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PREDICTING THE COST OF SECOND PRICE AUCTIONS IN A
REAL TIME BIDDING ENVIRONMENT

Real-time Bidding (RTB) es una forma de gestionar espacios publicitarios que permite
subastar espacios individuales mediante subastas en tiempo real, que suelen ser con la
modalidad de sobre cerrado con segundo precio, de forma programática en el acto y por lo
tanto el precio final que deberá pagar el oferente no es conocido al momento de ofertar.

RTB permite hacer publicidad a medida; es decir que los anuncios se pueden servir a
los consumidores de forma directa basado en sus caracteŕısticas demográficas, psicográficas
y comportamiento.

Para optimizar campañas de marketing digital mostrando anuncios obtenidos mediante
el mercado, el comprador debe poder valuar las oportunidades de mostrar anuncios y
determinar si son rentables o no. Para esto es necesario una estimación del valor que aporta
mostrar un anuncio y el costo de mostrar el mismo.

En este trabajo se introducen y comparan métodos para estimar el costo de subastas
de segundo precio desde el punto de vista del comprador.

Estos métodos incluyen dos anteriormente públicados:
1. Una regresión lineal sobre el costo con un dataset de subastas ganadas.
2. Una regresión loǵıstica para estimar la probabilidad de ganar una subasta y luego aplicar
métodos numéricos para estimar el costo aprovechando la relación entre ambos valores.

Y métodos aqui introducidos:
3. Una regresión loǵıstica sobre la proporción entre el costo y la oferta.
4. Una regresión loǵıstica para estimar la probabilidad de ganar una subasta y luego aplicar
métodos anaĺıticos para estimar el costo analogamente al método 2.

Los experimentos realizados muestran que el método introducido de utilizar una
regresión loǵıstica sobre la proporción entre el costo y la oferta obtiene mejores resultados
que el resto.

Palabras clave: estimación, costo, win rate, real time bidding, statistical learning,
machine learning, subasta, subasta vickrey.
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PREDICTING THE COST OF SECOND PRICE AUCTIONS IN A
REAL TIME BIDDING ENVIRONMENT

Real-time Bidding (RTB) is a way of transacting media that allows an individual adver-
tisement slot to be sold in real-time through a programmatic auction usually of the sealed
bid second price kind and thus the final price the bidder has to pay is unknown at bidding
time.

RTB allows for Addressable Advertising; the ability to serve ads to consumers directly
based on their demographic, psychographic, or behavioral attributes.

In order to optimize a digital marketing campaign showing ads through rtb inventory,
the buyer needs to be able to value advertisement opportunities and determine if they are
profitable or not. To do this, an estimate of the value that showing the ad will provide
and the cost of showing it are required.

In this work different approaches to predict the cost of second price auctions from the
buyer’s perspective are introduced and compared.

This approaches include two previously published methods:
1. A linear regression on a won auctions dataset.
2. A logistic regression to estimate the probability of winning an auction given a bid price,
followed up by a numerical method to estimate the cost taking advantage of a relationship
between both.

And new approaches introduced here:
3. A logistic regression to estimate the ratio of cost to bid price.
4. A logistic regression to estimate the probability of winning an auction given a bid price,
followed up by an analytical method to estimate the cost in an analogous way to method 2.

The experiments show that the introduced method of using a logistic regression to
estimate the ratio of cost to bid price outperforms the others.

Keywords: cost, win rate, real time bidding, statistical learning, machine learning, auction,
second price, vickrey auction, prediction.
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1. INTRODUCTION

In this work we propose and compare methods to estimate the costs of second price auctions
in a Real Time Bidding scenario from the point of view of a bidder.

Real Time Bidding is a way of transacting media that allows an individual advertisement
slot to be put up for bid in real time. This is done through a programmatic on the spot
auction, which is similar to how financial markets operate. RTB allows for Addressable
Advertising; the ability to serve ads (digital media display, video, mobile, social) to
consumers directly based on their demographic, psychographic, or behavioural attributes,
at the impression level.

The main appeal of the real time bidding market is that advertisers can show their ads
to the right people at the right moment, and pay according to their value. In contrast with
classic advertisement mediums like newspapers or TV commercials, the advertisers have
data about the person that is about to see an ad.

Food delivery companies value highly people about to order food at noon and airline
ticket sellers value higher wealthy people about to buy a last time minute first class
ticket than people who, probably, are just curious about how much a ticket to an exotic
destination costs.

This results in advertisers valuing users differently and app owners trying to determine
the value of their users so they can sell their slots for as much as possible to optimize their
revenue (so as to include an appropriate reserve price).

The cost of the impression in a mobile app can then be said to come out of:

• The application in which the ad slot is being offered.

• The context in which the slot is being offered. E.g.: the weekday, day’s hour,
geographic location.

• The owner of the phone about to see the ad.

• The interested buyers.

Most exchanges sell the slot to the highest bidder, charging the second highest bid or if
there was a single bid, a pre-define floor (the minimum price and allowed bid).

More sofisticated exchanges can also offer first price auctions, or banning ads from
competitors inside an app, for instance, a newspaper showing ads might choose to avoid
showing ads of other newspapers.

1.1 Motivation

In order to optimize a digital marketing campaign using exclusively ads from real time
bidding inventory, the buyer needs to be able to value advertisement opportunities and
determine if they are profitable or not.

In order to evaluate or estimate the profitability of showing an ad to a certain person at
a certain time, the buyer needs an estimate of the value that showing the ad will provide,
and the cost of showing it.

1



2 1. Introduction

As an example, let’s assume that we have the opportunity to show an ad to a user, that
after seeing the advertisement, will take a $100 ride to the airport, without considering the
riders salary and the gas, if showing the ad costs less than a $100, we have a profitable
opportunity, if it costs $100 or more, showing the ad is not profitable.

Another case would be having a chance to bid for two different ads to the same user,
one for a train ticket and another one for a pizza. Assuming the train ticket ad has an
expected net revenue of $5 and the pizza ad of $6, but also that this were the only moment
to offer the train ticket, while there will be many opportunities in the near future to sell
the pizza to this user, the DSP might choose to show the train ticket ad right now, and in
the future show the pizza one.

Given that we have a valuation, we would like to estimate the cost of showing the ad,
as it is sold through a second price auction, the final price might be lower than our offer,
thus making the opportunity more profitable. This work’s goal is providing estimations of
the final price of second price auctions.

Determining the value of showing an ad to a user has been studied in other works,
some of which will be introduced in the next section, and will not be further studied in
this thesis.

In the case of Demand Side Platforms, which manage several digital marketing cam-
paigns at the same time for different clients, they buy and pay ad slots to show its customers’
ads, and later charges them using a certain criterion. Usual ones are charging per obtained
click, install, in-app event or the advertisers return of investment [3]. This results in a
disparity between how the DSP pays for showing ads and how it charges their customers
based on results.

DSPs can have more than one customer interested in showing an ad to a certain user,
in this case the DSP has to choose one of the customer’s ads, this creates an internal
competition or optimization problem inside the DSP. By considering the value, which will
be different for each customer, the final price, and the opportunity cost for each of them,
the DSP can choose which ad to bid for.

By smartly choosing when to bid, how much and for which of its customers, the DSP
can optimize their revenue and their clients budgets.

1.2 Challenges

Online advertisement has risen to be a multi billion dollar industry and one of the main
monetization strategies for free content providers on the internet. Given its importance
and opportunities, companies have been reluctant to share their data, methods and how
they use them to optimize their processes.

As a consequence of this, the publications related to this area are not as extensive as
they could be. While there are multiple papers about Click Through Rates prediction,
other types of conversion rates, winning rates and costs, have been less explored openly.

In this work we researched the prediction of second price auctions’ costs. We used as a
starting point publications and our own experience on the Click Through Rate prediction
problem, a similar problem on the industry which has been more thoroughly studied than
second price auctions’ cost prediction.

In RTB digital marketing, online advertisement slots are sold without human interaction
by different systems agreeing on buying and selling the slot at a certain price. As the
decisions have to be taken automatically by a system expected to optimize the purchased
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inventory given the amount of ads shown online, the amount of different variables to take
into account and the fast response times needed to pick an advertisement, the field is an
ideal environment to apply machine learning for fast and appropriate decision taking.

1.2.1 Detailed Description of the Problem

Time constraints

Once an ad slot is available, an application wants to keep the rendering of an ad fast, as
long times impact the app’s user experience and makes the users unhappy.

This results in time constraints in order to bid. Most exchanges require bidders to
reply to auctions in under 120ms-300ms, including round trip time [15, 33, 32, 35].

Feature space cardinality

Each advertisement slot available is an opportunity with very diverse characteristics, when
a bidder receives an auction offering slot, it is receiving a slot to show an ad to:

• A person that is N years old that identifies with the gender G,

• holding a phone from the year Y with the unique device identifier X,

• of the B brand, model M running the operative system O with a screen resolution R,

• using the social network application S,

• accesing the internet through a network type N of the carrier C, with the ip I

• at the H hours on the city C of the country K.

• And the slot is for a type T ad of size L with aspect ratio A.

Not all auctions will provide all the data, some might not provide the user’s age, while
others might provide other information, like the user’s session time.

And this is only the data provided in each particular auction, besides this, the bidder
might incorporate extra information stored using the device identifier as a key. The bidder
could have extra information such as:

• Is this device available for showing ads recurrently?

• Does the user click on ads often?

• What other kind of applications do I know that the device has installed?

• Is this device used for making purchases regularly on other apps?

This leads to potentially having billions of variables available for consideration on a
dataset with a few weeks of auctions and bids.
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Amount of data

DSPs receive auctions from many sources and then evaluate each one of them for their
customers. In order to fulfill the marketing requirements of their clients a lot of opportunities
have to be evaluated to satisfy them all.

Some DSP have declared receiving between 500.000 and 1.000.000 auctions per second,
like Criteo, Avazu or Jampp [12, 4, 5].

This means that after an hour, a DSP might have seen more than 1800 million auctions,
assuming a 1% bid rate (only bidding in 1 percent of those auctions, which is not a
farfetched number), this translates to 18 million bids per hour. If 10% of those auctions are
won and the ad is shown, the bidder will have shown 1.8 million ads and will be notified
how much has to be paid after the auction.

This means a DSP’s RTB second price costs dataset can easily grow by more than 40
million observations per day. Also, if the DSP wants to incorporate data from all the bids,
which contain information not only about winning cases, but also about bids in which the
auction was lost, the DSP can have more than 430 million observations per day considering
cases in which it knows its bid was too low to win, and therefore the cost was higher.

While having a vast amount of data can be considered good, it also brings its disadvan-
tages, as working and processing huge datasets is more difficult than small ones.

Changing market

Demand, supply and prices can change very fast and often, the real time bidding environment
is an always changing market.

Simple examples of this are important dates like black friday in the western world,
single’s day in China or christmas, during this days, advertisers increase their marketing
budgets considerably to get more exposure, this results in more bids to satisfy them, and
on higher bids as the opportunities become more valuable as users are more like to convert
due to the offers and the general commercial spirit of those dates. This results in a more
competitive market, where demand is higher and at higher prices, from one moment to
other.

Another case is when an app becomes popular or loses popularity. When an app
suddenly gets an important user base and shows ads the right way, demand for its slots
can go very high, until the initial spark calms down, people might start using it less, get
used to their ads and start ignoring them, and demand goes down.

This dynamism makes important to adapt to fluctuations and new supply in the market
fast, as one might end up overpaying to show ads, optimizing campaigns suboptimally or
losing the auctions and not getting enough inventory.

The real-time bidding (RTB) participants

The auctions are facilitated by ad exchanges as intermediate between publishers / SSPs
(Supply Side Platforms) and bidders / DSPs (Demand Side Platforms).

In figure 1.1 we can see 5 key players:

• Advertisers: app owners that want to advertise their apps.

• Audience: regular people using mobile phones which will be shown advertisements.

• Publishers: mobile apps that show ads.
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Fig. 1.1: Relevant players in the real time bidding ecosystem

• A DSP (Demand side platform): this are platforms whose customers are advertisers,
that are in charge of programmatically advertising their app.

• Ad exchanges (SSP, Supply side platform): ad exchanges connect publishers with
DSPs by receiving ad slot opportunities from the publishers and offering them in
auctions to DSPs.

We are going to focus on a DSP. A DSP’s architecture has been explained in [2]. Its
main goal is to buy opportunities to show advertisements on behalf of its clients in order
to get them new users or to encourage the current users to make a purchase in the client’s
application. An example of this would be showing an ad of a food ordering app at noon.

The real-time bidding (RTB) cycle

Here is a simplified overview of the Real time bidding cycle to sell media spots in mobile
apps, as shown in figure 1.2:

1. A person is using a mobile app as usual in his phone.

2. There is an opportunity to shown an ad inside the app.

3. The app communicates this to an Ad exchange which operates as an auction house.

4. The exchange starts an auction and communicates it to several potential buyers
(known as DPSs, Demand Side Platforms).

5. The DSP then decides to bid at a certain price to show an ad or not to bid at all.

6. Once all the bids are collected, the exchange determines who won.

7. Then, it provides the ad to the publishing app in order to show it to the user.
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Fig. 1.2: Real time bidding cycle flow

8. And finally notifies the winner that the ad was shown (an impression), along with
the price (as these are second price auctions, the winner does not pay its bid price,
he pays what the second highest bidder bid or in case there was not another bidder,
the auction’s price floor).

Transaction lifecycle: possibilities after the impression

Fig. 1.3: Events posterior to the impression / click

Once an ad is shown, the user can click on it, what takes the him to either the App
Store in order to download the app if he doesn’t have it installed, or opens up the app
otherwise.

If the app is installed as a result of clicking the ad, the DSP receives a notification
indicating so.
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In case the user performs events inside the app, like adding an item to a cart or
purchasing something in an e-commerce, notifications are sent to the DSP.

This flow corresponds to the straight lines in figure 1.3.
Nowadays the industry is pivoting towards accepting view through attribution, which

means that the ad shown will be recognized as the cause of a posterior event, even without
having the user clicking on the ad. An example would be seeing a food delivery ad,
not clicking on it, but still ordering food through the app 5 minutes later. This kind of
attribution is represented by the dashed lines in figure 1.3.

1.3 Auction theory

Auctions have been used for a long long time as a mechanism to sell items and in very
diverse markets, from Dutch merchants selling flowers, governments selling treasury bills,
art owners selling master pieces, to more recently, online advertising opportunities. Just
sponsored search in internet search engines has grown to a business with over 30 billion
dollars a year in revenue.

In this section we give an overview of the basic types of auctions, strategies to participate
in them and implications about these, including sealed first price, sealed second price,
English and Dutch auctions.

The information in this section was compiled from [22, 25, 47].

1.3.1 Basic auction models

There are four main basic kinds of auctions used for selling single items. Even though the
way they take place is very different, it can be seen that under some general conditions
they all generate the same expected revenue, this is known as revenue equivalence.

Sealed bid auctions

In sealed bid auctions, an item is put up for sale, possibly having a minimum reserve price,
and bids are sent simultaneously in a sealed way by the participants, meaning that they
are only aware of their own bid and not of the other participants’s ones.

The highest bidder wins the auction.

First price auction

In first price auctions, the winner pays his bid price for the item.

Second price auction

In second price auctions, the winner pays the second highest bid price for the item (plus
maybe a small increment, like a cent), or in some cases, the reserve price if he was the
only bidder.

Open auctions

In open auctions, after an item is put up for sale, all the participants are aware of the
other participants bids.
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English auction

English auctions can be considered the classic kind and the kind of auctions most people
associate the word auction with. It is also portrayed in several movies and TV shows
such as North by Northwest (1959), The Magic Christian (1969), First Wives Club (1996),
Batman & Robin (1997), Sex and the City (2008) and The Best Offer (2013).

This kind of auction begins by an auctioneer offering an item starting at a minimum
reserve price, and then accepting increasingly higher bids from participants. Participants
have a given time frame to bid a higher price than the current offer, until no participant
bids higher than the current one. The winner of the auction is the participant who bid the
highest price and pays his/her bid for the item.

While the auction takes place, all the participants know the current highest bid.
English auctions that last for a given time interval have been used at Ebay.com to sell

items on their platform since the mid 1990s.

Dutch auction

In this kind of auctions an auctioneer begins asking a high price for an item, and sequentially
lowers it in steps, until one of the participants accepts buying the item for the current
price. The price might be lowered up to a minimum reserve price.

This auctions are famous for being used in the dutch flower market starting in the 17th
century. This are also used by the United States Department of Treasury, through the
Federal Reserve Bank of New York to raise funds for the United States government.

1.3.2 Bidding strategies

Second price auction

Since this work is about predicting the price of second price auctions, we will begin with
this kind.

We will now show that in second price auctions, every bidder has a dominant strategy
(a strategy that always maximizes the bidder’s utility, no matter what other bidders do):
set his bid bi equal to his private valuation vi. This results have been introduced by William
Vickrey in [48] and in the following we explain why this is a dominant strategy.

Given an auction in which the bidder i has a valuation vi for the item (this is fixed and
cannot be changed), we have B = maxj 6=ibj (the highest bid of the other bidders), then
the utility of the bidder i is the valuationi − paid pricei when he wins the auction. In
case he loses, he doesn’t have to pay the item, but also doesn’t win the item of valuation
vi, getting an utility of 0.

We want to see that the bidder i’s utility is maximized by bidding bi = vi.
In the second price auction, there are two possible outcomes for a bidder, either he has

the highest bid, wins and pays B, or he doesn’t and losses.
If B > bi, the bidder i losses the auction. In this case the bidder does not get the item

and the utility is 0.
If bi > B, then the bidder i wins the auction, and its utility is vi −B.
In this context, we can consider two cases:

1. If vi < B, the highest utility the bidder can get is max(0, vi−B) = 0. Which implies
that in order to not have a negative utility, the bidder should get a utility of 0, by
bidding at most vi and losing in the first place, this is bidding truthfully.
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2. If vi ≥ B, then its utility is max(0, vi −B) = vi −B. As bi > B, B is paid, and that
utility is achieved bidding truthfully.

As in both cases the utility is maximized by bidding truthfully, and by bidding truthfully
in the second case it is also ensured that bi is the value with the highest odds of winning
the auction that yields a positive utility, we can say that bidding truthfully is a dominant
strategy.

This implies that second price auctions are easy to take part in, as the bidders do not
need to consider the other bidders or their bids, to determine what to bid.

Assuming every bidder in a second price auction bids truthfully, which is a reasonable
assumption given that it guarantees non-negative and optimal utilities, then the item is
given to the bidder who values it the most.

First price auction

What to bid in first price auctions is harder to determine than in second price auctions,
supossing that the bidder i knew the bids of all the other bidders, what would the best bid
be?

We can answer that question based on the analysis from the second price auction, we
could say that if vi < maxj 6=ibj , then the bidder should lose the auction, in order to get
an utility of 0. If vi > maxj 6=ibj , then bi = maxj 6=ibj + ε, in order to maximize vi − bi. In
colloquial language this means not taking part in the auction if our valuation is smaller
than the highest bid and bidding the highest bid plus a small increment if our valuation is
higher than the other participants’ bids.

