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BÚSQUEDA EFICIENTE DE OBJETOS EN IMÁGENES
MEDIANTE UN ÁRBOL DE VOCABULARIO

La tarea de buscar y reconocer objetos en imágenes se ha convertido en un importante
tema de investigación en el área de procesamiento de imágenes y visión por computadora.

Una solución general al problema que no puede aprovechar caracteŕısticas particulares
de un dominio espećıfico en las imágenes de entrada, requiere procesar mucha información
en la imagen. Si el reconocimiento se plantea sobre un número importante de imágenes,
el volumen de datos crece muy rápido.

Redes sociales en la web, aplicaciones en smart-phones, etc. plantean la necesidad de
resolver este problema a gran escala ya que cada vez trabajan con volúmenes de datos
más grandes que superan el orden de los millones de imágenes. Poder desarrollar métodos
eficientes en términos de búsqueda e indexación, que devuelvan resultados correctos en
tiempo real representa un desaf́ıo importante.

En este trabajo se estudia el enfoque de Bag of Features, en particular la variante deno-
minada vocabulary tree. En esta variante, métodos de clustering jerárquico son aplicados
sobre descriptores locales de imágenes, para formar un vocabulario visual jerárquico. Para
indexar las imágenes y crear el dataset de ı́ndices invertidos, los descriptores son cuanti-
zados en términos del vocabulario para formar vectores esparsos, que permiten computar
un ranking de similaridad entre imágenes de manera muy eficiente.

Se incluyen también explicaciones detalladas del método con ejemplos que permiten
un mejor entendimiento y reproducibilidad de los resultados.

Se realiza además un análisis del impacto de la performance del método variando dis-
tintos factores tales como: los parámetros sobre la construcción del vocabulario y distintas
técnicas de extracción de descriptores locales. Se observa que la performance de recupera-
ción (retrieval) aumenta con un vocabulario más rico y decae muy lentamente a medida que
el tamaño del dataset crece. Se muestra que los descriptores open source KAZE y AKAZE
probaron tener resultados iguales o superiores a los métodos clásicos SIFT, SURF y ORB.

Los experimentos realizados muestran que aplicar una reducción de dimensionalidad
a los descriptores, usando técnicas como PCA, mejoran o igualan la calidad de la recu-
peración de imágenes, permitiendo reducir los requerimientos de memoria necesarios y
brindando al método de una mayor escalabilidad aún.

Finalmente se muestran diversas aplicaciones concretas para el método como búsqueda
de objetos o escenas en videos, reconocimiento de billetes de banco o de etiquetas de vino,
contando con una demo funcional online.

Palabras claves: árbol de vocabulario, búsqueda escalable, procesamiento de imágenes,
visión por computadora, reconocimiento de objetos en imágenes, bag of features.
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EFFICIENT LARGE-SCALE IMAGE SEARCH WITH A
VOCABULARY TREE

The task of searching for and recognizing objects in images has become an important
research topic in the area of image processing and computer vision.

A general solution to the problem that can not take advantage of particular characte-
ristics of a specific domain in the input images, requires processing a considerable amount
of information from the image. If the recognition is done on a large number of images, the
volume of data to be processed grows very fast.

Social networks on the web, applications on smart phones, etc. settle the need to solve
this problem on a large scale as they have to work increasingly with larger volumes of data,
exceeding the order of millions of images. Thus, being able to develop efficient methods,
that return correct results in real time represents a major challenge.

In this paper the Bag of Features approach is studied, in particular the variant called
vocabulary tree. In this variant, hierarchical clustering methods are applied to local image
descriptors to form a hierarchical visual vocabulary. In order to index the images and create
the inverted indexes, the descriptors are quantized in terms of the vocabulary forming
sparse vectors, which allows computing a ranking of similarity for images very efficiently.

Detailed explanations of the method with examples that allow a better understanding
and reproducibility of the results are included.

The impact on method performance is analyzed varying different factors such as: the
parameters on the vocabulary construction and different techniques of local descriptors
extraction. It can be observed that the retrieval performance increases with a richer voca-
bulary and decays very slowly as the size of the dataset grows. New open-source descriptors
KAZE and AKAZE proved to have results equal to or greater than the classic ones SIFT,
SURF and ORB methods.

The experiments also show that applying a reduction of dimensionality to the descrip-
tors, using techniques such as PCA, improves or equals the quality of the image recovery,
allowing to reduce the necessary memory requirements and giving to the method even
greater scalability.

Finally, several specific applications for the method are shown, such as searching for
scenes in videos, recognition of bank notes or wine labels with a functional demo on-line.

Keywords: vocabulary tree, scalable search, image processing, computer vision, image
object recognition, bag of features.
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1. INTRODUCTION

1.1. Image Similarity

In this work we are going to address the problem of searching for similar images in
a large scale set of images. Similar images are defined as images of the same object (or
scene) viewed under different imaging conditions (rotations and scale changes coming from
pictures taken from different points of views, changes on illumination conditions, partial
occlusions, noise). See figure 1.1.

Fig. 1.1: Similar Images with Different Imaging conditions - scale, rotation, light changes, occlusion,
etc.

1.2. Large Scale Object Recognition

A large scale object recognition system, takes an image query Q as input, performs
a search process over a large scale image data set (more than one million images), and
retrieves a ranked short list of images in the dataset as output. See figure 1.2.

As the size of the data set is large, is not possible to perform a linear scan, taking image
by image and computing its similarity against the query at run-time. Thus, this kind of
systems use data preprocessed in a training stage. Query response time is constrained and
should be in the order of the state-of-the-art text document retrieval web engines (milli-
seconds). It is necessary to find efficient data structures to index precomputed retrieval
data, that is used in the search. Indexing structures must fit entirely in RAM, accessing
to hard disk drives will be simply too slow for this requirements. Such kind of restrictions
makes the problem challenging.

1.3. Local invariant features

A local feature is an image pattern which differs from its immediate neighborhood. It
is usually associated with a change of an image property or several properties simultaneo-
usly, although it is not necessarily localized exactly on this change. The image properties
commonly considered are intensity, color, and texture.

1



1. Introduction 2

Fig. 1.2: large scale image search system

Fig. 1.3: Local invariant feature detection, extraction and matching

Given an image as input, this technique typically extracts features and then some mea-
surements are taken from a region centered on each features generating a set of descriptors
as output. Similarity estimation can be achieved by matching features by the descriptors
similarity. See figure 1.3.

1.3.1. Features Detection

Most descriptive features are located in special positions in the images, such as moun-
tain peaks, building corners, or patches of snow.

Given two or more images of the same object, a good features detection algorithm
should find a high percentage of the same features in all the given images despite different
imaging conditions. Typically corners are used as features (but in some cases blobs are
also considered good features).

Here we mention some examples of popular feature detection algorithms: HARRIS [13],
GFTT [39], MSER [28], SIFT [25], SURF [6], FAST [34], STAR (CenSurE) [1], ORB [35],
BRISK [24], KAZE [4], AKAZE [3].

Feature detection can be expressed as a function Detectmd that takes an image as
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input and returns a set of features.

Detectmd(I) = {ft1, . . . , ftn} (1.1)

where md is a feature detection method technique.

1.3.2. Features Description

Once features are detected, it is possible apply a descriptor extraction algorithm which
gives as result the descriptors of the image. A descriptor is often expressed as a D-
dimensional vector that describes the appearance of the patches of pixels surrounding
the feature locations.

Examples of popular descriptor extraction algorithms are
SIFT [25], SURF [6], BRIEF [7], BRISK [24], ORB [35], FREAK [2], KAZE [4], AKAZE

[3].
Generally, descriptor extraction can be expressed as a function Extractmx that takes

an image I and a set of detected features Ft, and returns a set of descriptor vectors

Extractmx(I, F t) = {α1, . . . , αn}, (1.2)

where mx is a feature description method. αi ∈ RD are the are the resulting the descriptor
vectors of the image I.

Many local features techniques, specify both a detection and an extraction method
(SIFT, SURF), although there are other techniques that only specify a detection (HA-
RRIS, MSER), or an extraction method (BRIEF, BRISK). Thus we could employ diffe-
rent combinations from feature detection and feature extraction, but in practice not all
combinations are compatible, and only a few combinations will give us good results.

1.4. Local Features Memory Consumption

In this work we are using local invariant features technique. The amount of memory
required to store the features of an image is simply the memory consumed by a single
extracted feature descriptor, multiplied by the amount of all extracted descriptors for that
image. Memory consumption of a single descriptor depends on the description technique
used. For example, each descriptor SIFT has 128 dimensions, which if they are represented
by chars, it will consume 128 bytes per descriptor.

The number of features also varies depending on the chosen method, the intrinsic
parameters of each method employed, and also varies depending on elements such as the
size of the images (larger images will give us more features), as well as nature images
(images with trees with many leaves, or rough surfaces, will give many more features than
images of flat surfaces).

For example, if we have a set of one million images, and we use SIFT as extrac-
ting process. Let’s assume that the images produce 1,000 descriptors SIFT in average
(optimistic number with real images), we would need 128bytes × 1, 000descriptors ×
1, 000, 000images ∼ 120Gigabytes to store all descriptors. It does not fit in RAM
for current standard hardware machines, and it does not scale well if we add more images.



