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Abstract

The development of multicellular organisms requires precise control of gene expres-
sion across time and space. Recently developed experimental techniques are allowing
for monitoring live transcriptional activity in the fruit fly embryo, by fluorescently
tagging nascent mRNA molecules at specific genes. By extracting fluorescent traces
from individual nuclei, transcriptional activity can be quantified across time and
space in the developing embryo. Analyzing data from the eve gene, we encounter
transcription occurs in random bursts, rather than at a predictable rate. We develop
a probabilistic model to account for this phenomenon, based on the transition of
genes between different ON and OFF transcriptional states. To infer these latent
states, we develop a Reversible–jump Markov chain Monte Carlo algorithm, able to
handle parameter spaces of varying dimensionality. Our initial results suggest tran-
sition rates are modulated across the embryo, and contribute to the establishment of
the observed expression pattern. The line of work we have started opens interesting
possibilities for further inquiry into the mechanisms of transcriptional regulation in
the future.

Keywords: gene regulation, transcriptional bursting, Bayesian Inference, Reversible–
jump Markov chain Monte Carlo



Resumen

El desarrollo de organismos multicelulares requiere del preciso control de la ex-
presión genética a lo largo del tiempo y del espacio. Técnicas experimentales re-
cientes permiten monitorear en vivo la actividad transcripcional en en el embrión
de mosca, mediante el etiquetado fluorescente de moléculas de ARN naciente en
genes espećıficos. A partir de la extracción de trazas fluorescentes de cada núcleo,
se puede cuantificar la actividad transcripcional a lo largo del tiempo y el espa-
cio durante el desarrollo embrionario. Al analizar datos del gen eve, encontramos
que su transcripción ocurre en ráfagas. Desarrollamos un modelo probabiĺıstico de
este fenómeno, basado en la transición del gen entre diferentes estados transcrip-
cionales, activos e inactivos. Para inferir estos estados subyacentes, desarrollamos
un algoritmo de Reversible–jump Markov chain Monte Carlo, capaz de soportar es-
pacios de parámetros de dimensión variable. Los resultados preliminares sugieren
que las tasas de transición entre estados son moduladas a lo largo del embrión, con-
tribuyendo al establecimiento de los patrones de expresión observados. Esta ĺınea
de trabajo abre interesantes posibilidades para seguir investigando los mecanismos
de regulación transcripcional en el futuro.

Palabras clave: regulación génica, ráfagas de transcripción, Inferencia Bayesiana,
Reversible–jump Markov chain Monte Carlo
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Outline

Chapters 1 and 2 are introductory. Chapter 1 provides some biological background,
and presents the statistical problem of inferring transcriptional dynamics from live
imaging data. Chapter 2 introduces Bayesian inference, the statistical framework in
which we frame the problem, and Markov chain Monte Carlo, the general class of
algorithms we use to perform inference.

In Chapters 3 and 4 we present a new method to solve the problem at hand.
In Chapter 3 we define in detail a probabilistic model of transcriptional dynamics,
under the Bayesian framework. Chapter 4 presents a Reversible–jump Markov chain
Monte Carlo algorithm, designed to infer the parameters of our Bayesian model.

In Chapters 5 and 6 our new method is applied to different datasets. Chapter 5
describes the evaluation of the performance of the algorithm using synthetic data.
In Chapter 6, we run the algorithm on experimental data and analyze the results.

Chapter 7 presents the conclusions of the current work and discusses new direc-
tions for the future.
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Chapter 1

Biological background

Living organisms are very complex systems, with the remarkable ability to make
copies of themselves. Their reproducibility is made possible by the encoding of de-
velopment and functioning in a simple digital language, DNA, a long chain composed
of four nucleotide subunits. The central dogma of molecular biology describes how
information flows from DNA to proteins, large versatile biomolecules that carry out
most of the functions in the cell (Figure 1.1).

Figure 1.1: The central dogma of molecular biology describes the flow of information
from DNA to RNA to protein. Proteins can have diverse roles, including regulating
the transcription of genes.

A sequence of DNA, called gene, is transcribed into another nucleotide sequence,
messenger RNA (mRNA), by a molecule called RNA polymerase. mRNA is later
translated at ribosomes into proteins, sequences of peptides that acquire complex
three–dimensional shapes. Proteins can take many roles, for instance, Hemoglobin
carries oxygen in red blood cells. Equally as important than to know how to build
certain proteins, it is important to know when and where to build them. Some genes
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encode proteins with the sole function of regulating the expression of other genes.
Figure 1.2 shows a complex gene regulatory network arising in the development of
the sea urchin embryo, resembling a computer circuit.

Figure 1.2: Complex gene regulatory network in the developing sea urchin embryo.
Each small box represents a gene. Genes in gray are the input of the system, genes
in yellow are transcriptional regulators (the logic of the system), and genes in green
and blue are outputs. Arrows indicate a positive transcriptional control, while lines
ending in bars indicate negative transcriptional control. (Figure from [A+14])

Transcription is the first step of gene expression, and as such, it is where a large
part of regulatory logic is focused. Before starting transcription, RNA polymerase
must bind to a DNA region called the promoter, situated next to the gene. The
rate of binding of RNA polymerase at the promoter depends on the interaction of
a large number of proteins, called transcription factors (Figure 1.3). The promoter
is part of a larger DNA section, the control region for the gene, that specifies which
transcription factors can bind to it and control the rate of transcription initiation.

7



In principle, combinatorial binding of transcription factors allows for multiple rates
of transcription.

Figure 1.3: Typical control region of an eukaryotic gene. Multiple proteins interact
with RNA polymerase and affect its binding to the promoter. The looping of DNA
allows proteins bound to distant regions to participate in the regulation of the gene
(Figure from [A+14])

1.1 Development of the fruit fly embryo

The developing embryo of the fruit fly Drosophila melanogaster is a model system
for studying gene expression and its regulation. In the early embryo, multiple nuclei
divide rapidly in a common cytoplasm, called synctium. This enables the propaga-
tion of regulatory signals via the free diffusion of transcription factors—there is no
need for complex cell–to–cell communication.

One of the early signals in the developing embryo is initiated by the deposit of
bicoid mRNA by the mother, before fertilization, at the anterior end (Figure 1.4).
Upon fertilization, this mRNA is translated locally and the protein product diffuses
along the embryo, establishing a concentration gradient along the anterior–posterior
(AP) axis. Bicoid protein is a transcription factor, and its uneven concentration
provides individual nuclei a cue of their spatial position along the AP axis.
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Figure 1.4: (A) Bicoid mRNA is deposited by the mother at the anterior end, before
fertilization. (B) Upon fertilization, mRNA is translated and Bicoid protein diffuses
establishing a gradient along the AP axis. (Figure from [A+14])

The expression pattern of the even–skipped (eve) gene, forming seven stripes, is
one of the most well–studied in developmental biology. In particular, the regulatory
elements involved in the formation of the second stripe have been identified (Figure
1.5). The stripe appears in nuclear cycle 14 (i.e., after 14 rounds of cell division).
Transcription is confined to the region along the AP axis where two input activators
are present at a high concentration and two repressors are present at a low concen-
tration. This striped expression pattern is fundamental to the development of body
segments in the fly. Interestingly, this stripe only exists for a few minutes (Figure
1.5 (D)), a discovery made possible by recently developed techniques, described in
the next section.
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Figure 1.5: (A) Static view of the eve stripe 2 expression pattern. (B) Concentration
of transcription factors regulating eve transcription and defining the second stripe.
Bicoid and Hunchback are transcriptional activators, while Giant and Kruppel are
transcriptional repressors. (C) DNA region regulating eve transcription, containing
binding sites for the transcription factors. (D) Dynamic view of the eve stripe 2
expression pattern, obtained using the technique described in Section 1.2. Time
markings are relative to the start of nuclear cycle 14 (nc 14).

1.2 Live imaging of transcriptional activity

A recently developed method allows for monitoring transcriptional activity in live
Drosophila embryos [GTLG13]. This technique is based on fluorescently tagging
nascent mRNA molecules at a specific gene, using the MS2-GFP system (Figure 1.6).
GFP is dispersed all along the embryo, but there will be localized concentrations at
the target genes while they are being actively transcribed (Figure 1.7).
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Figure 1.6: A DNA sequence is added at the start of a gene, consisting of 24 repeats
of the MS2 stem loop. Each transcribed loop can bind to a GFP (Green Fluorescent
Protein) molecule.

