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PRK, UNA LÓGICA CONSTRUCTIVA CLÁSICA

Esta tesis presenta el sistema prk, un sistema lógico en el cual las nociones de prueba y
refutación son duales. Este sistema extiende a la lógica clásica y es constructivo en el sen-
tido de que se lo puede dotar de una interpretación computacional con buenas propiedades.
Las fórmulas de prk se clasifican a lo largo de dos ejes, dependiendo de su positividad (afir-
mación o negación) y su fuerza (fuerte o clásica). Las proposiciones fuertes se demuestran,
canónicamente, con reglas de introducción, mientras que las proposiciones clásicas se de-
muestran por reducción al absurdo.

El sistema prk resulta ser correcto y completo con respecto a una clase de modelos de
Kripke, definida en este mismo trabajo. Siguiendo la correspondencia de Curry–Howard,
se formaliza un cálculo asociado a prk, denominado λprk, cuyo sistema de tipos se cor-
responde con la lógica prk. Se establecen varias propiedades sobre λprk, incluyendo
preservación de tipos, confluencia y una caracterización de las formas normales de las
pruebas y refutaciones. La terminación fuerte del cálculo λprk se demuestra a través de
una traducción a System F extendido con ecuaciones recursivas entre tipos, y apoyándose
en un resultado de Mendler.

Por último, se considera una extensión a segundo orden del sistema prk, junto con
el cálculo correspondiente λprk

2 . Se extienden a este marco los resultados anteriormente
mencionados, exceptuando la terminación fuerte de λprk

2 , que queda abierta como trabajo
futuro.

Palabras clave: Lógica, Curry–Howard, Lógica Clásica, Proposiciones como Tipos,
Lógica Constructiva, Semántica de Kripke.

i





PRK, A CONSTRUCTIVE CLASSICAL LOGIC

This thesis introduces prk, a constructive classical logic with dual proofs and refutations
that refines classical logic and provides a well behaved computational interpretation for it.
Formulas in prk can be classified along two axes, depending on their positivity (affirmation
or denial) and their strength (strong or classical). Strong propositions are, canonically,
proved with introduction rules, whereas the proof of a classical proposition always proceeds
by contradiction.

The system prk is shown to be sound and complete with respect to a particular kind of
Kripke semantics, also defined in this work. A calculus for prk, dubbed λprk, is formalized.
Its type system is in close correspondence with the logical rules of prk, in the sense of
the propositions-as-types paradigm. A number of properties, including subject reduction,
confluence, and a characterization of canonical proofs and refutations, are established.
Strong normalization of this calculus is proved via a translation to System F with Mendler-
style recursive type constraints.

Finally, an extension of prk to second order logic is presented, including a correspond-
ing calculus λprk

2 . The aforementioned results are extended to this setting, except for
strong normalization of λprk

2 , which is left as future work.

Keywords: Logic, Curry–Howard, Classical Logic, Propositions as Types, Constructive
Logic, Kripke Semantics.
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1. INTRODUCTION

The propositions-as-types correspondence, also known as the Curry–Howard isomorphism,
creates a bridge between two, close, yet distinct, scientific fields: it tells us that computer
programs and mathematical proofs are just two faces of the same coin. Under this corre-
spondence, Logic and Computer Science are able to feed each other with questions, tech-
niques, and results. For example, the development of linear logic, a substructural logic,
in the 1980s, unleashed the development of linear type systems as a possible solution for
resource management in practical programming languages. On the opposite direction, the
formalization of computing as the transformation of terms through syntactic rules created
a new framework for research in proof theory, giving new life to old concerns, such as the
question of when two proofs should be considered equal.

This bridge, however, did not connect logics and type systems exactly as it may have
been expected. The λ-calculus, the computational formalism on which the Curry-Howard
correspondence was first developed, does not turn out to provide a correspondence between
terms and proofs in classical logic, the “standard” logic used by most mathematicians,
but rather with proofs in intuitionistic logic, a constructive logic, slightly more restrictive
than classical logic1. Therefore, almost instantly after its discovery, this connection raised
an obvious question without a trivial answer: is it possible to provide a computational
interpretation for classical logic?

Griffin [1] was the first to propose an answer, by observing that Felleisen’s C control
operator, related to the call/cc operator in the Scheme family of programming languages,
can be given the type ¬¬A→ A. From the logical point of view, this corresponds to the
principle of double negation elimination, which is classically valid, but not intuitionistically
so. Griffin’s proposal had, however, some shortcomings; for instance, its reduction rules
were tied to a particular evaluation strategy, and he had to consider the type of a program
to be ⊥ (i.e. the type without inhabitants), otherwise reduction wouldn’t preserve typing.

A couple of years later, Parigot [2] managed to overcome some of these problems and
introduced the λµ-calculus, a calculus whose propositions-as-types counterpart is classical
natural deduction, a natural deduction system with multiple conclusions, that allows to
prove classically valid formulas. Following Parigot’s work, many others have achieved to
find satisfactory computational interpretations of classical logic (see for instance [3, 4]).

This area of research has two obvious applications. First, it could allow us to obtain
mathematical descriptions of programming languages with control flow operators, such
as jumps and exceptions, without the need of translating them into a purely functional
framework as the λ-calculus [5]. Second, it could lay the foundations for implementing
theorem provers based on classical logic, without giving up the ability to compute inside
the system.

In this thesis we introduce a logical system called prk. Then, we derive a correspond-
ing calculus, dubbed λprk and we show that it serves as a well behaved computational
interpretation for classical logic.

1 Intuitionistic logic differs from classical logic in that it does not assume the principle of excluded
middle, namely A ∨ ¬A, as an axiom.
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2 1. Introduction

The prk system It is well known that intuitionistic logic enjoys certain properties that
make it a perfect candidate to be used as a type system for programming languages, with
respect to the propositions-as-types correspondence; for example, the disjunctive property
tells us that the proof of a disjunction, A∨B, can always be normalized to a proof of either
A or B, and that this proof can effectively be extracted. On the other hand, classical logic
can’t guarantee a similar property, which is the reason why A ∨ ¬A is classically, but not
intuitionistically, valid.

However, the strong requirements imposed by intuitionistic logic do not compose well
with negation, since, even if a proof of a disjunction can be used to extract a proof of
one of the disjuncts, a refutation of a conjunction (¬(A ∧ B)) cannot be given the same
treatment, that is, it cannot be used to extract a refutation of one of the conjuncts. This
is because negation, in intuitionistic logic, is encoded via contradiction (¬A ≡ (A→ ⊥)),
and De Morgan’s laws are not generally valid (¬(A ∧B) 6≡ ¬A ∨ ¬B)

Nelson [6] proposed a solution to recover the symmetry between proof and refutation,
named constructible falsity. His approach can be summarized as decorating formulas with
a positivity marker at the top level, for example, the formula A can be decorated either
positively, A+, or negatively, A−. This system can be summarized by the equations below.
Note that the duality between proof and refutation indeed reappears, for example, the set
of proofs of a conjunction can be understood as the cartesian product of the sets of proofs
of the conjuncts, while the set of refutations of a conjunction is the coproduct of the sets
of refutations of the conjuncts:

(A ∧B)+ ≈ A+ ×B+ (A ∧B)− ≈ A− ]B−
(A ∨B)+ ≈ A+ ]B+ (A ∨B)− ≈ A− ×B−

(¬A)+ ≈ A− (¬A)− ≈ A+

The system prk presented in this thesis can be seen as an extension of Nelson’s system,
where an extra axis for distinguishing formulas is introduced. Formulas are not only di-
vided by their positivity (affirmation/denial), but also by their strength (strong/classical),
as can be seen below.

affirmation denial

strong A+ A−

classical A⊕ A	

These two axes present a logic where a formula A can be moded in four different
ways, written A+ (strong affirmation), A⊕ (classical affirmation), A− (strong denial), and
A	 (classical denial). The distinction between affirmations and denials follows the ideas
by Nelson, thus introducing the duality lost in intuitionistic logic discussed above. The
strength axis makes a distinction between strong propositions (A+, A−) and classical
propositions (A⊕, A	). Proofs of strong propositions must be constructive in the sense
that they must (canonically) be built using an introduction rule of the corresponding
connective, while proofs of classical propositions always proceed by reductio ad absurdum.

The interpretation of these new set of decorated formulas follows Nelson’s ideas, but
with some new cases modelling the interaction between strong and classical formulas:

(A ∧B)+ ≈ A⊕ ×B⊕ (A ∧B)− ≈ A	 ]B	
(A ∨B)+ ≈ A⊕ ]B⊕ (A ∨B)− ≈ A	 ×B	

(¬A)+ ≈ A	 (¬A)− ≈ A⊕

A⊕ ≈ A	 → A+ A	 ≈ A⊕ → A−

(1.1)
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Contributions The contributions of this thesis can be summarized as follows:

• we define the prk system;

• we give it semantic meaning via Kripke models;

• we present a typed λ-calculus based on prk, called λprk, and prove that it enjoys
desired properties;

• we show how prk relates to classical logic, and provide a computational interpreta-
tion for classical logic through λprk;

• we set the field up for the future study of a second order version of prk.

Some of the results of this thesis were previously published on the 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS) [7].

Structure This thesis is structured in multiple chapters. Chapter 2 presents prk as
a logical system, and proves some of its fundamental properties. Chapter 3 defines a
notion of Kripke semantics for prk, and shows soundness and completeness of prk with
respect to this notion of semantics. Chapter 4 introduces a typed λ-calculus based on prk
including reduction rules, and it shows that it enjoys properties such as subject reduction,
confluence, and termination. Chapter 5 relates prk with classical logic. Chapter 6 extends
prk for second order logic. Finally, Chapter 7 concludes and proposes some possible lines
of future work.
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2. THE LOGICAL SYSTEM PRK

In this section we define the prk logic in natural deduction style. The rules will follow
directly from the equations (1.1) discussed in the introduction.

Following the definition, we show some basic properties and admissible rules of our
system. These results will be the main examples used, throughout this thesis, to show
how the prk system presents itself in its different forms, so it is worth understanding them
thoroughly.

1 System Definition

Given a denumerable set of propositional variables α, β, γ, . . .. The set of pure propositions
is given by the abstract syntax:

A,B,C, . . . ::= α propositional variable
| A ∧B conjunction
| A ∨B disjunction
| ¬A negation

As mentioned in the introduction, propositions can be classified along two dimensions,
obtaining moded propositions (or just propositions), given by:

P,Q,R, . . . ::= ::= A+ strong affirmation
| A− strong denial
| A⊕ classical afirmation
| A	 classical denial

The first of these dimensions is called sign, and distinguishes between affirmations (A+ and
A⊕) and denials (A− and A	), sometimes also called positive and negative propositions.
The second dimension is called strength, and distinguishes between strong propositions (A+

and A−) and weak propositions (A⊕ and A	) (also called classical propositions). Note that
modes cannot be nested, e.g. (A+ ∧B+)− is not a well-formed proposition.

The opposite proposition P∼ of a given proposition P is defined by flipping the sign,
but preserving the strength:

(A+)∼
def
= A− (A−)∼

def
= A+

(A⊕)∼
def
= A	 (A	)∼

def
= A⊕

The classical projection of a given proposition P is written #P and is defined by preserving
the sign, but losing its strength:

#(A+)
def
= A⊕ #(A−)

def
= A	

#(A⊕)
def
= A⊕ #(A	)

def
= A	

Note that A⊕ and A	 are fixed points of #. Moreover, note that P∼∼ = P , ##P = #P ,
and #(P∼) = (#P )∼. That is, ∼ is involutive, # is idempotent, and these operators
commute with each other.

5



6 2. The Logical System PRK

Definition 1 (System prk). Judgments in prk are of the form Γ ` P , where Γ is a finite
set of moded propositions, i.e. we work implicitly up to structural rules of contraction
and exchange. Derivability of judgments is defined inductively by the following inference
schemes.

Ax
Γ, P ` P

Γ ` A+ Γ ` A−
Abs

Γ ` P

Γ ` A⊕ Γ ` B⊕
I∧+

Γ ` (A ∧B)+

Γ ` A	 Γ ` B	
I∨−

Γ ` (A ∨B)−

Γ ` (A1 ∧A2)+ i ∈ {1, 2}
E∧+

i
Γ ` Ai⊕

Γ ` (A1 ∨A2)− i ∈ {1, 2}
E∨−i

Γ ` Ai	

Γ ` Ai⊕ i ∈ {1, 2}
I∨+

i
Γ ` (A1 ∨A2)+

Γ ` Ai	 i ∈ {1, 2}
I∧−i

Γ ` (A1 ∧A2)−

Γ ` (A ∨B)+ Γ, A⊕ ` P Γ, B⊕ ` P
E∨+

Γ ` P
Γ ` (A ∧B)− Γ, A	 ` P Γ, B	 ` P

E∧−
Γ ` P

Γ ` A	
I¬+

Γ ` (¬A)+

Γ ` A⊕
I¬−

Γ ` (¬A)−

Γ ` (¬A)+

E¬+

Γ ` A	
Γ ` (¬A)−

E¬−
Γ ` A⊕

Γ, A	 ` A+

IC+

Γ ` A⊕
Γ, A⊕ ` A−

IC−
Γ ` A	

Γ ` A⊕ Γ ` A	
EC+

Γ ` A+

Γ ` A	 Γ ` A⊕
EC−

Γ ` A−

Rule Ax is the standard axiom rule. Rule Abs expresses an explosion principle, allow-
ing one to conclude any proposition from two opposite strong propositions. Rules I∧+ and
I∨− introduce, respectively, a strong positive conjunction and a strong negative disjunc-
tion, by means of combining classical positive and negative propositions. This symmetry
between dual operators with opposite sign will continue to show up in the incoming rules,
and the rest of the thesis. Rules E∧+

i and E∨−i are the eliminators for the positive con-
junction and the negative disjunction.

Rules I∨+
i and I∧−i introduce strong positive disjunction and strong negative conjunc-

tion, from a classical proof of one of its parts. And E∨+ and E∧− eliminate those moded
connectives. Rules I¬+ and I¬− introduce negation, positively and negatively; while E¬+
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and E¬− eliminate negation. Note that, negation being its own dual, the symmetry ap-
pears with itself.

Introduction and elimination of classical modes (both negative and positive) are taken
care by rules IC+ and IC−, for classical introduction, and rules EC+ and EC−, for clas-
sical elimination.

Finally notice that introduction rules for strong propositions use classical propositions
to derive strong ones, whereas elimination rules for strong propositions use strong propo-
sitions to derive classical ones.

2 Admissible rules and basic properties

Before moving forward with the study of prk, we present some basic properties and
admissible rules that will be used freely, sometimes without explicit mention, throughout
the thesis.

Lemma 2. The following inference schemes are admissible in prk:

• Weakening (W): if Γ ` P then Γ, Q ` P .

• Cut (Cut): if Γ, P ` Q and Γ ` P then Γ ` Q.

• Substitution (Sub): if Γ ` Q then Γ[α :=A] ` Q[α :=A], where −[α :=A] denotes
the substitution of the propositional variable α for the pure proposition A.

• General absurdity (Abs′): if Γ ` P and Γ ` P∼, where P is not necessarily
strong, then Γ ` Q.

• Projection of conclusions (PC): if Γ ` P then Γ ` #P .

• Injection of premises (IP): if Γ,#Q ` P then Γ, Q ` P .

• Contraposition (Contra): if P is classical and Γ, P ` Q then Γ, Q∼ ` P∼.

• Classical strengthening (CS): if P is classical and Γ, P∼ ` P then Γ ` P .

Proof. Weakening, cut, and substitution are routine proofs by induction on the deriva-
tion of the first judgment.

For general absurdity, suppose that Γ ` P and Γ ` P∼. If P is strong and positive,
applying the Abs rule we may conclude Γ ` Q. If P is strong and negative, applying the
Abs rule on P∼ and P is enough. If P is classical, there are two cases, depending on
whether P is positive or negative. If P is positive, i.e. P = A⊕ then:

Γ ` P Γ ` P∼
EC+

Γ ` A+

Γ ` P∼ Γ ` P
EC−

Γ ` A−
Abs

Γ ` Q

If P is negative, i.e. P = A	, the proof is symmetric.
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For projection of conclusions, if P is classical, i.e. of the form A⊕ or A	, we are
done. If P is strong, i.e. of the form A+ or A−, we conclude by applying the IC+ or the
IC− rule respectively, followed by a Weakening. For example, if P = A+:

Γ ` A+

W
Γ, A	 ` A+

IC+

Γ ` A⊕

For injection of premises, we proceed by induction on the derivation of the first
judgment. The interesting case is when using the Ax rule over #Q; if Q is classical, the
same Ax rule can be used. Otherwise, Ax followed by PC gives us what we need.

For contraposition we only study the case when P is positive, i.e. P = A⊕; the
negative case is symmetric. So let Γ, A⊕ ` Q. Then:

Γ, A⊕ ` Q
W

Γ, Q∼, A⊕ ` Q
Ax

Γ, Q∼, A⊕ ` Q∼
Abs′

Γ, Q∼, A⊕ ` A−
IC−

Γ, Q∼ ` A	

For classical strengthening we only study the case when P is positive, i.e. P = A⊕;
the negative case is symmetric. So let Γ, A	 ` A⊕. Then:

Γ, A	 ` A⊕
Ax

Γ, A	 ` A	
EC+

Γ, A	 ` A+

IC+

Γ ` A⊕

3 Examples and properties

Projection Lemma. The proof of the following lemma is subtle. It will be a key tool
in order to prove completeness of prk with respect to the Kripke semantics in the next
chapter:

Lemma 3 (Projection). If Γ, P ` Q then Γ,#P ` #Q.

Proof. We call P the target assumption. The proof proceeds by induction on the derivation
of Γ, P ` Q. We only study the cases with positive signs, the negative cases are symmetric.

• Ax: let Γ, Q ` Q. There are two cases, depending on whether the target assumption
is in Γ or if it is Q.

1. If the target assumption is in Γ, i.e. Γ = Γ′, P . Note that we have Γ′,#P,Q `
Q by the Ax rule. By projecting the conclusion (Lem. 2) we conclude that
Γ′,#P,Q ` #Q, as required.

2. If the target assumption is Q. Then we have that Γ,#Q ` #Q by the Ax rule.

• Abs: let Γ, P ` Q be derived from Γ, P ` A+ and Γ, P ` A− for some pure propo-
sition A. By IH we have that Γ,#P ` A⊕ and Γ,#P ` A	 so by the generalized
absurdity rule (Abs′) we have that Γ,#P ` #Q.
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• I∧+: let Γ, P ` (A ∧ B)+ be derived from Γ, P ` A⊕ and Γ, P ` B⊕. By IH,
Γ,#P ` A⊕ and Γ,#P ` B⊕. By the I∧+ rule, Γ,#P ` (A ∧ B)+. Projecting the
conclusion (Lem. 2), we obtain Γ,#P ` (A ∧B)⊕ as required.

