Departamento de Computacion
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

f [\ Eny,
7SS mamo 4
OE

CIENCUS EXACTAS @
¥ HATURALES

Modificaciones a CD++
para simulacion paralela y distribuida
de modelos Parallel Cell-DEVS

TESIS DE LICENCIATURA

Autor
Alejandro Troccoli

Director
Dr. Gabriel Wainer

CONTENIDOS

Informe cientifico

Manual del Usuario

II

Departamento de Computacion
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

e
5 0'\0 9054’%

FACUlAD 5.
DE

Modificaciones a CD++
para simulacion paralela y distribuida
de modelos Parallel Cell-DEVS

INFORME CIENTIFICO

Autor
Alejandro Troccoli

Director
Dr. Gabriel Wainer

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Table of Contents

TABLE OF CONTENTS 2
ABSTRACT 3
1 INTRODUCTION 4
2 THE DEVS AND PARALLEL DEVS FORMALISMS 7
2.1 THE ORIGINAL DEV'S FORMALISMcoeiiiuiiieiueeeeeiueeeeeisseeeesissseesessssssseesssssesssssssseessssssssssssssesassssesanes 7
2.2 THE PARALLEL DEV'S FORMALISM ...cooeeeuvvttreeiiesiiirereeeeeessssssssssesesesesesssssssssssssssssssesssssssssssssssssessessnns 10
3 THE CELL -DEVS AND PARALLEL CELL-DEVS FORMALISMS 14
3.1 CELLULARATITOMATAc 00000 ssesnssssssssssssssssmossansssnssssonsassssossnssnsasonssnesssissnnnshifinsssissiiosaessissssssasissssss 14
3.2 THE TIMED CELL-DEV'S FORMATISM ::icvvsaivissssnovsavusvenisssosivssisssisssissinisns st iivesssssss sonssamsvnmassasvasvonsass 14
3.3 THE PARALLEL CELL -DEV'S FORMALISM .:suuvicsosvsasssssississanvosssissssssssessssasosssavaesssaninssssnivssssssssivossn 16
3.3 CELL-DEVS QUANTIZATION :css::s:vsssssss5sssasssas s ssvos sassssssiesstssssas sausasssssnsssssssasssssssass sussnms sriasasessvanvass 19
4 ABSTRACT SIMULATOR FOR DISTRIBUTED PARALLEL-DEVS 21
4.1 PARATLELDEVS ABSTRACT SIMULATORS wiveiiss ssvesssnssssisss sosssssnvsessanstosssmsrssosss toaesisnsss s savaasaseavessss 21
5 PARALLEL SIMULATION 32
5.1 CONSERVATIVE SYNCHRONIZATION : visis:sicsesscassssisssasssessssvasisssassnsrsossssssvsssasssssssassssssssasassosasssssnnsnnsoss 33
5:2 OPTIMISTIC SYNCHRONIZATION cscisvssses sssnnsvsnsssssssnstossssssssnssssnsssss s svssossis s saisaesss v visviisaevsoissin 34
6 CD++ 36
6.1 ATOMIC MODEL DERINITION . sixvisssswrsssisssnissisissssiessssssisesisssssossussssssvssissesvsmsassvessvssesssssnsonsvnssesssissssnse 36
7 PARALLEL CD++ 38
7.1 SYNCHRONIZATION FOR THE PARALLEL DEVS ABSTRACT SIMULATORcceveeeeeeeeeenecaneenseeeeessssnnns 38
T2 WARPED AP i cisinecossiscssmisssmssmmsissmmisssiss sosssossnsssssnsssariissisass tosstos svsssuisss sssnmanessianssssonnasss sisvasnss 39
7:3 AN OVERVIEW OF PARALLEL CD tuuisuunsmusssssssssncnsssrssssssssssssssersss s sssssssossisivsssseisisssnsssovessnssssvisssss 40
8 PRELIMINARY RESULTS 42
8.1 AN'EXTENDED VERSION OF THE GPT MODEL .::::suvs0iswsssissssassssesssssssninsrassssssssssessorosssssassyvsssassissssonns 42
8.2 RESULTS FOR A HEAT DIFFUSION MODEL..css55sssmssssssssassssssiniussnsossisssssssssssssssossssvorssssasssssaonvisssinnvinnsssss 44
9 A REVISED ABSTRACT SIMULATOR. 46
9.1 REVISED ABSTRACT SIMULATORuuuuuisesssennsssssneseesssesassseseessessssssssssssssssssssnnnssssssesesssssssnans 49
9.2 SYNCHRONIZATION FOR THE REVISED PARALLEL DEVS ABSTRACT SIMULATORccccovuurvrreeeeaannne 54
10 PERFORMANCE ANALYSIS 55
10.1 THE EFFECT OF QUANTIZATION ..ccusvsessssssssssssssusssssscassssisssissnssosssnssssssioss sosvasinssossasssassrnssssvssssssnsusssns 55
10:2 REVISED SIMULATOR VS/ORIGINAL SIMULATOR 1:.usc5:0isssessssssnsssssssssvessassosonssnssisssmissasseishbusssssssssssns 55
10.3 THE EFFECT OF THE CHOICE OF PARTITIONcccettuurtreeteeeeeiiurrereeeeseeeeesssssssssssssssssessesseemsssssssesseennns 56
10.4 A METRIC FOR MODEL PARALLELISMcuuuuiteieeeeiiiuureeeeeeeeesinssssseeeeeeesessessssssssssssssessesssemssssssssesssnenns 57
11 A FLOW-INJECTION CELL-DEVS MODEL 60
11.1 FLOW INJECTION ANALYSIS . .uuuuturtieeieieiiiurreeeeeeeeeissseeseeeeesmssssasssessesseeessmmssssssssssssssssesessssssssssessessnns 60
11.2 A CELL-DEVS MODEL FOR FLOW-INJECTIONuvvttiieiiiiiirrrreeeeeeeeeessinsssseeeeesssesseessssssssssssessesssnnnes 61
BRI 1Y 10 07N 0 (0) N 33 25 6) 55 1SR 65
11.4 PERFORMANCE ANALYSISuvtttieeeeieeeitereeeeeeeeessssseseeeeeeessssssseseesssessssssssssssesssesesessssssssssssessssssssnses 66
12 CONCLUSIONS AND FURTHER DEVELOPMENTS 68
13 REFERENCES 69

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Abstract

Cell-DEVS es un formalismo para describir modelos celulares que se diferencia de los autdmatas
celulares tradicionales por la expresividad que provee para definir el avance del tiempo. Cell-DEVS se ha
utilizado para modelar varias aplicaciones: trafico, incendios forestales, inyeccion de flujo y otras. Pero la
ejecucion de modelos Cell-DEVS grandes y complejos requiere un poder de coémputo que muchas veces
una sola computadora no provee, pero que si se puede obtener utilizando ejecucion paralela y distribuida.
Por este motivo se hicieron modificaciones a Cell-DEVS que dieron origen a Parallel Cell-DEVS, un
formalismo revisado que extiende Cell-DEVS para simulacion en paralelo. El presente trabajo define un
mecanismo de simulacién que permite ejecutar modelos Parallel Cell-DEVS en ambiente paralelos,
haciendo énfasis en aquellos que son distribuidos.

Cell-DEVS is a formalism intended to model cell spaces. It describes cellular models using timing delay
constructions, allowing simple definition of complex timing. Large Cell-DEVS models require a
computing power that their execution in a standalone machine is not feasible. As parallel and distributed
environments became more accessible, the Cell-DEVS formalism was revised to permit parallel
specification of these models. This work defines a new simulation mechanism suited for distributed
environments and presents a tool for the simulation of Parallel DEVS and Cell-DEVS models on a
network of computers.

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

1
Introduction

Simulation is a powerful tool for studying complex systems, with quite a range of uses, from new system
testing to physical phenomena understanding. The simulation process begins with a problem to solve or
understand. It might be the case of a train company trying to develop a new strategy for cargo storage and
railway tracks usage or a chemist trying to understand a complex process of physical diffusion. From the
the observation of a real system entities are identified, and an abstract representation, a model, is
constructed. Once the model is constructed, it needs to be executed. This is done by a simulator, which
consists of a computer system that executes the model’s instructions to generate its behavior. To complete
the cycle, the results obtained are compared to those of the real system for model validation. It is often the
case that a modeler is only interested in a few aspects of the real system. In such a case, an experimental
frame captures the modeler’s objectives and defines the scope of the model.

Experimental Frame

Simulator

Simulation
Relation

Modeling
Relation

Figure 1 : The basic entities and their relationships [Zei00]

The basic entities are linked by two relations [Zei00]:

Q modeling relation. Links the real system and model, defining how well the model represents the
system or entity being modeled. In general terms a model can be considered valid if the data generated by
the model agrees with the data produced by the real system in an experimental frame of interest.

Q simulation relation. Links the model and simulator. It represents how faithfully the simulator is able
to carry out the instructions of the model.

There exist at present quite a number of simulation techniques and paradigms. Among these, the DEVS
formalism [Zei76, Zei00] provides a framework for the construction of hierarchical models in a modular
manner, allowing for model reuse and reducing development and testing time time. In DEVS a model is
specified as a black box with a state and a duration for that state. When the duration time for the state
expires, an output event is sent, an internal transition takes place and the model changes its current state.
A change of state can also occur when an external event is received. Then, a complete model is defined
by describing the set of states a model goes through, the internal and external transition functions, the
output function and the state duration function. DEVS models can be put together by linking the outputs
of a model to inputs of other models to form coupled models. Models made out of only one component
are called atomic.

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

DEVS not only proposes a framework for model construction, but also defines an abstract simulation
mechanism that is independent of the model itself. This mechanism is a high level description of how the
simulation of DEVS models should be executed by a simulator. Two kinds of simulators are defined,
one for atomic and another one for coupled models, this latter one known as a coordinator. These
simulators progress through the simulation by exchanging messages as described by the abstract
simulation mechanism.

In [WaiO1] the Timed Cell-DEVS formalism was presented. Cell-DEVS is a formalism based on DEVS
for the simulation of cellular models. A traditional cellular automaton is a lattice of cells, each of which
has a value and a local rule that defines how to obtain a new value based on the cell’s current state and the
values its neighbors. Cells are updated synchronously all at the same time. Timed Cell-DEVS takes a
different approach. It defines a cell as a DEVS model and a cellular automaton as a coupled model, and
introduces a new way of defining the timing of each cell which is more flexible than the traditional
synchronous approach. In Timed Cell-DEVS each cell defines its own update delay, giving the modeler
more precision and reducing the execution time.

To simulate DEVS and Cell-DEVS models a toolkit, CD++, was developed [Rod99]. CD++ has been
used to simulate a variety of models including: traffic, forest fires, ants and watershed simulation
[Ame00]. Simple models are easily handled by the tool. However, the execution of complex models
requires a computing power that stand alone computers do not provide, but that can be provided by
parallel and distributed systems.

Not only parallel execution was being demanded for Cell-DEVS but also for DEVS models. In [Cho94a]
the Parallel DEVS formalism was introduced. This formalism is a revision of DEVS that eliminates
serialization constraints that made it unsuitable for parallel execution. Similarly, Parallel Cell-DEVS
[Wai00a] was introduced as a revised version of Cell-DEVS that eliminates serialization constraints and
inconsistencies with zero delay cells and multiple simultaneous events.

This work presents changes to CD++ to run Parallel DEVS and Parallel Cell-DEVS models on a
distributed environment, providing a tool that will not only reduce execution times but also allow larger
models. To begin, a new abstract simulator will be presented because the Parallel DEVS simulator
introduced in [Cho94b], though well suited for an implementation on a parallel system with shared
memory, does not allow for an efficient implementation over a network of computers. Basically, the
simulator in [Cho94b] does not distinguish messages sent over the network from those sent between
objects on the same process, incurring in an unnecessary overhead. Therefore, there was a need to extend
it for distributed environments. This work addresses this issues.

In parallel simulation, the execution is divided into a set of Logical Processes, each running on a different
CPU. Each Logical Processes hosts a set of simulation objects. For flexibility, the new parallel simulator
was designed as a layered architecture application. The topmost layer implements the abstract simulator,
the middle layer carries out all required synchronization in the Logical Process level, and the lowest layer
is in charge of communications. For the middleware, the Warped project [Mar97] was selected. Warped
provides an API for running parallel simulation. There are three approaches to synchronization between
Logical Processes: optimistic, pessimistic, and no synchronization (application level synchronization) and
Warped currently provides two of these. A Time Warp kernel implements the optimistic Time Warp
protocol, and a No Time kernel [Ra098] implements an unsynchronized protocol. The parallel simulator
has been written to support both kernels and is currently being run with the No Time kernel.

The final release of parallel CD++ runs both, distributed and standalone simulation. For simple and small
models, the standalone version performs well. For complex and big models the distributed version is
preferred. The development was carried out in Linux machines. Testing has been done on different Linux
clusters at the Universidad de Buenos Aires and at the University of Carleton in Ottawa.

This work is organized as follows. The first two chapters, Chapter 2 and 3, present the DEVS, Parallel
DEVS, Cell-DEVS and Parallel Cell-DEVS formalisms. In chapter 4, the new abstract simulator suited
for distributed environments is introduced. Chapter 5 will make a short presentation of synchronization
techniques for parallel discrete event systems, introducing the optimistic, pessimistic and unsynchronized
protocols. After this presentation, Chapter 6 will introduce CD++ and Chapter 7 the parallel version, with

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

special mention of implementation issues using the Warped kernels. A first set of results is presented in
Chapter 8.

After the first results, some bottlenecks were detected, so the simulator was revised. These revisions are
presented in Chapter 9. Chapter 10 makes evaluates the performance of the two simulators and analyses
other factor affecting performance, such as model workload and choice of partition.

Chapter 11 introduces a chemical diffusion model and further performance analysis. Finally the
conclusions follow.

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

2
The DEVS and Parallel DEVS formalisms

2.1 The original DEVS formalism

Systems whose variables are discrete and the time advance is continuos are known as DEDS — Discrete
Events Dynamic Systems, as opposed to CVDS — Continuous Variable Dynamic Systems [Wai98]. A
simulation mechanism for DEDS systems assumes that the system will only change its state at discrete
time points upon the occurrence of an event. An event is formally defined as a change of state that takes

place at time specific point of time t; € R.

DEVS [Zei76, Zei00] is a formalism for modeling and simulating DEDS systems. It defines a way of
specifying systems whose states either change upon the reception of an input event or the expiration of a
time delay. It also allows for hierarchical decomposition of the model by defining a way to couple
existing DEV'S models.

The original DEVS model is a structure:

DEVS: <X, Y; S.- 5&(!; aint; 2; ta>

where
X is the set of external events
Y is the set of output events
S is the set of sequential states;
Oor: QX X8 is the external state transition function;

where O :={(s5,¢e) | s €S, 0 <e <ta(s) } and e is the elapsed time since the last state transition.

Oim- S = S is the internal state transition function,
A:8 =Y is the output function;
ta:S »R,* v is the time advance function;

The semantics for this definition are as follows. At any given time, a DEVS model is in a state s € S and
in the absence of external events, it will remain in that state for a period of time as defined by ta(s).
Transitions that occur due to the expiration of ta(s) are called internal transitions. When an internal
transition takes place, the system outputs the value /(s), and changes to state J,(5). A state transition can
also happen when an external event occurs. In this case, the new state is given by J ..(s, e, x) where s is
the current state, e the time elapsed since the last transition and x the external input value.

The ta(s) function can take any real value between 0 and . A state for which ta(s) = 0 is called a
transient state. On the other hand, if ta(s) = oo, the system will stay in that state forever unless an external
event is received. In such a case, s is called a passive state. Figure 2 illustrates this definition, and Figure
3 shows how to define a CPU model with DEVS.

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

—

Figure 2 : DEVS Semantics

A computer processor can be specified as a DEVS model. A processor would have to states: busy and
available. So

S = { busy, available }
Jobs will constitute the set of input events and output events. A job arriving on an input port will change
the processor state to busy. Once the job has been processed it will be sent as an output event. Jobs will
be identified with a natural numbers, hence

X=N

Y=N

Assuming no job arrives while the processor is busy and that the model keeps an internal variable with
the id of the job its processing, then the external transition function is defined as follows:

Oeu (%, €
{
s = busy
jobld = x
/

A job will occupy the processor during a random time with a given Poisson distribution, so the time
advance function is

ta (busy) = Poisson()
ta (available) = oo

If the processor is available, then it will remain in that state until an external event arrives.

When the processing time has expired, a state transition will take place. At this time, the output function
is called followed by the internal transition function. Continuing with our description,

A(busy) = jobld
O o (busy) = available

An internal transition from the available to busy state will never happen because available is a passive
state.

Figure 3 : Definition of a CPU using DEVS

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

DEVS models can be put together to form coupled models.
A coupled model is a structure:

DN =< ‘Xvself» Yself: D: {M}I {Iz}’ {ZiJ}: SeleCt)
where
D is a set of components.
for each i in D,

M;is a component.
for each i in D U { self},

1; is the set of influencees of i.
for eachj in /;

Z; ;is a function, the i - fo -j output-input translation
select is a tie-breaker function.
This structure is subject to the constraints that for each i in D,

M=<‘Xvi; Yi,Sl', alext: é;int: ﬂ’l)tal) lsaDEVSmOdel
I;is a subset of D U { self }, i isnotin [,
Zselfj . Xself i Xj
Zi, self: Yi % Yself
Zi . Yi —> X_]
select : subset of D — D

such that for any non-empty subset E,

select (E) € E
A coupled model groups several DEVS models together into a compound model that can be regarded, due
to the closure property, as another DEVS model. This allows for hierarchical model construction. A
DEVS model that is not constructed as a coupled model is known as an atomic model.
A coupled model can have its own input and output events, as defined by the X yand Y, sets. Upon
receiving an external event, the coupled model has to redirect the input to one or more of its components.
In addition, when a component produces an output, this has to be mapped as another’s component input
or as an output of the coupled model itself. All these input-output mappings are defined by the Z function.
When models are coupled together, ambiguity arises if there are more multiple components scheduled for
an internal transition at the same time. If the first component to make its internal transition produces an
output that maps to an external event for another component that is already scheduled for an internal
transition, then it is not clear which transition this second component should execute first. There two
alternatives: to execute the external transition first with e = fa(s) and then the internal transition, or to
execute the internal transition first followed by the external transition with e = 0. The way the DEVS
formalism solves this is by the use of the select function. This function defines an order on the

components so that only one component of the group of imminent models is allowed to be with e = 0. The
other imminent models will be divided in two groups: those that receive an external output from this

9

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

model, and the rest. The first group will execute their external transitions functions with e = fa(s) and the
second group will be imminent during the next simulation cycle, which may require again the use of the
select function to decide which model will execute first.

This tie-breaking approach is a potential source of errors since the serialization produce may not reflect
the correct system’s behavior upon the occurrence of simultaneous events. In addition, the serialization

reduces the possibility of a speed up in a parallel environment. For these reasons, the parallel DEVS
formalism was revised giving place to the Parallel DEVS formalism.

2.2 The Parallel DEVS formalism

The Parallel DEVS formalism [Cho94a] keeps all the nice properties of the DEVS formalism and
eliminates all the serialization constraints that made simultaneous execution in a parallel environment not
feasible.

Chow required that the following properties hold:

e Collision handling: the behavior of a collision must be controllable by the modeler.

e Parallelism: the formalism must not use any serialization function that prohibits possible
concurrencies.

e Uniformity: the hierarchical construction must have uniform behavior: different hierarchical
constructs of the same model must display the same behavior.

In DEVS, neither the first nor the second condition hold. Parallel DEVS resolves these issues.

As in DEVS, a P-DEVS model is described as a set of basic and coupled models. Atomic models are still
the most basic constructions, which can be combined with other models into coupled models. A Parallel-
DEVS coupled model satisfies the closure property [Cho94b], so it can used as another basic model.
Therefore, Parallel-DEVS preserves the hierarchical properties of the original DEVS formalism.

A basic Parallel DEVS is a structure:

DEVS =<Xu,Yu, S, Oext, Fins Ocon 4 1a)
where
Xu=A{(,v)|p €lPorts,v €X,} is the set of input ports and values;

Yy ={(p,v)|p € OPorts,v €Y, } is the set of output ports and values;

S is the set of sequential states;

Oors Ox X D 8 is the external state transition function,
O S —> S is the internal state transition function,
Ocon QXX F =S is the confluent transition function;

Az 8 =3B} is the output function;

ta:S »R,* v is the time advance function;

withQ:={(s,e) |s €S, 0 <e <ta(s) } the set of total states.

The differences between the DEVS and Parallel-DEVS formalism are the following:

10

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

e The model interface has been extended to include ports and values. A model will now have
input and output ports through which all interaction with the environment takes place.
Events determine values appearing on such ports. A model receives outside events through
its input ports. Upon reception of such events, the model description must determine how it
responds to them. In addition, internal events arising within the model change its state, and
manifest themselves as events on the output ports to be transmitted to other model
components.

e The external and output functions no longer handle one event at a time. Instead, bags of

events are now being handled, allowing then for simultaneous processing of multiple events.

e A new transition function has been defined, the confluent function J ., This function will
define a new model’s state when there is a collision between internal and external
transitions. Basically, this function will allow the modeler to specify how the model should
behave in the presence of collisions.

The semantics of the Parallel-DEVS definition are then as follows. At any given time, a basic model is in
a state s and in the absence of external events, it will remain in that state for a period of time as defined by
ta(s). When an internal transition takes place, the system outputs the value /(s), and changes to state
Om(s). If one or more external events E = { x; _x, /x € X, } occurs before ta(s) expires, i.e., when the
system is in total state (s, €) with e < za(s), the new state will be given by J,.(s,e,E). When an external and
internal transition collide, i.e. external events E arrives when e = ta(s), the new system’s state could
either be given by (G (s),e,E) or S duls,e,E)). To avoid a fix behavior, the modeler can define the
most appropiate behavior with the &, function. Then, in the Parallel DEVS formalism, in the presence of
collisions the new system’s state will be the one defined by J.ou (s, E).

A Parallel DEVS coupled model is defined by:
CM=<XY, D, {M,|d eD}, EIC, EOC, IC>
where
X={(p,v)|p €lPorts,v €¢Xp} is the set of input ports and values;
Y= {(p,v)|p € OPorts,v €Y p} is the set of output ports and values;
D is the set of the component names;
The following constraints apply to the components:
Components are DEVS models:
foreachd €D
Mi=X4,Y4S Oot, Ointy Ocon A ta) is a DEVS basic structure
with Xy={(p,v)|p €lPorts,v €X,} ;
Y= {(,v)lp € OPorts,v €Y, } ;
The couplings are subject to the following conditions:

e external input couplings (EIC) connect external inputs to component inputs:

EICC {((N,ipn), @, ip 4)) |ip vy € IPorts, d €D, ip 4 € IPorts;}

e external output couplings (EOC) connect component outputs to external outputs:

EOCc{((d op) (N opy))|opn eOPorts,d €D, op ; € OPorts 4}

11

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

e internal couplings (IC) connect component outputs to component inputs:
ICc{((a,0p.), (b ipy))|a b eD,op, €OPorts ,, ip, €lPorts ;, }

No direct feedback loops are allowed, i.e., no output port of a component may be
connected to an input port of the same component,

((d, opy), (e ipy) € IC implies d =e.

e Range inclusion constraints: the values sent from a source port must be within the
range of accepted values of a destination port, i.e.,

V((N,ip), (d,ip a)) €EIC: X py ©X pa
v ((a: op a)r (M op N)) €EOC: Yopa _CYopN

V((aop.) (bipy)) €lIC:Y g X ips

The Parallel-DEVS definition eliminated the select function. If there multiple imminent components, then
all their outputs will be first collected and mapped to their influencees. Then, the corresponding transition
function will be executed for each model.

As an example, a generator-processor-transducer (gpt) model will be shown. The aim of this model is to
calculate the usage of a given processor. It is made of three atomic models:

A generator that generates new jobs at random time intervals.

e A processor that consumes the jobs that the generator produces.
A transducer: a model that will keep count of the number of jobs processed and the time it
took to process each job.

The generator has two input ports: start and stop, and an output port out. Whenever a new job is
generated, a new event is sent through the out port. The processor has one output port iz and an output
port out. A new job is received through the in port and when it has been processed after an elapsed time ¢,
an event is sent through the out port. The transducer has two input ports: arriv and solved, and one output
port result. When an event is recevied through arriv a timer is started and a job count is increased by one.
When an event is received through the solved port the counter is stoped. After an pre-defined observation
period of time, the processor usage is sent through the out port. The whole coupled has two input ports
start and stop, and two output ports out and result. The couplings are shown in Figure 4.

12

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

start

stop

ept

in

genr

proc

transd

out

out
-
result
ot P

Figure 4: The GPT coupled model. [Zei00]

13

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

3
The Cell -DEVS and Parallel Cell-DEVS formalisms

3.1 Cellular Automata

Cellular Automata are used to describe real systems that can be represented as a cell space. A cellular au-
tomaton is an infinite regular n-dimensional lattice whose cells can take one finite value. The states in the
lattice are updated according to a local rule in a simultaneous and synchronous way. The cell states
change in discrete time steps as dictated by a local transition function using the present cell state and a
finite set of nearby cells (called the neighborhood of the cell).

Cell's Neighbothood

Figure 5 : Sketch of a Cellular Automaton [Wai00a]

When cellular automata are used to simulate complex systems, large amounts of compute time are
required, and the use of a fixed interval discrete time base poses restrictions in the precision of the model.
The Timed Cell-DEVS formalism [Wai98] tries to solve these problems by using the DEVS paradigm to
define a cell space where each cell is defined as a DEVS atomic model. The goal is to build discrete
event cell spaces, improving their definition by making the timing specification more expressive.

3.2 The Timed Cell-DEVS formalism

Cell-DEVS defines a cells as DEVS atomic models. A Cell-DEVS atomic model is defined by [Wai98]:

’I‘DC=</\/’ Y7 1’ S; e’ N! da 6i.llt’ Sext, T }\'a D >

where
X is a set of external input events;
Y is a set of external output events;
1 represents the model's modular interface;
S is the set of sequential states for the cell;
0 is the cell state definition;
N is the set of states for the input events;
d is the delay for the cell;

14

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Oint is the internal transition function;
Oext is the external transition function;
T is the local computation function;
A is the output function; and

D is the state's duration function.

A cell uses a set of input values N to compute its future state, which is obtained by applying the local
computation function 1. A delay function is associated with each cell, deferring the output of the new
state to the neighbor cells. There are two types of delays: inertial and transport delays. When a transport
delayed is used, the future value will be added to a queue sorted by output time. Therefore, all previous
values that were scheduled for output but that have not yet been sent, will be kept. On the contrary,
inertial delays use a preemptive policy: any previous scheduled output value, unless the same as the new
computed one, will be deleted and the new one will be scheduled. This activation of the local computation
is carried by the 8. function.

After the basic behavior for a cell is defined, the complete cell space will be constructed by building a
coupled Cell-DEVS model:

GCC=<UXlist, Ylist, L X, Y, n, {t;,....,t,}, N, C, B, Z, select >

where
Xlist is the input coupling list;
Ylist is the output coupling list;
1 represents the definition of the interface for the modular
model;
X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{isesstul is the number of cells in each of the dimensions;
N is the neighborhood set;
C is the cell space;
B is the set of border cells;
Z is the translation function; and
select is the tie-breaking function for simultaneous events.

This specification defines a coupled model composed of an array of atomic cells. Each cell is connected
to the cells defined in the neighborhood, but as the cell space is finite, either the borders are provided with
a different neighborhood than the rest of the space, or they are "wrapped", meaning that cells in one
border are connected with those in the opposite one. Finally, the Z function defines the internal and
external coupling of cells in the model. This function translates the outputs of m-th output port in cell C;
into values for the m-th input port of cell Cy. Each output port will correspond to one neighbor and each
input port will be associated with one cell in the inverse neighborhood.

15

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

||

Cell's connections

Fan
Eme

OIRNIS

84,

-

IN oUT
" T(8)=5 —
Cell definition

Figure 6 : Informal definition of a Cell-DEV'S model [Wai98]

The select function serves the same purpose as in the original DEVS models: to tie-break between
imminent components.

The use of the select function introduces similar problems to those described for coupled DEVS models:
lack of parallelism exploitation and a probable inconsistency with the real system. In addition, the timed
Cell-DEVS was restricted to one input from each input port. Such restriction disallows [Wai00a]:

e zero-delay transitions
e external DEVS models sending two simultaneous events to the same cell.

To forbid zero-delay transitions is too restrictive, and so is allowing only one event per external model,
specially after the Parallel DEVS formalism allowed a basic model to send more than one event at a time.
These were enough reasons to revise Cell-DEVS and the Parallel Cell-DEVS formalism was proposed.

3.3 The Parallel Cell-DEVS formalism

A parallel Cell-DEV'S basic model can be formally defined as:
TDC = <Xb= Yba Ia 87 e’ Na d, 6inta 66Xt7 6con, T, Tcons }\'a D>
where
In this case, #T <o A T e {M, Z R, (0.1} } L {$};
XcT;
YcT,
I=<mn,pX w, PX PY > Here, n € N, N < is the neighborhood's size, pX, u¥ e N, pX, u¥
<o is the number of other input/output ports, and V j € [1,n], i € {X, Y}, Pji is a definition of
a port (input or output respectively), with Pji = { (Nji, Tji) / Vjell, n+ui], Nji € [i1, Tneul
(portname),yTji € I; (port type)}, where ;= {x /x e Xif X }or ;= {x/x e Yifi=Y };
ScT;
6= { (s, phase, cqueue, f,) /
s € S is the status value for the cell,

s’ € S is an intermediate status value for the cell;

phase € {active, passive},

16

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

oqueue = { (v1,61)s--(VmyOm)) /M € NAM <0) AV (i € N, ie[lm]),vie SAc;
€ Rotuw};
fe T;and
ceRytuw};
N e SN+H;
de R0+, d <oo;
Oi: 0 > S;
Sext: QxX? > 0,Q={(s,e) /s € 0xNxd;e € [0,D(s)]};
Seon: OXX? — S;
7: N — S x {inertial, transport} x d;
Toon: X'XN = S x {inertial, transport} x d;
A:' S —>Y% and
D:@xNxd—>R0+u00.
A Cell-DEVS atomic model is a specialization of a Parallel DEVS basic model. The difference between
an atomic model and a Cell-DEVS model is the existence of a cell neighborhood, a delay @ and a local

computation function t. The [interface defines a fixed number of ports for message exchange to neighbor
cells.

