
UNIVERSIDAD DE BUENOS AIRES
FACULTAD DE CIENCIAS EXACTAS Y NATURALES

DEPARTAMENTO DE COMPUTACIÓN

Haikunet: An Intent Programming Language
for the Software Defined Networking Paradigm

Tesis presentada para optar al tı́tulo de
Licenciado en Ciencias de la Computación

Andrés Laurito

Directores: Hernán Melgratti y Rodrigo Castro

Buenos Aires, 2017

HAIKUNET: AN INTENT PROGRAMMING LANGUAGE FOR THE
SOFTWARE DEFINED NETWORKING PARADIGM

Los lenguajes de programación orientados a intents están tomando un rol cada vez más importante
en el paradigma de Software Defined Networking (SDN). A pesar de ello, la gran mayorı́a de estos
lenguajes de programación son soluciones acopladas rı́gidamente a controladores SDN especı́fi-
cos, dificultando su reuso y portabilidad. Además, los lenguajes existentes no suelen implementar
herramientas de verficación para detectar errores en los intents antes de que estos sean aplicados a
la red que se pretende manipular en forma programática. En esta tesis presentamos Haikunet, un
lenguaje de programación orientado a intents que implementa capacidades básicas de verificación
y es agnóstico frente a controladores SDN. Esta última propiedad es lograda gracias al uso de
TopoGen, una nueva herramienta genérica para traducir y generar topologı́as de redes desarrolla-
da en el marco de esta tesis. TopoGen es usado para generar modelos de grafos y de simulación
para la topologı́a analizada. Sobre el modelo de grafos realizamos verificaciones de propiedades
estáticas, mientras que con los modelos de simulación abrimos el camino para la verificación de
propiedades dinámicas. La semántica operacional de Haikunet es presentada siguiendo el estilo de
Structural Operational Semantics (SOS), esto es, un conjunto de reglas de inferencia que define de
manera inductiva la relación de reducción. Estas reglas de inferencia son dadas en dos niveles: 1.
En un conjunto de reglas gramáticales de grafos, que describen como cada operación del lenguaje
afecta a la topologı́a de la red y 2. Mediante reglas de inferencia, que describen el cómputo de
un programa en Haikunet. En este trabajo presentamos distintos escenarios, en donde mostramos
como Haikunet puede detectar errores en intents antes de que estos sean aplicados en la red. Todos
los escenarios considerados fueron probados contra los controladores actualmente soportados por
Haikunet: ONOS y OpenDayLight.

Keywords: Haikunet, TopologyGenerator, SDN, Programming languages, Intent-oriented pro-
gramming languages, Verification system, Graph Grammars, Inference Rules, Type Systems, Si-
mulation, DEVS.

I

HAIKUNET: AN INTENT PROGRAMMING LANGUAGE FOR THE
SOFTWARE DEFINED NETWORKING PARADIGM

Intent-oriented programming languages are taking an important role in the Software Defined Net-
working (SDN) paradigm. Yet, most of these programming languages are rigidly coupled to speci-
fic SDN controllers, hindering the re-usability and portability properties of intents. Besides, exis-
tent intent-oriented programming languages usually don’t implement a verification system that
can detect errors in intents before these are applied to the network that is being manipulated pro-
gramatically. In this thesis we present Haikunet, an intent-oriented programming language that
implements basic verification capabilities and is agnostic to SDN controllers. This last property is
achieved thanks to TopoGen, a new tool developed in this thesis to translate and generate network
topologies programatically. TopoGen is used for generating graph and simulation models of the
network being analyzed. The graph model is used for static verification of properties, while the
simulation models open the path for the dynamic verification of properties. Haikunet operational
semantics is formally defined in the Structural Operational Semantics (SOS) style, i.e., a set of in-
ference rules inductively defines the reduction relation. Inference rules are given in two levels: 1.
A set of graph grammars rules describe how each operation of the language changes the topology
of a network, and 2. By inference rules that describe how a Haikunet program compute. In this
work, we present different scenarios in which we show how Haikunet can detect errors in intents
before these are applied to the network. Every scenario presented was tested against the supported
controllers by Haikunet: ONOS and OpenDayLight.

Keywords: Haikunet, TopologyGenerator, SDN, Programming languages, Intent-oriented pro-
gramming languages, Verification system, Graph Grammars, Inference Rules, Type Systems, Si-
mulation, DEVS.

III

AGRADECIMIENTOS

A mamá, papá, la abu y aldi, porque me bancaron en toda la carrera universitaria, en los mejores
y peores momentos, siempre incondicionales a mi lado, y porque me dieron una de las cosas que
más me define: la curiosidad por el saber.

A mis amigos del colegio y la vida, Martı́n, George, el Negro, Lucas, Guti, Javi Vanna, Javi, Niko
Cance, Niko, porque estuvieron siempre para bancarme, ayudarme, escucharme y darme fuerzas
para haber podido llegar hasta acá.