• E∧+
i : let Γ, P ` Ai⊕ be derived from Γ, P ` (A1 ∧ A2)+. Then the proof is of the

form:

IH

Γ,#P ` (A1 ∧A2)⊕

W
Γ,#P,Ai	 ` (A1 ∧A2)⊕

Ax
Γ,#P,Ai	 ` Ai	

I∧−i
Γ,#P,Ai	 ` (A1 ∧A2)−

PC
Γ,#P,Ai	 ` (A1 ∧A2)	

EC+

Γ,#P,Ai	 ` (A1 ∧A2)+

E∧+i
Γ,#P,Ai	 ` Ai⊕

CS
Γ,#P ` Ai⊕

• I∨+
i : let Γ, P ` (A1 ∨ A2)+ be derived from Γ, P ` Ai⊕. By IH, Γ,#P ` Ai⊕. By

the I∨+
i rule, Γ,#P ` (A1 ∨ A2)+. Projecting the conclusion (Lem. 2), we reach

Γ,#P ` (A1 ∨A2)⊕.

• E∨+: let Γ, P ` Q be derived from Γ, P ` (A1 ∨ A2)+ and Γ, P,Ai
⊕ ` Q for each

i ∈ {1, 2}. By IH, Γ,#P ` (A1 ∨ A2)⊕ and Γ,#P,Ai⊕ ` #Q for each i ∈ {1, 2}.
Then the proof is of the form:

IH

Γ,#P ` (A1 ∨A2)⊕

W
Γ,#P,#Q∼ ` (A1 ∨A2)⊕

...
ξ1

...
ξ2

I∨−
Γ,#P,#Q∼ ` (A1 ∨A2)	

EC+

Γ,#P,#Q∼ ` (A1 ∨A2)+

...
π1

...
π2

E∨+
Γ,#P,#Q∼ ` #Q

CS
Γ,#P ` #Q

where for each i ∈ {1, 2} the derivations πi and ξi are given by:

πi
def
=

 IH

Γ,#P,Ai⊕ ` #Q
W

Γ,#P,#Q∼, Ai⊕ ` #Q



ξi
def
=

 IH

Γ,#P,Ai⊕ ` #Q
Contra

Γ,#P,#Q∼ ` Ai	


• I¬+: let Γ, P ` (¬A)+ be derived from Γ, P ` A	. By IH we have that Γ,#P ` A	.

By the I¬+ rule, Γ,#P ` (¬A)+. Projecting the conclusion (Lem. 2), we obtain
Γ,#P ` (¬A)⊕.
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• E¬+: let Γ, P ` A	 be derived from Γ, P ` (¬A)+. Then the proof is of the form:

IH

Γ,#P ` (¬A)⊕

W
Γ,#P,A⊕ ` (¬A)⊕

Ax
Γ,#P,A⊕, (¬A)⊕ ` A⊕

I¬−
Γ,#P,A⊕, (¬A)⊕ ` (¬A)−

IC−

Γ,#P,A⊕ ` (¬A)	

EC+

Γ,#P,A⊕ ` (¬A)+

E¬+
Γ,#P,A⊕ ` A	

CS
Γ,#P ` A	

• IC+: let Γ, P ` A⊕ be derived from Γ, P,A	 ` A+. By IH, Γ,#P,A	 ` A⊕, so by
classical strengthening (Lem. 2) we have that Γ,#P ` A⊕.

• EC+: let Γ, P ` A+ be derived from Γ, P ` A⊕ and Γ, P ` A	. Then, in particular,
by IH on the first premise, we have Γ,#P ` A⊕, as required.

A corollary obtained from iterating the projection lemma and considering the idem-
potence of # is that if P1, . . . , Pn ` Q then #P1, . . . ,#Pn ` #Q.

Duality Principle. The dual of a pure proposition A is written A⊥ and defined as:

α⊥
def
= α (A ∧B)⊥

def
= A⊥ ∨B⊥

(A ∨B)⊥
def
= A⊥ ∧B⊥ (¬A)⊥

def
= ¬(A⊥)

The dual of a proposition P is written P⊥ and defined as:

(A+)⊥
def
= (A⊥)− (A−)⊥

def
= (A⊥)+

(A⊕)⊥
def
= (A⊥)	 (A	)⊥

def
= (A⊥)⊕

The following duality principle is then straightforward to prove by induction on the deriva-
tion of the judgment:

Lemma 4. If P1, . . . , Pn ` Q then P⊥1 , . . . , P
⊥
n ` Q⊥.

Example 5 (Law of excluded middle). The law of excluded middle holds classically in
prk, that is, ` (A∨¬A)⊕. Indeed, let Γ = {(A∨¬A)	, (¬A)	}, and let π be the following
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derivation:

Ax
Γ, A	 ` (¬A)	

Ax
Γ, A	 ` A	

I¬+
Γ, A	 ` (¬A)+

IC+

(A ∨ ¬A)	, A	 ` (¬A)⊕

W
Γ, A	 ` (¬A)⊕

Abs′

Γ, A	 ` A+

IC+

Γ ` A⊕
I∨+1

Γ ` (A ∨ ¬A)+

IC+

(¬A)	 ` (A ∨ ¬A)⊕

W
Γ ` (A ∨ ¬A)⊕

Then we have that:

Ax
(A ∨ ¬A)	, (¬A)	 ` (A ∨ ¬A)	

...
π

EC−

(A ∨ ¬A)	, (¬A)	 ` (A ∨ ¬A)−

E∨−1
(A ∨ ¬A)	, (¬A)	 ` A	

I¬+
(A ∨ ¬A)	, (¬A)	 ` (¬A)+

IC+

(A ∨ ¬A)	 ` (¬A)⊕

I∨+2
(A ∨ ¬A)	 ` (A ∨ ¬A)+

IC+

` (A ∨ ¬A)⊕

From the duality principle, the law of non-contradiction holds classically in prk, that is,
` (A ∧ ¬A)	 holds.

Results from the following chapter will entail that the strong law of excluded middle,
` (A ∨ ¬A)+, does not hold in prk (see Ex. 24). The reader may attempt to derive this
judgment to convince herself that it does not hold.

Remark 6 (Dispensable eliminators). A property of the prk system that may seem striking
is that some of the eliminators presented above for strong propositions, that is E∧+

i , E∨−i ,
E¬+, and E¬−, are actually not needed from the strictly logical point of view, as they can
be derived using the other rules, and in particular the Abs rule.

As an example, this is how we could express the E∧+
1 rule:

Γ ` (A ∧B)+

W
Γ, A	 ` (A ∧B)+

Ax
Γ, A	 ` A	

I∧−1
Γ, A	 ` (A ∧B)−

Abs
Γ, A	 ` A+

IC+

Γ ` A⊕

In a similar way, the elimination rules E∧− and E∨+ can be derived using Abs, as long
as the proposition P is restricted to be classical. Even if this observation would allow
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us to simplify the logical system by reducing the number of inference schemes, once the
computational point of view comes into play in the next chapters, the behaviour of the
elimination rules (seen as axioms) will not coincide with the behaviour of their indirect
proofs. This is why we postulate them as separate rules from the start.



3. KRIPKE SEMANTICS

In this chapter we will define a semantics for the prk logical system based on Kripke
models, and prove its soundness and completeness. Also, we will show the validity of some
of the examples presented earlier using Kripke models, as well as some extra expected
results.

1 Definition of Kripke model

Recall that in intuitionistic logic1 a Kripke modelM is given by a setW of elements called
worlds, a partial order ≤ on W called the accessibility relation, and for each world w ∈ W
a set Vw of propositional variables verifying a monotonicity property, namely, that w ≤ w′
implies Vw ⊆ Vw′ . A relation of forcing M, w 
 A is defined by structural recursion on
A. In the base case,M, w 
 α is declared to hold for a propositional variable α whenever
α ∈ Vw.

This standard notion of Kripke model is adapted for prk by replacing the set Vw with
two sets V+

w and V−w , a positive and a negative one; and by imposing an additional condition
we name stabilization, stating that a propositional variable must eventually belong to the
union V+

w ∪ V−w , but never to the intersection V+
w ∩ V−w . The relation of forcing M, w 
 P

is then defined in such a way that M, w 
 α+ is declared to hold if α ∈ V+
w , and α− is

declared to hold if α ∈ V−w .

One difficulty that we found is how to define the forcing relation for a classical propo-
sition like A⊕. The forcing relation for A⊕ should behave, informally speaking, like an
intuitionistic implication “A	 → A+”. However this does not provide a bona fide defini-
tion, because the interpretation of A⊕ would depend on A	, and the interpretation of A	

would, in turn, depend on A⊕. What we do is define the interpretations of A⊕ and A	

without referring to each other. A key lemma (Lem. 12) then ensures that A⊕ is given
the same semantics as an intuitionistic implication of the form “A	 → A+”.

Definition 7. A Kripke model (for prk) is a structure M = (W,≤,V+,V−) where W =
{w,w′, . . .} is a set of worlds, ≤ is a partial order on W, and for each world w ∈ W there
are sets V+

w and V−w of propositional variables, such that the following conditions hold:

1. Monotonicity. If w ≤ w′ then V+
w ⊆ V+

w′ and V−w ⊆ V−w′ .

2. Stabilization. For all w ∈ W and all α, there exists w′ ≥ w such that α ∈ V+
w′4V

−
w′ .

Note that we write w′ ≥ w for w ≤ w′, and 4 denotes the symmetric difference on sets,
that is, X4Y = (X \ Y ) ∪ (Y \X).

It’s worth noting that this definition of Kripke model has various similarities to the
one presented by Ilik, Lee, and Herbelin [9] for classical logic, but differs on some key
aspects.

1 See for instance [8, Section 5.3].

13
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The definition of the forcing relation is given by induction on the following measure
#(P ) of a proposition P :

#(A+)
def
= 2|A| #(A−)

def
= 2|A|

#(A⊕)
def
= 2|A|+ 1 #(A	)

def
= 2|A|+ 1

where |A| denotes the size, i.e. the number of symbols, in the formula A. Note in particular
that #(A⊕) = #(A	) > #(A+) = #(A−), that #((A1 ? A2)+) = #((A1 ? A2)−) =
#(A1

⊕) + #(A2
⊕) = #(A1

	) + #(A2
	) > #(Ai

⊕) = #(Ai
	) for ? ∈ {∧,∨}, and that

#((¬A)+) = #((¬A)−) > #(A⊕) = #(A	).

Definition 8 (Forcing). Given a Kripke model, we define the forcing relation, written
M, w 
 P for each world w ∈ W and each proposition P , as follows, by induction on the
measure #(P ):

M, w 
 α+ ⇐⇒ α ∈ V+
w

M, w 
 α− ⇐⇒ α ∈ V−w
M, w 
 (A ∧B)+ ⇐⇒ M, w 
 A⊕ and M, w 
 B⊕

M, w 
 (A ∧B)− ⇐⇒ M, w 
 A	 or M, w 
 B	

M, w 
 (A ∨B)+ ⇐⇒ M, w 
 A⊕ or M, w 
 B⊕

M, w 
 (A ∨B)− ⇐⇒ M, w 
 A	 and M, w 
 B	

M, w 
 (¬A)+ ⇐⇒ M, w 
 A	

M, w 
 (¬A)− ⇐⇒ M, w 
 A⊕

M, w 
 A⊕ ⇐⇒ M, w′ 1 A− for all w′ ≥ w
M, w 
 A	 ⇐⇒ M, w′ 1 A+ for all w′ ≥ w

Furthermore, if Γ is a (possibly infinite) set of propositions, we write:

M, w � Γ ⇐⇒ M, w 
 P for every P ∈ Γ
M,Γ � P ⇐⇒ M, w � Γ implies M, w 
 P for every w
Γ � P ⇐⇒ M,Γ � P for every Kripke model M

Note that most cases in the definition of forcing do not mention the accessibility
relation, other than for classical propositions.

Before moving forward, we introduce typical nomenclature. If Γ is a possibly infinite
set of propositions, we say that Γ ` P holds whenever the judgment ∆ ` P is derivable
in prk for some finite subset ∆ ⊆ Γ. A set Γ of propositions is consistent if there is a
proposition P such that Γ 0 P . Otherwise, Γ is inconsistent.

2 Forced properties and soundness

In this section and the next one we prove that prk is sound and complete with respect to
this notion of Kripke model. i.e. that Γ ` P holds if and only if Γ � P holds. We begin
by establishing some basic properties of the forcing relation.

Lemma 9 (Monotonicity of forcing). If M, w 
 P and w ≤ w′ then M, w′ 
 P .

Proof. By induction on the measure #(P ). We only check the positive propositions; the
negative cases are dual—e.g. the proof for (A∧B)− is symmetric to the proof for (A∨B)+:
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• Propositional variable (P = α+): Let M, w 
 α+, that is α ∈ V+
w . Then by the

monotonicity property we have that α ∈ V+
w′ , so M, w′ 
 α+.

• Conjunction (P = (A ∧ B)+): Let M, w 
 (A ∧ B)+, that is M, w 
 A⊕ and
M, w 
 B⊕. Then by IH M, w′ 
 A⊕ and M, w′ 
 B⊕ so M, w′ 
 (A ∧B)+.

• Disjunction (P = (A1 ∨ A2)+): Let M, w 
 (A1 ∨ A2)+, that is M, w 
 Ai⊕ for
some i ∈ {1, 2}. Then by IH M, w′ 
 Ai⊕ so M, w′ 
 (A1 ∨A2)+.

• Negation (P = (¬A)+): Let M, w 
 (¬A)+, that is M, w 
 A	. Then by IH
M, w′ 
 A	 so M, w′ 
 (¬A)+.

• Classical proposition (P = A⊕): Let M, w 
 A⊕, that is, for every w′′ ≥ w we
have that M, w′′ 1 A−. Our goal is to prove that M, w′ 
 A⊕, so let w′′ ≥ w′

and let us check that M, w′′ 1 A−. Indeed, given that w′′ ≥ w′ ≥ w we have that
M, w′′ 1 A−.

Lemma 10 (Stabilization of forcing). For every world w and every proposition P , there
is a world w′ ≥ w such that either M, w′ 
 P or M, w′ 
 P∼, but not both.

Proof. By induction on the measure #(P ). We only check the positive propositions; the
negative cases are symmetric.

• Propositional variable (P = α+ and P∼ = α−): By the stabilization property,
there exists w′ ≥ w such that α ∈ V+

w′4V
−
w′ , i.e. α ∈ V+

w′ or α ∈ V−w′ but not both,
so we consider two cases:

1. If α ∈ V+
w′ \ V

−
w′ then M, w′ 
 α+ and M, w′ 1 α−.

2. If α ∈ V−w′ \ V
+
w′ then M, w′ 
 α− and M, w′ 1 α+.

• Conjunction (P = (A∧B)+ and P∼ = (A∧B)−): By IH there is a world w1 ≥ w
such that either M, w1 
 A⊕ or M, w1 
 A	 but not both, so we consider two
subcases:

1. IfM, w1 
 A⊕ andM, w1 1 A	, then by IH there is a world w2 ≥ w1 such that
either M, w2 
 B⊕ or M, w2 
 B	 but not both, so we consider two further
subcases:

1.1 If M, w2 
 B⊕ and M, w2 1 B	, then we take w′ := w2. By monotonic-
ity (Lem. 9) we have that M, w2 
 A⊕ so indeed M, w2 
 (A ∧ B)+.
We are left to show that M, w2 1 (A ∧ B)−. We already know that
M, w2 1 B	, so to conclude it suffices to show that M, w2 1 A	. In-
deed, suppose that M, w2 
 A	 holds. By IH there exists w3 ≥ w2 such
that either M, w3 
 A⊕ or M, w3 
 A	 but not both. However, by mono-
tonicity (Lem. 9) —given that both M, w2 
 A⊕ and M, w2 
 A	 hold—
we know that both M, w3 
 A⊕ and M, w3 
 A	 hold, a contradiction.

1.2 IfM, w2 
 B	 andM, w2 1 B⊕, then we take w′ := w2, and we have that
M, w2 
 (A ∧B)− and M, w2 1 (A ∧B)+.

2. If M, w1 
 A	 and M, w1 1 A⊕, then we take w′ := w1, and we have that
M, w1 
 (A ∧B)− and M, w1 1 (A ∧B)+.
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• Disjunction (P = (A ∨B)+ and P∼ = (A ∨B)−): By IH there is a world w1 ≥ w
such that either M, w1 
 A⊕ or M, w1 
 A	 but not both, so we consider two
subcases:

1. If M, w1 
 A⊕ and M, w1 1 A	, then we take w′ := w1, and we have that
M, w1 
 (A ∨B)+ and M, w1 1 (A ∨B)−.

2. IfM, w1 
 A	 andM, w1 1 A⊕, then by IH there is a world w2 ≥ w1 such that
either M, w2 
 B⊕ or M, w2 
 B	 but not both, so we consider two further
subcases:

2.1 IfM, w2 
 B⊕ andM, w2 1 B	, then we take w′ := w2, and we have that
M, w2 
 (A ∨B)+ and M, w2 1 (A ∨B)−.

2.2 If M, w2 
 B	 and M, w2 1 B⊕, then we take w′ := w2. By monotonic-
ity (Lem. 9) we have that M, w2 
 A	 so indeed M, w2 
 (A ∨ B)−.
We are left to show that M, w2 1 (A ∨ B)+. We already know that
M, w2 1 B⊕, so we are left to show that M, w2 1 A⊕. Indeed, sup-
pose that M, w2 
 A⊕ holds. By IH there exists w3 ≥ w2 such that either
M, w3 
 A⊕ or M, w3 
 A	 holds but not both. However, by monotonic-
ity (Lem. 9) —given that both M, w2 
 A⊕ and M, w2 
 A	 hold— we
know that both M, w3 
 A⊕ and M, w3 
 A	 hold, a contradiction.

• Negation (P = (¬A)+ and P∼ = (¬A)−): By IH there is a world w′ ≥ w such that
either M, w′ 
 A⊕ or M, w′ 
 A	 hold but not both, so we consider two cases:

1. If M, w′ 
 A⊕ and M, w′ 1 A	, then M, w′ 
 (¬A)− and M, w′ 1 (¬A)+.

2. If M, w′ 
 A	 and M, w′ 1 A⊕, then M, w′ 
 (¬A)+ and M, w′ 1 (¬A)−.

• Classical proposition (P = A⊕ and P∼ = A	): By IH there is a world w′ ≥ w such
that either M, w′ 
 A+ or M, w′ 
 A− but not both. We consider two subcases:

1. If M, w′ 
 A+ and M, w′ 1 A−, then we claim that M, w′ 
 A⊕ and M, w′ 1
A	. Indeed, let us prove each condition:

1.1 In order to show that M, w′ 
 A⊕, it suffices to check that given w′′ ≥ w′

we have that M, w′′ 1 A−. Indeed, suppose that M, w′′ 
 A−. Then
by IH there exists w′′′ ≥ w′′ such that either M, w′′′ 
 A+ or M, w′′′ 

A− but not both. However, by monotonicity (Lem. 9) —given that both
M, w′ 
 A+ and M, w′′ 
 A− hold, and w′ ≤ w′′ ≤ w′′′— we know that
both M, w′′′ 
 A+ and M, w′′′ 
 A− hold, a contradiction.