Originally, only one kind of delay of a given duration was related with each cell. Now, the local transition
function will return the type and length of the delay, and the cell's outputs will be delayed accordingly.
This redefinition allows to include complex timing behavior.

In the presence of collisions between internal and external events, the confluent transition function Sy is
activated. It must activate the confluent local transition function T.,,, whose goal is to analyze the present
values for the input bags, and to provide a unique set of input values for the cell. In this way, the cell will
compute the next state by using the values chosen by the modeler. Basically, what t.,, does is to choose
members from the bag, and update the inputs for the cell. After, it deletes the unnecessary members of the
bag.

The following figure shows a sketch of the contents of each cell.

oive [T =]

Hord
e | 'H

N

s s f
O O 0O

Figure 7: Cell’s definition [Wai00a]

Atomic Cell -DEVS models can be put together to form coupled Cell-DEVS models. A parallel Cell-
DEVS coupled model can be represented as:

17

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

GCC =< Xlist, Ylist, 1, X, ¥, n, {t},....,ta.}, N, C, B, Z>

Xlist is the input coupling list;

Ylist is the output coupling list;

I represents the definition of the interface for the modular model;
X is the set of external input events;

Y is the set of external output events;

n is the dimension of the cell space;

{t1,...,ta} is the number of cells in each of the dimensions;

N is the neighborhood set;

C is the cell space;

B is the set of border cells; and

Z is the translation function.

C = { CC / ce I A CC =< IC) Xca Yc; SC7 NC9 dc’ 5int(:) Bextc, 600!1(;) TC; Tconc }\’C’ Dc> },
where Cg is a parallel Cell-DEVS atomic model, and I = { (iy,...,in) / (ix € N Aix € [1, &]) V k € [1, n]}.

That is, each cell in the space is a parallel Cell-DEVS atomic cell using the 8, and T, functions to avoid
collisions.

As stated in [Wai0Oa], the following lemmas apply.

Lemma 1
The Parallel Cell-DEVS models are equivalent to parallel DEVS models.

Lemma 2
Closure under coupling for parallel Cell-DEVS models: a coupled parallel Cell-DEVS model is
equivalent to a basic parallel Cell-DEVS model.

This two lemmas imply that within a coupled Parallel DEVS model, a Cell-DEVS model can be used as if
it were a basic Parallel DEVS model. This property will be used in the next section, when the abstract
simulator is described, to prove that the abstract simulator for Parallel DEVS models will also execute
Parallel Cell-DEVS models.

If a parallel Cell-DEVS model can be viewed as parallel DEVS model, then it should be possible to
define its corresponding &y, I Seon, and A functions. The semantics for these functions will be now
presented.

Note: oqueue is a list of pairs (delay, value) sorted by ascending order of delay. These are the values
scheduled for output. The following operations are defined for the queue:

first: the first pair.

head: the set of pairs from the front of the queue with minimum delay.

tail: queue — head

add: adds a new pair to the queue.

18

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

6int:

c=0; oqueue = {J}; phase = active

Vie [1,m], a; € oqueue, 2.6 = a;.0 - head(cqueue.o); ocqueue = tail(cqueue);
o = head(oqueue.c);
c=0; oqueue = {J}; phase = active
o=o A phase=passive
A
c=0;
out = { a;.v | a; € head(queue) };
8ext:
N = Teon(X?); (s, transport) = t(N,); o #0; e=D(0 x N x d); phase = active;

s#s' = (s=s’ A Vie[lm]a € oqueue, a;. 6 =a;.0-¢ A 0=0 -¢; add(oqueue, <s',d>) Af=s)

Ne=Teon(X?); (s, transport) = 7(N,); & #0; e=D(OxNxd); phase=passive;

s#s8' = (s=s’ A o=d A phase=active A add(cqueue, <s',d>) Af=s)

N, = tm(Xb); (s', inertial) =t(N.); o #0; e=D(0 x N x d); phase = passive;

s#s' = (s=s" A phase=active A c=d A f=5s)

N, = rcon(Xb); (s', inertial) =t(N,); o #0; e=D(0x Nxd); phase=active;

s#s' = s=5" A (f#zs = oqueue={J} rc=d A f=5s)

3.3 Cell-DEVS Quantization

Recently, a theory of quantized models was developed [Zei98a, Zei98b]. When using a quantized model,
after a cell’s state value will be only informed to its neighbors if its difference with the previous value is
greater than a given quantum. This idea is shown in Figure 8. Here, a continuos curve is represented by
the crossings of an equal spaced set of boundaries, separated by the quantum size. A quantizer checks for
boundary crossings whenever a change in a model takes place. Only when such a crossing occurs, a new
value is sent to the receiver. This operation reduces substantially the frequency of message updates, while
potentially incurring into error.

19

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

States

7D
&D

5D

4D
3D
2D

lD/l

Sender

timet

I
I
I
I
: Receiver
I
]
I
I

Figure 8 : Quantization (Zeigler et al 1999)

In [Wai00b] several experimental tests were done in order to analyze the behavior of quantized Cell-
DEVS models. The results showed that quantization reduced both, the total number of messages sent and
the execution time, but introduced an error. The error obtained is a function of the local computing
function, the number of simulation steps and the quantum. Since the future input values for a cell depend
on the present results, a nonlinear error may be observed. The error magnitude will depend on the cell's
neighborhood size. It was shown in [WaiO0b] that as the quantum gets higher, the error gets bigger.

Choosing an adequate quantum will then depend on the precision desired.

When quantization is used with a quantum value d, 8.y is defined as:

8ext:
N = Teon(X®); (s', transport) = T(N,); c#0; e=D(0 x N xd); phase = active;
s # value(s',d) =
(s=s" A Vie[l,m]a; € oqueue, a. c=2a.06-¢ A 6=0 -e¢; add(oqueue, <s',d>) Af=s)
N, = Tcon(Xb) : (s', transport) = 1(N,); c #0; e=D(OxNxd); phase=passive;
s #value(s'\d) > (s=s’ A o=d A phase=active A add(cqueue, <s',d>) Af=5s)
N.= Tcon(Xb); (s', inertial) = 1(N,); o #0; e=D(0 x N x d); phase = passive;
s #value(s',d) = (s=s’ A phase=active A c=d A f=5s)
N, = rcon(Xb); (s', inertial) =Tt(N,); o #0; e=D(0x N xd); phase = active;
s#value(s',d) = s=s’ A (f#s' = oqueue={J} Ac=d A f=5s)

where

value(v,d) =v’suchthat 3qe N/v’=qd AV’ <v.
i.e. the lowest boundary as defined by the quantum size.

e.g: value(23.45,0.1) =23.4 value(550, 100) = 500

20

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

4
Abstract simulator for distributed Parallel-DEVS

The DEVS formalism separates the model from the actual simulator. In [Cho94b] an abstract simulator
for the Parallel DEVS formalism was presented. Though well suited for shared memory parallel
environments, this abstract simulator does not distinguish between intra-process messages and inter-
process messages. Distributed environments have an important communications overhead that affects
inter-process messages. To keep this overhead low, this type of messages should be minimized

A new abstract simulator suitable for distributed environments has been developed and is presented next.

4.1Parallel DEVS Abstract Simulators

The simulation of DEVS models is carried out by Processors that drive the simulation forward by
exchanging messages. There are two types of Processors: Simulators, driving the simulation of atomic
models, and Coordinators, in charge of executing coupled models and coordinating the activities of all
their dependants. Processors are organized in a hierarchy that resembles the model hierarchy, as show in
Figure 9.

Model Abstract Simulator
Coupled
Model Coordinator
Atomic Atomic Atomic
Dependant 1 Dependant 2 Dependant 3 Simulator 1 Simulator 2 Simulator 3

Figure 9 : Correspondence between the model and the DEV'S processors

In the same way a coupled model has a set of components, every coordinator has a set of child
Processors, one for each component of the coupled model. When a simulation is run in distributed
fashion, each machine will run one a Logical Process that will host one or more Processors. Under these
assumptions, a coordinator’s children need not be executing on the same Logical Process. Then every
message sent to child Processors running on a different Logical Process will require inter-process
communication. Figure 10(a) illustrates this case. It shows a coordinator sending a message to its 8
children distributed on two machines. Four inter-process messages are required for the four children
running on processor 1. From now on, Processors that are running on the same Logical Process will be
called local to each other.

When the number of children Processors is high (as it usually is for coupled Cell-DEVS), the number of
messages sent across the network will be significant. This can be avoided if every coupled model has
more than one coordinator. Figure 10(b) illustrates this case. For the same coupled model, there are two
coordinators, one in Logical Process 0 and another one in Logical Process 1. In this case, only one
message is sent over the network.

So, to reduce inter-process messages, coupled models will require a coordinator on each Logical Process
where a child Processor is running. Children Processors will send messages to the local coordinator,
which will decide how to handle the received messages. But care should be taken because the existence of
multiple coordinators for one coupled model can cause duplicate messages. To avoid this, there will be
only one coordinator that will communicate with the parent’s model. This specialized coordinator will be
a master coordinator and the others will be slaves.

21

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

CPUD CPU 1
Coowd inator ' > 5
oy p
1 2 AT
3 4 - 8
(a)
CPUD CPU 1
Master Slave
Coordinator Coord mnator
»
1 2 5 8
3 4 [7
(b)

Figure 10 : (a) A single coordinator sending a message to all its child processor. Dashed lines =
interprocess messages. (b) A master- slave pair sending messages to all their children processors.

When master and slave coordinators are used, Processors are organized in a hierarchy, which does not
have a one to one correspondence with the model hierarchy . Therefore a parent child-relationship that
takes into account the existence of master and slave coordinators is defined as follows:

a. for each simulator, the parent coordinator will be the parent’s model local Processor (it is guaranteed
that this will exist)

b. for each slave coordinator, the parent coordinator will be the model’s master coordinator.

c. for each master coordinator, the parent coordinator will be the parent’s model local processor; just
as if it were a simulator.

At the beginning of the simulation, each simulator will be assigned to a Logical Process. Then for each
coupled model, a coordinator will be placed in every Logical Process where there is a simulator or a
master coordinator that corresponds to a component of the model. One of the coordinators will be
designated as master coordinator.

The simulation is message driven. Processors exchange messages of the form (type, time) and can belong
to one of two categories: synchronization messages and content messages.

Synchronization messages:

(@, 1 Collect message
(* 9 Internal message
(Done, t) Done message

Content messages:
(q.9 External message
o9 Output message

In addition, a Processor has a set of internal variables to keep the time of the simulation:

22

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

t;, = Time of last transition
ty = Time of next change

and a bag to temporarily store the external messages (¢,).
At any instant ¢, a Processor is said to be imminent if # = #y.

A simulation cycle starts when the topmost coordinator sends a (@, t) message. This message tells all the
imminent simulators to execute their output functions. At the same time, coordinators will make the
necessary translations of the resulting (), #) messages to (g, #) messages that are sent to a model’s
influencees. When a Processor has finished sending its outputs, it sends a (done , t) message to its parent
coordinator. When the topmost coordinator receives a (done, t) all the outputs have been processed, so it
sends a (* #) message to trigger the execution of a model’s transition function.

A simulator receiving a (¥, #) message will execute one of the three transition functions of its associated
atomic model: &, J, OF J.,, . If the model is imminent and has not received any external event, then J,;
is executed. If the model is not imminent and has received external events, then J,,, is executed. Finally, if
a model is imminent and received external events, J.,, is executed, which will decide which of the
external or internal transition function should be executed.

A coordinator receiving a (*, t) message will forward this message to all its dependants that are either
imminent or that have received external events.

(g, 1) (y,t) Content msgs
Synchronization msgs
9 » DEVS PROCESSOR
(done, t) <

Figure 11: Messages a DEV'S processor receives and sends

The complete behavior of a Processor is defined by how it handles each of these messages. To
completely define the abstract simulator, the behavior of the simulator, master coordinator, slave
coordinator and root coordinator will be described.

The simulator is responsible of invoking the atomic model’s A(s) , &y, Sy dion functions. The description
that follows is based on the one in [Cho94b], with some minor changes:

23

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

SIMULATOR
when a (@ , t) message is received
if =ty then
y = As)
send (v, t) to the parent coordinator
send (done, t) to the parent coordinator
end if
else raise error

end when

SIMULATOR

when a (g, ¢) message is received
lock the bag
Add event g to the bag
unlock the bag

end when

SIMULATOR
when a (*, 7) message is received
casef; <t<ty
e=t-1
S = Ou(s, e, bag)
empty bag
end case
case ¢ =ty and bag is empty
8= 8pfs)
end case
case ¢ =ty and bag not is empty
$:= Gon(s, bag)
empty bag
end case

case t>tyort <t

raise error
end case
t.=1
ty:=ta(s)

send (done, ty) to parent coordinator

end when

24

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

The (*) message is received when a model’s transition function must be executed. The transition
function to be executed will depend on ¢ and the content’s of the bag. If 7 < #y, then it is not the time for
an internal transition, and it must be the case that the bag is not empty and &, should be executed. If 7 =
ty, it is the time for an internal transition. If no external messages have been received then J,, is
executed, but if there are external messages, then d,,, should be called instead.

Now the master coordinator will be described. A coordinator, whether master or slave, drives the
simulation of a coupled model. Each coordinator has a set of child Processors. The role of the
coordinator is to keep track of the imminent Processors and to translate output events to input events.
For a master coordinator the set of child Processors is made of:

o the set of slave coordinators

e the set of local simulators and master coordinators that correspond to components of the
coupled model.

To simplify the following description it is necessary to define the function coordinator.

coordinator : Mx P — C
where
M is a coupled model
P is a Processor
C is a coordinator (master or slave)

coordinator (M, j) =i, where i is the coordinator associated to coupled M that is local to child j. The
following restrictions apply for the function to be well defined:

j is a DEVS processor associated to a dependant of M

i is one of the coordinators associated with M

MASTER COORDINATOR
when a (@ , ¢) message is received from parent coordinator
if =ty then
o=t
for all imminent child processors i with minimum #y
send (@, t) to child i
cache i in the synchronize set
end for
wait until (done, t)’s have been received from all imminent processors
send (done, t) to parent coordinator
end if
else raise error

end when

When a master coordinator receives an output message, two cases need to be distinguished:
an output message (y , ¢) received from a slave coordinator

an output message (y, i, ¢t) forwarded from a slave coordinator that received (y , ¢) from a local
child i.

25

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

MASTER COORDINATOR
when a (v, ¢) message is received from child i
for all influencees, j of child
if j is a local processor
q:=z;(y)
send (g, t) to child j
cache j in the synchronize set
else
s .= coordinator(self; j)
if s ¢ slave-sync set then
send (y,1,) tos
cache s in the slave-sync set
cache s in the synchronize set
end if
end if
end for
if self € I; (y is to be transmitted upward) then
Y=z (¥)
send (y, t) to parent coordinator
end if
clear slave-sync set

end when

when a (y, i, ¢) message is received from a slave s
cache s in the slave-sync set and proceed as if a (v, ¢) message had been received from child i

end when

Here slave-sync is used to avoid forwarding an output message twice to a slave coordinator. It is
important to note that instead of forwarding a (g,) message to a slave coordinator, a (y, i, t) is sent. A
slave coordinator might be the parent coordinator for more than one of the influencees of i. If (¢ , ?)
messages were to be forwarded, then there will be one (g,) message for each influencee of i. For Cell-
DEVS models, this can be an important overhead. Instead, just one (y, i, ¢) message is sent across the
network. The recipient slave coordinator will generate the appropiate (g, f) messages.

As mentioned in [Cho94b], all children ready for a transition are cached in a synchronize set to later
distinguish active from inactive components.

26

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

MASTER COORDINATOR

when a (g,) message is received from parent coordinator
lock the bag
Add event q to the bag
unlock the bag

end when

MASTER COORDINATOR
when a (*, ¢) message is received from parent coordinator
iff, <t<ty
for all ¢ € bag
for all receivers of q, j € Iy
if j is a local processor

q = Zse 1 (9)
send (g, t)toj

cache j in the synchronize set

else
s = coordinator(self, j)
if s ¢ slave-sync set then
send(g,t)tos
cache s in the slave-sync set
cache s in the synchronize set
end if
end if

end for
clear slave-sync set
end for
empty bag
for all i in the synchronize set
send (*,¢)toi
end for
wait until all (done, ty)’s are received
=t
ty := minimum of components’ zy’s
clear the synchronize set
send (done, ty) to parent coordinator
else raise an error

end when

When a coordinator receives a (*7) two actions must be taken. First, all external events that were stored
in the bag need to be forwarded to the corresponding models. If an external event needs to be routed

27

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

down to a slave coordinator the z translation is not be applied. Instead, the original g message is sent.
Therefore, care must be taken not to forward a message twice to a slave coordinator. Here again, the
slave-sync is used for that purpose.

In a second phase, all processors in the synchronize set are sent a (*f) message.

The slave coordinator will be introduced next. It differs from the master coordinator in only one way:
when a message needs to be sent a processor that is not local, it will be sent to the master coordinator
instead.

For a slave coordinator, the set of child processors is made of

o the set of local simulators and master coordinators that correspond to components of the
coupled model.

SLAVE COORDINATOR
when a (@ ,) message is received from master coordinator
if £ =ty then
=t
for all imminent child processors ; with minimum #
send (@, t) to child i
cache 7 in the synchronize set
end for
wait until (done, t)’s have been received from all imminent processors
send (done, t) to master coordinator
end if
else raise error

end when

As it can be noticed, there is no difference on how both master and slave coordinators handle a (@, t).

28

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

SLAVE COORDINATOR
when a (y, ¢) message is received from child i
sent_to_master := false
for all influencees, j of child
if j is a local processor
q:=z;(y)
send (¢, t) to child j

cache j in the synchronize set

else
if not sent_to_master
send (y, t) to master coordinator
sent _to_master = true
end if
end if

end for
if self € I; (y is to be transmitted upward) then
if not sent_to_master
send (y, t) to master coordinator
end if
end if
end when
when a (y, 7, t) message is received from master coordinator
sent_to_master := true
proceed as if a (¥,) message had been received from child i

end when

When an output event is received from a child i, the slave coordinator sorts the message to the
influencees of i. If any influencee is local, the z function is applied a (g , ¢) message is sent. If there are
non-local influencees, then the output event is sent to the master coordinator, who will then sort the
message to other slave coordinators if necessary. Only one (y , ¢) message should be forwarded to the
master coordinator.

When the slave coordinator receives an output event that has been forwarded by the master coordinator
on behalf of child 7, it will handle the event as if i had been local, but no (y, ¢) messages will be
forwarded back to the master coordinator if there is a non-local influencee. This is to avoid infinite loops
of messages being forwarded back and forth.

29

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

SLAVE COORDINATOR

when a (g, ¢) message is received from master coordinator
lock the bag
Add event g to the bag
unlock the bag

end when

SLAVE COORDINATOR
when a (*, 7) message is received from master coordinator
ift, <t<ty
for all g € bag
for all receivers of g, j € Iy
if j is a local processor
q = Zse j(q)
send (g, t)toj
cache j in the synchronize set
else
do nothing
end if
end for
end for
empty bag
for all i in the synchronize set
send (*,¢)toi
end for
wait until all (done, ty)’s are received
=t
ty -= minimum of components’ zy’s
clear the synchronize set
send (done, ty) to master coordinator
else raise an error

end when

The root coordinator is a special processor that is above the topmost coordinator. It is responsible for
driving the simulation and advancing the virtual simulation time. The root coordinator can also handle

external events which are stored in a sorted queue of events.

30

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

ROOT COORDINATOR
load queue of external events and sort them by arrival time.
¢ := minimum of #yof topmost coordinator and #y of queue.
while ¢ = o
if ¢ = tyof queue

for all g in queue with time ¢

send (g , ¢) to topmost coordinator
end for

end if

if ¢ = #y of topmost coordinator
send (@, t) to topmost coordinator
wait until (done, t) is received from it

end if

send (*, ¢) to topmost coordinator
wait until (done, t) is received from it
end while

raise simulation completed

The abstract simulator has been now completely defined. This abstract simulator will be able to handle
both, Parallel DEVS and Parallel Cell-DEVS models.

31

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

5
Parallel Simulation

When running parallel and distributed simulation, the whole model is divided among a set of Logical
Process, each of which will execute on a different CPU. In general terms, each Logical Process will host
one or more simulation objects. For the present discussion, those simulation objects will be any of the
three DEVS Processors. simulators, master and slave coordinators.

Logical Processes (LPs) communicate by using time-stamped events that move the simulation forward. In
order to obtain correct results, LPs must process messages in strictly non-decreasing timestamp order.
Each LP has an input queue of messages to process. Figure 12 shows two LPs, each with one event in its
input queue. Both events are processed simultaneously, and as a result of processing C with time 2, a new
event D is generated for LP 1 with time stamp 5. But LP 1 has already processed an event with timestamp
8 so the simulation is incorrect. Such an error is called a causality error.

LP1 LP2

Queue: Queue:

B8 D5 C2

Figure 12: Execution of the first queued message does not always guarantee correct results.

Therefore, either LPs must agree on a synchronization mechanisms, or the application programmer has to
ensure the application will keep the LPs synchronize.

For event driven simulation, there are three types of synchronization strategies:

1. No synchronization at all (synchronization is ensured by the application).
2. Optimistic synchronization.
3. Pessimistic (conservative) synchronization.

The first approach assumes all messages will always arrive in the order defined by their time-stamp, and
no out of order message will ever be received. It is an optimistic strategy that relies on the
synchronization being handled by the simulation objects instead of the logical process themselves. It is a
very efficient implementation that does not require event queues; each event is processed as soon as it
arrives.

The other two rely on synchronization being handled by the LPs. Input events are queued in order of
earliest time-stamp and the following two constraints must be always valid [Zei00]:

e All outputs resulting from the processing of an input event must have a time-stamp greater or equal
to the input time. This means processing can’t proceed backwards in time.
e Messages must be processed in order of time-stamps in the queues.

Optimistic and conservative schemes differ on the way they enforce the second constraint. In conservative
schemes the time-stamped order constraint is never violated. On the other hand, optimistic schemes allow
a temporary violation that must be repaired before the final simulation output is presented.

32

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

5.1Conservative synchronization

The conservative approach is illustrated in Figure 13, where there are two Logical Process LP1 and LP2
with queues of time stamped messages.

Starting in the upper left corner, LP 1 has a message with timestamp 3 and LP 2 has an earliest message
with timestamp 1. Therefore, LP 1 can not execute its message because there is a potential risk of LP 2
producing an output with timestamp less than 3. Conservative schemes must therefore find a way to
determine when it is safe to process input events. If a LP has an unprocessed event with timestamp ¢ and
no event with earlier timestamp can be received, then the event can be safely processed. A LP that has in
its queue an unprocessed event from all the other LPs can safely process the one with lowest timestamp
because future messages will have a later timestamp. This process can be repeated as long as there are
unprocessed messages from all the other LPs. But if this is not so, there is a risk of deadlock.

121 Lp2
a3 . \ /"‘\
bd .
e s 9
ch d” 2
f9
LP1 Lp2
al es
{ b4 £9
ch
LPi LP2
d*2
es
" £9
b4
ch

Figure 13: LPs with conservative synchronization [Zei00]

To avoid deadlock, each LP provides a time in the immediate future up to which it promises not to send
input events. This is done through null messages. An LP will send a null message to other LPs with a
lookahead time up to which it is safe to process messages. In Figure 13, the lookahead for LP 2 is 1.
Therefore, when LP 1 receives a null message with this lookahead time, it knows it must not process
message (a,3). Large lookahead values are needed to gain advantages over sequential simulation, but
unfortunately, such large lookaheads are difficult to find in many representations of reality.

A safe lookahead value is the timestamp of the first unprocessed message in the input queue. If after
processing an event all Logical Processes send a null message with the timestamp of the next input event,
a deadlock will be rare. There is only one case in which a deadlock may occur, and that is the case when
all LPs are about to process an input event with the same time stamp.

Null messages can increase the simulation overhead considerably. An improvement on the described
mechanism is to send null messages on demand. When a process is about to block, it will request the next

33

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

events from the LPs it does not have a timestamp. This reduces the number of null messages being sent,
but increases the overhead.

5.2 Optimistic synchronization

The optimistic schemes process their input queues as fast as they can. If a message out of place in the
time-stamp order of processing is received, usually known as a straggler, a recovery and rollback
mechanism is started to rectify this situation.

Figure 14 shows such a situation. In the upper left hand corner, LP1 and LP2 have arrived at the situation
where LP2 has processed events (d,1) and (e,5) and sent input events (d’,5) and (e’,6) to LP1. Now, LP1
processes event (a,3) which causes it send an input (a’,3) to LP2 as shown in the middle. However, since
LP2 has already processed event (e,5), the new input (a’,3) a straggler.

[P1 1p2
\ /l_\ Already

al : a3 sent
fa
outputs
b4
L] Lp2 a4 s
d* 8
"y I b4 £9 e b
&
. i
o di
il 6 e
cb Already
provesyed
LPI LP2 P gt
Already
) 4% sent
b4 e 8 TUEE
d' 5 ty
dl
¢ 8 Alremly
6 provessed
[

inprats

Figure 14: Event processing in an optimistic scheme

To rectify an abnormal situation, an anti-message such as (e’,6) that annihilates the effects of already sent
messages must be sent. To be able to return to a previous state, each simulation object must maintain a
queue of already processed inputs and their outputs, and a queue of previous states. When an anti-
message is received, the queues are restored to the anti-message time and new anti-messages are sent for
every output sent that should not have been sent. This starts a chain reaction of rollbacks. An optimization
technique known as lazy cancellation delays the anti-messages until the simulation object is sure the
previous output must be cancelled. It might be the case that the previous and new output are the same, so
nothing should be done.

The overhead for running an optimistic scheme is quite considerable. There is a memory overhead
because three queue must be kept: input events, output events and state. And there is a processing
overhead during rollbacks, too. In addition, a fossil collection mechanism that will delete those queue
elements that are no longer required must be conveyed to avoid exhausting system resources. Logical
process have a local time know as Local Virtual Time. There is also a Global Virtual Time, the time of
the system, that is equal to the least LVT. After a number of simulation cycles, LPs will exchange their

34

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

LVTs and the GVT will be determined. This GVT is broadcasted, triggering the fossil collection process
on each LP. All those input events, output events and states that have a time-stamp earlier than the GVT
can be safely deleted. A high GVT calculation frequency saves memory but generates a big processing
overhead. On the contrary, a low frequency will generate less processing overhead and require more
memory.

The protocol just described is known as TimeWarp and was proposed by Jefferson [Jeff87]

35

CD+, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

6
CD++

CD++ [Rod99] is a tool for running DEVS and Cell-DEVS models according to the original DEVS
formalism.

The tool is built as a hierarchy of classes, each of them related with a simulation entity. Atomic models
can be programmed and incorporated into a basic C++ class hierarchy. Coupled and Cell-DEVS models
do not need programming. Instead, the tool provides a specification language that allows the modeler to
define the model's coupling, including the initial values and external events, and the local transition rules
for Cell-DEVS models.

Processor
Model
Sinmuilator Coordinator Root \
Coordinator Atomic Coupled
r CellCoordinator | AtomicCell CoupledCell
Transport Inertial FlatCoupledCell
IﬁatCellCoordinator | DelayCell DelayCell

Figure 15: CD++ Models and Processors.

Figure 15 shows the class hierarchy. This class hierarchy implements the model theoretical definition
presented in the previous section. New atomic models must be incorporated to the class hierarchy as
subclasses of the Atomic Model class.

6.1 Atomic model definition

A new atomic model is created by including a new class that inherits from Atomic. In doing so, the
following methods may be overloaded:

e initFunction: this method is invoked when the simulation starts. It allows to define initial values and to
execute any initialization procedure for the model. When this method is executed, the value of sigma next
scheduled event) is set to infinite and the model phase to passive. The sigma variable is used to
implement the duration function: it stores the time up to the next event in the model. This variable is
related with the elapsed time value, which is maintained by an independent simulation mechanism.

e external Function: this method is invoked when an external event arrives from an input port.

e internalFunction: this method is started when the value of sigma is zero, since an internal event has
occurred.

e outputFunction: this method executes before the internal function, allowing to provide outputs for the
model.

After defining these functions, new models can be incorporated to the modelling class hierarchy. Finally,
the model must be registered using the method MainSimulator.registerNewAtomics(). The following
primitives can be used in defining the atomic’s model behavior:

36

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

e holdIn(state, time): a model executing this sentence will remain in state during time. When the time is
consumed (sigma = 0), the model executes the internal transition. This macro was included to make easy
the definition of the duration function.

e passivate(): the model enters in passive mode (phase = passive; sigma = infinite) and it will be
reactivated by an external event.

e sendQutput(time, port, value): it sends an output message through the given port.

o state(): it returns the present model phase.

37

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

7
Parallel CD++

The main goal of this work has been to extend CD++ into Parallel CD++, a tool for the simulation of
Parallel DEVS and Parallel Cell-DEVS models on a distributed environment. For this to be accomplished
in a modular and portable fashion, a layered architecture was chosen. The topmost layer implements the
abstract simulator, the middle layer carries out all required synchronization in the Logical Process level,
and the lowest layer is in charge of communications.

For the middleware, the Warped project [Mar97] was selected. Warped provides an API for running
parallel simulation. Two simulation kernels are currently provided for parallel and distributed simulation:
a TimeWarp kernel and a NoTime kernel. The first one implements the TimeWarp protocol as defined by
Jefferson’s paper [Jeff87]; the second is an unsynchronized kernel.