2. RELATED WORK

There are currently two main approaches to face this problem. The first approach
known as “holistic” uses global image descriptors. The second one is based on processing
local invariant descriptors, and is called “bag of features” (BoF). Both approaches have
its strengths and weaknesses. Recently some authors are combining both approaches for
achieving better results. BoF technique has proven to be good enough working with image
sets in the order of one million images, and it has had better accuracy than holistic
methods. However in the context of indexing hundreds of thousands of images, as occurs
in most popular web sites, is not clear how BoF techniques can be applied. The main
problem is that the indexing structure needed wouldn’t fit in RAM, and accessing to
HDD would severely damage the efficiency. In this context is where begins to be suitable
the use of the holistic approach although its limitations.

2.1. Holistic Methods

We can mention GIST [31] as one of the first holistic method. The idea of GIST is to
generate a global representation of the scene using a low dimension vector. This vector
is built according to a set of perceptual dimensions (naturalness, openness, roughness,
expansion, ruggedness) that represent the dominant spatial structure of the scene. These
dimensions can be estimated using spectral information. Each image is divided in a 4 by
4 grid, where orientation histograms are extracted. In [41] y [42] different strategies are
proposed to compress GIST descriptor.

Recently with the rise of the machine learning techniques, global image descriptors are
represented with an unique high dimension vector (about the oder of dozens of thousands
dimensions). Some examples include VLADs [18], Fischer Vectors [37], descriptors based
on convolutional neural netwoks [21], [38]. Compression techniques are applied over these
global descriptors to generate compact binary codes. Ideally if global vectors could be
compressed to 32 or 64 bits without losing precision, then they could fit into RAM. Furt-
hermore if the descriptor is binary it is possible to use the Hamming distance which is very
fast to compute. Consequently, several hashing methods have been developed attempting
to shrink those codes as compact as possible.

In [32], Fischer Vectors are compressed using Locality Sensitive Hashing (LSH) [14]
and Spectral Hashing [42]. Spectral Hashing shows poor performance, and LSH needs
thousands of bits in order to have good performance.

In [18] principal component analysis (PCA) is used and random rotations to get a very
compact code, although it is not binary.

In [8] a neural networks approach is used to propose a compression scheme based in
Stacked Restriction Boltzmann Machines (SRBM) making codes between 64 y 1024 bits.

In [27], a graph fusion method is used to combine multiple local descriptors into Fis-
her Vectors, producing global descriptors. Performance is analyzed in different time and
memory constrained scenarios.

4



2. Related Work 5

2.2. BoF based methods

BoF is covered in detail in section 3. BoF representation is built from a local descrip-
tors set. This methods first extract local descriptors for all the images generating a set of
descriptors. Most of authors use SIFT [25] as description technique. BoF main idea comes
from text search engines, that in particular exploit inverted files indexing data structures
[44]. A document is represented as a sparse vector. Inverted files is a convenient data
structure to compute distances between those sparse vectors using Term Frequency e In-
verse Document Frequency (TF-IDF) weighting mechanisms. Tipically k-means clustering
is applied over the descriptors set to create a set of “visual words” (this set is called vi-
sual vocabulary). Each descriptor is then quantized in its nearest visual word (or nearest
cluster centroid) forming the visual vocabulary.

Josef Sivic and Andrew Zisserman first time proposed this technique in [40]. Since then
different authors have contributed with improvements.

David Nister and Henrik Stewenius [30] proposed using hierarchical k-means, to arrange
visual words in a tree. Their approach named “vocabulary tree” allows to work with a
dataset bigger and a potential runtime object addition once the vocabulary is already
created.

Works as [23] and [33] used randomized kd-trees, allowing to build the vocabulary
much faster, without losing performance.

In [33] a variant of RANSAC [9] is used to re-rank obtained results in function of a
local spatial consitency verification of the keypoints distribution, improving seach results.

In [29] both methods are compared hierarchical k-means (HKM) and Randomized kd-
trees (RKD). The performance depends on the considered data set and the wished system
requirements (precision, vocabulary build time, memory constraints). Kd-trees is faster to
train, and requires less memory. Is shown that HKM is better than RKD in performance
for some data sets, and vice versa.

In [19] two contributions are proposed. The first one called contextual dissimilarity
measure (CDM) improves precision. It is iteratively computed as correction factor on the
distance between visual words based on the nearest neighbors favoring isolated vectors,
and penalizing vectors in dense areas. The second contribution allows to speed up query
time, using an inverted files structure of two levels. First level partitions the set of images
in clusters, then only a subset of images is used in the second level when query is done.

In [15], and [16] additional information is embedded to the descriptors to improve re-
sults. Two contributions are proposed. First Hamming Embeeding (HE) where SIFT des-
criptor location within the Voronoi’s space cell is binary encoded. Second, weak geometric
consistency constraints (WGC) that filters matching descriptors that are not consistent in
terms of angle and scale. Both require the use of extra memory.

In [43] greater descriptiveness of the features is explored in order to construct the
vocabulary, and the concept of Bag of Features is extended with visual phrases, which
have a context and a spatial disposition, in the same way words have in a text document.

The use of SIFT descriptor in de BoF has proven to be successful, but the computation
is expensive compared to other description techniques. In [12] the use of ORB [35] within
the BoF approach. Computing ORB is up to two orders of magnitude faster than SIFT.
One problem is faced here is that k-means algorithm needs to use euclidean distance, but
ORB is a binary descriptor, that works with Hamming Distance. Therefore it is neces-
sary to modify the clustering algorithm. In this paper they proposed a similar k-means
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algorithm, called k-majority based on a scheme of votes.

2.3. Hashing Techiques

More recent work has focused on getting binary codes for visual descriptors or words
as compact as possible. The motivation is simple, fitting indexing structures of web scale
image data sets in a few Gigabytes of memory, leaves us a budget of only a few bytes per
image.

Compact binary codes allow very fast queries on conventional hardware using hashing
techniques. The pioneer method for compact binary descriptors is Local Sensitive Hashing
(LSH) [14]. This method uses random projections, to solve approximated nearest neighbor
problem in constant time with elements belonging to a high-dimensional euclidean space.

In [5] is shown that using LSH near elements will have high probability to fall in the
same hashing buckets, and it is possible to exploit this fact to solve A-NN in a very efficient
way.

This technique requires storing a considerable amount of bytes per descriptor, then
is not scalable if it is to used with local descriptors. Furthermore, the problem becomes
intractable when scale in the order of one million images, but it becomes interesting when
considering global descriptors.

Recently many hashing algorithms have been developed motivated by generating com-
pact codes [17], [20], [22], [36]. These algorithms “learn” hash functions so that the simi-
larities in data space is preserved in Hamming space.



3. BAG OF FEATURES REPRESENTATION

Bag of Features representation was proposed by Sivic and Zisserman in [40] The idea
of Bag of Features was taken from text retrieval systems (such as Google page rank).

3.1. Review of text retrieval

Text retrieval systems generally employ a number of standard steps. The documents
are first parsed into words. Second the words are represented by their stems, for example
“walk”, “walking” and “walks” would be represented by the stem “walk”. Third a stop
list is used to reject very common words, such as “the” and “an”, which occur in most
documents and are therefore not discriminating for a particular document. The remaining
words are then assigned a unique identifier, and each document is represented by a vector
with components given by the frequency of occurrence of the words the document contains.
In addition the components are weighted in various ways, and in the case of Google the
weighting of a web page depends on the number of web pages linking to that particular
page. All of the above steps are carried out in advance of actual retrieval, and the set
of vectors representing all the documents in a corpus are organized as an inverted file to
facilitate efficient retrieval. An inverted file is structured like an ideal book index. It has
an entry for each word in the corpus followed by a list of all the documents (and position
in that document) in which the word occurs. A text is retrieved by computing its vector
of word frequencies and returning the documents with the closest (measured by angles)
vectors. In addition the match on the ordering and separation of the words may be used
to rank the returned documents.

3.2. Building a visual vocabulary

Instead of using text words, the idea is to use “visual words”. In Sivic and Zisserman’s
work, descriptors are clustered using k-means algorithm (though other clustering methods
are possible). Once clustering is done, each cluster represents a visual word, and the union
of all the visual words represents the visual vocabulary. When a new image is processed
each descriptor of this image is assigned to the nearest cluster, and this immediately
generates matches for all the images in the image set.

3.3. Visual indexing and weighting (TF-IDF)

In text retrieval each document is represented by a vector of word frequencies. However,
it is usual to apply a weighting to the components of this vector, rather than use the
frequency vector directly for indexing.

Each visual word is assigned with a weight wi value based on entropy. In text retrieval,
this weight is called (inverse document frequency or idf)

idfi = log
N

Ni
(3.1)

7



3. Bag of Features representation 8

Fig. 3.1: Each BoF d can be thought as a sparse vector histogram of words frequencies

where N is the number of total training images and Ni is the number of occurrences of
the word i in the whole database. Note this weighting mechanism penalizes most frequent
words (least descriptive) with lower weights.

