): OK
Initializing Object superficie(4,4) (27): OK
After Initialize ••..OK

Figure 41 : Partition debug information me calor.pardeb01 (LP 1)

6.4 Output generated by the Parser Debug Mode

When the simulator is invoked with the option -p, the debug mode for the parser is activated. In
debug mode, the parser will write the parse tree as it reads the rules. All tokens that are successfully

49/77



CD++ User's Guide

processed are shown and if there is a syntax error, the place were the error was detected lS

specified.

Figure 42 shows the output generated for the Game Life model as implemented in section 9.1.

********* BUFFER ********
1 100 { (0,0) = 1 and (truecount = 3 or truecount

and truecount = 3 } o 100 { t } o 100 { t }
Number 1 analyzed
Number 100 analyzed
Number o analyzed
Number o analyzed
OP_REL parsed (=)
Number 1 analyzed
AND parsed
COUNT parsed (truecount)
OP_REL parsed (=)

Number 3 analyzed
OR parsed
COUNT parsed (truecount)
OP_REL parsed (=)
Number 4 analyzed
Number 1 analyzed
Number 100 analyzed
Number o analyzed
Number o analyzed
OP_REL parsed (=)
Number o analyzed
AND parsed
COUNT parsed (truecount)
OP_REL parsed (=)
Number 3 analyzed
Number o analyzed
Number 100 analyzed
BOOL parsed (t)
Number o analyzed
Number 100 analyzed
BOOL parsed (t)

4) } 1 100 { (0,0) o

Figure 42 : Output generated in the Parser Debug Mode for the Game of Life

6.5 Rule evaluation debugging

Using the -v command line argument, a debug mode for cell rules evaluation is enabled. This will
cause the simulator to log all intermediate values for each rule as it is evaluated.

Figure 43 shows a fragment of the output generated for the Game of the Life model of section 9.1
Line numbers have been added to make the following explanations clear.

The first two lines indicate the beginning of a new evaluation. Line 2 begins the evaluation of the
first rule for the first cell. Each evaluated argument is listed with the partial result for the
expression. Line 2 shows the evaluation ofthe cell reference (0,0), which tumed out to be O. In line
3, the integer constant 1 is evaluated, which is later compared to 0, evaluating to ° (false).
BinaryOp indicates that a binary operation is being performed. The operator name will be inc1uded
between brackets, as well as the value of each of the operands. Line 13 shows the final result for
the condition of the rule, which was false in this case.
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00 +-----------------------------------------------------------------------
--+
01 New Eva1uation:
02 Eva1uate: Ce11 Reference(O,O)
03 Eva1uate: Constant = 1
04 Eva1uate: BinaryOp(O, 1)
05 Eva1uate: CountNode(l) = 1
06 Eva1uate: Constant = 3
07 Eva1uate: BinaryOp(l, 3)
08 Eva1uate: CountNode(l) = 1
09 Eva1uate: Constant = 4
10 Eva1uate: BinaryOp(l, 4)
11 Eva1uate: BinaryOp(O, O)
12 Eva1uate: BinaryOp(O, O)
13 Eva1uate: Ru1e = Fa1se
14
15
16
17
18
19
20
21
22
23
24 Eva1uate: Constant = 1
25 Eva1uate: Ru1e = True
26
27 Eva1uate: Constant = 100
28 Eva1uate: Constant = O
29 +------------------------------------------------- ..---------------------
--+

O

(=) O

(=) O

(=) O
(or) O
(and) O

Eva1uate:
Eva1uate:
Eva1uate:
Eva1uate:
Eva1uate:
Eva1uate:
Eva1uate:
Eva1uate:

Ce11 Reference(O,O)
Constant = O
BinaryOp(O, O)
CountNode(l) = 1
Constant = 3
BinaryOp(l, 3)
BinaryOp(l, O)
Ru1e = Fa1se

O

Figure 43 : Fragment of the output generated by the debug mode for the Evaluation or Rules

(=) 1

(=) O
(and) O

30
31
32
33
34 +-----------------------------------------------------------------------
--+
35 New Eva1uation:
36 Eva1uate: Ce11 Reference(O,O)
37 Eva1uate: Constant = 1
38 Eva1uate: BinaryOp(l, 1)
39 Eva1uate: CountNode(l) = 4
40 Eva1uate: Constant = 3
41 Eva1uate: BinaryOp(4, 3)
42 Eva1uate: CountNode(l) = 4
43 Eva1uate: Constant = 4
44 Eva1uate: BinaryOp(4, 4)
45 Eva1uate: BinaryOp(O, 1)
46 Eva1uate: BinaryOp(l, 1)
47 Eva1uate: Ru1e = True
48
49 Eva1uate: Constant = 100
50 Eva1uate: Constant = 1
51 +-----------------------------------------------------------------------

1

(=) 1

(=) O

(=) 1
(or) 1
(and) 1

--+
52
53
54
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7 Utility programs

7.1 Drawlog

The DrawLog utility is used to view the state of a cellular model after each simulation cyc1e as the
simulation advances. Using the log as input, drawlog parses the Y messages to update the state of
each cell in the model. When a simulation cycle finishes, the state of the whole model is printed.

Drawlog can read the log from afile or from the standard input. Its cornrnand line parameters are
shown next:

where:
? Show this message
h Show this message
m Specify file containing the model (.ma)
t Initial time
e Specify the coupled model to draw
1 Log file containing the output generated by SIMU
w Width (in characters)used to represent numeric values
p Precision used to represent numeric values (in characters)
O Don't print the zero value
f Only cell values on a specified slice in 3D models

drawlog -[?hmtclwpO]

Figure 44 : Help shown by DrawLog

-?: similar to -h.