For the distributed simulation kernels, Warped uses MPI for the message passing. The complete layered
architecture is shown in Figure 16.

MODEL

Parallel CD++

WARPED

MPI

Figure 16 : Parallel CD++ layered architecture

7.1Synchronization for the Parallel DEVS abstract simulator

To choose between the TimeWarp and NoTime kernels, the abstract simulator of section 4 was analyzed.
The following properties were observed:

e During a simulation cycle, all messages carry the same timestamp #.
e The root coordinator is the only Processor that will advance the time.

In fact, each simulation cycle starts with the root coordinator sending a (@, #). After all the (done,t)
messages from the child processors have been received, it sends a (*#) message and when all the
corresponding (done,t) messages are sent back again, the simulation cycle finishes. Only then, the time
is advanced.

In the scope of the abstract simulator, a message will only be considered a straggler if its timestamp 7 is
less than the LVT of the receiving object. The following lemma holds.

Lemma 3
The abstract simulator of Section 4 can not produce a straggler message.

Proof
Warped and MPI guarantee that when two or more events are sent from a source object S to a destination
object D they preserve the same ordering upon arrival to D.

Assume a message m with timestamp ¢ is sent by a simulation object S to a simulation object D with
timestamp #;, with #; < #,. Since all messages carry the timestamp of the simulation cycle being executed,
it must be the case that the current simulation cycle either corresponds to time z,or to time £

38

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

If it is the first case, i.e. the current cycle’s time is #; then the root coordinator has sent a message with
timestamp #; And the root coordinator would only send such a message after receiving a (done, t,)
message from all the components that were active at time #, and S would have only sent a (done, t,) upon
finishing its simulation cycle. The fact that m has time ¢, < #; is a contradiction, because S could have
never sent a message timestamped ¢, after sending (done, t,).

Now, if it is the second case, i.e. the current cycle’s time is 7, then it is impossible for D to have a
timestamp 7, < ¢, because the root coordinator has not yet sent a message with timestamp 7,

Having proved that the abstract simulator of Section 4 can not produce a straggler message, then no
synchronization mechanism at the LP level is needed, because the synchronization is provided by the
abstract simulator itself. Then, the NoTime kernel can be used safely.

7.2Warped API

The Warped system is implemented in C++ and utilizes the object oriented capabilities of the language to
provide an application interface. It provides base classes for simulation objects (Warped objects), events
and object’s states. The user creates its own application by creating new classes that derive from the ones
provided. The benefit of this type of design is that the end user can redefine functions without directly
changing the kernel code. Though this interface was designed to be used with the TimeWarp protocol, it
is simple to switch from one kernel to another. Figure 17 shows the Warped APIL.

class TimeWarp {

// Methods the user defines
virtual void initialize();
virtual void finalize();
virtual void executeProcess() ;
BasicState* allocateState() ;

//Simulation kernel services
void sendEvent (BasicEvent *);
BasicEvent* getEvent () ;
class BasicEvent {
int size;
Vtime sendTime;
Vtime recvTime;
int sender;
int dest;

class BasicState ({

BasicState* copyState(BasicState*);

Figure 17 : Warped API

In Warped, objects are modeled as entities which send and receive events to and from each other, and act
on these events by applying them to their internal state. Thus, the kernel provides basic functions for the
application to send and receive events. Since the TimeWarp protocol requires periodic state saving for a
potential rollback and recovery process, Warped provides an interface for defining each object’s state.
Other facilities the Warped API provides include the possibility of having user define the data each event
will carry.

In return, the user application must provided several functions to the kernel. The most important function
defines what each simulation object does in each simulation cycle. Other functions define such things as
how to initialize and destroy each simulation object.

39

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli
7.3An overview of Parallel CD++

Following the original design of CD++, Parallel CD++ provides an API for users to define new atomic
models. The original CD++ atomic’s model interface was changed slightly to satisfy the Parallel DEVS
formalism. The new interface allows simultaneous external events to be handled together, defines a
confluent function and requires the user to give a definition of a model’s state (Figure 18).

class Atomic {

// Methods the user should define
Model& internalFunction() ;

Model& externalFunction (MessageBagé&)
Model& outputFunction() ;

Model& confluentFunction() ;
ModelState* allocateState() ;

//Simulation kernel services

void sendOutput (Port&, BasicMsgValue*) ;
const Vtime& lastChange() ;

void holdIn(state, Vtime);

Figure 18 : The Atomic class

In addition, Parallel CD++ provides a way of allowing the user to define the data carried by output and
external events, which in CD++ to real numbers (Figure 19).

class BasicMsgValue

it

public:
BasicMsgValue () ;
virtual ~BasicMsgValue() ;
virtual int valueSize() const;
virtual string asString() const;
virtual BasicMsgValue* clone() const;
BasicMsgValue (const BasicMsgValue&) ;

}i

class RealMsgValue : public BasicMsgValue
{
public:

RealMsgValue() ;

RealMsgValue (const Value& val);

Value v;

int valueSize() const;

string asString() const ;
BasicMsgValue* clone() const;
RealMsgValue (const RealMsgValue&) ;

Figure 19 : The BasicValue class for defining the contents of external and output events.

To run parallel and distributed simulation, it is required that the user defines the set of available machines
and a model partition. The set of available machines must be defined as specified by MPI, either by the
use of procgroup file or by adding the corresponding entries to machines. ARCH. Details on how this is
done are provided in the Parallel CD++ User’s guide.

To define the model partition, Parallel CD++ requires that the user specifies a machine for each atomic
model. For Cell-DEVS models, the user has to define the location of each cell or cell-range. This is done
through a partition file, which is specified as a command line parameter, allowing for the definition of
different partitions for the same model.

Parallel CD++ has been compiled and tested with both, the NoTime and TimeWarp kernel. Since the
Parallel DEVS abstract simulator provides a synchronization mechanism that guarantees in order
execution of events, the NoTime kernel was adopted for the final release, being this kernel more efficient

40

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

in the use of system resources. Still, the possibility of changing the Parallel DEVS abstract simulator
mechanism for exploiting the full capabilities of the TimeWarp protocol is left open to further
exploration.

The NoTime kernel can also be compiled to run in standalone mode without using MPI. Parallel CD++
supports compilation for standalone execution as well.

Further details are provided in the User’s guide.

41

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

8
Preliminary Results

The main motivation for this work was to make CD++ run faster by means of parallel execution.
Therefore, the results to be presented in this chapter will show how execution time of different models
changes with different configurations. But as it will be seen, it is not always the case that adding more
machines to a simulation will reduce the execution time. After a first set of results was obtained, some
bottlenecks were identified in the master-slave abstract simulator of section 4, and a new one, which will
be explained in the next section, was proposed.

The simulations were carried out with the Alpha network of the RADS group at the Systems and
Computing Engineering Department of the University of Carleton. The Alpha network consists of 14
Pentium machines with 128Mb of RAM running Red Hat Linux 6.2.

Network : 13411764 0 net1: 000-031
Subnet 255.255.255.224 net2: 032-063
net3: 064-095

; — Ethernet Hub
0 hackbone -—-—-——I—n
1] |
' l alpha-01
£4.62
6494
alpha-11
o
, Alpha network (alpha-11 to alpha-24)
?FEUUEM SW“ghl Dual boot NT/Linux
igaliyte moddle Dell Pentium 266 512K cache
e nethegel B 126MB non-ecc SDRAM
(P 64.93) =, 64.34 Lo 14/32X IDE CD-ROM
Gigabit link B [ﬂ‘;::: o 2MB ATI Video (integrated)
HP 6208 gigabit 6.4GB IDEHard Drive
Switch =
(IP: 64.92) Alpha-01 is a gateway machine and

nat used for measurement work.

Gamma Network
Dell PowerEdge 6300, Redundant PowerSupply
Quad processors 550MHZ, 512K Cache
512MB (4x128MB) EDO DIMMS
17/40X SCSI CD-ROM
2x8GB 7200ROM SCSI LVD Disk Drives
17" M570 monitor, 3.5" 1.4MB Floppy drive
Twvo Intel Pro 1000 Gigabit NIC
PERC2/QC 2.x RAID Controller (128MB
on Gamma-65, 16MB on Gamma-66)

Figure 20: The RADS measurement networks
8.1An extended version of the GPT model

The parallel simulator was first tested with an extended version of the Generator-Producer-Transducer
model (GPT). The GPT model simulates a CPU receiving jobs and calculates its throughput and load. It
consists of a generator, a queue, a processor and a transducer, as shown in Figure 21. The generator
outputs jobs periodically. When a new job id is sent through the out port, it is received by the queue and
the transducer. If the queue is empty, the job will directly be forwarded to the processor; otherwise, the
job will be queued till the processor is released. When the processor finishes a job it sends its id through
its out port to the transducer and the queue. If the queue has jobs waiting, it will send the next job to the
processor. Meanwhile, the transducer will compute the turnaround time and update the throughput and
CPU usage values, which it will output periodically.

42

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

GPT

processor

throughput
transducer :

cpuusage

Figure 21: The GPT model

The CD++ definition of this model is shown in Figure 22.

00 [top]

01 components : Queue@queue Processor@CPU Transducer@transducer Generator@generator
02 Out : throughput

03 Out : cpuusage

04 Link : out@generator arrivedetransducer
05 Link : out@generator inequeue

06 Link : out@queue in@processor

07 Link : out@processor done@queue

08 Link : out@processor solvedetransducer
09 Link : throughputetransducer throughput
10 Link : cpuusage@transducer cpuusage

Figure 22 : Definition of the GPT model

The extended version of the GPT model consists of several instances of the GPT model just shown. In
addition, all random variables that were present in the model definition were eliminated to obtain
comparable results. Tests were conducted with 12, 48 and 96 instances, running on 1 to 12 machines.
Figure 23 shows the execution times for this model.

120
100 A

80 —e— 12 Copies
60 —4#—48 Copies
40 - - 96 copies

Time (sec)

20

0 T T
0 5 10 15

Number of machines

Figure 23: Execution time in seconds of 12, 48, and 96 copies

As it can be seen, the execution times did not behave as expected. As more machines are added, the
execution times increases. To verify if the communications overhead was being the cause for such an
increase in the running time, the model was rewritten to increase the execution workload. This would
increase the computing time at each simulation cycle. If the computing time for a simulation cycle is
greater than the communications overhead, then it is expected that adding more machines will reduce the
overall simulation time. The new results confirm this hypothesis and are shown in Figure 24.

43

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

3000

2500 -

N
o
o
o
L

—o— 12 Copies
1500 - ——48 Copies
—a&— 96 copies

Time (sec)

-
o
o
o
L

500 -

0 T f
0 5 10 15

Number of machines

Figure 24: Execution time in seconds of 12, 48, and 96 copies of the GPT model with an increased
workload on 1 to 12 machines, for a simulation virtual time of 10 minutes. Results show the minimum
time of three runs independent runs.

8.2 Results for a heat diffusion model

The parallel simulator was also tested using a heat diffusion model. In this model, a surface is
represented by a 100 x 100 cellular space where each cell contains a temperature value. Initially, all cells
have a different value, and as the simulation progresses, the temperature of a cell is updated to the
average temperature of the neighborhood.

The model definition using CD++ is shown in Figure 25. Line 2 defines the top model with only one
component: the heat surface. Between lines 4 and 16 this model is defined as a 100 x 100 cell space with
a standard nine cells neighborhood and a local transition function called heat-rule, which is later defined
in lines 18 and 19. The initial values are read form the file calor.map.

01 [top]

02 components : surface

03

04 [surface]

05 type : cell

06 width : 100

07 height : 100

09 delay : transport

10 defaultDelayTime : 100

11 border : wrapped

12 neighbors : surface(-1,-1) surface(-1,0) surface(-1,1)
13 neighbors : surface(0,-1) surface(0,0) surface(0,1)
14 neighbors : surface(l,-1) surface(l,0) surface(l,1)
15 initialmapvalues : calor.map

16 localtransition : heat-rule

17

18 [heat-rule]

19 rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1) + (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 10000 { t }

Figure 25 : Definition of the heat diffusion model

Figure 26 shows a model partition for running the heat diffusion model on 4 machines. A total of 10000
simulators have been assigned to 4 CPUs.

01 0 : surface(0,0)..(24,49)
02 0 : surface(25,0)..(49,49)
03 1 : surface(50,0)..(74,49)
04 1 : surface(75,0)..(99,49)
05 2 : surface(0,50)..(24,99)
06 2 : surface(25,50)..(49,99)
07 3 : surface(50,50)..(74,99)
08 3 : surface(75,50)..(99,99)

Figure 26 : A model partition for 4 processors

The heat diffusion model was run on 1, 2, 4 and 8 machines, for a virtual time of 2 minutes and using
quantum values of 0.001, 0.01 and 0.1. When a quantum size of 0.1 was used, the simulation ended after

44

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

a 44sec of simulation time (virtual time) because the model reached a stable state. The execution times
are shown in Figure 27.

Time (sec)

Number of machines

(2)

900
800 -
700 A
600 -
500 A
400
300 +
200 -
100 -

Time (sec)

Q=0 Q=0.001 Q=0.01 Q=0.1
Quantum size

(b)

Figure 27 : Execution time for the simulation of the 100x100 heat diffusion model
during a virtual time of 2 minutes.

It can be observed that:

e When the same quantum is used, adding more machines does not necessarily reduce the
simulation time. For all quantum values, the transition from 4 to 8 machines did not reduce the
execution time.

e As the quantum is increased there is a reduction in the execution time (b)

After these results, the abstract simulator of section 4 was studied thoroughly to determine the causes for
the unexpected behavior, especially for the time increase observed in the transition from 4 machines to 8
machines. As explained in the next chapter, it was determined that the master coordinator was acting as a
bottleneck.

45

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

9
A revised abstract simulator.

When executing Cell-DEVS models in parallel, there is an invariant that is independent of the abstract
simulator being used: adding more machines to a simulation increases the number of cells that have a
neighbor running in a different Logical Process. As an example, Figure 28 shows how the number of
remote cells varies for the 100x100 heat diffusion model.

_ #Machines = #Cells
1 0
2 400
4 784
8 1168

Figure 28: Number of cells with remote neighbors
when different partitions are used.

It is important not to ignore these figures because when a cell sends an output (y, ¢), this value has to be
forwarded to all neighbor cells, which can be local or remote. For remote cells, a message through the
network is required. The abstract simulator of section 4, though well suited for dealing efficiently with
(@, t),(* t)and (done, t) messages, does not handle (y, ¢) messages very efficiently. In fact, when a
slave coordinator determines that a ('y, ¢) message should be forwarded to another coordinator, it just
forwards the ('y,) message to the master coordinator which will then forward it to the corresponding
recipients. Thus, an output message whose final recipient is a slave coordinator will make two hops: one
from the originating slave coordinator to the master coordinator, and a second one from the master
coordinator to the final slave recipient. Figure 29 shows how an output message from cell (25,0) is
forwarded to cell (25,49). The dashed lines represent messages sent over the network.

Coordinator 0
(master)

200 N 300

.’ *

Coordinator 1 Coordinator 3

T 1: (y,1) altl i

(25,0) (25,49)

Figure 29 : Master - Slave coordinator output relaying.
This way of relaying messages between coordinators has a negative impact on:

e The master coordinator, who receives all output messages, even those that are not addressed to
models in his Logical Process.

e The number of messages being sent over the network, which is almost doubled due to message
relaying.

Figure 28 shows that for 8 machines, if all cells have an output to send, then the master coordinator will
receive 1168 messages. Of these messages, 1022 will then be forwarded to a slave coordinator.

To reduce this overhead, a different approach can be taken. When a slave coordinator has an output
message to a remote model, it could send it directly to the recipient’s coordinator, without going through
the master coordinator. In this way, the relaying is avoided, as shown in Figure 30.

46

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Coordinator 0

(master)
2: (y,)
Coordinator1 | =~~~ 7 > Coordinator 3
3:(q,t)
T L (y.0) l
(25,0) (25,49)

Figure 30: Revised output relaying.

Though simple as it may seem, this new way of relaying messages requires a complete new abstract
simulator because it is not enough to change the way output messages are handled.

Section 4 mentioned that during a simulation cycle:

1. A(@, t)is sent to all imminent components.
All imminent components send their outputs ('y, £) which are sorted into ("¢,) messages. Now, all
those components that received a (¢, ¢) are also imminent.

3. A (*,t)is sent to all imminent components.

When centralized relaying of messages is used, the master coordinator has complete knowledge of who
the active slave coordinators are (these are the coordinator that should received the (*, ¢) message). In
Figure 29, the master coordinator knows that the coordinator 3 will be imminent and should receive a
(*, t). Instead, when distributed relaying is used, the master coordinator does not know who the active
slave coordinators are. As Figure 30 shows, the master coordinator does not know coordinator 3 has
received an output message. If coordinator 3 had not received a (@, t), then the master coordinator
would not know coordinator 3 is now imminent.

The solution to this problem is to have the master coordinator send a (*, t) to all slave coordinators.
Those that are not imminent would just respond with a (done, #) doing nothing else. This would work if
the message passing interface (MPI) would guarantee that all messages are delivered in the same order
they are sent. But unfortunately, this is not so. MPI can guarantee that if two messages are sent from
Logical Process 1 to Logical Process 2, they will arrive in the same order they were sent. But if two
messages are sent from Logical Process 1 to Logical Process 2, and a third message is sent from Logical
Process 1 to Logical Process 3, there is no guarantee those two first messages will arrive before the third
one. This can lead to a special situation were a (*, ¢) is received before a (y, ¢) message as shown in
Figure 31.

In Figure 31, coordinator 1 first sends a (y,z) message to coordinator 3 and then a (done, t) message to
coordinator 0. However, the (done, t) message is received before coordinator 3 receives the (3,2
message. Then the master coordinator sends a (done, t) and receives a (*1) that is forwarded to
coordinator 1 and 3. Coordinator 3 may end up receiving the (*#) message before the (y,7) message,
producing incorrect results. The problem here is that no coordinator knows when all the sorting of output
messages has concluded. This was not a problem with the abstract simulator of section 4 because the
master coordinator did know.

A correct abstract simulator would delay the (done,) messages until all outputs have been received. One
first solution would be to acknowledge a (y,#) message, but this again, leads to an enormous number of

messages being sent.

Instead, the following approach will be taken:

47

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

2. When a slave coordinator receives a (@, t), any generated (' y, t Jmessages will directly be sent to
the corresponding coordinator.

3. After a slave coordinator has sent all the (y, ¢), a new (§, 1) message will be sent to all the other
coordinators (except to the master). This new message, called output synchronization, is a way of
telling the other coordinators that no more output messages will be sent.

4. After a slave coordinator has sent all its (' $, #) messages and received the (' §, 7) messages from the
other coordinators, a (done, t) message will be sent.

In this way, when the master coordinator receives all the (done, t), a (*, t) message can be safely sent.

4: (done,t)T l 5:(*p

Coordinator 0 -

~ 6; (*1

3 (onezd) v (master) ~ o - (*9)
7 ~

2: (y,t) A

Coordinator1 | ===~ 7 > 2:(y:) (1) Coordinator 3
_____ >
T 1: (y,b)
(25,0 (25,49)

Figure 31: A (*,t) message is received before a (y,t) message

48

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

9.1 Revised abstract simulator

The new abstract simulator will be defined next. Only message handlers that have changed will be
presented.

MASTER COORDINATOR
when a (@ , ¢) message is received from parent coordinator
if 1=ty then
=t
for all slave processors 7
send (@, t) to slave i
end for
for all other imminent child processors i with minimum #y
send (@, t) to child i
cache s in the synchronize set
end for
wait until (done, t)’s have been received from all imminent processors
send (done, t) to parent coordinator
end if
else raise error

end when

The master coordinator will send a (@ , ¢) message to all slave coordinators, whether they are imminent
or not. Then, when all (done, t) messages have been received it can be sure output sorting has finished.

49

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

MASTER COORDINATOR
when a (y, ¢) message is received from child i
for all influencees, j of child
if j is a local processor
q:=z;(y)
send (¢, t) to child j

cache j in the synchronize set

else
s = coordinator(self, j)
if s ¢ slave-sync set then
send (y,7,f)tos
cache s in the slave-sync set
end if
end if

end fo

if self € I; (y is to be transmitted upward) then
Y=z sy ()
send (y, t) to parent coordinator

end if

clear slave-sync set

end when

when a (y, i, t) message is received from a slave s
cache s in the slave-sync set and proceed as if a (y, ¢) message had been received from child i

end when

For (y, t) messages, the master coordinator behaves almost as previously defined. The only difference is

that it is no longer necessary to cache s in the synchronize set.

50

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

MASTER COORDINATOR
when a (*, ¢) message is received from parent coordinator
ify, <t<ty
for all g € bag
for all receivers of g, j € Iy
if j is a local processor

q = Zse ;(9)
send (g, t)toj

cache j in the synchronize set

else
s := coordinator(self, j)
if s ¢ slave-sync set then
send (g ,7)tos
cache s in the slave-sync set
end if
end if

end for
clear slave-sync set
end for
empty bag
for all slave processor s
send (*,7)tos
end for
for all i in the synchronize set
send (*,z)toi
end for
wait until all (done, ty)’s are received
=t
ty := minimum of components’ zy’s
clear the synchronize set
send (done, ty) to parent coordinator
else raise an error

end when

As with (@ , t) messages, the new master coordinator will forward (* , ¢) messages to all slaves
because there might be some slaves that will execute an external transition which the master coordinator
does not about.

The new slave coordinator will be described next. Quite a few changes have been introduced. To begin
with, a slave coordinator will receive (@ , ¢) and (*, ¢) messages even if it is not imminent, so a check
should is done to determine if the slave coordinator should actually do something. Second, outputs to
remote cells are routed to the corresponding coordinators. And finally, a new message, ($, ¢) has been
added and should be handled.

51

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

SLAVE COORDINATOR

when a (@ , t) message is received from master coordinator

if £ =ty then

else

end if

end when

f. =1
for all imminent child processors / with minimum #y

send (@, t) to child i

cache i in the synchronize set
end for
wait until (done, t)’s have been received from all imminent processors
send (8, ¢) to all slave coordinators
wait until (8, 7)’s have been received from all slave coordinators

send (done, t) to master coordinator

send (§, t) to all slave coordinators
wait until ($, #)’s have been received from all slave coordinators

send (domne, t) to master coordinator

The slave coordinator should only respond to a (@ , ¢) with a (done, t) when it can assure it will
receive no longer receive (¥, ¢) messages from other slaves. To ensure this, (§, 7) messages where
introduced. When a slave coordinator has received a (done, t) from all its child processors it can be sure
it will not send any more (y, ¢) messages. Hence, it sends all other slaves a ($, ¢) message to indicate
this condition. Then a slave coordinator should wait to receive all ($, #) messages before sending a (
done, t) message.

The event that has been changed the most is when outputs messages (y , ¢) are received. Again, it is
necessary to distinguish two types of output messages: those that are received from local children
processors and those that are received from the master or other slaves coordinators.

52

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

SLAVE COORDINATOR
when a (y, ¢) message is received from child i
for all influencees, j of child 7
if j is a local processor
q:=z;(y)
send (g, t) to child j

cache j in the synchronize set

else
s = coordinator(self, j)
if s ¢ slave-sync set then
send(y,t)tos
cache s in the slave-sync set
end if
end if

end for
if self € I; (y is to be transmitted upward) then
if parent ¢ slave-sync
send (y, t) to master coordinator
end if
end if
clear slave-sync
end when
when a (y, i,) message is received from master or slave coordinators
for all influencees, j of child i
if j is a local processor
q:=z,;(y)
send (¢, t) to child j
cache j in the synchronize set
end if
end for

end when

When an output event is received from a child i, the slave coordinator sorts the message to the
influencees of i. If any influencee is local, the z function is applied a (¢ , ¢) message is sent. If there are
non-local influencees, then the output event is sent to the corresponding coordinator. Because these non-
local influencees can be under the same coordinator care should be taken to avoid forwarding duplicate
(y,t) messages. This accomplished using a slave-sync set which keeps track of those coordinators that
have received the message. Output messages received from other coordinators are sorted as external
events to the local children.

It remains to define how the s/ave coordinator will handle internal transition messages. However, there
will be no changes here. It might be the case that a slave coordinator that receives a (* ¢) message has
no imminent dependants, but in this case, the synchronize set will be empty and the existing procedure
will work.

53

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

SLAVE COORDINATOR
when a (*, t) message is received from master coordinator
ift;<t<ty
for all ¢ € bag
for all receivers of g, j € Iy
if j is a local processor
q = Zseyr ;(q)
send (¢, t)toj
cache j in the synchronize set
else
do nothing
end if
end for
end for
empty bag
for all i in the synchronize set
send (*,¢)toi
end for
wait until all (done, ty)’s are received
ti =1
ty .= minimum of components’ #y’s
clear the synchronize set
send (done, ty) to master coordinator
else raise an error

end when

9.2 Synchronization for the revised Parallel DEVS abstract simulator

In Section 7 it was proved that the abstract simulator of Section 4 could be executed using no
synchronization at the logical process level (i.e. without producing a straggler message). For the new
abstract simulator to be able to execute using the same unsynchronized protocol, it should be proved that
it will not produce a straggler message.

As defined earlier, a straggler message is a message whose timestamp is less than the recipients current
time. For this definition, the proof of section 7 still holds, so the Warped NoTime kernel can still be used.
It is important to notice however, that the absence of straggler messages does not guarantee correctness
during a simulation cycle.

During a simulation cycle all messages carry the same timestamp, so there are no stragglers at the logical
process level. However, as it was noticed in Figure 31, there was a potential risk of having straggler
messages at the application level, i.e. a message that has a correct timestamp but that is received out of
phase. This was corrected introducing the (§, ¢) messages.

54

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

10
Performance analysis

In this section further results about the performance of Parallel Cell-DEVS models will be presented.
First, the effects of quantization will be discussed. Following, the performance of the revised simulator
will be compared against the performance of the original one. Then, other factors affecting the
performance of distributed simulation will be introduced. In particular, model partitioning and workload
will be analyzed.

10.1 The effect of quantization

The use of a quantizer reduces significantly the number of active cells. Because most of the results in this
section will be related to the heat diffusion model, it is important to understand how the use of a quantizer
impacts on model execution.

Figure 32 shows how the average number of active cells on each simulation cycle of the 100 x 100 heat
diffusion varies with the quantum size.

Quantum size Active cells
0 10000
0.001 9975
0.01 6262
0.1 1922

Figure 32 : Average number of active cells in each simulation cycle

When no quantum is used, all 10000 cells are active during each cycle. As the quantum size increases,
cells reach a stable value more rapidly and then there are less active cells. This number of active cells has
a direct impact on execution time because:

[more active cells = more workload = more time]

Having understand this, it will possible then to discuss how the workload affects the performance of
distributed execution.

10.2 Revised simulator vs Original simulator

Figure 33 shows the execution times for the heat diffusion model using both, the original and the revised

simulators.

Original simulator

Number of machines

Revised simulator

Number of machines

900 1000

800 A W

700 800 -
e‘ 600 4 ——Q=0 -3- ——Q=0
& 500 4 ~#-Q = 0.001 8 6004 —#—-Q=0.001
g g% e —4—Q=0.01 2 400 —_— —4—Q=0.01
"~ 200] —*—-Q=0.1 = ——Q=01

1004 > e B

0 0
1 2 4 1 2 4

(@)

(b)

Figure 33: Execution times of the heat diffusion model using the original and revised simulators.

As it is shown, the revised simulator improved the execution times considerably, especially for 4 and 8
machines and quantum sizes of 0 and 0.001.

Figure 34 shows a further comparison between the original and revised simulators.

55

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

No quantum Quantum size = 0.001

800
—U\ "
?L 600 B Original B Original
E 400 Revised B Revised
=
200
0
1 2 4 8
Number of machines Number of machines
Quantum size = 0.01 Quantum size = 0.1

g

Time (sec)
Time (sec)
g8 8

o
o

o

Number of machines Number of machines

Figure 34: Further comparisons between the original and revised simulators

Again, the revised simulator outperformed the original one for all quantum sizes. Some exceptions are
observed for executions on 1 and 2 machines. For 4 and 8 machines, the improvement is significant for
heavy load models, such as those of quantum size 0 and 0.001.

10.2 The effect of the choice of partition

Another factor that can affect the performance of the parallel simulator is the choice of model partition. A
fair partition distributes the execution load evenly through out the machines. So far, all the results shown
for the heat diffusion model were obtained with a fair partition. Tests were also conducted with a set of
uneven partitions as shown in Figure 35.

1 Machine 2 Machines 4 Machines 8 Machines
Figure 35: Uneven partitions: each colored area runs on a different machines

The execution times when this set partitions is used are shown Figure 36.

Uneven partitions
1400

1200
1000 - F/’A S0
800 4 g Q =0.001

—&—Q=0.01
~Q=0.1

Time (sec)

-)
S o
S o

N
(=]
o

o

Number of machines

Figure 36 : Execution times for uneven partitions

As expected, the choice of uneven partitions causes a slowdown as more machines are used. There is one
exception, this is the transition from 4 to 8 machines. The reason for this is that the partition for 8
machines is almost even, as it will be shown next.

56

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

10.4 A metric for model parallelism

To asses if a model is suitable for parallel execution, a parallelism metric has been developed. This
measure has its greatest value when all of the machines have the same load, i.e. there is simultaneous
execution; and its least value when all the simulation is done by only one of the available machines.

In Paralle]l DEVS, one way to determine how much activity there is on each simulation cycle is to count
the number of received (* ¢) messages. If in addition this information is obtained for each logical
process and each simulation cycle, a clear picture of how much activity is taking place can be drawn. The
expression

Count(LP,,n, t)

will be used to denote the number of (*) messages received by LP number LP,,, during the simulation
cycle at time 7.