Figure 1.7: Snapshot from movie in [BGE+14], obtained using confocal microscopy.
Focus is on eve stripe 2, 75.7 min from the start of nuclear cycle 14. Red circles
identify individual nuclei, while green spots mark nascent eve mRNA.

The intensity of the fluorescence at each individual spot is proportional to the
number of mRNA molecules being transcribed, and thus is a way to quantify tran-
scriptional activity across time and space in the embryo. For details about the image
processing, see [BGE+14]. It is important to note that to infer the fluorescence pro-
duced by nascent mRNA molecules at the gene, it is necessary to subtract the
background fluorescence. Estimation of the background fluorescence is the biggest
contributor to measurement error. By tracking nuclei and fluorescence spots, time
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traces of transcriptional activity for each nucleus can be obtained (Figure 1.8). An
additional remark: sometimes two close spots are identified in a nucleus, due to the
presence of two copies of the gene, one for each sister chromatid.
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Figure 1.8: Three fluorescent traces extracted from nuclei at the center of eve stripe
2, showing heterogeneous transcriptional activity. Time resolution is 22.5 s.

1.3 Transcriptional bursting

Fluorescent traces have revealed a great heterogeneity in transcriptional dynamics
among different nuclei—even when they are close to each other, with a similar
concentration of transcription factors (Figure 1.8). It seems that transcription occurs
not with a predictable rate, but rather in bursts of a random character.

These pulses of fluorescence can be understood with the simple model illustrated
in Figure 1.9. Initially, the gene is an OFF state, with no transcription and no
fluorescence detected. Later, the gene turns on and polymerase molecules start being
loaded at the promoter at a certain rate. Each polymerase that starts transcribing
the gene into mRNA will add a constant amount of fluorescence. Once the first
polymerase finishes transcription and leaves the gene, fluorescence will stabilize, as
the rates of transcription initiation and termination are the same. Once the gene
turns off, no more polymerase molecules are being loaded and the ones already
loaded start leaving the gene, decreasing the fluorescence.
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Figure 1.9: Simple model of fluorescence dynamics. First row: The gene is OFF.
There are no polymerase molecules and no fluorescence. Second row: The gene
turns ON. Polymerase molecules are loaded at the promoter at a constant rate and
fluorescence increases linearly as the gene fills up. Third row: The gene is still
ON. Polymerase molecules have reached the end of the gene, and they leave at the
same rate with which they are being loaded at the promoter. Fluorescence keeps
constant. Fourth row: The gene turns OFF. Polymerase molecules already loaded
start leaving the gene and fluorescence decreases linearly.

Bursting may result from stochastic transitions between ON and OFF states of
the gene (Figure 1.10), and biochemical noise would account for different profiles
of transcriptional activity among nuclei. The stochastic switching between different
states of the promoter could be caused by the reversible binding and dissociation of
transcription factors.

13



Figure 1.10: Simple model of gene dynamics. (A, B) A gene makes stochastic
transitions between an ON and an OFF state. When the gene is ON, it can load
polymerase molecules and produce mRNA at a certain rate. (C) Example of a
gene ON/OFF state trajectory. (D) Fluorescence dynamics of the trajectory in (C),
according to the model described in Figure 1.9. (E, F, G) Gene and fluorescence
dynamics corresponding to a more complex model, with multiple discrete states,
each with a distinct polymerase loading rate.

Inferring these gene dynamics from the observed fluorescent traces is an inter-
esting statistical problem. Figure 1.11 shows an attempt of fitting a trace by hand,
however, given the complexity of the traces and the magnitude of the noise, we
need a more reliable method. In the next chapter, we will introduce the statistical
framework we will use to tackle this problem.
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Figure 1.11: Observed fluorescence dynamics and inferred gene dynamics. (A) A
fluorescent trace extracted from a nucleus, showing burstiness. (B) A possible gene
state trajectory, fit by hand to the observed fluorescence.

Achieving a better understanding of transcriptional dynamics, and how it varies
across time and space in the embryo, would cast a light on the underlying molecular
mechanisms, as well as on how the information provided by transcription factor
concentrations is interpreted by the development system.
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Chapter 2

Introduction to Bayesian Inference

A lot of phenomena in our world, where uncertainty is prevalent, are best described
by probabilistic models. Statistical inference entails estimating properties of proba-
bilistic processes underlying observed data. The Bayesian approach to inference is to
represent our knowledge about unobserved or latent variables with full probability
distributions. We aim to present an introduction to Bayesian inference; for a deeper
treatment we refer our readers to [GCS+13].

2.1 Simple model: a biased coin

Let’s say we pick a coin, possibly weighted, such that it has an unknown probability
θ of landing heads. We toss it n = 3 times and observe y = 3 heads. What can we
say about θ?

A Bayesian model is based on a joint probability distribution over data y and
parameters θ:

p(y, θ) = p(y|θ)p(θ) (2.1)

The quantity p(y|θ), known as the likelihood function, is the probability that the
data y was generated with parameters θ—in this case according to the binomial
distribution:

p(y|θ) = Bi(y;n, θ) =

(
3

3

)
θ3(1− θ)3−3 =

(
3

3

)
θ3(1− θ)3−3 = θ3 (2.2)

The remaining factor p(θ), called the prior distribution, expresses our initial beliefs
about θ, before seeing any data. For example, we can choose aBeta(2, 2) distribution
(see fig. 2.2(a)), encoding our general expectation of coins to be fair. The model is
summarized in Figure 2.1.
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θ

y

Figure 2.1: Graphical model notation for the coin example. Nodes represent random
variables (white: latent, shaded: observed), and an arrow denotes conditional de-
pendence between them. In this case, the number of heads depends probabilistically
on the weighting of the coin.

Note that the direction of the arrow posits how the data is generated. Inference
entails the flow of information in the reverse direction: going from the observed
leaves to the latent roots of the graph. Bayesian inference is centered around the
following formula, using Bayes’ rule to calculate the posterior distribution p(θ|y):

p(θ|y) =
p(θ, y)

p(y)
=
p(y|θ)p(θ)
p(y)

(2.3)

p(y), called the marginal likelihood, is a normalization factor:

p(y) =

∫
p(y|θ)p(θ)dθ (2.4)

For many inference problems, p(y) be taken as a constant, since data y is fixed.
However, it plays an important role in the problem of model selection.

We have the following form:

p(θ|y)︸ ︷︷ ︸
posterior

∝ p(y|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

(2.5)

The formula can be seen as a way to update our initial beliefs about θ after
observing new data, weighing the likelihood with the prior (fig. 2.2).

The fact that the result of the inference depends on an arbitrary choice of prior
distribution is often a critic towards Bayesian statistics. However, it should be ac-
knowledged that all inference rests on assumptions—the choice of likelihood function
is one of them. The prior distribution is an explicit and mathematically consistent
way of placing assumptions on how parameters are generated—it can be appropriate
in many problems, but we should be aware of it, as with any other assumption.
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Figure 2.2: Prior distribution, likelihood function and posterior distribution in the
coin example

2.2 Sampling methods

Now, let us consider evaluating the posterior expectation of θ:

E[θ|y] =

∫
θ p(θ|y) dθ (2.6)

or, in general, of a function of θ:

E[h(θ)|y] =

∫
h(θ) p(θ|y) dθ (2.7)

In most real–world problems, this integral is analytically intractable, but several ap-
proximation methods have been developed. The simplest method of approximation
consists in computing the value of the integrand over a fixed set of points θs, such
as grid on the parameter space:

E[h(θ)|y] ≈
S∑
s=1

h(θs) p(θs|y) (2.8)
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However, this method is not suitable in high dimensions, as the number of eval-
uations required grows exponentially. This phenomenon is known as the curse of
dimensionality. An alternative approach is based on obtaining random samples θs

from the posterior distribution p(θ|y):

E[h(θ)|y] ≈ 1

S

S∑
s=1

h(θs) (2.9)

This method was introduced in a 1953 paper by Metropolis et al. [MRR+53], as a
statistical mechanics application, with exp(−E/kT ) being the Boltzmann factor:

“Instead of choosing configurations randomly, then weighting them with
exp(−E/kT ), we choose configurations with a probability exp(−E/kT )
and weight them evenly.”

2.3 Markov chain Monte Carlo

Monte Carlo algorithms rely on the use of random samples. For many problems,
they can result in simpler solutions than those provided by deterministic methods.
For example, a Monte Carlo method to estimate the constant π is the following:

• Generate random points in the unit square.

• Count the number of points falling inside a circle inscribed in the square.

• The fraction of points falling inside the circle is then an approximation of π/4,
the ratio of the area of the circle to that of the square.