As a bidder does not actually know the other bidders’ bids, then it has to somehow
determine a bid price by considering the tradeoff between bidding closer to its valuation,
potentially getting a smaller utility but with higher odds of winning, or bidding further
away from its valuation, getting worse odds of winning the auction but with a potentially
higher utility.

English auction

In an English auction, the bidder should keep participating in the auction until the price
reaches his/her value, until that moment his/her utility is positive and after that, it turns
negative.

As the highest bidder will not have to increase his bid after the second highest bidder
reached his value and stopped bidding, the price of the item will be the second highest bid
(plus an small increment), resulting in the price equivalent to the second price auction’s.

In this kind of auctions, bidding up until one owns valuation is a dominant strategy
too, as it is in second price sealed auctions. This auctions are sometimes referred to as
open second price auctions.

The fact that the auction is open and that along the bidding process bidders gain
information about the other bidders’ valuation, could alter some of the bidders’ valuations
or behaviour, making english auctions differ more from second price sealed auctions.

Dutch auction

In a dutch auction, in order to obtain a positive utility, the bidder should not bid for an
item as long as the price is above his valuation. Once the price drops belows its valuation,
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the bidder can decide whether to bid for it at the current price or risk getting a cheaper
price but with the possibility of another bidder bidding before him. This tradeoff between
the worse odds of getting the item along with a larger utility is equivalent to the one in
first price auctions.

Due to this relationship, dutch auctions are sometimes referred as open first price
auctions, and a bidder could use the same strategy to bid in both of them.

1.3.3 Revenue equivalence

A specific case of the revenue equivalence theorem was first introduced by Vickrey in 1961
in [48] and the general case was introduced in 1981 by Myerson in [34] and Riley and
Samuelson in [40]. The importance of this theorem relies on how it helps auction designers
understand different auction mechanisms and create better ones. Auction design, the
revenue equivalence theorem and recent applications of new auction mechanism have been
put together by Paul Milgrom in [31].

The revenue equivalence theorem states that:
Any auction mechanism in which, for n risk-neutral bidders, each has a privately known

value drawn independently from a common, strictly-increasing, atomless distribution.
Then, any such mechanism, in which:

1. the object always goes to the bidder with the highest bid

2. any bidder with the lowest-feasible bid expects zero utility

yields the same expected revenue (and results in each bidder making the same expected
payment as a function of her signal).

This has important implications, mostly from the auctioneer’s point of view:

1. The four basic auction kinds seen above yield the same expected revenue.

2. If the auctioneer wants to increase the expected revenue, the auction’s mechanism
has to be modified, for instance, by including a reservation price on the item (or
minimum disclosed bid). In the analysis above we could think of this reservation
price as another bid.

3. With risk-averse bidders, instead of risk-neutral as required by the revenue equivalence
theorem, first-price auctions generate more revenue than second price auctions.
Second-price auctions are not affected by risk-aversion as there is a dominant bidding
strategy.

In this context, risk-averse bidders would opt for bidding prices closer to their valuation,
getting a higher chance of winning the auction (with a potential smaller utility), on the
other hand risk-seeking would opt for bidding lower prices in an attempt to increase the
utility, even if the expected utility is the same as a risk-averse bid. A risk-neutral bidder is
neither risk-averse nor risk-seeking, and is indifferent about the uncertainty of the options
in a set of outcomes, and would not have a preference among two options with the same
expected revenue. E.g.: a risk-neutral bidder would not have a preference between a bid
that results in a 20% chance of winning a $10 utility, and a bid that results in a 50% chance
of winning a $4 utility, as the expected utility of both are $2.
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1.3.4 Second price auctions in Real Time Bidding

Second price auctions, also known as Vickrey auctions in honor to William Vickrey who
first described and studied this type of auctions in a published work in 1961 [48], consist in
a single auction for an item in which bids are provided “sealed”, meaning that bids are
known only to each bidder, and the winner pays the second highest bid (plus one extra
cent or increment depending on the exchange) as it has been explained above.

This auctions have the advantage that the optimal bidding strategy is simple, robust
and dominant, it does not depend on the rivals, and it consists of bidding thruthfully, this
means bidding the maximum price the bidder is willing to pay.

How one values the item and decides the maximum price one would pay, is another
story and could be complex.

Even though it was thought that Vickrey auctions had been rare, it was found out that
this type of auction had been used since 1893 by stamp collectors and by other small groups
since then [28]. Nowadays Vickrey auctions, or variations of them, are the preferred method
of selling media spaces for advertising campaigns in websites and mobile applications, with
billions of auctions per second.

A few extra variations about how media spaces are auctioned have been introduced, as
that current exchanges have added floors as minimums values for the bids, or that second
price auctions can turn into first price auctions for a specific bidder, if it has a private
arrangement with the owner of the space being offered. In this work we will assume that
the auctions have floor prices, as most of them do, and that we are not bidding with private
deals that turn second price auctions into first price ones.

1.4 Basic bidding strategy

Given an auction for an ad slot, the DSP has a set of customers interested in it. For each
client, the DSP has a goal the client wants to obtain (a click, an install or an event inside
their application) by showing an ad to the user and an amount of money the client has
arranged to pay the DSP for obtaining such goal. The DSP has to decide whether or not to
bid, and in case it does, for which customer, for which of its ads and the bid price to offer.

As a final note, we are considering second price auctions in which each player only
know his/her own value, therefore it can be proved using game theory that the optimal
decision is to bid your valuation on the item.

As there is extensive literature and previous work on how to estimate this rates (e.g.:
[30, 19, 39, 21, 17, 27, 60, 11, 10, 57] ), we are assuming the DSP already has estimators
for:

• The Win Rate: the probability of winning an auction by bidding an amount of money
b.

• The Conversion Rate: the probability that the user will click, install the application
or perform a certain event in it, given that the ad is shown, or that it is shown and
clicked.

Here we will portray a bidding strategy algorithm to select the customer, the ad and
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the bid price to offer in an auction.

Algorithm 1: Bidding strategy to optimize the expected net revenue

Input: auction
Input: customers: set of customers for the auction
Result: The customer, ad and bid combination that optimizes the expected net

revenue
1 best← None
2 foreach customer ∈ customers do
3 foreach ad ∈ customer.ads do
4 expected conversion← predict conversion(auction, customer, ad)
5 expected revenue←

expected conversion ∗ customer.payment per conversion
6 bid price← CalculateBidPrice(customer, expected revenue)
7 expected win rate← predict win rate(auction, bid price)
8 expected cost← predict cost(auction, bid price)
9 expected net revenue←

expected win rate ∗ (expected revenue− expected cost)
10 if best is None or expected net revenue > best.expected net revenue then
11 best← (customer, ad, bid price)

12 return best

We will go line by line explaining algorithm 1 to optimize the expected net revenue of
an auction for a DSP.

1 Initialize the best option as null.

2 Iterate over all the DSP’s customers with marketing campaigns matching the auction
(e.g.: select the customers running campaigns on Brazil when an auction from Brazil
is received).

3 Iterate over the customer’s ads. As it might have more than one ad (e.g.: the same
ad with different background colors or showing different products).

4 Estimate the probability of the user converting after seeing the ad (e.g.: estimate the
probability of the user taking a taxi after seeing a taxi ad). The referenced papers
on CTR prediction cover the case for click prediction.

5 We define the expected revenue as what the DSP gets paid for getting the customer’s
event of interest (which could be a click, an app install, an in app purchase, or other
in app event), considering the estimated probability of such event happening. This is
the expected value for the DSP of showing the ad.

6 We calculate the bid price from the expected revenue (the value) and the customer.
In this step the DSP returns the action’s expected revenue (its valuation) as one
would expect for a second price auction. In some cases, the DSP might consider
adjusting the bid considering the pacing (how fast it is buying ads for the client) and
its opportunity cost. There could also be hard and soft business requirements (e.g.:
in extreme cases one might want to offer more than its valuation, risking a monetary
loss, in order to keep a client). This topic won’t be studied in this work.
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7 Once a bid price is defined, one can estimate the win rate, i.e. the probability of
winning the auction.

8 Once a bid price is defined, one can also estimate the cost of the second price auction
(the goal of this work).

9 The expected net revenue, the profit the DSP expects to make from this auction,
can be calculated this way, the expected revenue minus the cost, considering the
probability that the ad is shown and the subsequent events can take place.

10-11 Keep the customer, ad and bid price that has the maximum expected net revenue.

12 Returns the ad and the bid price that optimizes the expected net revenue.

As it can be seen, having an estimation for the cost allows us to choose the customer
that maximizes the expected net revenue.

We should note that there are many potential strategies a DSP can use to bid and
optimize their business, however it is not the goal of this work to make a survey of them,
and most likely this strategies will benefit of having a cost estimation.

1.5 Statistical learning

As we want to estimate the cost of second price auctions given input variables, we will
use statistical learning which comprises methods to learn from data and make numerical
predictions.

Statistical learning [18] is an area in statistics which provides tools for collecting and
analizing datasets. Faster computers, larger memory and more powerful algorithms now
allow to work with datasets larger than what classic statistics ever dealt with. Most of the
algorithms studied in statistical learning are also studied in machine learning, therefore
many of the methods we talk about in the thesis can be found in both areas.

This whole section is strongly based on and takes much from [20, 18].
Given the characteristics of the problem described in the Challenges section, it seems

naive to define hard set rules to code a program that predicts the cost of an auction based
on our own domain knowledge.

For this reasons is that we would like to have an algorithm or piece of software able to
analyze data from previous auctions, “learn” the rules and then estimate new auctions’
costs based on them. This kind of algorithms are called regression algorithms in the
supervised learning area of study in statistical learning and machine learning.

By using a regression algorithm, we can get a system able to process data of billions
of auctions on real time, determine how auctions’ costs vary depending on the available
variables in our dataset, and then use this output to estimate the second price cost of new
auctions.

1.5.1 Supervised learning

In supervised learning, the problem at hand consists of learning from a dataset in which
we have input values, also called predictors, independent variables or features, and its
associated output value(s), also called dependant variable, response or in some cases, label.
And then use the learned model to predict the output value of certain input values.
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Variables can be quantitative (also called numerical), like a person’s height, or qualitative
(also called categorical), which take the value of one of k different categories, like a person’s
country of origin, or “positive or negative”.

We have a training dataset formed by a set of observations, each of which have one or
several input values, and the set of output values corresponding to the observations.
X: input values
Y : output values

Where Xi is a vector containing the features of the ith observation in our dataset, and
Yi is a vector (or single value) with the output value of the ith observation. Assuming that
there is a relationship between X and Y , such that we can write Y = g(x) + ε where ε is a
random error term, which is independent of X and has zero mean. We want to estimate g
using X and Y , such that we can use the estimated Y , Ŷ = ĝ(X), where ĝ is an estimation
of g, in a predictive setting.

Regression and classification

When the problem consists of estimating a numerical variable or variables, it’s called a
regression problem.

On the other hand, when the problem consists of estimating the value of a categorical
variable or variables, it is called a classification problem.

In this work we will focus on a regression problem, as we want to estimate the winning
price of a second price auction, a numerical variable, from a set of input variables. Never-
theless, we will tackle this problem by modelling it with both regression and classification
approaches.

1.5.2 Parametric methods

In order to estimate g we will use parametric methods, this involves a two step model
based approach.

1. First, we make an assumption about the functional form of g, for instance, we could
assume that g is linear in X, i.e.:

g(x) = β0 + β1x1 + . . . + βnxn

In this case g has a linear model.

2. After a model has been selected, we follow a procedure to fit the model from the
training data, this is finding the value of the model’s parameters. Notice that
depending on the selected model, the procedure can be more complex or simpler.

Linear regression

Linear regression is a classic approach for predicting a quantitative response, in which
it is assumed that there is approximately a linear relationship between X and Y . This
relationship where Y is approximately modeled can be written as:

Y ≈ β0 + β1x1 + . . . + βnxn
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The βi are known as the model’s coefficients or parameters, and after using the training
data to estimate them, we can predict a new y from an x input, by doing:

ŷ = β̂0 + β̂1x1 + . . . + β̂nxn

Where the caret symbol means they are estimations.

Logistic regression

Logistic regression is one of the most widely used approaches to solve classification problems
with a binary outcome, normally labeled as positive or negative, using 1 and 0 values. The
usual problem tackled with logistic regression is that we have a positive class and a negative
class, input variables and we want an estimation of P (output = positive|input variables).
Often, once there is an estimated probability of being positive, the output is classified as
positive if the estimated probability is above a certain threshold.

More generally, we want to model the relationship P (Y = 1|X), whose values should
be between 0 and 1.

In logistic regression, we use the logistic function to model P (x):

p(X) = eβ0+β1 x1+···+βn xn

1+eβ0+β1 x1+···+βn xn
= 1

1+e−(β0+β1 x1+···+βn xn)

After some manipulation, it can be seen that:

p(X)
1−p(X) = eβ0+β1 x1+···+βn xn

Where p(X)/(1− p(x)) is called the odds and can take any value between 0 and ∞.
By taking the logarithm on both sides we get the log odds or logit:

log
(

p(X)
1−p(X)

)
= β0 + β1 x1 + · · ·+ βn xn

It is noticeable that the right hand is linear in X.
Once the coefficients have been estimated, we can get a class probability estimation by

doing:

p̂(X) = 1

1+e−(β̂0+β̂1 x1+···+β̂n xn)

1.5.3 Estimating the coefficients

Least squares for linear regression

The most common approach to estimating a linear regression’s coefficients involves mini-
mizing the least squares criterion.

Let ŷi = β0 + β1xi1 + . . . + βnxin the prediction for Y on the ith value of X.
Then the residual is defined as ei = yi− ŷi, this is the difference between the ith response

and the ith estimated output value.
The residual sum of squares (RSS) is RSS = e2

1 + · · ·+ e2
n.

The least squares approach chooses the βi parameters that minimize the RSS.
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Maximum likelihood for logistic regression

The most common approach to estimating a logistic regression’s coefficients involves maxi-
mizing the likelihood function:

L(Θ) =
∏
i∈{1,··· ,N},yi=1 P (y = 1|x = x; Θ) ·

∏
i∈{1,··· ,N},yi=0 P (y = 0|x = x; Θ)

Where Θ denotes the parameters of the model. Notice that for the ith observation this
is: yi ∗ log(p̂(xi)) + (1− yi) ∗ log(1− p̂(xi)).

Alternatively, instead of maximizing the likelihood function, the negative log likelihood
is often minimized: −log(L(Θ)).

1.5.4 Model comparison and selection

Once we have models to solve our problem, we want to be able to compare them and select
one, particularly in a predictive problem, we want a selection method to choose the model
that provides the best estimations against new data without requiring using them all in a
controlled experiment.

There are several approaches to model evaluation and selection, like hold out validation
[38], cross-validation and bootstrap [23, 59], structural risk minimization [44], bayesian
information criteria [42] or the Akaike information criteria [1].

In the problem faced in this work, the data is intrinsically ordered, as win rates and
auction’s prices vary highly across time depending on the market’s supply and demand,
this makes classic cross-validation approaches to have its pitfalls for model evaluation, and
therefore we will appeal to hold out and sliding window cross validation [6, 46], training on
a set of contiguous days and testing on the next one, and for following folds, sliding the
days’ window.

In order to perform validation, we have to select and compare a metric or error.
As it is explained in [43], “There are (at least) three ways we can use statistical models

in data analysis: as summaries of the data, as predictors, and as simulators.
With any predictive model, we can gauge how well it works by looking at its errors.

We want these to be small; if they can’t be small all the time we’d like them to be small
on average. We may also want them to be patternless or unsystematic.

Because our models are flawed, we have limited data and the world is stochastic, we
cannot expect even the best model to have zero error. Instead, we would like to minimize
the expected error, or risk, or generalization error, on new data.

What we would like to do is to minimize the risk or expected loss

E[L(Z,Θ)] =
∫
L(z,Θ)p(z)dz

For mean squared error, this would be:

L(z,Θ) = (y −mΘ(x))2

For mean absolute error:

L(z,Θ) = |y −mΘ(x)|
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To do this, however, we’d have to be able to calculate that expectation. Since we don’t
know the true joint distribution of X and Y , we need to approximate it somehow.

We will take the data and split it into training and testing sets.
Fitting to one part of the data, and evaluating on the other, gives us an unbiased

estimate of generalization error.” [43]
For our particular problem, as we are going to center our attention on evaluating the

models using the hold out and sliding window validation methods, we will select three
metrics, which will be described in the experiments section.
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1.6 Gradient descent

Gradient descent is an iterative algorithm for finding the minimum of a function by taking
steps proportional to the negative of the gradient. If the function is convex, it has a single
global minimum and gradient descent can converge to it [52].

The basic gradient descent procedure is as follows [13]:

Algorithm 2: Basic gradient descent algorithm

Input: v: parameters vector
Input: f: criterion function to minimize
Input: α: learning rate
Input: tol: tolerance stopping criteria
Result: Parameters vector that minimize the function f

1 repeat
2 v ← v − α ∗ ∇f(v)
3 until α ∗ ∇f(v) < tol;

The basic gradient descent approach has many known problems such as setting the
learning rate, adjusting the learning rate to improve the optimization (a small learning
rate can mean a needlessly slow convergence, while a too big one can even make it diverge),
or defining a stopping criteria. These have been tackled in different ways and many of this
methods are covered in [41].

Loss functions for linear and logistic regression

As we presented in the statistical learning section 1.5, linear and logistic regression’s
parameters are selected to minimize the residual sum of squares and maximize the likelihood
function respectively. We also presented the negative log likelihood for logistic regression,
an alternative criterion that is to be minimized, not maximized, and therefore can be
directly used with the gradient descent method to estimate the parameters of the model.
Therefore we want to minimize the residual sum of squares or the negative log likelihood
loss functions to estimate the coefficients of the linear and logistic regressions using gradient
descent.

Ideally we would like to minimize the expected loss, this is minimizing the loss given
any input-output pair. As the input-output probability distribution is not available at our
disposal, the loss cannot be measured against it. However we can measure the empirical
loss against our input-output samples dataset, obtaining the empirical loss.

1.6.1 Batch vs online gradient descent

The usual batch method of finding the parameters of a linear or logistic regression performs
one parameters update after the average ∇f(v) is calculated for the whole training dataset,
as it is shown in algorithm 3. In the method known as online gradient descent (or stochastic
gradient descent), ∇f(v) is calculated for every single observation and the parameters
updated after that. In some cases the observation being processed is randomly selected
from the dataset and in others it is selected sequentially, along with consuming the whole
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dataset as the stopping criteria. The basic algorithm is shown in Algorithm 4.