But counting the messages by itself does not give the sort of metric being sought, it just gives the number
of messages. For a better measure, it can be assumed that the processing of each (* ¢) will require the
same computing time. Then, assuming also an homogeneous set of machines, the execution time for each
simulation cycle will be given by

CycleTime(t) = c - Max,"s"""" (Count(LP} ,t))

That is to say, the execution time of a simulation cycle will be equal to the time it takes the LP that
receives the highest number of (* ¢). The constant c is the time it takes for a cell to process a (*, ¢). For
the purpose of evaluating how even the workload is, it can be ignored. Once the cycle time is known, the
CPU usage at each LP can be obtained by dividing the used time by the cycle time

Usage(LPnum > t) = Count (‘L})num > t)
CycleTime(t)

The LP with the maximum number of messages will have a usage measure of 1. If all the LPs receive the
same number of (¥ ¢) messages then all LPs will have a CPU usage of 1, being this the case of
maximum parallelism. The CPU usage of all LP’s can be averaged to give a measure for the whole
system.

The parallelism metric will depend on two factors: the model and its partition. For maximum parallelism
to be achieved the model has to be partitioned in a way that all LPs will have an equal number of active
models. For some models, such a partition might exist, but for some others, it might not. Most probably,
the load of each LP will vary with time. Model partitions in Parallel CD++ are static.

This metric was used to asses the suitability of the heat diffusion model for parallel execution. The results
are shown in Figure 37.

Even partition Uneven partition

o1
|2
04
08

Parallelism

.

0 Q =0.001 Q=0.01 Q=01 Q=0.001 Q=0.01 Q=01
Quantum size Quantum size

(@) (b)
Figure 37: Parallelism metric for the heat diffusion model

Q

Figure 37 (a) shows the parallelism value for the heat diffusion model when the even set of partitions are
used. The executions with quantum sizes of 0 and 0.001 show a perfect value of 1. This means that all

57

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Logical Process have the same number of active cells during the whole simulation and maximum
parallelism is achieved. Highly parallel models should show a reduction in the execution times as more
machines are added. As Figure 33 shows, this is the case.

When quantum sizes of 0.01 and 0.1 are used, a reduction in the model parallelism is observed. This is so
because as the simulation progresses there are more cells that reach a stable state and become inactive,
and the distribution of this inactive cells is not necessarily even.

Figure 37(b) shows the parallelism value when the uneven partition of Figure 35 is used. It can be
observed that the parallelism is drastically reduced for 2 and 4 machines, and gets high again for 8
machines. The uneven partitions cause an uneven distribution of the load and hence a reduction in the
parallelism. This causes a slowdown in the model execution as it was shown in Figure 36. The partition
for the 8 machines case is not so uneven, as the parallelism metric shows.

As a subproduct, the evolution of the parallelism through the whole simulation process can be obtained.
Figure 38 shows the how the parallelism evolves when the even set of partitions is used.

No quantum Quantum size = 0.001
12 1.2
14 14 i =
5 o8 —1 Machines 5 08 A —1 Machine
° 06 4 ——2 Machines ° 06 ——2 Machines
T 4 Machines T 4 Machines
& 04 8 Machines g 04 8 Machines
0,2 4 0.2
0 0
- O O ©O N © UV ¥ MO N - O D ® -0 O O N ©O W T O N - O O ©
- - N MO ¥ 0 © ~ 0O O ‘O_ ?_ = - - N M ¢ 0 © N~ 0 O e 2 =
Time (sec) Time (sec)
Quantum size = 0.01 Quantum size = 0.1
12 12
1 = —) B
— WO =
£os w — 1 Machine E o8 —— 1 Machine
S 06 2 Machines 3) ——2 Machines
s 4 Machines 5 %8 . v 4 Machines
- [
E 04 8 Machines < 04 8 Machines
0,2 4 0,2
0 0
- o ® 0 t~®®obeoN~+o>o || Oorrrreerrreeeeererrererere T
- - N O ¥ U © N © O ©O O - wn (=2} el ~ 252 i'el @ ~ s w
L -~ -~ o~ ~N N «® [l < <
Time (sec) Time (sec)

Figure 38 : Parallelism evolution for the heat diffusion model when even partitions are used.

For quantum sizes of 0 and 0.001, the parallelism keeps a constant value of 1 during the whole
simulation. This is not the case for quantum sizes of 0.01 and 0.1. In this cases, the parallelism starts at 1
and then varies as cells reach a stable value.

Figure 39 shows how the parallelism evolves for the heat diffusion model when the set of uneven
partitions is used.

No Quantum Quantum size = 0.001
1,2 1;2
1 1
S 08 ——1 Machines S 08 1 ——1 Machine
% s s 2 Mach!nes %06 —=2 Machfnes
[J 4 Machines [J 4 Machines
o
< 04 8 Machines g 04 -8 Machines
0,2 0,2
0 0
- O O © KN © OV ¥ MO N T O O © - O O ©® KN © VUV T O N - O O ®
Time (sec) Time (sec)

58

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Quantum size = 0.01

132

206
S04
0,2

1
S d8 [——— »»vwf"\l\

—— 1 Machine

——2 Machines
4 Machines
8 Machines

© v ¥ O N - O D
+ W © ~ © o © O
- -

118

Time (sec)

Quantum size = 0.1

1.2

206 4

[

S04
0,2

Time (sec)

—— 1 Machine

——2 Machines
4 Machines
8 Machines

Figure 39: Parallelism evolution for the heat diffusion model when uneven partitions are used.

Here, for quantum sizes of 0 and 0.001, the parallelism value also keeps constant during the whole
simulation, but not with a value of 1. The behavior for quantum sizes of 0.01 and 0.1 is similar to the one

observed in Figure 38.

To conclude this section, it is important to mention that the parallelism metric so far discussed is only
another tool to asses how well a model may execute in parallel. This metric does not take into account
network traffic, which for certain models and partitions, may impact more on performance than an even
workload distribution.

59

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

11
A flow-injection Cell-DEVS model

In this section, a Cell-DEVS model for a flow-injection system will be presented. This model has been
developed together with people working at the Laboratorio de Analisis de Trazas — Facultad de Ciencias
Exactas y Naturales — Universidad de Buenos Aires.

11.1 Flow injection analysis

Flow-injection methods are analytical methods used for automated sample analysis of liquid samples. In a
flow injection analyser, a small, fixed volume of a liquid sample is injected as a discrete zone using an
injection device into a liquid carrier which flows through a narrow tube. As a result of convection at the
beginning, and later of axial and radial diffusion, this sample is progressively dispersed into the carrier as
it is transported along the tube. The addition of reagents at different confluence points (which mix with
the sample as a result of radial dispersion) produces reactive or detectable species which can be sensed by
flow-through detection devices. Figure 40 presents a simple flow-injection apparatus.

f—————,

A—

B =~

@
I
N

[«

Figure 40 : A FIA manifold.

This device (called a FIA manifold) consists of a peristaltic pump (P) that adds carrier solution (A) into a
valve (I) that connects to a tube called a reactor (R2). At the end of the tube a detector is placed to sense
a specific property of the flowing solution. The valve can be turned to allow the flow of the sample (B)
into the reactor. The sample is held in the loop L and when the valve is rotated its contents flow into the
reactor, where chemical activity will usually take place between the sample and the carrier solution. As a
result, a change will be observed in the signal produced by D, making it possible to quantify the sample
after comparing the results with those obtained by known samples.

In a FI system convective transport yields a parabolic velocity profile with molecules at the tube walls
having speed zero and those at the center having twice the average velocity. At the same time, the
presence of concentration gradients develops axial and radial diffusion of sample molecules. It has been
reported that in FI systems of practical interest, axial molecular diffusion has almost no influence in the
overall dispersion, but radial diffusion is the main contributor. For a pump proving a net flow of ¢ ml/min
in a coil of radius a, the average flow velocity is given by:

q

Va = m (Equation 1)

At a point at distance » from the center, the flow velocity is described by:

2

vr)=2-V,- (1 - r—zj (Equation 2)
a

60

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

As mentioned in [AIT98], it is very difficult, if not impossible, to correlate the experimentally obtained
response curve with the actual spatial mass distribution of the system. This is a consequence of the
selected method of measurement, which fixes spatially and temporally the point of detection. Under these
circumstances, any event occurred before the detection point is inferred from the response curve profile.
Therefore, this detection approach is a powerful tool for predicting response curves, but ignores the
processes leading to the generation of such response. In [AIT98] a method for continuously monitoring a
FI system was proposed. A FI system using nitric acid as the carrier solution, water as the injected sample
and a digital conductimeter with a couple of wires at both ends of the carrier stream detector was used to
follow the radial mass distribution of the sample zone.

(P 1At 4 A

PA I {1
08M Ak K
HNOS>_ ST MW N NN T
= EO S N -
¥
e "

e’

Figure 41: FIA manifold for continuously monitoring. P = pump; | = loop; L = reactor; W=waste; A,
B = detection points. Punctual detection: suitable detector in point B; integrated detection: Pt wires
located at points A-B. [AIT98]

When the water sample is injected, it acts as a blocking disc, and no electric conductance is measured. As
convective transport and diffusion gradient forces the water sample to be released from the walls, causing
a reduction of the blocking area and allowing electric current to flow, conductivity values different from
zero are measured. Figure 42 shows the characteristic conductivity curve obtained by such a system.

Restored conductivity

1.0

0.8 4

0.6 4

0.4 4

0.2 4

0.0 T T T T
0 10 20 30 40
Time (s)

Figure 42: Characteristic conductivity curve [AIT98]

11.2 A Cell-DEVS model for flow-injection

As mentioned, it is impossible to analyze the detailed behavior of the changes in the mass distribution
profile. Therefore, we decided to build a Cell-DEVS model describing the integrated conductivity flow-
injection system (ICM) in detail. In this way, the internal complex behavior can be analyzed by studying
the simulated results. The ICM system consists of a 0.025 cm radius tube, a 10.75 cm loop and a 9,25
reactor coil . We assumed the total tube length of the tube to be of 20cm. For this system, a cell space of
25 rows and 200 columns was defined, each cell representing a 0.001 x 0.1cm of a half tube section. Row
0 represents the center of the tube and row 24 the section of the tube touching its walls and the value of
each cell will represent the nitric acid concentration.

61

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Tube wall

Row 24

Row 0

Tube wall

Figure 43 : Correspondence between the cell-space and the actual tube

Figure 43 shows in light gray a tube section representing a cell. This is a longitudinal cut of the tube. The
final aim is to build a 3 dimensional space representing a cylindrical section of the tube, but in this case
each cell represent a flat section.

To deal with convective transport and radial diffusion at the same time, the model reacts in two phases:
transport and diffusion. The local computing function simulates the transport phase, and all cells are
connected to an external generator sending an event which triggers the diffusion phase. The model is built
as a coupled DEVS model with two components: a Cell-DEVS (named fia) representing the tube, and an
atomic model (named generator). The generator has one output port (out) to send the diffusion triggering
event. This port is mapped to the diffuse input port of the fia model (line 2). This means all ouput events
sent through the out port will be received as external events by the fia model through the diffuse port.

[Topl] -
components : fia generatoreConstGenerator

link : out@generator diffuseefia

04 [generator]
05 frecuency : 00:00:00:014

Figure 44 : Components of the DEV'S model

The frequency of diffuse events is defined by Equation 3. This equation computes the the characteristic
distance a particle of a given solution of diffusion coefficient ¢ will travel in d¢ seconds.

ds=A2-c-dt (Equation 3)

Solving the equation for ¢ = 3,5 x 10 > cm/s and ds = 0.001 cm, we obtain a d of 14ms. We used for the
ds value the cell height to find out how long it would take for two cells to diffuse homogeneously. We did
not take into account the cell width because axial diffusion can be ignored.

05 [fia]

06 in : diffuse

07 width : 200

08 height : 25

09 delay : dnertial

10 border : nowrapped ‘

11 neighbors : fia(-1,-1) fia(-1,0) fia(-1,1)
12 neighbors : fia(0,-1) fia(0,0) fia(0,1)

13 neighbors : fia(1,-1) fia(1,0) fia(1,1)

14 localtransition : transport

Figure 45 : Definition of the FIA coupled cell model

Figure 45 shows the definition of the parameters for the coupled Cell-DEVS fia. Line 6 defines the diffuse
input port, and lines 7 and 8 define the cell space dimensions. Line 9 sets the cell delay type to inertial.
An inertial delay cell that has a scheduled future value f will preempt this value if upon receiving an
external event and evaluating the local transition rules a new future value f;, with f'# f;, is obtained. In this
case, f; will be scheduled as the future value with a given delay d. Line 10 defines non-wrapped borders
and lines 11 to 13 define a cell’s neighborhood shape. Finally, line 14 defines the sets the local transition
function rules, which is defined in Figure 45.

62

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

18 [transport]

19 rule : { (0,-1) } { 0.1 / (22.57878 * (1 - power(cellPos(0) * 0.001 + 0.0005 , 2)
/ 0.000625)) * 1000 } { cellpos(1l) != 0 } . ‘ 4

20 rule : { 0.8 } { 0.1 / (22.57878 * (1 - power(cellPos(0) * 0.001 + 0.0005 , 2) /
0.000625)) * 1000 } { cellpos(1) = 0 } . ~

Figure 46 : The local transition rules

The convective transport has been arbitrarly been defined in the direction of increasing column values, so
that in visual representations the carrier will be seen flowing from left to right. Being this the case, a local
transition rule for the transport phase should set a cell’s value to the current value of its (0,-1) neighbor
cell. The rate at which this is done depends on the velocity of the flow at the cell, which, as mentioned
before, has its maximum at the centre of the tube and decreases towards its walls. This is stated in the first
transport rule in line 19. As mentioned in section 2, a local transition rule has three components, a value, a
delay and a condition. For this rule, this components are:

Value: { (0,-1) } //The value of the cell’s left neighbor
Delay: { 0.1/ (22.57878 * (1 - power(cellPos(0) * 0.001 + 0.0005 , 2)
/ 0.000625)) * 1000 }

Condition: { cellpos(1) != 0 }

The delay is calculated using equations 1 and 2. For a pump with a constant flow of 1,33ml/min, the
average velocity is 11,29 cm/s. This value can be substituted in equation 2 and multiplied by 2 to yield the
number 22.57878 shown in the delay expression. In addition, for equation 2 to be solved, we also need to
know the distance to the center of the tube. CD++ provides a built in function called cellpos that returns a
requested coordinate of the cell whose value is being sought. For a 2 dimensional model, cellpos(0)
returns the cell’s row. Consequently,

cellPos(0) * 0.001 + 0.0005
is the distance of the centre of the cell to the centre of the tube and therefore,
(22.57878 * (1 - power(cellPos(0) * 0.001 + 0.0005 , 2) / 0.000625))

is the solution to equation 2, for @ = 0.025 cm. Having the velocity of flow v(7), the delay will be the time
in milliseconds for a particle moving at speed v(7) cm/s to travel across a 0.1 cm cell. This time is given
by the expression

0.1 /v(r) ¥1000
concluding our explanation for the delay component of the rule.

The generic rule we have just given is only valid for all cells that have a valid (0,-1) neighbor. The left
border cells (those in column 0) do not satisfy this prerequisite, stated in the condition component
cellpos (1) != 0, and should therefore have a different rule.

The rule in line 20 is the rule for the left border cells. It simply states that for these cells the new value
should be 0.8, which corresponds to the concentration of the carrier solution being pumped into the tube.

Table 1 shows the results of applying equation 2 to calculate the delays for each row. It is important to
notice that some adjacent rows have different delay values, as is the case of rows 2 and 3. This might lead
to the presumption that the convective transport behavior will not be preserved due to an early preemption
a cell’s scheduled future value. This is not the case, as we will show.

63

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Row Delay (ms)

13

14
15
16
17
18 1
19
20
21
22
23
24 1

MEEIRIRE

=

pi |

"y

p—

O[NNI [WIN|[—=O

—
(=}

—
—

A RVSHE)
N[Co|W|IQ|H|—

D[N ||| BB

—
N

Table 1 — Calculated delays for each row

When the simulation starts at time 0, all cells will evaluate their local transition functions and schedule
their next change. A cell in row 2 will schedule an internal transition at time t = 4ms and a cell in row
three at t = Sms. So at time t = 4ms, all cells in row 2 will send an output event to their neighbors. Cells in
row 3 will receive this event and evaluate the local transition function, which says they should take the
value of their left neighbor. But their left neighbor has not changed yet, so the new value will be the same
as the previous future value. Therefore, they will keep their scheduled internal transition for t =5 ms. At
this time, all cells in row 2 with a scheduled internal transition will send their new value to their
neighbors. A row 2 cell receiving a new value from its left neighbor will again evaluate its local transition
function, but this time the delay has already expired and there is no future value scheduled, so the result
of this evaluation will be scheduled as the future value for time t = 10 ms.

Figure 47 shows the radial diffusion rules. For a cell with valid top and bottom neighbors, the diffusion
rule states that the new cell value will be the average of the three cells. This is the case of the rule in line
22. A delay of 1 ms was chosen. Though a 0 ms delay would be more appropriate, this is still not
supported in the version of NCD++ for which the model was written. A new version that implements the
Parallel Cell-DEVS formalism has been recently finished, and is currently being tested. This version will
allow 0 time delays. The other three rules in lines 23 and 24 cover the special case of top and border cells.
These cells do not have both, a valid top and bottom neighbor so instead of using three cells to obtain the
average, only two are used.

Figure 47 : Radial diffusion rules.
1
So far we have shown the diffusion rule, but we have not yet defined that this ruled should be evaluated
when an external event is received through the diffuse input port. Figure 48 shows the statements that link
the fia model diffuse input port to a cell’s diffuse input port (line 27) and set the diffusion rule to be
evaluated upon the arrival of an external event through this port (line 28).

64

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

[fia] o o = = ‘ ‘i
27 link : diffuse diffuseefial(x,y)

28 PortInTransition : diffuseefia(x,y) diffusion

Figure 48 : External coupling of the FIA Cell-DEVS model.

11.3 Simulation results

The described model was run for 10s and the state of the whole cell space was logged every 100ms. A
graphical representation of the model at five different stages is shown in Figure 49. The logged results
were also used to draw the conductivity curve.

To obtain the conductivity of the whole system, we divided the cell space in axial segments, calculated
the resistance of each, and assumed the whole resistance to be the result of combining all segments in
serial mode. We took each segment to be a column of cells and calculated its resistance using equation 4.

. 0.6 -0.8]

Figure 49: Different execution stages of the FIA model. (1) At time 0 the sample (white), has been
injected. The other half of the tube contains the carrier solution (dark gray). (2,3,4) The convective
transport makes the sample disperse faster at the middle of the tube than near the walls. (5) The whole
tube now contains the carrier solution only.

-1
199 24 1

Rtotal = Z z = (Equation 4)

column=0_row=0 **cell(row,col)

To calculate the resistance, equation 5, which gives the conductivity of each cell, was used. The
resistance of a cell can be obtained by calculating the inverse of the conductivity. All values are known,
being the concentration of nitric acid the one that varies from cell to cell.

1 Area
G = = GHNO3 + GH20 = —w”—(’(HNO, * [HNO,]) (Equation 5)
Length

cell cell

65

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Restored conductivity

1,2

Figure 50 : Conductivity curve obtained

Figure 50 shows the conductivity curve obtained. For this example the curve is quite similar to the first
part of the measured curve. It is a good starting point for the whole FIA manifold.

11.4 Performance analysis

The results shown for the FIA model were obtained running CD++ on a single machine. The simulation
for 10 seconds of virtual time took more than 5 hours. Performance analysis, however, were conducted
for executions for a virtual time of 2 seconds, using 1, 2, 5 and 10 machines.

In the FIA model, not all cells are active during the whole simulation. At the beginning, active cells
concentrate near left end of the tube, and as the simulation progresses the activity shifts to the right, as
shown in Figure 49. In addition, during the diffusion phase all cells are active.

The model was executed using two different set of partitions for 1, 2, 5 and 10 machines. Partition set I
divides the tube in equal transversal sections and assigns each machine one section, as shown in
Figure 51.

(a) 0 0 0 0 0 0 0 0 0 0
(b) 0 0 0 0 0 1 1 1] 1
(c) 0 0 1 1 2 2 3 3 4 4
(d) 0 1 2 3 4 5 6 7 8 9

Figure 51: Partition I : the FIA tube is divided in 10 equal sections. (a) 1 machine (b) 2 machines
(¢) 5 machines (d) 10 machines

Partition set II divides the tube in 20 equal sections. Each machine is assigned a tube section from
each end, as shows
Figure 53. Partition II attempts to make workload assignment even by combining sections that are active
at different stages in one machine.

@@ [0 Jo Jo o Jo Jo Jo o o Jo Jo Jo Jo Jo Jo Jo Jo o Jo [o
[0 o o Jo o [1 [t [t [t [t 1 [1 1 [1 |1 Jo o Jo o |o
@lo Jo (1 1 (2121334 |4 4 |4 31312211 1 oo
@o [t [2 (3 TJa 15 J6 [7 [8 19 |9 I8 [7 |6 |5 [4 [3 [2 [1 |o

Figure 53: Partition II : the FIA tube is divided in 20 equal sections. (a) 1 machine (b) 2 machines
(¢) 5 machines (d) 10 machines

66

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

Figure 55 shows the execution times for the FIA model. As it can be seen, the FIA model does not
experience a reduction in the execution time as did the heat diffusion. But it neither shows a big
slowdown, except for the execution with 2 machines. This suggests the workload shifts from one
machine to the other. A comparison between Partition I and II, shows this second one shows a better

performance.
Partition | Partition Il
1400 1400
1200 A 1200 4
5 1000 4 % < 1000 4 V“"\“.
3{ &0 | +8:8001 ;3, 800 4 R/\M’ —0—8:8001
@ ~#—-Q =0. Py —gg—-Q=0.
600 4 1
£ Q=0.01 EReLe Q=001
400 " 400 {
200 A 200 A
o] T T T 0 - T T
1 2 5 10 1 2 5 10
Machines used Machines used

Figure 55 : Execution times for the FIA model.

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

12
Conclusions and further developments

A tool for the simulation of Parallel DEVS and Parallel Cell-DEVS models in distributed environments
has been developed. The development process required:

e A definition of a new abstract simulator suitable for distributed environments.
e A selection of a suitable simulation middleware.
e An application design that would fit both, the middleware and the existing CD++ software.

A first abstract simulator specialized coordinators into master and slaves to reduce the number of inter-
process messages required. The preliminary results showed, however, that the simulator did not perform
well when too many machines were being used. This was due to a bottleneck caused by a centralized
distribution of output messages. A revised simulator solved this problem by replacing this centralized
mechanism with a distributed one.

For the middleware, the Warped kernels where chosen because they provide a common API for different
kernels. The parallel simulator has been developed to support both the TimeWarp and NoTime kernels.

Performance analysis were carried on different models: an extended GPT, a heat diffusion model and
flow injection model. These analysis showed that:

e The revised abstract simulator outperformed the original one.

e Performance of parallel simulation is model and partition dependant. In general terms, a model and
partition combination that distribute the workload evenly among the available set of machines will
perform well in distributed environments.

To asses how suitable a model-partition combination is for parallel execution, a parallelism metric was
given. This metric helps to understand how the workload changes during the whole simulation.

There are quite a few topics for further improvement and research.

Firstly, improvements can be made to the Warped middleware. In particular, the NoTime kernel can be
improved two pack multiple simulation messages together into a single batch and send them in one
connection. This will avoid the significant overhead of setting up a connection for each message sent.
Heavy load models send thousands of messages in a simulation cycle, so it may be presumed that
message aggregation will improve performance significantly. In addition, the NoTime kernel can be
further improved by eliminating the finalization detection mechanism which involves quite a few
messages over the network. This changes, however, will change the NoTime kernel from a general
purpose kernel to one specialized for the Parallel DEVS abstract simulator.

Further studies on different models should be carried out to asses how the workload changes in each case.
This would allow to classify applications and help to construct efficient partitions. In addition, this studies
will be a starting point for a dynamic load balance mechanism. Dynamic load balancing can improve
performance. The parallelism metric can be improved to take into account network traffic.

Improvements can be also made to specification language of Cell-DEVS models, which has been left
unchanged. The Parallel Cell-DEVS formalism allows multiple simultaneous events, which the current
language can not handle properly.

68

CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models — Alejandro Troccoli

13
References

[AIT98] F.J. Andrade, F.J.; Ifion, F.A.; Tudino, M.B.; Troccoli, O.E. “Integrated conductimetric
detection: mass distribution in a dynamic sample zone inside a flow injection manifold”, Analytica
Chimica Acta 19211, 1998.

[Ame00] Ameghino, J.; Wainer, G. “Application of the Cell-DEVS paradigm using N-CD++.” In
Proceedings of the 2000 Summer Computer Simulation Conference. July 2000.

[Cho94a] Chow, A., and Zeigler, B. “Parallel DEVS: A parallel, hierarchical, modular modeling
formalism.” In Winter Simulation Conference Proceedings. SCS, Orlando, Florida. 1994.

[Cho94b] Chow, A.; Kim, D.; Zeigler, B. "Abstract Simulator for the parallel DEVS formalism". 47,
Simulation, and Planning in High Autonomy Systems, December 1994.

[Jef87] JEFFERSON, D. '"Distributed simulation and the Time Warp Operating System". In 11th.
Symposium on OS principles. pp 77-93. November 1987.

[Mar97] Martin, D.; McBrayer, T.; Radhakrishnan, R.; Wilsey, P. "Time Warp Parallel Discrete Event
Simulator". Technical Report. Computer Architecture Design Laboratory, University of Cincinnati. 1997.

[Rao98] Rao, D.; Thondugulam V.; Radhakrishnan R.; Wilsey P. “Unsynchronized Parallel Discrete
Event Simulation.”In Proceedings of the Winter Simulation Conference. 1998.

[Rod99] Rodriguez, D.; Wainer, G. "New Extensions to the CD++ tool.” In Proceedings of SCS Summer
Multiconference on Computer Simulation, Chicago, USA. 1999.

[Wai98] Wainer, G.; Giambiasi, N. "Specification, modeling and simulation of timed Cell-DEVS spaces".
Technical Report n.: 98-007. Departamento de Computacién. Facultad de Ciencias Exactas y Naturales.
Universidad de Buenos Aires.

[Wai00a] Wainer, G. “Improved cellular models with parallel Cell-DEVS”. Transactions of the SCS. June
2000.

[Wai00b] Wainer, G.; Zeigler, B. "Experimental results of Timed Cell-DEVS quantization". In
Proceedings of AIS 2000, Tucson, AZ. 2000.

[Wai01] Wainer, G.; Giambiasi, N. 2001. "Timed Cell-DEVS: modeling and simulation of cell spaces."
in Discrete Event Modeling & Simulation: Enabling Future Technologies, Springer-Verlag

[Zei76] Zeigler, B. "Theory of modeling and simulation". Wiley, 1976. (T) (d)

[Zei90] Zeigler, B.. Object Oriented Simulation with Hierarchical, Modular Models. Academic Press,
San Diego, California, 1990.

[Zei98a] Zeigler, B. DEVS Theory of Quantization. DARPA Contract N6133997K-0007: ECE Dept.,
UA, Tucson, AZ. 1998.

[Zei98b] Zeigler, B.; Cho, H. ; Lee, J. and Sarjoughian, H. The DEVS/HLA Distributed Simulation
Environment and its Support for Predictive Filtering. DARPA Contract N6133997K-0007: ECE Dept.,
UA, Tucson, AZ. 1998.

[Zei00] Zeigler, B.; Kim, T.; Prachofer, H. Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. Academic Press. 2000.