-m: Specifies the filename that contains the definition of the models. This parameter
is required

-t: Starting time. Sets the time for the first state output. If not specified, 00:00:00:000
will be used.

-c: Name of the cellular model to represent. This parameter is obligatory required
because a .ma file may define more than one cellular model.

-1: Name of the log file. If this parameter is omitted, Drawlog will take the data of the
standard input.

-w: Allows to define the print width, in characters, for numeric values. This width will
inc1ude the decimal point and signo For example, -w7 defines a fixed size for each
value of 7 positions. Small numbers will be padded with spaces.

By default, Drawlog uses a width of 10 characters. For correct results a width that
is bigger than the precision (defined with the parameter -p) + 3 is recornrnended.

-p: Defines the number of digits to be displayed after the decimal point. If a value of O
is used, then all the real values will be truncated to integer values. This parameter
is generally used in combination with the option -W.

52/77



CD++ User's Guide

As an example, consider using the command line arguments -w6 -p2. This will set
the

By default, DrawLog assumes 3 characters for the precision.

-O: When this option is specified, a value ofO zero will no be shown.

-f: Draws a 3D model as a 2D model. Only the specified plane will be drawn. To
draw plane 0, -fO should be used.

Figure 45 shows two different ways of starting drawlog. The first uses a log file as input. The
second one, instead, takes its input from the standard input.

or

draw10g -m1ife.ma -c1ife -11ife.1og -w7 -p2 -o

pcd -m1ife.ma -1- I draw10g -m1ife.ma -c1ife -w7 -p2 ··0

Figure 45 : Examples for the invocation to DrawLog

When parallel simulation is used, the standard input can not be directly used by drawlog because
log messages may arrive out of order. Therefore, it is necessary to sort the messages first. A utility
called logbuffer (described next) has been written for that purpose.

The output format of DrawLog will depend on the number of dimensions of the cellular model.

• Output for bidimensional cellular models.
• Output for three--dimensional cellular mode1s.
• Output for cellular mode1s with 4 or more dimensions.

7.1.1 Bidimensional cellular models

A 2 dimensions model will be displayed as a matrix of values. Figure 46 shows a fragment of the
output generated by DrawLog for a two-dimensional model of size (lO, 10). The number width has
been set to 5 and the precision to 1.
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Line : 23a - Time: 00:00:00:000
O 1 2 3 4 9s 6 7 a+--------------------------------------------------+

01 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
11 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
21 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
31 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
41 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
51 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
61 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
71 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
al 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
91 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01+-----------------------------------------------_.--+

Line : 3sa - Time: 00:00:01:000
01234 6 7 a 9s+--------------------------------------------------+

01 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
11 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
21 24.0 24.0 3S.a 24.0 24.0 24.0 24.0 24.0 -6.3 24.01
31 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
41 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
51 24.0 24.0 24.0 24.0 24.0 39.5 24.0 24.0 24.0 24.01
61 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
71 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01
al 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 -4.0 24.01
91 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.01+--------------------------------------------------+

Figure 46 : Fragment of the output generated for a bidimensional cellular model

7.1.2 Three dimensional models

For three dimensional models, a matrix representation will be used. Each matrix is one plane ofthe
cell space. The first plane shown will correspond to (x,y,O), the second one to (x,y,1), and so on.

Figure 47 shows the output of Drawlog when used to draw a cellular space of size (5,5,4) with a
number width of 1, a precision of ° and zero values not displayed.

Line : 247 - Time: 00:00:00:000
01234 01234 01234 01234

+-----+ +-----+ +-----+ +-----+
011 1 01 1 011 1 01 1
111 1 1 1111 11 11 1111 11 111
21 1 1 21 111 21 1 111 21 11
31 1 31 1 1 31 11 31 11
41 1 11 41 1 11 41 1 11 41 11

+-----+ +-----+ +-----+ +-----+

Line : 557 - Time: 00:00:00:100
01234 01234 01234 01234

+-----+ +-----+ +-----+ +-----+
01 1 0111 111 011 111 01 111
11 1 11 1 111 1 11 11
21 1 211 11 211 1 21 111
31 1 1 31 11 1 311 111 311 11
41 1 41 1 41 1 41 1

+-----+ +-----+ +-----+ +-----+
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Line : 829 - Time: 00:00:00:200
01234 01234 01234 01234

+-----+ +-----+ +-----+ +-----+
01 1 01 1 011 11 01 1
11 11 11 11 11 111 11 11
21 1 21 1 211 11 21 1
31 1 31 1 311 1 1 31 1
41 1 41 11 411 111 41 11

+-----+ +-----+ +-----+ +-----+

Figure 47 : Fragment of the output generated for a three-dimeusional cellular model

7.1.3 Cellular models of more than 3 dimensions

For models of 4 or more dimensions, the matrix representation will not be used. Instead, the values
for each cel1 will be listed. The options defined with -p, -w and -O will be ignored.

Figure 48 shows a fragment of the output generated by DrawLog for a model of size (2, 10, 3,4).

Line : 506 - Time: 00:00:00:000
(O,O,O,O) ?
(0,0,0,1) °(0,0,0,2) 9
(0,0,0,3) °(0,0,1,0) 21

(1,9,1,0) °(1,9,1,1) 4.333
(1,9,1,2) °(1,9,1,3) -2
(1,9,2,0) 6
(1,9,2,1) °(1,9,2,2) 7
(1,9,2,3) °

Line : 789 - Time: 00:00:00:100
(O,O,O,O) °(0,0,0,1) °(0,0,0,2) 13.33
(0,0,0,3) °(0,0,1,0) 5.75

(1,9,1,0) 6.165
(1,9,1,1) 2
(1,9,1,2) °(1,9,1,3) 1.14
(1,9,2,0) °(1,9,2,1) °(1,9,2,2) 5.25
(1,9,2,3) °
Figure 48 : Fragment of the output generated for a model with dimension 4
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7.2 Par/og

Parlog is a utility used to asses the parallelism of a running model. It uses the model log as input
and counts the number of (*,t) messages received by each LP during a simulation cycle. After a
simulation cycle has been completed, a list with the number of messages received by each LP will
be printed.