A mis amigos de la facu, el Gallego, Lion, Santi Rulos, Santi Dr, Santi, Nico, Gaby, Juanma, por-
que hicieron de muchas materias un gran recuerdo solamente por haber cursado con ustedes, y
sin duda alguna me ayudaron a llegar a este lugar.

A Rodri y Hernán, porque me siguieron enseñando luego de haber terminado de cursar, me en-
señaron lo lindo que es la investigación, me bancaron en el arduo camino de lo que implica hacer
una tesis, y porque simplemente sin ustedes todo este trabajo no hubiese sido posible.

A Mati, porque gran parte de este trabajo fue gracias a él, me banco en Europa en todo momento,
me dio grandes consejos y excelentes momentos vividos.

A mis profesores del colegio, porque son uno de los pilares más importantes de mi educación
académica.

A los profes y ayudantes de la facu, porque su gran laburo inspiró, fomentó y ayudó a que hoy este
acá.

A aquellos con los que hoy ya no comparto tantos momentos, pero fueron muy importantes para
que pueda llegar a este lugar.

A todos ustedes, muchas gracias por haber ayudado a este momento tan importante en mi vida.

V

A mi familia y amigos, que me dieron la inspiración para que este trabajo sea hoy una
realidad.

SUMMARY

1.. Introduction . 1
1.1. Motivations . 1
1.2. Contributions . 2
1.3. Organization . 3

2.. Background . 5
2.1. Software Defined Networking . 5

2.1.1. Intents . 6
2.2. Graph Grammars . 6
2.3. Formal Model-Based Simulation . 8

2.3.1. DEVS–Based Network Simulation With PowerDEVS 9

3.. Related Work . 11
3.1. Intent-Oriented Programming Languages . 11
3.2. Languages and standards for network topologies 11
3.3. Network Simulators . 12

4.. TopoGen . 13
4.1. Introduction . 13
4.2. Motivations . 13

4.2.1. Motivating case study: Designing the new FELIX network at CERN . . . 14
4.3. Implementation . 15

4.3.1. Architecture . 15
4.3.2. Built-in Providers and Builders . 15
4.3.3. Class Diagram . 17
4.3.4. Sample Sequence Diagrams . 17
4.3.5. How to Augment Built-in Providers and Builders 18
4.3.6. The Network Topology Model . 19

4.3.6.1. Describing a Network Topology with NTM 19
4.3.7. TopoGen Installation and Usage . 20

4.4. Support for designing the FELIX network at the ATLAS Data Acquisition System 21
4.4.1. The FELIX Network Requirements . 21
4.4.2. Using TopoGen to Support the Modeling and Simulation Process 22
4.4.3. Simulation Results . 23

4.5. Conclusions . 24
4.6. Future work . 24

4.6.1. Augment supported Providers and Builders 24
4.6.2. Extend TopoGen to become a Serialization Graph Tool 24
4.6.3. Improve NTM to become a Network Topology Language for PowerDEVS 24
4.6.4. Run-Time Adaptations of Network Topologies 25

5.. Haikunet . 27
5.1. Introduction . 27
5.2. Why Haikunet? . 27
5.3. Motivations . 27
5.4. Program Examples . 28

5.4.1. First Example: A Simple Network . 28
5.4.2. Second Example: Connecting Multiple Hosts 29

5.5. Attainable Errors . 30

IX

5.5.1. Flow Property Definition Error . 30
5.5.2. No Path Error . 32

5.6. A Formal Description of Haikunet . 32
5.6.1. Definitions . 32

5.6.1.1. Network Element . 32
5.6.1.2. Network as a Mutable Graph 33
5.6.1.3. Intent as a Sequence of Transformations over a Graph 33

5.7. Haikunet Backus Naur Form . 33
5.8. Haikunet Implicit Type System . 34

5.8.1. Expressions Type Judgments . 34
5.8.2. Program Type Judgments . 35

5.9. Haikunet Semantics . 35
5.9.1. Graph Representation of a Network Topology 35
5.9.2. Haikunet Inference Rules . 35
5.9.3. Graph Rewriting Rules . 36

5.10. Categorizing Errors . 37
5.10.1. Definitions . 37

5.10.1.1. Correct Program Computation 37
5.10.1.2. Errors . 37
5.10.1.3. Static Errors . 37
5.10.1.4. Dynamic Error . 38

5.10.2. Formalizing Errors Using Inference Rules 38
5.10.2.1. Flow Property Definition Error 38
5.10.2.2. No Path Error . 38

5.11. Architecture . 39
5.11.1. Lexer . 39
5.11.2. Parser . 40
5.11.3. Network Representation . 40
5.11.4. Semantic Checker . 40
5.11.5. Code Generator . 41

5.12. Class Diagram . 41
5.13. Installation and Use of Haikunet . 42
5.14. Conclusions . 43
5.15. Future Work . 43

5.15.1. Change the Current Grammar to be SLA-oriented 43
5.15.2. Extend the Expressive Power . 43
5.15.3. Improve the Static Verification Techniques of the Semantic Checker . . . 44
5.15.4. Improve the Dynamic Verification Techniques of the Semantic Checker . 44
5.15.5. Augment Supported Targeted Controllers 44