69

CD++

A tool for Parallel DEVS and
Parallel Cell-DEVS simulation

User’s Guide

Alejandro Troccoli
Daniel A. Rodriguez, Amir Barylko, Jorge Beyoglonian
Gabriel A. Wainer

Departamento de Computacién
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Argentina

2001

CD++ User’s Guide
Contents

1 INSTALLATION 4
1.1 SYSTEM REQUIREMENTS0eeeiuvieitreenteeiiteeessesesseeeesseessssesssseesnssesssssesssssessnseessssesssssessnseessseesssesssssssseesnns 4
T2 IVIPL: oo covci5355mninnmennsnnsnmaisnnsnnnsonnnsaivnsssnmss smass snsasnasmssensuiosonssmsnsmss e smsinsssn e o nsaison sas sans saniocasasusssss oo esosacssine 5
13 O isnsimsussinmnss s s555500s5s Srassnnmsednssnsossasnrassnsssnansensonssssasnsntssnsssebensssssessanssanssnssnssssassssnssssesns assosnen 6
2 STARTING THE SIMULATOR 8
2.1 WORKSTATION MODE-......cciiuiiiiuieiiuieeeteeeetteeeseeeesseeessessseteeeassesseeessstesseseessseeessseesssesssneesneessesssseessseanns 8
3 MODEL DEFINITION 12
3.1 STRUCTURE OF .MA FILE......cccttutieieiuueeeeiuteeeenteeeeeaseessesstessesssseessssssseessssssssessssssssessssssessssssssssssseesssns 12
311 Coupled MOMEIS...............cc.ccooueieiiiiiiiiiiieee e e 12
3.1.2 ABOMIC MOAEIS..........ooeeoeeeeeee et 13
3153 Cell DEVS MO@els . ioviinis e nsnsstesiasioien s mnmensindvoibt st omnsy e ekiss s5iinssme vommmenssss i siiiiinsninnannnns 14
4 WRITING LOCAL TRANSITION FUNCTIONS FOR CELLULAR MODELS.....cccccccecernsecenes 18
4.1 A GRAMMAR FOR WRITING THE RULES.........uuttttiiuteeieitueeeeeiseeeessssseeeessssssseessssssseessssssssesssssssssssnsesssssseens 18
4.2 PRECEDENCE ORDER AND ASSOCIATIVITY OF OPERATORSuuveeiieeeieeeeierrreeeeessreeeeesseeseessnsesessneeens 20
4.3 FUNCTIONS AND CONSTANTS ALLOWED BY THE LANGUAGEceeetiieireeeeeeiereeeessssneeesessseessssesesssseens 20
4.3.1 Boolean Valles s i oo cise st sis s sreesn sl soes s a0 oo tas e s ts s en e Foa B a3 S e s 20
4.3.2 Functions and Operations on-Real NUMDBETS.ucosviiaisvinalssmsssmmsassmsssississinisns 22
4.3.3 Predefined CONSIANMLS v s svegsssssnmsissmssstssmssss oo vaiassh s st ssss s sasuses s s ssdonsianss 38
4.4 TECHNIQUES TO AVOID THE REPETITION OF RULEScooutitiiiiiieeieeiieeeeeeinseeeeeenaseeesesseesessnseseesseenns 40
BoA] ClAUSE@ EIS@oocoooooeeeeeeeeeeeeeee e ettt e e e e e ettt e e e e e s e e s e e e e e e s e aaaees 40
4.4.2 Preprocessor — USING MACIOScccccueiiiiiiiiiiiiiiiiiiic s 41
5 SUPPORTING FILES 43
5.1 DEFINING INITIAL CELL VALUES USING A .VAL FILEccociuuuririireeeeeeeeeiieesnsssssseeeseeeeeesesssssssseesesssssses 43
5.2 DEFINING INITIAL CELL VALUES USING A .MAP FILEcccoiiiuiiieeeeiiureeeeeeireeeeeesssseseessnneeeessssessssseessnns 43
5.3 EXTERNAL EVENTS FILEuuuutttiiiiiiiiiiuteeeeeeeeessssssseeeeeeessessssssssssssesseessesesssssssssssssssesssssssssssssssssssesssssnes 44
5.4 PARTITION FILEuuvvieeieieeeeeiitreeeeiureeeesseeeeesssseeeesssseseessseeeessssssssesssssseseessssssesssssssssssssssssesssssessssssesnsnns 44
6 OUTPUT FILES 46
6.1 OUTPUT EVENTS ..uttttieieeieiiiiitreeeeeeeeeiiussseeeeeeesssssssssesesseesmssssssssssssssseseessseemmssssssssssssssesseenssssssssessssnssnes 46
6.2 FORMAT OF THE LOG FILE.......uiiiiiiiiiiioeiic ettt eeete e e eeanee e s e ettt e e e eetaseeeenanaaeeetesesesseeennnes 46
6.3 PARTITION DEBUG INFOuutiiiiiiiiiiiiiiiiiieeeceeiiiierie e e e eeseesissaaseeeeeeeseeeeesassssssssssssesseeeseesssssssssssesesnasssses 48
6.4 OUTPUT GENERATED BY THE PARSER DEBUG MODEuuuuuiiiiiiiiiiieeieeieiinssseeeeeeeseeeeessissssesseeesssssnenes 49
6:5 RULE BEVALUATION DEBUGGING . i5:.ssesersesssimisiosinssasenssossssiosssisasnisens silliesisvsssamssin s siasssrovsvamanssamags 50
7 UTILITY PROGRAMS 52
Tall. DIRAWLOG isviirci005ennmneesnssifbissnasssessonsnsnnssisstasssnasasasanssssssssssasesssnsnas sossmpofoisnssssnnsessnansnsssnorasis5ssasssnssonnnans 52
7.1.1 Bidimensional cellular MOGELS.... ... c:vu:ciisoiisarssenssiviissinsinisensssnses dissssssssssiseions sonss fosssamiasss sssssins 53
7152 Three dimensional models . vovimi s o s crassisisisn o i s st s ss s s s MR s 54
7.1.3 Cellular models of more than 3 diMenSionS...........ccv-viossssissessiccfrisssisinssnsonisnasiosmisiissssssssidsanss 85
B I T 56
e BB K oTe) 21 0) 2 i oA - S SRR, IS 56
7.4 RANDOM INITIAL STATES — MAKERANDccoutiiiiiiiieieietieeeeiteeeeeesieeeeeseeaaeeesessnnneesesssseessnnnsesssnneessnns 57
7.4 CONVERTING .VAL FILES TO MAP OF VALUES — TOMARPcooiiiiiiiieiieieeeeeeeeiieeeeeeieeeeeeaneeseenneeeennns 58
8 CODING NEW ATOMIC MODELS 60
8.1 DEFINING THE STATE OF A MODEL........uuuiiiiitteeeeiteeeeeeeeeesssseseessesseessssesseesesessseessssssasessnsesssssesssenses 60
8.2 DEFINING A NEW ATOMIC MODEL......cceiuutiiiituereeeueeeeeeueeeeeesssssessssssssesessssssesssssnsessssssssesssssessssseessssses 61
8.3 DEFINING THE OUTPUT VALUES.......ccettteetteeiteeeiseeeiseeeesseeesseseissseesssssesssssessssssssssssssesssssssssesssssssesssessns 64
8.4 EXAMPLE. A QUEUE MODEL.......coiuiiiuiieteeeiteeeseeeiseeeesseessesssssesssssesssssassoseesssssessssesssssesssesssessssesseesns 65

2/77

CD++

User’s Guide

9 APPENDIX A - EXAMPLES

9.1 GAME OF LIFE ..civo0s6messsssmmmisssinnsotesssssansmnsassseiasssissaevesinsiasssssssesmssvassh cossossnuss sevsin
LIV -NS 2 10] 813611 (€ 0) =1) 20 u T
9.3 CLASSIFICATION OF RAW MATERIALScuvtiiiiuieeeiitieeeeeiieeeeeennseeeseessnneeesesssssseeeenns
L R €N Y 2K 0) 2 55 1 3 S) B I N
9.5 TVUSE OF MACROS ...cismsassessssussissonssssravsssesssnssssssnnasssssssssssssinesssonnsns isssssampussesssnansnsvsnnn

10 APPENDIX B - THE PREPROCESSOR AND TEMPORARY FILES

3077

CD++ User’s Guide

CD++

CD++ is a tool for the simulation of Parallel DEVS and Parallel Cell-DEVS models. It runs either
in standalone (1 machine) or in parallel mode over a network of machines. This is CD++ User’s
Guide. A complete understanding of the Parallel DEVS and Cell-DEVS models is assumed. Please,
refer to the CD++ scientific report if necessary.

1 Installation

CD++ was developed to run in UNIX environments. It has been successfully tested in clusters of
Linux machines running on Pentium processors. It supports both, parallel and standalone
simulation.

The standalone version can also be compiled to run under Windows systems.
The CD-++ distribution includes the following utilities:

Drawlog: draws the evolution of a cellular model.
Parlog: Counts the number of (¥*,t) messages received by each LP during each simulation
cycle.

e Logbuffer: required by drawlog and parlog when parallel simulation is used. Sorts the log
messages that are sent to standard output to ensure they are processed in the correct order.

e ToMap: creates the initial state cell map file from a .ma file.

e MakeRand: generates a random initial state cell map file.

1.1 System requirements

The latest version of CD++ is distributed as a .tar.gz file and to install and compile CD++ the
following utilities will be required:

Compiling for UNIX / Linux

e makedepend: current version released with X11R6 (part of X-windows software)

e GNU Make makefile utility (part of GNU software)

e g++: the GNU C++ compiler and accompanying libc, version 2.7.0 or later (part of GNU
software)

e an implementation of MPI (e.g. MPICH) (for parallel simulation)

e GNU bison
e GNU flex
Compiling for Windows

To compile CD++ in Windows the CYGWIN tools are required.

e Cygwin: latest version available from http:\\www.cygwin.com. When downloading Cygwin,
select the packages that are listed in Compiling for UNLX / Linux. You will need to get
makedepend also (it is not included in the standard Cygwin distribution)

4/77

CD++ User’s Guide

1.2 MPI

For parallel simulation, an implementation of MPI is required. If MPI is already installed in your
system, find out if its includes and lib directories have been already added to the corresponding
environment variables. Otherwise, take note of these directories because they will be required later
on.

If MPI is not installed on your system, then it is recommended you install MPICH version 1.2.0,
which can be downloaded from http://www.mcs.anl.gov/home/lusk/mpich/index.html. You
can then install MPICH in a shared location (special permissions will be required) or in your home
directory. Basic installation instructions will be provided.

The installation instructions here presented are based on personal experience installing in on Linux
machines. If in doubt, please, check the mpich installation instructions found in install.ps in the
/doc directory.

1. Uncompress the distribution files
gunzip -¢ mpich.tar.gz | tar xovf

2. Run
Jconfigure

This script will try to set the optimum parameters for compilation on your system. If mpich
will be installed in a shared location, then run
J/configure -prefix= /usr/local/mpich-1.2.0. (or your preferred location)

4. Compile mpich by running
make >& make.log

This might take several minutes to an hour, depending on your system.

5. Edit the util/machines/machines.LINUX file and set the list of available machines in
the cluster.

6. (Optional) Install mpich on a shared location
make install
Troubleshooting

If the default settings have not been changed, MPICH will use rsh to run the remote
programs. For rsh to work properly, please check

1. Machine names are properly resolved, either using a DNS or the /etc/hosts file.
. The inet services must be enabled in all the machines.

3. If you want to be able to run rsh without being prompted for a password, you will have
to create a .rhosts file with the names of the machines in the cluster. The .rhost file must
not have any group permissions enabled. Run chmod 600 .rhosts.

4. 1If the filesystem is not shared between all of the machines in the cluster, then a copy of
CD++ and any model files will be required on each machine.

5/77

CD++ User’s Guide

1.3 CD++

To install CD++, gunzip and untar the distribution file. On most Linux machines the command
gunzip -c pcd-3.x.x.tar.gz | tar xovf

will just do this.

The following directory structure will be created

CD++

B warped
tommmme e TimeWarp
oo NoTime
R Sequential
Fommmm e common

B models
Fommmmee e eeeeee net
B airport

You must then edit Makefile.common and set the desired compilation options:

1. Set the source code location. If running parallel simulation, you will also need to indicate the
location of the MPI include and lib files.

#CD++ Makefile.common

#CD++ Directory Details
export MAINDIR=/home/atroccol/tesis/CD++

#MPI Directory Details

export MPIDIR=/home/atroccol/mpich-1.2.0
export LDFLAGS +=-L$ (MPIDIR)/lib/

export INCLUDES_CPP += -I$(MPIDIR)/include

Figure 1: Makefile.common — Setting the source location

6/177

CD++ User’s Guide

2. Specify whether parallel or stand alone simulation will be used. For stand alone simulation, the
NoTime simulation kernel must be used. For parallel simulation, you can choose from the
TimeWarp and NoTime kernel. If not sure, the NoTime kernel is recommended.

#If running parallel simulation, uncomment the following lines
export DEFINES CPP += -DMPI

export LIBMPI = -lmpich
#===
#$===========================c=cc======c=================c===dcs=cs==========
#WARPED CONFIGURATION
#===============================z====z==

#Warped Directory Details

#For the TimeWarp kernel uncomment the following
#export DEFINES_CPP += -DKERNEL_ TIMEWARP

#export TWDIR=$ (MAINDIR) /warped/TimeWarp/src
#export PLIBS += -1TW -1lm -lnsl $(LIBMPI)
#export TWLIB = 1ibTW.a

#For the NoTimeKernel, uncomment the following
export DEFINES_CPP += -DKERNEL NOTIME

export TWDIR=$ (MAINDIR) /warped/NoTime/src
export PLIBS += -1NoTime -1lm -lnsl $ (LIBMPI)
export TWLIB = libNoTime.a

Figure 2: Makefile.common — Choosing the Warped kernel

3. Decide which atomic models will be included by removing the necessary comments.

HEHHHHHHHHH S R S
#MODELS

#Let's define here which models we would like to include in our distribution

#Basic models

EXAMPLESOBJS=queue.o main.o generat.o cpu.o transduc.o distri.o com.o linpack.o
register.o

#Uncomment these lines to include the airport models
#DEFINES_CPP += -DDEVS_AIRPORT

#INCLUDES_CPP += -I./models/airport

#LDFLAGS += -L./models/airport

#LIBS += -lairport

#Uncomment these lines to include the net models

#DEFINES_CPP += -DDEVS_NET

#INCLUDES_CPP += -I./models/net

#LDFLAGS += -L./models/net

#LIBS += -lnet

HEHHHHESHH A R R

Figure 3: Makefile.common — Model selection

After you have edited Makefile.common, you are ready to build CD++. To build CD++ and all the
accompanying utilities, issue the following commands:

make depend
make

If you change any settings in Makefile.common you will need to rebuild CD++ again. To do this,

make clean
make

77177

CD++ User’s Guide

2 Starting the simulator

Previous versions of CD++ provided two different startup modes: a server mode and a workstation
mode. When running in server mode, the program is started and opens a TCP port through which it
will receive a model’s specification. Instead, when the workstation startup is chosen, all settings are
read from files specified in the command line options.

CD++ currently supports the workstation mode only. The server mode option is being developed.

2.1 Workstation Mode

To run CD++, type
J/mpirun —np n ./cd++ [-ehlmotdvbfrspqw]

here n indicates the number of machines that will be required. It is important this is the same
number of machines specified in the partition file or the simulation will not work.

Usage:

./cd++ [-ehlLmotdpPDvbfrsagwl
e: events file (default: none)
h: show this help
1l: logs all messages to a log f1le (default. /dev/null)
L[I*@XYDS]: log modifiers (logs only the speclfled messages)
model file (default : model.ma)

: output (default: /dev/null)
stop time (default: Infinity)
set tolerance used to compare real numbers

: print extra info when the parsing occurs (only for cells models)
partition details file (default: /dev/null)
parallel partition file (will run parallel 51mulatlon)
evaluate debug mode (only for cells models)
bypass the preprocessor (macros are ignored)
flat debug mode (only for flat cells models)

: debug cell rules mode (only for cells models) | .
show the virtual time when the 31mulat10n ends (on stderr)
use quantum to compute cell values ;
use dynamic quantum (strategy 1) to compute cells values
use dynamic quantum (strategy 2) to compute cells values
sets the width and‘preq151on (with form xx-yy) tc/show,numbefs

Figure 4: CD++ command line options

The command line options allowed are:

—efilename: External events filename. If this parameter is omitted, the simulator will not use
external events. The format for external event files is described in section 5.3.

8/77

CD++ User’s Guide

~Ifilename: Log filename. When this parameter is specified, all messages received by each
DEVS processor will be logged. If filename is omitted (only -1 is specified) all log
activity will be sent to the standard output. But if a filename is given, one log file will be
created for each DEVS processor. The file filename will list all models and the name of
the corresponding logfiles. These file will be named filename.XXX where XXX is a
number. When this option is used and no addition log modifiers are defined, all received
messages are logged.

The log file format is described in the section 6.2.

-L[I*@XYDS]: allows to define which messages will be logged. This option is useful to
reduce the log overhead. The following messages are supported:

Initialisation messages
(*,t) Internal messages.
(@,t) Collect messages
(q,t) External messages
(y,t) Output messages
(done,t) Done messages
All sent messages

LOX@.FT

When using drawlog, only Y messages are required. Use the —-LY option to reduce
execution time.

—mfilename: Model filename. This parameter indicates the name of the file that contains the
model definition. If this parameter is omitted, the simulator will try to load the models
from the model.ma file.

-Pfilename: Partition definition filename. A partition file is used to specify the machine
where each atomic model will run on. Only the location of the atomic models needs to be
specified. CD++ will then determine where the coordinators should be placed.

This file is only required for parallel simulation. If standalone simulation is used, this
setting will be ignored.

The format for a partition file is described in section 5.4.

—ofilename: output filename. This parameter indicates the name of the file that will be used
to store the output generated by the simulator. If this parameter is omitted, the simulator
will not generate any output. If you wish to get the results on standard output, simply
write —o.

The format for the generated output is described in section 6.1.
—Dfilename: debug filename for partition debug information. When this option is used, one

file for each LP will be created. This file will list all the identification of all DEVS
processors running on it.

9/177

CD++

User’s Guide

—t: Sets the simulation finishing time. If this parameter is omitted, the simulator will stop
only when there are no more events (internal or external) to process. The format used to
set the time is HH:MM:SS:MS, where:

HH: Thours

MM: minutes (0 to 59)

SS: seconds (0 to 59)

MS: thousandths of second (0 to 999)

—d: Defines the tolerance used to compare real numbers. The value passed with the —d
parameter will be used as the new tolerance value.
By default, the value used is 10~°.

—pfilename: Shows additional information when parsing a cell’s local transition rules. The
parameter must be accompanied with the name of the file that will be used to store the
detail. This mode is useful when a syntax error occurs on complex rules.

The format used to store the output is showed in the section 6.4.

—vfilename: Enables verbose evaluation of the local transition rules. For each rule that is
evaluated, the result of each function and operator will be showed. In addition, this mode
will cause complete evaluation of the rules, i.e. it doesn’t use rule optimization. The
parameter must be accompanied with the filename that will be used to store the
evaluation results.

The format of the output generated when this mode is enabled is described in section 6.5.
—b: Bypass the preprocessor. When this parameter is set, the macros will be ignored.

—r: Enables the rule checking mode. When this mode is enabled, the simulator checks for the
existence of multiple valid rules at runtime. If this condition is true, the simulation will be
aborted. This mode is available in standalone mode.

There are a few special cases to consider: if a stochastic model is used (i.e. a model that
uses random numbers generators) it might either happen that multiple rules are be valid or
that none of them is. In any case, the simulator will notify this situation to the user,
showing a warning message on standard output, but the simulation will not be aborted.
For the first case, the first valid rule will be considered. For the second case, the cell will
have an undefined value (?), and the delay time will be the default delay time specified
for the model.

If this parameter is not used when the simulator is invoked, the mode is disabled and only
will be considered the first valid rule.
—s: Show the simulation’s finishing time on stderr.

—qvalue: Sets the value for the quantum.

The value used as quantum must be declared next to the parameter—q, for example: to set
the quantum value as 0.01 the parameter must be —q0.001.

10/77

CD++ User’s Guide

If the quantum value is 0 or the parameter —q is not used, the use of the quantum will be
disabled, and the value returned by the local computing function will be directly the value
of the cell.

—w: Allows to set the wide and precision of the real values displayed on the outputs (log file,
external events file, evaluation results file, etc).
By default, the wide is 12 characters and the precision is of five digits. Thus, of the 12
characters of wide, 5 will be for the precision, 1 for the decimal point, and the rest will be
used for the integer part that will include a character for the sign if the value is negative.
To set new values for the wide and precision, the —w parameter must be used, followed of
the number of characters for the wide, a hyphen, and the number of characters for the
decimal part. For example to use a wide of 10 characters and 3 for the decimal digits, you
must write —-w10-3.
Any numerical value that must be showed by the simulator will be formatted using these
values, and it will be rounded if necessary. Thus, if a cell has the value 7.0007 and the
parameter —w10-3 is declared on the invocation of the simulator, the value showed for
the cell on all outputs will be 7.001, but the internal value stored will not be affected.

11/77

CD++ User’s Guide

3 Model definition

The simulator requires a model to run. A model is defined using a file (usally a .ma file), which is a
plain text file which details the model components. This section will explain how the structure of
such .ma file.

3.1 Structure of .ma file

A model file is used to define coupled and Cell-DEVS models. Atomic models are added to the
tool at compile time, and if new atomic models need to be defined, they must be code as detailed in
section 8. A model file consists of a set of groups and definition clauses within the groups. A group
is identified by writing its name between square brackets. All lines following a group declaration
are taken to be parameters for that group and are of the form

Id : value

As an example, mygroup is defined below:

Figure 5: Defining groups and group parameters

All model files must have a top group identifying the top level coupled model. A small model
example will be now shown, but Section 8 defines more complex models.

3.1.1 Coupled Models

A coupled model is defined in a group that has the model’s mane. For a couple model, four
different parameters exist:

Components:
components : model namel[@atomicclass]] [model name2[@atomicclass2] ...

Lists the component models that make the coupled model. If this clause is not
specified, an error will occur. A coupled model might have atomic models or other
coupled model as components. For atomic components, an instance name and a class
name must be specified. This allows a coupled model to use more than one instance of
an atomic class. For coupled models, only the model name must be given. This model
name must be defined as another group in the same file.

Out:
out : portnamel portname?2 ...

Enumerates the model’s output ports. This clause is optional because a model may not
have output ports.

12/77

CD++ User’s Guide

In:
in : portnamel portname?2 ...
Enumerates the input ports. This clause is also optional because a couple model is not
required to have input ports.

Link :

link : source_port[@model| destination_port[@model]

Defines the links between the components and between the components and the
coupled model itself. If name of the model is omitted it is assumed that the port
belongs to the coupled model being defined.

A model definition is shown below.

components : traﬁsducer@Transdﬁcer generator@Generator Cénsuﬁér
Qut : out - ‘ .
Link : out@generator arrlved@transducer

Link out@generator ine@Consumer ~

Link out@Consumer solved@transducer

Link out@transducer out

[Consumer] , ; ,
components : queue@Queue processor@Processor
in : in ‘ ‘ . -
out : out

Link : in in@queue

Link : out@queue 1n@processor
Link : out@processor done@queue
Link : out@processor out

Figure 6 : Example for the definition of a DEVS coupled model

3.1.2 Atomic models

As it was mentioned before, atomic models must be coded. But an atomic model might have user
defined parameters that must be specified within the .ma file. If this is the case, the parameters are
specified in a group with the model’s name (the model’s name as defined in the components clause,
not the atomic class name).

[modél_uame]];’
var namel : valuel

var namen : valuen

Figure 7: User defined values for atomic models

The parameter names are defined by the model’s author and must be documented. Each instance of
an atomic model can be configured independently of other instances of the same kind.

13737

CD++ User’s Guide

The next example shows two instances of the atomic class Processor with different values for the
user defined parameters.

[top] ’ - * . ;
components : Queue@queue Processorl@processor Processor2@processor

[processor] -
distribution : exponential

mean : 10

[processor2]
distribution : poisson
mean : 50

[queue]
preparation : 0:0:0:0

Figure 8: Example of setting parameters to DEVS atomic models
3.1.3 Cell DEVS models

Cell DEVS models are a special case of coupled models. Then, when defining a cellular model, all
the coupled model parameters are available. In addition there exist some parameters that are of
cellular models. These parameters define the dimensions of the cell space, the type delay, the
default initial values and the local transition rules.

These parameters are:

type : [CELL | FLAT]
Defines the abstract simulator to be used. If cell is specified, there will be one
DEVS processor for each cell. Instead, if flat is specified, one flat coordinator will
be used. CD++ currently supports the cell option only.

width : integer
Defines the width of the cellular space. As it is the case with height, the width
parameter is provided for backward compatibility and implies that a 2-dimensional
cellular space will be used. For an n-dimensional cell space the dim parameter
should be used. width and height can not be used together with dim. If such a
situation exists, an error will be reported.

height : integer

Defines the height of the cellular space model. The same restrictions that were
given for width apply. For 1 dimension models, height should be set to 1.

14/77

CD++

User’s Guide

dim : (X, X1, ..., Xy)

In:
Out :

Link :

Border :

Delay : [

Defines the dimensions of the cellular space.
All the x; values must be integers.
Dim can not be used together with any of the width and height parameters.

The vector that defines the dimension of the cellular model must have two or more
elements. For an unidimensional cellular model, the following form should be
used: (X, 1).

When referencing a cell, all references must satisfy:

(Yo, Y15 s o) 0=y <X Vi=0,.,n
with y; an integer value

Defines the input ports for a cellular model.
Defines the output ports the cellular model.
Defines the components coupling. For a coupled cell model, the components are
cells. To define the couplings, cell references must be used for the model name. A
cell reference is of the form:
CoupleCellName(xy,Xa,...,Xp)

Valid link definitions are of the form:

Link : outputPort inputPort@cellName (X;,X,;...,Xn)

Link : outputPort@cellName (X;,X»,...,X,) iInputPort

Link : outputPort@cellName (X;,Xa,...,X,) inputPort@cellName (x;,X,...,Xn)
[WRAPPED | NOWRAPPED]
Defines the type of border for the cellular space. By default, NOWRAPPED is
used. If a nonwrapped border is used, a reference to a cell outside the cellular space
will return the undefined value (?).

TRANSPORT | INERTIAL]

Specifies the delay type used for all cells of the model. By default the value
TRANSPORT is assumed.

DefaultDelayTime : integer

Defines the default delay (in milliseconds) for inputs received from external DEVS
models. If a portInTransition is specified, then this parameter will be ignored for that
cell.

15/77

CD++ User’s Guide

Neighbors : cellName (x; ;, X2 ,...,X5 7)-.. c€lIName (X7y X250 Xn.m)

Defines the neighborhood for all the cells of the model. Each cell (x;;, x2;...,%n.1)
represents a displacement from the centre cell (0,0,...., 0)

A neighborhood can be defined with any valid list of cells and is not restricted to
adjacent cells.

It is possible to use more than one neighbors sentence to define the neighborhood.

Initialvalue : [Real | ?]

Defines the default initial value for each cell. The symbol ? represents the
undefined value. There are several ways of defining the initial values for each cell.
The parameter initialvalue has the least precedence. If another parameter defines a
new value for the cell, then that value will be used.

InitialRowValue : row; value;...valueyigm
Defines the initial value for all the cells in row 1.

Precondition:
0 < row; < Height (where Height is the second element of the dimension
defined with Dim, or the value defined with Height).
Can only be used for bidimensional models. For n-dimensional models the
initialCellsValue or initialMapValue parameters are preferred.

This clause is used for backward compatibility. All values are single digit values in
the set {?,0,1,2,3,4,5,6,7,8,9}. The first digit will define the value for the first
cell in the row, the second for second cell and so on. No spaces are allowed
between digits.

InitialRow : row; value; ... value;am
Same as initialrowvalue, but values can now be any member of the set R U {?}.
Each value in the list must be separated by a blank space from the next one.
InitialCellsValue : fileName
Defines the filename for the file that contains a list of initial value for cells in the
model. Section 5.1 defines the format for these files. initialcellsvalue can be used

with any size of cellular models and will have more precedence that initialrow and
initialrowvalue.

16 /77

CD++ User’s Guide

InitialMapValue : fileName
Defines the filename for the file that contains a map of values that will be used as
the initial state for a cellular model. Section 5.2 defines the format for these files.
LocalTransition : fransitionFunctionName

Defines the name of the group that contains the rules for the default local
computing function.

PortInTransition : portName@ cellName (x;, x5,...,x,) transitionFunctionName
It allows to define an alternative local transition for external events. By default, if
this parameter is not used, when an external event is received by a cell its value
will be the future value of the cell with a delay as set by the defaultDelayTime

clause.

Section 9.3 illustrates the use of the portInTransition clause.

Zone : transitionFunctionName { range,[..range,] }

A zone defines a region of the cellular space that will use a different local
computing function. A zone is defined giving as a set of single cells or cell ranges.
A single cell is defined as (X;,Xy,...,Xy), and a range as (X1,X2,..-,Xn)--(¥1,¥2,¥n)- All
cells and cell ranges must be separated by a blank space.

As an example,
zone : pothole { (10,10).. (13, 13) (1,3) }
tells CD++ that the local transition rule pothole will be used for the cells in the

range (10,10)..(13,13) and the single cell (1,3). The zone clause will override the
transition defined by the localtransition clause.

17/177

CD++ User’s Guide

4 Writing local transition functions for cellular models.

Local transition functions for cellular models are defined as groups in the .ma file. They are not
tied to a particular model, so they can be used for more than one cellular model at the same time. A
local transition is made of a set of rules of the form:

rule : result delay { condition }

A rule is composed of three elements: a condition, a delay and a result. To calculate the new value
for a cell’s state, the simulator takes each rule (in the order in that they were defined) and evaluates
the condition clause. If the condition evaluates to true, then the result and delay clause are
evaluated. The result will be the new cell state and will be sent as an output after the obtained
delay. Whether the previous sate values will be still sent as outputs or not will depend on the delay
type of the cells. Inertial delay cells will preempt any scheduled outputs. On the other hand,
transport delay cells will keep them.

Rules whose condition clause evaluates to false are skipped. If all the rules are evaluated without
one having a true condition, then the simulation will be aborted. If there is more than one rule with
a condition that evaluates to true, the first one will be the one that determines the new cell’s state. If
the delay clause of a cell evaluates to undefined, then the simulation will be automatically
cancelled.

4.1 A grammar for writing the rules

The BNF for the grammar used for the rules is shown in Figure 9. Words written in bold lowercase
represent terminals symbols, while those written in uppercase represent non terminals.

RULELIST = RULE
| RULE RULELIST
RULE = RESULT RESULT { BOOLEXP }
RESULT = CONSTANT
| { REALEXP }
BOOLEXP = BOOL
| (BOOLEXP)
REALRELEXP

|
| not BOOLEXP
| BOOLEXP OP_BOOL BOOLEXP

OP_BOOL —and | or | xor | imp | eqv

REALRELEXP = REALEXP OP REL REALEXP
| COND REAL FUNC (REALEXP)

REALEXP = IDREF
(REALEXP)
REALEXP OPER REALEXP

IDREF = CELLREF

CONSTANT

FUNCTION

portValue (PORTNAME)
send (PORTNAME, REALEXP)
cellPos (REALEXP)

18/77

CD++

User’s Guide

CONSTANT

FUNCTION

| CELLREF

| REST TUPLA

BOOL,

PORTNAME

STRING

LETTER
' CONSTFUNC

o

| WITHOUT PARAM

(COND_REAL_FUNC

19/77

CD++ User’s Guide

Figure 9: Grammar used for the definition of a cell’s local transition

Basically, a rule is made of three expressions: a result expression, a delay expression and a boolean
expression. The result expression should evaluate to any real value. The delay expression should
also evaluate to any real value that will be truncated to the smallest integer.

4.2 Precedence Order and Associativity of Operators

The precedence order indicates which operation will be solved first. For example if we have:
C+B*A4

where * and + are the sum and multiplication operations for real numbers, and 4, B and C are real
constants, then since * has higher precedence than +, B * 4 will be evaluated first. The sum will be
evaluate in a second step. The result will be equivalent to solve C + (B * 4).
The associativity indicates which of two operations of same precedence will be evaluated first.
Operators are either left associative or right associative. The logical operators AND and OR are left
associative, so the in the expression

Cand Bor D
will be solved as (C and B) or D

Clauses that are not associative cannot be combined simultaneously without another operator of
different precedence.