1.2 In order to show that M, w′ 1 A	, it suffices to note that M, w′ 
 A+,
which contradicts the definition of M, w′ 
 A	, given that accessibility is
reflexive, i.e. w′ ≤ w′.

2. If M, w′ 
 A− and M, w′ 1 A+, then we claim that M, w′ 
 A	 and M, w′ 1
A⊕. Indeed, let us prove each condition:

2.1 In order to show that M, w′ 
 A	, it suffices to check that given w′′ ≥ w′

we have that M, w′′ 1 A+. Indeed, suppose that M, w′′ 
 A+. Then by
IH there exists w′′′ ≥ w′′ such that either M, w′′′ 
 A+ and M, w′′′ 

A− but not both. However, by monotonicity (Lem. 9) —given that both
M, w′′ 
 A+ and M, w′ 
 A− hold, and w′ ≤ w′′ ≤ w′′′— we know that
both M, w′′′ 
 A+ and M, w′′′ 
 A− hold, a contradiction.
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2.2 In order to show that M, w′ 1 A⊕ it suffices to note that M, w′ 
 A−,
which contradicts the definition of M, w′ 
 A⊕, given that accessibility is
reflexive, i.e. w′ ≤ w′.

Lemma 11 (Non-contradiction of forcing). If M, w 
 P then M, w 1 P∼.

Proof. Suppose that both M, w 
 P and M, w 
 P∼ hold. By stabilization (Lem. 10)
there is a world w′ ≥ w such that eitherM, w′ 
 P orM, w′ 
 P∼ but not both. However,
by monotonicity (Lem. 9) we know that both M, w′ 
 P and M, w′ 
 P∼ must hold, a
contradiction.

Lemma 12 (Rule of classical forcing).

1. (M, w 
 A⊕) if and only if, for all w′ ≥ w, (M, w′ 
 A	) implies (M, w′ 
 A+).

2. (M, w 
 A	) if and only if, for all w′ ≥ w, (M, w′ 
 A⊕) implies (M, w′ 
 A−).

Proof. We only prove the first item. The second one is symmetric, flipping all the signs.

(⇒) Suppose thatM, w 
 A⊕, let w′ ≥ w, and let us show that the implication (M, w′ 

A	) =⇒ (M, w′ 
 A+) holds. In fact, the implication holds vacuously, given
that M, w′ 
 A⊕ by monotonicity (Lem. 9), and therefore M, w′ 1 A	 by non-
contradiction (Lem. 11).

(⇐) Suppose that for every w′ ≥ w the implication (M, w′ 
 A	) =⇒ (M, w′ 
 A+)
holds. Let us show that M, w 
 A⊕ holds, i.e. that for every w′ ≥ w we have that
M, w′ 1 A−. Let w′ be a world such that w′ ≥ w and, by contradiction, suppose
that M, w′ 
 A−. Then by non-contradiction (Lem. 11) we have that M, w′ 1
A+. Hence, to obtain a contradiction, using the implication of the hypothesis, it
suffices to show that M, w′ 
 A	, that is, that for every w′′ ≥ w′ we have that
M, w′′ 1 A+. Indeed, let w′′ ≥ w′. By monotonicity (Lem. 9) M, w′′ 
 A−, so by
non-contradiction (Lem. 11) M, w′′ 1 A+, as required.

Proposition 13 (Soundness). If Γ ` P is provable in prk, then Γ � P .

Proof. By induction on the derivation of Γ ` P . The axiom rule, and the introduction
and elimination rules for conjunction, disjunction, and negation are straightforward using
the definition of Kripke model. The interesting cases are the following rules:

• Abs: let Γ ` Q be derived from Γ ` A+ and Γ ` A−. Suppose thatM, w � Γ holds
in an arbitrary world w under an arbitrary Kripke model M, and let us show that
M, w 
 Q. Note that by IH we have that M, w 
 A+ and M, w 
 A−. But this is
impossible by non-contradiction (Lem. 11). Hence M, w 
 Q.

• IC+: let Γ ` A⊕ be derived from Γ, A	 ` A+. Suppose that M, w � Γ holds in an
arbitrary world w under an arbitrary Kripke modelM, and let us show thatM, w 

A⊕. We claim that for every w′ ≥ w the implication (M, w′ 
 A	) =⇒ (M, w′ 

A+) holds. Indeed, suppose thatM, w′ 
 A	. Moreover, by monotonicity (Lem. 9),
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we have that M, w′ � Γ. So M, w′ � Γ, A	 holds. Hence by IH we have that
M, w′ 
 A+. Given that the implication (M, w′ 
 A	) =⇒ (M, w′ 
 A+)
holds for all w′ ≥ w, using the rule of classical forcing (Lem. 12) we conclude that
M, w 
 A⊕, as required.

• IC−: similar to the IC+ case.

• EC+: similar to the Abs case.

• EC−: similar to the Abs case.

3 Canonical proof of completeness

To prove completeness, we follow the standard methodology, which proceeds by contra-
position assuming that Γ 0 P and building a counter-model. The counter-model is given
by a Kripke model M0 and a world w such that M0, w � Γ but M0, w 1 P . In fact, the
choice of the Kripke modelM0 does not depend on Γ nor P . Rather,M0 is always chosen
to be the canonical Kripke model whose worlds are saturated sets of propositions (prime
theories, sometimes called disjunctive theories). Completeness is obtained by taking Γ and
saturating it it to a prime theory Γ′ which then verifies M0,Γ

′ � Γ but M0,Γ
′ 1 P .

Definition 14 (Prime theory). A prime theory is a possibly infinite set of propositions Γ
such that the following hold:

1. Closure by deduction. If Γ ` P then P ∈ Γ.

2. Consistency. Γ is consistent. Equivalently, there exists P such that P /∈ Γ.

3. Disjunctive property.
• If (A ∨B)+ ∈ Γ then either A⊕ ∈ Γ or B⊕ ∈ Γ.
• If (A ∧B)− ∈ Γ then either A	 ∈ Γ or B	 ∈ Γ.

Lemma 15 (Saturation). Let Γ be a consistent set of propositions, and let Q be a propo-
sition such that Γ 0 Q. Then there exists a prime theory Γ′ ⊇ Γ such that Γ′ 0 Q.

Proof. Consider an enumeration of all propositions (P1, P2, . . .). We build a sequence of
consistent sets Γ = Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ . . ., with the invariant that Γn 0 Q for all n ≥ 0,
according to the following construction.

In the n-th step, suppose that Γ1, . . . ,Γn have already been constructed, and consider
the first proposition P in the enumeration such that Γn ` P but the disjunctive property
fails for P , that is, either P is of the form (A∨B)+ with A⊕, B⊕ /∈ Γn or P is of the form
(A ∧B)− with A	, B	 /∈ Γn. There are two subcases:

1. If P = (A ∨ B)+ with A⊕, B⊕ /∈ Γn, note that Γn, A
⊕ ` Q and Γn, B

⊕ ` Q cannot
both hold simultaneously. Indeed, if both Γn, A

⊕ ` Q and Γn, B
⊕ ` Q hold, given

that also Γn ` (A ∨ B)+, applying E∨+ we would have Γn ` Q, contradicting the
hypothesis. Hence we may define Γn+1 as follows:

Γn+1
def
=

{
Γn ∪ {A⊕} if Γn, A

⊕ 0 Q
Γn ∪ {B⊕} otherwise

Note that, in the second case, Γn, B
⊕ 0 Q holds, and that Γn+1 is still consistent.
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2. If P = (A ∧ B)− with A	, B	 /∈ Γn, the construction is similar, defining Γn+1 as
either Γn ∪ {A	} or Γn ∪ {B	}.

Now we define Γω and Γ′ as follows:

Γω
def
=

⋃
n∈N Γn

Γ′
def
= Γω ∪ {A± | Γω ` A±}

Note that Γ ⊆ Γω ⊆ Γ′. Moreover, we claim that Γ′ is a prime theory:

• Closure by deduction: Let Γ′ ` P , and let us show that P ∈ Γ′. Since all
propositions in Γ′ of the form A± are provable from Γω, this means that Γω ` P by
the Cut rule (Lem. 2). We consider four subcases, depending on the mode of P .
We only study the positive cases; the negative cases are symmetric:

1. Strong proof, i.e. P = A+. Then Γω ` A+ so A+ ∈ Γ′ by definition of Γ′.

2. Classical proof, i.e. P = A⊕. Then Γω ` A⊕ so in particular Γω ` (A ∨ A)+

applying the I∨+
1 rule. Then there is an n0 such that Γn ` (A ∨ A)+ for all

n ≥ n0. Then it cannot be the case that A⊕ /∈ Γn for all n ≥ n0, because the
proposition (A∨A)+ must be eventually treated by the construction of (Γn)n∈N
above. This means that there is an n ≥ n0 such that A⊕ ∈ Γn, and therefore
A⊕ ∈ Γω ⊆ Γ′, as required.

• Consistency: It suffices to note that Γ′ 0 Q. Indeed, suppose that Γ′ ` Q. Then
Γω ` Q by the cut rule (Lem. 2), so there exists an n0 such that Γn ` Q for all
n ≥ n0. This contradicts the invariant of the construction of (Γn)n∈N above.

• Disjunctive property: We consider only the positive case. The negative case
is symmetric. Suppose that Γ′ ` (A ∨ B)+. Then Γω ` (A ∨ B)+ by the cut
rule (Lem. 2), so there exists an n0 such that Γn ` (A ∨ B)+ for all n ≥ n0. Then
it cannot be the case that A⊕, B⊕ /∈ Γn for all n ≥ n0, because the proposition
(A ∨ B)+ must be eventually treated by the construction of (Γn)n∈N above. This
means that there is an n ≥ n0 such that either A⊕ ∈ Γn or B⊕ ∈ Γn, and therefore
we have that either A⊕ ∈ Γω ⊆ Γ′, or B⊕ ∈ Γω ⊆ Γ′, as required.

Finally, note that Γ′ 0 Q, as has already been shown in the proof of consistency
above.

In the following lemma we use an encoding of falsity with the pure proposition ⊥ def
=

(α0 ∧ ¬α0) for some fixed propositional variable α0. Remark that Γ ` ⊥	 is provable,
being an instance of the law of non-contradiction (Ex. 5).

Lemma 16 (Consistent extension). Let Γ be a consistent set, and let P be a proposition.
Then Γ ∪ {P} and Γ ∪ {P∼} are not both inconsistent.

Proof. Suppose that Γ∪{P} and Γ∪{P∼} are both inconsistent. In particular we have that
Γ, P ` ⊥⊕ and Γ, P∼ ` ⊥⊕. By the projection lemma (Lem. 3) we have that Γ,#P ` ⊥⊕
and Γ,#P∼ ` ⊥⊕. Moreover, by contraposition (Lem. 2) we have that Γ,⊥	 ` #P∼ and
Γ,⊥	 ` #P . Since ⊥	 is provable (Ex. 5), applying the cut rule (Lem. 2) we have that
Γ ` #P∼ and Γ ` #P . The generalized absurdity rule allows us to derive Γ ` Q for any
Q from these two sequents, so Γ is inconsistent. This contradicts the hypothesis that Γ is
consistent.
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Definition 17 (Canonical model). The canonical model is the structure M0 = (W0,⊆
,V+,V−):

1. W0 is the set of all prime theories, i.e. W0
def
= {Γ | Γ is prime}.

2. ⊆ is the set-theoretic inclusion between prime theories.

3. V+
Γ = {α | α+ ∈ Γ} and V−Γ = {α | α− ∈ Γ}.

Lemma 18. The canonical model is a Kripke model.

Proof. Let us check the two required properties. Monotonicity is immediate, since if
Γ ⊆ Γ′ then α± ∈ Γ implies α± ∈ Γ′. For stabilization, let Γ be a prime theory and
let α be a propositional variable. First note that Γ ∪ {α+} and Γ ∪ {α−} cannot both
be inconsistent, by the consistent extension lemma (Lem. 16). We consider two subcases,
depending on whether Γ ∪ {α+} is consistent:

1. If Γ ∪ {α+} is consistent. Then Γ, α+ 0 α− because Γ, α+ ` α− would make the
set Γ ∪ {α+} inconsistent. Then by saturation (Lem. 15) there is a prime theory
Γ′ ⊇ Γ ∪ {α+} such that Γ′ 0 α−. Hence we have that Γ′ ⊇ Γ with α ∈ V+

Γ′ \ V
−
Γ′ .

2. Otherwise, so Γ∪{α−} is consistent. Similarly as in the previous case, we have that
Γ, α− 0 α+, so by saturation (Lem. 15) there is a prime theory Γ′ ⊇ Γ ∪ {α−} such
that Γ′ 0 α+, and this implies that α ∈ V−Γ′ \ V

+
Γ′ .

Lemma 19 (Main Semantic Lemma). Let Γ be a prime theory. Then M0,Γ 
 P holds
in the canonical model if and only if P ∈ Γ.

Proof. We proceed by induction on the measure #(P ). We only study the positive cases,
the negative cases are symmetric.

• Propositional variable (P = α+):

M0,Γ 
 α
+ ⇐⇒ α ∈ V+

Γ ⇐⇒ α+ ∈ Γ

• Strong conjunction (P = (A ∧B)+):

M0,Γ 
 (A ∧B)+

⇐⇒ M0,Γ 
 A⊕ and M0,Γ 
 B⊕

⇐⇒ A⊕ ∈ Γ and B⊕ ∈ Γ by IH
⇐⇒ (A ∧B)+ ∈ Γ

The last equivalence uses the fact that Γ is closed by deduction, using rule I∧+ for
the “only if” direction and rules E∧+

1 ,E∧
+
2 for the “if” direction.

• Strong disjunction (P = (A ∨B)+):

M0,Γ 
 (A ∨B)+

⇐⇒ M0,Γ 
 A⊕ or M0,Γ 
 B⊕

⇐⇒ A⊕ ∈ Γ or B⊕ ∈ Γ by IH
⇐⇒ (A ∨B)+ ∈ Γ

The last equivalence uses the fact that Γ is a prime theory, using rules I∨+
1 and I∨+

2

for the “only if” direction, and the fact that Γ is disjunctive for the “if” direction.
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• Strong negation (P = (¬A)+):

M0,Γ 
 (¬A)+ ⇐⇒ M0,Γ 
 A	

⇐⇒ A	 ∈ Γ by IH
⇐⇒ (¬A)+ ∈ Γ

The last equivalence uses the fact that Γ is closed by deduction, using rule I¬+ for
the “only if” direction and rule E¬+ for the “if” direction.

• Classical proposition (P = A⊕):

M0,Γ 
 A⊕ ⇐⇒ ∀Γ′ ⊇ Γ, M0,Γ
′ 1 A−

⇐⇒ ∀Γ′ ⊇ Γ, A− /∈ Γ′ by IH
⇐⇒ A⊕ ∈ Γ

Note that Γ′ does not vary over arbitrary sets of propositions, but only over prime
theories. To justify the last equivalence, we prove each implication separately:

(⇒) We show the contrapositive. Let A⊕ /∈ Γ and let us show that there is a prime
theory Γ′ ⊇ Γ such that A− ∈ Γ′. First we claim that Γ ∪ {A−} is consistent.

Proof of the claim. Suppose by contradiction that Γ∪{A−} is inconsistent.

Then in particular Γ, A− ` ⊥⊕. (Recall that we encode falsity as ⊥ def
=

(α0 ∧ ¬α0)). By the projection lemma (Lem. 3) we have that Γ, A	 ` ⊥⊕.
By contraposition (Lem. 2) Γ,⊥	 ` A⊕. Since ⊥	 is provable (Ex. 5), by
the cut rule (Lem. 2) we have that Γ ` A⊕. But Γ is closed by deduction,
so A⊕ ∈ Γ. This contradicts the fact that A⊕ /∈ Γ and concludes the proof
of the claim.

Now since Γ ∪ {A−} is consistent, by saturation (Lem. 15), we may extend it
to a prime theory Γ′ ⊇ Γ ∪ {A−}. This concludes this case.

(⇐) Suppose that A⊕ ∈ Γ, and let Γ′ ⊇ Γ such that A− ∈ Γ′. Then since Γ′ is closed
by deduction, using the IC+ rule we have that A	 ∈ Γ′. Since Γ′ contains both
A⊕ and A	, using the generalized absurdity rule we may derive an arbitrary
proposition from Γ′, which means that Γ′ is inconsistent, contradicting the fact
that Γ′ is a prime theory.

Theorem 20 (Completeness). If Γ � P then Γ ` P .

Proof. The proof is by contraposition, i.e. let Γ 0 P and let us show that there is a Kripke
modelM and a world w such thatM, w � Γ butM, w 1 P . Note that Γ is consistent, so
by Saturation (Lem. 15) there exists a prime theory Γ′ ⊇ Γ such that Γ′ 0 P . Note that
M0,Γ

′ � Γ because, by the Main Semantic Lemma (Lem. 19), we have that M0,Γ
′ 
 Q

for every Q ∈ Γ ⊆ Γ′. Moreover, also by the Main Semantic Lemma (Lem. 19), we have
that M0,Γ

′ 1 P because P /∈ Γ′.
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4 Examples and properties

Before moving away from our Kripke semantics, we show how the duality principle (Lem. 4)
presented in the previous chapter translates to Kripke models. We also provide a counter
example for the strong version of the law of the excluded middle.

Lemma 21 (Duality over Kripke models). Given a Kripke model M = (W,≤,V+,V−),
a world w ∈ W and a proposition P , such that M, w 
 P , then the model given by

M⊥ def
= (W,≤,V−,V+) forces the dual of P , that is M⊥, w 
 P⊥, over the same world

w.

Proof. We prove it by induction on the measure #(P ). We only check the positive propo-
sitions; the negative cases are dual:

• Propositional variable (P = α+): Let M, w 
 α+, that is α ∈ V+
w . Then

M⊥, w 
 α− since α ∈ V+
w and V+ is the negative set of propositional variables of

M⊥.

• Conjunction (P = (A ∧ B)+): Let M, w 
 (A ∧ B)+, that is M, w 
 A⊕ and
M, w 
 B⊕. Then by IH M⊥, w 
 (A⊥)	 and M⊥, w 
 (B⊥)	 so M⊥, w 

(A⊥ ∨B⊥)−.

• Disjunction (P = (A1 ∨ A2)+): Let M, w 
 (A1 ∨ A2)+, that is M, w 
 Ai⊕ for
some i ∈ {1, 2}. Then by IH M⊥, w 
 (A⊥i )	 so M⊥, w 
 (A⊥1 ∧A⊥2 )−.