Markov chain Monte Carlo (MCMC) is a general class of algorithms for sam-
pling from a probability distribution, which has proved useful in high-dimensional
settings. MCMC simulates values θs forming a Markov chain. That is, θs is gener-
ated iteratively, based on a transition probability P that, given the last value θs−1,
is independent of the past:

P (θs|θ1, ..., θs−1) = P (θs|θs−1) (2.10)

The key property is that the stationary distribution of the chain matches the
objective distribution π. MCMC algorithms can satisfy this property by ensuring:

• Detailed balance:
π(x)P (x′|x) = π(x′)P (x|x′) (2.11)

• Ergodicity:
Every state must be aperiodic—it should not be visited after a fixed number of
steps—and positive recurrent—the expected steps to return to the same state
should be finite.
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These conditions are not hard to satisfy, and thus MCMC methods have been
applied in a wide variety of settings.

The first values in the chain are discarded, in what is known as the burn–in
period, as they are not representative of the stationary distribution (fig. 2.3 (a)).
Even after reaching convergence, values from the chain are correlated; to obtain
independent samples the chain must be thinned, that is, only every kth value is
kept.

Figure 2.3: Five MCMC chains to sample from the bivariate unit normal distribution
(figure from [GCS+13]). Initial values are chosen randomly. (a) The chains are
far from convergence. (b) The chains are close to convergence. (c) The values
from the second halves of the chains represent (correlated) samples from the target
distribution

Assessing convergence

Figure 2.4 illustrates some of the challenges of assessing the convergence of MCMC
chains. On the left, each sequence looks stable by itself, however by looking at them
together it is clear that they have not converged to a common distribution—they
have not mixed. On the right, the sequences cover the same distribution—they have
mixed—but they lack stationarity.
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Figure 2.4: Assessing convergence of MCMC chains. (A) On the left, the se-
quences lack mixing. (B) On the right, the sequences lack stationarity. (Figure
from [GCS+13])

The Gelman–Rubin convergence diagnostic [GR92] is based on analyzing vari-
ance both between and within sequences. A potential scale reduction factor is cal-
culated for each scalar quantity of interest, such as the value of the parameters,
which estimates how much the variance might decrease with additional iterations.
It approaches 1 as the number of iterations goes towards infinity; values less than
1.1 are considered enough for practical uses, as a rule of thumb.

2.4 Metropolis-Hastings

Metropolis–Hastings is a widely used MCMC algorithm, first proposed by Metropolis
et al. in 1953 [MRR+53] and generalized by Hastings in 1970 [Has70]. It is a random
walk based on the following:

• The ability to calculate the target density π(θ) at any point θ, up to a multi-
plicative factor

• A proposal distribution Q(θ∗|θ) that proposes a transition to a new state θ∗

given the current state θ

• The acceptance or rejection of the proposal, with an acceptance probability
α(θ → θ∗)

α(θ → θ∗) is chosen such that the condition of detailed balance is satisfied:

π(θ)P (θ∗|θ) = π(θ∗)P (θ|θ∗) (2.12)
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The transition probability P (θ∗|θ) is decomposed into making a proposal Q(θ∗|θ)
and accepting it, with probability α(θ → θ∗):

π(θ) Q(θ∗|θ) α(θ → θ∗) = π(θ∗) Q(θ|θ∗) α(θ∗ → θ)⇒
α(θ → θ∗)

α(θ∗ → θ)
=
π(θ∗)

π(θ)

Q(θ|θ∗)
Q(θ∗|θ)

(2.13)

It is easy to see that taking α(θ → θ∗) = min
(

1, π(θ
∗)

π(θ)
Q(θ|θ∗)
Q(θ∗|θ)

)
satisfies the equation.

Algorithm 1: Metropolis–Hastings

Choose an arbitrary θ0, such that π(θ0) > 0;
for i = 1, ... do

Sample θ∗ ∼ Q(θ∗|θi−1);

θt ←

{
θ∗ with probability min

(
1, π(θ∗)

π(θi−1)
Q(θi−1|θ∗)
Q(θ∗|θi−1)

)
θi−1 otherwise

end

It is important to remark that, when a proposal is rejected, the chain stays in
the same state, and that state counts as a (repeated) sample.

Figure 2.5: Illustration of Metropolis–Hastings as a random walker in a probability
density [Rob]. The proposal distribution is assumed symmetrical and the acceptance
probability depends solely on the target density ratio R

As seen in Figure 2.5, a jump to a value with a higher probability is always
accepted; a jump to a value with a lower probability is sometimes accepted. In this
light, it can be seen as an optimization procedure. Also, it is intuitive that the chain
will spend more time in more probable states.

22



Some considerations for choosing a good proposal distribution:

• It should be easy to sample from Q(θ∗|θ).

• It should be easy to compute the acceptance probability.

• Each jump should cover enough distance so that the random walk does not
move too slowly.

• Transitions should not be rejected too often, or too much time would be wasted
standing still.

For real–valued parameters, a common choice for the proposal distribution is
a Gaussian centered at the current value, with a relatively small variance. Most
proposed jumps would be of a local character, aiming to achieve a high acceptance;
but occasionally bigger, riskier jumps would be proposed, which would enable a
better exploration of the parameter space.

2.5 Reversible jump MCMC

Reversible jump Markov chain Monte Carlo (RJMCMC) is an extension of Metropolis–
Hastings that allows moving between parameter spaces of varying dimensionality,
introduced by Green in 1995 [Gre95]. The paper takes the case of a time series of
coal mining accidents in the UK, introduced by Raftery & Akman [RA86]. The data
can be seen in Figure 2.6.
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Figure 2.6: Coal mining disasters in the UK, 1851–1962.
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The basic model assumes that the number of disasters in a given year has a
Poisson distribution with a certain rate, and the goal of the analysis is to understand
if this underlying rate may have changed through the years, for example due to safety
regulations. Raftery & Akman explore the case where the rate function has exactly
one changepoint. Green analyzes the more complex case where the rate function
can be any step function, with an unknown number of changepoints.

To perform inference in this multiple changepoint model, Green introduces RJM-
CMC, a generalization of MCMC to parameter spaces of varying dimensionality. The
general parameter space can be thought as the union of several parameter subspaces
θk, each under a model k with dimensionality dk. In the multiple changepoints ex-
ample, the space is the union of models with one changepoint (1, (t1)), models with
two changepoints (2, (t1, t2)), etc. Green introduces transdimensional jumps: the
addition of a new changepoint at a random location (“birth” proposal) and the
random removal of a changepoint (“death” proposal).

To propose a jump from a state (k, θk) to a state (k∗, θk∗), and ensure detailed
balance even if the dimensions are different, a dimension–matching step is intro-
duced. θk and θk∗ are padded with auxiliary variables u and u∗, respectively,
such that dk + dim(u) = dk∗ + dim(u∗); and a deterministic, bijective function
gk,k∗(θk, u) = (θk∗ , u

∗) is defined. Note that either of dim(u) or dim(u∗) can be zero.

Let’s illustrate the (“rather obscure”, in the words of the author) dimension–
matching condition with a simple example. We are modeling a mixture of unit–
variance gaussians N (µ, 1), such that the number of components is not fixed. A
model with n components would have parameters µ1, · · · , µn. Let’s consider a jump
from state (1, (µ)) to state (2, (µ1, µ2)). In some context, a reasonable move could
be to “split” the component into two components centered around the previous one,
with some separation. The idea would be to sample u from some distribution, and
set µ1 = µ− u/2, µ2 = µ+ u/2:

g1,2(µ, u) = (µ− u/2, µ+ u/2) (2.14)

The reverse move would be to “merge” the two components:

g2,1(µ1, µ2) = ((µ1 + µ2)/2, µ2 − µ1) (2.15)

Each RJMCMC iteration would be as follows:

Algorithm 2: RJMCMC step

Given current state (k, θk), propose a move to model k∗ with probability Jk,k∗ ;
Generate auxiliary random variable u ∼ J(u|k, k∗, θk);
Determine the proposed new parameters, (θk∗ , u

∗) = gk,k∗(θk, u);

Calculate the ratio r = π(k∗,θk∗ )
π(k,θk)

Jk∗,kJ(u
∗|k∗,k,θk∗ )

Jk,k∗J(u|k,k∗,θk)

∣∣∣∂(θk∗ ,u∗)∂(θk,u)

∣∣∣ =

(target density ratio)× (proposal ratio)× (Jacobian);
Accept the move with probability min(1, r);

The last term in the acceptance ratio is the Jacobian of the transformation gk,k∗ .
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In the previous example, the Jacobian factor of the split move is:∣∣∣∂(µ−u/2, µ+u/2)∂(µ,u)

∣∣∣ =

∣∣∣∣1 −1/2
1 1/2

∣∣∣∣ = 1 (2.16)

RJMCMC will allow us to analyze fluorescent traces from individual nuclei in
the developing fly, and infer the underlying trajectory of promoter states, with its
unknown number of changepoints.
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Chapter 3

Probabilistic model of
transcriptional dynamics

The goal of the present work is to analyze fluorescent traces of transcriptional ac-
tivity from the early fruit fly embryo, and extract the underlying transcriptional
dynamics. In this chapter, we present a hierarchical Bayesian model describing
the probabilistic relationship between the observed fluorescence and the changes in
polymerase loading rate at the promoter.