The table of precedence and associativities for the rule specification language follows:

Order Code Associativity
Lower AND OR XOR IMP EQV Left
Precendence NOT Right
= 1= > < > <=
+ - Left
* 1 Left
FUNCTION
Higher REAL INT BOOL COUNT ? STRING CONSTFUNC
Precedence ()

Figure 1 — Precedence Order and Associativity used in CD++

4.3 Functions and Constants allowed by the language

4.3.1 Boolean Values

Boolean values in CD++ use trivalent logic.

The trivalent logic use the values T or 1 to represent to the value TRUE, F or 0 to represent the
FALSE, and ? to represent to the UNDEFINED.

20/77

CD++

User’s Guide

4.3.1.1 Boolean Operators

4.3.1.1.1 Operator AND

The behavior of the operator A/VD is defined with the following table of truth:

anp | TR 7]
I T[F]>*
F |F|F

L 2| F |2

Figure 10: operator AND truthtable

4.3.1.1.2 Operator OR

The behavior of the operator OR is defined with the following table of truth:

| OR IT|E| 7
T | T|T]|T
F |T|F|?

| 2 JT]?2]2?

Figure 11: Operator OR truthtable

4.3.1.1.3 Operator NOT

The behavior of the operator NOT is defined with the following table of truth:

NOT
_F | F
E [T
: [

Figure 12: Behavior of the boolean operator NOT

4.3.1.1.4 Operator XOR

The behavior of the operator XOR is defined with the following table of truth:

XOR | T |FKE |2
T FIT|[?
F T|F|?
i 7172172

Figure 13: Operator XOR truthtable

21/77

CD++ User’s Guide

4.3.1.1.5 Operator IMP

IMP represents the logic implication, and its behavior is defined with the following table of truth:

P I T|F|?
¥ |T|F|?
F [T]|T]|T
?ﬂ T[2]?

Figure 14: Operator IMP truthtable

4.3.1.1.6 Operator EQV

EQYV represents the equivalence between trivalent logic values, and its behavior is defined with the
following table of truth:

EQV]T El2
T T|FEJ]F
F F|T]|E

FIE|T

?

Figure 15: Operator EQV truthtable
4.3.2 Functions and Operations on Real Numbers

4.3.2.1 Relational Operators

The relational operators work on real numbers' and return a boolean value pertaining to the
previously defined trivalent logic. The language used by CD++ allows the use of the operators ==,
I=, >, <, >=, <= whose behavior is described next.

As opposed to the traditional definition of these operators, the introduction of an undefined value
makes the definition of a total order impossible because the value ? is not comparable with any
existing real number.

4.3.2.1.1 Operator =

The operator = is used to test for equality of two real numbers.

= 2 Real Number
7 T ?
Real Number 2 = of real number

Figure 16: Behavior of the Relational Operator =

! From here, when referring to the term “Real Number” a value in the set R U { ? } will be meant.

22/77

CD++ User’s Guide

4.3.2.1.2 Operator !=

The operator != is used to test if two real numbers are not equal. Its behavior is defined as follows:

I = ? I Real Number :

? F ?
Real Number ? # of real number

Figure 17: Behavior of the Relational Operator !=
4.3.2.1.3 Operator >

The operator > is used to test if a real number is greater than another real number. Its behavior is
defined as follows:

> ? | Real Number

2 E ?
Real Number | ? > of real number

Figure 18 : Behavior of the Relational Operator >
4.3.2.1.4 Operator <

The operator < is used to test if a real number is less then another real number. Its behavior is
defined as follows:

< Real Number
? 2
Real Number ? < of real number

Figure 19 : Behavior of the Relational Operator <

4.3.2.1.5 Operator <=

The operator <= is used to test if a real number is less or equal to another real number. Its behavior
is defined as follows:

Real Number |
?

Real Number 4 < of real number

Figure 20 : Behavior of the Relational Operator <=

23477

CD++ User’s Guide

4.3.2.1.6 Operator >=

The operator >= is used to test if a real number is greater or equal to another real number. Its
behavior is defined as follows:

| - ? Real Number _|
? ?
ineal Number -l ? > of real number

Figure 21: Behavior of the Relational Operator >=
4.3.2.2 Arithmetic Operators
The traditional arithmetic operators are available. If any of the operands is undefined, then the
result of the operation will be undefined. This is also valid for functions. If any of a function

arguments is undefined, the result of evaluating the function will also be undefined.

The available operators are:

opl + op2 returns the sum of the operators.

opl —op2 returns the difference between the operators.
opl /op2 returns the value of the op1 divided by op2.
opl * op2 returns the product of the operators.

Figure 22: Arithmetic Operators

Division by zero will result to the undefined value.

4.3.2.3 Functions on Real Numbers

4.3.2.3.1 Functions to Verify Properties of Real Numbers

The functions in this section allow to check for special properties of real numbers, such as parity,
primality, etc.

Function Even
Signature: even : Real — Bool
Description: Returns True if the value is integer and even. If the value is undefined
returns Undefined. In any other case it returns False.

Examples: even(?)=F
even(3.14)=F
even(3)=F
even(2)=T

Function Odd
Signature: odd : Real — Bool
Description: Returns True if the value is integer and odd. If the value is undefined
returns Undefined. In any other case it returns False.

Examples: odd(?)=F
0dd(3.14)=F
odd(3)=T

24 /77

CD++

User’s Guide

Function isInt

Signature:
Description:

Examples:

Function isPrime
Signature:
Description:
Examples:

Function isUndefined

Signature:
Description:
Examples:

0dd(2) =F

isInt : Real — Bool
Returns True if the value is integer and not undefined. Any other case
returns False.

isInt(?) =F
isInt(3.14) =F
isint(3)=T

isPrime : Real — Bool

Returns True if the value is a prime number. Any other case returns False.
isPrime(?) =F

isPrime(3.14) =F

isPrime(6) = F

isPrime(5) =T

isUndefined : Real — Bool

Returns True if the value is undefined, else returns False.
isUndefined(?) =T

isUndefined(4) = F

4.3.2.3.2 Mathematical Functions

This section describes commonly used mathematical functions.

4.3.23.2.1

Function tan

Signature:
Description:

Examples:

Function sin

Signature:
Description:

Function cos

Signature:
Description:

Function sec

Signature:
Description:

Trigonometric Functions

tan : Real a — Real

Returns the tangent of @ measured in radians.

For the values near to ©/2 radians, returns the constant /NF.
If a is undefined then return undefined.

tan(PI/ 2) = INF

tan(?)="?

tan(PI) =0

sin : Real a — Real
Returns the sine of @ measured in radians.
If a has the value ? then returns ?.

cos : Real a — Real
Returns the cosine of @ measured in radians.
If a has the value? the returns?.

sec : Real a — Real
Returns the secant of a measured in radians.

25177

CD++

User’s Guide

Function cotan
Signature:

Description:

Function cosec
Signature:

Description:

Function atan
Signature:

Description:

Function asin
Signature:

Description:

Function acos
Signature:

Description:

Function asec
Signature:

Description:

Function acotan
Signature:

Description:

Function sinh
Signature:

Description:

If a has the value? then returns?.

If the angle is of the form 7/2 + x.7, with x an integer number, then returns
the constant INF.

cotan : Real a = Real
Calculates the cotangent of a.
If a has the value? Then returns ?.

If a is zero or multiple of 7, then returns INF.

cosec : Real a — Real
Calculates the cosecant of a.
If a has the value ?, then returns?.

If a is zero or multiple of 7, then returns INF.

atan : Real a — Real

Returns the arc tangent of @ measured in radians, which is defined as the
value b such tan(d) = a.

If a has the value? Then returns?.

asin : Real a — Real

Returns the arc sine of @ measured in radians, which is defined as the value
b such sin(b) = a.

If a has the value? or if a ¢ [-1, 1], then returns ?.

acos : Real a — Real

Returns the arc cosine of a measured in radians, which is defined as the
value b such cos(b) = a.

If g has the value? or if a ¢ [-1, 1], then returns ?.

asec : Real a —> Real

Returns the arc secant of @ measured in radians, which is defined as the
value b such sec(b) = a.

If a is undefined (?) or if |a| < 1, then returns ?.

acotan : Real a — Real

Returns the arc cotangent of a measured in radians, which is defined as the
value b such cotan(b) = a.

If ais undefined (?), then returns ?.

sinh : Real a — Real
Returns the hyperbolic sine of @ measured in radians.
If a has the value ?, then returns ?.

26/177

CD++

User’s Guide

Function cosh
Signature:

Description:

Function tanh
Signature:

Description:

Function sech
Signature:

Description:

Function cosech
Signature:

Description:

Function atanh
Signature:

Description:

Function asinh
Signature:

Description:

Function acosh
Signature:

Description:

Function asech
Signature:

Description:

Function acosech
Signature:

cosh : Real a — Real

Returns the hyperbolic cosine of @ measured in radians, which is defined as
cosh(x)=(e*+e ™) /2.

If a has the value ?, then returns ?.

tanh : Real a — Real

Returns the hyperbolic tangent of @ measured in radians, which is defined
as sinh(a) / cosh(a).

If a has the value?, then returns ?.

sech : Real a — Real

Returns the hyperbolic secant of a measured in radians, which is defined
as

1/ cosh(a)

If a has the value ?, then returns ?.

cosech : Real a — Real
Returns the hyperbolic cosecant of a measured in radians.
If a has the value ?, then returns ?.

atanh : Real a — Real

Returns the hyperbolic arc tangent of a measured in radians, which is
defined as the value b such tanh(b) = a.

If a has the value ?, or if its absolute value is greater than 1 (i.e., a & [-1,
1]), then returns ?.

asinh : Real a —> Real

Returns the hyperbolic arc sine of a measured in radians, which is defined
as the value b such sinh(d) = a.

If a has the value ?, then returns ?.

acosh : Real a —> Real

Returns the hyperbolic arc cosine of @ measured in radians, which is
defined as the value b such cosh(b) = a.

If a has the value ? or is less than 1, then returns ?.

asech : Real a — Real

Returns the hyperbolic arc secant of a measured in radians, which is
defined as the value b such sech(d) = a.

If a is undefined, then return ?. If it is zero, then returns the constant INF.

acosech : Real a — Real

27 77

Ch+

User’s Guide

Description:

Function acotanh
Signature:

Description:

Function hip
Signature:

Description:

4.3.2.3.2.2

Function sqrt
Signature:

Description:

Examples:

Note:

Function exp
Signature:

Description:

Examples:

Function In
Signature:

Description:

Examples:

Note:

Function log
Signature:

Description:

Returns the hyperbolic arc cosec of @ measured in radians, which is defined
as the value b such cosech(b) = a.
If a is undefined, then returns ?. If it is zero, then returns the constant INF.

acotanh : Real a — Real

Returns the hyperbolic arc cotangent of a measured in radians, which is
defined as the value b such cotanh(b) = a.

If a is undefined, then returns ?. If is 1 then returns the constant /NF.

hip : Real ¢l x Real c2 — Real
Calculates the hypotenuse of the triangle composed by the side ¢/ and c2.
If ¢! or ¢2 are undefined or negatives, then returns ?.

Functions to calculate Roots, Powers and Logarithms.

sqrt : Real a — Real
Returns the square root of a.
If a is undefined or negative, then returns ?.

sqrt(4) =2

sqrt(2) = 1.41421

sqrt(0) =0

sqrt(-2) =?

sqrt(?) =?

sqrt(x) is equivalent to root(x, 2) Vx

exp : Real x — Real

Returns the value of ¢".

If x is undefined, then return ?.
exp(?)=7?

exp(-2) =0.135335

exp(1) =2.71828

exp(0) =1

In : Real a — Real
Returns the natural logarithm of a.
If a is undefined or is less or equal than zero, then returns ?.

In(-2) = ?
In(0) = ?
In(1)=0
In(?) =2

In(x) is equivalent to logn(x, e) Vx

log : Real a — Real
Returns the logarithm in base 10 of a.
If a is undefined or less or equal to zero, then returns ?.

28/177

CD User’s Guide

Examples: log(3) =0.477121
log(-2)="?
log(?) =7
log(0)=7?
Note: log(x) is equivalent to logn(x, 10) Vx

Function logn
Signature: logn : Real a x Real n — Real
Description: Returns the logarithm in base # of the value a.
If a or n are undefined, negatives or zero, then returns ?.

Notes: logn(x, e) is equivalent to In(x) Vx
logn(x, 10) is equivalent to log(x) Vx
Function power
Signature: power : Real a x Real b — Real

Description: Returns a”.
If a or b are undefined or b is not an integer, then returns ?.

Function root
Signature: root : Real a x Real n — Real
Description: Returns the n—root of a.
If a or n are undefined, then returns ?. Also, returns this value if a is
negative or # is zero.

Examples: root(27,3) =3
root(8,2)=3
root(4,2) =2
root(2, ?) =7
root(3, 0.5)=9
root(-2, 2) =?
root(0,4)=0
root(1, 3) =1
root(4, 3) = 1.5874
Note: root(x, 2) is equivalent to sqrt(x) Vx

432323 Functions to calculate GCD, LCM and the Rest of the Numeric Division

Function LCM
Signature: lem : Real a x Real b — Real
Description: Returns the Less Common Multiplier between a and b.

If a or b are undefined or non—integers, then returns ?.
The value returned is always integer.

Function GCD

Signature: ged : Real a x Real b — Real
Description: Calculates the Greater Common Divisor betweeen a and b.

If a or b are undefined or non—integers, then returns ?.
The value returned is always integer.

Function remainder
Signature: remainder : Real a x Real b — Real

29/77

CD++

User’s Guide

Description:

Examples:

Calculates the remaindert of the division between a and b. The returned
value is: a —n * b, where n is the quotient a/b rounded as an integer.
If a or b are undefined, then returns ?.

remainder(12, 3) =0

remainder(14, 3) =2

remainder(4, 2) =0

remainder(0, y) =0 Vy#?

remainder(x, 0) = x YV x

remainder(1.25, 0.3) = 0.05

remainder(1.25, 0.25)=0

remainder(?, 3) =?

remainder(5, ?) = ?

43233 Functions to Convert Real Values to Integers Values

This section presents functions available to convert real values to integers using the rounding and
truncation techniques as detailed.

Function round

Signature:
Description:

Examples:

Function trunc

Signature:
Description:

Examples:

Function truncUpper

Signature:
Description:

Examples:

Function fractional

Signature:
Description:

Examples:

round : Real a — Real

Rounds the value a to the nearest integer.
If a is undefined ?, then returns ?.
round(4) =4

round(?) = ?

round(4.1) =4

round(4.7) =5

round(-3.6) =4

trunc: Real x — Real

Returns the greater integer number less or equal than x.
If x is undefined, then returns ?.

trunc(4) =4

trunc(?) =?

trunc(4.1)=4

trunc(4.7) =4

truncUpper: Real x — Real

Returns the smallest integer number greater or equal than x.
If x is undefined, then returns ?.

truncUpper(4) = 4

truncUpper(?) = ?

truncUpper(4.1) =5

truncUpper(4.7) =5

fractional : Real a — Real

Returns the fractional part of @, including the sign.
If a is undefined then returns ?.

fractional(4.15) = 0.15

fractional(?) = ?

30/77

CD++

User’s Guide

fractional(-3.6) =-0.6

4.3.2.3.4 Functions to manipulate the Sign of numerical values

Function abs

Signature:
Description:

Examples:

Function sign

Signature:
Description:

Function randomSign

abs : Real a — Real

Returns the absolute value of a.
If a is undefined then returns ?.
abs(4.15)=4.15

abs(?)=?
abs(-3.6) = 3.6
abs(0)=0

sign : Real a — Real

Returns the sign of a in the following form:
If a > 0 then returns 1.

If a < 0 then returns —1.

If a = 0 then returns 0.

If @ = ? then returns 2.

See the section 4.3.2.3.8.

4.3.2.3.5 Functions to manipulate Prime numbers

This functions are used to test for primality. Although they are available, they are quite
complex and can require a lot of time to solve.

Function isPrime

See the section 4.3.2.3.1.

Function nextPrime

Signature:
Description:

Function nth_Prime
Signature:
Description:

nextPrime : Real » — Real

Returns the next prime number greater than r.

If 7 is undefined then returns ?.

If an overflow occur when calculating the next prime number, the constant
INF is returned.

nth_Prime : Real n — Real

Returns the n™ prime number, considering as the first prime number the
value 2.

If n is undefined or non—integer then returns ?.

If an overflow occur when calculating the next prime number, the constant
INF is returned.

31/77

CD++

User’s Guide

4.3.2.3.6 Functions to calculate Minimum and Maximums

Function min

Signature:
Description:

Function max

Signature:
Description:

min : Real a x Real b — Real
Return the minimum between a and 5.
If a or b are undefined then returns ?.

max : Real a x Real b — Real
Returns the maximum between a and b.
If a or b are undefined then returns ?.

4.3.2.3.7 Conditional Functions

The functions described in this section return a real value that depends on the evaluation of a
specified logical condition.

Function if
Signature:
Description:

Examples:

Function ifu

Signature:
Description:

Examples:

if : Bool ¢ x Real ¢ x Real f— Real
If the condition c is evaluated to TRUE, then returns the evaluation of ¢,
else returns the evaluation of f.
The values of 7 and f can even come from the evaluation of any expression
that returns a real value, including another if sentence.
If you wish to return the value 1.5 when the natural logarithm of the cell
(0, 0) is zero or negative, or 2 in another case. In this case, it will be
written:
if (In((0,0))=00r (0,0)<0, 1.5,2)
If you wants to return the value of the cells (1, 1) + (2, 2) when the cell (0,
0) isn’t zero; or the square root of (3, 3) in another case, it will be written:
if ((0,0)!=0, (1, 1) + (2, 2), sqrt(3, 3))
It can also be used for the treatment of a numeric overflow. For example, if
the factorial of the cell (0, 1) produces an overflows, then return —1, else
return the obtained result. In this case, it will be written:
if (fact((0, 1)) = INF, -1, fact((0, 1)))

ifu : Bool ¢ x Real # x Real fx Real u — Real

If the condition c is evaluated to TRUE, then returns the evaluation of 7. If
it evaluates to FALSE, returns the evaluation of f. Else (i.e. is undefined),
returns the evaluation of u.

If you wish to return the value of the cell (0, 0) if its value is distinct than
zero and undefined, 1 if the value of the cell is 0, and 7 if the cell has the
undefined value. In this case, it will be invoked:

ifu((0, 0) 1= 0, (0, 0), 1, PI)

4.3.2.3.8 Probabilistic Functions

Function randomSign

Signature:
Description:

randomSign : — Real
Randomly returns a numerical value that represents a sign (+1 or —1), with
equal probability for both values.

32/77

CD++

User’s Guide

Function random

Signature:
Description:

Note:

Function chi
Signature:
Description:

Function beta

Signature:
Description:

Function exponential

Signature:
Description:

Function

Signature:
Description:

Function gamma

Signature:
Description:

Function normal

Signature:
Description:

Function uniform

Signature:
Description:

Note:

random : — Real

Returns a random real value pertaining to the interval (0, 1), with uniform
distribution.

random is equivalent to uniform(0,1).

chi : Real df — Real

Returns a random real number with Chi—Squared distribution with df
degree of freedom.

If df is undefined, negative or zero, then returns ?.

beta : Real a x Real b — Real

Returns a random real number with Beta distribution, with parameters a
and b.

If a or b are undefined or less than 1077, then returns ?.

exponential : Real av — Real

Returns a random real number with Exponential distribution, with average
av.

If av is undefined or negative, then returns ?.

f: Real dfn x Real dfd — Real

Returns a random real number with F distribution, with dfn degree of
freedom for de numerator, and dfd for the denominator.

If dfn or dfd are undefined, negatives or zero, then return ?.

gamma : Real a X Real b — Real

Returns a random real number with Gamma distribution with parameters
(a, b).

If a or b are undefined, negatives or zero, then returns ?.

normal : Real ;/x Real o— Real

Returns a random real number with Normal distribution (4 o), where x is
the average, and ois the standard error.

If i or oare undefined, or o is negative, returns ?.

uniform : Real a x Real b — Real

Returns a random real number with uniform distribution, pertaining to the
interval (a, b).

If a or b are undefined, or a > b, then returns ?.

uniform(0, 1) is equivalent to the function random.

33/77

CD++

User’s Guide

Function binomial

Signature:
Description:

Function poisson

Signature:
Description:

Function randInt

Signature:
Description:

Note:

binomial : Real n x Real p — Real

Returns a random number with Binomial distribution, where n is the
number of attempts, and p is the success probability of an event.

If n or p are undefined, » is not integer or negative, or p not pertain to the
interval [0, 1], then return ?.

The returned number is always an integer.

poisson : Real n — Real

Return a random number with Poisson distribution, with average 7.
If n is undefined or negative, then returns ?.

The returned number is always an integer.

randInt : Real n — Real

Returns an integer random number contained in the interval [0, n], with
uniform distribution.

If n is undefined, then returns 2.

randInt(n) is equivalent to round(uniform(0, n))

4.3.2.3.9 Functions to calculate Factorials and Combinatorial

Function fact

Signature:
Description:

Examples:

Function comb
Signature:

Description:

4.3.2.4

fact : Real a — Real

Returns the factorial of a.

If a is undefined, negative or non—integer, then return ?.

If an overflow occur when calculating the next prime number, the constant
INF is returned.

fact(3)=6

fact(0) =1

fact(5) = 120

fact(13) = 1.93205e+09

fact(43) = INF

comb : Real a x Real b — Real
Returns the combinatory (%)

If a or b are undefined, negatives or zero, or non—integers, then returns ?.
This value is also returned if a <b.

If an overflow occur when calculating the next prime number, the constant
INF is returned.

Functions for the Cells and his Neighborhood

This section details the functions that allow to count the quantity of cells belonging to the
neighborhood whose state has certain value, as also the function cel/Pos that allows to project an
element of the tupla that references to the cell.

34/77

CD++ User’s Guide

Function stateCount
Signature: stateCount : Real a — Real
Description: Returns the quantity of neighbors of the cell whose state is equal to a.

Function trueCount
Signature: trueCount : — Real
Description: Returns the quantity of neighbors of the cell whose state is 1.
This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

Function falseCount
Signature: falseCount : — Real
Description: Returns the quantity of neighbors of the cell whose state is 0.
This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

Function undefCount

Signature: undefCount : — Real
Description: Returns the quantity of neighbors of the cell whose state is undefined (?).

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

Function cellPos

Signature: cellPos : Real i — Real

Description: Returns the i™ position inside the tupla that references to the cell. That is to
say, given the cell (Xo,Xi,...,Xp), then cellPos(1) = x;.
If the value of i is not integer, then it will be automatically truncated.
If i ¢[0, n+1), where n is the dimension of the model, it will produce an
errorr that will abort the simulation.
The value returned always will be an integer.

Examples: Given the cell (4, 3, 10, 2):
cellPos(0) =4
cellPos(3.99) = cellPos(3) =2
cellPos(1.5) = cellPos(1) =3
cellPos(—1) y cellPos(4) will generate an error.

4.3.2.5 Functions to Get the Simulation Time

Function Time
Signature: time : —> Real
Description: Returns the time of the simulation at the moment in that the rule this being
evaluated, expressed in milliseconds.

4.3.2.6 Functions to Convert Values between different units

4.3.2.6.1 Functions to Convert Degrees to Radians

35/77

CD++ User’s Guide

Function radToDeg

Signature: radToDeg : Real » — Real
Description: Converts the value » from radians to degrees.
If 7 is undefined then returns ?.
Function degToRad
Signature: degToRad : Real » — Real
Description: Converts the value » from degrees to radians.

If 7 is undefined then returns ?.

4.3.2.6.2 Functions to Convert Rectangular to Polar Coordinates

Function rectToPolar r

Signature: rectToPolar_r : Real x x Real y — Real
Description: Converts the Cartesian coodinate (x, y) to the polar form (», &), and returns
r.

If x or y are undefined then return ?.

Function rectToPolar_angle

Signature: rectToPolar_angle : Real x x Real y — Real
Description: Converts the Cartesian coordinate (x, y) to the polar form (7, &), and returns
o,

If x or y are undefined then return ?.

Function polarToRect_x

Signature: polarToRect_x : Real x Real #— Real
Description: Converts the polar coordinate (7, &) to the Cartesian form (x, y), and returns
X.

If » or Hare undefined, or r is negative, then returns ?.

Function polarToRect y
Signature: polarToRect_y : Real x Real #— Real
Description: Converts the polar coordinate (7, &) to the Cartesian form (x, y), and returns
V.

If r or Pare undefined, or r is negative, then returns ?.

4.3.2.6.3 Functions to Covert Temperatures between different units

Function CtoF

Signature: CtoF : Real — Real
Description: Converts a value expressed in Centigrade degrees to Fahrenheit degrees.

If the value is undefined then returns ?.

Function CtoK

Signature: CtoK : Real — Real
Description: Converts a value expressed in Centigrade degrees to Kelvin degrees.

If the value is undefined then returns ?.

Function KtoC
Signature: KtoC : Real — Real
Description: Converts a value expressed in Kelvin degrees to Centigrade degrees.

36/77

CD++

User’s Guide

Function KtoF

Signature:
Description:

Function FtoC

Signature:
Description:

Function FtoK
Signature:
Description:

If the value is undefined then returns ?.

KtoF : Real —» Real
Converts a value expressed in Kelvin degrees to Fahrenheit degrees.
If the value is undefined then returns ?.

FtoC : Real —» Real
Converts a value expressed in Fahrenheit degrees to Centigrade degrees.
If the value is undefined then returns ?.

FtoK : Real — Real
Converts a value expressed in Fahrenheit degrees to Kelvin degrees.
If the value is undefined then returns ?.

4.3.2.7 Functions to manipulate the Values on the Input and Output Ports

Function portValue

Signature:
Description:

portValue : String p — Real

Returns the last value arrived through the input port p of the cell of the cell
being evaluated. This function will only be available for PortInTransition
rules (see section 9.3) . Other uses will generate an error.

If no message has arrived through port p before portValue is evaluated, an
undefined value (?) will be returned. Otherwise, the last value received
through the port will be returned.

When the string “thisPort” is used as the port name, the value received
through the port associated with the current PortInTransition will be

returned. For example:

The following model has two different PortInTransitions

PortInTransition: portA@cell(0,0) functiona
PortInTransition: portBecell(1l,1) functionB
[functionA]

rule: 10 100 { portvalue(porta) > 10 }
rule: 0 100 {t}

[functionB]

rule: 10 100 { portvalue (portB) > 10 }

rule: 0 100 {t}

Figure 23 : Example of use of the function portValue

If we wanted to avoid repeating the same transition twice, we could either
give the two ports the same name or use thisPort as shown next:

37/77

CD++

User’s Guide

Function send

Signature:
Description:

PortInTransition: portaA@cell(0,0) functionA
PortInTransition: portB@cell (1,1) functiona
[functionA]

rule: 10 100 { portValue(thisPort) > 10 }
rule: 0 100 {t}

Figure 24 : Example of use of the function portValue with thisPort

Section 9.3 shows an example where the portInTransition clause is used.

send : String p x Real x — 0
Sends the value x through the output port p.

If the output port p has not been defined, an error will be raised and the
simulation will be aborted. This function is usually used to send values to
other DEVS models.

send always returns 0. This makes it possible to include the function send
in the result section of a rule without modifying the actual results.

{(0,0) + send(portl, 15 * log(10)) } 100 { (0,0)> 10 }

Note: Send is a function of the language that can be used in any
expression, as for example, in the definition of a condition. However, this
is not recommended because for every condition that is evaluated that
includes the function send, a value will be sent. Instead, send should be
used in the expression for the delay or the value of the cell.

4.3.3 Predefined Constants

The following constants frequently used in the domains of the physics and the chemistry are

available.

Constant Pi

Returns 3.14159265358979323846, which represent the value of 7, the relation between the
circumference and the radius of the circle.

Constant e

Returns 2.7182818284590452353, which represent the value of the base of the natural

logarithms.

Constant INF

This constant represents to the infinite value, although in fact it returns the maximum value
valid for a Double number (in processors Intel 80x86, this number is 1.79769 x 10°%).

Note that if, for example, we make x + INF — INF, where x is any real value, we will get 0 as
a result, because the operator + is associative to left, for that will be solved:

(x + INF) — INF = INF — INF = 0.

38/77

CD++ User’s Guide

Note: When being generated a numeric overflows taken place by any operation, it is returned
INF or —INF. For example: power(12333333, 78134577) = INF.

Constant electron_mass
Returns the mass of an electron, which is 9.1093898 x 10 ® grams.

Constant proton_mass
Returns the mass of a proton, which is 1.6726231 x 10 >* grams.

Constant neutron_mass
Returns the mass of a neutron, which is 1.6749286 x 10 * grams.

Constant Catalan

0

Returns the Catalan’s constant, which is defined as 2:(—1)".(2" +1)7, that is
k=0
approximately 0.9159655941772.

Constant Rydberg
Returns the Rydberg’s constant, which is defined as 10.973.731,534 / m.

Constant grav
Returns the gravitational constant, defined as 6,67259 x 10" m® / (kg . %)

Constant bohr_radius
Returns the Bohr’s radius, defined as 0,529177249 x 10™° m.

Constant bohr_magneton
Returns the value of the Bohr’s magneton, defined as 9,2740154 x 10 joule / tesla.

Constant Boltzmann
Returns the value of the Boltzmann’s constant, defined as 1,380658 x 10% joule / °K.

Constant accel
Returns the standard acceleration constant, defined as 9,80665 m / sec’.

Constant light
Returns the constant that represents the light speed in a vacuum, defined as 299.792.458 m /

S€cC.

Constant electron_charge
Returns the value of the electron charge, defined as 1,60217733 x 10 coulomb.

Constant Planck
Returns the Planck’s constant, defined as 6,6260755 x 10™* joule . sec.