Algorithm 3: Basic batch gradient descent algorithm for linear/logistic regression

Input: v: parameters vector
Input: d: dataset sample
Input: f: criterion function to minimize
Input: α: learning rate
Input: tol: tolerance stopping criteria
Result: Parameters vector that minimize the function f

1 n← size(d)
2 repeat
3 v ← v − α

n ∗
∑n

i=1∇f(v, di)
4 until α

n ∗
∑n

i=1∇f(v, di) < tol;

Algorithm 4: Basic online gradient descent algorithm for linear/logistic regression

Input: v: parameters vector
Input: d: dataset sample
Input: f: criterion function to minimize
Input: α: learning rate
Input: n: amount of fitted samples stopping criteria
Result: Parameters vector that minimize the function f

1 k ← 0
2 repeat
3 k ← k + 1
4 o← uniform random sample one(d)
5 v ← v − α ∗ ∇f(v, o)

6 until k ≥ n;

1.6.2 Convergence

As it is very well explained in [8] and reproduced below, the amount of computations,
information used from the dataset and parameters updates performed per iteration for
batch and online methods have big impacts on their convergence:

Batch convergence

A batch approach can minimize the empirical loss Rn at a fast rate. If Rn is strongly
convex for a batch gradient method there exists a constant ρ ∈ (0, 1) such that ∀k in N,
the training error satisfies:

Rn(wk)−R∗n ≤ O(pk)

Where R∗n is the minimal value of Rn and wk are the parameters at update k. Then
the total work required to obtain ε-optimality is proportional to n log(1/ε). n because
each update requires to calculate n gradients, one for each observation. log(1/ε) because
in the worst case its the total number of iterations in which the training error can be above
a given ε > 0.
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Online convergence

A basic online approach has a slower convergence rate than batch approaches. If Rn
is strictly convex and each ik observation is drawn uniformly from {1, . . . , n} for each
parameters update, then, for all k ∈ N:

E[Rn(w)−R∗n] = O(1/k)

It can be seen that for the online approach neither the per-iteration cost nor O(1/k)
depend on the sample set size n. The total work required to achieve ε-optimality is
proportional to 1/ε.

Comparisson

While n log(1/ε) can be smaller for moderate values of n and ε, when one is working with
large datasets and is limited by computational time, the online approach’s 1/k is favored.

This will be taken into consideration when selecting a method to fit our estimators.



1.7. Related work 21

1.7 Related work

We can build our solution facing the problem’s challenges resting on previous work that
together can answer the following question:

How can we process a big amount of data points, which are generated on real time,
containing potentially billions of features that are not known in advance, whose distribution
might fluctuate from one moment to the other?

And then use this information to make estimations fast?
In [7], an analysis on processing large scale datasets, shows advantages on using

algorithms with slower convergence that are able to process large amounts of data on a
limited amount of time, over using algorithms with faster convergence but that are slower.
While on [29] several algorithms are presented and analyzed.

In [50], a method known as the hashing trick to handle the dimensionality of the feature
space is explained.

In [30], a practical case of such algorithms to predict click rates in digital advertising is
shown.

This publications are the basis used for this work’s implementation and we will look at
them in further detail.

Large-scale machine learning

In [7], stochastic gradient descent for optimization algorithms is analyzed on small vs large
datasets. The main premise of this work is that on the last decades, the datasets sizes have
grown faster than the speed of processors. Due to this, we have reached an inflection point
in which statistical learning problems can be devided in two:

• Small scale: the ones in which the amount of observations in the dataset is the limiting
factor, as the number of examples is not enough to make the computing time an issue.
In this cases the optimization and estimation errors can be minimized by defining
the threshold at which we want the optimizer to stop and by choosing the amount
of observations from the data to use. In this case, the approximation-estimation
tradeoff studied in statistical learning arises.

• Large scale: the ones in which computing time is the limiting factor. In this cases,
approximate optimization can achieve better expected loss because more training
examples can be processed on the same amount of time. One could choose an
algorithm with faster asymptotic convergence processing less data or for longer time,
or an algorithm with slower asymptotic convergence processing more data in the
same amount of time.

Bottou proves that algorithms with worse asymptotic convergence, like stochastic
gradient descent or second order stochastic gradient descent take less time to reach a
predefined risk than algorithms with faster asymptotic convergence, like gradient descent
or second order stochastic gradient descent. This is due to the computing time of each
iteration of the stochastic versions being considerably faster than the non-stochastic ones,
allowing them to process more data in the same amount of time.

On the practical level, the paper reports running several optimizers on a dataset, in
which the stochastic algorithms reach the best test performance in a couple of minutes,
while the standard CRF L-BFGS optimizer took 72 minutes.
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This study is very relevant to our problem as we are working on a large scale learning
task and therefore we will look into using online optimization algorithms to be able to
process larger datasets in restricted amounts of time.

Follow the regularized leader - proximal (FTRL-p)

In [29], the follow the regularized leader - proximal algorithm for online convex optimization
applied to online learning is introduced. It is also shown an equivalence interpretation
between mirror descent algorithms for online convex optimization, such as online gradient
descent, and follow the regularized leader. The difference between this and other algorithms
is how it handles regularization terms. In this publication it is shown with a real world
dataset how FTRL-p outperforms the other studied algorithms.

The main advantage of this approach is that large dataset can be processed for
classification or linear regression problems efficiently and producing sparse models.

Considering how we have to process large data and that the dataset can contain billions
of features, an algorithm such as FTRL-p to handle the data size and to produce sparse
models out of billions of features sounds ideal, and is the one we will be using. The
algorithm itself will be explained 1.8.

Click through rates prediction

In the digital advertising industry, click through rates prediction is a classic problem and
there are several publications about it.

This arises mostly from two reasons:

1. Clicks on ads have been used (and still are on some cases) as a way to measure the
success of advertisement, as they are relatively easy to track and are considered an
indicator of interest from the user on the product.

2. Charging a fixed amount of money per click to clients running marketing campaigns
is a popular spend model in the digital advertising industry, due to the reasons from
the previous point, and because it splits the risk among the client and the provider.
The provider has to ensure that it is showing the ads to people interested in the
product, but it does not take the risk of spending money to show ads that might not
result in a sale. On the other side, even though a positive return of investment is not
guaranteed as a sale might not take place, the client has less risk compared to the
model where it pays for every ad shown, regardless of the interest of the user in it.

As a result of this, DSPs have given a lot of importance to being good at predicting
click through rates. This problem in this industry is characterized for having millions of
data points with dozens of categorical variables and many numerical ones with relevant
variable interactions, potentially adding up to billions of features.

In [30] the experience of deploying a production system for CTR prediction at Google
Inc. using the FTRL-p algorithm is presented claiming great results.

In [19] a CTR prediction system at Facebook is presented, in which the best results are
obtained by:

• Generating categorical features from numerical features through gradient boosting
trees.
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• Using a logisting regression with stochastic gradient descent with per-coordinate
learning rate (such as FTRL-p has).

• And keeping the estimator up to date (data freshness matters).

In [37], a presentation by Criteo, it was shown how they chose an approach using logistic
regression over Field-aware Factorization Machines, due to the computation performance
of both algorithms.

These two papers further motivates the use of a logistic / linear regression model
optimized with the FTRL-proximal algorithm, while also introducing the importance of
keeping estimators up to date.

Feature hashing for large scale multitask learning

In [50] the hashing trick is studied. This consists of hashing a high dimensional input
vector into a lower dimensional feature space. This method preserves sparsity, introduces
no additional overhead of storing projection matrices or dictionaries, and pre-determines a
feature space in which any new feature can be projected to, through a hash function.

In the paper it is shown theoretically and empirically how the hashing trick can be
used to obtain impressive classification results on real-world problems, and that random
subspaces of the hashed space are likely to not interact.

This method is ideal for a large scale learning task with billions of features without a
constrained space, as it both reduces the dimensionality of the problem and pre-defines a
feature space, allowing to define the size of a parametric method’s model such as linear or
logistic regression before hand. The hashing trick method will be explained in 1.8.

Second price auction cost prediction

The publications on estimating the costs of second price auctions are not many as in the
CTR prediction case.

In [26] it is presented how Drawbridge, an ad-tech company, estimates win rates
and winning prices of second price auctions on RTB. In this work they compare linear
regressions on won auctions costs and doing numerical integration on win rates prediction
based on logistic regression, due to a dual relationship between both problems, to predict
the auction’s cost. Both approaches will be compared in this work, along with two new
approaches, and will be further explained in the models section.

In [56] a linear regression model is used on won auctions data and it is ensembled with
a censored regression model using both won and lost auctions data. The linear regression
model is used on won auctions only, as it performed better in that case.

In [58], survival rate analysis approaches are used on both won and lost auctions to
estimate the market price distribution, taking advantage of the win rate and impression
cost relationship as in [26].

1.8 Algorithms

In this section we will introduce two algorithms that we will use to address the machine
learning task at hand, that attack two major challenges in this problem:
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1. Training an estimator with datasets large enough to not fit in RAM memory, while
supporting high feature dimensionality, achieving sparse models in relation to the
feature space, all while getting a good performance.

2. The feature generation and feature space dimensionality.

In [7], it was noted that for large scale machine learning problems, in which the
computation time is the limitation and not the amount of data, there are tradeoffs between
the algorithms used and the amount of data processed in a given time window. Specifically,
it has to be taken into account that given a limited amount of time, and a simpler family
of functions to fit with faster algorithms, the overall error can be reduced more than with
complex functions, as the simpler one would be able to process more data, reducing the
optimization error.

In order to tackle this two problems, taking into consideration that we are facing a
large scale machine learning problem, we will use the follow the regularized leader proximal
algorithm to fit a logistic regression along with the hashing trick.

1.8.1 Follow The Regularized Leader - proximal

From the necessity of fitting an estimator in a memory efficient way, fast, using large scale
datasets and generating sparse models, is that we draw on online convex optimizations
algorithms to fit our estimators.

In [29], the most successful algorithms that meet those requirements were studied and
the FTRL-proximal algorithm was proposed and compared against the others in a CTR
dataset. The FTRL-proximal logistic regression got the best performance while being the
most sparse, through the use of lambda 1 regularization.

After that publication, in [30], the challenges and approaches to tackle CTR prediction,
a massive-scale learning problem of similar characteristics to the one studied in this work,
were thoroughly discussed. It was also noted the success of the FTRL-proximal logistic
regression to obtain great results while keeping the final model sparse.

As it has been explained in both [30] and [29], the FTRL-proximal algorithm is the same
as online gradient descent when no regularization is included. However, once regularization
is added, FTRL-proximal moves from the online gradient descent weight update, given a
sequence of gradients gt:

wt+1 = wt − ηtgt

Where ηt is a non decreasing learning rate.
FTRL-proximal updates the weights as:

wt+1 = argminw(g1:t · w + 1
2

∑t
s=1 σs||w − ws||22 + λ1||w||1)

Where ηs is defined in terms of the learning rate, such that

σ1:t = 1
ηt

Even though it may seem that this optimization algorithm is harder to implement and
that it is required to keep the gradients’ history, it is not required to do so, and it can be
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implemented keeping one extra number per feature. An example implementation based on
[30] is shown in this section’s listing.

1 from math import exp , s q r t
2

3

4 de f s i gn (x ) :
5 re turn 1 i f x >= 0 e l s e −1
6

7

8 c l a s s Linear :
9

10 de f i l i n k (x ) :
11 re turn x
12

13 de f d l o s s ( pred , l a b e l ) :
14 re turn pred − l a b e l
15

16

17 c l a s s L o g i s t i c :
18

19 de f i l i n k (x ) :
20 re turn 1 / (1 + exp (max(−100 , min(−x , 100) ) ) )
21

22 de f d l o s s ( pred , l a b e l ) :
23 re turn pred − l a b e l
24

25

26 c l a s s Estimator :
27

28 de f i n i t ( s e l f , alpha =0.04 , beta =0.1 , lambda1=0, lambda2=0,
29 max feat number=2∗∗22 , r e g r e s s i o n=Log i s t i c ) :
30 s e l f . alpha = alpha
31 s e l f . beta = beta
32 s e l f . lambda1 = lambda1
33 s e l f . lambda2 = lambda2
34 s e l f . z = [ 0 . 0 ] ∗ max feat number # sum of grads − sigma−weighted

↪→ c o e f s
35 s e l f . n = [ 0 ] ∗ max feat number # number o f t imes f e a tu r e seen
36 s e l f .w = [ 0 . 0 ] ∗ max feat number # reu sab l e weights vec to r
37 s e l f . r e g r e s s i o n = r e g r e s s i o n
38

39 de f f i t ( s e l f , indexes , values , l a b e l ) :
40 ””” F i t s a s i n g l e obse rvat i on .
41

42 Parameters
43 −−−−−−−−−−
44 indexes : L i s t [ i n t ]
45 A spar s e l i s t conta in ing the indexes o f the non zero e lements in

↪→ a
46 numeric vec to r r ep r e s en t i ng an obse rvat i on .
47 va lue s : L i s t [ f l o a t ]
48 A spar s e l i s t conta in ing the numeric va lue s o f the corre spond ing
49 index in the same po s i t i o n o f indexes .
50 l a b e l : numeric
51 The numeric ground truth value
52 ”””
53 n , z , w = s e l f . n , s e l f . z , s e l f .w
54 pred = s e l f . e s t imate ( indexes , va lue s )
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55 d l o s s = s e l f . r e g r e s s i o n . d l o s s ( pred , l a b e l )
56 f o r i , va lue in z ip ( indexes , va lue s ) :
57 g = d l o s s ∗ value # grad i ent l o s s w. r . t . wi
58 sigma = 1 / s e l f . alpha ∗ ( s q r t (n [ i ] + g ∗∗ 2) − s q r t (n [ i ] ) )
59 z [ i ] = z [ i ] + g − sigma ∗ w[ i ]
60 n [ i ] = n [ i ] + g ∗∗ 2
61 re turn pred
62

63 de f e s t imate ( s e l f , indexes , va lue s ) :
64 re turn s e l f . r e g r e s s i o n . i l i n k ( s e l f . p r o j e c t ( indexes , va lue s ) )
65

66 de f p r o j e c t ( s e l f , indexes , va lue s ) :
67 a , b = s e l f . alpha , s e l f . beta
68 l1 , l 2 = s e l f . lambda1 , s e l f . lambda2
69 z , n , w = s e l f . z , s e l f . n , s e l f .w
70 wTx = 0
71 f o r i , va lue in z ip ( indexes , va lue s ) :
72 i f l 1 <= z [ i ] <= l1 :
73 w[ i ] = 0
74 e l s e :
75 w[ i ] = (− ( ( b + sq r t (n [ i ] ) ) / a + l2 ) ∗∗ −1 ∗ ( z [ i ] −
76 s i gn ( z [ i ] ) ∗ l 1 ) )
77 wTx += w[ i ] ∗ value
78 re turn wTx

Listing 1.1: Example implementation of the logistic regression FTRL-proximal

1.8.2 Hashing trick

As we will show in the Datasets’ Variables section and on the Models’ Base model section,
this problem from the advertising technology industry is characterized for potentially having
billions of features, while each observation is sparse, usually having non zero variables in
the order of the hundreds.

For this reason is that it would be particularly useful to have a way of turning the
features of our model into a numeric vector representation that is memory efficient, easy to
compute, can handle arbitrary new features and does not require an in-memory mapping
of variables to numeric representation.

One way to solve this problem, and the one we will use in our experiments, is the
method known as the hashing-trick which has shown great success in practice [30, 50].

This consists of taking a hash of a numeric or string variable and using the output
value as the index in a numeric vector representing the observation.

The vector’s size is often smaller than the potential amount of features, fitting any
arbitrary feature space into a limited feature space.

This implies that:

1. If we want to keep track of the semantic meaning of each position, we will have to
keep an inverse hash table from hashes / indexes to features.

2. There might be collisions when assigning an index in the vector, and if we want to
keep an inverse hash table, we will either have to keep all the values that generate
the same hash, and / or define an strategy to pick one.
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In Vowpal Wabbit [24], an open source fast machine learning system, the hashing trick
is implemented by taking a feature name, hashing it using a hash function and then taking
the modulo 1 << b to limit the amount of bits of the index to the desired range. For
quadratic features combining two of them, the first feature’s hashed index is multiplied by
a constant, then xored against the second feature, and the modulo is taken again. This
procedure allows to generate deterministic vector indexes from any amount of categorical
or numeric variables, and generate a sparse vector representation, without the need of
storing an in memory mapping.

In “Feature Hashing for Large Scale Multitask Learning” [50], an implementation is
suggested containing two hash functions, one to determine the index of the feature into the
vector, and another binary one, mapping the variable into {−1, 1} to remove bias and fight
hash collisions, by multiplying the value in the feature vector by ±1 in the corresponding
index coming from the first hash function. Then, in order to have a collision, the values of
both hash functions have to collide.

A third implementation we used, is hashing the variables and keeping a second vector
with the amount of times a feature has appeared. Then, on the estimator, we keep track
of the most seen feature in a given index using a majority vote online algorithm, like
Boyer-Moore’s algorithm [9], to determine the most relevant feature in an index, in case
there are collisions.