Parlog reads the log from the standard input. LogBuffer should be used for correct results.

Usage:

PARLOG: An utility to determine the level of parallelism
usage: parlog -[?hmP]

? Show this message
h Show this message
P Partition file name

where:

-h:

Figure 49 : Parlog command line options

Displays help.

?- .. Displays help.

-P: Specifies the partition file name. This paramter is required because parlog
needs to know how many LPs are being used.

Figure 50 shows the output generated by parlog with a model running in for machines.

Time/LP o 1 2 3
00:00:00:000 629 626 626 626
00:00:10:000 5 o 2 3
00:00:11:000 12 3 12 14
00:00:12:000 31 7 32 35
00:00:13:000 60 13 62 66
00:00:14:000 99 21 102 107
00:00:15:000 148 31 152 158
00:00:16:000 207 43 212 219
00:00:17:000 276 57 282 290
00:00:18:000 351 73 358 367
00:00:19:000 428 91 436 446
00:00:20:000 509 131 495 486
00:00:21:000 543 192 531 522
00:00:22:000 575 254 563 554
00:00:23:000 603 317 591 582
00:00:24:000 625 376 614 606
00:00:25:000 627 450 625 626

Figure 50 : Parlog output for a 4 machines partition.

7.3 Logbuffer

Logbuffer is a utility that buffers log messages received through the standard input, sorts them
according to their time, and outputs them to the standard output. It should be used when running
drawlog or parlog piped with the simulator.
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To ron logbuffer use,

logbuffer [-b]

-bn Sets the size ofthe buffer. The default size is 200.

Both drawlog and parlog require that, for correct results to be obtained, that log messages be
processed in the order determined by their timestamps. When parallel simulation is run and the log
is sent to the standard output, there is no guarantee that messages will be displayed in the same
order that they were generated. Therefore, a sorted buffer is needed.

Logbuffer has an internal buffer of a used defined size, which is always kept sorted. When the
simulation is started, this buffer is empty. Every new message that arrives is buffered, and no
output is sent till the buffer is full. Once it is full, every new message that arrives causes a new
message to be sent to the standard output. When the simulation finishes, all buffered messages are
sent.

(*,2) , (x,2), (@,3)

~I~ L_O_G_B_UF__F_E__R _

(@,3) , (*,2) , (x,2)

Figure 51 : Logbuffer receives a message witb timestamp 3 and tben two messages witb
timestamp 2. Logbuffer sorts and sent in tbe correct order.

Logbuffer can only guarantee correct results for misplaced messages that occur within a distance
smaller than the size of the buffer.

>./mpirun -np 4 ./pcd -mca1or.ma -Pca1or.par4 -tOO:Ol:00:000 -1 I
./1ogbuffer -bSOOO I ./draw1og -mca1or.ma -csuperficie -w6-p2 > ca1or.drw

> ./mpirun -np 4 ./pcd -mca1or.ma -Pca1or.par4 -tOO:Ol:00:000 -1 I
./1ogbuffer -bSOOO I ./par1og -Pca1or.par4 > ca1or.p

Figure 52 : Running pcd witb logbuffer.

7.4 Random Initial States - MakeRand

MakeRand is a tool to create a .val file with a random initial state for a cellular model.
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Usage:

where:
? Show this message
h Show this message
m Specify file containig the model (.ma)
e Specify the Cell model within the .ma file
s Specify the value set

sO Use the values O & 1 (Uniform Distribution)
sl-n Use the value 1 for n cells & O for the rest
s2-n Makes random states for the Pinball Model
s3-n Random states for the Gas Dispersion Model

makerand -[?hmcsl

Figure 53 : MakeRaod command line options

-?: similar to -h.

-m: Specifies the filename for the model definition file (.ma)

-c: Name of the cellular model. This parameter is required because the size of the
mode1 needs to be known,

-s: Specifies the type of initial state to be created:

-sO: For each cell of the model, a value will be chosen randomly belonging to
the set {O, 1} with the same probability for each value.

-sI-o: Indicates that the model initially will have n cells with value 1
(distributed randomly according to an uniform distribution) and the rest of
the cells will have the value O. If n is bigger to the quantity of cells of the
model, then an error will occur and the initial state will not be generated.
For example, if we have a 40x40 cellular and we want 75% of the cells
(1200 cells) to have an initial value of 1, and the remaining cells an initial
value of O, then -sl-1200 should be used.

-s2-0: Generates a random initial state for the Pinball model. For this model a
value between 1 and 8 will be randomly generated and randomly place
inside the cellular space. In addition, n cells will be randomly chosen to
represent the walls. The rest ofthe them will have an initial value ofO.

-s3-0: Creates an initial state for the gas dispersion mode1 with n particles.

The output will be created in a .val file with the same name as the model file.

7.4 Converting .VAL fiJes to Map of Values - ToMap

The tool ToMap allows to creates a .map (section 5.2) file from a .val file (section 5.1 ).
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Usage:

where:
? Show this message
h Show this message
m Specify file containig the model (.ma)
e Specify the Cell model within the .ma file
i Specify the input .VAL file

toMap -[?hmci]

Figure 54 : Command line arguments for toMap

-?: same as -h. Shows the command line help.

-m: Specifies the filename (.ma file) with the model definition.

-c: Name ofthe cellular model.

-i: Specifies the name of the .val file that contains the list of values that it will be used
for the creation of the .map file.