3.1 Transcriptional bursting

It is assumed that the gene promoter switches stochastically between S discrete
states (we will use S = 2, 3, 4), each with a characteristic polymerase loading rate
ri. Each state could reflect a different occupancy of transcription factor binding
sites. We assume transcriptional bursting takes place in a transcription time window
[tstart, tend]. The higher–order process that determines the length of the transcription
time window is not currently modeled.

p shall denote the trajectory of the promoter state, with p(t) the state at time t,
taking values in {1, . . . , S}. Between tstart and tend, p is modeled as a continuous–
time Markov chain. A continuous–time Markov chain can be seen as the limit
of a discrete–time Markov chain as the time step becomes smaller. The chain is
characterized by an initial probability distribution π and a transition rate matrix k,
with ki,j (i 6= j) the rate, in events per minute, of a transition from state i to state
j.
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An intuitive way to simulate a continuous–time Markov chain is the following:

Algorithm 3: Generate a continuous–time Markov chain given tstart , tend, π
and k
T ← tstart; // initial time

X ← sample from π; // initial state

while T < tend do
For each non–zero rate kX,Y , generate an exponential tY with rate kX,Y ;
Pick the smallest, tZ ;
T ← T + tZ ; // update time

X ← Z; // jump to the new state

end

We introduce the additional constraint that the promoter state can only jump
to adjacent states, that is, |i − j| > 1 ⇒ ki,j = 0. This is known as a birth–
death process. These assumptions should be revisited, but for the moment the
reduced degrees of freedom increase the performance of the algorithm as well as the
interpretability of the results. Two simulated promoter trajectories are depicted in
Figure 3.1, corresponding to different transition rate matrices.

(a) S = 2, k1,2 = k2,1 = 0.5

(b) S = 3, k1,2 = 1, k2,1 = k2,3 = 0.5, k3,2 = 1

Figure 3.1: Promoter trajectories simulated according to different transition rate
matrices.
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Probabilities

We define minimum and maximum transition rates, kmin = 0.01 events/m and
kmax = 10 events/m. These are an estimation, and future work should better ac-
commodate biological and physical constraints on the rates. Transition rate matrix
elements are given a uniform prior distribution:

ki,j ∼ U(kmin, kmax)

P (k) =
∏
|i−j|=1

P (ki,j) =
∏
|i−j|=1

1

kmax − kmin
(3.1)

Similarly, we define constraints for the polymerase loading rate, rmin = 0 pol/m, rmax =
50 pol/m. Polymerase loading rates for each state are given a uniform prior distri-
bution:

ri ∼ U(rmin, rmax)

P (r) =
∏
i

P (ri) =
∏
i

1

rmax − rmin
(3.2)

To calculate the likelihood of a continuous–time Markov chain realization, it is
enough to know the time spent in each state (Ti) and the number of transitions
between each pair of states (Qi,j)—these are the sufficient statistics [GM95]. The
likelihood of a certain promoter trajectory, given a transition rate matrix, can be
calculated in the following way:

P (p|k) =
∏
|i−j|=1

k
Qi,j
i,j e−ki,jTi (3.3)

3.2 Fluorescence

By fpol we shall denote the fluorescence of a nascent mRNA molecule with 24 MS2
loops attached to GFP. fpol has been estimated at 20 a.u. of the microscope, albeit
with 20-30% error bounds. In this work we will freely use that value to have some
intuition, in the sense that 100 a.u. of fluorescence could correspond to 5 mRNA
molecules. Since we currently analyze relative counts of mRNA, rather than absolute
counts, we are not affected by the error in the estimation.

The elongation time et of the eve gene (including the MS2 sequence) has pre-
viously been estimated as 3 minutes [GTLG13]. The time spent transcribing the
MS2 sequence at the start of the gene (lt) can be estimated as 0.6 minutes, taking
into account the ratio of the length of the MS2 sequence to the length the whole
gene. The fluorescent profile of a single mRNA as it is transcribed is illustrated in
Figure 3.2. As each of the 24 MS2 loops are being transcribed, fluorescence increases
linearly while GFP binds to each of them. After the elongation time, the mRNA
molecule leaves the gene and fades into the background.

28



0 lt = 0.6 et = 3.0
time (m)

0

fpol

flu
or

es
ce

nc
e 

(a
u)

Figure 3.2: Fluorescent profile of a single mRNA as it is transcribed.

The fluorescence observed at the spot at time t, f(t), is the sum of the fluores-
cence of mRNA molecules currently being transcribed. Thus, the signal f(t) will
have memory of the mRNAs that have started being transcribed up to three minutes
before (t− et), as they will still be at the gene. The count of mRNAs at the gene is
equal to the integral of the polymerase loading rate over the last three minutes. The
mRNAs that have started being transcribed in the last lt = 0.6 minutes do not have
full fluorescence as the MS2 loops are still being transcribed. Given the history of
polymerase loading rates r(t), f(t) is calculated in the following way:

f(t) =

∫ t

t−et
r(t′) fpol min

(
1,
t− t′

lt

)
dt′ (3.4)

It is, on general terms, the integral of the polymerase loading rate in the past 3
minutes (et), times the fluorescence associated with one polymerase. The factor

min
(

1, t−t
′

lt

)
is added to contemplate recent mRNAs that do not yet have full fluo-

rescence (the linear increase section in Figure 3.2).

Figure 3.3 illustrates the dynamics of the fluorescence given a simple trajectory
of the polymerase loading rate, while Figure 3.4 shows a more complex case.
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Figure 3.3: Fluorescence observed given a simple trajectory of the polymerase load-
ing rate. As polymerases start being loaded at the promoter at time 10 min., fluo-
rescence starts increasing linearly as the gene is being progressively filled with poly-
merase molecules. After the elongation time of three minutes, polymerase molecules
start being released from the gene. Up to time 20 min., the rate at which polymerases
enter and leave the gene is equal, so the fluorescence remains constant. After time 20
min., no polymerases are being loaded anymore and fluorescence starts decreasing
to zero, as polymerase molecules already on the gene start being released.
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Figure 3.4: Fluorescence observed given a complex trajectory of the polymerase
loading rate.

Probability

The experimental data consists of n measurements of the fluorescence at specific
times: (ti, fi), i = 1, . . . , n. Equation 3.4 shows how to calculate the fluorescence
expected given the promoter state trajectory p and the loading rates for each state
r, f(ti, p, r). The observational error, fi− f(ti, p, r), is assumed to be gaussian with
zero mean and unknown variance σ2:

fi ∼ N (f(ti, p, r), σ
2) (3.5)

σ is assigned a uniform prior distribution between σmin = 10 a.u. and σmax = 400
a.u.:

σ ∼ U(σmin, σmax)

P (σ) =
1

σmax − σmin
(3.6)

As noted earlier, this error is predominantly determined by the error in the estima-
tion of the background fluorescence. A more detailed model of the error could be
developed in the future.

The probability of the observed fluorescent trace, given the promoter state tra-
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jectory and the polymerase loading rates for each state, is thus:

P (f |p, r, σ) =
n∏
i=1

1√
2πσ2

exp

[
− 1

2σ2
(fi − f(ti, p, r))

2

]
(3.7)

3.3 Complete model

So far, the joint distribution over the random variables in our model factorizes as
follows (see Figure 3.5 for a graphical representation):

P (k, r, σ, p, f) = P (k)︸ ︷︷ ︸
Prior on k

P (r)︸︷︷︸
Prior on r

P (σ)︸ ︷︷ ︸
Prior on σ

P (p|k)︸ ︷︷ ︸
Likelihood of p

given k

P (f |p, r, σ)︸ ︷︷ ︸
Likelihood of f
given p, r and σ

(3.8)

k r σ

p

f

Figure 3.5: Graphical representation of the model

Parameter sharing

An additional assumption is that transcriptional processes of nuclei at the same
position in the anterior–posterior (AP) axis share the same parameters k and r.
That is, each nucleus goes through a different promoter state trajectory and thus
has a different fluorescent profile (as seen in Figure 1.8), but that these are stochastic
processes governed by the same parameters k, r (σ is also assumed to be shared).
The reason we group together nuclei at the same AP position is that they are
exposed to the same concentration of transcription factors, which we assume are the
underlying parameters of the system.