1 from fun c t o o l s import reduce
2 from operator import mul
3 from typing import Lis t , Tuple , Union
4

5 from xxhash import xxh64
6

7

8 de f hash func t i on (x ) :
9 re turn xxh64 (x ) . i n t d i g e s t ( )

10

11

12 de f ha sh f ea tu r e ( feature names : Tuple [ s t r ] ,
13 f e a t u r e v a l u e s : Tuple [ Union [ s t r , f l o a t ] ] ) :
14 ”””Returns a f e a tu r e hash and i t s va lue .
15

16 Parameters
17 −−−−−−−−−−
18 f eature names : Tuple ( s t r )
19 A tup le o f s t r i n g s conta in ing the f e a tu r e names .
20 E. g . : ( ’ country ’ , ’ day of week ’ , ’ bid ’ )
21 f e a t u r e v a l u e s : Tuple (Union ( s t r , f l o a t ) )
22 A tup le with the va lue s o f the corre spond ing f e a tu r e names .
23 E. g . : ( ’ a rgent ina ’ , ’monday ’ , 1 . 4 )
24

25 Returns
26 −−−−−−−
27 Tuple ( int , f l o a t )
28 The hash o f the f e a tu r e and i t s numeric va lue
29 ”””
30 # Sort the tup l e s acord ing to the f e a tu r e name to ensure that the hash ’ s
31 # output i s independent from the tup l e ’ s input order
32 feature names , f e a t u r e v a l u e s = z ip (∗ so r t ed (
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33 z ip ( feature names , f e a t u r e v a l u e s ) ,
34 key=lambda name value : name value [ 0 ] ) )
35 # Turn numeric va lue s in to a s t r i n g r ep r e s en t a t i on to ensure that the
36 # fea tu r e ’ s hash output i s independent from the va r i ab l e ’ s numeric va lue
37 s t r i n g i f i e d v a l u e s = [ va lue i f i s i n s t a n c e ( value , s t r ) e l s e ’ f l o a t ’
38 f o r va lue in f e a t u r e v a l u e s ]
39 # For c a t e g o r i c a l va r i ab l e s , s e t the value as a 1
40 numer ic va lues = [ 1 i f i s i n s t a n c e ( value , s t r ) e l s e va lue
41 f o r va lue in f e a t u r e v a l u e s ]
42 # Join a l l the so r t ed f e a tu r e names and t h e i r va lue s to hash them
43 hashed = hash func t i on (
44 ’+ ’ . j o i n ( feature names ) + ’ , ’ + ’− ’ . j o i n ( s t r i n g i f i e d v a l u e s ) )
45 # The value o f a po l inomia l f e a t u r e as the mu l t i p l i c a t i o n o f the va lue s
46 value = reduce (mul , numer ic va lues )
47 re turn hashed , va lue
48

49

50 de f h a s h i n g v e c t o r i z e r ( f eature s names : L i s t [ Tuple [ s t r ] ] ,
51 f e a t u r e s v a l u e s : L i s t [ Tuple [ Union [ s t r , f l o a t ] ] ] ,
52 n : i n t ) :
53 ”””Returns a f e a tu r e hash and i t s va lue .
54

55 Parameters
56 −−−−−−−−−−
57 f ea ture s names : L i s t ( Tuple ( s t r ) )
58 A l i s t o f t up l e s o f s t r i n g s conta in ing the f e a tu r e names .
59 E. g . : [ ( ’ country ’ , ’ day of week ’ , ’ bid ’ ) , ( ’ hour o f day ’ ) ]
60 f e a t u r e s v a l u e s : Tuple (Union ( s t r , f l o a t ) )
61 A l i s t o f t up l e s with the va lue s o f the corre spond ing to f e a t u r e s

↪→ names
62 E. g . : [ ( ’ a rgent ina ’ , ’monday ’ , 1 . 4 ) , ( 3 ) ]
63 n : i n t
64 The maximum index value a l lowed in the vec to r
65

66 Returns
67 −−−−−−−
68 Tuple ( L i s t ( i n t ) , L i s t ( f l o a t ) )
69 The hash o f the f e a tu r e and i t s numeric va lue
70 ”””
71 indexes = [ ]
72 va lue s = [ ]
73 f o r feature names , f e a t u r e v a l u e s in z ip ( features names , f e a t u r e s v a l u e s

↪→ ) :
74 index , va lue = hash f ea tu r e ( feature names , f e a t u r e v a l u e s )
75 indexes . append ( index % n)
76 va lue s . append ( value )
77 re turn indexes , va lue s
78

79

80 f ea ture s names = [ ( ’ country ’ , ’ day of week ’ , ’ bid ’ ) ,
81 ( ’ b i d f l o o r ’ , ) ,
82 ( ’ ope ra t ive sy s t em ’ , ’ country ’ ) ]
83 f e a t u r e s v a l u e s = [ ( ’ a rgent ina ’ , ’monday ’ , 1 . 3 ) ,
84 ( 0 . 4 , ) ,
85 ( ’ android ’ , ’ a rgent ina ’ ) ]
86 n = 1 << 22
87 indexes , va lue s = ha sh i n g v e c t o r i z e r ( features names , f e a t u r e s v a l u e s , n )
88 pr in t ( indexes )
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89 pr in t ( va lue s )
90

91 [ 1226380 , 3947233 , 3831511]
92 [ 1 . 3 , 0 . 4 , 1 ]

Listing 1.2: An example implementation of the hashing trick

1.9 Costs and win rate prediction

As we can see and as it has been discussed in [26] and [58], the win rate and cost prediction
problems are related. By definition we have that:

win rate = P (cost ≤ bid)

Then by the definition of cumulative distribution function and probability density
function, we know that given a random variable X, be Fx its c.d.f. and fx its p.d.f., then:

F (x) = P (X ≤ x) =
∫ x
−∞ f(t)dt

Replacing the values:

F (bid) = P (cost ≤ bid) = win rate =
∫ bid
−∞ f(t)dt

Now we can see that the win rate is the c.d.f of the p.d.f of the auction’s cost.
This implies that if we have a win rate distribution, we can take the derivative w.r.t. to

the bid, we have the cost distribution, and if we have a cost distribution, we can integrate
it up to the bid, to get the win rate. Knowing this, if we can solve the integral or the
derivative, we could solve both problems with only one estimator.

In the models section we will explain how we can exploit this relationship to get cost
predictions from a win rate estimator, and on the datasets section, why would we want to
do this.

Win rate prediction

The win rate estimation problem consists of a classification problem in which we have to
determine if an auction will be won or not. This is analogous to the click through rate
problem.

New approaches proposed

In this work we extend the win rate predictions approach doing analytical integration
using a closed form formula instead of numerical integration as in [26], and introducing
approaches to estimate the ratio of the cost to the bid on a new dataset of won auctions
only.

The auction’s cost prediction can be used in the bidder’s strategy to optimize their
bidding decisions.
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1.10 Our contribution

In this work we compared different approaches for predicting the cost of second price
auctions in a real time bidding environment:

1. A linear regression on the cost of previously won auctions.

2. Numerically integrating a logistic regression on the probability of winning an auction.

3. A logistic regression on the ratio of the cost to the bid price.

4. A logistic regression on the ratio of the cost to the bid price starting from the auction’s
bid floor.

5. Analytically integrating a logistic regression on the probability of winning an auction.

6. Three simple approaches that do not require any previous data as baselines:

(a) Predicting the auction’s bid floor.

(b) Predicting the bidder’s bid.

(c) Predicting the aritmethic mean between the floor and the bid.

While the first two approaches had already been studied in the literature, the other
ones are introduced here.

Stochastic online gradient descent optimized linear and logistic regression algorithms
along with the hashing trick were used to fit a dataset with million of data points corre-
sponding to two weeks worth of time changing data from a DSP.

The results obtained show that the forth approach outperforms the others, that the
analytical integration outperforms the numerical integration, and that the third simple
approach can be more convenient and obtain better results than the first two.

This could allow for better cost predictions on second price auctions, which can be used
to improve the bidding strategies of DSPs, which could help improve their net revenue
and their clients’ return of investment. At the same time smaller datasets than the ones
required for the second method could be used.

1.11 Thesis’ structure

Having introduced the basic concepts and motivation for this work, we will we will proceed
to describe how data is gathered, its complications and possible solutions.

Next, we will continue presenting the different estimators we are going to evaluate.
Finally, the experiments will be presented, along with the results, discussion and

conclusion.
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In order to build our datasets, we use the information from the auctions, bid and ad shown
messages, which share a common transaction id which allows us to join them together.

Auction messages provide information about the ad slot that is being offered. In bid
messages, the offered bid price is included. Finally in impression (ad shown) messages, the
cost the bidder has to pay is informed.

Auction data Bid data Impression data
Id Time Country Ad type ... Bid Ad shown Cost
1 2018-07-14 16:51 Argentina Html ... 0.23 0 NULL
3 2018-07-14 16:51 Japan Video ... 0.33 1 0.24
9 2018-07-14 16:52 Spain Image ... 0.12 1 0.03
... ... ... ... ... ... ... ...

Tab. 2.1: Example of a dataset showing the origin of the variables

As bidders are only notified if they win the auction and the ad was shown, in order to
label negative cases, we have to wait a reasonable amount of time until we are sure that
a delayed notification won’t arrive, which implies several difficulties as described in [36].
This has two potential problems:

1. If we don’t wait enough time before the case is labeled as negative, we can label
cases as negatives and afterwards receive the win notifications, ending up with false
negatives in our datasets.

2. The longer we wait for win notifications before labelling cases as negative, the more
out of date our estimators will be. E.g.: if we wait 20 minutes, the most recent data
in our dataset will be from auctions from 20 minutes ago. If we wait 2 hours, the
most recent data will be from 2 hours ago. Therefore, in order to be the most up to
date as possible, we want to wait as little as possible for labelling, while not having
many false negatives.

In table 2.1 we can see an example of how the dataset is built by joining information
from the different stages of the real time bidding auction flow. Notice how in the first row,
in which the ad was not shown, there is no cost and in the other cases, the bid is greater
or equal than the final price.

2.1 Variables

Some of the the variables that might be available for extraction are:

• Ad slot size (in pixels): for image or video ads, the ad slot’s width and height is
provided.

• Ad slot tag id: Identifier for the ad placement inside the app / web.

31
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• Ad slot type: image banner, html banner, native (disguise your ad as a native element
of the app / web, e.g.: like another post), video or audio.

• Application in which the ad slot is available.

• Application category: e.g. social network, tourism, arts and entertainment, etc.

• Application paid: boolean flag indicating whether the app is free or a paid version.

• Bid floor: the minimum acceptable bid and the amount of money the bidder will be
charged in a single bidder auction, in dollars.

• Bid price: the amount of money bidded in dollars.

• Browser’s user agent: name of the user agent used to render the web / app.

• Carrier: name of the carrier providing service to the user. E.g.: AT&T, Movistar,
Claro, T-Mobile, etc.

• Coppa: Flag indicating if this request is subject to the COPPA (Child Online Privacy
Protection Act) regulations established by the USA FTC.

• Country, region and city, latitude / longitude: the user’s current latitude and
longitude, from which the country, region and city can be derived, or directly this
values.

• Day of the week: the current day of the week.

• Device type: the kind of device the user is using the app in. E.g.: mobile/tablet,
personal computer, tv, phone, tablet.

• Do not track: flag indicating if the user does not want to be tracked.

• Exchange: the name of the exchange running the auction.

• Is interstitial: boolean flag indicating if the ad covers the whole page before showing
the content of the app / web.

• Mobile device’s model: e.g. Samsung Galaxy S3.

• Mobile device’s operative system: e.g.: Android 4.3.1.

• Network type: if the user is accessing the internet through a wi-fi, cellular gsm, g3,
g4, etc. connection.

• Time of the day: timestamp providing the time of the day.

• Traffic type: whether the ad slot is in an application or web.

• User’s age and gender.

• Video / audio min / max duration: the minimum and maximum duration allowed
for video / audio ads.

• Video skippable: boolean flag to indicate if the video ad is skippable.
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While a few variables are numeric, like the bid and the bid floor, most are categorical
and it has to be taken into account that in order to use categorical variables in a linear or
logistic regression, some kind of hashing or one-hot encoding has to be performed on the
variables. This kind of encoding will transform a single categorical variable with multiple
values into one binary variable per value.

Also regarding categorical variables in this particular problem, many do not even have
a limited amount or predefined set of possible values. Taking for instance the application
in which the slot is offered, new applications are uploaded to the App Store everyday, while
many are taken down.

It is also important to note that there are relevant variable interactions (e.g.: the
country with the time of the day).

This things result in an amount of possible features on the order of the billions, if we
take for instance as a feature the day of the week on a given country, we have 7 possible
days and 193 possible countries, spanning to 1351 possible combinations, if we now combine
this with the application in which the ad would be shown, we would have 1351 combinations
with almost 3 millions apps in the Google PlayStore, of which more than 95% are free [16]
(although not all of them have in app ads), we can see that just combining these three
variables could lead to over a billion features.

2.2 Datasets

2.2.1 Costs dataset

This dataset consists of one observation per ad shown and the labels are numeric values
indicating the cost.

In table 2.2 we have examples from a costs dataset, in this case we want to train an
estimator for the last column (second price cost), using the other columns as predictors.
What we have are data from won auctions and we want to estimate the second price auction
cost, given the bid price and the other variables.

Note: we show a few of the available variables for illustration purposes, but there could
be more not portrayed here.

2.2.2 Win rate dataset

This dataset consists of one observation per bid and the labels are binary responses
indicating whether the auction was won and the ad shown or not.

In table 2.3 we have examples from a win rate dataset, in this case we want to train an
estimator for the last column (Won), using the other columns as predictors. What we have
are data from auctions in which the DSP bid, and we want to estimate the probability of
winning said auction, given the bid price and the other variables. Notice that all the rows
for won auctions (i.e. Won is 1), will be available in the cost dataset with the second price
cost, while lost auctions (i.e. Won is 0), won’t be available in the other dataset, as the
DSP is not notified how much the winner paid for the impression.

Note: we show a few of the available variables for illustration purposes, but there could
be more not portrayed here.
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Tab. 2.2: Example data from the second price cost dataset
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Tab. 2.3: Example data from the win rate dataset
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2.3 Sizes

An important aspect of the problem is the cardinality of the datasets, on any given week,
the DSP could receive over 700 thousand auctions per second, which results in ∼600 million
bids and ∼72 million ads shown per day. This roughly translate to a bid rate lower than
1%, and a win rate close to a 12%.

The impact this has is that the costs dataset grows by 72 million observations per day,
while the win rate one does so by 600 million observations per day.

2.4 Complications

Having described the datasets, we list complications we have found:

1. The win rate dataset’s size will be greater than or equal to the costs’ one.

2. The win rate dataset has information on lost auctions due to bidding a low price,
while these observations will be lost on the costs datasets.

3. There isn’t a constraint feature space, over 1 billion different features can be easily
seen after a few weeks.

4. Demand, supply and prices can change very fast and often, the real time bidding
environment is an always changing market, which results in up to date estimators
being needed in order to have accurate estimations.

5. Lack of transparency from exchanges: auctions are not audited by bidders, therefore
there is no guarantee that there are actually other bids that act as second highest
bid, or that exchanges are not sending multiple auctions for the same ad slot, using
increasing bid floors.

2.5 Workarounds

1. This is not necessarily a complication and has strong and weak points for both
datasets. Having more data in the win rate, makes it more expensive to store and
process if we want to take advantage of all of it, on the other hand, having fewer
data on the costs dataset, could not be a bad thing, for the opposite reasons, and
because it still has millions of new observations per day.

2. In order to reduce the bias towards auctions in which we use to win with lower
bidding prices, we can explore the other cases by boosting our bid prices and paying
more for those.
This way we can have access to data points from all the types of auctions for both
datasets, even though the win rate dataset will most likely still count with more
relevant information.

Points 3 and 4 have been addressed in the algorithms section.
Point 5 feasibility cannot be solved or at least confirm that it happens in a consistent

way without auditing the exchanges, without this possibility, we will assume that there
could be noise in the dataset due to questionable practices from auction houses. Even
though this possibility is being considered, one would expect partners not to commit fraud
or take advantage using dishonest practices.
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3.1 Base model variables

We will define a base model consisting in a set of predictors independent from the bid and
a set of predictors containing the bid. This predictor variables will be used in all the linear
and logistic regression approaches. Even though we were not able to find publications
advocating for the exact variables used here, from talking with people in the industry we
take that this are not very far away from what many companies use.

The first ones will consist of an intercept and contextual variables related to the auction
as described in the datasets section.

The second one will consist of the first ones interacting with the bid, e.g: (the bid, the
bid in country 1, etc.).

The predictors independent from the bid are included to capture information as a more
specific intercept inherent to the market.

Considering the interaction among variables, the abstract base model consists of:

1. Intercept

2. Variables

3. Interaction(variables, variables)

4. Interaction(variables, bid price)

5. Interaction(variables, variables, bid price)

Illustrating this, if we had the following variables available: ad slot size, app and
country, we would have:

1. Intercept

2. Variables: ad slot size, app, country

3. Interaction(variables, variables): (ad slot size, app), (ad slot size, country), (app,
country)

4. Interaction(variables, bid price): (ad slot size, bid price), (app, bid price), (country,
bid price)

5. Interaction(variables, variables, bid price): (ad slot size, app, bid price), (ad slot size,
country, bid price), (app, country, bid price)

Then from an observation from Argentina in the Fruit Ninja app for a 320x50 pixels ad
slot bidding $1.5, the resulting features would be:

1. Intercept

2. Ad slot size: 320x50

37
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3. App: Fruit Ninja

4. Country: Argentina

5. Ad slot size: 320x50 in App: Fruit Ninja

6. Ad slot size: 320x50 in Country: Argentina

7. App: Fruit Ninja in Country: Argentina

8. Ad slot size: 320x50 bidding $1.5

9. App: Fruit Ninja bidding $1.5

10. Country: Argentina bidding $1.5

11. Ad slot size: 320x50 in App: Fruit Ninja bidding $1.5

12. Ad slot size: 320x50 in Country: Argentina bidding $1.5

13. App: Fruit Ninja in Country: Argentina bidding $1.5

As a consequence of generating this features, our estimator would be able to detect, for
example, the relevance of Fruit Ninja in Argentina vs other countries.
The final amount of features in each observation would be:

1. Intercept: 1

2. Variables: n

3. Interaction(Variables, variables): binomial coefficient(n, 2)

4. Interaction(Variables, bid): n

5. Interaction(Variables, variables, bid): binomial coefficient(n, 2)

Then we have:

amount of features = 1 + 2 ∗ n+ 2 ∗ n!
k!(n−k)!

Where n is the amount of variables used, as described in the dataset section.
For instance, selecting 10 variables, we would extract 111 features per observation.

Finally the variables we are going to use on our model are:

• Ad slot size

• Ad slot position tag

• Application

• Bid floor

• Bid price

• Country
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• Day of week

• Hour of day

• Network connection type

• Platform (IOS / Android)

• Region in the country

• RTB exchange

3.2 Domain based information variants

As we are working on second price auctions, given that we win the auction, the cost will
always be between the auction’s bid floor and our bid.

As the regression models might not capture this fact, we will also evaluate clipping
their outputs to the range [bid floor, bid].

3.3 Linear model on costs

This is one of the methods that has been studied previously.
This is defined as a linear regression on the base model trained with the costs dataset,

in which the label is the actual cost.
In order to obtain a cost estimation, it is enough to use the estimator’s predict on a

new observation.

3.4 Logistic model on cost over bid

3.4.1 Approach 1: cost ratio

This is defined as a logistic regression on the base model trained with the costs dataset, but
in this case, the label value will be the cost/bid ratio. This means that if the bid was 1.0
and the cost 0.60, the label would be 0.6, thus making the labels take values in [0.0, 1.0].

Afterwards, in order to estimate the expected cost, the rate estimation returned by the
estimator has to be multiplied by the bid.

Procedure:

1. Label the observations as label = cost ratio = cost/bid.

2. Fit a logistic regression model on the dataset.

3. Estimate the cost ratio for the new observation.

4. cost estimation = estimated cost ratio ∗ bid.
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3.4.2 Approach 2: cost ratio from the floor

The second approach is analogous to the first one, but estimating the ratio between
(cost− bid floor)/(bid− bid floor). Once we can estimate this, we can estimate the
cost by doing:

ratio estimate ∗ (bid− bid floor) + bid floor

The advantage of this model, is that it captures by design the fact the cost will always
be between the bid floor and the bid.

3.5 Win rate prediction plus numeric integration

This is one of the methods that has been studied previously.
This is defined as a logistic regression on the base model trained with the win rate

dataset. The estimation would tell us how likely we are to win an auction by bidding a
certain amount of money.

Afterwards, in order to estimate the expected cost, several win rate estimations will
be obtained for different bid prices, and the expected cost will be obtained by doing the
numeric integration on them using the chained trapezoidal rule.