ToMap uses all values in the .val file to create a map of values. If the .val file does not specify a
value for every cell, then the default value, as specified by the InitialValue parameter, will be used.

The output file will have the same name as the .ma file but the extension .map will be used instead.
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8 Coding new atomic models

This section will describe how to code new atomic models into CD++. K.nowledge of C++ is
required. Users not intending to code new models can skip this section.

A new atomic model is created as a new class that inherits from Atomic. To tell CD++ that a new
atomic definition has been added, the model must be registered in the
ParallelMainSimulator.registerNewAtomicsO function. In addition, for an atomic model to support
the TimeWarp protocol, a model's state has to be defined as a separate class that is derived from
AtomicState. The current state is available through the function getCurrentStateO which returns a
pointer to the model state. States are managed by the Warped kernel, and are only valid through a
simulation cycle. There is no guarantee a pointer returned during a simulation cycle will still be
valid during the next one. In addition, the states are not created until the initFunction is called, so
no state initialization code should be placed in the class constructor.

8.1 Defining the state of a model

The state of a model is made of all those variables that can change during a simulation cycle. The
basic state variables required by an atomic model are defined in the AtomicState class. A user can
create a new class to define the state variables required by his model.

The AtomicState class declaration is shown below.

class AtomicState : public ModelState {
public:

enUIIIState
{

active,
passive

}

State st;

AtomicState (){};
virtual -AtomicState(){};

AtomicState& operator=(AtomicState& thisState); //Assignment
void copyState(BasicState *);
int getSize() const;

};

Figure 55: Tbe AtomicState class.

To access the current state the function

ModelState* getCurrentStateO

should be used. The pointer that is returned can be casted to the proper type.

An assignment operator and a copy constructor need to be provided for Warped to work properly.
In addition, the method getSize should be overridden to return the size of the class.
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8.2Defining a new atomic model

When creating a new atomic model, a new class derived from atomic has to be created. Atomic is
an abstract class that declares a model's API and defines some service functions the user can use to
write her model. I

I

class Atomic : public Model
{
publico

virtual ~Atomic(); // Destructor

Figure 56: The Atomic Class

The class atomic provides a set of services and requires a set of fun tions to be redefined. The
services are functions that allow the mode1 to tell the simulator the current state and duration.
These are:

protected:

//User defined functions.
virtual Model &initFunction() = O;
virtual Model &externalFunction ( const MessageBag & );
virtual Model &externalFunction( const ExternalMessage &
virtual Model &internalFunction( const InternalMessage & ) = O ;
virtual Model &OutputFunction( const CollectMessage & ) =
virtual Model &confluentFunction ( const InternalMessage & const MessageBag & );
virtual ModelState* allocateState();
virtual string className() const

//Kernel services
void nextChange(Vtime);
Vtime nextChange();
void lastChange(Vtime);
Vtime lastChange();

Model &holdIn( const AtomicState::State &, const VTime & )
Model &sendOutput(const VTime &time, const Port & port , B sicMsgValue *valuel
Model &sendOutput(const VTime &time, const Port & port , V lue value)
Model &passivate();

//State functions

virtual ModelState* getCurrentState() const;
virtual ModelState* getCurrentState()

//State shortcuts
Model &state( const AtomicState::State &s l
{ «AtomicState *)getCurrentState(»->st = s; return *this; }

const AtomicState::State &state() const
{return «AtomicState *)getCurrentstate(»->st;}

}; // class Atomic

• holdln(state, VTime)

Tells the simulator the model will remain in the state state for a period of VTime time. It
corresponds to the ta(s) function ofthe DEVS formalismo

• passívatet)
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sendOutput(VTime, port, BasicMsgValue*): j
Sends an output message through the port. The time should be .et to the current time. The
user can define any structure for the messages values, as describdd further on. The simulator
will delete the pointer received.

•

• sendOutput(VTime, port, Value):

This function is provided for backward compatibility. It send a r al value through the given
port. Again, the time should be set to the current time. If only re 1 values will be used, then
this function will do.

• nexeChanget):

Returns the remaining time for the next internal transition (sigma).

• laseChanget): I

Returns the time the modellast changed, either because an external event was received or an
internal transition took place.

Returns the parameters the user defined in the .ma file. ModelNa e is the model's instance
name, and parameterName is the name of the parameter to be retu ed. If the parameter has not
been specified, an empty string is returned.

• statet):

Returns the current model's phase.

• getParameter( modelN ame, parameter Name)

The new class should override the following functions:

• virtual Model &initFunctionO

This method is invoked by the simulator at the beginning the sim lation and after the model
state has been initialized. All initialization should take place wh n this method is callo An
active model should usually set the time for the next transition usin the holdIn function.

• virtual Model &externalFunction ( const MessageBag & )
• virtual Model &externaIFunction( const ExternalMessage & );

These methods are invoked when one or more external events arri e from a port of the model.
It corresponds to the bext function of the DEVS formalismo ~e simulator calls the first
function, the one that receives a message bag. By default, this func~tionwill iterate through all
the messages in the bag and call the second one. This is provided or backward compatibility.
If the modeler would like to have more control on the model s behavior when multiple
simultaneous events are received, it is recommend the first fun tion is overridden. If the
model's behavior is simple enough for simultaneous events to be andled sequentially, then it
will be enough to redefine the second function.
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The interface for the MessageBag class is shown below.

class MessageBag {

public:

MessageBag(); //Default Constructor
-MessageBag ();

MessageBag &add( const BasicPortMessage* );

bool portHasMsgs( const string& portName ) const;

const MessageList& msgsOnPort( const string& portName ) const;

int size() const

MessageBag& eraseAll();

const VTime& time() const;

I};

Figure 57: MessageBag class

• virtual Model &internaIFunction( const InternalMessage & )

This method corresponds to the Oint function ofthe DEVS formalisJ
I

• virtual Model &outputFunction( const CollectMessage & )

This function is called before Oint. It should send all the output levent. Each output event is
sent using the function sendOutput defined below.