The model is modified by grouping a number M of different nuclei such that
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they share k, r and σ (see the graphical representation in Figure 3.6):

P (k, r, σ, p, f) = P (k)P (r)P (σ)
M∏
i=1

P (pi|k)P (fi|pi, r, σ)

P (k) =
∏
|i−j|=1

P (ki,j) =
∏
|i−j|=1

1

kmax − kmin

P (r) =
∏
i

P (ri) =
∏
i

1

rmax − rmin

P (σ) =
1

σmax − σmin
P (p|k) =

∏
|i−j|=1

k
Qi,j
i,j e−ki,jTi

P (f |p, r, σ) =
n∏
i=1

1√
2πσ2

exp

[
− 1

2σ2
(fi − f(ti, p, r))

2

]

(3.9)

k r σ

p

f

M

Figure 3.6: Graphical representation of the model. The plate surrounding variables
p and f indicates that these variables are repeated M times.

The assumption we have introduced increases the statistical power and the in-
formation available to infer the underlying rates k and r.

With the model in hand, we need an inference algorithm to move from the
observed fluorescence to the latent transcriptional dynamics. Software packages such
as Stan [CGH+17] have excellent implementations of inference algorithms supporting
a large class of models, however, support is scarce for dimension–varying parameters,
such as the promoter trajectory. Hence, we set to develop a new inference algorithm.
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Chapter 4

Inference algorithm

We have developed a Reversible–jump Markov chain Monte Carlo (RJMCMC) al-
gorithm, that allows us to sample from the posterior distribution P (k, r, σ, p|f), the
distribution of our parameters of interest conditioned on the data f . That is, it
generates N samples (ki, ri, σi, pi), that can be used to approximate quantities of
interest, such as:

E[k|f ] ≈ ki =
1

N

N∑
i=1

ki

V ar[k|f ] ≈ 1

N − 1

N∑
i=1

(ki − ki)2
(4.1)

The algorithm can be outlined in the following way:

Algorithm 4: Sampler

Start from an initial state;
for i = 1, ... do

Choose a move from {r, σ, k, t,Birth,Death};
Propose a new state with the move;
Compute the acceptance probability;
Accept or reject the proposal;

end

In general, for a move from a state (k, r, σ, p) to a state (k′, r′, σ′, p′), the ratio
used in the acceptance probability is:

(likelihood ratio)× (prior ratio)× (proposal ratio)× (Jacobian) =∏M
i=1 P (fi|p′i, r′, σ′)∏M
i=1 P (fi|pi, r, σ)

× P (k′)P (r′)P (σ′)
∏M

i=1 P (p′i|k′)
P (k)P (r)P (σ)

∏M
i=1 P (pi|k)

× (proposal ratio)× (Jacobian)

(4.2)
It should be noted that for any given move only some of the parameters are updated,
so most of these factors do not need to be calculated again. Also, the Jacobian factor
is only relevant in the Birth and Death moves, which are trans–dimensional.
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Representation of the promoter trajectory

The promoter trajectory is represented as a tuple (cps, hs), with cps an ordered
vector of changepoint times and hs a vector of promoter states, one for each segment.

Truncated normal distribution

We shall make use of the truncated normal distribution, N b
a (µ, σ), which has the

same shape as normal distribution N (µ, σ), but has support [a, b] and a rescaling
factor (see Figure 4.1 for an example).

1 0 1 2
x

0.0

0.1

0.2

0.3

0.4

0.5

P(
x)

Figure 4.1: A standard normal truncated at -1 and 2.

4.1 r move

One of the polymerase loading rates ri is updated (see Figure 4.2 for an example).
The new r′i is sampled from a truncated normal distribution, centered at the current
value, with a fixed standard deviation σr = 1.25 pol/min. The boundaries are either
ri−1, ri+1, rmin or rmax.

Algorithm 5: r move

i ∼ U({1, . . . , S});
a← if i > 1 then ri−1 else rmin;
b← if i < S then ri+1 else rmax;
r′i ∼ N b

a (ri, σr);
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Figure 4.2: A move is proposed for r2. r′2 is sampled from a normal distribution
centered at r2, with standard deviation σr, truncated at r1 and r3.

The choice of σr is important. If it is too small, exploration of the space will be
slow. If it is too large, the move will have a high rejection rate.

The probability of the proposal is:

Q(k′, r′, σ′, p′|k, r, σ, p) = P (r move)︸ ︷︷ ︸
choosing the
r move

1

S︸︷︷︸
choosing one rate

to update

N b
a (r′i; ri, σr)︸ ︷︷ ︸
proposing a
new rate

(4.3)

To obtain the acceptance probability, the likelihood of each fluorescent trace
must be recalculated, given the change in r:

α(k, r, σ, p→ k′, r′, σ′, p′) = min

(
1,

M∏
i=1

(
P (fi|pi, r′, σ)

P (fi|pi, r, σ)

)
N b
a (ri; r

′
i, σr)

N b
a (r′i; ri, σr)

)
(4.4)

4.2 σ move

σ, the estimated error in the fluorescence measurements, is updated. The new value
is sampled from a truncated normal distribution centered at the old value, with
standard deviation 5 a.u. The limits are σmin and σmax.

Algorithm 6: σ move

σ′ ∼ N σmax
σmin

(σ, 5);

The probability of the proposal is:

Q(k′, r′, σ′, p′|k, r, σ, p) = P (σ move) N σmax
σmin

(σ′;σ, 5) (4.5)

To obtain the acceptance probability, the likelihood of each fluorescent trace
must be recalculated, given the change in σ:

α(k, r, σ, p→ k′, r′, σ′, p′) = min

(
1,

M∏
i=1

(
P (fi|pi, r, σ′)
P (fi|pi, r, σ)

) N σmax
σmin

(σ;σ′, 5)

N σmax
σmin

(σ′;σ, 5)

)
(4.6)
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4.3 k move

A transition rate is chosen at random and updated, using a normal distribution cen-
tered at the current value, with standard deviation σk = 0.05 events/min, truncated
at kmin and kmax.

Algorithm 7: k move

i ∼ U({1, . . . , S});
optionsj = {1, . . . , S} ∩ {i− 1, i+ 1};
j ∼ U(optionsj);

k′i,j ∼ N kmax
kmin

(ki,j, σk);

The probability of the proposal is:

Q(k′, r′, σ′, p′|k, r, σ, p) = P (k move)
1

S

1

optionsj
N kmax
kmin

(k′i,j; ki,j, σk) (4.7)

To obtain the acceptance probability, the prior of each promoter trajectory must
be recalculated, given the change in k:

α(k, r, σ, p→ k′, r′, σ′, p′) = min

(
1,

M∏
z=1

(
P (pz|k′)
P (pz|k)

) N kmax
kmin

(ki,j; k
′
i,j, σk)

N kmax
kmin

(k′i,j; ki,j, σk)

)
(4.8)

4.4 t move

One nucleus is selected at random. Then, the position of one changepoint in the
promoter trajectory is updated, using a truncated normal distribution centered at
the current value and with standard deviation σt = 0.6 min. The boundaries are
the previous and next changepoint positions.

Algorithm 8: t move

m ∼ U({1, . . . ,M});
cps, hs← pm;
i ∼ U({1, . . . , |cps|});
a, t, b← cpsi−1, cpsi, cpsi+1;
t′ ∼ N b

a (t, σt);

The probability of the proposal is:

Q(k′, r′, p′|k, r, p) = P (t move)
1

M

1

|cps|
N b
a (t′; t, σt) (4.9)

To obtain the acceptance probability is, the prior and likelihood of only one
nucleus must be calculated, given the change in one of its changepoints:

α(k, r, σ, p→ k′, r′, σ′, p′) = min

(
1,
P (fi|p′i, r, σ)

P (fi|pi, r, σ)

P (p′i|k)

P (pi|k)

N b
a (t; t′, σt)

N b
a (t′; t, σt)

)
(4.10)
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4.5 Birth move

The Birth move, together with its reverse, the Death move, are the critical transdi-
mensional jumps in which we add or remove changepoints from the promoter tra-
jectory. They were designed to do small local alterations to the promoter trajectory,
in order to increase the chance of their acceptance.