Procedure:

1. Fit a win rate estimator on the win rate dataset.

2. When a new case is received, make several win rate estimations ranging from the
lowest possible value, to our bid.

3. Use the trapezoidal rule to integrate the values from the previous point.

4. The cost estimation is the result from point 3

3.5.1 The trapezoidal rule

As explained in [55], the trapezoidal rule approximates the integral of a function by
approximating the region under the function as a trapezoid and integrating that.

Fig. 3.1: Example of the chained trapezoidal rule.
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The chained trapezoidal rule works by partitioning the integration interval and applying
the rule in each part. In figure 3.1 we can see an example of this.

Therefore:

∫ b
a f (x) dx ≈

∑n
k=1

f (xk−1) + f (xk)

2
∆xk

1 de f t rapz (x , y ) :
2 ’ ’ ’ Trapezo ida l i n t e g r a t i o n ru l e . Assumes y >= 0 . ’ ’ ’
3 squares = t r i a n g l e s = 0
4 f o r i in range (1 , l en (x ) ) :
5 j = i − 1
6 d x = x [ i ] − x [ j ]
7 squares += d x ∗ y [ i ]
8 t r i a n g l e s += d x ∗ ( y [ i ] − y [ j ] )
9 re turn squares − 0 .5 ∗ t r i a n g l e s

Listing 3.1: An example implementation of the chained trapezoidal rule

3.5.2 Amount of estimations and performance impact

As we want the final estimator to be as cpu performant as possible, we want to find the
best tradeoff between predictive power and amount of estimations, by finding the smallest
amount that we can use, without degrading the estimations too much.

3.5.3 Selecting bid values for the different estimators

As it can be seen in figure 3.2, most bids are concentrated on lower values, which translates
on more training data for lower bids. In figure 3.3, we can see that the win rate follows a
mostly linear increasing trend with respect to the bid price.

Based on this, we will consider two strategies to determine the bid values we are going
to estimate on for the integral.

The first strategy will be selecting log spaced bid values between the minimum allowed
bid and our own, to concentrate the values on the lower end.

The second strategy will be selecting uniformly spaced bid values between the minimum
allowed bid and our own.

This is how we can implement the linear and log spaced values generation:

1 de f l i n s p a c e ( s ta r t , end , po in t s ) :
2 ’ ’ ’ Equiva lent to numpy ’ s l i n s p a c e ’ ’ ’
3 de l t a = ( end − s t a r t ) / ( po in t s − 1)
4 re turn [ s t a r t + i ∗ de l t a f o r i in range ( po in t s ) ]
5

6 de f l og space ( s ta r t , end , po ints , base=10) :
7 ’ ’ ’ Equiva lent to numpy ’ s l og space ’ ’ ’
8 de l t a = ( end − s t a r t ) / ( po in t s − 1)
9 re turn [ base ∗∗ ( s t a r t + i ∗ de l t a ) f o r i in range ( po in t s ) ]

Listing 3.2: Linear and log spaced value generation

Another way to look at this would be to take the derivative of the win rate distribution,
which we know is:
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Fig. 3.2: Bid price histogram over a week worth of bids. Bids over $15 have been removed from the
plot and constitute less than a 1% of the total amount of bids.

(
1 + e−(β0+β1∗bid)−1

)
Then:

∂ (1+e−(β0+β1∗bid))−1

∂ bid = β1∗e−(β0+β1∗bid)

(1+e−(β0+β1∗bid))2
= f(x)

Which is the p.d.f of the cost distribution. Finally we get the expected cost by doing:

E(x ∗ f(x)), where x ≤ bid

And there we could integrate x ∗ f(x) from 0 to the bid.

3.6 Win rate prediction plus analytic integration

The trained model and estimator will be the same as the one doing numeric integration,
but the cost estimation method will change by calculating the integral analytically, which
results in a closed form formula.
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Fig. 3.3: Bid’s win rate over a week worth of bids. The red dashed line shows the win rate trend.

The sigmoid function used in logistic regression is defined as:

sigmoid(x) = (1 + e−x)−1

In this case x is the result of a dot product between two vectors, the regressors and the
coefficients one. And we can divide the regressors vector in two:

1. Regressors independent from the bid

2. Regressors interacting with the bid

x = β0 + β1c

Where:

c = bid

Therefore:

FX(x) = (1 + e−(β0+β1c))−1
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3.6.1 Integral part 1

Given X a continuous random variable and A an event with P (A) > 0. We have the
following definitions:

C.D.F.:

FX(x) = P (X ≤ x)

P.D.F.:

fX(x) = F ′X(x)

Expectation:

E(X) =

∫ ∞
−∞

x fX(x) dx

Conditional P.D.F. to an event:

fX|A(x) =

{
fX(x)
P (x) if x ∈ A

0 otherwise

Expectation conditional to an event:

E(X|A) =

∫ ∞
−∞

x fX|A(x) dx

Lemma. If X is a continuous random variable and X is non-negative, then:

E(X) =

∫ ∞
0

P (X > y) dy =

∫ ∞
0

1− FX(y)dy

3.6.2 Integral part 2

From the definitions above and knowing that win rate = P (cost ≤ bid) from the Cost and
win rate prediction section.

We have that, x being the second price auction’s cost and B the bid price:

E[x|x < B] =

∫ ∞
−∞

x fX|X<B(x) dx

Since X is non-negative, fX|X<B(x) = 0 for x ≤ 0:

E[X|X < B] =

∫ ∞
0

P (X > x|X < B) dx

=

∫ ∞
0

1− FX|X<B(x) dx

=

∫ ∞
0

1− FX(X < x ∧X < B)

FX(B)
dx

As 0 < x ≤ B:
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=

∫ B

0
1− FX(x)

FX(B)
dx

=

∫ B

0
1dx−

∫ B

0
1
FX(x)

FX(B)
dx

= x|B0 −
1

FX(B)

∫ B

0
FX(x) dx

= B − 1

FX(B)

∫ B

0
FX(x) dx

Substituting the variables names:

E[cost|cost ≤ bid] = bid− 1

FX(bid)

∫ bid

0
FX(c) dc

Where FX(x) is the probability of winning the auction given the bid price x.

3.6.3 Integral part 3

Now integrating FX(c)dc.∫ b

0
F (c)dc =

∫ b

0
(1 + e−(β0+β1c))−1dc =

Taking u = β0 + β1c and du = β1dc =⇒ du/β1 = dc:

1

β1

∫ b

0
(1 + e−u)−1du =

1

β1
ln(1 + eu)

∣∣b
0
=

1

β1
ln(1 + e(β0+β1c))

∣∣b
0
=

1

β1

[
ln(1 + e(β0+β1b))− ln(1 + eβ0)

]
=

1

β1

[
ln

(1 + e(β0+β1b))

(1 + eβ0)

]
=

E(cost|bid) = b−
ln (1+e(β0+β1b))

1+eβ0

β1F (b)
=

b−
ln (1+e(β0+β1b))

1+eβ0

(
1 + e−(β0+β1b)

)
)

β1

Where we can get β0 and β1 even if we can’t easily access to them by following this
procedure:
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We first select b1 and b0, two arbitrary chosen bids, b0 ≤ b1 and get:

wi = − ln

(
1

Fi
− 1

)
wi is equal to the inner product of the variables and the estimators parameters before

applying the sigmoidal “logistic” function from the logistic regression estimator (Fi is the
win rate estimation for bid i). Here we get it by applying the logit, the inverse function to
the sigmoidal logistic function.

The we can get β1 doing:

β1 = (w1 − w0)/(bF − b0)

This comes from:

(β0 + β1 ∗ b1)− (β0 + β1 ∗ b0)

b1 − b0
=
β1 ∗ b1 − β1 ∗ b0

b1 − b0
=
β1 ∗ (b1 − b0)

b1 − b0
= β1

Given that we choose different values for b0 and b1, then β0 can be calculated:

β0 = w0 − β1b0

3.6.4 Algorithm

Turning the analytical approach into code, we have:

1 de f a n a l y t i c a l p r e d i c t i o n ( est imator , observat ion , bid0 =0.5 , bid1 =1.0) :
2 cost b0 , co s t b1 = a n a l y t i c a l f i r s t s t e p ( est imator , observat ion , bid0 ,

↪→ bid1 )
3 i f c o s t b1 <= 0 :
4 re turn 0 .0
5 bid = obse rvat i on . bid
6 eta0 = cos t b0
7 eta1 = cos t b0 + cos t b1 ∗ bid
8 a0 = 1 + exp ( eta0 )
9 a1 = 1 + exp ( eta1 )

10 wr0 = 1 / (1 + exp(−eta0 ) )
11 wr1 = 1 / (1 + exp(−eta1 ) )
12 re turn bid − ( l og ( a1 / a0 ) / co s t b1 − wr0 ∗ bid ) / (wr1 − wr0 )
13

14

15 de f a n a l y t i c a l f i r s t s t e p ( est imator , observat ion , bid0 , bid1 ) :
16 obse rvat i on . bid = bid0
17 eta0 = −l og (1 / min ( e s t imator . e s t imate ( obse rvat i on ) , 1 − 1e−12) − 1)
18 obse rvat i on . bid = bid1
19 eta1 = −l og (1 / min ( e s t imator . e s t imate ( obse rvat i on ) , 1 − 1e−12) − 1)
20 co s t b1 = ( eta1 − eta0 ) / ( bid1 − bid0 )
21 co s t b0 = eta0 − co s t b1 ∗ bid0
22 re turn cost b0 , co s t b1

Listing 3.3: Cost estimation using a win rate estimator and doing analytical integration.

Some regards about the implementation are that we take defensive approaches in the
logarithms and that we can select any two bid0 and bid1 values to calculate cost b0 and
cost b1, corresponding to β0 and β1 in the equations.

This has to be taken into account when considering the cpu performance, as it requires
us to perform two estimations.
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3.7 Dummy baseline models

In order to have a baseline for the models, we will include the following three estimators:

1. Predicting always the bid floor, as if we were the only bidders participating in the
auction.

2. Predicting always our own bid, as if there were a second bidder right below us.

3. Predicting the mean between the bid floor and our own bid.
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4. EXPERIMENTS

4.1 Description

As described in the Appendix II, we have datasets consisting on samples from two weeks
worth of data, and a final day to tests our estimators.

The experiments consists of fitting the estimators described in the Models section, using
the algorithms from the Algorithms one, and finally predict the cost of the impressions on
the first hours of the last day, as this type of progressive validation is similar to the actual
business’ requirements, in which we have to estimate an impression’s costs in a small time
window after fitting an estimator. This type of progressive validation is done on a rolling
sliding window of seven days, each fold starting one day after the previous fold. The mean
and the standard deviation are shown.

Finally, the evaluation metrics of the first hours of the last day’s predictions will be
compared.

4.2 Costs dataset exploration
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Fig. 4.1: Cost to bid ratio histogram from a sample of the dataset. Each bar shows the percentage
of total observations in the bucket. An increasing trend in the percentage of observations
in the bucket as the cost ratio increases can be seen.
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In figure 4.1 we have a histogram of where impressions’ costs falls between the auction’s
floor and the bid, taken from a sample of the dataset. The most noticeable thing in it,
is that the bin corresponding to paying the bid, is considerably larger than the others,
accounting for more than 25% of the cases.

This is particularly striking considering that for this to happen, the second highest
bidder has to bid right below our bid. This could indicate that different bidders are valuing
that impression almost equally (assuming that auction houses are not committing fraud
and taking advantage of bidders by reporting the highest price possible).

Looking further into this, we have that in 15% of the auctions, the bid was paid
without it being the floor, while in 6% of the cases the floor was bidded and paid.

After further research on this topic, we were unable to find patterns for the cases in
which the bid was paid without it being the floor and we will heed no further attention. As
a final note, we can comment that DSP often encounter problems of this nature, in which
the exchanges seem to be manipulating auction’s prices as commented in [45] or including
hidden soft floor prices, what means that if the buyer bids between the hard visible floor
and the soft floor, the exchange will consider it a first price auction and report the bid as
the cost, as explained in [49].
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Fig. 4.2: Cost to bid ratio from the floor histogram from a sample of the dataset. Each bar shows
the percentage of total observations in the bucket. A spike can be seen when the ratio is
1.0.

In figure 4.2 we have a histogram of the cost to bid ratio from the auction’s floor, as in
the previous one, it is evident that there are a lot of cases falling on the bin where the
cost is equal to the bid, making the histogram hard to associate certainly with a given
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distribution, which could mean that the estimation might not work very well.

4.3 Win rate dataset exploration

Observations 6,701,201
Mean 0.92515

Standard deviation 2.84784
Min bid 0.02000

Percentile 25 0.10000
Percentile 50 0.24000
Percentile 75 0.57000
Percentile 80 0.77000
Percentile 90 1.77000
Percentile 93 2.80000
Percentile 95 4.13000
Percentile 99 13.33000

Max bid 425.00000

Tab. 4.1: Bids percentiles taking a sample of a day worth of data

In table 4.1 taken from the win rate dataset, it can be see that most bids are concentrated
on small values, having the 75th percentile on 0.57 and the maximum value on 425. Taking
this into consideration, we could consider splitting a single estimator into two, one for low
bids and one for high bids, as observations with high bids could distort the estimation for
low values.

An estimator splitting on low and high bids will be tested against the equivalent single
estimator. The value at which the bids will be split will be defined using the same rolling
cross-validation scheme as with the rest of the evaluations.

4.4 Win rate estimations exploration

In this section we will present a brief exploration on the win rate estimations, by analyzing
the first hour of the following day worth of data. As we would like to know how does the
bid impact the observations, estimations and win rate.

The first thing we notice is that there is a long tail of data points with high bids and a
small amount of observations, roughly in 98.138% the bids were below $10 and in 99.772%
of the cases, the bids where below $20, while in the rest of the cases, the bid prices go up
to $425.

By seeing this, we can expect the learning data for high bid prices to be few and to
have worse estimations for this cases.

In the following plots, bids higher than 20 have been left out, to avoid ruining the scale
of the long tail.

As it can be seen in figure 4.3, most of the bids are concentrated on lower values, which
translates in more training data for them and that can imply better estimations for lower
bids.

When we see the win rate and the logarithmic loss [14] calculated for observations
having the same bid price in figures 4.4 and 4.5, we can see that even though the win rate
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Fig. 4.3: Amount of observations by bid during one hour worth of data (an hour tipycally contains
between 15 and 20 million observations). It can be seen that observations are concentrated
on lower bids and the amount decreases rapidly. The observations with bids above $20
were left out of the plot (roughly the 0.2% of the observations).

seems to be pretty uniform after a initial growth, on the other hand, the logarithmic loss
increases after the $15 bid price, which could mean better cost prediction for lower bids.

One more implication of the uniformity of the win rate depending on the bid price’s
plot, is that increasing the amount of points for the numeric integration, might not improve
the cost estimation.

4.5 Amount of predictions needed

As all the approaches are using the same base model and algorithm, their performance is
distinguished in two ways:

1. The amount of data to store and fit.

2. The amount of predictions needed to output a cost prediction.

On this study, we won’t get into the cost of storing and fitting more data vs getting
better predictions tradeoff that can potentially arise, if the predictions based on the win
rate datasets are better.

Each prediction requires a dot product between a feature and the estimator’s coefficients
vector. In table 4.2 we show the amount of predictions required for each method. It might
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Fig. 4.4: Win rate calculated for observations sharing the same bid during one hour worth of data
(an hour tipycally contains between 15 and 20 million observations). Besides some spikes
and an initial increase the win rate looks close to uniform. The observations with bids
above $20 were left out of the plot (roughly the 0.2% of the observations).

be worth saying that using a Python implementation the estimator takes less than 3
milliseconds to output a single estimation.

4.6 Evaluation metrics

The metrics used to compare the different methods are the root mean squared predic-
tion error, mean absolute error and the R squared (coefficient of determination).

4.6.1 Root mean squared prediction error

The root mean squared prediction error is always non-negative, a value of 0 indicates a
perfect fit and the lower the value, the better.

Given the labels yi in our dataset, and their corresponding estimations ŷ, it is defined
as: [54]

RMSE =
√

1
n

∑n
i=1(yi − ŷi)2

As the errors are squared, the metric is susceptible to outliers as in biggest values and
differences, and is harder to interpret.
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Fig. 4.5: Logloss calculated for observations sharing the same bid using the win rate model for one
hour worth of data (an hour tipycally contains between 15 and 20 million observations).
The metric shows an increases before $2.5 and after the $15 bid price. The observations
with bids above $20 were left out of the plot (roughly the 0.2% of the observations).

4.6.2 Mean absolute error

The mean absolute error (MAE) is a measure of difference between two continuous variables
and its value is in the same scale as the dependant variable. Given the labels yi in our
dataset, and their corresponding estimations ŷ, it is defined as: [53]

MAE = 1
n

∑n
i=1 |yi − ŷi|

As this metric shows the average absolute difference between the actual values and
the estimations, we can easily interpret by how much we are missing our predictions on
average. The lower the MAE, the better.

4.6.3 R2

The R squared, also called coefficient of determination, is a metric often used in regression
problems and it is usually described as “the proportion of the variance in the dependent
variable that is predictable from the independent variables”. In models containing an
intercept, the R2 ranges between 0 and 1, where 1 indicates a perfect fit and lower is worst.
[51]
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Approach Predictions needed

Linear model on costs 1 cost prediction
Logistic model 1 cost ratio prediction

Win rate predictions plus numeric integration At least 2 win rate predictions
Win rate predictions plus analytic integration 2 win rate predictions

Tab. 4.2: Amount of operations required for a single cost prediction, per approach

Given the labels yi in our dataset, and their corresponding estimations ŷi, R
2 is defined

as:

R2 =
∑
i (yi−ŷi)2∑
i (yi−ȳ)2

Where:

ȳ = 1
n

∑n
i=1 yi

4.6.4 Chosen metrics

The MAE is easy to interpret in this case as it represents the average error in dollars /
1000. It does not indicate if we are under or over predicting, but allows us to compare
models by how off they are in monetary terms.

The RMSE weighs more the cases with bigger errors, this makes it harder to interpret,
but can tell us if a model has cases in which prediction errors where considerably larger
than other model.

The R2 metric is useful to consider the variance the models account for. It has the
advantage to be easily interpretable in the sense that an R2 below zero tells us that
predicting the mean for every case is better than our model and that the closer to 1,
the better. Also the more variance the model accounts for, we can expect more precise
predictions and smaller error intervals.

If a model has an R2 lower than zero, we will discard it and work to obtain a better
one.

In case two models have contradictory MAE and RMSE metrics (i.e.: one model has
better MAE but worse RMSE), we will opt for the model with the best RMSE as we
consider better to avoid cases with larger error in the predicted cost, and therefore in the
expected net revenue.

For the RMSE and R2, two models cannot have contradictory RMSE and R2, if one
has a better RMSE, it will also have a R2.