• virtual Model &confluentFunction ( const InternalMessage &, const MessageBag & )

It corresponds lo fue 0'"0' function of the DEVS formalism. By drfaUlt. it is set lo:

Model &Atomic: :confluentFunction ( const InternalMesslage &intMsg, const
MessageBag &extMsgs )
{

//Default behavior for confluent function:
//Proceed with the internal transition and the with the external
internalFunction( intMsg );

//Set the elapsed time to O
lastChange( intMsg.time() );

//Call the external function
externalFunction( extMsgs );

return *this;

}

• virtual string classN amet)
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Retums the name ofthe atomic class.

8.3 Defining the output values

The user can define a new class for the output values. To define a new structure for output values, a
new class that derives from BasicMsgValue has to be created. A class for sending and receiving
real values is already provided.

There is only restriction that applies: no pointers can be defined as part of the class. This is because
message values are sent across a network when parallel simulation is used and pointers will be just
copied as pointers. The data they are pointing to will not be copied.

class BasicMsgvalue
{
public:

BasicMsgValue();
virtual -BasicMsgValue();
virtual int valueSize() const;
virtual string asString() const;
virtual BasicMsgValue* clone() const;

BasicMsgValue(const BasicMsgValue& );

} ;

class RealMsgValue public BasicMsgValue
{
public:

RealMsgValue();
RealMsgValue( const Value& val);

Value v;
int valueSize() const;
string asString() const
BasicMsgValue* clone() const;
RealMsgValue(const RealMsgValue& );

};

Figure 58: Tbe BasicMsgValue and RealMSgValie e1asses

The user needs to define the following functions:

• virtual int valueSizeO const;

return sizeof( className);

Retums the size ofthe class. It should be set to:

• virtual string asStringO;

Retums a string that is used in the log file to log the value sent or/received.

virtual BasicMsgValue * clonet);•
Retums a pointer to a new copy of the message value. The function that receives the pointer
will own it and afterwards delete it.
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• BasicMsgValue( const BasicMsgValue&)

A copy constructor is required.

8.4 Example. A queue model.

A queue is a device of temporary storage that uses a FIFO (First In First Out) mechanism. Our
model of a queue will hold any type of user defined value. The queue will have three input ports
and one output port. Values to be stored will be received through the input port In and willlater be
sent through the port Out. The input ports start-stop and next will sérve to regulate the flow of
values through the output port. Figure 59 shows the structure of our mddel of a queue .

...• OUT...• IN

QUEDE JTART-STOP

L- ----l ~ NEXT

Figure 59: Structure of a Queue

Initially, the queue is empty. When the first value is received throuJ the input por! In, it will be
stored in the queue and forwarded through the output port Out after al time as defined by the user
parameter preparationTime. If a value is received and the queue is not ~mpty, then it will be stored,
but it will not be forwarded immediately. Instead, it will be sent through the output port Out only
after a message is received through the port next. I

A message received through the input port start-stop will temporarily disable the queue. If the
queue is disabled, it will only respond to new events received through the input port In. Any value
received will be stored, but no output will be ever sent until the queue is enabled again by sending
an event to the start-stop port.

After this brief description, we are ready to begin writing our mode . First, we need to define a
class to store the state of the queue. The queue will have two state variables: a list of elements and
a boolean to store the enabled/disabled status. Figure 60 lists the Queue state c1ass declaration and
definition. I

Once the state c1ass has been defined, we are ready to implement the model itself. The Queue c1ass
dec1aration is shown in Figure 61.
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class QueueState public AtomicState {

public:

typedef list<BasicMsgValue *> ElementList
ElementList elements
bool enabled;

QueueState (){};
virtual -QueueState(){};

QueueState& operator=(QueueState& thisState)
{
(AtomicState &)*this = (AtomicState &) thisState;

ElementList::const_iterator cursor;

for(cursor = thisState.elements.begin();
cursor 1= thisState.elements.end(); cursor++)

elements.push_back( cursor->clone() );

return *this;
}

void copyState(QueueState *)
{ *this = *«QueueState *) rhs);}

int getSize() const
{ return sizeof(QueueState);}

} ;

Figure 60 : QueueState class

The Queue model overloads the initialization methods, internal function, external transition and
output function. In addition, it shortcut functions to access the elements of the current state.
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ModelState* allocateState()
{ return new QueueState;}

class Queue public Atomic
{
public:

Queue( const string &name = "Queue" );
virtual string className () const { return "Queue" r}

protected:
Model &initFunction();
Model &externalFunction( const MsgBag & );
Model &internalFunction( const InternalMessage & );
Model &outputFunction( const CollectMessage & );

private:
Port &in, &done, &out;

VTime preparationTime;

QueueState::ElementList& elements()
{ return «QueueState*)getCurrentState(»->elements; }

bool enabled() const
{ return «QueueState*)getCurrentState(»->enabled; }

void enabled (bool val)
{ «QueueState*)getCurrentState(»->enabled = val; }

}; // class Queue

Figure 61: The Queue c1ass declaration

The initFunction has to set the initial state for the queue, as shown in Figure 62. The elements of
the list will be erased and the enabled will be set to true.

enabled( true );
return *this;