The Birth move is illustrated in Figure 4.3. We replace a step in the middle
of the trajectory, going from ha to hb, by three steps h1, h2 and h3, adding two
changepoints t1 and t2. It can be wondered, why add two changepoints and not one,
which is simpler? The reason is that if we only added one changepoint we could not
in general get from ha to hb satisfying the constraint that the value of consecutive
steps should differ by one.

However, the first and last steps of the trajectory are only constrained from one
side (for example, if we were modifying the first step there would be no constraint
from the left). In this cases, we use a very similar move that adds only one change-
point. Here we will describe the more frequent case of choosing a step in the middle
of the trajectory, and adding two changepoints.
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t a t b
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current trajectory proposed trajectory

Figure 4.3: Illustration of the Birth move. One promoter trajectory is selected at
random and two changepoints are added at some position. Instead of having one
step between ha and hb, there will be three new steps h1, h2, h3, sepparated by two
new changepoints t1 and t2.
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Algorithm 9: Birth move

// choose a promoter trajectory to update:

m ∼ U({1, . . . ,M});
cps, hs← pm;
// choose a position to insert the new changepoints:

i ∼ U({2, . . . , |cps| − 1});
ta, tb ← cpsi−1, cpsi;
// sample two uniform changepoints, in order:

t1, t2 ∼ sort([U(ta, tb),U(ta, tb)]);
ha, hb ← hsi−2, hsi;
// choose the three new values from all possible paths from ha

to hb:
(h1, h2, h3) ∼ U(PathsBirth(ha, hb));
// insert the two new changepoints:

cps′ ←
[
cps0, . . . , cpsi−1, t1, t2, cpsi, . . . , cps|cps|

]
;

// insert the three new values:

hs′ ←
[
hs1, . . . , hsi−2, h1, h2, h3, hsi−1, . . . , hs|hs|

]
;

PathsBirth(ha, hb) is the set of all paths of three steps from ha to hb, satisfying
two conditions:

• Values should be between 1 and S.

• Consecutive values should differ by 1.

Since in the original trajectory there is one step between ha y hb, there are three
cases:

• ha = hb: There are potentially 6 paths (Figure 4.4a). Some of the paths may
be filtered out if values go out of the range [1, S].

• hb = ha + 2: There are potentially 4 paths (Figure 4.4b). Some of the paths
may be filtered out if values go out of the range [1, S].

• hb = ha − 2: Symmetrical to the previous case.
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(a) ha = hb (b) hb = ha + 2

Figure 4.4: Illustration of the potential paths between ha and hb using three steps.
(a) When ha = hb, there are 6 possibilities. (b) When hb = ha + 2, there are 4
possibilities.

The probability of the proposal is:

Q(k′, r′, σ′, p′|k, r, σ, p) =

P (Birth move)︸ ︷︷ ︸
choosing
the move

1

M︸︷︷︸
choosing one
trajectory

1

|cps| − 2︸ ︷︷ ︸
choosing a

(central) step

2

(tb − ta)2︸ ︷︷ ︸
choosing two
sorted points

1

|PathsBirth(ha, hb)|︸ ︷︷ ︸
choosing a path

(4.11)

4.6 Death move

The Death move is the reverse of the Birth move: two changepoints are removed
from a promoter trajectory (see Figure 4.5 for an example).
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Figure 4.5: Illustration of the Death move. One promoter trajectory is selected at
random and two changepoints are removed. Instead of having three steps h1, h2, h3
between ha and hb, there will be one new step h.

Algorithm 10: Death move

// choose a promoter trajectory to update:

m ∼ U({1, . . . ,M});
cps, hs← pm;
// choose the position from where to delete the changepoints:

i ∼ U({2, . . . , |cps| − 3});
// choose a new value from all possible one-step paths from ha

to hb:
h ∼ U(PathsDeath(ha, hb));
// delete two changepoints:

cps′ ←
[
cps0, . . . , cpsi−1, cpsi+2, . . . , cps|cps|

]
;

// replace three values by one:

hs′ ←
[
hs1, . . . , hsi−2, h, hsi+2, . . . , hs|hs|

]
;

PathsDeath(ha, hb) is the set of all one–step paths from ha and hb. Since originally
there were three steps from ha to hb, we need to consider three cases:

• |hb − ha| = 0: there are at most 2 one–step paths from ha to hb: going through
ha + 1 or going through ha − 1.
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• |hb − ha| = 2: there is only one path: going through (ha + hb)/2.

• |hb − ha| = 4: there are no possibilities of going in one step from ha to hb.
However, since we will be using models of up to four states, we will not en-
counter this case.

The probability of the proposal is:

Q(k′, r′, σ′, p′|k, r, σ, p) = P (Death move)
1

M

1

|cps| − 4

1

|PathsDeath(ha, hb)|
(4.12)

At the moment of calculating acceptance probabilities, each Birth move should
be considered together with its reverse Death move. Let us suppose a Birth move
takes us from a state (k, r, σ, p) to a state (k′, r′, σ′, p) (the corresponding Death
Move would take us from (k′, r′, σ′, p′) to (k, r, σ, p)). Then the ratio used in the
acceptance probability α(k, r, σ, p→ k′, r′, σ′, p′) is:

(likelihood ratio)× (prior ratio)× (proposal ratio)× (Jacobian) =

P (fi|p′i, r, σ)

P (fi|pi, r, σ)
× P (p′i|k)

P (pi|k)
× (tb − ta)2

2

|PathsBirth|
|PathsDeath|

× 1
(4.13)

The Jacobian factor equals one since the Birth and Death moves do not modify
the values of existing parameters [FJSW09].

The ratio used in the acceptance probability of the Death move is the exact
opposite of this.
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The final summary of the algorithm is the following:

Algorithm 11: Sampler

k, r, σ, p← initial values;
for iter = 1, ... do

Move ∼ P(moves);
k′, r′, σ′, p′ ∼ Move(k, r, σ, p);
switch Move do

case r move do

R =
∏M

i=1

(
P (fi|pi,r′,σ)
P (fi|pi,r,σ)

)
N ba(ri;r′i,σr)
N ba(r′i;ri,σr)

end
case σ move do

R =
∏M

i=1

(
P (fi|pi,r,σ′)
P (fi|pi,r,σ)

)
Nσmax
σmin

(σ;σ′,5)

Nσmax
σmin

(σ′;σ,5)

end
case k move do

R =
∏M

z=1

(
P (pz |k′)
P (pz |k)

) N kmaxkmin
(ki,j ;k

′
i,j ,σk)

N kmaxkmin
(k′i,j ;ki,j ,σk)

end
case t move do

R =
P (fi|p′i,r,σ)
P (fi|pi,r,σ)

P (p′i|k)
P (pi|k)

N ba(t;t′,σt)
N ba(t′;t,σt)

end
case Birth move do

R =
P (fi|p′i,r,σ)
P (fi|pi,r,σ)

P (p′i|k)
P (pi|k)

(tb−ta)2
2

|PathsBirth|
|PathsDeath|

end
case Death move do

R = P (fi|pi,r,σ)
P (fi|p′i,r,σ)

P (pi|k)
P (p′i|k)

2
(tb−ta)2

|PathsDeath|
|PathsBirth|

end

end
Accept Move with probability min(1, R);

end
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Chapter 5

Synthetic data experiments

We proceed to evaluate the performance of the algorithm in a variety of synthetic
data experiments. Unless otherwise noted, the following constants were used in the
generation of synthetic data, to simulate experimental conditions:

• Time resolution of the measurements: 20 sec.

• Magnitude of the error in the fluorescence: 55 a.u.

• Length of the traces: 40 min.

• Number of traces: 100.

5.1 Convergence to the stationary distribution

We first analyzed the convergence of the Markov chain to the stationary distribu-
tion, as iterations proceeded. Convergence was evaluated using the Gelman–Rubin
indicator, described in Chapter 2. In Figure 5.1, we plot the convergence indicator
for each of the fixed–dimensional parameters and for the logarithm of the posterior
probability, against the number of iterations. As described before, as a rule of thumb
a value less than 1.1 is enough for practical purposes.