Each descriptor for each processed image I has descriptors that are quantized into vi-
sual words. Term frequency (tf) is defined in order to measure the relevance of a particular
word in the image I as follows

tfI,i =
nIi
nI

(3.2)

where nIi is the number of times that word i appears in the image I, and nI is the total
count of words in image I.

Each image produces a Bag of Features, defined as follows

dI,i = tfI,i idfi (3.3)

3.4. Object Retrieval - Inverted Index Files

Object retrieval exploits the use of inverted files. In a classical file structure all words
are stored in the document they appear in. An inverted file structure has an entry for each
word where all occurrences of the word in all documents are stored. Sivic and Zisserman
used an inverted file with an entry for each visual word, which stores all the occurrences
of the same word in all the images in the set, see figure 3.2. Since the BoF vector is very
sparse, the use of an inverted file makes the retrieval very fast.

3.5. Spatial consistency

Text retrieval algorithms increases the ranking for documents where the searched words
appear close together in the retrieved texts (measured by word order). Analogously visual
words spatial disposition within the images can be used to improve retrieval performance,
discarding (or re-ranking) images where visual words disposition is not spatially consistent
with the words in the query. Spatial consistency can be measured quite loosely simply by
requiring that neighbouring matches in the query region lie in a surrounding area in the
retrieved image. It can also be measured very strictly by requiring that neighbouring
matches have the same spatial layout in the query region and retrieved image. This kind
of spatial consistency considerations could be time consuming, but since it is only applied
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Fig. 3.2: Each cell in the vertical vector represents a visual word, forming the visual vocabulary.
Each visual word has a list of pointers to the images where this visual word occurs.

over the short ranked list of retrieved images, it can be implemented in such a way that
does not degrade the algorithm retrieval time.

3.6. Bag of Features method summary

In order to solve response time constraints, BoF technique has two phases (off-line
phase and on-line phase).

Off-line phase (or training phase). It will be run once, in order to create the pre-
computed information. This phase can take a considerable amount of time, depending in
the number of input images, and the local feature technique employed (for example SIFT
is much more time consuming than ORB). In this phase first features are extracted from
all the images in the data set. Then a clustering technique is applied to build the visual
vocabulary. All descriptors are quantized to its nearest visual words, producing sparse
vectors named Bag of Features. BoFs quantization is arranged in a convenient way using
inverted index files.

On-line phase (or run-time phase) occurs when training phase is done. Multiples
queries can be run fast, the figure 3.3 summarizes the main steps to solve the query. When
the system receives a query image, local descriptors are extracted for that query image.
The resulting descriptors are quantized in its nearest visual words, generating the Bag of
Features for this query. The query BoF is compared with the precomputed BoFs computed
in the training phase. This comparison process is performed efficiently using the inverted
indexes files, producing a short list of best ranked images. A further process will improve
the output by checking the geometric consistency on the short list to re-rank or filter the
results.
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Fig. 3.3: BoF query process summary



4. VOCABULARY TREE APPROACH

Nister et al. [30] approach generalizes Sivic’s idea, adding hierarchical clustering. Thus
a visual vocabulary tree is generated.

This approach has several advantages over the previous work. It allows us to use a
larger vocabulary, traverse smaller portions of the database to perform the query, and do
potential on-the-fly insertion of new objects into the database in run-time phase.

4.1. Training Phase

Algorithm 1 shows a high level overview of training phase process. First it extracts
descriptors for all the images in the dataset, then it builds the visual vocabulary, builds
the inverted indexes and finally computes the BoFs.

Algorithm 1: Training Phase

TrainingPhase
input : Γ a set of N images, K number of children per node, H maximum height

for the tree
output: T the vocabulary tree, BoFs the bag of features vectors
begin

D ← ExtractDescriptors(Γ)
T ← BuildVocabularyTree(D, 0,K,H)
T ← BuildInvertedIndexes(D,T )
BoFs← ComputeBoFs(T )

4.1.1. Keypoint Detection and Descriptor Extraction

Descriptor extraction is applied to all the images of Γ storing the resulting descriptors
into a set. Algorithm 2 shows this process. Note that descriptors are mixed all together
into the result set, but we will still need to know which image each descriptor belongs to,
thus in a real implementation will be necessary to mark in any way the descriptors before
adding them to the set to avoid lose the image index where it comes from. Hereafter we
will adopt the super index notation to indicate that an object corresponds to an specific
image. For example, αj means that this descriptor belongs to the jth image.

4.1.2. Building the visual vocabulary

K-clustering is applied on the descriptors set, generating K cluster centers. This K
centers are used as the first level of nodes in the vocabulary tree. The descriptors set is
then split into K subsets, assigning each descriptor to it’s closest center.

K-clustering is applied in the same way, recursively for each subset Process is repeated
on every branch until it reaches a maximum height H (or it runs out of descriptors).

Each node stores the cluster center vector (or visual word).

11
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Algorithm 2: Descriptors Extraction

ExtractDescriptors
input : Γ a set of N images
output: D the set of extracted descriptors
begin

D ← {}
for each image Ii in Γ do

Featuresi ← Detectmd(Ii)
Descriptorsi ← Extractmx(Ii, Featuresi)
D ← D ∪Descriptorsi

Fig. 4.1: Nister’s hierarchical clustering

Algorithm 3 shows a pseudo code of tree building. |D| is the number of elements in
the set D, ComputeClusters function performs descriptors clustering, it can be used
K-means or any other clustering technique. GetCentroid function returns the centroid
for the given cluster, if K-means is used, centroid will be the mean. To see an example of
how this algorithm works, see “Building the Tree” on example section 4.3.

Algorithm 3: Building the vocabulary tree

BuildVocabularyTree
input : D a set of descriptors, L current level of the tree, K number of children

per node, H maximum height for the tree
output: T the vocabulary tree
begin

if ( |D| < K or L >= H ) then
T ← build a new leaf node

else
Clusters← ComputeClusters(D,K)
T ← build a new branch node
T.children← {}
for each cluster C in Clusters do

Child← BuildVocabularyTree(C,L+ 1,K,H)
Child.µ← GetCentroid(C)
T.children← T.children ∪ {Child}
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4.1.3. K-Clustering feature vectors to build vocabulary

Let’s call K-clustering to the family of clustering algorithms that receive a set of da-
ta, and return K clusters. The classic approach is to employ K-means clustering using
euclidean distance to compare feature vectors. K-means strongly uses the fact that eu-
clidean distances can be averaged to compute the mean vector. For detailed explanation
of K-means see appendix .2. When comparing binary feature vectors (ORB, AKAZE,
...), usually Hamming distance is employed, and the mean vector is undefined. There are
many other techniques that allow clustering without computing means, but most of them
require computing the distance matrix, making the problem intractable considering the
training input size. In [12] a workaround to this problem is introduced allowing to use the
vocabulary tree technique with binary descriptors. This clustering algorithm is called “K-
majority”. K-majority uses a voting scheme to decide which components of the centroid
would have 0 or 1. K-majority can be also thought as a forced way to apply K-means over
binary vectors, by reinterpreting them as real-valued vectors, each component would be
1,0 or 0,0. In this way it is feasible to calculate the mean. Mean components are rounded
to 0 or 1 to reinterpret it as a binary vector.

4.1.4. Vocabulary Memory Consumption

Once K and H are fixed, we can estimate some aspects of memory consumption. For
example each level of the tree has as much K children then the maximum number of nodes
is limited by the geometric sum

H∑
i=0

Ki =
KH+1 − 1

K − 1
(4.1)

Since each node stores a D-dimensional cluster center (or visual word), the amount of
memory needed to store the vocabulary will be the number of used nodes multiplied by
the consumption of a single visual word. For example with D = 128, K = 10 and H = 6, it
will produce at most 1, 111, 111 cluster centers (or nodes), and it would consume less than
136MB of memory. This amount is promising in terms of scale, is fixed for any database
size, and can perfectly fit in RAM. It is important to note that the data type used to
represent the components of feature vectors also affects the memory consumption required,
and this is a non-minor decision. For example, SIFT descriptors components have integer
values between 0 and 127, thus it is possible to represent it using 1 byte for each dimension
(which in C ++ would be unsigned char or simply uchar data type). Other descriptors
such as SURF and KAZE have real-valued components, and their representation may use
C++ float data type, but a floating point consumes 4 bytes. Even though SIFT vector
components can be represented with bytes, combining floating point operations with byte
values in the same algorithm would require convert data type to float type every time,
giving poor execution time. Consequently, the float data type is a trade-off efficiency and
amount of memory required for the vocabulary, and the above example would require
actually 136MB ∗ 4 = 544MB, and still perfectly fits in RAM.

Here is being considered only the amount of memory needed to store the vocabulary,
but other data structures are needed to compute the score.
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4.1.5. Building inverted indexes

After vocabulary tree is created, it is time to build inverted indexes. Algorithm 4 shows
this process.

Inverted indexes are physically stored in leaf nodes. At the beginning each leaf starts
with an empty inverted index. An inverted indexes are bags (can be implemented with
a set with repetitions or multi-set), which stores the ids of images as elements, and the
number of descriptors of this image as repetitions.