• Negation (P = (¬A)+): Let M, w 
 (¬A)+, that is M, w 
 A	. Then by IH
M⊥, w 
 (A⊥)⊕ so M⊥, w 
 (¬A⊥)−.

• Classical proposition (P = A⊕): Let M, w 
 A⊕, that is, for every w′ ≥ w we
have that M, w′ 1 A−. Our goal is to prove that M⊥, w 
 (A⊥)	, which is true
if there is no w′ ≥ w such that M⊥, w′ 
 (A⊥)+. So assume there is w′′ ≥ w such
that M⊥, w′′ 
 (A⊥)+ by IH and the fact that M⊥⊥ = M, this would mean that
M, w′′ 
 A−, which would violate the hypothesis. Therefore, M⊥, w 
 (A⊥)	.

Corollary 22 (Duality Principle (Kripke proof)). From the previous lemma a trivial corol-
lary can be extracted, equivalent to Lem. 4, but proved using the Kripke models semantic.

If P1, . . . , Pn � Q then P⊥1 , . . . , P
⊥
n � Q⊥.

Example 23 (Law of excluded middle). Similarly to Ex. 5, we prove that the law of
excluded middle holds in the Kripke semantics presented in this chapter. That is, �
(A ∨ ¬A)⊕.

To prove it, we need to show that for every model M and every world w we have that
M, w 
 (A∨¬A)⊕, which is essentially the same as saying that for every world w we have
that M, w 1 (A ∨ ¬A)−.

By contradiction, assume there is a world w such that M, w 
 (A ∨ ¬A)−, that is
M, w 
 A	 and M, w 
 ¬A	.

From the first fact, we know that M, w′ 1 A+ holds in every world w′ ≥ w. From the
second fact, we know that M, w′′ 1 ¬A+ holds in every world w′′ ≥ w, that means that
M, w′′ 1 A	. Hence there exists a world w′′′ ≥ w′′ ≥ w such that M, w′′′ 
 A+.

Since w′′′ ≥ w, we have that both M, w′′′ 1 A+ (Lem. 9) and M, w′′′ 
 A+, reaching
our beloved absurdity.
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Example 24 (Counter-model for the strong excluded middle). There is a Kripke modelM
with a world w0 such that M, w0 1 (α∨¬α)+. Indeed, let P be the set of all propositional
variables, and let M be the Kripke model such that W = {w0, w1, w2} with w0 ≤ w1 and
w0 ≤ w2, where V+ and V− are defined as follows:

V+ V−
w0 ∅ ∅
w1 P ∅
w2 ∅ P

It is easy to verify that M is a Kripke model and that M, w0 1 (α ∨ ¬α)+, even if the
classical excluded middle does hold.
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4. PROPOSITIONS AS TYPES

In this section we will provide prk with a Curry–Howard interpretation, developing a
calculus for it, dubbed λprk. This calculus will be given a set of reduction rules, that enjoys
a number of good properties, in particular subject reduction, confluence, and termination
are all proved to hold in this chapter; as well as a notion of canonicity. Finally, we present
an extension of λprk with an extra reduction rule similar to η-reduction, that will be of
importance in the next chapter.

Remaining true to the propositions as types paradigm, from this section onwards, we
use the words propositions and types interchangeably to refer to P,Q, . . ..

1 Syntax and typing

We assume given a denumerable set of variables x, y, z, . . .. The set of typing contexts is
defined by the grammar Γ ::= ∅ | Γ, x : P , where each variable is assumed to occur at
most once in a typing context. Typing contexts are considered implicitly up to reordering.

The set of terms is given by the following abstract syntax. The letter i ranges over
the set {1, 2}. Some terms are decorated with a plus or a minus sign. In the grammar we
write “±” to stand for either “+” or “−”.

t, s, u, . . . ::= x variable
| t ��P s absurdity
| 〈t, s〉± ∧+ / ∨− introduction
| π±i (t) ∧+ / ∨− elimination
| in±i (t) ∨+ / ∧− introduction
| δ±t [x:P .s][y:Q.u] ∨+ / ∧− elimination
| ν±t ¬+ / ¬− introduction
| µ±t ¬+ / ¬− elimination
| IC±(x:P ). t classical introduction

| t •± s classical elimination

The notions of free and bound occurrences of variables are defined as expected considering
that δ±t [x:P .s][y:Q.u] binds occurrences of x in s and occurrences of y in u, whereas IC±x:P . t
binds occurrences of x in t. We work implicitly modulo α-renaming of bound variables.
We write fv(t) for the set of free variables of t, and t[x := s] for the capture-avoiding
substitution of x by s in t.

Sometimes we omit type decorations if they are irrelevant or clear from the context,
for example, we may write IC+

x . t rather than IC+
(x:A	)

. t, and t �� s rather than t ��P s.

Sometimes we also omit the name of unused bound variables, writing “ ” instead; e.g. if
x 6∈ fv(t) we may write IC+. t rather than IC+

(x:A	)
. t.

Definition 25 (The λprk type system). Typing judgments are of the form Γ ` t : P .
Derivability of judgments is defined inductively by the following typing rules:

Ax
Γ, x : P ` x : P

Γ ` t : A+ Γ ` s : A−

Abs
Γ ` t ��Q s : Q

25
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Γ ` t : A⊕ Γ ` s : B⊕

I∧+

Γ ` 〈t, s〉+ : (A ∧B)+

Γ ` t : A	 Γ ` s : B	

I∨−
Γ ` 〈t, s〉− : (A ∨B)−

Γ ` t : (A1 ∧A2)+ i ∈ {1, 2}
E∧+

i
Γ ` π+

i (t) : Ai
⊕

Γ ` t : (A1 ∨A2)− i ∈ {1, 2}
E∨−i

Γ ` π−i (t) : Ai
	

Γ ` t : Ai
⊕ i ∈ {1, 2}

I∨+
i

Γ ` ini
+(t) : (A1 ∨A2)+

Γ ` t : Ai
	 i ∈ {1, 2}

I∧−i
Γ ` ini

−(t) : (A1 ∧A2)−

Γ ` t : (A ∨B)+ Γ, x : A⊕ ` s : P Γ, y : B⊕ ` u : P
E∨+

Γ ` δ+t [x:A⊕ .s][y:B⊕ .u] : P

Γ ` t : (A ∧B)− Γ, x : A	 ` s : P Γ, y : B	 ` u : P
E∧−

Γ ` δ−t [x:A	 .s][y:B	 .u] : P

Γ ` t : A	

I¬+

Γ ` ν+t : (¬A)+

Γ ` t : A⊕

I¬−
Γ ` ν−t : (¬A)−

Γ ` t : (¬A)+

E¬+

Γ ` µ+t : A	

Γ ` t : (¬A)−

E¬−
Γ ` µ−t : A⊕

Γ, x : A	 ` t : A+

IC+

Γ ` IC+
(x:A	)

. t : A⊕

Γ, x : A⊕ ` t : A−

IC−
Γ ` IC+

(x:A⊕)
. t : A	

Γ ` t : A⊕ Γ ` s : A	

EC+

Γ ` t •+ s : A+

Γ ` t : A	 Γ ` s : A⊕

EC−
Γ ` t •− s : A−

Remark 26. Each typing rule in λprk (Def. 25) corresponds exactly to the rule of the same
name in prk (Def. 1). It is immediate to show that P1, . . . , Pn ` Q is derivable in prk if
and only if x1 : P1, . . . , xn : Pn ` t : Q is derivable in λprk for some term t. Note, however,
that in the if direction, there may be multiple occurrences of the same hypothesis in
λprk, indexed by different variable names, which become a single hypothesis in prk (given
that contexts of assumptions in prk are sets and not multisets). This means that this
correspondence is not, strictly speaking, an isomorphism.

1.1 Examples and properties

We begin by studying properties of λprk from the logical point of view, as a type system.
In particular, the following lemma adapts some of the results in Lem. 2 and Ex. 5 to λprk,
providing explicit proof terms for derivations.

Lemma 27. The following rules are admissible in λprk:

1. Weakening (W): If Γ ` t : P and x 6∈ fv(t) then Γ, x : Q ` t : P .

2. Cut (Cut): if Γ, x : P ` t : Q and Γ ` s : P then Γ ` t[x :=s] : Q.
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3. General absurdity (Abs′): if Γ ` t : P and Γ ` s : P∼, where P is not necessarily
strong, there is a term t ./Q s such that Γ ` t ./Q s : Q.

4. Projection of conclusions (PC): if Γ ` t : P there is a term #t, such that
Γ ` #t : #P .

5. Injection of premises (IP): if Γ, x : #Q ` t : P then Γ, x : Q ` t[x :=#x] : P .

6. Contraposition (Contra): if P is classical and Γ, x : P ` t : Q, there is a term
lyx (t) such that Γ, y : Q∼ ` lyx (t) : P∼.

7. Excluded middle: there is a term t+
A such that ` t+

A: (A ∨ ¬A)⊕.

8. Non-contradiction: there is a term t−A such that ` t−A: (A ∧ ¬A)	.

Proof. Weakening and cut are routine by induction on the derivation of the first premise
of the rule.

For general absurdity, it suffices to take:

t ./Q s
def
=


t ��Q s if P = A+

s ��Q t if P = A−

(t •+ s) ��Q (s •− t) if P = A⊕

(s •+ t) ��Q (t •− s) if P = A	

For projection of conclusions, consider the following transformation:

#t def
=


t if P = A⊕

t if P = A	

IC+. t if P = A+

IC−. t if P = A−

For injection of premises, it’s easy to check by induction on the derivation of the
first judgment that Γ, x : Q ` t[x :=#x] : P is a valid judgment.

For contraposition, it suffices to take:

lyx (t)
def
=

{
IC−

(x:A⊕)
. (t ./A− y) if P = A⊕

IC+
(x:A	)

. (t ./A+ y) if P = A	

For excluded middle, it suffices to take:

t+
A

def
= IC+

(x:(A∨¬A)	)
. in2

+(IC+
(y:¬A	)

. ν+π−1 (x •−∆+
y,A))

∆+
y,A

def
= IC+

( :(A∨¬A)	)
. in1

+(IC+
(z:A	)

. (y ./A+ IC+
( :¬A	)

. ν+z))

Dually, for non-contradiction:

t−A
def
= IC−

(x:(A∧¬A)⊕)
. in2
−(IC−

(y:¬A⊕)
. ν−π+

1 (x •+ ∆−y,A))

∆−y,A
def
= IC−

( :(A∧¬A)⊕)
. in1
−(IC−

(z:A⊕)
. (y ./A− IC−

( :¬A⊕)
. ν−z))
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2 Computation

We now turn to studying the computational properties of λprk, provided with the following
notion of reduction:

Definition 28 (The λprk-calculus). Typable terms of λprk are endowed with the following
rewriting rules, closed under arbitrary contexts.

π±i (〈t1, t2〉±)
proj−−→ ti if i ∈ {1, 2}

δ±(in±i (t)) [x.s1][x.s2]
case−−→ si[x := t] if i ∈ {1, 2}

µ±(ν±t)
neg−−→ t

(IC±x . t) •± s
beta−−→ t[x :=s]

〈t1, t2〉+ �� ini
−(s)

absPairInj−−−−−−→ ti ./ s if i ∈ {1, 2}
ini

+(t) �� 〈s1, s2〉−
absInjPair−−−−−−→ t ./ si if i ∈ {1, 2}

(ν+t) �� (ν−s)
absNeg−−−−→ t ./ s

If many occurrences of “±” appear in the same expression, they are all supposed to stand
for the same sign (either + or −).

Example 29. If x : A	 ` t : A+ and y : A⊕ ` s : A− then:

(ν+(IC−y . s)) �� (ν−(IC+
x . t))

−→ (IC−y . s) ./ (IC+
x . t)

= ((IC+
x . t) •+ (IC−y . s)) �� ((IC−y . s) •− (IC+

x . t))

−→ t[x :=(IC−y . s)] �� ((IC−y . s) •− (IC+
x . t))

−→ t[x :=(IC−y . s)] �� s[y :=(IC+
x . t)]

A first, direct, observation is that prk’s duality principle (Lem. 4) can be strengthened
to obtain a computational duality principle for λprk. Note that on Lem. 27, the duality
principle can be used to derive a term for the excluded middle from non-contradiction,
and vice versa.

Lemma 30. If t⊥ is the term that results from flipping all the signs in t, then Γ ` t : P
if and only if Γ⊥ ` t⊥ : P⊥, and t −→ s if and only if t⊥ −→ s⊥.

Proof. The proof is immediate given that all typing and reduction rules are symmetric.

2.1 Subject reduction

The second computational property that we study is subject reduction, also known as
type preservation. This fundamental property ensures that reduction is well-defined over
the set of typable terms. More precisely:

Proposition 31 (Subject reduction). If Γ ` t : P and t −→ s, then Γ ` s : P .

Proof. Recall that a context is a term C with a single free occurrence of a hole 2, and that
C〈t〉 denotes the capturing substitution of the term t into the hole of C. Since reduction
is closed under arbitrary contexts, the term on the left hand side is of the form C〈t0〉 and
it reduces to C〈t1〉 contracting the redex t0. We proceed by induction on the context C

under which the rewriting step takes place.
The interesting case is when the context is empty. All other cases are easy by resorting

to the IH. For example, if C = IC+
x . C

′, the typing derivation is of the form:
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π

Γ, x : A	 ` C′〈t〉 : A+

IC+

Γ ` IC+
x . C

′〈t〉 : A⊕

By IH, there is a derivation π′ ending with Γ, x : A ` C′〈s〉 : A+, so we can build the
following derivation to show that the type is preserved:

π′

Γ, x : A	 ` C′〈s〉 : A+

IC+

Γ ` IC+
x . C

′〈s〉 : A⊕

It remains to check the case when C = 2, i.e. when reduction takes place at the root of
the term. We proceed by case analysis on each of the reduction rules. Note that most rules
actually stand for two rules, depending on the instantiations of the signs. We write only
the positive cases; if the signs are flipped the proof is symmetric. We use the admissible
typing rules Cut and Abs′ (Lem. 27).

• Projection (proj): let i ∈ {1, 2}. We have:

π1

Γ ` t1 : A1
⊕

π2

Γ ` t2 : A2
⊕

I∧+

Γ ` 〈t1, t2〉+ : (A1 ∧A2)+

E∧+
i

Γ ` ti : Ai
⊕

Then:
πi

Γ ` ti : A⊕

• Case (case): let i ∈ {1, 2}. We have:

π

Γ ` t : Ai
⊕

I∨+
i

Γ ` ini
+(t) : (A1 ∨A2)+

π1

Γ, x : A1
⊕ ` s1 : P

π2

Γ, x : A2
⊕ ` s2 : P

E∨+

Γ ` δ+(ini
+(t)) [x.s1][x.s2] : P

Then:
πi

Γ, x : Ai
⊕ ` si : P

π

Γ ` t : Ai
⊕

Cut
Γ ` si[x := t] : P

• Negation (neg): We have:

π

Γ ` t : A	

I¬+

Γ ` ν+t : (¬A)+

E¬+

Γ ` µ+(ν+t) : A	

Then:
π

Γ ` t : A	
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• Beta (beta): we have:

π

Γ, x : A	 ` t : A+

IC+

Γ ` IC+
x . t : A⊕

π′

Γ ` s : A	

EC+

Γ ` (IC+
x . t) •+ s : A+

Then:
π

Γ, x : A	 ` t : A+

π′

Γ ` s : A	

Cut
Γ ` t[x :=s] : A+

• Absurdity Pair-Injection (absPairInj): we have:

π1

Γ ` t1 : A1
⊕

π2

Γ ` t2 : A2
⊕

I∧+

Γ ` 〈t1, t2〉+ : (A1 ∧A2)+

π′

Γ ` s : Ai
	

I∧−i
Γ ` ini

−(s) : (A1 ∧A2)−

Abs
Γ ` 〈t1, t2〉+ ��P ini

−(s) : P

Then:
πi

Γ ` ti : Ai
⊕

π′

Γ ` s : Ai
	

Abs’
Γ ` ti ./P s : P

• Absurdity Injection-Pair (absInjPair): similar to the previous case.

• Absurdity Negation (absNeg):

π

Γ ` t : A	

I¬+

Γ ` ν+t : (¬A)+

π′

Γ ` s : A⊕

I¬−
Γ ` ν−s : (¬A)−

Abs
Γ ` (ν+t) ��P (ν−s) : P

Then:
π

Γ ` t : A	

π′

Γ ` s : A⊕

Abs’
Γ ` t ./P s : P

2.2 Confluence

Third, the λprk-calculus enjoys confluence, the basic property of a rewriting system
stating that given reduction sequences t0 →∗ t1 and t0 →∗ t2 there must exist a term t3
such that t1 →∗ t3 and t2 →∗ t3.

Proposition 32. The λprk-calculus is confluent.
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Proof. The rewriting system λprk can be modeled as a higher-order rewriting system
(HRS) in the sense of Nipkow1. This HRS is orthogonal, i.e. left-linear without critical
pairs, which entails that it is confluent [10].

2.3 Termination

Our next goal is to prove that λprk enjoys strong normalization, that is, that there
are no infinite reduction sequences t1 → t2 → t3 → . . .. To do so, we give a translation
to System F extended with recursive type constraints, and show that it does not erase
reduction steps.

System F Extended with Recursive Type Constraints.

We begin by recalling the extended System F and its relevant properties, as formulated
by Mendler [11].

The set of types in the the extended System F is given by A ::= α | A→ A | ∀α.A where
α, β, . . . are called base types. The set of terms is given by t ::= x | λxA. t | t t | λα. t | t A,
where λα. t is type abstraction and t A is type application. We define the empty (0), unit
(1), product (A×B), and sum types (A+B) via their usual encodings in System F. For

example, the product type is defined as (A × B)
def
= ∀α.((A → B → α) → α) with a

constructor 〈t, s〉 and an eliminator πi(t). See Appendix 2 for a more detailed description
of the Extended System F.

A type constraint is an equation of the form α ≡ A. The extended System F is
parameterized by a set C of type constraints. Each set C of type constraints induces
a notion of equivalence between types, written A ≡ B and defined as the congruence
generated by C. Typing rules are those of the usual System F [12, Section 11.3] extended
with a conversion rule:

Γ ` t : A A ≡ B
Conv

Γ ` t : B

Variables occurring positively (resp. negatively) in a type A are written p(A) (resp. n(A))
and defined as usual:

p(α)
def
= {α} n(α)

def
= ∅

p(A→ B)
def
= n(A) ∪ p(B) n(A→ B)

def
= p(A) ∪ n(B)

p(∀α.A)
def
= p(A) \ {α} n(∀α.A)

def
= n(A) \ {α}

A set of type constraints C verifies the positivity condition if for every type constraint
(α ≡ A) ∈ C and every type B such that α ≡ B one has that α 6∈ n(B). Mendler’s main
result [11, Theorem 13] is:

Theorem 33 (Mendler, 1991). If C verifies the positivity condition, then System F ex-
tended with the recursive type constraints C is strongly normalizing.