The Squared Error is defined as
∑

i (yi − ŷi)2.
The RMSE is the square root of dividing the squared error by n (the amount of

observation). As both are non-decreasing, a higher / lower squared error implies a higher /
lower RMSE.

The R2 for a given test set, is 1 minus the squared error divided by a constant positive
number that depends on the dataset. As dividing by a positive number is non-decreasing,
an increase / decrease in the square error implies a decrease / increase in the R2.
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This means that for a given test set, if a model has a better Squared Error than other
model, it will also have a better RMSE and R2.

By looking at the R2 we can determine if a model is better than always predicting the
mean value and how much variation it accounts for, with the MAE we can get an idea of
the average error in dollars, and with the RMSE we can compare models weighing more
cases with larger errors, which we want to avoid.

4.7 Results

Estimator Capped RMSE MAE R2

Linear cost No 1.9624 (0.1404) 0.7273 (0.0475) 0.0563 (0.0058)
Linear cost Yes 1.6795 (0.1301) 0.3387 (0.0270) 0.3091 (0.0179)

Tab. 4.3: Evaluations metrics of the linear regression method

Estimator Method Capped RMSE MAE R2

Logistic ratio cost ratio No 1.0761 (0.1523) 0.1679 (0.0118) 0.7154 (0.0535)
Logistic ratio cost ratio Yes 1.0468 (0.1446) 0.1552 (0.0098) 0.7306 (0.0492)
Logistic ratio floor distance ratio No 1.0132 (0.1400) 0.1449 (0.0076) 0.7460 (0.0566)

L. R. Split floor distance ratio No 0.9942 (0.1092) 0.1426 (0.0080) 0.7562 (0.0408)

Tab. 4.4: The evaluation metrics of the logistic methods

Estimator Capped RMSE MAE R2

Win rate analytic No 1.3514 (0.1433) 0.4087 (0.0344) 0.5529 (0.0445)
Win rate analytic Yes 1.0263 (0.1391) 0.2413 (0.0226) 0.7421 (0.0409)

Tab. 4.5: Evaluations metrics of the win rate analytic integration method

Estimator Points Distribution Base Capped RMSE MAE R2

Win rate numeric 2 uniform - No 1.3807 (0.1392) 0.3092 (0.0232) 0.5337 (0.0345)
Win rate numeric 2 uniform - Yes 1.3061 (0.1279) 0.2332 (0.0208) 0.5825 (0.0329)
Win rate numeric 10 uniform - No 1.4333 (0.1826) 0.3089 (0.0241) 0.4980 (0.0625)
Win rate numeric 10 uniform - Yes 1.3572 (0.1718) 0.2324 (0.0216) 0.5497 (0.0577)
Win rate numeric 2 logspace 5 No 1.3800 (0.1391) 0.3146 (0.0232) 0.5342 (0.0344)
Win rate numeric 2 logspace 5 Yes 1.3046 (0.1279) 0.2327 (0.0208) 0.5834 (0.0328)
Win rate numeric 10 logspace 5 No 1.4346 (0.1836) 0.3146 (0.0240) 0.4972 (0.0628)
Win rate numeric 10 logspace 5 Yes 1.3578 (0.1729) 0.2321 (0.0215) 0.5493 (0.0579)
Win rate numeric 2 logspace 10 No 1.3812 (0.1393) 0.3070 (0.0232) 0.5334 (0.0345)
Win rate numeric 2 logspace 10 Yes 1.3068 (0.1279) 0.2336 (0.0208) 0.5820 (0.0329)
Win rate numeric 10 logspace 10 No 1.4358 (0.1832) 0.3072 (0.0239) 0.4963 (0.0626)
Win rate numeric 10 logspace 10 Yes 1.3602 (0.1724) 0.2332 (0.0214) 0.5478 (0.0576)

Tab. 4.6: Evaluations metrics of the win rate numeric integration method
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Estimator RMSE MAE R2

Dummy: floor 1.8026 (0.1323) 0.3951 (0.0341) 0.2038 (0.0140)
Dummy: bid 2.0650 (0.2018) 0.3727 (0.0266) -0.0448 (0.0931)

Dummy: (floor + bid) / 2 1.1702 (0.1021) 0.2708 (0.0198) 0.6649 (0.0143)

Tab. 4.7: Evaluations metrics of the dummy methods

Estimator RMSE MAE R2

Linear cost 1.6795 (0.1301) 0.3387 (0.0270) 0.3091 (0.0179)
Logistic ratio 1.0468 (0.1446) 0.1552 (0.0098) 0.7306 (0.0492)

Logistic ratio from the floor 1.0132 (0.1400) 0.1449 (0.0076) 0.7460 (0.0566)
Win rate analytic 1.0263 (0.1391) 0.2413 (0.0226) 0.7421 (0.0409)
Win rate numeric 1.3046 (0.1279) 0.2327 (0.0208) 0.5834 (0.0328)

Dummy: (floor + bid) / 2 1.1702 (0.1021) 0.2708 (0.0198) 0.6649 (0.0143)

Tab. 4.8: Evaluations metrics among methods. Selecting one of each type.

4.8 Discussion

In all cases in the first four tables, the Capped estimators (setting the final output between
the floor and the bid) obtained better metrics, which indicates that the models as they
are, fail to capture that the cost has to be greater than or equal to the floor, and lower or
equal to the bid (exceptuating the cost ratio from the floor model).

In table 4.4, comparing the results of the logistic based approaches, we can see that
the second method, estimating the ratio from the floor, is overall a better estimator than
the whole ratio. On this table, it can also be seen that even though using two estimators,
splitting the cases depending on the bid value (< 3 on the shown results), can result in a
small improvement of the metrics, even though we consider it is not worth the extra effort.

In table 4.5, the improvement of the win rate with the analytical integration method
considering the cap is noticeable improving almost a 37% on the R2.

In table 4.6, as in table 4.5, there is an improvement capping the output, although it is
not as big as for the analytical method, which could mean that the analytical method more
often outputs predictions below the floor and is beneficiated by including the cap, and at
the same time is better estimating the costs that are above the floor. Being consistent with
what we expected from the win rate by bid analysis, increasing the amount of points for
the numeric integration does not improve the estimation, what is worst, it deteriorates
them. This also impacts in the fact, that as fewer points are better, how we distribute the
points does not enhance the predictions either.

In table 4.7, we show the results of three dummy approaches trying to guess the cost
using only the floor and the bid, with pre-defined rules. We can see that always answering
the floor or the bid, does not yield good results, yet, always yielding halfway between them
gets decent results and we will use this estimator as the baseline.

In table 4.8 we summarized the best estimator from each type. From the go we can
see that the linear regression and the win rate with numeric integration perform a poor
job predicting the job, getting worse metrics than the dummy approach of using the mean
between the floor and the bid as the estimated cost. Between the first two, it can be seen
that the latter obtained better results than the former, the same way as reported in [26].
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The capped logistic ratio between 0 and the bid, the logistic ratio between the floor and
the bid, and the capped win rate with analytic integration methods outperform the dummy
approach, while the increase in R2 is of 9%+, the logistic methods obtain a MAE more
than 44% lower than the dummy’s one.

Comparing the win rate with analytic integration method against the logistic based
ones, although the difference between the RMSE and the R2 are lower than a 4%, the
MAE makes the difference by more than a 37% decrease on the logistic methods. This
could be interpreted as that the errors made by the logistic methods are generally smaller
but the difference between the biggest errors made by the logistic ones are similar to the
analytic methods or even slightly larger.

Finally, among the logistic methods, the one that predicts the ratio considering between
the auction’s floor and the bid, got overall better results, mostly relevant in the MAE,
having a difference close to a 6%.

We consider the logistic based approach estimating the cost ratio starting from the
floor to the bid, as the best estimator, even though modelling the problem this way, takes
extra steps, as adding/substracting the floor to the estimations / labels, it captures the
output’s valid range and it is not needed to limit results that could be outside of the valid
values.

Based on the results, we can tell that taking into consideration knowledge of the
problem’s domain and how this affects the modelling and possible outputs is of great
importance. As an example, just by limiting the output to the possible values, the results
were significantly improved for naive statistical learning approaches. This also highlights
that statistical learning and machine learning should not be considered as a simple out of
the box cure-all strategy and that considering other approaches or enhacing the solutions
with domain knowledge can vastly improve the results, which was also seen by the dummy
approach outperforming the linear regression, which is most likely the first thing a machine
learning practitioner would try.



5. CONCLUSION

In this work we compared different approaches for predicting the cost of second price
auctions in a real time bidding environment.

Stochastic online gradient descent optimized linear and logistic regression algorithms
along with the hashing trick were used to fit a dataset with million of data points corre-
sponding to two weeks worth of time changing data from a DSP.

Previously studied methods, i.e. a linear regression on the cost of won auctions and
numerically integrating a logistic regression on the probability of winning an auction, were
compared against new approaches, i.e. a logistic regression on the ratio of the cost to the
bid price, a logistic regression on the ratio of the cost to the bid price starting from the
auction’s bid price floor, and analytically integrating a logistic regression on the probability
of winning an auction.

The results obtained show that the proposed logistic regression based approached
outperform the other approaches and that the analytical integration outperforms the
numerical integration.

This could allow for better cost predictions on second price auctions, which can be used
to improve the bidding strategies of DSPs, which could help improve their net revenue and
their clients’ return of investment. Using the logistic based approached would also allow to
use smaller datasets, which can result in faster fitting and hyperparameter optimization,
and cheaper maintenance as less data would have to be stored and processed, which can
have an impact on cloud based solutions.
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6. FUTURE WORK

As future work, we want to make a deeper analysis of the tradeoff between the amount
of data required to fit the win rate estimations and amount of predictions needed vs the
performance improvement of having better cost estimations.

Another research opportunity we want to explore is using other algorithms to fit the
models, as random forests in a single computer, random forests, gradient boosting trees
and logistic regression using distributed frameworks as Spark’s MLlib, and deep learning
approaches. All of these require us to evaluate the cost of using them vs the potential
performance improvement from switching to them. As they all are more expensive to run
as they require bigger or more servers than the logistic estimator used in this work:

• Random forests in a single computer would require a large amount of RAM memory
to load and fit the estimator, with the potential requirement of fitting the data in
batches if there is not enough RAM.

• Spark’s MLlib distributed algorithms need more than one worker in order to keep up
with a single machine implementation, to cover for the node communication costs,
which requires to pay for several servers and data transfers costs.

• Deep learning requires GPUs in order to achieve fast learning times, which translates
to more expensive servers.

One final point we want to venture into, is to research using an estimator from bids to
costs, in which we consider all the auctions. In this case, lost auctions would have a cost of
zero, and as we see it, the advantage of this approach, would be that we would consider
both win rate and cost, all at once, while as it was proposed in this work, estimating the
cost given that we win the auction, we are potentially losing information as we are ignoring
the fact that there could be a certain covariance among both of them that we are not
considering in the expected net revenue.
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6. APPENDIX I: REAL TIME BIDDING AND AD TECH
GLOSSARY

Ad Exchange
1. A virtual marketplace where participating suppliers auction their impressions opportuni-
ties to eligible buyers. The ad exchange announces each impressions, in real time, and asks
buyers if they are interested to buy said impression and at which price. 2. A technology
platform used by digital media buyers and sellers to facilitate automated, auction-based
pricing and buying in real-time that provides advertisers with aggregate publisher inventory.
Sits between publishers / supply side platforms (SSPs) and advertisers / demand side
platforms (DSPs).

Ad impression
A single ad that appears when the opportunity arrives on the viewer’s display. A web page
or app may offer space for a number of ad views.

Ad tech
Advertising technology. Commonly refers to the technologies that enable the automated
or programmatic buying and selling of digital advertising. Often confused with MarTech
(marketing technology), which encompasses the tools used to manage marketing processes,
workflows, digital content and customer analytics.

Ad
For web advertising, an ad is almost always a banner, graphic image, or set of animated
images (in an animated GIF) of a designated pixel size and byte size limit. An ad or set
of ads for a campaign is often referred to as “the creative.” Banners and other special
advertising that include an interactive or visual element beyond the usual are known as
rich media ads.

Advertiser
The person or organization interested on the advertisement impression opportunity for
showing their ad.

Auction
A call from a publisher / ad exchange making its inventory available to multiple buyers
for pricing offers; includes various data points such as location, device, etc. that allow
potential buyers to price the impression.

Bid request
An auction

Click
According to the ad industry recommended guidelines from FAST, a click is “when a
visitor interacts with an advertisement.” This does not mean simply interacting with a rich
media ad, but actually clicking on it so that the visitor is headed toward the advertiser’s
destination. (It also does not mean that the visitor actually waits to fully arrive at the
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destination, but just that the visitor started going there.)

Click through Rate (CTR)
The rate (expressed in a percentage) at which users click on an ad. This is calculated by
dividing the total number of clicks by the total number of ad impressions.

CVR
Conversion rate. Ratio of actions of interest performed by the users over the clicks on
impressions.

Cost
Amount of money paid for an ad impression.

Contextual data
Data related to the content and context of the specific media where advertisement is shown.

CPM
Acronym for ”cost per thousand” ad impressions, an industry standard measure for selling
ads on websites. This measure is taken from print advertising. The ”M” is taken from the
Roman numeral for ”thousand.”

CPx pricing
Refers to how media is bought on a cost per basis. The x is replaced by M (CPM) to refer
to Cost Per Thousand, or C (CPC) to refer to Cost Per Click, or any variant of A (CPA)
Cost Per Action.

Demand Side Platform (DSP)
A DSP is a technology platform through which buyers (Advertisers or Agencies) can plan,
target, execute, optimize, and analyze digital media buying programs across 100% of the
media plan. Through a DSP, the buyer can set targeting criteria, pricing, frequency, and
other criteria governing the purchase of digital ad units. The DSP handles automated
media buying for advertisers using unified targeting, data, and RTB optimization via a
bidding algorithm.

Impression
Ad impression. When an ad is shown.

OpenRTB
A standard for the Real Time Bidding interface intended to set the requirements bar and
simplify the connection between suppliers of publisher inventory (i.e.: ad exchanges, SSPs,
etc.) and competing buyers (i.e.: bidders, DSPs, etc.).

Programmatic advertising
The use of software to improve the buying and selling of digital media through workflow
automation and algorithms. Innovations in this area have redirected human involvement to
more strategic tasks and replaced some repetitive actions with more efficient and effective
technologies to drive better targeting and campaign placement optimization.

Publisher
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Sites or apps that sell their ad impression spaces.

Real Time Bidding (RTB)
Way of transacting media that allows an individual ad impression to be put up for bid
in real time. This is done through a programmatic on the spot auction, which is similar
to how financial markets operate. RTB allows for Addressable Advertising; the ability
to serve ads (digital media display, video, mobile, social) to consumers directly based on
their demographic, psychographic, or behavioral attributes, at the impression level. The
auctions are facilitated by ad exchanges as intermediaries between publishers / SSPs and
bidders / DSPs.

Real Time Bidding Bidder
A system that connects to one or more ad exchanges and evaluates every impression
opportunity that’s announced. The real-time bidder is responsible for making the best
inventory acquisition decisions possible, by bidding on the auctions on behalf of the
Advertisers.

Second Price Auction
Sealed auction in which the winner of the bid pays the price of the 2nd highest bidder
(also known as a Vickry auction).

SSP
A technology platform that allows publishers to connect their inventory to multiple demand
sources with brand control, pricing, packaging and reporting tools; one component of a
holistic inventory management solution for publishers that encompasses all screens, format
and channels.

Win Rate
The number of impressions won over the number of impressions bid.

This glossary was assembled from different sources as:

• A DSP’s internal documentation.

• Pubmatic’s Programmatic On Deck.

• IAB’s glossary

• Canada’s IAB glossary

• Canada’ IAB RTB glossary

https://www.iab.com/wp-content/uploads/2016/04/Glossary-Formatted.pdf
http://iabcanada.com/content/uploads/2018/03/IAB-Canada-Glossary-of-Terms.pdf
https://iabcanada.com/content/uploads/files/RTB-Glossary-English.pdf
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6. APPENDIX II: DATASETS

The datasets used consist on a sample of 14 days worth of data from the DSP. The datasets
are kept as one compressed csv file per dataset type, per day.

One last day is provided as test set for the costs dataset to perform progressive validation,
as estimating future costs in a small time window is what is required from the business’
point of view.

Categorical variables have been hashed in order to keep them anonymized.

6.1 Predictor variables

• bid: the bid we offered for the auction’s ad space in dollars.

• bid floor: the auction’s minimum acceptable bid in dollars.

• dow: the day of the week in the user’s timezone.

• hod: the hour of the day in the user’s timezone.

• height: the ad space height in pixels if it corresponds (some ads do not have a
predefined size).

• width: the ad space height in pixels if it corresponds (some ads do not have a
predefined size).

• categorical 0: a categorical variable from the auction.

• categorical 1: a categorical variable from the auction.

• categorical 2: a categorical variable from the auction.

• categorical 3: a categorical variable from the auction.

• categorical 4: a categorical variable from the auction.

• categorical 5: a categorical variable from the auction.

• categorical 6: a categorical variable from the auction.

• categorical 7: a categorical variable from the auction.

6.2 Responses

• label: 1 in case we won the auction and the ad was shown, 0 otherwise. (For the win
rate dataset).

• cost: the auction’s ad space cost (in case we won and the was shown). (For the costs
dataset).
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6. APPENDIX III: EXPECTATION LEMMA PROOF

In 3.6.1 the following lemma is used:
Lemma. If X is a continuous random variable and X is non-negative, then:

E(X) =

∫ ∞
0

P (X > y) dy =

∫ ∞
0

1− FX(y)dy

Lemma proof:
For any two numbers x and y, we define:

I(y < x) =

{
1 if y < x

0 if y ≥ x

Then:

E(X) =

∫ ∞
−∞

x fX(x) dx

And since X is non-negative, fX(x) = 0 ∀ x ≤ 0:

=

∫ ∞
0

x fX(x) dx

=

∫ ∞
0

(∫ ∞
0

I(y < x)dy

)
fX(x) dx

=

∫ ∞
0

∫ ∞
0

I(y < x) fX(x) dy dx

=

∫ ∞
0

∫ ∞
0

I(y < x) fX(x) dx dy

=

∫ ∞
0

(∫ y

0
[0 fX(x)] dx

∫ ∞
y

[1 fX(x)] dx

)
dy

=

∫ ∞
0

(∫ ∞
y

fX(x) dx

)
dy

=

∫ ∞
0

P (X > y) dy

=

∫ ∞
0

1− FX(y) dy

Reaching the used result.
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6. APPENDIX IV: OPENRTB OBJECT MODEL

In this section we will include the OpenRTB 2.5 object model and variables description.
This is the data that is potentially available to use for predicting the second price auctions
cost.
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3. Bid Request Specification 

RTB transactions are initiated when an exchange or other supply source sends a bid request to a bidder.  
The bid request consists of the top-level bid request object, at least one impression object, and may 
optionally include additional objects providing impression context. 