Each descriptor vector of the image j is descended along the tree from the root to a
leaf following in each level the nearest center (for example according to L2 norm). When
the descriptor reaches a leaf, it adds one repetition for j into the multi-set in the leaf.

Later, inverted indexes for branch nodes (virtual inverted indexes), will be computed
combining inverted indexes of children nodes.

To see an example of how this algorithm works, see “Inverted Indexes Creation” on
the example section 4.3.

Algorithm 4: Building inverted index

BuildInvertedIndexes
input : D a set of descriptors, T vocabulary tree
output: T tree with inverted indexes on its leaves
begin

for each descriptor αj in D do
A← FindLeaf(T, αj)
A.InvertedIndex← A.InvertedIndex ∪bag {j}

FindLeaf

input : T the vocabulary tree, αj: a descriptor of the image j
output: A the leaf which αj has felt
begin

A← T
while A is not a Leaf do

A← argminC∈A.childrendC : dC = ||αj − C.µ||L

4.1.6. Building Bag of Features

In [30] different ways to adapt the weighting mechanisms are evaluated. IDF and TF
are proposed in the following way:

IDF

Each node i is assigned with a weight wi ∈ R value based on entropy

wi = log
N

Ni
(4.2)

where N is the number of images in the database, and Ni is the number of images in the
database with at least one descriptor vector path through node i. Note Ni is the number
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of elements of the inverted index.

TF

Let nji ∈ N be the number of descriptor vectors of the image j with a path through
the node i. Similarly, let mi ∈ N be the number of descriptor vectors of the query image
with a path through the node i.

d-vectors and q-vector

Let q ∈ Rn, q = (q1, . . . , qn) be the query BoF-vector and dj ∈ Rn, dj = (dj1, . . . , d
j
n)

be the database BoF-vectors, defined as follows:

dji = njiwi

qi = miwi

(4.3)

where j is the database image index, 1 ≤ j ≤ N , and n is the number of tree nodes.
TF and BoF for the query are actually computed at run-time phase, but it is mentioned

here because it is computed in an analogous way than the images in the database.
Note nji is the number of repetitions of element j in the inverted index of node i. Note

also that this equation establishes a mapping between the nodes and the components of
d-vectors (and q-vector). Each node is mapped to a different d component. This vectors
can also be thought as a big sparse matrix with N rows mapped to images and n columns
mapped to tree nodes. Sub-index A for djA is used to indicate the component of dj that is
mapped to node A.

Algorithm 5 shows a pseudo-code of how d-vectors computation could be done. It
iterates over all the nodes in the tree, and for each node computes its inverted index. Then
it computes the node weight, and for each image index in the inverted index computes the
corresponding d-vector component value. This d-vector component is stored in the inverted
index of the node as a pair (j, dji ). The sub-function ComputeInvertedIndexes returns
the inverted index for the specified node. Note it uses the union of bags function ∪bag that
sums repetitions if an element is on both sets.

4.1.7. Normalizing BoFs

To achieve fairness between database images with few and many descriptor vectors, a
Lp-norm normalization is made to each vector: d̄j = dj

||dj || , q̄ = q
||q|| .

As suggested, L1-norm normalization is done for this implementation. Then L1 norma-
lization is simply done performing the sum of all components of each database vector, and
then dividing each component by each sum. For an example see “d-vectors normalization”
on Example section 4.3.
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Algorithm 5: Computing Bag of Features

ComputeBoFs
input : T a vocabulary tree with inverted indexes
output: T tree nodes have its weight computed
output: BoFs the bag of features
begin

BoFs← new sparse matrix ( N ×#T )
for each node index i < #T do

A← T [i]
ii← getVirtualInvertedIndexes(A)

A.weight← log( N
|ii|)

for each j in ii do

nji ← ii[j]

BoFs[j, i]← A.weight ∗ nji
// normalizes BoFs
for each j < BoFs.rows do

d← BoFs[j]

d̄← d
|d|pp

BoFs[j]← d̄

getVirtualInvertedIndexes
input : A a tree node
output: ii a bag containing the inverted indexes of A
begin

if ( A is a Leaf ) then
// (it is a real inverted index)
ii← A.invertedIndex

else
// computing virtual inverted index
ii← {}bag
for each node C in A.children do

cii← getVirtualInvertedIndexes(C)
ii← ii ∪bag cii
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4.2. Runtime Phase

4.2.1. Scoring

Score between query and image j is defined as the distance between its normalized
BoF vectors q̄ and d̄j , distance is computed as the norm of the difference:

sj(q̄, d̄j) = ||q̄ − d̄j || (4.4)

This metric is also known as Minkowsky distance, and can be considered as a genera-
lization of both the Euclidean distance and the Manhattan distance. In [30] is shown that
if vectors are normalized, any Minkowsky distance can be computed inspecting only com-
ponents where both vector components are non zero (see appendix .1 for full derivation).
Thus, equation 4.5 is going to be used to compute scoring. Because it will be applied to
BoFs in a real world case most of the components will have zero value. This will reduce
considerably the number of operations to do at scoring time.

||q̄ − d̄j ||pp = 2 +

n∑
i|d̄ji 6=0,q̄i 6=0

(|q̄i − d̄ji |
p − |q̄i|p − |d̄ji |

p) (4.5)

4.2.2. Query

Algorithm 6 shows the process of query. Descriptor extraction is performed over Q
with the same function we used for training images. Function ComputeQBoF calculates
q-vector, it uses the function #(T ) that returns the number of nodes on the tree T. It
acumulates weights on q componentes while traverses each descriptor of Q through the
tree, from root to leaves. The function indexOf(A) returns the index of the q-vector
component mapped to the node A, and it can be implemented in O(1). First index of
q is not considered as it is mapped to root node and it has weight 0. q-vector is then
normalized using L1-norm. An empty scoring set S is initialized, and for each image index
in the database, we will check only components where q is different from zero. Equation
4.5 is then applied on d̄ and q̄ vectors to compute the scoring.

4.3. Example

Suppose we have a set of 3 images Γ = {I1, I2, I3} (in a real case we will have much
more images). Suppose now we apply SIFT descriptor extraction over all the images in the
set, and we obtain the following image descriptors: ExtractSIFT (I1) = {α1, α2, α3, α4},
ExtractSIFT (I2) = {β1, β2, β3, β4, β5} ExtractSIFT (I3) = {γ1, γ2, γ3} (in a real case we
will have much more descriptors). Since we used SIFT, each descriptor belongs to R128.

4.3.1. Building the Tree

Figures 4.2 and 4.3 show the tree building process using K = 3 parameter for K-
means, and H = 4 as maximum height for the tree. (a) The extracted descriptors are put
together in a set and clusterized with K-means. In this example K = 3 is used. The result
is 3 different clusters, each one with its corresponding cluster center µ1, µ2 and µ3. (b)
K-means is applied recursively over the first cluster. The data of the first child cluster
is divided again onto 3 different new clusters. The root node A is created, and then the
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Algorithm 6: Performing Query

Query
input : Q the image query
input : T the vocabulary tree
input : BoFs the set of precomputed bag of features
input : t size of the resulting short-list
output: R the short-list with the indexes of top ranked results
begin

E ← ExtractDescriptors(Q)
q ← ComputeQBoF(E, T )
q̄ ← q

||q||pp
nzi← {i|1 ≤ i ≤ #T and q̄i 6= 0}
S ← {}
for 1 ≤ j ≤ N do

dj ← BoFs[j]
score← 2
for each i in nzi do

score← score+ |q̄i − d̄ji |p − |q̄i|p − |d̄
j
i |p

S ← S ∪ {(j, score)}
Sorted← sort( S, (s1, s2) → {s1.score < s2.score})
Indexes← collect( Sorted, (s) → {s.j})
R← take(Indexes, t)

ComputeQBoF
input : E a set of descriptors
input : T the vocabulary tree
output: q the BoF for the query
begin

q ← new sparse vector (#T )
for each α in E do

A← T
while ( A is not a Leaf ) do

A← argminC∈A.childrenδC : δC = ||α− C.µ||L
i← indexOf(A)
qi ← qi +A.weight
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(a) (b)

(c) (d)

Fig. 4.2: tree building example

original set on the root is released in order to gain some memory. (c) Node B is created,
the cluster center µ1 is stored on the node B and the set on node B is released to gain some
memory. All the 3 children clusters of node B have less than K = 3 elements, thus these
sets can not be split any more and then leaf nodes C, D and E are created, and cluster
centers µ4, µ5 and µ6 are sored in each node respectively. (d) Leaf node F is created as
there are no enough elements to split the second child set onto K = 3 subsets. Cluster
center µ2 is stored on node F. (e) K-means is applied recursively over the third child
cluster. This cluster is split further, creating 3 new subclusters. (f) Node G is created, and
memory set is released. Cluster center µ3 is stored on node G. As first subcluster of G has
more than K elements, this cluster is split further creating the third level on the tree. (g)
Node H is created, cluster center µ7 is stored on node H and memory is released. First
and third children clusters have less than 3 elements and can not be split further. Note
that second cluster has 3 elements, but since tree has reached the maximum height h = 4
it is not allowed to continue splitting, then leaf nodes I, J and K are created (h) Nodes L
and M are created, cluster centers are stored on the nodes. The tree is now complete.