Model &Queue::initFunction()
{

}

Figure 62: initFunction for the Queue model

The extemaFunction will be activated every time one or more events are received. For the queue
model, this function will have to insert into the queue all values received through port In, schedule
an output if a value is received through the port next and enabled or disable the queue if an event is
received through port start-stop, as detailed in Figure 63. It is important to notice that it is the
modeler's responsibility to set which message will have the highest priority when more than one is
received. For our queue model, it can be seen from Figure 63 that the start-stop messages will
have higher precedence than the done and in messages.
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Model &Queue::externalFunction( const MsgBag & bag )
{

if portHasMsgs( "start-stop")
{

enabled ( 1enabled() )¡
if ( 1enabled () )

passivate ()¡
}

if enabled() && portHasMsgs( "done" »
{

elements() .pop_front()¡
holdIn( AtomicState::active, preparationTime )¡

}

if ( portHasMsgs( "in" )
{

MessageList::const_iterator cursor¡
cursor = bag.msgOnPort( "in" ) .begin() ¡

for (¡ cursor 1= bag.msgsOnPort( "in") .end() cursor++)
elements() .push_back( cursor.value(»¡

//If the queue was empty, schedule the next transition
if ( enabled () && elements. size ()==msgsOnPort ("in") .size ()

holdIn( AtomicState::active, preparationTime )¡

}

}

Figure 63: External transition function for the queue model

The output function is called before an internal transition. In our queue model, the output function
should send the first value in the list through the output port. The internal transition function will
passivate the model which will wait for an external event to take place.

Model &Queue::outputFunction( const CollectMessage &msg
{

sendOutput( msg.time(), out, elements.front() )¡
return *this¡

}

Model &Queue::internalFunction( const InternalMessage & )
{

passivate() ¡
return *this¡

}

Figure 64: Methods for the Output Function and the Internal Transition of the Queue

The sendOutput function will delete the pointer it receives, so all memory previously allocated to
store the queue values will be reclaimed.
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If we wanted to use the queue for a network model, the queue would store IP packets. Then an IP
packet class derived from BasicMsgValue should be defined.

Figure 65 lists the definition of the IPPacket class. The only restriction that needs to be placed in
classes derived from BasicMsgValue is that they do not contain any pointers.

class IPPacket : public BasicMsgValue
{
public:

char
char
int
int
int

OriginIP[15] ;
DestinationID[15] ;
Port;
SequenceNumber;
PayloadSize;

IPPacket ();
virtual -IPPacket();

virtual int valueSize() const
{ return sizeof( IPPacket ); }

virtual string asString() const;
virtual BasicMsgValue* clone() const;

IPPacket(const IPPacket& );

};

Figure 65: IP Packet Definition
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9 Appendix A - Examples

9.1 Game of Life

The Game o/ Life was presented in an issue of Scientific American by the well known
mathematician Martin Gardner. In the game oflife, living cells willlive or die. The rules for
life evolution are as follows:

• An active cell will remain in this state if it has two or three active neighbors.
• An inactive cell will pass to active state if it has two active neighbors exactly.
• In any other case, the cell will die

The implementation ofthis model in CD++ is as follows:

[top]
components life

[life-rule]
rule 1 100 { (0,0)
rule 1 100 { (0,0)
rule O 100 { t }

1 and (truecount = 3 or truecount
O and truecount = 2 }

4) }

[life]
type : cell
width : 20
height : 20
delay : transport
border : wrapped
neighbors life(-l,-l) life(-l,O) life(-l,l)
neighbors : life(O,-l) life(O,O) life(O,l)
neighbors : life(l,-l) life(l,O) life(l,l)
initialvalue : O
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
localtransition

1 00010001111000000000
2 00110111100010111100
3 00110000011110000010
4 00101111000111100011

10 01111000111100011110
11 00010001111000000000
life-rule

Figure 66 : Implementation of the Game of Life

9.2A bouncing object

The following is the specification of a model that represents an object in movement that bounces
against the borders of a room. This example is ideal to illustrate the use of a non toroidal cellular
automata, where the cells ofthe border have different behavior to the rest ofthe cells.

For the representation of the problem, 5 different values are used for the states of each cell, these
values are:
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0= represents an empty cell.
1 = represents the object moving toward the south east.
2 = represents the object moving toward the north east.
3 = represents the object moving toward the south west.
4 = represents the object moving toward the north west.

The specification of the model is:

[topl
components rebound

[reboundl
type : cell
width : 20
height : 15
delay : transport
defaultDelayTime : 100
border : nowrapped
neighbors rebound(-l,-l) rebound(-l,l)
neighbors : rebound(O,O)
neighbors : rebound(l,-l) rebound(l,l)
initialvalue : O
initialrowvalue : 13 00000000000000000010
localtransition : move-rule
zone cornerUL-rule { (0,0) }
zone cornerUR-rule { (0,19) }
zone cornerDL-rule { (14,0) }
zone cornerDR-rule { (14,19) }
zone top-rule { (O,1) .. (O,18) }
zone bottom-rule { (14,1) .. (14,18) }
zone left-rule { (1,0) .. (13,0) }
zone right-rule { (1,19) .. (13,19) }

[move-rulel
rule 1 100 { (-1,-1) = 1 }
rule 2 100 { (1,-1) = 2 }
rule 3 100 { (-1,1) = 3 }
rule 4 100 { (1,1) = 4 }
rule O 100 { t }

[top-rulel
rule 3 100 { (1,1) = 4 }
rule 1 100 { (1,-1) = 2 }
rule O 100 { t }

[bottom-rulel
rule 4 100 { (-1,1) = 3 }
rule 2 100 { (-1, -1) = 1 }
rule O 100 { t }

[left-rulel
rule 1 100 { (-1,1) = 3 }
rule 2 100 { (1,1) = 4 }
rule O 100 { t }

[right-rulel
rule 3 100 { (-1, -1) = 1 }
rule 4 100 { (1,-1) = 2 }
rule O 100 { t }

[cornerUL- rulel
rule : 1 100 { (1,1) 4 }
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[cornerUR-rulel
rule 3 100 { (1,-1) 2}
rule : O 100 { t }

rule : O 100 { t }

[cornerDL-rulel
rule 2 100 {(-1,1) 3}
rule : O 100 { t }

[cornerUR-rulel
rule 4 100 { (-1,-1) 1}
rule : O 100 { t }

Figure 67: Implementation ofthe Rebound of an Object

9.3Classification of raw materials

The aim of this example is to show the use of special behavior that can be given to a cell when an
external event arrives through an input port. We have a model that represents the packing and
classification of certain raw material that contains 30% of carbon approximately. The model is
made of a machine that loads 100 grams fractions of that substance in a carrying bando One a
fraction reaches the end of the band, it is processed by a packager that takes these fractions until a
kilogram is obtained. Then, the packed substance is classified. If each packet contains 30 ± 1 % of
carbon, it is classified as of first quality; otherwise, it will be of second quality.