6.. Conclusions and Future Work . 45

1. INTRODUCTION

Several requirements of distributed systems usually relate to properties of the underlying net-
work infrastructure. The growth of cloud computing has magnified such connection. Since soft-
ware requirements change, networks may be forced to do the same. Remarkably, changing the
network infrastructure may be difficult and time-consuming. Software Defined Networking (SDN)
aims at facilitating this task. The main idea behind SDN is to move the logic from the switching
devices to software running on centralized computers, which are called Controllers. In the SDN
paradigm, switching devices (that live in the so called SDN Data Plane) become simple forwarding
elements while controllers become the orchestrators of the network. Controllers help with the task
of reconfiguring a network infrastructure by providing a software-oriented programmable interfa-
ce. Developing software in controllers endows opportunities to software developers to implement
custom solutions for known network requirements (such as Border Gateway Protocol (BGP) [24],
Spanning Tree Protocol (STP) [35] or load balancing [20]), and to provide new network services
(such as topology discovery or specification of intents on the network).

Intents are declarative descriptions of network requirements that state what is required from
a network instead of how that requirement is achieved. For example, an intent may describe a
requirement for connecting a user to a database cluster. In this case, the controller has the respon-
sibility of accomplishing such requirement, with the flexibility of deciding on how to achieve it.
When intents are applied to the network by a controller they may, e.g.,: 1. force the controller to
load forwarding rules into the switching devices, 2. create monitor applications to detect salient
conditions specified in the requirements, 3. create or delete switching devices (when working in a
virtual network).
Intents can be embedded as components of controllers. In this way, intents and controllers are
tightly coupled and changes in an intent force the re-compilation of the controller’s source co-
de, which affects availability. As an alternative, intent-oriented programming languages (IOPL)
disassociates intents from controllers, making possible to create new intents without affecting
controllers availability. Besides, the separation of intents from controllers makes them portable
and facilitates their distribution. Several IOPLs with different capabilities exist nowadays. Some
examples are NEMO [48], Frenetic [17] and NetKAT [3].

1.1. Motivations

Despite IOPL approach has advantages, it also presents some limitations. IOPL are usually
developed to run in specific vendor controllers, which introduces unnecessary coupling between
intents and controllers. This problem arises in part because there is still no standard for controller’s
API. Consequently, intents need to be rewritten when using different controllers. For instance,
NEMO relies on OpenDayLight [28], Frenetic relies on NOX [18] and NetKAT relies on the
OpenFlow controller [27].

Another important shortcoming is that existing IOPLs do not provide mechanisms for detec-
ting errors before intents are applied to the network. As a consequence, intents are first tested in
simulated networks such as Mininet [15], before they are applied to the real network. Testing in-
tents over simulated networks forces developers to maintain the simulated environment, which is
a time-consuming and error prone task.

Finally, IOPL are usually implemented without mathematical formalism, e.g. NEMO, Nettle
[45] (a functional reactive programming language for OpenFlow Networks), Procera [46] (a lan-
guage for high-level reactive network control), FatTire [36] (a declarative fault tolerance language)
and Flog [21] (a logic programming language for SDNs). Few are the IOPL that present such mat-
hematical formalism. An example of such a language is NetKAT [3]. Giving mathematical foun-
dations create opportunities for known software-engineering solutions to be applied to intents, for
instance applying static/dynamic analysis techniques.

1

2 1. Introduction

1.2. Contributions

This thesis introduces Haikunet, which is an intent-oriented programming language (develo-
ped in Ruby), that is agnostic to a specific vendor controller and which provides a basic semantic
checker. The semantic checker is applied to the intent before the intent is applied to the underlying
controller. When an error is detected, the application of the intent is stopped and an error is raised.
The different actions involved when programming an intent in Haikunet are detailed in Figure 1.1.

Fig. 1.1: Actions Involved When Programming an Intent with Haikunet

Figure 1.1 depicts the flow of designing an intent in Haikunet. Initially, a SDN Network (whe-
re the intent will be applied) needs to be designed. Given the SDN Network, the user develops an
intent in Haikunet. This intent is verified by the semantic checker by applying verification tech-
niques. The verification techniques applied to the intent concern static and dynamic verifications.
These are further explained later in this section. If the intent is error-free, it is received and im-
plemented by the SDN Controller, which applies the intent to the SDN Data Plane. Otherwise,
an error is raised and the execution is stopped. Haikunet implements a common framework for
intent-oriented programming languages proposed in the Internet Engineering Task Force (IETF)
[14].