4.3.2. Inverted Indexes Creation

Figures 4.4 and 4.5 show the inverted index creation of the example described above.
(a) the first descriptor α1 of the first image I1 is taken and the algorithm positions at
root node A. Using L2 − norm, it computes the distance from α1 to each of the centers
µ1, µ2 and µ3 located at level 1 of the tree. (b) The descriptor vector is descended to the
node which has the nearest center to it. In this case the nearest center is the one stored
into the node G. The process is repeated until the descriptor reaches a leaf. (c) Once the
descriptor α1 reaches the leaf, the inverted index is updated. A new link to the image I1 is
created. The inverted index is represented as the image id, and the number of descriptor
vectors that fell into this leaf. (d) At this moment on the node K we have one descriptor
that points to image 1 then the pair (1, 1) is added to the inverted index of node. (the
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(e) (f)

(g) (h)

Fig. 4.3: tree building example (continued)

first component is the image id, and the second is the descriptor quantization). The same
procedure is repeated with the next descriptor α2. (e) In this case α2 falls through node
F, as it is the nearest to µ2. Note that when the tree was generated, α2 felt in a different
branch, but due to K-means is an heuristic it is not guaranteed that it will fall through
the same path it did when the tree was forming. (f) α2 reaches the leaf F and inverted
index on node F is updated. (g) All remaining descriptors of image 1, and the descriptors
of the rest of the images are processed in the same way.

In order to reduce memory consumption actually inverted indexes are stored only in the
leaves of the tree. For the internal nodes virtual inverted indexes are recursively computed
combining child inverted indexes.

One efficient way to implement virtual inverted index is to store inverted indexes entries
ordered by image id, and use a method similar to merge part of merge sort algorithm.
Figure 4.6 shows how leaf inverted indexes are be combined to generate virtual inverted
indexes for the internal nodes. (a) Merge pointers are set at the start of each inverted
index. Virtual inverted index for node H is now empty. (b) Pointer on node K is advanced
as it has the lowest image index. A new entry (1, 1) on the node H is added to the virtual
inverted index. (c) Pointers on nodes I and J are advanced and values combined onto a
new entry (2, 1 + 2) added to the virtual inverted index on node H. (d) Pointer on node J
is advanced as is the only one remaining, and a new entry is added to the virtual inverted
index on H (3, 1).

Figure 4.7 shows the merged inverted indexes complete example:
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(a) (b)

(c) (d)

Fig. 4.4: inverted indexes building

4.3.3. Computing BoFs

Let’s compute some bag of features. The database example above has (N = 3) images.
Figure 4.8 shows inverted indexes for three example nodes I, J and H. As there is only
one image with descriptors that passes through node I (the image 2) then NI = 1. On
the same way, there are two different images with descriptors that passes through node J
(images 2 and 3) then NJ = 2, and all the images of the database pass through node H,
then NH = 3.

Fig. 4.8: computing d-vectors

Then the weights for these nodes will be:
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(e) (f)

(g)

Fig. 4.5: inverted indexes building (continued)
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(a) (b)

(c) (d)

Fig. 4.6: merging inverted indexes

Fig. 4.7: complete inverted indexes
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wI = logN/NI = log 3/1 ≈ 0,47712
wJ = logN/NJ = log 3/2 ≈ 0,17609
wH = logN/NH = log 3/3 = 0

Note that weight is smaller when the node has more different images with descriptors
that passes through it. For instance, as all the images passes through node H it does not
provide any information to reduce the search space of the images in the database (because
it points to all of the images), then it weights 0.

Table 4.1 shows the complete weight vector for the complete example:

A B C D E F G H I J K L M
w = 0 0 log 3 0 log 3 log 3/2 0 0 log 3 log 3 log 3 log 3 log 3

Tab. 4.1: weight vector example

Figure 4.8 shows also how nji is the number of repetitions in the inverted index entry.
For example on node I we have no inverted index entries for images 1 and 3, then n1

I =
n3
I = 0, and n2

I = 1. For node J we have n1
J = 0, n2

J = 2 and n3
J = 1. And for node H we

have n1
H = 1, n2

H = 3 and n3
H = 1.

Table 4.2 shows n-vectors for the complete example:

A B C D E F G H I J K L M
n1 = 4 1 1 0 0 1 2 1 0 0 1 1 0
n2 = 5 1 0 0 1 0 4 3 1 2 0 0 1
n3 = 3 1 0 0 1 1 1 1 0 1 0 0 0

Tab. 4.2: n-vectors example

Using equation 4.3 we compute d-vectors and we obtain the results shown in the table
4.3:

d-vectors can be represented as a vector of pointer to vectors to pairs. These pairs will
have the image id as first component and d value as second component. This data can be
computed at the same time inverted indexes are built.

4.3.4. Normalizing BoFs

Normalization is simply done by iterating twice over BoF structure. First iteration will
compute the norm for each BoF. Second pass will update in place each component of the
BoF.

Let’s compute normalized d-vectors d̄j for the example using L1-norm:

n∑
i=1
|d1

i | = log (3
2) + 3 log (3) = log (34

2 ).

n∑
i=1
|d2

i | = 2 log (3
2) + 3 log (3) = log (35

22
).

n∑
i=1
|d3

i | = 2 log (3
2) + log (3) = log (33

22
).

d̄1 = d1
n∑

i=1
|d1i |

. d̄2 = d2
n∑

i=1
|d2i |

. d̄3 = d3
n∑

i=1
|d3i |

.
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A B C D E F G H I J K L M
d1 = 0 0 log 3 0 0 log 3/2 0 0 0 0 log 3 log 3 0
d2 = 0 0 0 0 log 3 0 0 0 log 3 2 log 3/2 0 0 log 3
d3 = 0 0 0 0 log 3 log 3/2 0 0 0 log 3/2 0 0 0

Tab. 4.3: d-vectors example

A B C D E F G H I J K L M

d̄1 = 0 0 log 3

log( 34

2
)

0 0
log ( 3

2
)

log( 34

2
)

0 0 0 0 log 3

log( 34

2
)

log 3

log( 34

2
)

0

d̄2 = 0 0 0 0 log 3

log ( 35

22
)

0 0 0 log 3

log ( 35

22
)

2 log ( 3
2

)

log ( 35

22
)

0 0 log 3

log ( 35

22
)

d̄3 = 0 0 0 0 log 3

log ( 33

22
)

log ( 3
2

)

log ( 33

22
)

0 0 0
log ( 3

2
)

log ( 33

22
)

0 0 0

Tab. 4.4: d̄-vectors example

4.3.5. Performing Query

Suppose now we have a query image Q. We apply SIFT descriptor extraction in the
same way we did with the images in the entire image set, and we obtain the following
image descriptors: ExtractSIFT (Q) = {δ1, δ2, δ3, δ4}.

Figures 4.9, 4.10 and 4.11 show how the q vector is computed. At start m vector is
initialized with zeroes. (a) The first descriptor of the query image δ1 is taken and the
algorithm steps at root node A. mA vector component is updated (+1). Using the norm
L2, it computes the distance from δ1 to each of the centers µ1, µ2 and µ3 located at level
1 of the tree. (b) The descriptor vector is descended to the node which has the nearest
center to it. In this case the nearest center is the one stored into the node G. mG vector
component is updated (+1). The process will be repeated until the descriptor reaches a
leaf. δ1 is now compared with child nodes centers µ7, µ8 and µ9. In this case the nearest
one is µ7. (c) δ1 is descended to node H, and mH vector component is updated (+1). (d)
The descriptor δ1 reaches the leaf J. m vector is updated. (e) The algorithm performs the
same process with the next descriptor δ2. And when δ2 reaches a leaf, it starts over with
next descriptor δ3 until all the descriptors are processed. (e) All descriptors of query image
have been processed and now we have completely computed m vector.

Table 4.5 shows m-vector, w-vector and q-vector for the example above. q-vector is
computed as the component by component product of the other two vectors (see equation
4.3).

A B C D E F G H I J K L M
m = 4 0 0 0 0 1 3 2 0 2 0 0 1
w = 0 0 log 3 0 log 3 log 3/2 0 0 log 3 log 3 log 3 log 3 log 3
q = 0 0 0 0 0 log 3/2 0 0 0 2 log 3 0 0 log 3

Tab. 4.5: q-vector example

Now we have computed q vector, we need to normalize it using L1-norm
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(a) (b)

Fig. 4.9: calculating vector q for example

(c) (d)

Fig. 4.10: calculating vector q for example (continued)

(e) (f)

Fig. 4.11: calculating vector q for example (continued)
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n∑
i=1
|qi| = log (3

2) + 3 log (3) = log (34

2 ).

q̄ = q
n∑

i=1
|qi|

.

A B C D E F G H I J K L M

q̄ = 0 0 0 0 0 log 3/2

log ( 34

2
)

0 0 0 2 log 3

log ( 34

2
)

0 0 log 3

log ( 34

2
)

Tab. 4.6: q-vector example

Now that we have computed q̄ is time to compute the scoring for each image in the
database. Using equation 4.5 we only need perform operations over components where
both vectors have values different from zero. First we can project only those components
where q̄ is not zero (in this case will be F, J and M ). Table 4.7 shows these projected
vectors.