The model uses the atomic model Generator that generates values (in this case always the value 1)
each x seconds (where x has and Exponential distribution with average 3). These values are passed
to the carry band, represented by a cellular mode. At the end of the band, another cellular model
makes the packaging and selection.

I~
Quality

2nd

Quality

Figure 68: Coupling structure for the Classification f Substances

The following is the specification ofthe model:

[topl
components : genSubstances@Generator queue packing
out : outFirstQuality outSecondQuality
link out@genSunstances in@queue
link out@queue in@packing
link out1@packing outFirstQuality
link out2@packing outSecondQuality
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[genSubstancesl
distribution : exponential
mean : 3
initial : 1
increment °
[queuel
type : cell
width : 6
height : 1
delay : transport
defaultDelayTime : 1
border : nowrapped
neighbors : queue{O,-l) queue{O, O) queue{O,l)
initialvalue : °
in : in
out : out
link: in in@queue{O,O)
link: out@queue{O,S) out
localtransition : queue-rule
portInTransition : in@queue{O,O) setSubstance

[queue-rulel
rule : ° 1 { (O,O) 1= ° and (O,l)

= ° }
rule : { (O,-1) } 1 { (O,O) = ° and (O,-1) 1= ° and not isUndefined{{O,-
1» }
rule ° 3000 { (O,O) 1= ° and isUndefined{(O,l» }
rule : { (O,O) } 1 { t }

[setSubstancel
rule : { 30 + normal{0,2) } 1000 { t }

[packingl
type : cell
width : 2
height : 2
delay : transport
defaultDelayTime : 1000
border : nowrapped
neighbors packing{-l,-l)
neighbors packing{O,-l)
neighbors packing{l,-l)
in : in
out : outl out2
initialvalue : °
initialrowvalue: ° 00
initialrowvalue: 1 00
link in in@ packing{O,O)
link in in@ packing{l,O)
link out@ packing{O,l) outl
link out@ packing{l,1) out2
localtransition : packing-rule
portInTransition in@packing{O,O)
portInTransition : in@packing(l,O)

packing{-l,O) packing{-l,l)
packing{O,O) packing{O,l)
packing{l,O) packing{l,1)

add-rule
incQuantity-rule

[packing- rulel
rule ° 1000
}
rule
10 }
rule {(O,-l) / (1,-1)}
isUndefined{{O,l»

°
{

1000 { isUndefined({-l,O» and isUndefined{(O,-l» and (1,0) =
isUndefined{(l,O» and isUndefined({O,-l» and (O,O) = 10

1000 { isUndefined({-l,O» and

and (l,-1) = 10 and abs { (O, -1) / (1,-1) - 30 ) <=
1 }
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and (0,-1) = 10 and abs( (-1,-1) / (0,-1) - 30 ) >

ru1e: { (-1,-1) / (0,-1) } 1000 {isUndefined«l,O» and
isUndefined«O,l»

1 }
ru1e : { (0,0) } 1000 { t }

[add-ru1el
ru1e {portVa1ue(thisPort) + (0,0) } 1000 { portVa1ue(thisPort) 1= ° }
ru1e : { (0,0) } 1000 { t }

[incQuantity-ru1el
ru1e {1 + (0,0) } 1000 { portVa1ue(thisPort) 1= ° }
ru1e : { (O,O)} 1000 { t }

Figure 69: Implementation of the Model to Classify Substances

The cellular model queue that represents the carry band makes use of the portInTranstition
clause. As it was mentioned earlier, this clause is used to set the rule that will be evaluated when an
external event is received by the cell through the specified port. This clause is then used again in
the definition of the model Packing set the behavior of the cells upon the reception of a raw
material from the carry bando

9.4 Game of Life - 3D

The next example is an adaptation of the Game o/ the Life to a three dimensional space.

Figure 70 shows the model definition and Figure 71 lists the contents of file "3d-life.val" that
contains the initial values for the cell.

[topl
components 3d-life

[3d-1ife-ru1el
ru1e 1 100 { (0,0,0)
ru1e 1 100 { (0,0,0)
ru1e ° 100 { t }

1 and (truecount = 8 or truecount° and truecount >= 10 }
10) }

[3d-lifel
type : ce11
dim : (7,7 ,3)
delay : transport
defau1tDelayTime : 100
border : wrapped
neighbors 3d-1ife(-1,-1,-1)
neighbors 3d-life(0,-1,-1)
neighbors 3d-1ife(1,-1,-1)
neighbors 3d-1ife(-1,-1,0)
neighbors 3d-life(0,-1,0)
neighbors 3d-life(1,-1,0)
neighbors 3d-life(-1,-1,1)
neighbors 3d-life(0,-1,1)
neighbors 3d-life(1,-1,1)
initialvalue : °
initialCellsValue : 3d-life.val
localtransition 3d-life-rule

3d-life(-1,0,-1)
3d-life(0,0,-1)
3d-life (1,0, -1)
3d-life(-1,0,0)
3d-life(0,0,0)
3d-life(1,0,0)
3d-life (-1,0,1)
3d-life (0,0,1)
3d-life(1,0,1)