Constant Avogadro
Returns the Avogadro’s number, defined as 6,0221367 x 10% mols.

Constant amu
Returns the Atomic Mass Unit, defined as 1,6605402 x 107 kg.

39/77

CD++ User’s Guide

Constant pem
Returns the ratio between the proton and electron mass, defined as 1836,152701.

Constant ideal gas
Returns the constant of the ideal gas, defined as 22,41410 litres / mols.

Constant Faraday
Returns the Faraday’s constant, defined as 96485,309 coulomb / mol.

Constant Stefan_boltzmann
Returns the Stefan-Boltzmann’s constant, defined as 5,67051 x 10 Watt / (m* . °K*)

Constant golden

1+«/§
5

Returns the Golden Ratio, defined as

Constant euler_gamma
Returns the value of the Euler’s Gamma, defined as 0.5772156649015.

4.4 Techniques to Avoid the Repetition of Rules

This section describes different techniques that allow to avoid repeating rules. This helps to make
models more readable.

4.4.1 Clause Else

When the clause portInTransition is used (see section 9.3), it is possible to use the clause else to
give an alternative rule in case that none of the rules evaluates to true.

Figure 25 shows a short example where the Else clause is used. The default local transition for the
cells in this model is default rule. In addition, cell (13,13) defines a special funcion to be used
when an external event arrives through port /z. If none of the conditions for the rules that make this
functions is satisfied, then the else clause sets default rule as the function to be evaluated.

[demoModel]
type: cell

link: in in@demoModel (13,13)
localTransition: default rule
portInTransition: in@demoModel (13,13) another rule

[default rule]
rule:

rule:
[another rule]
rule: 1 1000 { portValue(thisPort) = 0 }

.o e

else: default rule

Figure 25 : Example of the Else clause

The Else clause can point to any valid transition function. Care must be taken to avoid circular
references, as in the example shown next.

40/77

CD++ User’s Guide

[another rulel]

rule: 1 1000 { portValue (thisPort) = 0 }
rule: 1.5 1000 { (0,0) = 5 }
rule: 3 1500 { (1,1) + (0,0) >=1 }

else: another rule2

[another rule2]
rule: 1 1000 { (0,0) + portValue(thisPort) > 3 }
else: another rulel

Figure 26 : A circular reference produced by a bad use of the clause Else

CD++ will detect the special case shown in Figure 27, where the else clause references the same
function being defined.

[another rule]
rule:

rule:

else: another rule

Figure 27 : Example of a circular reference detected by the simulator

4.4.2 Preprocessor — Using Macros

CD++ has a preprocessor that will expand macros. If macros are not used, the preprocessor can be
disabled using the command line argument —b to speed up model parsing.

Macros are usually defined in separate files that are included in the main .ma file be means of the
preprocessor #include directive, which is of the form

#include(fileName)

where fileName is the name of the file that contains the definition of the macros. This file should be
in the same directory where the main .ma file is.

More than one #include directive is allowed in the main .ma file, but no included files can have
themselves the #include directive.

To define a macro, the directives #BeginMacro and #EndMacro are used.

A macro definition has the form:

#BeginMacro (macroName)
...definition of the macro...

#EndMacro

Figure 28 : Definition of a macro

41/77

CD++ User’s Guide

Macros can contain any valid text in any number of lines. The only restriction that applies is that
they can not be used in the same file they are defined.

To expand a macro, the #Macro directive should be used in the place were the macro shoudl be
expanded. A #macro directive is of the form

#Macro(macroName)

An included file can contain any number of macro definitions. Any text in these files that is outside
the macro definitions is ignored. If a required macro is not found, an error will be reported.

An #include directive can be placed at any line of the .ma file, as long as the macros therein
defined are used after the #include.

A macro can not make use of another macro.

Within a .ma file, the preprocessor allows comments. Comments begin with a % . All text between
the % and the end of the line is ignored.

% Here begins the rules
Rule : 1 100 { truecount > 1 or (0,0,1) = 2 } % Validate the existence
% of another individual.

Figure 29 : A .ma file with comments

Section 9.5 shows a model where macros are used.

For special considerations regarding files created by the preprocessor, please see Appendix B.

42/177

CD++ User’s Guide

5 Supporting files
5.1 Defining initial cell values using a .val file

Within the definition of a cellular model, the InitialCellValue parameter defines a file name with
the initial values for the cells. This is a plain text file. Each line of the file defines a value for a
different cell. The format of this file is shown in Figure 30.

(orX1r e ,X%s) value 1

(YorY1sr+--4¥n) = value m

Figure 30 : Format of the file used to define the initial values of a cellular model

The extension .VAL is normally used for this kind of files. The file is processed in sequential
order, so if there are two values defined for the same cell, the latest one will be used.

The dimension of the tuple should match the dimensions of the cellular space.

For the definition of the initial values of a cellular model, a single file should be used, which can
not contain initial values for other cellular models.

It is not necessary to define an initial value for each cell. If no value is defined in this file, then the
value defined by the parameter InitialValue will be used.

Figure 31 shows a short fragment of a .val file for a cellular space of 4 dimensions.

(0101010) = ?
(1,0,0,0) = 25
(0,0,1,0) = -21
(0111212) = 28

(11 4, 1,2) = 17
(11 31 2:1) = 15.44

(0,2,1,1) = -11.5
(1,1,1,1) = 12.33
(1,4,1,0) = 33

(1,4,0,1) = 0.14

Figure 31 : Example of a file for the definition of the initial values for a Cellular Model

5.2Defining initial cell values using a .map file

If the InitialMapValue parameter is used, then the initial values for a cellular model are specified in
a .map file. This file contains a map of cell values, as shown in Figure 32.

43 /77

CD++ User’s Guide

value 1

value m

Figure 32 : .map file format

Each value of the .map file will be assigned to a cell starting with the origin cell (0,0...,0). For a
three-dimensional cellular model of size (2, 3, 2), the values will be assigned in the following
order:

(0,0,0) (0,0,1) (0,1,0), (0,1,1) (0,2,0) (0,2,1) ... (1,2,0) (1,2,1)

If there are not enough values in the file for all the cells in the model, the simulation will be
aborted. If instead there are more values than cells, the remaining values will be ignored.

The toMap tool creates a .map file from a .val file.

5.3 External events file

External events are defined in a plain text file with one event per line. Each line will be of the

format:
HH:MM:SS:MS PORT VALUE

where:
HH:MM:SS:MS is the time when the event will occur.
Port is the name of the port from which the event will arrive.
Value is the numerical value for the event. Can be a real number or the
undefined value (?).
Example:

00:00:10:00 in 1

00:00:15:00 done 1.5
00:00:30:00 in .271
00:00:31:00 in -4.5
00:00:33:10 inPort ?

Figure 33 : File with external events

5.4 Partition file

A partition file is required for parallel simulation. For each atomic model, the partition file defines
the machine that will host its associated simulator. For coupled models, CD++ will decide where
the coordinators will be running.

A partition file, usually referred as a .par file, has lines with the following format:

MachineNumber : modelNamel modelName2 cell(x,y) cell(x,y)..(x2, y2)

A line starts with a machine number (machine numbers start at 0) followed by a space, a colon and
a list of names separated by spaces. Different lines may start with the same machine number.

44 /77

CD++ User’s Guide

The list of names following a machine number is the list of atomic instances that will be hosted by
that machine. For cellular models, a single cell may be specified or a range of cells may be given.
A cell range is described with name of the coupled cell model followed by the first cell in the
range, two dots, and the last cell in the range.

As an example, consider the following partial definition of a model:

[topl]

components : superficie generadorCalor@Generator generadorFrio@Generator
link : out@generadorCalor inputCalor@superficie

link : out@generadorFrio inputFrio@superficie

[superficie]

type : cell

width : 100

height : 100

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : superficie(-1,-1) superficie(-1,0) superficie(-1,1)
neighbors superficie(0,-1) superficie(0,0) superficie(0,1)
neighbors : superficie(l,-1) superficie(1,0) superficie(1,1)
initialvalue : 24

in : inputCalor inputFrio

o ee o

Figure 34 : Partial definition of the heat diffusion model

If we wanted to run this model in a cluster of nine machines, then the following is a valid partition:

generadorCalor generadorFrio
superficie(0,0)..(32,32)
superficie(0,33)..(32,65)
superficie(0,66)..(32,99)
superficie(33,0)..(65,32)
superficie(33,33)..(65,65)
superficie(33,66)..(65,99)
superficie(66,0)..(99,32)
superficie(66,33)..(99,65)
superficie(66,66) ..(99,99)

O Nk WD OO
“s se e se e s se se ee

Figure 35 : Valid partition for the heat diffusion model over 9 machines

A valid partition must specify one and only one location for each atomic and each cell. If more than
one machine or no machine is specified for a model, then an error will be raised and the simulation
will be aborted.

45/177

CD++ User’s Guide

6 Output Files

6.1 Output events

If the command line option —o is given, all the output events generated by the simulator are written
to the specified file. There will be one event per line, and lines will have the following format:

HH:MM:SS:MS PORT VALUE

Following is a small example of an output file.

00:00:01:00 out 0.000
00:00:02:00 out 1.000
00:00:03:50 outPort =z
00:00:07:31 outPort 5.143

Figure 36 : Example of an Output file

6.2Format of the Log File

A log file keeps a record of all the messages sent between DEVS processors. A log is created when
the -1 command line argument is used. If no log modifiers are specified, all received messages are
logged. Otherwise, only those messages set by the log modifiers will be logged.

When a filename for the log is given, there will be one file per DEVS processor and one file with
the list of all the names of the files that have been created. This latter file will be named with the
name given after the -1 parameter. All other files will be named with the name after the -1
parameter followed by the DEVS processor id.

Each line of the file shows the number of the LP that received the message, the message type, the
time of the event, the sender and the receiver. In addition, messages of type X or ¥ will include the
port through which the message was received and the value received. For messages of type D, the
remaining type for the next transition will be shown. A ‘...’ for this field will indicate infinity.

The numbers between brackets show the ID of the DEVS processor and are provided for debugging
purposes only.

As an example, the log files for the following model will be shown.

[top]

components : superficie generadorCalor@Generator generadorFrio@Generator
link : out@generadorCalor inputCalor@superficie

link : out@generadorFrio inputFrio@superficie

[superficie]
type : cell
width : 5
height : 5

Figure 37 : Partial definition of the heat diffusion model

46 /177

CD++

User’s Guide

When running this model with the —lcalor.log parameter, the following are the contents of

calor.log.
[logfiles]
ParallelRoot : calor.log00
top : calor.log29
superficie : calor.log01l
superficie(0,0) : calor.log02
superficie(0,1) : calor.log03
superficie(0,2) : calor.log04
superficie(0,3) : calor.log05
superficie(0,4) : calor.log06
superficie(1,0) : calor.log07
superficie(1l,1) : calor.log08
superficie(1,2) : calor.log09
superficie(1,3) : calor.logl0
superficie(1,4) : calor.logll
superficie(2,0) : calor.logl2
superficie(2,1) : calor.logl3
superficie(2,2) calor.logl4

superficie(2,3)
superficie(2,4)

calor.logl5s
calor.loglé

superficie(3,0) : calor.logl?
superficie(3,1) : calor.logl8
superficie(3,2) : calor.logl9
superficie(3,3) : calor.log20
superficie(3,4) : calor.log2l
superficie(4,0) : calor.log22
superficie(4,1) : calor.log23
superficie(4,2) : calor.log24
superficie(4,3) : calor.log25
superficie(4,4) : calor.log26

generadorcalor : c
generadorfrio :

alor.log27

calor.log28

Figure 38 : Calor.log

This is a list of the models and their corresponding files. If more than one file is created (as is the
case of coupled models with more than one coordinator), all of them are listed. The log messages
received by the coordinator superficie will be logged into the file calor.log01, which is shown next.

0 I/ 00:00:00:000 / top(29) para superficie(01)

0D/ 00:00:00:000 / superficie(0,0) (02) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(0,1) (03) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(0,2) (04) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(0,3) (05) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(0,4) (06) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(1,0) (07) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(1,1) (08) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(1,2)(09) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(1,3) (10) / 00:00:00:000 para superficie(01)
0D / 00:00:00:000 / superficie(1,4) (11) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(2,0) (12) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(2,1) (13) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(2,2) (14) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(2,3) (15) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(2,4) (16) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(3,0) (17) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(3,1) (18) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(3,2) (19) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(3,3) (20) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(3,4) (21) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(4,0) (22) / 00:00:00:000 para superficie(01)

4771177

CD++

User’s Guide

0 D/ 00:00:00:000 / superficie(4,1) (23) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(4,2) (24) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(4,3) (25) / 00:00:00:000 para superficie(01)
0D/ 00:00:00:000 / superficie(4,4) (26) / 00:00:00:000 para superficie(01)
0@/ 00:00:00:000 / top(29) para superficie(01)

0 Y/ 00:00:00:000 / superficie(0,0)(02) / out / 24.00 para superficie(01)
0D/ 00:00:00:000 / superficie(0,0) (02) / 00:00:00:000 para superficie(01)
0 Y / 00:00:00:000 / superficie(0,1) (03) / out / 24.00 para superficie(01)
0D/ 00:00:00:000 / superficie(0,1) (03) / 00:00:00:000 para superficie(01)
0 Y / 00:00:00:000 / superficie(0,2) (04) / out / 24.00 para superficie(01)
0D/ 00:00:00:000 / superficie(0,2) (04) / 00:00:00:000 para superficie(01)
0 Y / 00:00:00:000 / superficie(0,3) (05) / out / 24.00 para superficie(01)
0D/ 00:00:00:000 / superficie(0,3) (05) / 00:00:00:000 para superficie(01)
0 Y / 00:00:00:000 / superficie(0,4) (06) / out / 24.00 para superficie(01)
0D/ 00:00:00:000 / superficie(0,4) (06) / 00:00:00:000 para superficie(01)
0 X/ 00:00:00:000 / top(29) / inputcalor / 1.00 para superficie(01)

0 X / 00:00:00:000 / top(29) / inputfrio / 1.00 para superficie(01)

0 * / 00:00:00:000 / top(29) para superficie(01)

Figure 39 : Fragment of calor.log01

6.3 Partition Debug Info

The partition debug info file lists all the DEVS processors that are taking part of the simulation,
their IDs and they machine they are running in. This file is useful to were the coordinators for
coupled models are placed. One partition debug info file is created by each LP. The files will be
named with the text after the command line —D argument followed by the LP number.

Figure 41 shows a fragment of a partition debug file generated when running the model described
in Figure 37 with the partition shown next.

0 : generadorCalor generadorFrio
0 : superficie(0,0)..(2,4)
1 : superficie(3,0)..(4,4)

Figure 40 : Partition for the heat diffusion model of Figure 37

Model: ParallelRoot
Machines:

Machine: 0 ProcId: 0 < master >
Model: top
Machines:
Machine: 0 ProcId: 30 < master >
Model: superficie
Machines:
Machine: 0 ProcId: 1 < master >
Machine: 1 ProcId: 2 < local >

Model: superficie(0,0)
Machines:
Machine: 0

ProcId: 3 < master >

s e

Model: superficie(3,0)

48 /77

CD++

User’s Guide

Machines:
Machine: 1 ProcId: 18 < local > < master >

Model: superficie(3,1)
Machines:
Machine: 1 ProcId: 19 < local > < master >

Model: superficie(3,2)
Machines:
Machine: 1 ProcId: 20 < local > < master >

Setting up the logical process
Total objects: 31
Local objects: 11
Total machines: 2

About to create the LP

LP has been created. Now registering processors.
Registering processor superficie(2)
Registering processor superficie(3,0) (18)
Registering processor superficie(3,1) (19)
Registering processor superficie(3,2) (20)
Registering processor superficie(3,3) (21)
Registering processor superficie(3,4) (22)
Registering processor superficie(4,0) (23)
Registering processor superficie(4,1) (24)
Registering processor superficie(4,2) (25)
Registering processor superficie(4,3) (26)
Registering processor superficie(4,4) (27)

Current processors:

Processor Id: 2 Description: superficie
Model Id: 2 superficie(02)
Parent Id: 30

e o .

Processor Id: 27 Description: superficie(4,4)

Model Id: 27 superficie(4,4) (27)

Parent Id: 2
All objects have been registered!
Initializing Object superficie(2): OK
Initializing Object superficie(3,0) (18): OK
Initializing Object superficie(3,1) (19): OK
Initializing Object superficie(3,2) (20): OK
Initializing Object superficie(3,3) (21): OK
Initializing Object superficie(3,4) (22): OK
Initializing Object superficie(4,0) (23): OK
Initializing Object superficie(4,1) (24): OK
Initializing Object superficie(4,2) (25): OK
Initializing Object superficie(4,3) (26): OK
Initializing Object superficie(4,4) (27): OK
After Initialize....OK

Figure 41 : Partition debug information file calor.pardeb01 (LP 1)

6.4 Output generated by the Parser Debug Mode

When the simulator is invoked with the option —p, the debug mode for the parser is activated. In
debug mode, the parser will write the parse tree as it reads the rules. All tokens that are successfully

49/77

CD#H+ User’s Guide

processed are shown and if there is a syntax error, the place were the error was detected is
specified.

Figure 42 shows the output generated for the Game Life model as implemented in section 9.1.

kkkkkkkkk BUFFER **%k%kk%*k%
1100 { (0,0) = 1 and (truecount = 3 or truecount = 4) } 1 100 { (0,0) = 0O

and truecount = 3 } 0 100 { t } 0 100 { t }

Number 1 analyzed

Number 100 analyzed

Number 0 analyzed

Number 0 analyzed

OP_REL parsed (=)

Number 1 analyzed

AND parsed

COUNT parsed (truecount)

OP_REL parsed (=)

Number 3 analyzed

OR parsed

COUNT parsed (truecount)
OP_REL parsed (=)

Number 4 analyzed

Number 1 analyzed

Number 100 analyzed

Number 0 analyzed

Number 0 analyzed

OP_REL parsed (=)

Number 0 analyzed

AND parsed

COUNT parsed (truecount)
OP_REL parsed (=)

Number 3 analyzed

Number 0 analyzed
Number 100 analyzed
BOOL parsed (t)

Number 0 analyzed
Number 100 analyzed
BOOL parsed (t)

Figure 42 : Output generated in the Parser Debug Mode for the Game of Life

6.5 Rule evaluation debugging

Using the —v command line argument, a debug mode for cell rules evaluation is enabled. This will
cause the simulator to log all intermediate values for each rule as it is evaluated.

Figure 43 shows a fragment of the output generated for the Game of the Life model of section 9.1
Line numbers have been added to make the following explanations clear.

The first two lines indicate the beginning of a new evaluation. Line 2 begins the evaluation of the
first rule for the first cell. Each evaluated argument is listed with the partial result for the
expression. Line 2 shows the evaluation of the cell reference (0,0), which turned out to be 0. In line
3, the integer constant 1 is evaluated, which is later compared to 0, evaluating to 0 (false).
BinaryOp indicates that a binary operation is being performed. The operator name will be included
between brackets, as well as the value of each of the operands. Line 13 shows the final result for
the condition of the rule, which was false in this case.

50/77

CD++

User’s Guide

Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:

Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:

Evaluate:
Evaluate:

Evaluate:
Evaluate:

Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate:

Evaluate:
Evaluate:

52 ...
53 ...
54 ...

New Evaluation:

Cell Reference(0
Constant = 1

BinaryOp (0, 1)
CountNode (1) =
Constant = 3

BinaryOp (1, 3)
CountNode (1) =
Constant = 4

BinaryOp (1, 4)
BinaryOp (0, 0)
BinaryOp (0, 0)
Rule = False

i)

-

Cell Reference (0
Constant = 0

BinaryOp (0, 0)
CountNode (1) =
Constant = 3

BinaryOp(1l, 3)
BinaryOp (1, 0)
Rule = False

iy

Constant = 1
Rule = True

I

oy
o
o

Constant =
Constant =

[f
o

New Evaluation:

Cell Reference (0
Constant = 1
BinaryOp (1, 1)
CountNode (1) =
Constant = 3
BinaryOp (4, 3)
CountNode (1) =
Constant = 4
BinaryOp (4, 4)
BinaryOp (0, 1)
BinaryOp(1, 1)
Rule = True

»

N

I

[y
o
o

Constant =
Constant =

|
(i

l°)=0

(=) 0

(=) 0

(=) 0
(oxr) O
(and) 0

(=) O
(and) O

(=) 1
for) 1
(and) 1

Figure 43 : Fragment of the output generated by the debug mode for the Evaluation or Rules

51/77

CD++ User’s Guide

7 Utility programs

7.1Drawlog

The DrawLog utility is used to view the state of a cellular model after each simulation cycle as the
simulation advances. Using the log as input, drawlog parses the Y messages to update the state of
each cell in the model. When a simulation cycle finishes, the state of the whole model is printed.

Drawlog can read the log from a file or from the standard input. Its command line parameters are
shown next:

drawlog -[?hmtclwp0]

where:

Show this message

Show this message

Specify file containing the model (.ma)

Initial time

Specify the coupled model to draw

Log file containing the output generated by SIMU
Width (in characters) used to represent numeric values
Precision used to represent numeric values (in characters)
Don't print the zero value

Only cell values on a specified slice in 3D models

Momg £ QB P w

Figure 44 : Help shown by DrawLog
—2: similar to —h.

—m: Specifies the filename that contains the definition of the models. This parameter
is required

—t: Starting time. Sets the time for the first state output. If not specified, 00:00:00:000
will be used.

—c: Name of the cellular model to represent. This parameter is obligatory required
because a .ma file may define more than one cellular model.

—1: Name of the log file. If this parameter is omitted, Drawlog will take the data of the
standard input.

—w: Allows to define the print width, in characters, for numeric values. This width will
include the decimal point and sign. For example, —w7 defines a fixed size for each
value of 7 positions. Small numbers will be padded with spaces.

By default, Drawlog uses a width of 10 characters. For correct results a width that
is bigger than the precision (defined with the parameter —p) + 3 is recommended.

—p: Defines the number of digits to be displayed after the decimal point. If a value of 0

is used, then all the real values will be truncated to integer values. This parameter
is generally used in combination with the option —w.

52/77

CD++ User’s Guide

As an example, consider using the command line arguments —w6 —p2. This will set
the

By default, DrawLog assumes 3 characters for the precision.
—0: When this option is specified, a value of 0 zero will no be shown.

-f: Draws a 3D model as a 2D model. Only the specified plane will be drawn. To
draw plane 0, -fO should be used.

Figure 45 shows two different ways of starting drawlog. The first uses a log file as input. The
second one, instead, takes its input from the standard input.

drawlog -mlife.ma -clife -llife.log -w7 -p2 -0
or

pcd -mlife.ma -1- | drawlog -mlife.ma -clife -w7 -p2 -0

Figure 45 : Examples for the invocation to DrawLog

When parallel simulation is used, the standard input can not be directly used by drawlog because
log messages may arrive out of order. Therefore, it is necessary to sort the messages first. A utility
called logbuffer (described next) has been written for that purpose.

The output format of DrawLog will depend on the number of dimensions of the cellular model.

e Output for bidimensional cellular models.
e Output for three—dimensional cellular models.
e Output for cellular models with 4 or more dimensions.

7.1.1 Bidimensional cellular models

A 2 dimensions model will be displayed as a matrix of values. Figure 46 shows a fragment of the
output generated by DrawLog for a two-dimensional model of size (10, 10). The number width has
been set to 5 and the precision to 1.

53/77

CDH+ User’s Guide

Line : 238 - Time: 00:00:00:000
0 1 2 3 4 5 6 7 8 9

VoL WNDEREO
N
»
4
o
N
»
i
o
»n
>
o
»n
>
o
N
N
4
o
»N
N
.
o
N
>
o
N
N
v
o
n
S
v
o
[%]
»>
o

0 1 2 3 4 5 6 i 8 9

VoUW RO
N
S
.
o
N
»
4
o
N
>
o
N
e

4 " 4
o
n
e
.
o
»
>
o
n
e
o
N
Y
4
o
|]
»
4
o
N
>
o

Figure 46 : Fragment of the output generated for a bidimensional cellular model
7.1.2 Three dimensional models
For three dimensional models, a matrix representation will be used. Each matrix is one plane of the

cell space. The first plane shown will correspond to (x,y,0), the second one to (x,y,1), and so on.

Figure 47 shows the output of Drawlog when used to draw a cellular space of size (5,5,4) with a
number width of 1, a precision of 0 and zero values not displayed.

Line : 247 - Time: 00:00:00:000

01234 01234 01234 01234
Fmm——- + - + Fomm——- + - +
0|1 | 8l | o]y | o] l
1j11 | 1|11 2} 1] 111 3] a1
2l | 2] 1l 2] 141} 2] 1]
3| [3 1 § 3 1] 3| 1|
4| 11| 4] 11| 4|1 1| 4] 1]
- + == + === + e +

Line : 557 - Time: 00:00:00:100

01234 01234 01234 01234
o + = + fm- e + t-- +
0| [011 11| oj1 11| 0] 11|
1| | 3| | 11 | 1 1|
2| | 2j2 1] 2|1 | 2] 13|
3] 1 | 3| 11 | 311 11| 3|11 1]
4] | 4] | 4 | 4] i
tomm-—-- + e o + +----- + Fe=-—-— +

54/77

CD++

User’s Guide

Line : 829 - Time: 00:00:00:200

01234 01234 01234
- + - + o +
0] | 9 |- of1 1]
1] 1] 1 1] 1] 11}
2| | 2| | 2|1 1]
3| | 3 | 3[1 1 |
4| | 4] 1] 4|1 11|
=== + === + +o---- +

01234
e +
0] |
1| 1|
2| |
3| I
4| 1
- +

Figure 47 : Fragment of the output generated for a three—dimensional cellular model

7.1.3 Cellular models of more than 3 dimensions

For models of 4 or more dimensions, the matrix representation will not be used. Instead, the values
for each cell will be listed. The options defined with —p, -w and —0 will be ignored.

Figure 48 shows a fragment of the output generated by DrawLog for a model of size (2, 10, 3, 4).

Line :
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,0,3)
(0,0,1,0)

oo .o

e o

(1,9,1,0)
(1,9,1,1)
(1,9,1,2)
(1,9,1,3)
(1,9,2,0)
(1,9,2,1)
(1,9,2,2)
(1,9,2,3)

Line : 789
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,0,3)
(0,0,1,0)

e o e e s .

e .

(1,9,1,0)
(1,9,1,1)
(1,9,1,2)
(1,9,1,3)
(1,9,2,0)
(1,9,2,1)
(1,9,2,2)
(1,9,2,3)

506 - Time:

2
0

Time:

00:00:00:000

00:00:00:100

Figure 48 : Fragment of the output generated for a model with dimension 4

55/1717

CD++ User’s Guide

7.2 Parlog

Parlog is a utility used to asses the parallelism of a running model. It uses the model log as input
and counts the number of (*,t) messages received by each LP during a simulation cycle. After a
simulation cycle has been completed, a list with the number of messages received by each LP will
be printed.

Parlog reads the log from the standard input. LogBuffer should be used for correct results.

Usage:

PARLOG: An utility to determine the level of parallelism
usage: parlog - [?hmP]

where:
7 Show this message
h Show this message
P Partition file name

Figure 49 : Parlog command line options

~h: Displays help.
-2 Displays help.

-P: Specifies the partition file name. This paramter is required because parlog
needs to know how many LPs are being used.

Figure 50 shows the output generated by parlog with a model running in for machines.

Time/LP 0 1 2 3
00:00:00:000 629 626 626 626
00:00:10:000 5 0 2 3
00:00:11:000 12 3 12 14
00:00:12:000 31 7 32 35
00:00:13:000 60 13 62 66
00:00:14:000 99 21 102 107
00:00:15:000 148 31 152 158
00:00:16:000 207 43 212 219
00:00:17:000 276 57 282 290
00:00:18:000 351 73 358 367
00:00:19:000 428 91 436 446
00:00:20:000 509 131 495 486
00:00:21:000 543 192 531 522
00:00:22:000 51715 254 563 554
00:00:23:000 603 311 591 582
00:00:24:000 625 376 614 606
00:00:25:000 627 450 625 626

Figure 50 : Parlog output for a 4 machines partition.

7.3Logbuffer

Logbuffer is a utility that buffers log messages received through the standard input, sorts them
according to their time, and outputs them to the standard output. It should be used when running
drawlog or parlog piped with the simulator.

56/77

CD++ User’s Guide

To run logbuffer use,
logbuffer [-b]
-bn Sets the size of the buffer. The default size is 200.

Both drawlog and parlog require that, for correct results to be obtained, that log messages be
processed in the order determined by their timestamps. When parallel simulation is run and the log
is sent to the standard output, there is no guarantee that messages will be displayed in the same
order that they were generated. Therefore, a sorted buffer is needed.

Logbuffer has an internal buffer of a used defined size, which is always kept sorted. When the
simulation is started, this buffer is empty. Every new message that arrives is buffered, and no
output is sent till the buffer is full. Once it is full, every new message that arrives causes a new
message to be sent to the standard output. When the simulation finishes, all buffered messages are
sent.

(*)2), (x,2), (@,3) (@,3),(*2),(x,2)
e LOGBUFFER >

Figure 51 : Logbuffer receives a message with timestamp 3 and then two messages with
timestamp 2. Logbuffer sorts and sent in the correct order.

Logbuffer can only guarantee correct results for misplaced messages that occur within a distance
smaller than the size of the buffer.

>./mpirun -np 4 ./pcd -mcalor.ma -Pcalor.par4 -t00:01:00:000 -1 |
./logbuffer -b5000 | ./drawlog -mcalor.ma -csuperficie -w6-p2 > calor.drw

> ./mpirun -np 4 ./pcd -mcalor.ma -Pcalor.par4 -t00:01:00:000 -1 |
./logbuffer -b5000 | ./parlog -Pcalor.par4 > calor.p

Figure 52 : Running pcd with logbuffer.

7.4 Random Initial States — MakeRand

MakeRand is a tool to create a .val file with a random initial state for a cellular model.