F J M

q̄<F,J,M>
log 3

2

log ( 34

2
)

2 log 3

log ( 34

2
)

log 3

log ( 34

2
)

d̄1
<F,J,M>

log 3
2

log 34

2

0 0

d̄2
<F,J,M> 0 log 3

log 35

4

2 log 3
2

log 35

4

d̄3
<F,J,M>

log 3

log 33

4

log 3
2

log 33

4

0

Tab. 4.7: projected components for scoring

To compute s1 we now look in d1 projected values. As only d1
F is different from zero

the score s1 will be:

s1 = 2 +
(
|q̄F − d̄1

F | − q̄F − d̄1
F

)
≈ 1,78091

To compute s2 we now look in d2 projected values. As d2
J and d2

M are different from
zero the score s2 will be:

s2 = 2 +
(
|q̄J − d̄2

J | − q̄J − d̄2
J

)
+
(
|q̄M − d̄2

M | − q̄M − d̄2
M

)
≈ 1,07005

To compute s3 we now look in d3 projected values. As d3
F and d3

J are different from
zero the score s3 will be:

s3 = 2 +
(
|q̄F − d̄3

F | − q̄F − d̄3
F

)
+
(
|q̄J − d̄3

J | − q̄J − d̄3
J

)
≈ 1,35623

This means that for this example, within the database the most similar to Q image is
I2, followed by I3 and then by I1.



5. RESULTS

In this chapter we show the results of the following experiments:

Different combinations of K and H were experimented, varying feature extraction
techniques (SIFT, SURF, KAZE, ORB, AKAZE).

How it impacts on performance to vary the size of the vocabulary.

Performance with respect to increasing database size, up to 1 million images.

Performance with respect to reducing descriptors dimensionality using Principal
Component Analysis.

Shown experiments were done using L1 norm for scoring, as it gives good results and
fast implementation. Experiments using L2 norm for scoring gave worse performance, and
their results are not shown here.

5.1. Data Sets

There are many canonical image data sets, used for experimentation. In our case to
experiment we used mainly the following two datasets:

UKBench Ukbench is the set of images used in [30] to perform their experiments. This da-
ta set consists of pictures of different objects (toys, clocks, cd covers, mostly taken indoors).
The pictures were taken with different illumination, angle and distance conditions. There
are pictures of 2250 objects, each object has 4 pictures, totaling 10,200 images. All images
are 640x480 pixels. It can be downloaded from http://vis.uky.edu/~stewe/ukbench/.

MirFlickr1M MirFlickr1M has 1 million Flickr images under the Creative Commons li-
cense. This set is commonly used for image retrieval evaluation. At Aug 1st, 2015, it has
over 600 Google Scholar citations and 32 thousand downloads from universities (MIT,
Cambridge, Stanford, Oxford, Columbia, UIUC, NUS, Tsinghua, Univ. Tokyo, KAIST,
etc.) and companies (IBM, Microsoft, Google, Yahoo!, Facebook, Philips, Sony, Nokia, etc.)
worldwide. More information can be found here http://press.liacs.nl/mirflickr/.

5.2. Evaluation Metrics

In order to automatize algorithm effectiveness measurement, a fixed image data set is
considered, a fixed set of queries is defined, and data within the corpus has to be classified
as relevant or non-relevant for each query in the query set, this classification will provide
the ground truth. If an image from the indexed corpus is queried, Query function could be
overloaded to receive the index of that image in the set. That is Query(q) → [r1, . . . , rt]
where 1 ≤ q ≤ n is the index of the image to be queried, t is the maximum size for the
short ranked list, and ri are the indexes of the top ranked resulting images. The ground
truth can be expressed as a function isRelevant(q, k) → {0, 1}, that values 1 if the k-th
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image is a relevant as result for the image query q. Parameters q and k are the indexes of
the images in the dataset. Manually assigning each image to an object class, will provide
the result value for the isRelevant function (1 when both images are images of an object
of the same class, and 0 else), and it will give us a way for automatize the evaluation. We
present two main metrics used to evaluate retrieval performance Metric4 and mAP used
in many other works [33], [16].

Metric4 In [30] based on UKBench data set, this performance metric is defined, basically
a real number between 0 and 4, defined as follows:

Metric4 =

Q∑
q=1

CountRelevantTop4(q)

Q
(5.1)

where CountRelevantTop4(q) =
∑4

k=1 IsRelevant(q,Query(q)[k])
It counts how many of the images of the same object are ranked within the top 4

better results. For example, getting everything right gives a score of 4, getting nothing
right gives a score of 0. Getting only identical image right gives a score of 1. A score of
3 means that we find the identical image plus 2 of the 3 other images of the set. Each
object individual performance is averaged for all the objects in the database, resulting in
a global performance value.

Metric4 assumes 4 images of each class, and is not suitable to use with other datasets.
Image datasets usually doesn’t have a fixed number of object classes. Even more, if the
performance is measured with a number between 0 and 4, it is difficult to compare it with
results from another data sets.

mean Average Precision (mAP) Mean average precision (mAP) is a common metric used
to evaluate retrieval effectiveness. This metric is similar to the previous defined. The main
difference is that this metric will favor algorithms where good results are put on top of
the ranking. mAP can be defined as follows:

mAP =

Q∑
q=1

AveragePrecision(q)

Q
(5.2)

where:

AveragePrecision(q) =
∑n

k=1 Precision(q,k)
TotalRelevant(q)

Precision(q, k) =
∑min(k,t)

i=1 IsRelevant(q,Query(q)[k])
k

TotalRelevant(q) =
∑n

k=1 IsRelevant(q, k)

Figure 5.1 shows an example of mAP calculation. mAP is commonly used because it
combines precision as well as recall in a single value. A filter or re-rank stage will improve
considerably this metric. In [30] these improvements are not applied.
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Fig. 5.1: Example. Computing Mean Average Precision

5.3. K-H best values

In [30] values K=10, H=6 (see Chapter 4) were proposed as good parameters to build
the vocabulary tree. We computed mAP varying different combinations of K and H,
and feature extraction algorithm, with the first 1000 images UKBench dataset, to find
which combinations performs better. K and H were chosen, in such a way that vocabulary
construction could fit in fixed amount of RAM. Thus, for H = 6 only a few values of
K were tested. Figures 5.2 and 5.3 show mAP behavior varying K between 8 and 32 for
H = 2, 3, 4, 5, 6 values, using L2 norm, and Hamming distance, respectively.

Results are consistent with [30].
Note that methods that use L2 norm resulted superior to the ones using Hamming

distance. Methods using L2 norm have mAP peaks of 0,92 while the ones that use Hamming
distance obtain only 0,88. The new methods KAZE y AKAZE (available from de OpenCV
3) in some cases resulted slightly better than the classic ones. One important advantage of
using KAZE and AKAZE is that these are open source, while SIFT y SURF are patented
and non-free [26], [10].

5.4. Performance vs training size

Figure 5.4 shows the result of varying the number of images used to train the vocabu-
lary. For each feature description technique K and H parameters were chosen according
to the best results of K-H exploration experiment.

UKBench dataset was used both for training and for runtime. Training was performed
varying incrementally the number of images from 1000 to 10000. Metrics in runtime were
computed using always the entire dataset (10200 images).

Results show that a bigger vocabulary gives a better performance. Results are consis-
tent with [30].

5.5. Performance vs database size

Figure 5.5 shows the result of varying N given a fixed vocabulary. UKBench dataset
was used both for vocabulary training and as part of the input dataset. MirFlickr1M was
used as distracting images for large scale image search. Features were extracted using
SIFT (with 500 per image), and dimensions were reduced to 64. Experiment shows how
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(b) using KAZE
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Fig. 5.2: mAP behavior varying K between 8 and 32 for H = 2, 3, 4, 5, 6 values, using L2 norm,
using a) SIFT, b) KAZE, c) SURF. L1 norm was used for scoring. For KAZE, parameters
were extended = true, threshold = 0,0001
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Fig. 5.3: mAP behavior varying K between 8 and 32 for H = 2, 3, 4, 5, 6 values, using Hamming
distance, and a) ORB, b) AKAZE. L1 norm was used for scoring. For AKAZE parameter
threshold = 0,0001 was used.

this method scales well with the dataset size. The size of the dataset was varied from
10200 to 1 million images.
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Fig. 5.4: Performance vs traning size (number of images). Vocabulary was built varying the number
of input training files from 1000 to 10000. UKBench dataset. Method used SIFT, with
K = 27, H = 4, a) mAP, b) score4.
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Fig. 5.5: mAP vs dataset size (up to 1 million of image files). UKBench dataset. SIFT + PCA, 64
dims.
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5.6. Performance vs dimension reduction

A good improvement can be achieved by using Principal Component Analysis (PCA)
to reduce the dimensionality of the features. Dimensionality reduction is done before gene-
rating the vocabulary, as well as at runtime phase. Figure 5.6 shows the results of applying
PCA on the training features of the first 1000 images of the UKBench dataset. Figure 5.7
shows the results of the same experiment, but applying PCA to reduce dimensions of
SIFT descriptors from 128 to 2 dimensions. The results show that if the dimensionality of
the fetaures is reduced by PCA, the performance is not deteriorated, and can even grow.
The reduction of dimensionality has no impact on the query execution time or could even
slightly improve it. However, a greater advantage can be achieved by reducing the required
storage space and execution time in the training phase. For example SIFT experiments
show that half of the descriptor dimensions could be discarded without making a worse
performance, and requiring half space to store features. One of the possible causes of this
small performance increase could be related to the fact that less dimensions avoid the
effects of the curse of dimensionality, and K-clustering algorithms can deal better with
less dimensions.
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(a) mAP vs feature dimensions. SIFT.
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(b) mAP vs feature dimensions. KAZE.
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(c) mAP vs feature dimensions. KAZE ex-
tended.