1 It suffices to model it with a single sort ι, with constants such as π+
i : ι → ι, IC− : (ι → ι) → ι, etc.,

and rules such as δ+(in+1 x) f g → f x. A complete formulation can be found on the Appendix 3.
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System F Extended with Cpn.

In this subsection, we describe a specific instance of the extended System F, given by a
particular set of recursive type constraints called Cpn. Given that the set of base types is
countably infinite, we may assume without loss of generality that, for any two types A,B
in System F there are two type variables, called pA,B and nA,B. More precisely, the set
of type variables can be partitioned as V ] P ]N in such a way that the propositional
variables of λprk are identified with type variables of V, and there are bijective mappings
(A,B) 7→ pA,B ∈ P and (A,B) 7→ nA,B ∈ N. Note that we do not forbid A and B to have
occurrences of type variables in P and N.2

The particular extension of System F that we use is given by the set of recursive type
constraints Cpn, including the following equations for all types A,B:

pA,B ≡ (nA,B → A) nA,B ≡ (pA,B → B)

Next, we show this set of constraints complies with the positivity condition.

Proposition 34. The set of type constraints Cpn verifies Mendler’s positivity condition

Proof. Define the complexity of a type as follows:

||α|| def
= 1 if α ∈ V

||pA,B|| = ||nA,B|| = ||A→ B|| def
= 1 + ||A||+ ||B||

||∀α.A|| def
= 1 + ||A||

Recall that p(A) (resp. n(A)) stand for the set of type variables occurring positively
(resp. negatively) in a given type A. Moreover, the set of type variables occurring weakly
positively (resp. weakly negatively) in A is written pw(A) (resp. nw(A)) and defined as
follows:

pw(α)
def
= {α} if α ∈ V

pw(pA,B)
def
= {pA,B} ∪ pw(A) ∪ nw(B)

pw(nA,B)
def
= {nA,B} ∪ nw(A) ∪ pw(B)

pw(A→ B)
def
= nw(A) ∪ pw(B)

pw(∀α.A)
def
= pw(A) \ {α}

nw(α)
def
= ∅ if α ∈ V

nw(pA,B)
def
= nw(A) ∪ pw(B)

nw(nA,B)
def
= pw(A) ∪ nw(B)

nw(A→ B)
def
= pw(A) ∪ nw(B)

nw(∀α.A)
def
= nw(A) \ {α}

It is easy to check that p(A) ⊆ pw(A) and n(A) ⊆ nw(A) by simultaneous induction on A.
It is also easy to check that if α ∈ pw(A) ∪ nw(A) then ||α|| ≤ ||A||, by induction on A.
Moreover, let X,Y be types. A type A is said to be (X,Y )-positive if pX,Y ∈ pw(A) or
nX,Y ∈ nw(A). Symmetrically, a type A is said to be (X,Y )-negative if pX,Y ∈ nw(A) or

2 An alternative, perhaps cleaner, presentation would be to define types inductively as A,B, . . . ::= α |
pA,B | nA,B | A→ B | ∀α.A.
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nX,Y ∈ pw(A). It is straightforward to prove the following invariant for the equivalence
A ≡ B between types induced by the recursive type constraints, by induction on the
derivation of A ≡ B.

1. If A ≡ B, then A is (X,Y )-positive if and only if B is (X,Y )-positive.

2. If A ≡ B, then A is (X,Y )-negative if and only if B is (X,Y )-negative.

To prove Mendler’s positivity condition, we must check that given any type variable α of
the form pA,B or of the form nA,B (i.e. α 6∈ V), then whenever α ≡ C we have that α
does not occur negatively in C. We consider two cases, depending on whether α = pA,B
or α = nA,B:

1. Let pA,B ≡ C and suppose that pA,B ∈ n(C). Then we have that pA,B ∈ nw(C),
so C is (A,B)-negative. By the invariant, pA,B is also (A,B)-negative, so either
pA,B ∈ nw(pA,B) or nA,B ∈ pw(pA,B). Both conditions are impossible, indeed:

1.1 Suppose that pA,B ∈ nw(pA,B). Then, given that pA,B does not occur weakly
negatively at the root of pA,B, so it must occur either inside A or inside B, so
||pA,B|| < ||pA,B||, which is a contradiction.

1.2 Suppose that nA,B ∈ nw(pA,B). Then, again, nA,B must occur either inside A
or inside B, so ||nA,B|| < ||pA,B||, which is a contradiction.

2. If nA,B ≡ C then, symmetrically as above, we have that nA,B /∈ n(C).

The set of constraints complies with the positivity condition, therefore:

Corollary 35. System F extended with the recursive type constraints Cpn is strongly nor-
malizing.

Proof. A corollary of Mendler’s theorem and the previous proposition.

Translating λprk to System F Extended with Cpn.

We are now in conditions to define the translation from λprk to System F extended with
the set Cpn of recursive type constraints.

Definition 36 (Translation of Propositions). A proposition P of λprk is translated into
a type [[P ]] of the extended System F, according to the following definition, given by
induction on the measure #(P ) (defined in Section 3):

[[α+]]
def
= α

[[(A ∧B)+]]
def
= [[A⊕]]× [[B⊕]]

[[(A ∨B)+]]
def
= [[A⊕]] + [[B⊕]]

[[(¬A)+]]
def
= 1→ [[A	]]

[[A⊕]]
def
= p[[A+]],[[A−]]

[[α−]]
def
= α→ 0

[[(A ∧B)−]]
def
= [[A	]] + [[B	]]

[[(A ∨B)−]]
def
= [[A	]]× [[B	]]

[[(¬A)−]]
def
= 1→ [[A⊕]]

[[A	]]
def
= n[[A+]],[[A−]]

Moreover, a typing context Γ = (x1 : P1, . . . , xn : Pn) is translated as [[Γ]]
def
= (x1 :

[[P1]], . . . , xn : [[Pn]]).
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Note that the translation of propositions mimicks the equations for the realizability
interpretation discussed in the introduction. In fact, the translation of [[A⊕]] is p[[A+]],[[A−]],
which is equivalent to n[[A+]],[[A−]] → [[A+]] according to the recursive type constraints in
Cpn, and this in turn equals [[A	]]→ [[A+]], just as required. Similarly for the translation
of A	. The translation of (¬A)+ is (1 → [[A	]]) rather than just [[A	]] for a technical
reason, in order to ensure that each reduction step in λprk is simulated by at least one
step in the extended System F.

Definition 37 (Translation of Terms). First, we define a family of terms ` absPQ : [[P ]]→
[[P∼]]→ [[Q]] in the extended System F as follows, by induction on the measure #(P ):

absα
+

Q
def
= λx y. E[[Q]](y x)

absα
−

Q
def
= λx y. E[[Q]](x y)

abs
(A∧B)+

Q
def
= λx y. δy [z.abs

A⊕

Q π1(x) z][z.abs
B⊕

Q π2(x) z]

abs
(A∧B)−

Q
def
= λx y. δx [z.abs

A	

Q z π1(y)][z.abs
B	

Q z π2(x)]

abs
(A∨B)+

Q
def
= λx y. δx [z.abs

A⊕

Q z, π1(y)][z.abs
B⊕

Q z, π2(y)]

abs
(A∨B)−

Q
def
= λx y. δy [z.abs

A	

Q π1(x) z][z.abs
B	

Q π2(x) z]

abs
(¬A)+

Q
def
= λx y. absA

	

Q (x ?) (y ?)

abs
(¬A)−

Q
def
= λx y. absA

⊕

Q (x ?) (y ?)

absA
⊕

Q
def
= λx y. absA

+

Q (x y) (y x)

absA
	

Q
def
= λx y. absA

−

Q (x y) (y x)

where: EA(t) denotes an inhabitant of A whenever t is an inhabitant of the empty type;
δt [x.s][x.u] is the eliminator of the sum type; πi(t) is the eliminator of the product type;
and ? denotes the trivial inhabitant of the unit type. Note that absPQ behaves similarly to
./Q.

Now each typable term Γ ` t : P in λprk can be translated into a term [[Γ]] ` [[t]] : [[P ]]
of the extended System F as follows:

[[x]]
def
= x

[[t ��Q s]]
def
= absA

+

Q [[t]] [[s]]
if Γ ` t : A+ and Γ ` s : A−

[[〈t, s〉±]]
def
= 〈[[t]], [[s]]〉

[[π±i (t)]]
def
= πi([[t]])

[[in±i (t)]]
def
= ini([[t]])

[[δ±t [(x:P ).s][(y:Q).u]]]
def
= δ[[t]] [(x:[[P ]]).[[s]]][(y:[[Q]]).[[u]]]

[[ν±t]]
def
= λx1. [[t]] where x 6∈ fv(t)

[[µ±t]]
def
= [[t]] ?

[[IC±(x:P ). t]]
def
= λx[[P ]]. [[t]]

[[t •± s]] def
= [[t]] [[s]]

It is easy to check that [[Γ]] ` [[t]] : [[P ]] holds in the extended System F by induction on
the derivation of the judgment Γ ` t : P in λprk. Two straightforward properties of the
translation are:

Lemma 38. 1. fv([[t]]) = fv(t); 2. [[t[x :=s]]] = [[t]][x :=[[s]]].
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The key result is the following simulation lemma from which strong normalization
follows:

Lemma 39. If t −→ s in λprk then [[t]] −→+ [[s]] in System F extended with Cpn.

Proof. By case analysis on the rewriting rule used to derive the step t −→ s. Note that
showing contextual closure is immediate, so we only study the cases in which the rewriting
rule is applied at the root:

• Projection (proj):

[[π±i (〈t1, t2〉±)]] = πi(〈[[t1]], [[t2]]〉) −→ [[ti]]

• Case (case):

[[δ±in±i (t) [(x:P ).s1][(x:Q).s2]]]

= δini([[t]]) [(x:[[P ]]).[[s1]]][(x:[[Q]]).[[s2]]]

→ [[si]][x :=[[t]]]
= [[si[x := t]]]

by Lem. 38

• Negation (neg): [[µ±ν±t]] = (λx1. [[t]]) ? −→ [[t]][x := ?] = [[t]] by Lem. 38, since
x 6∈ fv(t) by definition of [[ν±t]].

• Beta (beta): [[(IC±(x:P ). t) •
± s]] = (λx[[P ]]. [[t]]) [[s]] → [[t]][x := [[s]]] = [[t[x := s]]] by

Lem. 38.

• Absurdity Pair-Injection (absPairInj): Let ` t1 : A1
⊕, ` t2 : A2

⊕, and ` s : Ai
	

for some i ∈ {1, 2}. Then:

[[〈t1, t2〉+ ��P ini
−(s)]]

= abs
(A1∧A2)+

P 〈[[t1]], [[t2]]〉 ini([[s]])
−→+ δini([[s]])

[(z:[[A1
	]]).abs

A1
⊕

P π1(〈[[t1]], [[t2]]〉) z]
[(z:[[A2

	]]).abs
A2
⊕

P π2(〈[[t1]], [[t2]]〉) z]
by definition of abs

(A1∧A2)+

P

−→ absAi
⊕

P πi(〈[[t1]], [[t2]]〉) [[s]]

−→ absAi
⊕

P [[ti]] [[s]]

−→+ absAi
+

P ([[ti]] [[s]])([[s]] [[ti]])

by definition of absAi
⊕

P

= [[(ti •+ s) ��P (ti •− s)]]
= [[ti ./P s]]

• Absurdity Injection-Pair (absInjPair): symmetric to the previous case.
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• Absurdity Negation (absNeg): Let Γ ` t : A	 and Γ ` s : A⊕. Then:

[[(ν+t) ��P (ν−s)]]

= abs
(¬A)+

P (λx1. [[t]])(λy1. [[s]])
where x 6∈ fv(t), y 6∈ fv(s)

−→+ absA
	

P ((λx1. [[t]]) ?)((λy1. [[s]]) ?)

by definition of abs
(¬A)+

P

−→+ absA
	

P [[t]] [[s]]

−→+ absA
−

P ([[t]] [[s]]) ([[s]] [[t]])

by definition of absA
	

P

= [[(t •− s) ��P (s •+ t)]]
= [[t ./P s]]

Theorem 40. The λprk-calculus is strongly normalizing.

Proof. An easy consequence of Lem. 39 given that the extended System F is strongly
normalizing (Coro. 35).

2.4 Canonical proofs

In the previous sections we have shown that the λprk-calculus enjoys subject reduction
and strong normalization. This implies that each typable term t reduces to a normal form
t′ of the same type. In this subsection, these results are refined to prove a canonicity
theorem, stating that each closed, typable term t reduces to a canonical term t′ of the
same type. For example, canonical terms of type (A ∨ B)+ are of the form ini

+(t). From
the logical point of view, this means that given a strong proof of (A ∨ B), in a context
without assumptions, one can always recover either a classical proof of A or a classical
proof of B. This shows that prk has a form of disjunctive property.

First we provide an inductive characterization of the set of normal forms of λprk.

Definition 41 (Normal terms). The sets of normal terms (N, . . .) and neutral terms
(S, . . .) are defined mutually inductively by:

N ::= S | 〈N,N〉± | in±i (N)
| ν±N | IC±x:P . N

S ::= x | π±i (S) | δ±S [x.N ][x.N ]
| µ±S | S •±N
| S ��P N | N ��P S

Proposition 42. A term is normal if and only if it does not reduce in λprk.

Proof. (⇒) Let t be a normal term, and let us check that it is a −→-normal form. We
proceed by structural induction on t.

The cases corresponding to introduction rules are straightforward by IH. For example,
if t = 〈N1, N2〉±, then by IH N1 and N2 have no −→-redexes. Moreover, there are no rules
involving a pair 〈−,−〉± at the root, so 〈N1, N2〉± is in −→-normal form.
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The cases corresponding to elimination rules and the absurdity rule are also straightfor-
ward by IH, observing that there cannot be a redex at the root. For example, if t = π±i (S),
then by IH S has no −→-redexes. Moreover, the only rule involving a projection π±i (−) at
the root is proj, which would require that S = 〈t1, t2〉±. But this is impossible —as can
be checked by exhaustive case analysis on S—, so t is in −→-normal form.

(⇐) Let t be a −→-normal form, let us check that it is a normal term. We proceed by
induction on the structure of the term t:

• Variable (x): it is a neutral term.

• Absurdity (t ��P s): by IH, t and s are normal terms. If either t or s is a neutral
term, we are done. We are left to analyze the case in which they are not neutral
terms, i.e. both t and s are built using introduction rules. Note that the types of t
and s are A+ and A− respectively. We proceed by case analysis on the form of the
proposition A. There are four cases:

1. Propositional variable (A = α): This case is impossible, since t only may
be of one of the following forms: 〈N,N〉+, ini

+(N), IC+
x:P . N , or ν+N , none of

which are of type α+.

2. Conjunction (A = (B ∧ C)): Then t is of the form 〈t1, t2〉+ and s is of the
form ini

−(s′) for some i ∈ {1, 2}, so the rule absPairInj may be applied at the
root, contradicting the hypothesis that the term is → -normal.

3. Disjunction (A = B ∨ C): Then t is of the form ini
+(s′) for some i ∈ {1, 2}

and s is of the form 〈t1, t2〉−, so the rule absInjPair may be applied at the root,
contradicting the hypothesis that the term is → -normal.

4. Negation (A = ¬A): Then t is of the form ν+t′ and s is of the form ν−s′, so
the rule absNeg may be applied at the root, contradicting the hypothesis that
the term is → -normal.

• Pair (〈t, s〉±): by IH, t and s are normal terms, so 〈t, s〉± is also a normal term.

• Projection (π±i (t)): by IH, t is a normal term. It suffices to show that t is neutral.
Indeed, if t is a normal but not neutral term, then since the type of t may be either
of the form (A∧B)+ or of the form (A∨B)−, we have that t is of the form 〈s, u〉±.
Then the rule proj may be applied at the root, contradicting the hypothesis that the
term is → -normal.

• Injection (in±i (t)): by IH, t is a normal term, so in±i (t) is also normal.

• Case (δ±t [x.s][x.u]): by IH t, s and u are normal terms. It suffices to show that t
is neutral. Indeed, if t is a normal but not neutral term, then since the type of t
may be either of the form (A ∨ B)+ or of the form (A ∧ B)−, we have that t is of
the form in±i (t′) for some i ∈ {1, 2}. Then the rule case may be applied at the root,
contradicting the hypothesis that the term is → -normal.

• Negation introduction (ν±t): by IH, t is a normal term. Then ν±t is also normal.

• Negation elimination (µ±t): by IH, t is a normal term. It suffices to show that t
is neutral. Indeed, if t is a normal but not neutral term, then since the type of t is
of the form (¬A)±, then t is of the form ν±t′. Then the rule neg may be applied at
the root, contradicting the hypothesis that the term is → -normal.
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• Classical introduction (IC±x:P . t): by IH, t is a normal term, so IC±x:P . t is also
normal.

• Classical elimination (t •± s): by IH, t and s are normal terms. It suffices to show
that t is neutral. Indeed, if t is a normal but not neutral term, then since the type
of t may be either of the form A⊕ or of the form A	, we have that t is of the form
IC±x . t

′. Then the rule beta may be applied at the root, contradicting the hypothesis
that the term is → -normal.

In order to state a canonicity theorem succintly, we introduce some nomenclature. A
term is canonical if it has any of the following shapes:

〈t1, t2〉± in±i (t) ν±t IC±x . t

i.e. it’s normal, but not neutral, at the root.

A typing context is classical if all the assumptions are classical, i.e. of the form A⊕ or
A	. A case-context is a context of the form K ::= 2 | δ±K [x.t][y.s]. An eliminative context
is a context of the form E ::= 2 | π±i (E) | µ±E | K〈E〉. Note that 2 •± t is not eliminative
and that all case-contexts are eliminative. An explosion is a term of the form t ��P s or of
the form t •± s. A term is closed if it has no free variables. A term is open if it not closed,
i.e. it has at least one free variable.

The following theorem has three parts; the first one provides guarantees for closed
terms, whereas the two other ones provide weaker guarantees for terms typable under an
arbitrary classical context.

Theorem 43 (Canonicity).

1. Let ` t : P where t is a normal form. Then t is canonical.

2. Let Γ ` t : A± where Γ is classical and t is a normal form. Then either t is canonical
or t is of the form K〈t′〉 where K is a case-context and t′ is an open explosion.

3. Let Γ ` t : A⊕ or Γ ` t : A	, where Γ is classical and t is a normal form. Then
either t = IC±x . t

′ or t = E〈t′′〉, where E is an eliminative context and t′′ is a variable
or an open explosion.

Proof.