A key component of Haikunet is TopoGen [26], which is an SDN-oriented topology genera-
tor tool designed to automatically create network models from serializable network descriptions.
TopoGen can obtain serialize network descriptions from different controllers APIs and use that
information to build a graph that represents the network topology. This graph can be serialized by
TopoGen to different output formats. TopoGen comes equipped with its own object-oriented net-
work topology description language, which is called NTM and it is based on Ruby. The semantic
checker of Haikunet uses TopoGen to generate a description of the network over which the intent
is going to be applied. This description of the network is later used by the semantic checker for
performing verification techniques.

TopoGen is independent from Haikunet and can be used in different scenarios to retrieve a
network model and generates different network representations. For instance, in this thesis we
present the use of TopoGen in a real-world project in the context of the Trigger and Data Acquisi-
tion (TDAQ) network of the ATLAS Experiment at CERN [5].

Haikunet semantic checker was designed for detecting errors of two kinds: static and dynamic.

1.3. Organization 3

Static errors refer to problems related with the topology (i.e., the graph) of the network over which
the intent will be applied. Examples of such errors are references to inexistent nodes or paths
between nodes that do not exist on the network. Dynamic errors are related instead with the actual
traffic over the network. An example of this kind of error is when the buffers of some specific
routers drop more that 40% of packets, and a maximum threshold of 30% was set.

We handle static errors by providing a semantic checker of Haikunet intents. In order to do
that, we formally defined the operational semantics of Haikunet following the Structural Opera-
tional Semantics (SOS) [33] style,, i.e., a set of inference rules inductively define the reduction
relation. Inference rules are given in two levels: 1. a set of graph grammars rules describes how
each operation of the language changes the topology of a network, and 2. a set of inference rules
describe how a Haikunet program computes.

The detection of dynamic errors uses TopoGen to automatically generate DEVS simulation
models from the network topology. These simulation models are then run in PowerDEVS [7], and
the results of the simulations are rendered by Scilab [10].

We illustrate the error detection capabilities of Haikunet with several scenarios. Chosen sce-
narios were tested in the currently supported targeted controllers of Haikunet: ONOS ([6]) and
OpenDayLight ([28]).

The relation among the different components of the architecture are summarized in Figure 1.2

Fig. 1.2: Relation Among the Different Components of the Architecture.

1.3. Organization

This work is organized as follows: Firstly, concepts used along the thesis are presented in
Chapter 2. Then, in Chapter 3 we provide a summary of main related works on network simula-
tors, intents-oriented programming languages and standards for description languages of network
topologies. Chapter 4 introduces TopoGen and Chapter 5 presents Haikunet. In Chapter 6 we draw
some final conclusion and discuss about possible future works.

4 1. Introduction

2. BACKGROUND

2.1. Software Defined Networking

Software Defined Networking (SDN) is an emerging architectural approach for computer net-
works where control logic is taken away from switching devices and moved up to centralized
software running in controller devices [25].

In this new architecture, switching devices are lumped into much simpler packet forwarding
elements operating at the so-called Data Plane. Controllers decide on and set up forwarding rules
for each connected switching device, in an effort to comply with the overall quality of service
requirements for the entire network. Controllers communicate with switching devices by using
protocols that allow the loading of forwarding rules. The nowadays most common used protocol
is OpenFlow [27]. OpenFlow is an Ethernet-based protocol that provides a standardized interface
for adding and removing forwarding rules in switching devices.

Controllers operate at the so-called Control Plane and concentrate most of the network service
logic (e.g. monitoring, packet forwarding decisions, network topology discovery, intents manipu-
lation, rule conflicts) Implementations of centralized SDN controllers (e.g. ONOS [6] , OpenDay-
Light [28], Nox [18], Floodlight [29]) provide different functionalities through APIs. The interfa-
ces provided by controllers that are used by devices living in the Data Plane layer are called the
Southbound Interfaces.

In turn, controllers provide different networking services through an API. Typical services
include monitoring, the definition of packet forwarding policies, and topology discovery. Such
API is consumed by applications and services that live in the so called Application Plane ([19]).
Generally, such applications address problems that do not specifically fall within the networking
domain, but require networking services to provide other ones, concerning, e.g., databases, web-
browsers and instant messaging services. These interfaces provided by controllers constitute the
Northbound Interfaces. Applications require certain functionalities and capabilities of the underl-
ying network but do not define the way in which those requirements are satisfied. Intents and
intents programming languages has been proposed to address such problematic (more details in
2.1.1). Figure 2.1 depicts the different layers and interfaces that were mentioned above.

Fig. 2.1: SDN Layers (borrowed from [25])

5

6 2. Background

2.1.1. Intents

Intents define high-level requirements for a network, and describe what is required from the
network instead of how that requirement is achieved. The controllers transform intents into ope-
rations that affect the behaviour of the network, such as loading forwarding rules in switching
devices or creating monitor applications. Intents are meant to be used by network users instead
of network operators. As a consequence, intents are usually developed in the Application pla-
ne and controllers northbound interfaces commonly implement intents services, such as intent
creation/deletion and conflict resolution. These services are generally used by applications and
Intent-Oriented Programming Languages (IOPL).