3.1 Object Model 

Following is the object model for the bid request.  The top-level object (i.e., in JSON the unnamed outer 
object) is denoted as BidRequest in the model.  Of its direct subordinates, only Imp is technically 
required since it is fundamental to describing the impression being sold and its requires at least one of 
Banner (which may allow multiple formats), Video, Audio, and Native to define the type of 
impression (i.e., whichever one or more the publisher is willing to accept; although a bid will be for 
exactly one of those specified).   An impression can optionally be subject to a private marketplace. 

 

Figure 3:  Bid Request object model. 
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Other subordinates to the BidRequest provide various forms of information to assist bidders in making 
targeting and pricing decisions.  This includes details about the user, the device they’re using, the 
location of either, regulatory constraints, and the content and media in which the impression will occur. 

On the latter, there is the distinction between site (i.e., website) and application (i.e., non-browser app 
typically in mobile).  The abstract class called DistributionChannel is just a modeling concept to 
indicate that a BidRequest is related to either a Site or an App, but not both (i.e., a distribution 
channel is an abstraction of site and app).  Both sites and apps can be further described by data about 
their publisher, the content, and the content’s producer. 

Not shown in the model figure is an extensions object.  This is an object of undefined structure that can 
be added to any other object to convey exchange-specific extensions to the standard.  Exchanges using 
these objects are responsible for publishing their extensions to their bidders. 

The following table summarizes the objects in the Bid Request model and serves as an index into the 
detailed definitions in the subsections that follow. 

Object Section Description 

BidRequest 3.2.1 Top-level object. 

Source 3.2.2 Request source details on post-auction decisioning (e.g., header bidding). 

Regs 3.2.3 Regulatory conditions in effect for all impressions in this bid request. 

Imp 3.2.4 Container for the description of a specific impression; at least 1 per request. 

Metric 3.2.5 A quantifiable often historical data point about an impression. 

Banner 3.2.6 Details for a banner impression (incl. in-banner video) or video companion ad. 

Video 3.2.7 Details for a video impression. 

Audio 3.2.8 Container for an audio impression. 

Native 3.2.9 Container for a native impression conforming to the Dynamic Native Ads API. 

Format 3.2.10 An allowed size of a banner. 

Pmp 3.2.11 Collection of private marketplace (PMP) deals applicable to this impression. 

Deal 3.2.12 Deal terms pertaining to this impression between a seller and buyer. 

Site 3.2.13 Details of the website calling for the impression. 

App 3.2.14 Details of the application calling for the impression. 

Publisher 3.2.15 Entity that controls the content of and distributes the site or app. 

Content 3.2.16 Details about the published content itself, within which the ad will be shown. 

Producer 3.2.17 Producer of the content; not necessarily the publisher (e.g., syndication). 

Device 3.2.18 Details of the device on which the content and impressions are displayed. 

Geo 3.2.19 Location of the device or user’s home base depending on the parent object. 

User 3.2.20 Human user of the device; audience for advertising. 

Data 3.2.21 Collection of additional user targeting data from a specific data source. 

Segment 3.2.22 Specific data point about a user from a specific data source. 
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3.2 Object Specifications 

The subsections that follow define each of the objects in the bid request model.  Several conventions 
are used throughout: 

 Attributes are “required” if their omission would technically break the protocol. 

 Some optional attributes are denoted “recommended” due to their elevated business importance. 

 Unless a default value is explicitly specified, an omitted attribute is interpreted as “unknown”. 

3.2.1 Object: BidRequest 

The top-level bid request object contains a globally unique bid request or auction ID.  This id attribute is 
required as is at least one impression object (Section 3.2.4).  Other attributes in this top-level object 
establish rules and restrictions that apply to all impressions being offered. 

There are also several subordinate objects that provide detailed data to potential buyers.  Among these 
are the Site and App objects, which describe the type of published media in which the impression(s) 
appear.  These objects are highly recommended, but only one applies to a given bid request depending 
on whether the media is browser-based web content or a non-browser application, respectively. 

Attribute Type Description 

id   string; required Unique ID of the bid request, provided by the exchange. 

imp object array; 
required 

Array of Imp objects (Section 3.2.4) representing the 
impressions offered.  At least 1 Imp object is required. 

site object; 
recommended 

Details via a Site object (Section 3.2.13) about the publisher’s 
website.  Only applicable and recommended for websites. 

app object; 
recommended 

Details via an App object (Section 3.2.14) about the publisher’s 
app (i.e., non-browser applications).  Only applicable and 
recommended for apps. 

device object; 
recommended 

Details via a Device object (Section 3.2.18) about the user’s 
device to which the impression will be delivered. 

user object; 
recommended 

Details via a User object (Section 3.2.20) about the human 
user of the device; the advertising audience. 

test integer; 
default 0 

Indicator of test mode in which auctions are not billable, 
where 0 = live mode, 1 = test mode. 

at integer; 
default 2 

Auction type, where 1 = First Price, 2 = Second Price Plus.  
Exchange-specific auction types can be defined using values 
greater than 500.  

tmax integer Maximum time in milliseconds the exchange allows for bids to 
be received including Internet latency to avoid timeout.  This 
value supersedes any a priori guidance from the exchange. 

wseat string array White list of buyer seats (e.g., advertisers, agencies) allowed 
to bid on this impression.  IDs of seats and knowledge of the 
buyer’s customers to which they refer must be coordinated 
between bidders and the exchange a priori.  At most, only one 
of wseat and bseat should be used in the same request.  
Omission of both implies no seat restrictions. 
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bseat string array Block list of buyer seats (e.g., advertisers, agencies) restricted 
from bidding on this impression.  IDs of seats and knowledge 
of the buyer’s customers to which they refer must be 
coordinated between bidders and the exchange a priori.  At 
most, only one of wseat and bseat should be used in the 
same request.  Omission of both implies no seat restrictions. 

allimps integer; 
default 0 

Flag to indicate if Exchange can verify that the impressions 
offered represent all of the impressions available in context 
(e.g., all on the web page, all video spots such as pre/mid/post 
roll) to support road-blocking.  0 = no or unknown, 1 = yes, the 
impressions offered represent all that are available. 

cur string array Array of allowed currencies for bids on this bid request using 
ISO-4217 alpha codes.  Recommended only if the exchange 
accepts multiple currencies. 

wlang string array White list of languages for creatives using ISO-639-1-alpha-2.  
Omission implies no specific restrictions, but buyers would be 
advised to consider language attribute in the Device and/or 
Content objects if available. 

bcat string array Blocked advertiser categories using the IAB content 
categories.  Refer to List 5.1. 

badv string array Block list of advertisers by their domains (e.g., “ford.com”). 

bapp string array Block list of applications by their platform-specific exchange-
independent application identifiers.  On Android, these should 
be bundle or package names (e.g., com.foo.mygame).  On iOS, 
these are numeric IDs. 

source object A Sorce object (Section 3.2.2) that provides data about the 
inventory source and which entity makes the final decision. 

regs object A Regs object (Section 3.2.3) that specifies any industry, legal, 
or governmental regulations in force for this request. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.2 Object: Source 

This object describes the nature and behavior of the entity that is the source of the bid request 
upstream from the exchange.  The primary purpose of this object is to define post-auction or upstream 
decisioning when the exchange itself does not control the final decision.  A common example of this is 
header bidding, but it can also apply to upstream server entities such as another RTB exchange, a 
mediation platform, or an ad server combines direct campaigns with 3rd party demand in decisioning. 

Attribute Type Description 

fd Integer; 
recommended 

Entity responsible for the final impression sale decision, where 
0 = exchange, 1 = upstream source. 

tid string; 
recommended 

Transaction ID that must be common across all participants in 
this bid request (e.g., potentially multiple exchanges). 

pchain string; 
recommended 

Payment ID chain string containing embedded syntax 
described in the TAG Payment ID Protocol v1.0. 
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ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.3 Object: Regs 

This object contains any legal, governmental, or industry regulations that apply to the request.  The 
coppa flag signals whether or not the request falls under the United States Federal Trade Commission’s 
regulations for the United States Children’s Online Privacy Protection Act (“COPPA”). 

Attribute Type Description 

coppa integer Flag indicating if this request is subject to the COPPA 
regulations established by the USA FTC, where 0 = no, 1 = yes.  
Refer to Section 7.5 for more information. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.4 Object: Imp 

This object describes an ad placement or impression being auctioned.  A single bid request can include 
multiple Imp objects, a use case for which might be an exchange that supports selling all ad positions on 
a given page.  Each Imp object has a required ID so that bids can reference them individually. 

The presence of Banner (Section 3.2.6), Video (Section 3.2.7), and/or Native (Section 3.2.9) objects 
subordinate to the Imp object indicates the type of impression being offered.  The publisher can choose 
one such type which is the typical case or mix them at their discretion.  However, any given bid for the 
impression must conform to one of the offered types. 

Attribute Type Description 

id string; required A unique identifier for this impression within the context of 
the bid request (typically, starts with 1 and increments. 

metric object array An array of Metric object (Section 3.2.5). 

banner object A Banner object (Section 3.2.6); required if this impression is 
offered as a banner ad opportunity. 

video object A Video object (Section 3.2.7); required if this impression is 
offered as a video ad opportunity. 

audio object An Audio object (Section 3.2.8); required if this impression is 
offered as an audio ad opportunity. 

native object A Native object (Section 3.2.9); required if this impression is 
offered as a native ad opportunity. 

pmp object A Pmp object (Section 3.2.11) containing any private 
marketplace deals in effect for this impression. 

displaymanager string Name of ad mediation partner, SDK technology, or player 
responsible for rendering ad (typically video or mobile).  Used 
by some ad servers to customize ad code by partner.  
Recommended for video and/or apps. 
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displaymanagerver string Version of ad mediation partner, SDK technology, or player 
responsible for rendering ad (typically video or mobile).  Used 
by some ad servers to customize ad code by partner.  
Recommended for video and/or apps. 

instl integer; 
default 0 

1 = the ad is interstitial or full screen, 0 = not interstitial. 

tagid string Identifier for specific ad placement or ad tag that was used to 
initiate the auction.  This can be useful for debugging of any 
issues, or for optimization by the buyer. 

bidfloor float; default 0 Minimum bid for this impression expressed in CPM. 

bidfloorcur string; 
default “USD” 

Currency specified using ISO-4217 alpha codes.  This may be 
different from bid currency returned by bidder if this is 
allowed by the exchange. 

clickbrowser integer Indicates the type of browser opened upon clicking the 
creative in an app, where 0 = embedded, 1 = native.  Note that 
the Safari View Controller in iOS 9.x devices is considered a 
native browser for purposes of this attribute. 

secure integer Flag to indicate if the impression requires secure HTTPS URL 
creative assets and markup, where 0 = non-secure, 1 = secure.  
If omitted, the secure state is unknown, but non-secure HTTP 
support can be assumed. 

iframebuster string array Array of exchange-specific names of supported iframe busters. 

exp integer Advisory as to the number of seconds that may elapse 
between the auction and the actual impression. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.5 Object: Metric 

This object is associated with an impression as an array of metrics.  These metrics can offer insight into 
the impression to assist with decisioning such as average recent viewability, click-through rate, etc.  Each 
metric is identified by its type, reports the value of the metric, and optionally identifies the source or 
vendor measuring the value. 

Attribute Type Description 

type string; required Type of metric being presented using exchange curated string 
names which should be published to bidders a priori. 

value float; required Number representing the value of the metric.  Probabilities 
must be in the range 0.0 – 1.0. 

vendor string; 
recommended 

Source of the value using exchange curated string names 
which should be published to bidders a priori.  If the exchange 
itself is the source versus a third party, “EXCHANGE” is 
recommended. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
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3.2.6 Object: Banner 

This object represents the most general type of impression.  Although the term “banner” may have very 
specific meaning in other contexts, here it can be many things including a simple static image, an 
expandable ad unit, or even in-banner video (refer to the Video object in Section 3.2.7 for the more 
generalized and full featured video ad units).  An array of Banner objects can also appear within the 
Video to describe optional companion ads defined in the VAST specification. 

The presence of a Banner as a subordinate of the Imp object indicates that this impression is offered as 
a banner type impression.  At the publisher’s discretion, that same impression may also be offered as 
video, audio, and/or native by also including as Imp subordinates objects of those types.  However, any 
given bid for the impression must conform to one of the offered types. 

Attribute Type Description 

format object array; 
recommended 

Array of format objects (Section 3.2.10) representing the 
banner sizes permitted.  If none are specified, then use of the 
h and w attributes is highly recommended. 

w integer Exact width in device independent pixels (DIPS); 
recommended if no format objects are specified. 

h integer Exact height in device independent pixels (DIPS); 
recommended if no format objects are specified. 

wmax integer; 
DEPRECATED 

NOTE:  Deprecated in favor of the format array. 

Maximum width in device independent pixels (DIPS). 

hmax integer; 
DEPRECATED 

NOTE:  Deprecated in favor of the format array. 

Maximum height in device independent pixels (DIPS). 

wmin integer; 
DEPRECATED 

NOTE:  Deprecated in favor of the format array. 

Minimum width in device independent pixels (DIPS). 

hmin integer; 
DEPRECATED 

NOTE:  Deprecated in favor of the format array. 

Minimum height in device independent pixels (DIPS). 

btype integer array Blocked banner ad types.  Refer to List 5.2. 

battr integer array Blocked creative attributes.  Refer to List 5.3. 

pos integer Ad position on screen.  Refer to List 5.4. 

mimes string array Content MIME types supported.  Popular MIME types may 
include “application/x-shockwave-flash”, 
“image/jpg”, and “image/gif”. 

topframe integer Indicates if the banner is in the top frame as opposed to an 
iframe, where 0 = no, 1 = yes. 

expdir integer array Directions in which the banner may expand.  Refer to List 5.5. 

api integer array List of supported API frameworks for this impression.  Refer to 
List 5.6.  If an API is not explicitly listed, it is assumed not to be 
supported. 
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id string Unique identifier for this banner object. Recommended when 
Banner objects are used with a Video object (Section 3.2.7) to 
represent an array of companion ads.  Values usually start at 1 
and increase with each object; should be unique within an 
impression. 

vcm integer Relevant only for Banner objects used with a Video object 
(Section 3.2.7) in an array of companion ads.  Indicates the 
companion banner rendering mode relative to the associated 
video, where 0 = concurrent, 1 = end-card. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.7 Object: Video 

This object represents an in-stream video impression.  Many of the fields are non-essential for minimally 
viable transactions, but are included to offer fine control when needed.  Video in OpenRTB generally 
assumes compliance with the VAST standard.  As such, the notion of companion ads is supported by 
optionally including an array of Banner objects (refer to the Banner object in Section 3.2.6) that define 
these companion ads. 

The presence of a Video as a subordinate of the Imp object indicates that this impression is offered as a 
video type impression.  At the publisher’s discretion, that same impression may also be offered as 
banner, audio, and/or native by also including as Imp subordinates objects of those types.  However, 
any given bid for the impression must conform to one of the offered types. 

Attribute Type Description 

mimes string array; 
required 

Content MIME types supported (e.g., “video/x-ms-wmv”, 
“video/mp4”). 

minduration integer; 
recommended 

Minimum video ad duration in seconds. 

maxduration integer; 
recommended 

Maximum video ad duration in seconds. 

protocols integer array; 
recommended 

Array of supported video protocols.  Refer to List 5.8.  At least 
one supported protocol must be specified in either the 
protocol or protocols attribute. 

protocol integer; 
DEPRECATED 

NOTE:  Deprecated in favor of protocols. 

Supported video protocol.  Refer to List 5.8.  At least one 
supported protocol must be specified in either the protocol 
or protocols attribute. 

w integer; 
recommended 

Width of the video player in device independent pixels (DIPS). 

h integer; 
recommended 

Height of the video player in device independent pixels (DIPS). 

startdelay integer; 
recommended 

Indicates the start delay in seconds for pre-roll, mid-roll, or 
post-roll ad placements.  Refer to List 5.12 for additional 
generic values. 

placement integer Placement type for the impression.  Refer to List 5.9. 
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linearity integer Indicates if the impression must be linear, nonlinear, etc.  If 
none specified, assume all are allowed.  Refer to List 5.7. 

skip integer Indicates if the player will allow the video to be skipped, 
where 0 = no, 1 = yes. 

If a bidder sends markup/creative that is itself skippable, the 
Bid object should include the attr array with an element of 
16 indicating skippable video.  Refer to List 5.3. 

skipmin integer; 
default 0 

Videos of total duration greater than this number of seconds 
can be skippable; only applicable if the ad is skippable. 

skipafter integer; 
default 0 

Number of seconds a video must play before skipping is 
enabled; only applicable if the ad is skippable. 

sequence integer If multiple ad impressions are offered in the same bid request, 
the sequence number will allow for the coordinated delivery 
of multiple creatives. 

battr integer array Blocked creative attributes.  Refer to List 5.3. 

maxextended integer Maximum extended ad duration if extension is allowed.  If 
blank or 0, extension is not allowed.  If -1, extension is 
allowed, and there is no time limit imposed.  If greater than 0, 
then the value represents the number of seconds of extended 
play supported beyond the maxduration value. 

minbitrate integer Minimum bit rate in Kbps. 

maxbitrate integer Maximum bit rate in Kbps. 

boxingallowed integer; 
default 1 

Indicates if letter-boxing of 4:3 content into a 16:9 window is 
allowed, where 0 = no, 1 = yes.  

playbackmethod integer array Playback methods that may be in use.  If none are specified, 
any method may be used.  Refer to List 5.10.  Only one 
method is typically used in practice.  As a result, this array may 
be converted to an integer in a future version of the 
specification.  It is strongly advised to use only the first 
element of this array in preparation for this change. 

playbackend integer The event that causes playback to end.  Refer to List 5.11. 

delivery integer array Supported delivery methods (e.g., streaming, progressive).  If 
none specified, assume all are supported.  Refer to List 5.15. 

pos integer Ad position on screen.  Refer to List 5.4. 

companionad object array Array of Banner objects (Section 3.2.6) if companion ads are 
available. 

api integer array List of supported API frameworks for this impression.  Refer to 
List 5.6.  If an API is not explicitly listed, it is assumed not to be 
supported. 

companiontype integer array Supported VAST companion ad types.  Refer to List 5.14.  
Recommended if companion Banner objects are included via 
the companionad array.  If one of these banners will be 
rendered as an end-card, this can be specified using the vcm 
attribute with the particular banner (Section 3.2.6). 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
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3.2.8 Object: Audio 

This object represents an audio type impression.  Many of the fields are non-essential for minimally 
viable transactions, but are included to offer fine control when needed.  Audio in OpenRTB generally 
assumes compliance with the DAAST standard.  As such, the notion of companion ads is supported by 
optionally including an array of Banner objects (refer to the Banner object in Section 3.2.6) that define 
these companion ads. 

The presence of a Audio as a subordinate of the Imp object indicates that this impression is offered as 
an audio type impression.  At the publisher’s discretion, that same impression may also be offered as 
banner, video, and/or native by also including as Imp subordinates objects of those types.  However, any 
given bid for the impression must conform to one of the offered types. 