1. Let ` t : P where t is a normal form. Note, by induction on the formation rules
for neutral terms (Def. 41) that a neutral term must have at least one free variable.
But t is typed in the empty typing context, so it must be closed. Hence t is not a
neutral term, so by Prop. 42, it must be canonical.

2. Let Γ ` t : P where Γ is classical and t is a normal form. By Prop. 42 either t is
canonical or it is a neutral term. If t is canonical we are done. If t is a neutral term it
suffices to show the following claim, namely that if Γ ` t : B± is a derivable judgment
such that Γ is classical and t is a neutral term, then t is of the form t = K〈t′〉, where
K is a case-context and t′ is an open explosion. We proceed by induction on the
formation rules for neutral terms (Def. 41):
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• Variable (t = x.): this case is impossible, given that Γ is assumed to be
classical, so Γ ` x : P where P must be of the form C⊕ or C	, hence P cannot
be of the form B±.

• Projection (π±i (S)): this case is impossible, as Γ ` π±i (S) : P where P must
be of the form C⊕ or C	, hence P cannot be of the form B±.

• Case (δ±S [x.N1][x.N2]): by inversion of the typing rules we have that either Γ `
S : (A∨B)+ or Γ ` S : (A∧B)−. In both cases we may apply the IH to conclude
that S is of the form S = K〈t′〉 where K is a case-context and t′ is an open
explosion. Therefore t = δ±(K〈t′〉) [x.N1][x.N2] where now δ±(K) [x.N1][x.N2] is
a case-context.

• Negation elimination (µ±S): this case is impossible, as Γ ` µ±S : P where
P must be of the form C⊕ or C	, hence P cannot be of the form B±.

• Classical elimination (S •±N): then t is an explosion under the empty case-
context. Moreover, S must have at least one free variable so t is indeed an open
explosion.

• Absurdity (S �� N or N �� S): then t is an explosion under the empty
case-context. Moreover, S must have at least one free variable so t is indeed an
open explosion.

3. Let Γ ` t : A⊕ or Γ ` t : A	, where Γ is classical and t is a normal form. By Prop. 42
either t is canonical or it is a neutral term. If t is canonical, then by the constraints
on its type it must be of the form t = IC±x . t

′, so we are done. If t is neutral, it
suffices to show the following claim namely that if Γ ` t : P is a derivable judgment,
with P classical, such that Γ is classical and t is a neutral term, then t is of the form
t = E〈t′〉, where E is an eliminative context and t′ is a variable or an open explosion.
We proceed by induction on the formation rules for neutral terms (Def. 41):

• Variable (t = x): immediate, as t is a variable under the empty eliminative
context.

• Projection (π±i (S)): by inversion of the typing rules, we have that either
Γ ` S : (A ∧B)+ or Γ ` S : (A ∨B)−. In both cases we may apply the second
item of this lemma to conclude that S is of the form S = K〈t′〉 where K is a
case-context and t′ is an open explosion. Therefore t = π±i (K〈t′〉), where now
π±i (K) is an eliminative context.

• Case (δ±S [x.N1][x.N2]): by inversion of the typing rules, we have that either
Γ ` S : (A ∨B)+ or Γ ` S : (A ∧B)−. In both cases we may apply the second
item of this lemma to conclude that S is of the form S = K〈t′〉 where K is an elim-
inative context and t′ is an open explosion. Therefore t = δ±(K〈t′〉) [x.N1][x.N2],
where now δ±(K) [x.N1][x.N2] is an eliminative context.

• Negation elimination (µ±S): by inversion of the typing rules, we have that
Γ ` S : (¬A)±. By the second item of this lemma, S is of the form S = K〈t′〉
where K is a case-context and t′ is an open explosion. Therefore t = µ±K〈t′〉,
where now µ±K is an eliminative context.

• Classical elimination (S •±N): then t is an explosion under the empty elim-
inative context. Moreover, S must have at least one free variable so t is indeed
an open explosion.
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• Absurdity (S �� N or N �� S): then t is an explosion under the empty
eliminative context. Moreover, S must have at least one free variable so t is
indeed an open explosion.

3 Extension: classical extensionality

To conclude the syntactic study of λprk, we discuss that an extensionality rule, similar to
η-reduction in the λ-calculus, may be incorporated to λprk, obtaining a calculus λprk

η that
still enjoys subject reduction, strong normalization, and confluence.

Definition 44. The λprk
η -calculus is defined by extending the λprk calculus with the

following reduction rule:

IC±x . (t •± x)
eta−−→ t if x /∈ fv(t)

It is straightforward to show that λprk
η enjoys subject reduction, extending the proof

of Prop. 31 with an easy case for the eta rule. Furthermore:

Lemma 45 (Local confluence). The λprk
η -calculus has the weak Church–Rosser property.

Proof. Let t0 −→ t1 and t0 −→ t2, and let us show that the diagram can be closed, i.e. that
there is a term t3 such that t1 →∗ t3 and t2 →∗ t3. The proof is by induction on t0 and
by case analysis on the relative positions of the steps t0 −→ t1 and t0 −→ t2. Most cases
are straightforward by resorting to the IH. We study only the interesting cases, when the
patterns of the redexes overlap. There are two such cases:

1. beta/eta: Let x /∈ fv(t). The overlap involves a step (IC±x . t •± x) •± s beta−−→ t •± s and

a step (IC±x . t •± x) •± s eta−−→ t •± s, so the diagram is trivially closed in zero rewriting
steps.

2. eta/beta: Let x /∈ fv(t). The overlap involves a step IC±x . (IC
±
y . t) •± x

eta−−→ IC±y . t and

a step IC±x . (IC
±
y . t) •± x

beta−−→ IC±x . t[y := x]. Note that the targets of the steps are
α-equivalent, so the diagram is trivially closed in zero rewriting steps.

Lemma 46 (Properties of reduction in λprk
η ).

1. Reduction does not create free variables. If t→ t′ then fv(t) ⊇ fv(t′).

2. Substitution (I). Let Γ, x : A ` t : B and Γ ` s : A. If t→ t′ then t[x :=s]→ t′[x :=s].

3. Substitution (II). Let Γ, x : A ` t : B and Γ ` s : A. If s → s′ then t[x := s] →∗
t[x :=s′].

4. Substitution (III). Let Γ, x : A ` t : B and Γ ` s : A. If t →∗ t′ and s →∗ s′ then
t[x :=s]→∗ t′[x :=s′].
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Proof. Items 1., 2., and 3. are by induction on t. Item 4. is by induction on the sum of
the lengths of the sequences t→∗ t′ and s→∗ s′, resorting to the two previous items.

Lemma 47 (Postponement of eta steps). Let t
eta−−→ s

r−→ u where r is a rewriting rule

other than eta. Then there exists a term s′ such that t
r−→+ s′

eta−−→∗ u.

Proof. By induction on t. If the eta step and the r step are not reduction steps at the
root, it is immediate to conclude, resorting to the IH when appropriate.

If the eta step is at the root, then the first step is of the form t = IC±x . (s •± x)
eta−−→ s,

where x /∈ fv(s). Taking s′ := IC±x . (u•± x) we have that t = IC±x . (s•± x)
r−→ IC±x . (u•± x)

eta−−→
u, so we are done. For the last reduction step, we use the fact that reduction does not
create free variables (Lem. 46).

Otherwise, we have that the eta step is not at the root and the r step is at the root.
Then we proceed by case analysis, depending on the kind of rule applied. We only study
the positive cases (the negative cases are symmetric):

• Projection (proj): then we have that t
eta−−→ s = π+

i (〈s1, s2〉+)
proj−−→ si. Recall that

the eta step is not at the root of t. Moreover, it cannot be the case that t = π+
i (t′)

and the eta step is at the root of t′, because the type of t′ must be of the form
(A ∧B)+ but the eta rule can only be applied on a term constructed with a IC±−.−,
whose type is classical. This means that t must be of the form π+

i (〈t1, t2〉+) and that

the eta step is either internal to t1 or internal to t2, which implies that t1
eta−−→∗ s1

and t2
eta−−→∗ s2. Taking s′ := ti we have that t = π+

i (〈t1, t2〉+)
proj−−→ ti

eta−−→∗ si, as
required.

• Case (case): then we have that t
eta−−→ s = δ+ini

+(s0) [y.s1][y.s2]
case−−→ si[y := s0].

Recall that the eta step is not at the root of t. Moreover, it cannot be the case that
t = δ+t′ [y.s1][y.s2] and the eta step is at the root of t′, because the type of t′ must
be of the form (A∨B)+, but the eta rule can only be applied on a term constructed
with a IC±−.−, whose type is classical. This means that t must be of the form
δ+ini

+(t0) [y.t1][y.t2] and that the eta-step is either internal to t0, or internal to t1, or

internal to t2, which implies that t0
eta−−→∗ s0 and t1

eta−−→∗ s1 and t2
eta−−→∗ s2. Taking

s′ := ti[y := t0] we have that t = δ+ini
+(t0) [y.t1][y.t2]

case−−→ ti[y := t0]
eta−−→∗ si[y := s0]

resorting to Lem. 46 for the last step.

• Negation (neg): then we have that t
eta−−→ µ+(ν+s1)

neg−−→ s1. Recall that the eta-
reduction step is not at the root of t. Moreover, it cannot be the case that t = µ+t′

and the eta-reduction step is at the root of t′, because the type of t′ must be of
the form (¬A)+ but the eta rule can only be applied on a term constructed with a
IC±−.−, whose type is classical. This means that t must be of the form µ+(ν+t1) and

that the eta step is internal to t1, i.e. t1
eta−−→ s1. Then taking s′ := t1 we have that

t = µ+(ν+t1)
neg−−→ t1

eta−−→ s1 as required.

• Beta (beta): then we have that t
eta−−→ (IC+

y . s1) •+ s2
beta−−→ s1[y :=s2]. Recall that the

eta step is not at the root of t. There are three cases, depending on the position of
the eta-step:
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1. Immediately to the left of the application. That is, t = t′ •+ s2 and the eta step

is at the root of t′, i.e. t′
eta−−→ IC+

y . s1 is a reduction step at the root. Then
t′ = IC+

x . ((IC
+
y . s1) •+ x), and x 6∈ fv(s1). Hence taking s′ := s1[y :=s2] we have

that
t = (IC+

x . ((IC
+
y . s1) •+ x)) •+ s2

beta−−→ (IC+
y . s1) •+ s2 x 6∈ fv(s1)

beta−−→ s1[y :=s2]

using two beta steps and no eta steps.

2. Inside the abstraction. That is, t = (IC+
y . t1) •+ s2 with t1

eta−−→ s1. Then taking

s′ := t1[y := s2] we have that t = (IC+
y . t1) •+ s2

beta−−→ t1[y := s2]
eta−−→ s1[y := s2]

resorting to Lem. 46 for the last step.

3. To the right of the application. That is, t = (IC+
y . s1) •+ t2 with t2

eta−−→ s2. Then

taking s′ := s1[y := t2] we have that t = (IC+
y . s1) •+ t2

beta−−→ s1[y := t2]
eta−−→∗

s1[y :=s2] resorting to Lem. 46 for the last step.

• Absurdity Pair-Injection (absPairInj): then we have that t
eta−−→ 〈s1, s2〉+ ��

ini
−(s3)

absPairInj−−−−−−→ si ./ s3. Recall that the eta step is not at the root of t. Moreover,
it cannot be the case that t = t′ �� ini

−(s3) and the eta step is at the root of t′,
because the type of t′ must be of the form (A ∧ B)+, but the eta rule can only be
applied on a term constructed with a IC±−.−, whose type is classical. For similar
reasons, it cannot be the case that t = 〈s1, s2〉+ �� t′ with the eta step is at the root
of t′. This means that t must be of the form 〈t1, t2〉+ �� ini

−(t3) and that the eta step

is either internal to t1, internal to t2, or internal to t3. This implies that t1
eta−−→∗ s1

and t2
eta−−→∗ s2 and t3

eta−−→∗ s3. Taking s′ := ti ./ t3 we have that t = 〈t1, t2〉+ ��
ini
−(t3)

absPairInj−−−−−−→ ti ./ t3 = (ti•+ t3) �� (t3•− ti)
eta−−→∗ (si•+ s3) �� (s3•− si) = si ./ s3.

• Absurdity Injection-Pair (absInjPair): Symmetric to the previous case.

• Absurdity Negation (absNeg): then we have that t
eta−−→ (ν+s1) �� (ν−s2)

absNeg−−−−→
s1 ./ s2. Recall that the eta step is not at the root of t. Moreover, it cannot be
the case that t = t′ �� (ν−s2) and the eta step is at the root of t′, because the type
of t′ must be of the form (¬A)+, but the eta rule can only be applied on a term
constructed with a IC±−.−, whose type is classical. For similar reasons, it cannot be
the case that t = ν+s1 �� t′ with the eta step is at the root of t′. This means that
t must be of the form (ν+t1) �� (ν−t2) and that the eta step is either internal to t1

or internal to t2. This implies that t1
eta−−→∗ s1 and t2

eta−−→∗ s2. Taking s′ := t1 ./ t2

we have that t = (ν+t1) �� (ν−t2)
absNeg−−−−→ t1 ./ t2 = (t2 •+ t1) �� (t1 •− t2)

eta−−→∗
(s2 •+ s1) �� (s1 •− s2) = s1 ./ s2.

Theorem 48. The λprk
η -calculus is strongly normalizing and confluent.

Proof. Strong normalization follows from postponement of the eta rule (Lem. 47) and
strong normalization of the calculus without eta (Thm. 40) by the usual rewriting tech-
niques.
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More precisely, let us write
¬eta−−−→ for reduction not using eta, that is,

¬eta−−−→ def
= (−→ \ eta−−→

). Suppose there is an infinite reduction sequence t1 → t2 → t3 . . . in λprk
η . Let t1

¬eta−−−→∗ ti
be the longest prefix of the sequence whose steps are not eta steps. This prefix cannot be
infinite given that λprk is strongly normalizing.

Let ti
eta−−→∗ ti+n be the longest sequence of eta steps starting on ti. This sequence

cannot be infinite given that an eta step strictly decreases the size of the term. Now there

must be a step ti+n
¬eta−−−→ ti+n+1. Applying the postponement lemma (Lem. 47) n times,

we obtain a sequence of the form t1
¬eta−−−→∗ ti

¬eta−−−→ t′i+1 . . .. By repeatedly applying this

argument, we may build an infinite sequence of
¬eta−−−→ steps, contradicting the fact that

λprk is strongly normalizing.
Confluence of λprk

η follows from the fact that it is strongly normalizing and locally
confluent (Lem. 45), resorting to Newman’s Lemma [13, Theorem 1.2.1].
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5. RELATIONSHIP WITH CLASSICAL LOGIC

Intuitionistic logic refines classical logic: each intuitionistically valid formula A is also
classically valid, but there may be many classically equivalent “readings” of a formula
which are not intuitionistically equivalent, such as ¬(A ∧ ¬B) and ¬A ∨B.

System prk refines classical logic in a similar sense. For example, the classical sequent
α ` α may be “read” in prk in various different ways, such as α+ ` α⊕ and α⊕ ` α+,
of which the former holds but the latter does not. In this section we show that prk is
conservative (Prop. 49) with respect to classical logic, and that classical logic may be
embedded (Thm. 50) in prk. We also describe the computational behavior of the terms
resulting from this embedding (Lem. 51).

As a note, we base our study on nk, a Natural Deduction formalization of classical
logic, shown in the Appendix 1.

First, we claim that prk is a conservative extension of classical logic, i.e. if
A⊕1 , . . . , A

⊕
n ` B⊕ holds in prk then the sequent A1, . . . , An ` B holds in classical logic.

More in general:

Proposition 49. Define c(P ) as follows:

c(A⊕)
def
= A c(A	)

def
= ¬A

c(A+)
def
= A c(A−)

def
= ¬A

If the sequent P1, . . . , Pn ` Q holds in prk then the sequent c(P1), . . . , c(Pn) ` c(Q) holds
in classical propositional logic.

Proof. By induction on the derivation of the judgment, observing that all the inference
rules in prk are mapped to classically valid inferences. For example, for the E∧− rule,
note that if Γ ` ¬(A ∧ B) and Γ,¬A ` C and Γ,¬B ` C hold in classical propositional
logic then Γ ` C also holds.

Second, we claim that classical logic may be embedded in prk, that is:

Theorem 50. If A1, . . . , An ` B holds in classical logic then A⊕1 , . . . , A
⊕
n ` B⊕ holds in

prk.

Proof. The proof is by induction on the proof of the sequent A1, . . . , An ` B in Gentzen’s
system of natural deduction for classical logic NK, including introduction and elimination
rules for conjunction, disjunction, and negation (encoding falsity as the pure proposition

⊥ def
= (α0 ∧ ¬α0) for some fixed propositional variable α0), the explosion principle, and

the law of excluded middle. We build the corresponding proof terms in λprk:

• Conjunction introduction: Let Γ ` t : A⊕ and Γ ` s : B⊕. Then Γ ` 〈t, s〉C :
(A ∧B)⊕ where:

〈t, s〉C def
= IC+

( :(A∧B)	)
. 〈t, s〉+

• Conjunction elimination: Let Γ ` t : (A1 ∧A2)⊕. Then Γ ` πCi (t) : Ai
⊕ where:

πCi (t)
def
= IC+

(x:Ai
	)
. π+
i (t •+ IC−

( :(A1∧A2)⊕)
. ini
−(x)) •+ x

45
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• Disjunction introduction: Let Γ ` t : Ai
⊕. Then Γ ` inCi (t) : (A1 ∨A2)⊕ where:

inCi (t)
def
= IC+

( :(A1∨A2)	)
. ini

+(t)

• Disjunction elimination: Let Γ ` t : (A ∨ B)⊕ and Γ, x : A⊕ ` s : C⊕ and
Γ, x : B⊕ ` u : C⊕. Then Γ ` δCt [(x:A⊕).s][(x:B⊕).u] : C⊕, where:

δCt [(x:A⊕).s][(x:B⊕).u]
def
= IC+

(y:C	)
. δ+ (t •+ IC−

( :(A∨B)⊕)
. 〈lyx (s), lyx (u)〉−)

[(x:A⊕).s •+ y]

[(x:B⊕).u •+ y]

Recall that lyx (t) stands for the witness of contraposition (Lem. 27).

• Negation introduction: By Lem. 27 we have that Γ `t−α0
: (α0 ∧ ¬α0)	, that is

Γ `t−α0
: ⊥	. Moreover, suppose that Γ, x : A⊕ ` t : ⊥⊕. Then Γ ` ΛC(x:A⊕). t :

(¬A)⊕, where:

ΛC(x:A⊕). t
def
= IC+

( :(¬A)	)
. ν+IC−

(x:A⊕)
. (t ./A−t

−
α0

)

• Negation elimination: Let Γ ` t : (¬A)⊕ and Γ ` s : A⊕. Then Γ ` t#Cs : ⊥⊕,
where:

t#Cs
def
= t ./⊥⊕ IC−

( :(¬A)⊕)
. ν−s

• Explosion: Let Γ ` t : ⊥⊕. Then Γ ` (t ./Qt−α0
) : Q.