Some examples of use case scenarios for intents are: 1. applying load balancing policies over
the network traffic, 2. denying traffic coming from a user to a specific cluster (notice that user is a
high-level abstraction from a network perspective), 3. allowing a link to be used only when some
particular condition is fulfilled, e.g., to allow traffic over an AWS Direct Connect link ([44]) only
when the buffers of some specific routers drop more that 40% (usage of this kind of links usually
implies huge costs).

Intents can be programmed inside a controller as part of its core, or defined in a specific langua-
ge outside the controller. In order to accommodate changes in the intents, the first approach may
require to stop the execution of the controller to deploy the required changes in the source-code of
the controller. This approach creates undesirable down-time and a coupling between intents and
controllers. As a consequence, IOPL have arose as an alternative approach to deal with intents.
IOPLs use the services provided by the Northbound Interface of the controllers for supporting the
development of intents outside controllers. Developing intents outside controllers gives important
additional characteristics to them. Some worth mentioning features are: 1. declarativity, which
allows intent to be used as as Software Level Agreements (SLA); 2 portability, because intents
are not coupled to a specific technology; 3. compositionality, since intents can be used with other
intents to create more complex requirements; 4. explicit documentation of network requirements.
Different intent programming languages are presented and discussed in Chapter 3.

2.2. Graph Grammars

Graph Grammars ([38]) provide a system in which transformations on graphs can be modeled
in a mathematically way. The main component of a graph grammar is a finite set of productions;
a production is, most commonly, a triple (M,D,E) where M and D are graphs and E is some
embedding mechanism. Such a production can be applied to a (“host”) graph H whenever there
is an occurrence of M in H . It is applied by deleting this occurrence of M from H , replacing
it by (an isomorphic copy of) D, and finally using the embedding mechanism E to attach D to
the remainder H− of H. There are two approaches to graph grammars: the gluing approach (or
algebraic approach, used in this thesis) and the connecting approach.

The algebraic approach to graph transformation is based on the concept of gluing of graphs,
modeled by pushouts in suitable categories of graphs and graph morphisms. This allows one not
only to give an explicit algebraic or set theoretical description of the constructions, but also to use
concepts and results from category theory in order to build up a rich theory and to give elegant
proofs even in complex situations. There exists two possible algebraic approaches: The double-
pushout (DPO) approach and the single- pushout (SPO) approach. In this thesis, we use the DPO
approach extended with negative application conditions.

We define a double-pushout transformation rule ([16]) in a category C as a pair of injective
morphisms P = (L←l K →r R) in C, and it can be applied to an object G when there exists a
morphism m : L→ G and a diagram:

L

m
��

K
l

oo

g
��

r // R

g′
��

G D
l′
oo r′ // H

2.2. Graph Grammars 7

such that both squares are pushout squares. In other words, when there exists a, pushout comple-
ment D for l and m (that is, an object D and two morphisms g : K→D and l′ : D→G such that G,
together with m and l’, is the pushout of l and g), and then a pushout of r and g. In this case, the
object H is said to be derived from G by the application of rule P through morphism m.

An example of a double-pushout transformation rule is illustrated in Figure 2.2. This rule
models the different states of a SDN service when a process is being request. For this case example,
we assume that a service can process one request at a time, and this request is processed by
executing a new thread.

•

Waiting

��
←↩ • ↪→ •

T hread

EE

Waiting

��

Fig. 2.2: SDN Service States when Receiving a Request

In the previous rule, the service is represented by a bullet. Initially, the service is in a Waiting
state (this is depicted by the left-hand side graph). When a request is received, the service does not
accept any new request until the current one has been processed. This is denoted by removing the
Waiting arrow from the service (depicted by the graph in the middle). When the service process the
received request, its state changes to accept new requests. This is illustrated by adding the Waiting
arrow again, and by adding a Thread arrow (right-hand side graph).

The previous rule can be used in the example given in Figure 2.3. This figure illustrates two
running services in a controller.

Fig. 2.3: Two Services in a SDN Controller

The scenario illustrated in Figure 2.4 shows how the previous rule can be applied in the men-
tioned controller. In this example, service topology discovery receives a request, and the graph
grammar rule is applied over the service state.

Fig. 2.4: States of Topology Discovery Service While Managing a Request

8 2. Background

In the example above we can see how a double-pushout rule is applied to a showcase scenario.
First, both services in the controller are waiting for requests (left-hand side graph). When a request
is received in service topology discovery, the Waiting arrow is removed indicating that no longer
requests can be managed (middle side graph). When service topology discovery executes a new
thread for managing the request, it can receives new requests. This last state is illustrated with the
right-hand side graph.

Another graph grammar property used in this thesis concerns negative application conditions.
The idea behind negative application conditions is to have constraints in the left-hand side graph
of a rule. These constraints represent forbidden structures. We introduce below an example where
negative application conditions are used for describing a state in a controller.

We want to illustrate that new services can be created in a controller, but we want to specify
that we can only have a unique service. Graph grammar rule depicted in figure 2.5 illustrates how
this example can be handled with negative application conditions.