871171

CD++

User’s Guide

Usage:

where:

makerand - [?hmcs]

noHpw

Show this message

Show this message

Specify file containig the model (.ma)
Specify the Cell model within the .ma file
Specify the value set

s0 = Use the values 0 & 1 (Uniform Distribution)
sl-n = Use the value 1 for n cells & 0 for the rest
s2-n = Makes random states for the Pinball Model
s3-n = Random states for the Gas Dispersion Model

Figure 53 : MakeRand command line options

—2: similar to —h.

—m: Specifies the filename for the model definition file (.ma)

—c: Name of the cellular model. This parameter is required because the size of the

model needs to be known.

—s: Specifies the type of initial state to be created:

—s0: For each cell of the model, a value will be chosen randomly belonging to
the set {0, 1} with the same probability for each value.

—sl-n: Indicates that the model initially will have n cells with value 1
(distributed randomly according to an uniform distribution) and the rest of
the cells will have the value 0. If 7 is bigger to the quantity of cells of the
model, then an error will occur and the initial state will not be generated.
For example, if we have a 40x40 cellular and we want 75% of the cells
(1200 cells) to have an initial value of 1, and the remaining cells an initial
value of 0, then —s1-1200 should be used.

—s2-n: Generates a random initial state for the Pinball model. For this model a
value between 1 and 8 will be randomly generated and randomly place
inside the cellular space. In addition, 7 cells will be randomly chosen to
represent the walls. The rest of the them will have an initial value of 0.

—s3—n: Creates an initial state for the gas dispersion model with n particles.

The output will be created in a .val file with the same name as the model file.

7.4 Converting .VAL files to Map of Values — ToMap

The tool ToMap allows to creates a .map (section 5.2) file from a .val file (section 5.1).

58/77

CD++ User’s Guide

Usage:

toMap - [?hmcil]

where:

Show this message

Show this message

Specify file containig the model (.ma)
Specify the Cell model within the .ma file
Specify the input .VAL file

o8B b~

Figure 54 : Command line arguments for toMap

—2: same as —h. Shows the command line help.
—m: Specifies the filename (.ma file) with the model definition.
—c: Name of the cellular model.

—i: Specifies the name of the .val file that contains the list of values that it will be used
for the creation of the .map file.

ToMap uses all values in the .val file to create a map of values. If the .val file does not specify a
value for every cell, then the default value, as specified by the InitialValue parameter, will be used.

The output file will have the same name as the .ma file but the extension .map will be used instead.

59/77

CD++ User’s Guide

8 Coding new atomic models

This section will describe how to code new atomic models into CD++. Knowledge of C++ is
required. Users not intending to code new models can skip this section.

A new atomic model is created as a new class that inherits from Afomic. To tell CD++ that a new
atomic definition has been added, the model must be registered in the
ParallelMainSimulator.registerNewAtomics() function. In addition, for an atomic model to support
the TimeWarp protocol, a model’s state has to be defined as a separate class that is derived from
AtomicState. The current state is available through the function getCurrentState() which returns a
pointer to the model state. States are managed by the Warped kernel, and are only valid through a
simulation cycle. There is no guarantee a pointer returned during a simulation cycle will still be
valid during the next one. In addition, the states are not created until the initFunction is called, so
no state initialization code should be placed in the class constructor.

8.1Defining the state of a model

The state of a model is made of all those variables that can change during a simulation cycle. The
basic state variables required by an atomic model are defined in the AfomicState class. A user can
create a new class to define the state variables required by his model.

The AtomicState class declaration is shown below.

Figure 55: The AtomicState class.

To access the current state the function
ModelState* getCurrentState()
should be used. The pointer that is returned can be casted to the proper type.

An assignment operator and a copy constructor need to be provided for Warped to work properly.
In addition, the method getSize should be overridden to return the size of the class.

60/77

CD++ User’s Guide

8.2Defining a new atomic model

When creating a new atomic model, a new class derived from atomic has to be created. Atomic is
an abstract class that declares a model’s API and defines some service finctions the user can use to
write her model.

class Atomic : public Model
{
public:
virtual ~Atomic(); // Destructor

protected:

//User defined functions.

virtual Model &initFunction() = 0;

virtual Model &externalFunction (const MessageBag &);

virtual Model &externalFunction(const ExternalMessage &);

virtual Model &internalFunction(const InternalMessage &) = 0 ;

virtual Model &outputFunction(const CollectMessage &) = 0 ;

virtual Model &confluentFunction (const InternalMessage &, const MessageBag &);
virtual ModelState* allocateState();

virtual string className() const

//Kernel services

void nextChange (Vtime) ;
Vtime nextChange();
void lastChange (Vtime) ; |
Vtime lastChange();

Model &holdIn(const AtomicState::State &, const VTime &) ;

Model &sendOutput(const VTime &time, const Port & port , BasicMsgValue *value)
Model &sendOutput(const VTime &time, const Port & port , Value value)

Model &passivate();

//State functions

virtual ModelState* getCurrentState() const;
virtual ModelState* getCurrentState() ;

//State shortcuts
Model &state(const AtomicState::State &s)
{ ((AtomicState *)getCurrentState())->st = s; return *this; }

const AtomicState::State &state() const f
{return ((AtomicState *)getCurrentState())->st;}

}; // class Atomic

Figure 56: The Atomic Class

The class atomic provides a set of services and requires a set of functions to be redefined. The
services are functions that allow the model to tell the simulator the current state and duration.
These are:

e holdIn(state, VTime)

Tells the simulator the model will remain in the state state for a period of VZime time. It
corresponds to the ta(s) function of the DEVS formalism. |

e passivate()
Sets the next internal transition time to infinity. The model will only be activated again if an

external event is received.

61/77

CD++ User’s Guide

o sendOutput(VTime, port, BasicMsgValue*):
Sends an output message through the port. The time should be set to the current time. The
user can define any structure for the messages values, as described further on. The simulator
will delete the pointer received.

e sendOutput(VTime, port, Value):
This function is provided for backward compatibility. It send a real value through the given

port. Again, the time should be set to the current time. If only real values will be used, then
this function will do.

e nextChange():
Returns the remaining time for the next internal transition (sigma).
e lastChange():

Returns the time the model last changed, either because an external event was received or an
internal transition took place.

e state():
Returns the current model’s phase.
o getParameter(modelName, parameterName)

Returns the parameters the user defined in the .ma file. ModelName is the model’s instance
name, and parameterName is the name of the parameter to be returned. If the parameter has not
been specified, an empty string is returned.

The new class should override the following functions:
e virtual Model &initFunction()

This method is invoked by the simulator at the beginning the simulation and after the model
state has been initialized. All initialization should take place when this method is call. An
active model should usually set the time for the next transition using the holdIn function.

e virtual Model &externalFunction (const MessageBag &)
e virtual Model &externalFunction(const ExternalMessage &);

These methods are invoked when one or more external events arrive from a port of the model.
It corresponds to the O function of the DEVS formalism. The simulator calls the first
function, the one that receives a message bag. By default, this function will iterate through all
the messages in the bag and call the second one. This is provided for backward compatibility.
If the modeler would like to have more control on the model’s behavior when multiple
simultaneous events are received, it is recommend the first function is overridden. If the
model’s behavior is simple enough for simultaneous events to be handled sequentially, then it
will be enough to redefine the second function.

62/71

CD++ User’s Guide

The interface for the MessageBag class is shown below.

class MessageBag {

public:
MessageBag () ; //Default Constructor
~MessageBag () ;
MessageBag &add(const BasicPortMessage*) ;
bool portHasMsgs(const string& portName) const;
const MessageList& msgsOnPort(const string& portName) const;
int size() const
MessageBag& eraseAll () ;
const VTime& time() const;

}:

Figure 57: MessageBag class

e virtual Model &internalFunction(const InternalMessage &)
This method corresponds to the d;,; function of the DEVS formalism.
e virtual Model &outputFunction(const CollectMessage &)

This function is called before &;,. It should send all the output event. Each output event is
sent using the function sendOutput defined below.

e virtual Model &confluentFunction (const InternalMessage &, const MessageBag &)

It corresponds to the &, function of the DEVS formalism. By default, it is set to:

Model &Atomic::confluentFunction (const InternalMessage &intMsg, const
MessageBag &extMsgs)
//Default behavior for confluent function:
//Proceed with the internal transition and the with the external
internalFunction(intMsg);

//Set the elapsed time to 0
lastChange(intMsg.time());

//Call the external function
externalFunction(extMsgs);

return *this;

e virtual string className()

63/77

CD++ User’s Guide

Returns the name of the atomic class.

8.3Defining the output values

The user can define a new class for the output values. To define a new structure for output values, a
new class that derives from BasicMsgValue has to be created. A class for sending and receiving
real values is already provided.

There is only restriction that applies: no pointers can be defined as part of the class. This is because
message values are sent across a network when parallel simulation is used and pointers will be just
copied as pointers. The data they are pointing to will not be copied.

class BasicMsgValue

{

public:
BasicMsgValue() ;
virtual ~BasicMsgValue() ;
virtual int valueSize() const;
virtual string asString() const;
virtual BasicMsgValue* clone() const;

BasicMsgValue (const BasicMsgValue&) ;

}s

class RealMsgValue : public BasicMsgValue
{
public:

RealMsgValue() ;

RealMsgValue(const Value& val);

Value v;

int valueSize() const;

string asString() const ;
BasicMsgValue* clone() const;
RealMsgValue (const RealMsgValue&) ;

}:

Figure 58: The BasicMsgValue and RealMsgValue classes

The user needs to define the following functions:
e virtual int valueSize() const;

Returns the size of the class. It should be set to:
return sizeof(className) ;

e virtual string asString();
Returns a string that is used in the log file to log the value sent or received.
e virtual BasicMsgValue * clone();

Returns a pointer to a new copy of the message value. The function that receives the pointer
will own it and afterwards delete it.

64/77

CD++ User’s Guide

e BasicMsgValue(const BasicMsgValue&)

A copy constructor is required.

8.4Example. A queue model.

A queue is a device of temporary storage that uses a FIFO (First In First Out) mechanism. Our
model of a queue will hold any type of user defined value. The queue will have three input ports
and one output port. Values to be stored will be received through the input port /z and will later be
sent through the port Out. The input ports start-stop and next will serve to regulate the flow of
values through the output port. Figure 59 shows the structure of our model of a queue.

ouT IN
.«

QUEUE ETART - STOP

¢ NEXT

Figure 59: Structure of a Queue

Initially, the queue is empty. When the first value is received through the input port /n, it will be
stored in the queue and forwarded through the output port Out after a time as defined by the user
parameter preparationTime. If a value is received and the queue is not empty, then it will be stored,
but it will not be forwarded immediately. Instead, it will be sent through the output port Out only
after a message is received through the port next.

A message received through the input port start-stop will temporarily disable the queue. If the
queue is disabled, it will only respond to new events received through the input port /n. Any value
received will be stored, but no output will be ever sent until the queue is enabled again by sending
an event to the start-stop port.

After this brief description, we are ready to begin writing our model. First, we need to define a
class to store the state of the queue. The queue will have two state variables: a list of elements and
a boolean to store the enabled/disabled status. Figure 60 lists the Queue state class declaration and
definition.

Once the state class has been defined, we are ready to implement the model itself. The Queue class
declaration is shown in Figure 61.

65/77

CD++ User’s Guide

class QueueState : public AtomicState {

public:
typedef list<BasicMsgValue *> ElementList ;
ElementList elements ;

bool enabled;

QueueState () {}:
virtual ~QueueState(){}:

QueueState& operator=(QueueState& thisState)
{
(AtomicState &) *this = (AtomicState &) thisState;

ElementList::const iterator cursor;

for (cursor = thisState.elements.begin();
cursor != thisState.elements.end(); cursor++)

elements.push back(cursor->clone());

return *this;

}

void copyState (QueueState *)
{ *this = *((QueueState *) rhs);}

int getSize() const
return sizeof (QueueState);}

Figure 60 : QueueState class

The Queue model overloads the initialization methods, internal function, external transition and
output function. In addition, it shortcut functions to access the elements of the current state.

66/77

CD++ User’s Guide

class Queue : public Atomic

{
public:

Queue(const string &name = "Queue");

virtual string className() const { return "Queue" ;}
protected:

Model &initFunction();

Model &extermalFunction(const MsgBag &);

Model &internalFunction(const InternalMessage &);
Model &outputFunction(const CollectMessage &);

ModelState* allocateState()
{ return new QueueState;}

private:
Port &in, &done, &out;

VTime preparationTime;

QueueState: :ElementList& elements()
{ return ((QueueState*)getCurrentState())->elements; }

bool enabled() const
{ return ((QueueState*)getCurrentState())->enabled; }

void enabled (bool val)
{ ((QueueState*)getCurrentState())->enabled = val; }
}: // class Queue

Figure 61: The Queue class declaration

The initFunction has to set the initial state for the queue, as shown in Figure 62. The elements of
the list will be erased and the enabled will be set to true.

Model &Queue::initFunction()

{

enabled(true);
return *this;

Figure 62: initFunction for the Queue model

The externaFunction will be activated every time one or more events are received. For the queue
model, this function will have to insert into the queue all values received through port /n, schedule
an output if a value is received through the port next and enabled or disable the queue if an event is
received through port start-stop, as detailed in Figure 63. It is important to notice that it is the
modeler’s responsibility to set which message will have the highest priority when more than one is
received. For our queue model, it can be seen from Figure 63 that the start-stop messages will
have higher precedence than the done and in messages.

67/77

CD++ User’s Guide

Model &Queue::externalFunction(const MsgBag & bag)
{
if (portHasMsgs(“start-stop”))
i
enabled (l!enabled());
if (lenabled())
passivate() ;
}
if (enabled() && portHasMsgs(“done”))
{
elements () .pop_front () ;
holdIn(AtomicState::active, preparationTime);
}
if (portHasMsgs(“in”)
{
MessageList::const_iterator cursor;
cursor = bag.msgOnPort(“in”) .begin() ;
for (; cursor != bag.msgsOnPort(“in”).end() ; cursor++)
elements () .push back(cursor.value());
//If the queue was empty, schedule the next transition
if (enabled() && elements.size()==msgsOnPort(“in”).size())
holdIn(AtomicState::active, preparationTime);
}
}

Figure 63: External transition function for the queue model

The output function is called before an internal transition. In our queue model, the output function
should send the first value in the list through the output port. The internal transition function will
passivate the model which will wait for an external event to take place.

Model &Queue::outputFunction(const CollectMessage &msg)
{
sendOutput (msg.time(), out, elements.front());
return *this;
}
Model &Queue::internalFunction(const InternalMessage &)
passivate() ;
return *this;
}

Figure 64: Methods for the Output Function and the Internal Transition of the Queue

The sendOutput function will delete the pointer it receives, so all memory previously allocated to
store the queue values will be reclaimed.

68/77

CD++ User’s Guide

If we wanted to use the queue for a network model, the queue would store IP packets. Then an IP
packet class derived from BasicMsgValue should be defined.

Figure 65 lists the definition of the IPPacket class. The only restriction that needs to be placed in
classes derived from BasicMsgValue is that they do not contain any pointers.

class IPPacket : public BasicMsgValue

{

public:

char OriginIP[15];
char DestinationID[15];
int Port;

int SequenceNumber;
int PayloadSize;

IPPacket () ;
virtual ~IPPacket();

virtual int valueSize() const
{ return sizeof(IPPacket); }

virtual string asString() const;
virtual BasicMsgValue* clone() const;

IPPacket (const IPPacket&);

Figure 65: IP Packet Definition

69/77

CD++ User’s Guide

9 Appendix A — Examples

9.1 Game of Life

The Game of Life was presented in an issue of Scientific American by the well known
mathematician Martin Gardner. In the game of life, living cells will live or die. The rules for
life evolution are as follows:

e An active cell will remain in this state if it has two or three active neighbors.
e An inactive cell will pass to active state if it has two active neighbors exactly.
e In any other case, the cell will die

The implementation of this model in CD++ is as follows:

[top]
components : life

[life]

type : cell

width : 20

height : 20

delay : transport

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors life(0,-1) 1life(0,0) life(0,1)
neighbors : life(1,-1) 1life(1,0) life(1,1)
initialvalue : 0

initialrowvalue : 1 00010001111000000000
initialrowvalue : 2 00110111100010111100
initialrowvalue : 3 00110000011110000010
initialrowvalue : 4 00101111000111100011
initialrowvalue : 10 01111000111100011110
initialrowvalue : 11 00010001111000000000
localtransition : life-rule

[life-rule]

rule : 1 100 { (0,0)
rule : 1 100 { (0,0)
rule :.0 100 { t }

1 and (truecount = 3 or truecount = 4) }
0 and truecount = 2 }

Figure 66 : Implementation of the Game of Life

9.2A bouncing object

The following is the specification of a model that represents an object in movement that bounces
against the borders of a room. This example is ideal to illustrate the use of a non toroidal cellular
automata, where the cells of the border have different behavior to the rest of the cells.

For the representation of the problem, 5 different values are used for the states of each cell, these
values are:

70/77

User’s Guide

0 = represents an empty cell.
1 = represents the object moving toward the south east.
2 = represents the object moving toward the north east.
3 =represents the object moving toward the south west.
4 = represents the object moving toward the north west.

The specification of the model is:

[topl]
components : rebound

[rebound]

type : cell

width : 20

height : 15

delay : transport
defaultDelayTime : 100
border : nowrapped
neighbors : rebound(-1,
neighbors

neighbors : rebound(1l, -
initialvalue : 0
initialrowvalue : 13
localtransition : move-
zone : cornerUL-rule {
zone : cornerUR-rule {
zone : cornerDL-rule {
zone : cornerDR-rule {
zone : top-rule { (0,1)

-1) rebound (-1,1)

rebound (0,0)

1) rebound (1,1)

00000000000000000010
rule

(0,0) }

(0,19) }

(14,0) }

(14,19) }

..(0,18) 1}

zone : bottom-rule { (14,1)..(14,18) }

zone : left-rule { (1,0
zone : right-rule { (1,

[move-rule]

rule : 1 100 { (-1,-1)
rule : 2 100 { (1,-1) =
rule : 3 100 { (-1,1) =
rule : 4 100 { (1,1) =
rule : 0 100 { t }
[top-rule]

rule : 3 100 { (1,1) =
rule : 1 100 { (1,-1) =
rule : 0 100 { t }

[bottom-rule]
rule : 4 100
rule : 2 100
rule : 0 100

A
ot~ ~
]
e
<
'—I N

~

[left-rule]

rule : 1 100 { (-1,1) =
rule : 2 100 { (1,1) =
rule : 0 100 { t }

[right-rule]

rule : 3 100 { (-1,-1)
rule : 4 100 { (1,-1) =
rule : 0 100 { t }

[cornerUL-rule]
rule : 1 100 { (1,1) =

)..3,0) }
19)..(13,19) }

71777

CD++ User’s Guide

rule : 0 100 { t }

[cornerUR-rule]

rule : 3 100 { (1,-1) = 2 }
rule : 0100 { t }
[cornerDL-rule]
rule : 2 100 { (-1,1) = 3 }

T
rule : 0 100 { t }

[cornerUR-rule]
rule : 4 100 { (-1,-1) =1}
rule : 0 100 { t }

Figure 67: Implementation of the Rebound of an Object

9.3 Classification of raw materials

The aim of this example is to show the use of special behavior that can be given to a cell when an
external event arrives through an input port. We have a model that represents the packing and
classification of certain raw material that contains 30% of carbon approximately. The model is
made of a machine that loads 100 grams fractions of that substance in a carrying band. One a
fraction reaches the end of the band, it is processed by a packager that takes these fractions until a
kilogram is obtained. Then, the packed substance is classified. If each packet contains 30 £ 1 % of
carbon, it is classified as of first quality; otherwise, it will be of second quality.

The model uses the atomic model Generator that generates values (in this case always the value 1)
each x seconds (where x has and Exponential distribution with average 3). These values are passed
to the carry band, represented by a cellular mode. At the end of the band, another cellular model
makes the packaging and selection.

15\
BEBEERE uali

GFNR I—P"ElﬁJ—P p Quality
Carrv Band =

Packing & (Y.

Classification

Figure 68: Coupling structure for the Classification of Substances

The following is the specification of the model:

[top]

components : genSubstances@Generator queue packing
out : outFirstQuality outSecondQuality

link : out@genSunstances in@gueue

link : out@queue in@packing

link : outl@packing outFirstQuality

link : out2@packing outSecondQuality

7217177

CD++

User’s Guide

[genSubstances]
distribution : exponential
mean : 3
initial : 1
increment : 0

[queue]

type : cell

width : 6

height : 1

delay : transport

defaultDelayTime : 1

border : nowrapped

neighbors : queue(0,-1) queue(0,0) queue(0,1)
initialvalue : 0

in : in

out : out

link : in in@queue (0,0)

link : out@gueue(0,5) out

localtransition : queue-rule

portInTransition : in@queue(0,0) setSubstance

[queue-rule]

rule : 0 1
rule : { (0,-1) } 1
1) |}

rule

{ (0,0) t= 0 and (0,1) = 0 }

{ (0,0) = 0 and (0,-1) != 0 and not isUndefined((0, -
{

{

0) != 0 and isUndefined((0,1)) }

[setSubstance]
rule : { 30 + normal(0,2) } 1000 { t }

[packing]

type : cell

width : 2

height : 2

delay : transport

defaultDelayTime : 1000

border : nowrapped

neighbors : packing(-1,-1) packing(-1,0) packing(-1,1)
neighbors : packing(0,-1) packing(0,0) packing(0,1)
neighbors : packing(l,-1) packing(1,0) packing(1l,1)
in : in

out : outl out2

initialvalue : 0

initialrowvalue : 0 00
initialrowvalue : 1 00
link in in@ packing(0,0)

1ink : in ine@ packing(1,0)

link : out@ packing(0,1) outl

link : out@ packing(1l,1) out2

localtransition : packing-rule

portInTransition : in@packing(0,0) add-rule
portInTransition : in@packing(1,0) incQuantity-rule

[packing-rule]

rule : 0 1000 { isUndefined((1,0)) and isUndefined((0,-1)) and (0,0) = 10
}

rule : 0 1000 { isUndefined((-1,0)) and isUndefined((0,-1)) and (1,0) =
10 ¥

rule : { (0,-1) / (1,-1) } 1000 { isUndefined((-1,0)) and

isUndefined ((0,1))

1}

and (1,-1) = 10 and abs((0,-1) / (1,-1) - 30) <=

73177

CD++:

User’s Guide

rule : { (=1,-1) [/ (0,-1) } 1000 { isUndefined((1,0)) and
isUndefined ((0,1))

1}

rule : { (0,0) } 1000 { t }

and (0,-1) = 10 and abs((-1,-1) / (0,-1)

[add-rule]
rule : { portvValue(thisPort) + (0,0) } 1000 { portValue(thisPort)
rule : { (0,0) } 1000 { t }

[incQuantity-rule]
rule : { 1 + (0,0) } 1000 { portValue(thisPort) != 0 }
rule : { (0,0) } 1000 { t }

- 30) >

l=0}

Figure 69: Implementation of the Model to Classify Substances

The cellular model queue that represents the carry band makes use of the portInTranstition
clause. As it was mentioned earlier, this clause is used to set the rule that will be evaluated when an

external event is received by the cell through the specified port. This clause is then u

sed again in

the definition of the model Packing set the behavior of the cells upon the reception of a raw

material from the carry band.

9.4 Game of Life — 3D

The next example is an adaptation of the Game of the Life to a three dimensional space.

Figure 70 shows the model definition and Figure 71 lists the contents of file “3d-life.val” that

contains the initial values for the cell.

[top]
components : 3d-life

[3d-1ifel]

type : cell

dim = (7,7,3)

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : 3d-l1life(-1,-1,-1) 3d-1ife(-1,0,-1) 3d-1life(-1,1,-1)
neighbors : 3d4-l1life(0,-1,-1) 3d-l1ife(0,0,-1) 3d-1life(0,1,-1)
neighbors : 3d-1life(1,-1,-1) 3d-l1ife(1,0,-1) 3d-life(1,1,-1)
neighbors : 3d-life(-1,-1,0) 3d-l1ife(-1,0,0) 3d-life(-1,1,0)
neighbors : 3d-1life(0,-1,0) 3d-1ife(0,0,0) 3d-1ife(0,1,0)
neighbors : 3d-life(1,-1,0) 3d-1ife(1,0,0) 3d-1life(1,1,0)
neighbors : 3d-life(-1,-1,1) 3d-1life(-1,0,1) 3d-1life(-1,1,1)
neighbors : 3d-1life(0,-1,1) 3d-1ife(0,0,1) 3d-1life(0,1,1)
neighbors : 3d-1life(1,-1,1) 3d-1life(1,0,1) 3d-1life(1,1,1)
initialvalue : 0

initialCellsValue : 3d-life.val

localtransition : 3d-life-rule

[3d-1ife-rule]

rule : 1 100 { (0,0,0)
rule : 1 100 { (0,0,0)
rule : 0 100 { t }

1 and (truecount = 8 or truecount = 10) }
0 and truecount >= 10 }

Figure 70: Implementation of the Game of Life — 3D

74177

CD++ User’s Guide

(0,0,0) = 1 (2,4,1) = 1 (5,1,2) = 1
(0,0,2) = 1 (2,4,2) = 1 (5,2,0) =1
(11010) = 1 (21510) 1 (51212) = 1
(1,0,1) = 1 (2,6,1) 1 (5,3,0) =1
(1,1,1) =1 (3,2,1) =1 (5,3,1) =1
(1,2,0) =1 (3,5,1) =1 (5,5,1) = 1
(11212) =1 (31512) =1 (5,5,2) =1
(1,3,2) = 1 (3;6;1) = 1 (5,6,0) =1
(1,4,2) = 1 (3,6,2) =1 (6,0,0) = 1
(1,5,0) =1 (4,1,2) 1 (6,1,1) = 1
1,5,1) & 1 (4,2,0) =1 (6,1,2) = 1
(1:610) = 1 (41211) =1 (6:3,0) = 1
(1,6,1) =1 (4,4,1) =1 (6,3,2) =1
(2,1,2) =1 (4,5,0) = 1 (6,4,2) =1
(21110) =1 (41512) =1 (61511) =1
(2,3,1) = 1 (4,6,0) =1 (6,6,0) =1
(2,3,2) it (4,6,2) = 1 (6,6,2) = 1

Figure 71: Initial values for the cells of the Game of Life — 3D

9.5Use of Macros

The following example shows how macros can be used to write a new version of the Game of the
Life for a 4 dimensional space. Macros can be defined in external files that are included in the main
.ma file. More than one macro definition is may be included per file, but no macro can make use of
an existing macro. A macro is defined between the #BeginMacro and & #EndMacro directives. All
other text is ignored. The next figures show the contents of the four files that are used to
completely define the new model.

#include(life.inc)
#include(life-1.inc)

[top]
components : life

[1ife]

type : cell

dim : (2,10,3,4)
delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : life(-1,-1,0,0) life(-1,0,0,0) life(-1,1,0,0)
neighbors : life(0,-8,0,0) life(0,-1,0,0) 1ife(0,0,0,0) 1life(0,1,0,0)
neighbors : life(1,-1,0,0) 1ife(1,0,0,0) 1life(1,1,0,0)
initialvalue : 0

initialCellsValue : life.val

localtransition : life-rule

[life-rule]
% Comment: Here starts the definition of rules

rule : 1 100 { #macro(Heat) or #macro(Rain) }

rule : 0 100 { (0,0,0,0) = ? OR (0,0,0,0) = 2 }

#macro (rulel) % Another comment: A macro is invoked

rule : 1 100 { (0,0,0;0) = (1;0,0,0) AND (0,0,0,0) > 1 }

#macro (rule2)

Figure 72: Implementation of the Game of Life with 4 dimensions and using macros

751777

CD++

User’s Guide

(0101010) = ?

(1101010) = 25
(0,0,1,0) = 21
(0111212) = 28

(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44

Figure 73: File life.val that contains the initial values for the Game of Life in 4D

This is a comment: The macro Rule3 assigns the value 0 if the cell’s value
is 3, and 4 if the cell’s value is negative.

#BeginMacro (rule3)

rule : 0 100 { (0,0,0,0) = 3 }
rule : 4 100 {.(0,0,0,0) <0 }
#EndMacro

#BeginMacro (rulel)

rule : 0 100 { (0,0,0,0) + (1,0,0,0) + (1,1,0,0) + (0,-8,0,0) = 11 }
#EndMacro

#BeginMacro (Heat)
(0,0,0,0) > 30
#EndMacro

Figure 74: File life.inc that contains some macros used in the Game of Life 4D

#BeginMacro (Rule2)

rule : 0 100 { (0,0,0,0) = 7 }
rule 1 { (0,0,0,0) +2 } 100 { t)}
#EndMacro

#BeginMacro (Rain)
(0,-8,0,0) > 25
#EndMacro

Figure 75: File life-1.inc that contains the remaining macros for the Game of Life 4D

76 /77

CD++ User’s Guide

10 Appendix B — The preprocessor and temporary files.

When the preprocessor is used to resolve macros (by default the preprocessor is enabled), it will
create a temporary file for the model with all macros expanded and all the comments erased. This
temporary file is then passed to the simulator for its interpretation. If the use of the preprocessor
with the parameter -b is disabled and macros are used, the model will not be processed correctly.

The name of the temporary file is the value returned by the instruction tmpnam of the GCC. The
directory where the temporary files are located will be selected according to the following criteria:

1. When CD++ is compiled, the name of directory defined by P_tmpdir <stdio.h> will be used,
unless this is the root directory.

In Linux this variable usually has the value: “/TMP”, while in the version of the GCC 2.8.1
for Windows—32 bits, this variable references to the root directory of the disk unit that is in

use.

2. If P_tmpdir points to the root directory, then the name defined by the environment variable
TEMP will be used.

3. If no TEMP variable is defined, then the value of the environment variable TMP will be
used.

4. Finally, if the TMP is neither defined, the current directory will be used.

77477