• Excluded middle: It suffices to take tCA
def
= t+

A. Then by Lem. 27, Γ `tCA: (A ∨
¬A)⊕.

Finally, this embedding may be understood as providing a computational interpre-
tation for classical logic. In fact, besides the introduction and elimination rules that have

been proved above, implication may be defined as an abbreviation, (A⇒ B)
def
= (¬A∨B),

and witnesses for its introduction rule λCx:A. t and its elimination rule t @C s may be defined
as follows. If Γ, x : A⊕ ` t : B⊕ then Γ ` λC(x:A). t : (A⇒ B)⊕ where:

λCx. t
def
= IC+

(y:(A⇒B)	)
. in2

+(t[x :=Xy])

Xy
def
= IC+

(z:A	)
. (µ−(X′y,z •− IC+

( :(¬A)	)
. ν+z)) •+ z

X′y,z
def
= π+

1 (y •− IC+
( :(A⇒B)	)

. in1
+(IC+

( :(¬A)	)
. ν+z))

If Γ ` t : (A⇒ B)⊕ and Γ ` s : A⊕, then Γ ` t @C s : B⊕, where:

t @C s
def
= IC+

(x:B	)
.

δ+ (t •+ IC−
( :(A⇒B)⊕)

. 〈(IC−
( :(¬A)⊕)

. ν−s), x〉−)

[(y:(¬A)⊕).s ./B+ µ−(y •+ IC−
( :(¬A)⊕)

. ν−x)]

[(z:B⊕).z •+ x]
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Lemma 51. The following holds in λprk
η (with eta reduction):

πCi (〈t1, t2〉C) →∗ ti
δC inCi (t) [x.s1][x.s2] →∗ si[x := t]

(λCx. t) @
C s →∗ t[x :=s]

δC tCA [x.s1][x.s2] →∗ IC+
y . (s2[x :=s∗1] •+ y)

where s∗1 := IC+. ν+(IC−x . s1 ./ y).

Proof. By calculation. The last rule describes the behaviour of the law of excluded middle.

Simulation of conjunction:

πCi (〈t1, t2〉C)
= IC+

x:Ai
	 . π

+
i ((IC+. 〈t1, t2〉+) •+ IC−. ini

−(x)) •+ x
beta−−→ IC+

x:Ai
	 . π

+
i (〈t1, t2〉+) •+ x

proj−−→ IC+
x:Ai

	 . ti •+ x
eta−−→ ti

Simulation of disjunction:

δC inCi (t) [x.s1][x.s2]
= IC+

(y:C	)
.

δ+

(
IC+

( :(A1∨A2)	)
. ini

+(t)

•+ IC−
( :(A∨B)⊕)

. 〈lyx (s1), lyx (s2)〉−

)
[(x:A⊕).s1 •+ y]

[(x:B⊕).s2 •+ y]
beta−−→ IC+

(y:C	)
. δ+ini

+(t) [(x:A⊕).s1 •+ y][(x:B⊕).s2 •+ y]
case−−→ IC+

(y:C	)
. si[x := t] •+ y

eta−−→ si[x := t]

Simulation of negation:

(ΛCx. t)#
Cs

= (IC+. ν+IC−x . (t ./t
−
α0

)) ./⊥⊕ IC−. ν−s

= ((IC+. ν+IC−x . (t ./t
−
α0

)) •+ IC−. ν−s)

��(IC−. ν−s •− (IC+. ν+IC−x . (t ./t
−
α0

)))

beta−−→ (2) (ν+IC−x . (t ./t
−
α0

)) �� (ν−s)

absNeg−−−−→ ((IC−x . (t ./t
−
α0

)) •+ s) �� (s •− (IC−x . (t ./t
−
α0

)))

beta−−→ (t[x :=s] ./t−α0
) �� (s •− (IC−x . (t ./t

−
α0

)))
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Simulation of implication:

First let u = IC−. 〈(IC−. ν−s), x′〉− and note that:

X′u,z
= π+

1 (u •− IC+
( :(A⇒B)	). in1

+(IC+
( :(¬A)	). ν

+z))
beta−−→ π+

1 (〈(IC−. ν−s), x′〉−)
proj−−→ IC−. ν−s

Hence:

Xu

= IC+
(z:A	). (µ

−(X′u,z •− IC+
( :(¬A)	). ν

+z)) •+ z
→∗ IC+

(z:A	). (µ
−((IC−. ν−s) •− IC+

( :(¬A)	). ν
+z)) •+ z

beta−−→ IC+
(z:A	). (µ

−(ν−s)) •+ z
neg−−→ IC+

(z:A	). s •
+ z

eta−−→ s

Hence:

(λCx. t) @
C s

= IC+
x′ .

δ+
(

(IC+
y . in2

+(t[x :=Xy]))
•+ IC−. 〈(IC−. ν−s), x′〉−

)
[y′ .s ./B+ µ−(y′ •+ IC−. ν−x′)]
[z′ .z

′ •+ x′]
beta−−→ IC+

x′ .
δ+ in2

+(t[x :=Xu])
[y′ .s ./B+ µ−(y′ •+ IC−. ν−x′)]
[z′ .z

′ •+ x′]
case−−→ IC+

x′ . t[x :=Xu] •+ x′
→∗ IC+

x′ . t[x :=s] •+ x′
eta−−→ t[x :=s]

Computational content of the law of excluded middle:

Recall that tCA=t+
A, where:

t+A
def
= IC+

(x:(A∨¬A)	)
. in2

+(IC+
(y:¬A	)

. ν+π−1 (x •−∆+
y,A))

∆+
y,A

def
= IC+

( :(A∨¬A)	)
. in1

+(IC+
(z:A	)

. (y ./A+ IC+
( :¬A	)

. ν+z))
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Let u = IC−. 〈ly
′

x′ (s1), ly
′

x′ (s2)〉−. Then:

δC tCA [x′ .s1][x′ .s2]
= IC+

y′ .

δ+
(

IC+
x . in2

+(IC+
y . ν

+π−1 (x •−∆+
y,A))

•+ u

)
[x′ .s1 •+ y′]
[x′ .s2 •+ y′]

beta−−→ IC+
y′ .

δ+ in2
+(IC+

y . ν
+π−1 (u •−∆+

y,A))

[x′ .s1 •+ y′]
[x′ .s2 •+ y′]

case−−→ IC+
y′ . s2[x′ := IC+

y . ν
+π−1 (u •−∆+

y,A)] •+ y′
beta−−→ IC+

y′ . s2[x′ := IC+. ν+π−1 (〈ly
′

x′ (s1), ly
′

x′ (s2)〉−)] •+ y′
proj−−→ IC+

y′ . s2[x′ := IC+. ν+ly
′

x′ (s1)] •+ y′
= IC+

y′ . s2[x′ := IC+. ν+(IC−x′ . s1 ./ y
′)] •+ y′
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6. SECOND ORDER PRK

In this chapter we extend the results from previous chapters to second order logic. In
particular, we extend λprk to λprk

2 , a system including universal and existential quantifiers.
Then we prove subject reduction (Section 1), we prove confluence (Section 2), and we
characterize normal forms (Section 3). Finally, we show that λprk

2 is conservative with
respect to classical second order logic (Section 4), and that second order logic may be
embedded in λprk

2 (Section 5).

We have attempted, unsuccessfully, to prove termination of this calculus using a sim-
ulation strategy, as done on Section 2.3. The problem is that System F extended with
recursive type constraints does not seem to be expressive enough to work as the target of
the translation. The question of whether λprk

2 is strongly normalizing is left as an open
problem.

Definition 52 (The second order system λprk
2 ). The λprk

2 -calculus extends the λprk-
calculus with the following types, terms, typing rules, and rewriting rules.

The set of types is extended as follows:

A ::= . . .
| ∀α.A universal quantification
| ∃α.A existential quantification

The syntax of terms is extended as follows:

t ::= . . .
| λ±α. t ∀+/∃− introduction
| t •± A ∀+/∃− elimination
| 〈A, t〉± ∃+/∀− introduction
| ∇±(α, x).t.s ∃+/∀− elimination

The following eight typing rules are added:

Γ ` t : A⊕ α 6∈ fv(Γ)
I∀+

Γ ` λ+α. t : (∀α.A)+

Γ ` t : A	 α 6∈ fv(Γ)
I∃−

Γ ` λ−α. t : (∃α.A)−

Γ ` t : (∀α.B)+

E∀+

Γ ` t •+A : B⊕[α :=A]

Γ ` t : (∃α.B)−

E∃−
Γ ` t •−A : B	[α :=A]

Γ ` t : B⊕[α :=A]
I∃+

Γ ` 〈A, t〉+ : (∃α.B)+

Γ ` t : B	[α :=A]
I∀−

Γ ` 〈A, t〉− : (∀α.B)−

Γ ` t : (∃α.A)+ Γ, x : A⊕ ` s : P α 6∈ fv(Γ, P )
E∃+

Γ ` ∇+(α, x).t.s : P

Γ ` t : (∀α.A)− Γ, x : A	 ` s : P α 6∈ fv(Γ, P )
E∀−

Γ ` ∇−(α, x).t.s : P
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The following rewriting rules are added:

(λ±α. t) •± A appT−−−→ t[α :=A]

∇±(α, x).〈A, t〉±.s open−−−→ s[α :=A][x := t]

(λ+α. t) �� 〈A, s〉− absLamPairT−−−−−−−−→ t[α :=A] ./ s

〈A, t〉+ �� (λ−α. s)
absPairLamT−−−−−−−−→ t ./ s[α :=A]

In the rest of this chapter, unless explicited otherwise, the types, terms, typing rules,
and rewriting rules refer to λprk

2 .

1 Subject Reduction

Again, we follow the development done in Prop. 31, and we only show that the new
reduction rules hold at the root of the evaluation context (since by IH any reduction
inside of a term would keep this property valid).

However, we first need to show the admissibility of a type substitution rule, SubT ,
where we define the substitution on propositions and on typing contexts as expected.

Lemma 53. The following rule is admissible on our system.

Γ ` t : P
SubT

Γ[α :=A] ` t[α :=A] : P [α :=A]

Proof. Routinary by induction on the derivation.

Theorem 54 (Second Order Subject Reduction). If Γ ` t : P and t −→ s, then Γ ` s : P .

Proof. Extends the proof of Prop. 31

• Application (
appT−−−→):

π

Γ ` t : B⊕ α 6∈ fv(Γ)
I∀+

Γ ` λ+α. t : ∀α.B+

E∀+

Γ ` (λ+α. t) •+A : B⊕[α :=A]

appT−−−→

π

Γ ` t : B⊕

SubT (Lem. 53)
Γ ` t[α :=A] : B⊕[α :=A]

Note that Γ = Γ[α :=A] since α 6∈ fv(Γ).
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• Unpacking (
open−−−→):

π

Γ ` t : B⊕[α :=A]
I∃+

Γ ` 〈A, t〉± : (∃α.B)+

π′

Γ, x : B⊕ ` s : P α 6∈ fv(Γ, P )
E∃+

Γ ` ∇+(α, x).〈A, t〉+.s : P

open−−−→

π

Γ ` t : B⊕[α :=A]

π′

Γ, x : B⊕ ` s : P
SubT (Lem. 53)

Γ, x : B⊕[α :=A] ` s[α :=A] : P
Sub

Γ ` s[α :=A][x := t] : P

• Absurdity Abstraction-Pair (
absLamPairT−−−−−−−−→):

π

Γ ` t : B⊕ α 6∈ fv(Γ)
I∀+

Γ ` λ+α. t : ∀α.B+

π′

Γ ` s : B	[α :=A]
I∀−

Γ ` 〈A, s〉− : ∀α.B−
Abs

Γ ` (λ+α. t) ��P 〈A, s〉− : P

absLamPairT−−−−−−−−→

π

Γ ` t : B⊕

SubT (Lem. 53)
Γ ` t[α :=A] : B⊕[α :=A]

π′

Γ ` s : B	[α :=A]
Abs

Γ ` t[α :=A] ./P s : P

• Absurdity Pair-Abstraction (
absPairLamT−−−−−−−−→):

Symmetric to
absLamPairT−−−−−−−−→.

2 Confluence

The λprk
2 -calculus enjoys confluence, and it can be proved by extending the higher-order

rewriting system presented on Appendix 3.

Proposition 55. The λprk
2 -calculus is confluent.

Proof. The rewriting system λprk can be modeled as a higher-order rewriting system
(HRS) in the sense of Nipkow. This HRS is orthogonal, i.e. left-linear without critical
pairs, which entails that it is confluent [10].
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3 Characterization of Normal Forms

In this section we will provide a characterization of Normal Forms for λprk
2 , in a similar

way as we did in Section 2.4. The proofs are similar to those in Section 2.4, so we assume
most of the heavy work already done, and we limit ourselves to completing the missing
pieces.

First we provide an inductive characterization of the set of normal forms of λprk
2 .

Definition 56 (Second order normal terms). The sets of normal terms (N, . . .) and neu-
tral terms (S, . . .) are defined mutually inductively by extending Def. 41 in the following
manner:

N ::= . . .
| λ±α.N
| 〈A,N〉±

S ::= . . .
| S •± A
| ∇±(α, x).S.N

Proposition 57. A term is normal if and only if it does not reduce in λprk
2 .

Proof. (⇒) Let t be a normal term, and let us check that it is a −→-normal form. We
proceed by structural induction on t.

The cases corresponding to introduction rules are straightforward by IH. For example,
if t = λ±α.N , then by IH N has no −→-redexes. Moreover, there are no rules involving a
type abstraction λ±α.N at the root, so λ±α.N is in −→-normal form.

The cases corresponding to elimination rules and the absurdity rule are also straight-
forward by IH, observing that there cannot be a redex at the root. For example, if
t = ∇±(α, x).S.N , then by IH S has no −→-redexes. Moreover, the only rule involving a
type opening ∇±(α, x).S.N at the root is open, which would require that S = 〈A, t〉±.
But this is impossible —as can be checked by exhaustive case analysis on S—, so t is in
−→-normal form.

(⇐) Let t be a −→-normal form, let us check that it is a normal term. We proceed by
induction on the structure of the term t, extending the results from Prop. 42:

• Type abstraction (λ±α. t): by IH, t is a normal term, and that is enough.

• Type application (t •± A): by IH, t is a normal term, if it is also neutral, then we
are done. It suffices to show that it cannot be a normal but not neutral term: if it
were then t would need to be of the form λ±α.N , since it would be the only possible
term with the right type ∀α.A±. Then the rule appT may be applied at the root,
contradicting the hypothesis that the term is → -normal.

• Type packing (〈A, t〉±): by IH, t is a normal term, then we are done.

• Type unpacking (∇±(α, x).t.s): by IH t and s are normal terms. It suffices to
show that t is neutral. Indeed, if t is a normal but not neutral term, then since the
type of t must be of the form ∃α.A±, we have that t is of the form 〈B, t′〉±. Then
the rule open may be applied at the root, contradicting the hypothesis that the term
is → -normal.
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Next, we adapt the canonicity results, briefly recalling the definitions and expanding
them to λprk

2 . A term is canonical if it has any of the following shapes:

〈t1, t2〉± in±i (t) ν±t IC±x . t λ±α. t 〈A, t〉±

A typing context is classical if all the assumptions are classical. A case-context is
a context of the form K ::= 2 | δ±K [x.t][y.s] | ∇±(α, x).K.s. An eliminative context is a
context of the form E ::= 2 | π±i (E) | µ±E | E•±A | K〈E〉. Note that 2•± t is not eliminative,
but 2 •± A is, and that all case-contexts are eliminative. An explosion is a term of the
form t ��P s or of the form t •± s. A term is closed if it has no free variables. A term is
open if it not closed, i.e. it has at least one free variable.

Theorem 58 (Canonicity). Extending Thm. 43

1. Let ` t : P where t is a normal form. Then t is canonical.

2. Let Γ ` t : A± where Γ is classical and t is a normal form. Then either t is canonical
or t is of the form K〈t′〉 where K is a case-context and t′ is an open explosion.

3. Let Γ ` t : A⊕ or Γ ` t : A	, where Γ is classical and t is a normal form. Then
either t = IC±x . t

′ or t = E〈t′′〉, where E is an eliminative context and t′′ is a variable
or an open explosion.

Proof.

1. Same as Thm. 43.

2. Let Γ ` t : P where Γ is classical and t is a normal form. By Prop. 57 either t is
canonical or it is a neutral term. If t is canonical we are done. If t is a neutral term it
suffices to show the following claim, namely that if Γ ` t : B± is a derivable judgment
such that Γ is classical and t is a neutral term, then t is of the form t = K〈t′〉, where
K is a case-context and t′ is an open explosion. Most of the cases are the same as in
Thm. 43, we show the two new ones:

• Type application (S •± A): this case is impossible, as Γ ` S •± A : P where
P must be of the form C⊕ or C	, hence P cannot be of the form B±.

• Type unpacking (∇±(α, x).S.N): by inversion of the typing rules we have
that either Γ ` S : (∃β.A)+ or Γ ` S : (∀β.A)−. In both cases we may
apply the IH to conclude that S is of the form S = K〈t′〉 where K is a case-
context and t′ is an open explosion. Therefore t = ∇±(α, x).(K〈t′〉).N where
now ∇±(α, x).(K).N is a case-context.

3. Let Γ ` t : A⊕ or Γ ` t : A	, where Γ is classical and t is a normal form. By Prop. 57
either t is canonical or it is a neutral term. If t is canonical, then by the constraints
on its type it must be of the form t = IC±x . t

′, so we are done. If t is neutral, it suffices
to show the following claim namely that if Γ ` t : P is a derivable judgment, with
P ∈ {B⊕, B	}, such that Γ is classical and t is a neutral term, then t is of the form
t = E〈t′〉, where E is an eliminative context and t′ is a variable or an open explosion.
Most cases are the same as in Thm. 43, we show the two new ones:
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• Type application (S •± A): by inversion of the typing rules, we have that
either Γ ` S : (∀α.B)+ or Γ ` S : (∃α.B)−. In both cases we may apply the
second item of this lemma to conclude that S is of the form S = K〈t′〉 where K

is a case-context and t′ is an open explosion. Therefore t = K〈t′〉 •± A, where
now K •± A is an eliminative context.

• Type unpacking (∇±(α, x).S.N): by inversion of the typing rules we have
that either Γ ` S : (∃β.A)+ or Γ ` S : (∀β.A)−. In both cases we may apply
the second item of this lemma to conclude that S is of the form S = K〈t′〉 where
K is a case-context and t′ is an open explosion. Therefore t = ∇±(α, x).(K〈t′〉).N
where now ∇±(α, x).(K).N is an eliminative context.