Fig. 2.5: Creating duplicated services is not allowed

Figure 2.5 shows a rule that states that a SDN controller can only have a unique topology
discovery service. The negative application conditions in Figure 2.5 is represented by crossing-
out the forbidden structure (in this case, the service topology discovery). This rule states that, if a
service named topology discovery does not exist in the graph, then this service can be created.

2.3. Formal Model-Based Simulation

DEVS (Discrete EVent System specification [49]) is a formal approach for the modular and
hierarchical modelling of discrete systems. There are two types of models in DEVS formalism:
1. Atomic models, which represent indivisible building blocks of a model and 2. Coupled models,
which can be coupled with other submodels (either atomic or coupled).

Models in a DEVS system interact by means of events sent through input and output ports.
Models posses implementation behaviours for the different types of events. When an event is
received by a model, the associated behaviour is triggered. These triggered behaviours can alter
the internal state of a submodel, and/or create new events that are later sent to models connected
to this one.

Events can be categorized as internal, whenever the event is originated from an internal beha-
viour of the submodel, or external, when the event is originated from an external source (can be
another submodel, a timer, etc).

In formal terms, an atomic submodel is defined a by the tuple: A = {S,X ,Y,δint ,δext , ta,λ},
where S is the set of internal states, X is the set of accepted external events, and Y is the set of
available outputs. The behaviour of an atomic submodel is defined by the following functions:

ta(s) : S→ R+
0 is the lifetime of each state s ∈ S. After ta(s) units of time an internal state

transition δint : S→ S is triggered (assuming that no external input event has arrived in the mean-
time).

δint models the transition from one state to the next sequential state. δint is the transition fun-
ction of a deterministic finite state automaton.

δext(s,e,x) : S × X × R+
0 → S models state transitions caused by external event, i.e., transitions

that are triggered when an input event e arrives at time t and 0≤ e < ta(s).
λ(s) : S→Y is the output function which defines the output events to be sent when an internal

transition is triggered.

2.3. Formal Model-Based Simulation 9

An external transition is triggered every time an input in X is received. This change is perfor-
med instantaneously. On the other hand, the output function is executed when ta has elapsed since
last event. Simultaneously, an internal transition is produced.

A coupled model interconnects components together through their input and output ports and
is described as a tuple: C = {X ,Y,D,EIC,EOC, IC,Select}, where: X and Y are the sets of input
and output events respectively, D is the set of components names, IC is the set of internal couplings
among members of D, EIC is the coupling relation among external events (set of couplings bet-
ween external input ports and internal components) and EOC is the external output coupling re-
lation. Select is a tie-breaking function to assign execution priorities when several internal or
external transition functions are scheduled for the same simulation time. DEVS formalism is clo-
sed under coupling, i.e., any hierarchical coupling of DEVS models defines an equivalent atomic
DEVS model.

Being a formal specification, DEVS offers the capability of defining simulation models in
an unambiguous, systematic and programmatic way. We shall profit from this when querying an
SDN controller (through its topology discovery service) to retrieve a network description and then
produce an equivalent simulation model.

2.3.1. DEVS–Based Network Simulation With PowerDEVS

PowerDEVS [7] is a discrete event simulator that implements DEVS mathematical formalism
[49] capable of representing any type of discrete system and approximating continuous systems
with controlled accuracy. PowerDEVS provides a graphical interface to compose DEVS models
via hierarchical block diagrams. Besides, it provides a model library specific to computer network
simulation [12].

In PowerDEVS systems can be built by composing graphically pre-developed units of beha-
viour (atomic models) and structures (coupled models) from a model library (e.g. routers, switches,
links, generators, etc.) and interconnecting them through input/output ports. In DEVS, structu-
re and behaviour are kept under strict separation. The interconnection of several atomic and/or
coupled models creates the coupling information.

For this thesis we adopt the DEVS formalism and the PowerDEVS tool to deal with the syste-
matic building and execution of simulation models.

10 2. Background

3. RELATED WORK

In this section we present different studies performed over intent-oriented programming lan-
guages (see Section 3.1), languages adopted for network topologies (detailed in Section 3.2) and
network simulators (further explained in Section 3.3). Each section gives a state-of-the-art in the
topic, explains different known problems, and propose different solutions by using the tools intro-
duced in this thesis.

3.1. Intent-Oriented Programming Languages

Intent-Oriented programming languages (IOPL) are either frameworks or domain specific lan-
guages (DSL). These languages are usually applied to controllers through an API. An example of
a programming language implemented by using the Northbound interface ([32]) is NEMO [48].
NEMO is an IOPL developed for OpenDayLight controllers. NEMO allows a user to specify an
intent in a DSL, and then uses features available in OpenDayLight to create an intent into a con-
troller. As a consequence, intents written in NEMO only work with OpenDayLight controller.