Fig. 5.6: mAP vs feature dimensions. UKBench dataset. Blue line represents mAP without applying
PCA for the same input. K = 27, H = 4. a) SIFT descriptors, b) KAZE descriptors, c)
KAZE descriptors with parameters extended = true, threshold = 0,0001
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Fig. 5.7: mAP vs feature dimensions. SIFT descriptors were reduced from 128 to 2 dimensions
using PCA. mAP was computed using the first 1000 images of the UKBench dataset.



6. IPOL DEMO

Online demo can be found in http://dev.ipol.im/~estebanuri/ipol_demo/voctree/.
Figure 6.1 show some example results.
In the demo, a process is listening for queries. When firs query arises, precomputed

data is loaded into memory, so the first query takes some time until data is loaded. Next
queries are run fast, it works like a database engine. When no query is received for a while,
the memory is released.

(a) example 1

(b) example 2

Fig. 6.1: Examples of queries results on Ipol interactive demo. UKBench dataset. Query was done
using a) a query file from within the dataset, b) uploading an image downloaded from
Amazon
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7. APPLICATIONS

There are several common problems in many applications where the Vocabulary Tree
approach could be applied. Among others we could mention:

Object/Scene search in videos Vocabulary Tree technique can be used in any set of
pictures. A video can be thought as sequence of images. Hence, one possible application
could be to recognize objects within the frames of movies, tv shows, or commercials. For
example if we make a rough estimation, a full length movie in mean could last about 1.5
hours, if it would have 24 frames per second we could reach to 1 million of images with
about 7 or 8 full length movies, and scalability provided by this method could be exploited
to address the problem in an efficient way. Figure 7.1 shows an example of this application.

Fig. 7.1: Scenes retrieval from the movie Run Lola Run

Visual Mobile Location Vocabulary tree has been adopted in works like [11] because it
provides the ability to insert new samples on-the-fly into the system at run time. Robotic
mobile applications usually require the construction of a representation or map of the
environment and the reliable location. Similarity of images taken from the environment
can be evaluated, in order to improve pose estimation. Even though if the map information
is given, since GPS does not work indoors, smart phones often use a coarse location
information based on the surrounding telephony cell towers. Providing an accurate indoor
position could be a challenging task. Many current indoor positioning systems are based
on wireless context sensing (fingerprinting retrieved from wifi access points, beacons) but
location accuracy is not good enough for a wide range of uses that would require accuracy.
A location scheme based on visual words would provide an interesting and much more
accurate alternative to improve the estimation of both position and pose, when GPS is
not available.
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Bank notes / wine labels recognition An image recovery system can be used as a multi
class classifier. The query is performed, and the system returns the t nearest neighbor
images. If the images retrieved are labeled with classes, a voting scheme can be employed
to determine which class the query corresponds to. This would be a t-nearest neighbors
classifier.

An application for bank notes recognition on a smart phones could be very useful
for visually impaired people. Most countries do not have regulations that require adding
tactile marks to bank notes, in order to would allow blind people to recognize the bank note
denomination. A smart phone could apply the image recognition and tell the denomination
with sound.

Figures 7.2 and 7.3 illustrates the idea.

Fig. 7.2: Bank note Recognition. Recognition of 10 Argentinian pesos bank note. 11 samples of
each denomination were used to train. There are enough elements on top that votes the
same class. There is a majority consensus and then the response is “10 pesos”.

A similar application could be done to recognize wine labels. Figures 7.4 and 7.5 shows
examples of Argentinian wine labels recognition using vocabulary tree. Once a wine label
is detected, a post-processing algorithm can be applied in order to detect the vintage and
the variety of grape.
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Fig. 7.3: Bank note Recognition. Rejection example. A picture of “Clemente” is given as query.
There is no consensus and the response is “not a bank note”.

Fig. 7.4: Wine label recognition example 1.
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Fig. 7.5: Wine label recognition example 2.



8. CONCLUSIONS

An implementation of object recognition using a vocabulary tree was presented here,
as well as a detailed explanation of the involved algorithms. Source code in c + + is
provided and its functionality can be executed with the on-line IPOL interactive demo.
This implementation was evaluated using different feature extraction methods, and varying
vocabulary construction parameters, in order to measure how this elements affect retrieval
performance.

Performed experiments shown that:

Larger values of branch factor K and tree maximum height H increase the num-
ber of tree nodes, allowing to work with more visual words that generate a richer
vocabulary, and providing better performance.

More training samples increases the retrieval performance, both increasing the num-
ber of images, and the number of features per image.

The method scales well with the size of the input.

Even though vocabulary creation depends strongly on the amount of memory available,
an external clustering implementation is provided, that allows using training sizes bigger
than RAM availability.

Several applications for vocabulary tree were proposed. Standard hardware gives a
fixed amount of memory constraint, and hierarchical clustering is a suitable approach to
address this problem. This constrained memory requirements could be exploited in several
applications on weaker hardware devices such as smart phones, mobile robots, among
others.

As contributions to this method can be mentioned that:

First, feature dimensionality reduction, using techniques such as PCA at least does
not worsen retrieval performance, but can allow to work with less memory storage.

Second, the use of the new feature extraction methods like KAZE and AKAZE
performs as well as the classic ones and provide a open source alternative to the
non-free ones.

8.1. Future work

Many parts of this implementation could be improved, or further developed. As future
extensions can be mentioned:

Adding re-ranking stage for results. This could be achieved using geometric consis-
tency as proposed in [33].

Improving descriptiveness to features used for building the vocabulary, and the use
of visual phrases as proposed in [43]
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Embeeding extra information to the features to improve results as proposed in [15],
and [16]

Exploring different alternatives for clustering method. Actually K-means and K-
majority were experimented. While there are many other clustering techniques, there
are not many that scale well with the input size. It would be interesting to explore
different clustering variants. K-clustering forces a fixed branch factor, but it would
be interesting to experiment with an adaptive branch factor, that perhaps would
give better description of the data.
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.1. Scoring Derivation

If vectors are normalized, any Minkowsky distance can be computed inspecting only
components where both vector components are non zero

To compute normalized difference in Lp-norm can be used that:

||q̄ − d̄j ||pp =

n∑
i=1

|q̄i − d̄ji |
p (.1)

This sum can be split in three terms. One where dj components are zero, other where
q components are zero, and another one where both vector components are different from
zero:

n∑
i=1

|q̄i − d̄ji |
p =

( n∑
i|dji=0

|q̄i|p
)

+

( n∑
i|qi=0

|d̄ji |
p

)
+

n∑
i|dji 6=0,qi 6=0

|q̄i − d̄ji |
p (.2)

On the other hand we can write the norm of q and the norm of dj split in the same
way we did for equation .2 (one term where the components of counterpart vector are zero
and other term where not:

||q̄||pp =
n∑

i=1

|q̄i|p =
n∑

i|d̄ji=0

|q̄i|p +
n∑

i|d̄ji 6=0

|q̄i|p (.3)

||d̄j ||pp =
n∑

i=1

|d̄ji |
p =

n∑
i|q̄i=0

|d̄ji |
p +

n∑
i|q̄i 6=0

|d̄ji |
p (.4)

Let’s isolate on equations .3 and .4 the left sum.

⇒
n∑

i|d̄ji=0

|q̄i|p = ||q̄||pp −
n∑

i|d̄ji 6=0

|q̄i|p (.5)

⇒
n∑

i|q̄i=0

|d̄ji |
p = ||d̄j ||pp −

n∑
i|q̄i 6=0

|d̄ji |
p (.6)

Now replacing equations .5 and .6 into equation .2, we have:

||q̄ − d̄j ||pp =

(
||q̄||pp −

n∑
i|d̄ji 6=0

|q̄i|p
)

+

(
||d̄j ||pp −

n∑
i|q̄i 6=0

|d̄ji |
p

)
+

n∑
i|dji 6=0,qi 6=0

|q̄i − d̄ji |
p (.7)

Note that on equation .7, the conditions of the first two sums can be replaced with the
same condition of the third sum (that is stronger). For example the first sum can be split
in two sums, one where qi = 0 and other where qi 6= 0:

n∑
i|d̄ji 6=0

|q̄i|p =
n∑

i|d̄ji 6=0,q̄i=0

|q̄i|p +
n∑

i|d̄ji 6=0,q̄i 6=0

|q̄i|p = 0 +
n∑

i|d̄ji 6=0,q̄i 6=0

|q̄i|p (.8)
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Then we can combine the three sums of equation .7 onto equation .9:

||q̄ − d̄j ||pp = ||q̄||pp + ||d̄j ||pp +
n∑

i|dji 6=0,qi 6=0

(|q̄i − d̄ji |
p − |q̄i|p − |d̄ji |

p) (.9)

Since q̄ and d̄j are normalized, its norm is equal to 1.

||q̄ − d̄j ||pp = 2 +

n∑
i|d̄ji 6=0,q̄i 6=0

(|q̄i − d̄ji |
p − |q̄i|p − |d̄ji |

p) (.10)

For the case of L2-norm, using Newton’s Binomial, equation .10 simplifies further to

||q̄ − d̄j ||22 = 2− 2
n∑

i|d̄ji 6=0,q̄i 6=0

q̄id̄
j
i (.11)

.2. K-Means Clustering

Cluster analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar to each other than to those
in other groups (clusters).