In this case, 5 · 108 iterations would have been enough to have approximate
convergence. Even if the Gelman–Rubin statistic for r2 does not seem to behave
as nicely as for other parameters, it is within acceptable values. More iterations
always increase accuracy, but of course a trade–off is made with computational
cost. We settled for using 4 · 109 iterations for the rest of the synthetic and real
data situations encountered in this work. This was enough to achieve approximate
convergence, except for one case, described in 5.5, where the Gelman–Rubin statistic
suggested more iterations would have been beneficial.
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Figure 5.1: Monitoring convergence in relation to the number of iterations. Data
was generated with the following parameters: three states, k1,2 = k2,1 = k2,3 =
k3,2 = 1 event/min, r = [0, 12.5, 25] pol/min. Two MCMC chains were simulated,
up to 4 ·109 iterations each. While evaluating the Gelman–Rubin indicator, the first
half of the chain was discarded (the burn–in period). The Gelman–Rubin indicator
is plotted for each of the fixed–dimensional parameters and for the logarithm of the
posterior density.

The number of iterations needed increased in the course of this project, as we
extended the model—increasing the running time of the algorithm as well and mak-
ing development more cumbersome. One of the reasons for the large number of
iterations required is that in one iteration maybe only one changepoint of one of the
≈100 nuclei trajectories is updated. It could be interesting to seek variants of the
algorithm that allow updating all nuclei trajectories in parallel.

We also suspect the large number of iterations required has to do with the algo-
rithm spending too much time exploring changepoints very close to each other, which
do not affect the fluorescence much and have a small effect on the inference result.
An attempt to remediate this would be to forbid the formation of changepoints too
close to each other, however, the implementation of a proposal distribution would
turn awkward. A more natural approach would be to move to a discrete model: the
promoter trajectory would be represented with a fixed number of steps of a fixed
length. Disallowing changepoints very close to each other would have the added
benefit of helping protect against overfitting.
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5.2 Fitting the fluorescence

Figure 5.2 illustrates the algorithm fitting the fluorescence as iterations proceed.
The algorithm starts with a constant promoter trajectory and fluorescence (Figure
5.2a). After 1000 iterations, it has added two changepoints to the promoter trajec-
tory, which increases the fit of the fluorescence by some amount. An observation: it
may seem slow to need 1000 iterations to reach this state; however, the algorithm is
concurrently updating the promoter trajectories of another 100 nuclei. After a mil-
lion iterations, sufficient changepoints have been added to the promoter trajectory
to achieve a reasonable fit of the fluorescence.

It is not clear from the figure whether the original promoter trajectory has been
recovered correctly. The inferred promoter trajectory may differ from the original,
especially in short segments between changepoints close to each other, that have a
negligible effect on the observed fluorescence. In section 5.3, we will discuss how
well the original number of changepoints is inferred.

While we can say the chain has already reached a region of high posterior proba-
bility, many more iterations will be needed to ensure all the space of high probability
is explored.
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Figure 5.2: Some steps of the algorithm fitting the fluorescence. Data was gen-
erated with the following parameters: three states, k1,2 = k2,1 = k2,3 = k3,2 =
1 event/min, r = [0, 12.5, 25] pol/min. Below, comparison between the original pro-
moter trajectory, used to generate the fluorescence, and the value of the promoter
trajectory at the current step of the algorithm. Above, comparison between the
original fluorescence and the fluorescence expected given the value of the promoter
trajectory at the current step.
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5.3 Inferring the number of changepoints

We let iterations proceed in the previous experiment, and evaluated the inference
of the number of changepoints in the original trajectory. Figure 5.3a shows that
there is a lot of uncertainty in the predicted number of changepoints of that single
promoter trajectory. As stated earlier, changepoints very close to each other are
nearly impossible to detect, as they do not affect the observed fluorescence much.
However, when we look at the average number of changepoints inferred across 100
promoter trajectories, we see that the algorithm performs quite well (Figure 5.3b).
Uncertainty has been reduced a lot, and the average difference between the inferred
number of changepoints and the original value is not more than one.

(a) Posterior distribution of the number of changepoints in a single promoter trajectory,
compared to the original number in the trajectory that was used to generate the fluorescent
data.

(b) Posterior distribution of the mean number of changepoints across all promoter trajec-
tories, compared to the original value in the trajectories that were used to generate the
fluorescent data.

Figure 5.3: Comparison of the inference of the correct number of changepoints when
(a) considering a single trace vs. (b) taking the average of the 100 trajectories.
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5.4 Statistical performance and number of traces

We sought to investigate the effect of the number of traces available on the statistical
performance of the algorithm. We generated 200 traces and compared the result of
the inference when only using a subset of the traces (Figure 5.4). As the number of
traces increases, it is clear how the prediction gets closer to the real value, and at the
same time the uncertainty in the prediction is reduced. With only 25 traces, results
were already within a close margin of the real value, but is should be noted that this
is the two–state model, the simplest one, chosen here for ease of visualization. With
more states and parameters to infer, the advantage of having more traces becomes
clearer.

48



(a) Results of the inference of transition rates.

(b) Results of the inference of polymerase loading rates.

Figure 5.4: Statistical performance in relation to the number of traces. 200 traces
were generated with the following parameters: two states, k1,2 = k2,1 = 1 event/min.
Then, inference was performed by using only a subset of the traces. Results are
shown for (a) transition rates and (b) polymerase loading rates. For each inference,
the dot marks the mean of the posterior distribution and the shaded area denotes
the one standard deviation credible region.
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5.5 Statistical performance and transition rates

Next, we studied how the algorithm behaves as we make the system move faster,
by increasing transition rates. For simplicity and clarity of exposition, we have
chosen all transition rates to be equal, however, we have not seen any difference
in behaviour when rates are different from each other. The results can be seen in
Figure 5.5. The predictions keep close to the original values, even if the uncertainty
in the predictions increases. In the case of the rates being equal to 4.0 events/min,
uncertainty increases a lot. Inference inevitably becomes more difficult as we increase
the transition rates, since we have a fixed time resolution in the measurements. In
fact, in the case of the highest rates (4.0 events/min) the Gelman–Rubin statistic
indicated the MCMC chain had not reached convergence, suggesting more iterations
should be made to achieve a greater accuracy, but what would make the running
time less practical. Still, we can see the prediction is quite good.
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(a) Inference of transition rates. Moving upwards, we increase the transition rates with
which we generate the data.

(b) Inference of polymerase loading rates. Moving from left to right, we increase the
transition rates with which we generate the data.

Figure 5.5: Statistical performance in relation to transition rates. Four synthetic
datasets were generated, with three states and all the rates equal to 0.5, 1, 2 and 4
events/min. Results are shown for (a) transition rates and (b) polymerase loading
rates. For the result of each inference, the mean and the one standard deviation
credible interval is plotted, against the dashed line that represents the original value.
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5.6 Model selection

Besides trying to assess the fit of parameters of a model to the data, we tried to
assess the fit of different models to the data. This is the problem of model selection,
an inference at another level, requiring a different set of computations from those
used to infer the parameters.

The principled Bayesian approach to model selection involves calculating the
marginal likelihood (see Equation 2.4) for each model, but this is generally in-
tractable. Another approach for model selection, that has proved very useful in
practice, is cross–validation [AC+10]. However, it is not always applicable to un-
supervised settings like this one (our data does not include traces labeled with
their underlying parameters). An approach we thought could work was using the
Watanabe–Akaike information criterion (WAIC) [Wat10], an information criterion
specifically designed for MCMC chains. The WAIC score is calculated for each
model, and the lower the score, the more the model is favored by the data.

We generated synthetic data with one model, and then calculated the WAIC
score for the results obtained by running the algorithm assuming each of the models.
We would have expected the model used to generate the data to achieve the lowest
WAIC score, but we find inconsistent results, that should be further analyzed. For
example, in Table 5.1 we display the scores for each model when data is generated
by the three–state model. We can see the four–state model is chosen as the most
plausible model given the data, as it achieves the lowest WAIC score (the difference
between scores is what matters, not the absolute values).

Two–state model Three-state model Four–state model

170086 168790 168584

Table 5.1: WAIC scores of the three models, for data generated under the three–
state model. The lower the score the more plausible the model. The difference
between scores is what matters, not the absolute values.

We think the problem could be an ill–posed one, since given enough changepoints,
any model can approximate any of the others quite well.
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Chapter 6

Analysis of experimental data

Fluorescent traces of transcriptional activity of the eve gene during nuclear cycle 14
were obtained from 9 fruit fly embryos, using the technique described in Chapter
1. Time resolution of the measurements was 22.5 seconds, and trace length varied
from 5 to 35 minutes. Nuclei were grouped into five bins along the anterior–posterior
(AP) axis: {−2,−1, 0, 1, 2}, as shown in Figure 6.1. The rationale for grouping nuclei
according to their AP position is that transcription factors governing eve expression
are modulated along the AP axis (Figure 1.5(B)).