4 Conservativity

As in Prop. 49 we show that λprk
2 is conservative with respect to classical second order

logic, via a translation of judgments from λprk
2 into classical second order logic, and we

show that every derivable judgment in λprk
2 is mapped to a valid classical proposition.

Theorem 59 (Conservativity of λprk
2 ). Define c(−) as in Prop. 49:

c(A⊕)
def
= A c(A	)

def
= ¬A

c(A+)
def
= A c(A−)

def
= ¬A

If P1, . . . , Pn ` Q is derivable, then c(P1), . . . , c(Pn) ` c(Q) is a classically valid propo-
sition.

Proof. The proof is straightforward by showing the admissibility of rules by induction on
the derivation of P1, . . . , Pn ` Q.

For instance, if the last typing step is I∃−, then Q = (∃α.A)− and:

P1, . . . , Pn ` A	 α 6∈ fv(P1, . . . , Pn)
I∃−

P1, . . . , Pn ` (∃α.A)−

By IH we know that c(P1), . . . , c(Pn) ` ¬A, and that α 6∈ fv(c(P1), . . . , c(Pn)), since
c(P ) doesn’t change the free variables of P .

Therefore, we can show, in second order logic, that c(P1), . . . , c(Pn) ` ∀α.¬A, which
is classically equivalent to c(P1), . . . , c(Pn) ` ¬∃α.A, which is exactly what we were after:
c(P1), . . . , c(Pn) ` c((∃α.A)−).

5 Embedding

To show that classical second order logic may be embedded in λprk
2 , we extend the results of

Thm. 50 by showing the admissibility of all the inference schemes, laid out on Appendix 1.1.

Theorem 60 (Second Order Completeness). If A is a classically valid proposition, then
` A⊕ is derivable.
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Proof. In general, if A1, . . . , An ` B is derivable in natural deduction with the law of
excluded middle and universal and existential quantification, then x1 : A1

⊕, . . . , xn : An
⊕ `

B⊕ is derivable in our second order system. It suffices to show that the extra inference
schemes are admissible.

• Universal Quantification Introduction (I∀ND):
Let:

Γ ` t : A⊕ α 6∈ fv(Γ)

We define:
λCα. t

def
= IC+

:(∀α.A)	 . λ
+α. t

Then Γ ` λCα. t : ∀α.A⊕.

• Universal Quantification Elimination (E∀ND):
Let

Γ ` t : ∀α.B⊕

We define:

t •C A def
= IC+

x:B[α:=A]	 . ((t •
+ IC−

:∀α.B⊕ . 〈A, x〉
−) •+A) •+ x

Then Γ ` t •C A : B[α :=A]⊕.

• Existential Quantification Introduction (I∃ND):
Let

Γ ` t : B[α :=A]⊕

And define:
〈A, t〉C def

= IC+
:∃α.B	 . 〈A, t〉

+

Then Γ ` 〈A, t〉C : ∃α.B⊕.

• Existential Quantification Elimination (I∃ND):
Let

Γ ` t : ∃α.A⊕ Γ, x : A⊕ ` s : B⊕ α 6∈ fv(Γ, B)

Then, we define:

∇C(α, x).t.s
def
= IC+

y:B	 . (∇
+(α, x).t •+ IC−

:∃α.A⊕ . λ
−α. lyx (s).s) •+ y

Finally, Γ ` ∇C(α, x).t.s : B⊕.
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7. CONCLUSION

In this thesis we have introduced the logical system prk, a proof system formulated
in natural deduction style, distinguishing between strong and classical propositions, and
between proofs and refutations of propositions. The system has been studied in depth.

First, we have formulated a notion of Kripke semantics for system prk. This provides a
deeper understanding of how prk treats classicality: a classical formula can be considered
valid if its refutation makes the world collapse (i.e. makes the context inconsistent).

The main interest point of prk is that it can be given a well behaved computational
interpretation. To this aim, we have defined λprk, a calculus whose type system corre-
sponds to prk, and we have demonstrated that it enjoys subject reduction, confluence,
strong normalization, and a notion of canonical proof. The proof of strong normaliza-
tion, even if not particularly innovative, is nontrivial, and it is based on a translation of
λprk into System F extended with recursive equations between types. System F extended
with these recursive equations is strongly normalizing as a consequence of the work by
Mendler [11], because we only require non-strictly positive recursion. The translation does
not erase reduction steps, which means that λprk is also strongly normalizing.

We have studied the relationship between prk and classical logic. In particular, we
have shown that every valid formula in prk can be projected to a valid formula in classical
logic (via a forgetful mapping) and, conversely, every classically valid formula can be
embedded into prk. What is more, this embedding has an interesting computational
interpretation when considered as terms of λprk

η , an extension of λprk with η-like reduction.

Finally, we have opened up the field of study for prk by showing an extension to
second order logic, introducing second-order universal and existential quantifiers, and we
have presented a calculus for it, dubbed λprk

2 . This extension has been shown to enjoy
most of the properties that were proved for λprk other than strong normalization, which
remains as an open conjecture.

We hope that this foundational work on prk may stimulate other people to keep
investigating these ideas.

1 Related Work

Constructible falsity The idea of defining negation by means of constructive refutations,
as opposed to negation defined by reduction to absurdity, was already studied over 70
years ago by Nelson [6]. As stated on the introduction, our work can be understood as
the result of adding an extra axis across types (formulas) besides the positive vs. negative
distinction, the distinction between strong vs. classical types. In spite of the similarities
between Nelson’s work and our own, it is worthy to mention that Nelson did not have the
goal in mind to formulate a logic in which classical logic could be embedded.

Other computational interpretations of classical logic The quest for the computational
meaning behind classical logic is not a novel point of this work. A lot of research has been
previously done towards this goal. In particular we can mention Parigot’s λµ-calculus [2],
Barbanera and Berardi’s symmetric lambda calculus (λSymProp) [3], and Curien and Herbe-

lin’s λ̄µµ̃-calculus [4]. These calculi have been heavily studied, and many of the desired

59
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properties (confluence, strong normalization, etc.) have been proved to hold.
A more in-depth study of the relationship between these calculi and λprk could be of

interest and we leave it as future work. We believe that our work offers a different per-
spective. In particular, by using a form of constructible falsity, as presented by Nelson[6],
we provide a calculus with an explicit, and clear, duality between proofs and refutations,
that moves away from the duality between values and continuations presented by Parigot,
and by Curien and Herbelin; or even from the syntactic approach to handle negation used
by Barbanera and Berardi.

Kripke semantics for classical logic Our definition of Kripke model is slightly different
from that found on other works, but it shares many traits with the one presented by Ilik,
Lee, and Herbelin [9] to provide a Kripke semantics for classical logic. Both notions of
semantics consider differentiated sets of positive and negative base variables, and build up
from these.

2 Future work

We believe prk has the potential to become a fruitful source for future work, we outline
some potential ideas below.

Second order logic The first, obvious, line of work is to complete the study of strong
normalization for the second order version of the calculus, λprk

2 , presented in Section 6.
In particular, we have no reason to believe this calculus is not strongly normalizing, but
the proof techniques that we used for λprk do not appear to be directly applicable.

Kripke Models Our notion of Kripke semantics, as presented on Section 3, could be
studied by itself, as a notion of Kripke semantics for classical logic. In particular, a
relationship between our notion of model and the one of Ilik et al. [9] may be established.

Sequent calculus Although natural deduction, as a framework to define a logical system,
is better suited to our goal of studying prk from the point of view of the propositions-as-
types correspondence, a sequent calculus system for prk could offer an interesting alter-
native point of view of the system, specially given that prk has some pleasant symmetries
proper of sequent calculi.
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1 Natural Deduction for classical logic

Definition 61 (Natural deduction for classical logic). Propositions are given by:

A ::= α | A ∧A | A ∨A | ¬A

We write ⊥ for (α0 ∧ ¬α0), where α0 is some fixed propositional variable. Inference rules
are given by:

AxND
Γ, A ` A

Γ ` A Γ ` B
I∧ND

Γ ` A ∧B

Γ ` A1 ∧A2 i ∈ {1, 2}
E∧iND

Γ ` Ai

Γ ` Ai i ∈ {1, 2}
I∨iND

Γ ` A1 ∨A2

Γ ` A ∨B Γ, A ` C Γ, B ` C
E∨ND

Γ ` C

Γ, A ` ⊥
I¬ND

Γ ` ¬A

Γ ` A Γ ` ¬A
E¬ND

Γ ` ⊥
LEMND

Γ ` A ∨ ¬A

1.1 ... and its extension to second order

Def. 61 is extended to second order logic as follows:

Definition 62 (Extension of Natural Deduction for Second Order Classical Logic). The
set of propositions is extended as follows:

A ::= . . . | ∀α.A | ∃α.A

The set of inference rules is extended as follows:

Γ ` A α 6∈ fv(Γ)
I∀ND

Γ ` ∀α.A

Γ ` ∀α.B
E∀ND

Γ ` B[α :=A]

Γ ` B[α :=A]
I∃ND

Γ ` ∃α.B

Γ ` ∃α.A Γ, A ` P α 6∈ fv(Γ, P )
E∃ND

Γ ` P

2 System F with Mendler recursion

2.1 System F Extended with Recursive Type Constraints

Definition 63 (Extended System F). The set of types is given by:

A,B, . . . ::= α | A→ B | ∀α.A

61
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The set of terms is given by:

t, s, . . . ::= x | λxA. t | t s | λα. t | t A

we omit type annotations over variables when clear from the context. A type constraint
is an equation of the form α ≡ A. Each set C of type constraints induces a notion of
equivalence between types, written A ≡ B and defined as the congruence generated by C.
More precisely:

(A ≡ B) ∈ C
constr

A ≡ B
refl

A ≡ A
A ≡ B

sym
B ≡ A

A ≡ B B ≡ C
trans

A ≡ C

A ≡ B
cong

C[α :=A] ≡ C[α :=B]

We suppose that C is fixed. Typing judgments are of the form Γ ` t : A.

Ax
Γ, x : A ` x : A

Γ ` t : A A ≡ B
Conv

Γ ` t : B

Γ, x : A ` t : B
I→

Γ ` λxA. t : A→ B

Γ ` t : A→ B Γ ` s : A
E→

Γ ` t s : B

Γ ` t : A α /∈ fv(Γ)
I∀

Γ ` λα. t : ∀α.A

Γ ` t : ∀α.A
E∀

Γ ` tB : A[α :=B]

Reduction is defined as the closure by arbitrary contexts of the following rewriting rules:

(λx. t) s → t[x :=s]
(λα. t)A → t[α :=A]

Definition 64 (Positive/negative occurrences). The set of type variables occurring posi-
tively (resp. negatively) in a type A are written p(A) (resp. n(A)) and defined by:

p(α)
def
= {α} n(α)

def
= ∅

p(A→ B)
def
= n(A) ∪ p(B) n(A→ B)

def
= p(A) ∪ n(B)

p(∀α.A)
def
= p(A) \ {α} n(∀α.A)

def
= n(A) \ {α}

Definition 65 (Positivity condition). A set of type constraints C verifies the positivity
condition if for every type constraint (α ≡ A) ∈ C and every type B such that α ≡ B one
has that α 6∈ n(B).

Theorem 66 (Mendler). If C verifies the positivity condition, then System F extended
with the recursive type constraints C is strongly normalizing.

Proof. See [11, Theorem 13].

Abbreviations. We define the following standard abbreviations for types:

1
def
= ∀α.(α→ α)

0
def
= ∀α.α

¬A def
= A→ 0

A×B def
= ∀α.((A→ B → α)→ α)

A+B
def
= ∀α.((A→ α)→ (B → α)→ α)
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And the following terms. We omit the typing contexts for succintness:

?
def
= λα. λxα. x
: 1

EA(t)
def
= t A
: A

if t : 0

〈t, s〉 def
= λα. λfA→B→α. f t s
: A×B

if t : A and s : B

πi(t)
def
= t Ai (λxA1

1 . λxA2
2 . xi)

: Ai
if t : A1 ×A2

ini(t)
def
= λα. λfA1→α

1 . λfA2→α
2 . fi t

: A1 +A2

if t : Ai and i ∈ {1, 2}

δt [x:A1
.s1][x:A2

.s2]
def
= tB (λxA1 . s1) (λxA2 . s2)
: B

if t : A1 +A2 and si : B
for each i ∈ {1, 2}

3 Higher-Order Rewriting System formalization

Encoding λprk as a Higher-Order Rewriting System allows us to prove confluence easily,
by showing that is orthogonal, i.e. left-linear without critical pairs, which entails that it
is confluent [10].

On top of that, an increasing number of automated tools to prove different properties
on these systems exist, by providing a model of our development on a standard language
we make it easier to experiment with it.

The model is presented in the format used at the Confluence Competition [14], and
the different tools can be tried online [15]1.

(FUN

pi1p : a -> a

pi2p : a -> a

pairp : a -> a -> a

in1p : a -> a

in2p : a -> a

deltap : a -> (a -> a) -> (a -> a) -> a

nup : a -> a

mup : a -> a

icp : (a -> a) -> a

ecp : a -> a -> a

1 We recomend the 2020 HRS SOL tool.
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pi1n : a -> a

pi2n : a -> a

pairn : a -> a -> a

in1n : a -> a

in2n : a -> a

deltan : a -> (a -> a) -> (a -> a) -> a

nun : a -> a

mun : a -> a

icn : (a -> a) -> a

ecn : a -> a -> a

abs : a -> a -> a

)

(VAR

f : a -> a

g : a -> a

t : a

s : a

u : a

t1 : a

t2 : a

)

(RULES

pi1p (pairp t1 t2) -> t1,

pi2p (pairp t1 t2) -> t2,

deltap (in1p t) f g -> f t,

deltap (in2p t) f g -> g t,

mup (nup t) -> t,

ecp (icp f) t -> f t,

pi1n (pairn t1 t2) -> t1,

pi2n (pairn t1 t2) -> t2,

deltan (in1n t) f g -> f t,

deltan (in2n t) f g -> g t,

mun (nun t) -> t,

ecn (icn f) t -> f t,

abs (pairp t s) (in1n u) -> abs (ecp t u) (ecn u t),

abs (pairp t s) (in2n u) -> abs (ecp s u) (ecn u s),

abs (in1p u) (pairn t s) -> abs (ecp u t) (ecn t u),

abs (in2p u) (pairn t s) -> abs (ecp u s) (ecn s u),

abs (nup t) (nun s) -> abs (ecp s t) (ecn t s),

)
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3.1 ... its extension for λprk
η

This formalization can be extended to λprk
η , simply by adding the corresponding rules.

(FUN

pi1p : a -> a

pi2p : a -> a

pairp : a -> a -> a

in1p : a -> a

in2p : a -> a

deltap : a -> (a -> a) -> (a -> a) -> a

nup : a -> a

mup : a -> a

icp : (a -> a) -> a

ecp : a -> a -> a

pi1n : a -> a

pi2n : a -> a

pairn : a -> a -> a

in1n : a -> a

in2n : a -> a

deltan : a -> (a -> a) -> (a -> a) -> a

nun : a -> a

mun : a -> a

icn : (a -> a) -> a

ecn : a -> a -> a

abs : a -> a -> a

)

(VAR

f : a -> a

g : a -> a

t : a

s : a

u : a

t1 : a

t2 : a

x : a

)

(RULES

pi1p (pairp t1 t2) -> t1,

pi2p (pairp t1 t2) -> t2,

deltap (in1p t) f g -> f t,

deltap (in2p t) f g -> g t,

mup (nup t) -> t,

ecp (icp f) t -> f t,
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pi1n (pairn t1 t2) -> t1,

pi2n (pairn t1 t2) -> t2,

deltan (in1n t) f g -> f t,

deltan (in2n t) f g -> g t,

mun (nun t) -> t,

ecn (icn f) t -> f t,

abs (pairp t s) (in1n u) -> abs (ecp t u) (ecn u t),

abs (pairp t s) (in2n u) -> abs (ecp s u) (ecn u s),

abs (in1p u) (pairn t s) -> abs (ecp u t) (ecn t u),

abs (in2p u) (pairn t s) -> abs (ecp u s) (ecn s u),

abs (nup t) (nun s) -> abs (ecp s t) (ecn t s),

icp (\x. ecp t x) -> t,

icn (\x. ecn t x) -> t,

)

3.2 ... and its extension for λprk
2

Finally, it can also be extended to the second order version of our calculus, λprk
2 , by

introducing the necessary term constructors and their corresponding reduction rules.

(FUN

pi1p : a -> a

pi2p : a -> a

pairp : a -> a -> a

in1p : a -> a

in2p : a -> a

deltap : a -> (a -> a) -> (a -> a) -> a

nup : a -> a

mup : a -> a

icp : (a -> a) -> a

ecp : a -> a -> a

lamp : (T -> a) -> a

appp : a -> T -> a

exp : T -> a -> a

dexp : (T -> a -> a) -> a -> a

pi1n : a -> a

pi2n : a -> a

pairn : a -> a -> a

in1n : a -> a

in2n : a -> a

deltan : a -> (a -> a) -> (a -> a) -> a

nun : a -> a

mun : a -> a

icn : (a -> a) -> a
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ecn : a -> a -> a

lamn : (T -> a) -> a

appn : a -> T -> a

exn : T -> a -> a

dexn : (T -> a -> a) -> a -> a

abs : a -> a -> a

)

(VAR

f : a -> a

g : a -> a

t : a

s : a

u : a

t1 : a

t2 : a

A : T

B : T

Flam : T -> a

Fdex : T -> a -> a

)

(RULES

pi1p (pairp t1 t2) -> t1,

pi2p (pairp t1 t2) -> t2,

deltap (in1p t) f g -> f t,

deltap (in2p t) f g -> g t,

mup (nup t) -> t,

ecp (icp f) t -> f t,

appp (lamp Flam) A -> Flam A,

dexp Fdex (exp A t) -> Fdex A t,

pi1n (pairn t1 t2) -> t1,

pi2n (pairn t1 t2) -> t2,

deltan (in1n t) f g -> f t,

deltan (in2n t) f g -> g t,

mun (nun t) -> t,

ecn (icn f) t -> f t,

appn (lamn Flam) A -> Flam A,

dexn Fdex (exn A t) -> Fdex A t,

abs (pairp t s) (in1n u) -> abs (ecp t u) (ecn u t),

abs (pairp t s) (in2n u) -> abs (ecp s u) (ecn u s),

abs (in1p u) (pairn t s) -> abs (ecp u t) (ecn t u),

abs (in2p u) (pairn t s) -> abs (ecp u s) (ecn s u),
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abs (nup t) (nun s) -> abs (ecp s t) (ecn t s),

abs (lamp Flam) (exn A t) -> abs (ecp (Flam A) t) (ecn t (Flam A)),

abs (exp A t) (lamn Flam) -> abs (ecp t (Flam A)) (ecn (Flam A) t),

)
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