K-means clustering aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean. Given a set of observations X =
(x1, x2, . . . , xn), where each observation is a d-dimensional real vector, k-means clustering
aims to partition the n observations into k(≤ n) sets S = {S1, S2, . . . , Sk} so as to minimize
the within-cluster sum of squares (WCSS). In other words, the objective is to find:

argmı́n
s

k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (.12)

where µi is the mean of Si.
As it is a heuristic algorithm, there is no guarantee that it will converge to the global

optimum, and the result may depend on the initial clusters. As the algorithm is usually very
fast, it is common to run it multiple times with different starting conditions. However, in
the worst case, k-means can be very slow to converge: in particular it has been shown that
there exist certain point sets, even in 2 dimensions, on which k-means takes exponential
time, that is 2Ω(n), to converge, but these point sets do not seem to arise in practice: this
is corroborated by the fact that the smoothed running time of k-means is polynomial.

stop conditions

maximum number of iterations

most of the observations does not change from cluster, or

means have moved less than a threshold
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fixing empty clusters There is an improbable but possible case, at the end of the assign-
ment step of the algorithm. K-Means guarantees K clusters, but the assign clusters step
might end with one or more empty sets Si. One way to handle this case is as follows:

Let p be a cluster with no elements.
Let h be the cluster to which belong more elements, and Let xf be the farthest element

in the cluster h then: remove xf from h and assign xf to cluster p, to create a new cluster
with 1 element.

Algorithm 7: standard K-means algorithm

K-Means
input : X set of D-dimensional observations
output: S set of partitions
begin

C ← initialize means( X )
while (“the stop condition is not fulfilled”) do

S ← assign clusters ( X, C )
“fix empty clusters if any”
C ← update means ( S )

initialize means
input : X set of D-dimensional observations
output: C the initial K means
begin

C ← “choose distinct K random elements from X”

assign clusters
input : X observations, C means
output: S set of partitioned observations
begin

Let Si be K empty sets
// assign each xj to its nearest mean
foreach xj in X do

i← argmı́ni ‖Ci − xj‖2
Si ← Si ∪ {xj}

S ← ∪Ki=1Si

update means
input : S set of partitioned observations
output: C updated cluster means
begin

for 1 ≤ i ≤ K do
Ci ← 1

|Si|
∑

xj∈Si
xj
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.2.1. External K-means clustering

In the results section it can be seen as a larger vocabulary gives better recovery per-
formance. It can also be observed that for a fixed size of vocabulary, using more training
images improves the results. However, since clustering algorithms need to have all the in-
formation stored in RAM, the number of images that can be used to train the vocabulary
is limited.

The solution found is to implement an external clustering algorithm that clusters the
information while it reads from the hard disk. The disadvantage of reading from the
hard disk is that is much slower than accessing to memory, then we should optimize the
algorithm to access as few times as possible to disk (a widely studied topic in databases
area). According to the tests we did with a standard hard disk drive we get a reading speed
of 100MB/sec. while with a solid-state drive (or SSD) was around 500MB/sec. it would
take around 20 and 4 minutes respectively to do only one pass to read 120 Gigabytes of
data (and k-means requires to do several passes).

divide and conquer approach We tried to address the problem with a “divide and con-
quer” strategy, similarly as is done for external sorting. The idea was basically, to read a
chunk of data in main memory, perform clustering with standard k-means algorithm and
write the clustered data to disk. This process is repeated until every n chunk has been
clustered. Merge process is done joining the K means of the n chunks, and apply standard
k-means to this resulting set, producing a new set of final K means. Finally the n chunks
are read again, and each element in chunk is assigned to one of the final cluster center.

According to our experiments, this approach seems to work well with a limited number
of chunks, but apparently the difference between the result obtained by the standard k-
means and this method increases when the number of partitions grows. Then we abandoned
the approach.

k-means external implementation Our trade-off implementation does several passes over
the disk performing the k-means standard algorithm. It takes a file as input containing the
data to be clustered and it returns K cluster output files. Tree building requires to cluster
again and again each one of the K files, producing other K output files for each one. At
each step, each of the K files are smaller than the original file, so that at one point the
data fits entirely in memory, and then is applied conventional clustering.

For initializing centers, we are taking a number p of random samples from the entire
data set, and then we apply standard k-means to produce starting means.

.3. Implementation Details

.3.1. Tree representation using an array

Every node in the tree is either a leaf or a branch. If it is a leaf it has 0 children nodes,
and if it is a branch it has exactly K children nodes. Taking advantage of this fact, we can
place level by level in an array, first level 0, then level 1, then level 2 ... and so on, starting
with the node 0 (the root node) at position 0.

Figure .1 depicts this representation. The vertical lines show the boundaries of the
levels. Sign − represents an empty node on the array.
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Fig. .1: Example of tree representation by levels using an array (K=2, H=3).

Level size A tree is complete when all its levels are complete. If level 0 is complete then
it has 1 node, if level 1 is complete then it has K nodes, if level 2 is complete it has K2

nodes, and so on. In general if a level L is complete then it has KL nodes.
If a level is not complete, we leave empty array cells as if it was complete (as it is

shown on figure .1). Doing so, given a node index i it is possible to know with a scalar
computation where the children of node i are placed. Consequently, cells will be reserved
as if the level was complete (.13).

Size(L) = KL (.13)

Level start index Each level L starts where the preceding levels finish. Level 0 has 0
nodes preceding, then it starts at index 0, Level 1 has 1 node preceding (the root node),
then it starts at index 1, Level 2 has K + 1 nodes preceding (the root node + level 1),
then it starts at index K + 1, Level 3 has K2 +K + 1 nodes preceding (the level 2 + the
level 1 + the root), then it starts at index K2 + K1 + 1, and so on. In general a level L
has as start index the sum of the sizes of the preceding levels (.14).

Start(L) = K0 +K1 + ...+KL−1 =
L−1∑
i=0

Ki (.14)

Using the geometric sum we have the start index of L is (.15) :

Start(L) =
KL − 1

K − 1
(.15)

Children nodes indexes As we need to traverse the tree from root to leaves, given a node
i, we need to know the indexes of its children nodes in the array. For the example in figure
.1, the children of node D (at position 5) are F and G (at positions 11 and 12).
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Let i be a node index, in general if node i is on the level L, then the children of node
i are on level L+ 1. Let Pn be the number of preceding-to-i nodes on level L, then

Pn = i− Start(L) (.16)

For each preceding-to-i cell on the level L, in the level (L+ 1) will be exactly K cells
before the cells of the children of the node i.

Then on level L+ 1 the offset where the children of i start is

offset = KPn

= K(i− Start(L))

= Ki−KStart(L)

= Ki−K(
KL − 1

K − 1
)

= Ki+
−KL+1 +K

K − 1
(.17)

Let c (0 <= c < K) be the cth child node of i. The index of child c will be shifted c
positions on the next level from where the children of i start, that is:

Child(i, c) = Start(L+ 1) + offset+ c (.18)

Then if we use equations .13 and .17 we have:

Child(i, c) = (
KL+1 − 1

K − 1
) + (Ki+

−KL+1 +K

K − 1
) + c

= Ki+ c+
KL+1 − 1−KL+1 +K

K − 1

= Ki+ c+
K − 1

K − 1

= Ki+ c+ 1 (.19)

That means that we can access directly to the children of i performing a simple arith-
metic operation and jumping to the array child index.

This array representation would waste memory if the tree is not complete. Another
drawback is the fact nodes need to store different type of information depending on whether
the node is a branch or the leaf, and then the size of the node differs depending of the
node type.

The solution for both problems could be to store only the nodes indexes (integer
numbers) into the array.

Given K and H, first we instantiate the array of integers having length equal to the
maximum number of nodes that K and H would allow to have. For example with K = 10
and H = 6, the tree (if complete) would have 1111111 nodes, in terms of memory 1111111
integers consume about 4MB. And this is the maximum amount of memory we could
waste (when the tree is empty). This is not too much waste compared with the amount
of memory required for the other data structures needed such as the clusters centers, the
dvectors, or the inverted indexes.
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At the beginning this array is initialized with blanks (example with -1), and a counter
u of used nodes is initialized in 0. Each time a new node i is created the memory for that
node is reserved in another data structure, the counter u is incremented by 1, and its value
is copied to the array as the node index of i.
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