Attribute Type Description 

mimes string array; 
required 

Content MIME types supported (e.g., “audio/mp4”). 

minduration integer; 
recommended 

Minimum audio ad duration in seconds. 

maxduration integer; 
recommended 

Maximum audio ad duration in seconds. 

protocols integer array; 
recommended 

Array of supported audio protocols.  Refer to List 5.8. 

startdelay integer; 
recommended 

Indicates the start delay in seconds for pre-roll, mid-roll, or 
post-roll ad placements.  Refer to List 5.12. 

sequence integer If multiple ad impressions are offered in the same bid request, 
the sequence number will allow for the coordinated delivery 
of multiple creatives. 

battr integer array Blocked creative attributes.  Refer to List 5.3. 

maxextended integer Maximum extended ad duration if extension is allowed.  If 
blank or 0, extension is not allowed.  If -1, extension is 
allowed, and there is no time limit imposed.  If greater than 0, 
then the value represents the number of seconds of extended 
play supported beyond the maxduration value. 

minbitrate integer Minimum bit rate in Kbps. 

maxbitrate integer Maximum bit rate in Kbps. 

delivery integer array Supported delivery methods (e.g., streaming, progressive).  If 
none specified, assume all are supported.  Refer to List 5.15. 

companionad object array Array of Banner objects (Section 3.2.6) if companion ads are 
available. 

api integer array List of supported API frameworks for this impression.  Refer to 
List 5.6.  If an API is not explicitly listed, it is assumed not to be 
supported. 

companiontype integer array Supported DAAST companion ad types.  Refer to List 5.14.  
Recommended if companion Banner objects are included via 
the companionad array. 

maxseq integer The maximum number of ads that can be played in an ad pod. 
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feed integer Type of audio feed.  Refer to List 5.16. 

stitched integer Indicates if the ad is stitched with audio content or delivered 
independently, where 0 = no, 1 = yes. 

nvol integer Volume normalization mode.  Refer to List 5.17. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.9 Object: Native 

This object represents a native type impression.  Native ad units are intended to blend seamlessly into 
the surrounding content (e.g., a sponsored Twitter or Facebook post).  As such, the response must be 
well-structured to afford the publisher fine-grained control over rendering. 

The Native Subcommittee has developed a companion specification to OpenRTB called the Dynamic 
Native Ads API.  It defines the request parameters and response markup structure of native ad units.  
This object provides the means of transporting request parameters as an opaque string so that the 
specific parameters can evolve separately under the auspices of the Dynamic Native Ads API.  Similarly, 
the ad markup served will be structured according to that specification. 

The presence of a Native as a subordinate of the Imp object indicates that this impression is offered as 
a native type impression.  At the publisher’s discretion, that same impression may also be offered as 
banner, video, and/or audio by also including as Imp subordinates objects of those types.  However, any 
given bid for the impression must conform to one of the offered types. 

Attribute Type Description 

request string; required Request payload complying with the Native Ad Specification. 

ver string; 
recommended 

Version of the Dynamic Native Ads API to which request 
complies; highly recommended for efficient parsing. 

api integer array List of supported API frameworks for this impression.  Refer to 
List 5.6.  If an API is not explicitly listed, it is assumed not to be 
supported. 

battr integer array Blocked creative attributes.  Refer to List 5.3. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.10 Object: Format 

This object represents an allowed size (i.e., height and width combination) or Flex Ad parameters for a 
banner impression.  These are typically used in an array where multiple sizes are permitted.  It is 
recommended that either the w/h pair or the wratio/hratio/wmin set (i.e., for Flex Ads) be specified. 

Attribute Type Description 

w integer Width in device independent pixels (DIPS). 

h integer Height in device independent pixels (DIPS). 

wratio integer Relative width when expressing size as a ratio. 

hratio integer Relative height when expressing size as a ratio. 
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wmin integer The minimum width in device independent pixels (DIPS) at 
which the ad will be displayed the size is expressed as a ratio. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.11 Object: Pmp 

This object is the private marketplace container for direct deals between buyers and sellers that may 
pertain to this impression.  The actual deals are represented as a collection of Deal objects.  Refer to 
Section 7.3 for more details. 

Attribute Type Description 

private_auction integer; 
default 0 

Indicator of auction eligibility to seats named in the Direct 
Deals object, where 0 = all bids are accepted, 1 = bids are 
restricted to the deals specified and the terms thereof. 

deals object array Array of Deal (Section 3.2.12) objects that convey the specific 
deals applicable to this impression. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.12 Object: Deal 

This object constitutes a specific deal that was struck a priori between a buyer and a seller.  Its presence 
with the Pmp collection indicates that this impression is available under the terms of that deal.  Refer to 
Section 7.3 for more details. 

Attribute Type Description 

id string; required A unique identifier for the direct deal. 

bidfloor float; default 0 Minimum bid for this impression expressed in CPM. 

bidfloorcur string; 
default ”USD” 

Currency specified using ISO-4217 alpha codes.  This may be 
different from bid currency returned by bidder if this is 
allowed by the exchange. 

at integer Optional override of the overall auction type of the bid 
request, where 1 = First Price, 2 = Second Price Plus, 3 = the 
value passed in bidfloor is the agreed upon deal price.  
Additional auction types can be defined by the exchange. 

wseat string array Whitelist of buyer seats (e.g., advertisers, agencies) allowed to 
bid on this deal.  IDs of seats and the buyer’s customers to 
which they refer must be coordinated between bidders and 
the exchange a priori.  Omission implies no seat restrictions. 

wadomain string array Array of advertiser domains (e.g., advertiser.com) allowed to 
bid on this deal.  Omission implies no advertiser restrictions. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
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3.2.13 Object: Site 

This object should be included if the ad supported content is a website as opposed to a non-browser 
application.  A bid request must not contain both a Site and an App object.  At a minimum, it is useful 
to provide a site ID or page URL, but this is not strictly required. 

Attribute Type Description 

id string; 
recommended 

Exchange-specific site ID. 

name string Site name (may be aliased at the publisher’s request). 

domain string Domain of the site (e.g., “mysite.foo.com”). 

cat string array Array of IAB content categories of the site.  Refer to List 5.1. 

sectioncat string array Array of IAB content categories that describe the current 
section of the site.  Refer to List 5.1. 

pagecat string array Array of IAB content categories that describe the current page 
or view of the site.  Refer to List 5.1. 

page string URL of the page where the impression will be shown. 

ref string Referrer URL that caused navigation to the current page. 

search string Search string that caused navigation to the current page. 

mobile integer Indicates if the site has been programmed to optimize layout 
when viewed on mobile devices, where 0 = no, 1 = yes. 

privacypolicy integer Indicates if the site has a privacy policy, where 0 = no, 1 = yes. 

publisher object Details about the Publisher (Section 3.2.15) of the site. 

content object Details about the Content (Section 3.2.16) within the site. 

keywords string Comma separated list of keywords about the site. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.14 Object: App 

This object should be included if the ad supported content is a non-browser application (typically in 
mobile) as opposed to a website.  A bid request must not contain both an App and a Site object.  At a 
minimum, it is useful to provide an App ID or bundle, but this is not strictly required. 

Attribute Type Description 

id string; 
recommended 

Exchange-specific app ID. 

name string App name (may be aliased at the publisher’s request). 

bundle string A platform-specific application identifier intended to be 
unique to the app and independent of the exchange.  On 
Android, this should be a bundle or package name (e.g., 
com.foo.mygame).  On iOS, it is typically a numeric ID. 

domain string Domain of the app (e.g., “mygame.foo.com”). 

storeurl string App store URL for an installed app; for IQG 2.1 compliance. 
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cat string array Array of IAB content categories of the app.  Refer to List 5.1. 

sectioncat string array Array of IAB content categories that describe the current 
section of the app.  Refer to List 5.1. 

pagecat string array Array of IAB content categories that describe the current page 
or view of the app.  Refer to List 5.1. 

ver string Application version. 

privacypolicy integer Indicates if the app has a privacy policy, where 0 = no, 1 = yes. 

paid integer 0 = app is free, 1 = the app is a paid version. 

publisher object Details about the Publisher (Section 3.2.15) of the app. 

content object Details about the Content (Section 3.2.16) within the app. 

keywords string Comma separated list of keywords about the app. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.15 Object: Publisher 

This object describes the publisher of the media in which the ad will be displayed.  The publisher is 
typically the seller in an OpenRTB transaction. 

Attribute Type Description 

id string Exchange-specific publisher ID. 

name string Publisher name (may be aliased at the publisher’s request). 

cat string array Array of IAB content categories that describe the publisher.  
Refer to List 5.1. 

domain string Highest level domain of the publisher (e.g., “publisher.com”). 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.16 Object: Content 

This object describes the content in which the impression will appear, which may be syndicated or non-
syndicated content.  This object may be useful when syndicated content contains impressions and does 
not necessarily match the publisher’s general content.  The exchange might or might not have 
knowledge of the page where the content is running, as a result of the syndication method.  For 
example might be a video impression embedded in an iframe on an unknown web property or device. 

Attribute Type Description 

id string ID uniquely identifying the content. 

episode integer Episode number. 

title string Content title. 

Video Examples: “Search Committee” (television), “A New 
Hope” (movie), or “Endgame” (made for web). 

Non-Video Example:  “Why an Antarctic Glacier Is Melting So 
Quickly” (Time magazine article). 
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series string Content series. 

Video Examples: “The Office” (television), “Star Wars” (movie), 
or “Arby ‘N’ The Chief” (made for web). 

Non-Video Example:  “Ecocentric” (Time Magazine blog). 

season string Content season (e.g., “Season 3”). 

artist string Artist credited with the content. 

genre string Genre that best describes the content (e.g., rock, pop, etc). 

album string Album to which the content belongs; typically for audio. 

isrc string International Standard Recording Code conforming to ISO-
3901. 

producer object Details about the content Producer (Section 3.2.17). 

url string URL of the content, for buy-side contextualization or review. 

cat string array Array of IAB content categories that describe the content 
producer.  Refer to List 5.1. 

prodq integer Production quality.  Refer to List 5.13. 

videoquality integer; 
DEPRECATED 

Note:  Deprecated in favor of prodq. 

Video quality.  Refer to List 5.13. 

context integer Type of content (game, video, text, etc.).  Refer to List 5.18. 

contentrating string Content rating (e.g., MPAA). 

userrating string User rating of the content (e.g., number of stars, likes, etc.). 

qagmediarating integer Media rating per IQG guidelines.  Refer to List 5.19. 

keywords string Comma separated list of keywords describing the content. 

livestream integer 0 = not live, 1 = content is live (e.g., stream, live blog). 

sourcerelationship integer 0 = indirect, 1 = direct. 

len integer Length of content in seconds; appropriate for video or audio. 

language string Content language using ISO-639-1-alpha-2. 

embeddable integer Indicator of whether or not the content is embeddable (e.g., 
an embeddable video player), where 0 = no, 1 = yes. 

data object array Additional content data.  Each Data object (Section 3.2.21) 
represents a different data source. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.17 Object: Producer 

This object defines the producer of the content in which the ad will be shown.  This is particularly useful 
when the content is syndicated and may be distributed through different publishers and thus when the 
producer and publisher are not necessarily the same entity. 

Attribute Type Description 

id string Content producer or originator ID.  Useful if content is 
syndicated and may be posted on a site using embed tags. 
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name string Content producer or originator name (e.g., “Warner Bros”). 

cat string array Array of IAB content categories that describe the content 
producer.  Refer to List 5.1. 

domain string Highest level domain of the content producer (e.g., 
“producer.com”). 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.18 Object: Device 

This object provides information pertaining to the device through which the user is interacting.  Device 
information includes its hardware, platform, location, and carrier data.  The device can refer to a mobile 
handset, a desktop computer, set top box, or other digital device. 

Attribute Type Description 

ua string; 
recommended 

Browser user agent string. 

geo object; 
recommended 

Location of the device assumed to be the user’s current 
location defined by a Geo object (Section 3.2.19). 

dnt integer; 
recommended 

Standard “Do Not Track” flag as set in the header by the 
browser, where 0 = tracking is unrestricted, 1 = do not track. 

lmt integer; 
recommended 

“Limit Ad Tracking” signal commercially endorsed (e.g., iOS, 
Android), where 0 = tracking is unrestricted, 1 = tracking must 
be limited per commercial guidelines. 

ip string; 
recommended 

IPv4 address closest to device. 

ipv6 string IP address closest to device as IPv6. 

devicetype integer The general type of device.  Refer to List 5.21. 

make string Device make (e.g., “Apple”). 

model string Device model (e.g., “iPhone”).  

os string Device operating system (e.g., “iOS”). 

osv string Device operating system version (e.g., “3.1.2”). 

hwv string Hardware version of the device (e.g., “5S” for iPhone 5S). 

h integer Physical height of the screen in pixels. 

w integer Physical width of the screen in pixels. 

ppi integer Screen size as pixels per linear inch. 

pxratio float The ratio of physical pixels to device independent pixels. 

js integer Support for JavaScript, where 0 = no, 1 = yes. 

geofetch integer Indicates if the geolocation API will be available to JavaScript 
code running in the banner, where 0 = no, 1 = yes. 

flashver string Version of Flash supported by the browser. 

language string Browser language using ISO-639-1-alpha-2. 
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carrier string Carrier or ISP (e.g., “VERIZON”) using exchange curated string 
names which should be published to bidders a priori. 

mccmnc string Mobile carrier as the concatenated MCC-MNC code (e.g., 
“310-005” identifies Verizon Wireless CDMA in the USA).  
Refer to https://en.wikipedia.org/wiki/Mobile_country_code 
for further examples.  Note that the dash between the MCC 
and MNC parts is required to remove parsing ambiguity. 

connectiontype integer Network connection type.  Refer to List 5.22. 

ifa string ID sanctioned for advertiser use in the clear (i.e., not hashed). 

didsha1 string Hardware device ID (e.g., IMEI); hashed via SHA1. 

didmd5 string Hardware device ID (e.g., IMEI); hashed via MD5. 

dpidsha1 string Platform device ID (e.g., Android ID); hashed via SHA1. 

dpidmd5 string Platform device ID (e.g., Android ID); hashed via MD5. 

macsha1 string MAC address of the device; hashed via SHA1. 

macmd5 string MAC address of the device; hashed via MD5. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

BEST PRACTICE:  There are currently no prominent open source lists for device makes, models, operating 
systems, or carriers.  Exchanges typically use commercial products or other proprietary lists for these 
attributes.  Until suitable open standards are available, exchanges are highly encouraged to publish lists 
of their device make, model, operating system, and carrier values to bidders. 

BEST PRACTICE:  Proper device IP detection in mobile is not straightforward.  Typically it involves starting 
at the left of the x-forwarded-for header, skipping private carrier networks (e.g., 10.x.x.x or 
192.x.x.x), and possibly scanning for known carrier IP ranges.  Exchanges are urged to research and 
implement this feature carefully when presenting device IP values to bidders. 

3.2.19 Object: Geo 

This object encapsulates various methods for specifying a geographic location.  When subordinate to a 
Device object, it indicates the location of the device which can also be interpreted as the user’s current 
location.  When subordinate to a User object, it indicates the location of the user’s home base (i.e., not 
necessarily their current location). 

The lat/lon attributes should only be passed if they conform to the accuracy depicted in the type 
attribute.  For example, the centroid of a geographic region such as postal code should not be passed. 

Attribute Type Description 

lat float Latitude from -90.0 to +90.0, where negative is south. 

lon float Longitude from -180.0 to +180.0, where negative is west. 

type integer Source of location data; recommended when passing 
lat/lon.  Refer to List 5.20. 
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accuracy integer Estimated location accuracy in meters; recommended when 
lat/lon are specified and derived from a device’s location 
services (i.e., type = 1).  Note that this is the accuracy as 
reported from the device.  Consult OS specific documentation 
(e.g., Android, iOS) for exact interpretation. 

lastfix integer Number of seconds since this geolocation fix was established.  
Note that devices may cache location data across multiple 
fetches.  Ideally, this value should be from the time the actual 
fix was taken. 

ipservice integer Service or provider used to determine geolocation from IP 
address if applicable (i.e., type = 2).  Refer to List 5.23. 

country string Country code using ISO-3166-1-alpha-3. 

region string Region code using ISO-3166-2; 2-letter state code if USA. 

regionfips104 string Region of a country using FIPS 10-4 notation.  While OpenRTB 
supports this attribute, it has been withdrawn by NIST in 2008. 

metro string Google metro code; similar to but not exactly Nielsen DMAs.  
See Appendix A for a link to the codes. 

city string City using United Nations Code for Trade & Transport 
Locations.  See Appendix A for a link to the codes. 

zip string Zip or postal code. 

utcoffset integer Local time as the number +/- of minutes from UTC. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.20 Object: User 

This object contains information known or derived about the human user of the device (i.e., the 
audience for advertising).  The user id is an exchange artifact and may be subject to rotation or other 
privacy policies.  However, this user ID must be stable long enough to serve reasonably as the basis for 
frequency capping and retargeting. 

Attribute Type Description 

id string; 
recommended 

Exchange-specific ID for the user.  At least one of id or 
buyeruid is recommended. 

buyeruid string; 
recommended 

Buyer-specific ID for the user as mapped by the exchange for 
the buyer.  At least one of buyeruid or id is recommended. 

yob integer Year of birth as a 4-digit integer. 

gender string Gender, where “M” = male, “F” = female, “O” = known to be 
other (i.e., omitted is unknown). 

keywords string Comma separated list of keywords, interests, or intent. 

customdata string Optional feature to pass bidder data that was set in the 
exchange’s cookie.  The string must be in base85 cookie safe 
characters and be in any format.  Proper JSON encoding must 
be used to include “escaped” quotation marks. 
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geo object Location of the user’s home base defined by a Geo object 
(Section 3.2.19).  This is not necessarily their current location. 

data object array Additional user data.  Each Data object (Section 3.2.21) 
represents a different data source. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.21 Object: Data 

The data and segment objects together allow additional data about the related object (e.g., user, 
content) to be specified.  This data may be from multiple sources whether from the exchange itself or 
third parties as specified by the id field.  A bid request can mix data objects from multiple providers.  
The specific data providers in use should be published by the exchange a priori to its bidders. 

Attribute Type Description 

id string Exchange-specific ID for the data provider. 

name string Exchange-specific name for the data provider. 

segment object array Array of Segment (Section 3.2.22) objects that contain the 
actual data values. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
 

3.2.22 Object: Segment 

Segment objects are essentially key-value pairs that convey specific units of data.  The parent Data 
object is a collection of such values from a given data provider.  The specific segment names and value 
options must be published by the exchange a priori to its bidders. 

Attribute Type Description 

id string ID of the data segment specific to the data provider. 

name string Name of the data segment specific to the data provider. 

value string String representation of the data segment value. 

ext object Placeholder for exchange-specific extensions to OpenRTB. 
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