3d-life (-1,1, -1)
3d-life(0,1,-1)
3d-life (1,1, -1)
3d-life (-1,1, O)
3d-life(0,1,0)
3d-life (1,1, O)
3d-life (-1,1,1)
3d-life (0,1,1)
3d-life (1,1, 1)

Figure 70: Implementation of the Game of Life - 3D
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(0,0,O) = 1
(0,0,2) = 1
(1,0,0) = 1
(1,0,1) = 1
(1,1,1) = 1
(1,2,0) = 1
(1,2,2) = 1
(1,3,2) = 1
(1,4,2) = 1
(1,5,0) = 1
(1,5,1) = 1
(1,6,0) = 1
(1,6,1) = 1
(2,1,2) = 1
(2,1,0) = 1
(2,3,1) = 1
(2,3,2) = 1

(2,4,1) = 1
(2,4,2) = 1
(2,5,0) = 1
(2,6,1) = 1
(3,2,1) = 1
(3,5,1) = 1
(3,5,2) = 1
(3,6,1) = 1
(3,6,2) = 1
(4,1,2) = 1
(4,2, O) = 1
(4,2,1) = 1
(4,4,1) = 1
(4,5,0) = 1
(4,5,2) = 1
(4,6,0) = 1
(4,6,2) = 1

(5,1,2) = 1
(5,2,0) = 1
(5,2,2) = 1
(5,3,0) = 1
(5,3,1) = 1
(5,5,1) = 1
(5,5,2) = 1
(5,6, O) = 1
(6,0, O) = 1
(6,1,1) = 1
(6,1,2) = 1
(6,3, O) = 1
(6,3,2) = 1
(6,4,2) = 1
(6,5,1) = 1
(6,6,0) = 1
(6,6,2) = 1

Figure 71: Initial values for the cells of the Game of Life - 3D

9.5 Use of Macros

The following example shows how macros can be used to write a new version of the Game o/ the
Life for a 4 dimensional space. Macros can be defined in external files that are included in the main
.ma file. More than one macro definition is may be included per file, but no macro can make use of
an existing macro. A macro is defined between the #BeginMacro and a #EndMacro directives. All
other text is ignored. The next figures show the contents of the four files that are used to
completely define the new model.

#include(life.inc)
#include(life-1.inc)

life(-l,-l,O,O) life(-l,O,O,O) life(-l,l,O,O)
life(O,-l,O,O) life(O,O,O,O) life(O,l,O,O)
life(l,-l,O,O) life(l,O,O,O) life(l,l,O,O)

[life-rule]
% Comment: Here
rule : 1
rule : °
#macro(rule1)
rule : 1
#macro(rule2)

starts the definition of rules
100 { #macro(Heat) or #macro(Rain) }
100 { (0,0,0,0) = ? OR (0,0,0,0) = 2 }

% Another comment: A macro is invoked
100 { (0,0,0,0) = (1,0,0,0) ANO (0,0,0,0)

[top]
components life

[life]
type : cell
dim : (2,10,3,4)
delay : transport
defaultDelayTime
border : wrapped
neighbors
neighbors : life(0,-8,0,0)
neighbors :
initialvalue : °
initialCellsValue
localtransition

100

life.val
life-rule

> 1 }

Figure 72: Implementation of the Game of Life with 4 dimensions and using macros
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(0,0,0,0)
(1,0,0,0)
(0,0,1,0)
(0,1,2,2)
(1, 4, 1,2)
(1, 3, 2,1)

?
25
21
28

17
= 15.44

Figure 73: File life.val that contains the initial values for the Game ofLife in 4D

This is a comment: The macro Ru1e3 assigns the va1ue O if the cell's value
is 3, and 4 if the cell's value is negative.

#BeginMacro(rule3)
rule : O 100 { (0,0,0,0)
rule : 4 100 { (0,0,0,0)
#EndMacro

3 }
< O }

#BeginMacro(rule1)
rule: 0100 { (0,0,0,0) + (1,0,0,0) + (1,1,0,0) + (0,-8,0,0) 11}
#EndMacro

#BeginMacro(Heat)
(0,0,0,0) > 30
#EndMacro

Figure 74: File Iífe.inc that contains some macros used in the Game ofLife 4D

#BeginMacro(Rule2)
rule: o 100 { (0,0,0,0) = 7 }
rule : { (0,0,0,0) + 2 } 100 { t }
#EndMacro

I

#BeginMacro(Rain)
(0,-8,0,0) > 25
#EndMacro

Figure 75: File Iife-l.inc that contains the remaining macros ti r the Game ofLife 4D
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10 Appendix B - The preprocessor and temporary files.

When the preproeessor is used to resolve maeros (by default the preproeessor is enabled), it will
ereate a temporary file for the model with all maeros expanded and all the eornments erased. This
temporary file is then passed to the simulator for its interpretation. If the use of the preproeessor
with the parameter -b is disabled and maeros are used, the model will not be proeessed eorreetly.

The name of the temporary file is the value retumed by the instruetion tmpnam of the GCC. The
direetory where the temporary files are loeated will be seleeted aeeording to the following eriteria:

1. When CD++ is eompiled, the name of direetory defined by P_tmpdir <stdio.h> will be used,
unless this is the root direetory.

In Linux this variable usually has the value: "/TMP", while in the version of the GCC 2.8.1
for Windows-32 bits, this variable referenees to the root directory of the disk unit that is in
use.

2. If P_tmpdir points to the root direetory, then the name defined by the environment variable
TEMP will be used.

3. If no TEMP variable is defined, then the value of the environment variable TMP will be
used.

4. Finally, ifthe TMP is neither defined, the eurrent direetory will be used.
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