Another example of an IOPL is Frenetic [17]. Frenetic can be used in both OCaml and Python
for specifying actions over a network form a high-level perspective, e.g., create a repeater, per-
form a topology discovery on the given network, make the switching devices to drop all packets
received. Frenetic is implemented to be used together with OpenFlow controllers, and therefore is
attached to the latest one. Frenetic provides a rigorous mathematic foundation that documents the
language, and implements an API that can be used by either applications or other programming
languages via JSON messages.

NetKAT [3] is an IOPL targeted to the creation of ad-hoc languages in the SDN domain.
NetKAT presents solid mathematical foundations to solve SDN problems scenarios, and is thought
to be used in collaboration with an OpenFlow controller.

A mathematical study that has not been performed yet over IOPL is the definition of the opera-
tional semantics of a language using SOS. Defining the reduction relation of a language by giving
a set of inference rules may allow new software-engineering techniques to be applied to IOPL. For
example, static/dynamic verification techniques can use the mentioned inference rules to validate
intents before these are applied to the network.

Unfortunately in the nowadays SDN realm, there is no standardization for controller’s API.
Consequently controllers implement different ways of exposing intent services, and therefore in-
tents need to be redefined when applied to different controllers.

This thesis introduces Haikunet, which is an intent-oriented programming language (develo-
ped in Ruby), decoupled from controllers and oriented to be extended for supporting new targeted
controllers. The extensibility property of targeted controllers is achieved thanks to TopoGen. Cu-
rrently supported targeted controllers are ONOS and OpenDayLight. Haikunet is presented in
Chapter 5.

3.2. Languages and standards for network topologies

Description languages for network topologies are used in different scenarios, e.g., for simula-
tion purposes (as explained in Chapter 4), for describing complex properties as remarked in [23]
or for defining virtual networks as in [15].

Describing network topologies in Domain Specific Languages (DSL) that do not depend on
specific applications is an important feature. Having DSL allows the description of a network topo-
logy to be decoupled of a specific technology. This feature grants multiple applications to access
to the same topology without the need of replicating information. There are several description
languages proposed in the literature for describing networks, for example NED [43], VXDL [23]
and NDL [40]. A problem arises when an application wants to retrieve information from different

11

12 3. Related Work

topologies sources, e.g. Haikunet wants to retrieve the network topology from both ONOS and
OpenDayLight controllers. The problem is that languages formats are different. This provokes to
implement specific solutions to retrieve topology and to translate it to a convenient format. This
process is then repeated every time a new description language is used or when the application
consumer is changed. The mentioned approach is time-consuming and is not code-reuse oriented.

In this work we propose a solution for this problem by using TopoGen. The proposed solution
is described in Chapter 4. Besides, we introduce a new framework, called NTM, for the description
of network topologies. NTM is an object-oriented description language (based on Ruby). NTM
was implemented for describing specific entities in the network topology, such as flows or paths.

3.3. Network Simulators

There are several network simulators available for both commercial and academic use [47].
They vary in several aspects: the adopted discrete-event techniques and principles (sequential or
parallel, replication- or decomposition-based, CPU- or GPU-based) [30]; the provided library of
reusable models, and the software interfaces that assist the modeling activity (e.g. to define a
network topology).

In some simulation packages network model behaviour and model topology are defined inter-
mingled in the code (e.g. NS-3 [11]). While this allows for great flexibility, the code can soon be-
come too complex to understand, debug and maintain. A number of simulation tools (e.g. OPNET
[13], OMNET++ [41]) provide graphical editors, which allow for an easy and compact understan-
ding of the network topology, separating topology from model behaviour.

Nevertheless, defining a topology graphically can soon become inflexible for mid- to large-
sized topologies (adding thousands of nodes with drag and drop methods can be very tedious
and time-consuming). To address this issue some tools combine graphical editors with domain-
specific languages (e.g. OMNET++) making it possible to parametrize the number of nodes and
use programming-like structures to describe regular interconnect structures. This approach is effi-
cient to describe large, mostly regular, topologies, but presents some limitations: 1. The modeler
learns a description language that is specific to a single simulation tool, 2. A new topology al-
ways needs to be created from scratch, and 3. When dealing with an existing network, there is no
guarantee that a network description accurately represents the real system.

In this thesis we present TopoGen to mitigate these problems by accommodating all the afore-
mentioned methods under a common architecture to define/transform network topologies: either
using a graphical editor (when available), programming code (when desired), or using automatic
data retrieval (e.g. from SDN controllers, if needed).

4. TOPOGEN

4.1. Introduction

In this section we present TopoGen, a general purpose tool for topology serialization in the
SDN paradigm.

This chapter is organized as follows: First, motivations for developing TopoGen are presented.
Then, implementation details are given. Afterwards, the Network Topology Model, a Ruby fra-
mework for describing network topologies within the context of TopoGen is introduced. A brief
tutorial on how to install and use TopoGen is provided, and then details on how TopoGen was used
in a real scenario are given.

This section concludes by listing left-out features that would be useful to have in TopoGen.