We proceed to analyze the fluorescent traces. Armed with a new tool for inves-
tigating transcriptional bursting, we will try to learn more about its role in tran-
scriptional regulation in the developing embryo.
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Figure 6.1: Grouping of nuclei into five bins along the anterior–posterior axis. 0 cor-
responds to the center of eve stripe 2 (≈ 40% of the AP length), while -2 corresponds
to the most anterior section of the stripe and 2 to the most posterior section.
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6.1 Preliminary analysis

Before jumping into the inference of transcriptional bursting dynamics, we can make
useful observations just by looking at averaged properties of the traces. Figure 6.2
shows the modulation of different statistics of the traces along the AP axis. Total
mRNA produced in a nucleus is proportional to the accumulated fluorescence of the
trace. There is a substantial modulation in the amount of mRNA produced—nuclei
at the center of the stripe produce on average twice as much mRNA than nuclei at
the borders of the stripe.

We may wonder if the cause of this difference in transcription levels could be in
transcriptional bursting dynamics—at the center of the stripe the promoter could
spend more time in active states, for example. However, we must first acknowledge
the importance of the transcription time window: the total time a nucleus engages in
transcriptional bursting. The transcription time window is also modulated along the
AP axis: bursting lasts an average of 24 min. on the center of the stripe and around
16 min. on the borders. Thus, the modulation of the transcription time window is an
important factor determining total mRNA produced. If we divide total mRNA by
the transcription time window, we get the amount of mRNA produced per minute,
which is modulated less sharply than total mRNA produced. This is the quantity
which we want to characterize by changes in the rates of transcriptional bursting
along the AP axis.
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Figure 6.2: Modulation of different quantities along the AP axis. Each variable is
plotted as a percentage of the maximum.
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6.2 Transcriptional bursting

We ran the inference algorithm on the five AP bins and under three models: a
two–state model, a three–state model and a four–state model. Figure 6.3 shows
a typical trace fitted by the three models. The different models approximate the
fluorescence quite similarly, even if they have vastly different promoter trajectories.
In particular, none of the models can recover certain features of the fluorescence,
such as very sharp peaks. A certain possibility is that they are just image processing
artifacts. Ongoing work should clarify which discrepancies could be attributed to
the image processing, the model, or the inference algorithm.
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Figure 6.3: Typical fluorescent trace fitted to the three models. On the bottom,
a sample from the posterior distribution of the promoter trajectory. On top, a
comparison between the simulated and the observed fluorescence.
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Transition rates

Figure 6.4 shows the inferred transition rates. All rates show some modulation along
the AP axis, with different different degrees of symmetry with respect to the center
of the stripe. The high error bars of k3,2 in the three–state model, and particularly
k4,3 in the four–state model, stem in great part from the low occupancy of the highest
state in those models (see Figure 6.6). It remains to be seen whether the high value
of k4,3 is physically realistic.
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Figure 6.4: Inferred transition rates across AP bins and models.
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Polymerase loading rates

Inferred polymerase loading rates are represented in Figure 6.5. In comparison to
transition rates, polymerase loading rates are relatively stable along the AP axis.
Also worth noting is that r1, the loading rate of the lowest state, is consistently
zero across the three models. Again, there is a lot of variance in r4 due to the low
occupancy of the fourth state.
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Figure 6.5: Inferred polymerase loading rates across AP bins and models.
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State occupancy

The percentage of time spent at each state is depicted in Figure 6.6. All models
predict a lower occupancy of the lowest state (of nearly zero transcriptional activ-
ity) in the center of the stripe, as well as higher occupancy of the highest states.
The modulation achieved is quite symmetrical, even if the transition rates, which
ultimately determine the occupancy, do not show total symmetry. In the four–state
model, the occupancy of the highest state is around 2%, which raises doubts about
its biological significance. This fourth state might not be a real state, but rather an
evidence of overfitting.
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Figure 6.6: Inferred occupancy of the different states, across AP bins and models.
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Fluorescence error

Figure 6.7 shows the inferred fluorescence error. The result in the three models is
similar; there is a consistent ordering, with the two-state model inferring lower errors,
but the difference is very small. Fluorescence error decreases towards the borders
of the stripe; it would be interesting to see how this connects to the variance in
background fluorescence, the main contributor to measurement error.
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Figure 6.7: Inferred fluorescence error, across AP bins and models.
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A window into time–varying rates

Our model assumes rates are constant in time. However, we can get a preview on
time–modulation of transition rates by sliding a small time window and counting
the transitions that occur in that window. This is not a valid way of inferring
rates, since we do this analysis after fitting the model that assumes constant rates.
However, some conclusions can be drawn. If rates were constant in time, inferred
local rates for each time window could oscillate but would statistically move around
the true rate. However, our results suggest many of the rates are indeed modulated
across time (Figure 6.8). It would be interesting to compare these trends to how
the concentration of transcription factors varies in time.
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Figure 6.8: Preliminary view of time–varying transition rates. A time window of
3 minutes was slid every 2 minutes, and transition rates were estimated for each
window.
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6.3 Final remarks

We have seen how control of mRNA production in the second stripe of the eve
gene can be achieved by the joint modulation of the transcription time window and
bursting dynamics—primarily transition rates, apparently. We have presented three
models, but further work is needed to assess the plausibility of each one of them.

A very interesting direction would be trying to find functional relationships be-
tween bursting rates and the concentration of transcription factors. New technology
is being developed to allow real–time tracking of the concentration of transcription
factors. If we could adapt the algorithm to infer time–varying rates, and match these
with the concentration of transcription factors, we could ask a lot of new questions,
for example:

• Does the concentration of Kruppel modulate the transition rate from the ON
to the OFF state?

• What molecular mechanism may be behind the repression by Kruppel?

• May certain rates going to infinity/zero be determining the transcription time
window?
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Chapter 7

Conclusion

In this thesis, we sought to develop an algorithm to infer transcriptional dynamics
from single–molecule fluorescence traces. We made some first steps tackling novel
experimental data from the fruit fly embryo, with the challenge of having no proven
solutions at the time of our development.

We were able to see through seemingly chaotic fluorescent traces and find the un-
derlying regularities of the system, about which we can now think more clearly. Our
work showcases the important role computation can have in biological research, con-
fronting the complexity and noise of experimental data, and extracting meaningful
information that can be interpreted by theorists.

The method

Our model describes the transition of the gene promoter between different ON and
OFF states, and the loading of polymerase molecules at a constant rate within
each state. A more detailed model would look at the location of each individual
polymerase loading event. However, it is not clear this inference would be possible
given the noise present in the current experimental setup. Also, we do not yet know
how much elongation time could vary—our current approach, which assumes it to
be constant, could become unfeasible. It would be very helpful to better understand
physical and biological limits of the rates, to constrain the quite–flexible promoter
trajectory representation we have.

We have chosen a continuous changepoint representation of the promoter trajec-
tory, and the RJMCMC algorithm we have developed has been quite flexible and
performant to date. Still, moving to a discretized promoter trajectory, represented
by a fixed number of steps, could confer some advantages:

• It would prevent the proliferation of super–small steps, that waste exploration
time and are prone to overfitting.

• Having a fixed number of parameters would ease development in general, for
example, extending the model with time–varying rates.
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• A fixed number of parameters would give access to many other inference al-
gorithms and software libraries.

It remains to be seen if a discretization could be found that is both flexible enough
to represent the dynamics of the system and tractable.

Results

We analyzed fluorescent traces of transcriptional activity of the eve gene in the fruit
fly embryo, during the formation of the second stripe of expression. Our results
suggest that transcriptional control in the second stripe is achieved by the joint
modulation across the AP axis of the transcriptional time window and of the tran-
sition rates governing bursting dynamics. Analysis of results also points out that
transition rates are probably changing in time as well.

We have not yet devised a testable criterion for comparing different models, but
the low occupancy of the highest states raises doubts about their physical existence.

Future work

A natural next step would be to extend the algorithm to allow for time–varying
transition and polymerase loading rates, while keeping statistical accuracy and com-
putation time reasonable. It could be necessary to collect more data.

Once we can infer how rates vary across time and space, and we measure the
concentration of transcription factors, we can start asking questions about what the
functional relationship between them could be. For example, does the concentration
of Kruppel determine the transition rate from the ON to the OFF state? Under-
standing these functional relationships would also cast a light on how repression or
activation may be implemented at the molecular level.

Finally, we could have a computational model, but would we be able to experi-
mentally test it? We should devise a way to perturb the concentration of transcrip-
tion factors, and check how well our predictions hold.
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