4.2. Motivations

SDN technology offers unprecedented capabilities to reconfigure large network topologies au-
tomatically and programmatically without the intervention of human operators. These topologies
can then be retrieved from many SDN Controllers by use of the Controller’s API. To obtain progra-
matically a serialized definition of a network topology is a major advantage. For instance, a graph
representation can be built upon a serialized network. This graph can then be used for studying
properties on the network such as assortative vs. disassortative, coefficient of clustering, K-Core
decomposition, among others.

Automatic graph construction to represent a network topology allows other disciplines to use
the network in a programatically way. For instance, simulation models for network systems can be
built based on real, even changing topologies, where modifications on the real system imply the
need for updating the simulation model accordingly. The standard practice is to upgrade topology
descriptions manually for a given modeling and simulation tool of choice. Such manual changes
can get considerably time-consuming and error-prone, in particular for medium to large-sized
networks.

On another topic, a graph representation of the network topology structure can enable the
use of software engineering validation and verification techniques. For instance, an operational
Graph Grammar semantics can be built upon the graph to study network behaviours. Having an
operational semantics over a network allows the implementation of semantic checkers. A semantic
checker can be used in the context of an intent-oriented programming language to detect possible
undesired behaviours over the network during the execution of an intent.

Unfortunately, there is no current standardization neither for the SDN controllers’ API calls
nor network serialization structure. This implies that when a network topology is retrieved from
a different controller, new network serialization and API calls must be adopted. This can involve
understanding new APIs, developing/modifying software and troubleshooting an unknown con-
troller, among other tasks.

In this section we introduce TopoGen, an SDN-oriented topology generator tool designed to
automatically create models of network topologies based on parseable network descriptions. Such
descriptions rely on an intermediate topology abstraction that can be a) generated automatically,
b) programmed manually from scratch or c) a mix of both options, i.e. translated automatically
first, and tailored via programming later. TopoGen can retrieve network topologies from different
sources, in particular from SDN controllers such as ONOS [6] and OpenDayLight [28] imple-
mentations, and can generate different targeted outputs, notably Ruby-based network topology
structures used by Haikunet and DEVS-based simulators used by PowerDEVS [7].

We show an application of TopoGen to a real-world network design project in the context of
the Trigger and Data Acquisition (TDAQ) network of the ATLAS Experiment at CERN [5]. A new
network layer is added to a preexisting infrastructure, comprising approximately 120 nodes and

13

14 4. TopoGen

240 high speed links. TopoGen is first used to retrieve a candidate network topology prototyped by
network engineers in Mininet [15] connected to an ONOS SDN controller. Then, the topology is
augmented with additional nodes to provide a more exhaustive representation of a future version
of the network whose performance is studied.

4.2.1. Motivating case study: Designing the new FELIX network at CERN

Fig. 4.1: FELIX system components.

The ATLAS experiment at CERN hosts one of the four detectors at the Large Hadron Collider
(LHC) where bunches of particles collide every 25 ns. Currently, the ATLAS detector generates
information at about 80 TB/s which needs to be filtered an then permanently stored for offline
analysis. The TDAQ layered system reduces a 40 MHz collision event rate down to 1 kHz of useful
information by analyzing events in real time. A first-level trigger (L1) uses custom electronics,
filtering events down to roughly 100 kHz. L1-accepted events are temporarily transfered over
custom optical point- to-point fibers to 100 Read-Out System (ROS) server nodes. The High Level
Trigger (HLT) accesses events stored in the ROS to further filter the data by running selection
algorithms on approximately 2000 server nodes interconnected with 1 Gbps and 10 Gbps Ethernet
links.

For 2025 the ATLAS experiment is planning a full deployment of the new Front-End LInk
eXchange (FELIX) system (Anderson et al. 2015), shown in Figure 1, that aims at interfacing
between detector electronics and the TDAQ system.

FELIX is meant to replace the custom point-to-point connections with a Commercial-Off-
The-Shelf (COTS) network technology (e.g. Ethernet, Infiniband, Omnipath). FELIX servers will
act as routers between 24/48 detector’s serial links and 2/4 standard 40/100 Gbps links. FELIX
servers will communicate with a smaller set of commercial servers, known as Software ReadOut
Drivers (SW ROD) used for data collection and processing of physics data. In addition, different
components need to connect to the FELIX servers. For example, the Detector Control System
(DCS) monitors and controls the detector front-end electronics while the Control & Configuration
system sets up and manages data acquisition applications. The FELIX project is planned to be
implemented in two phases. In 2018-2019 some detector hardware will be moved to this new
schema (approx. 68 FELIX and 44 SW ROD servers will be installed). A complete migration of
the remaining hardware is planned for 2025.

Part of the efforts described above consists of designing and implementing a network that can
meet the future demands of the system (more stringent high-availability, high-throughput, low-
latency, redundancy, etc.)

In this context, Dataflow modeling and simulation methodology can support the design of the
future network, aiding the decision process to select technologies, topologies, node distributions,
etc. Yet, the generation of many possible scenarios to be simulated and evaluated is currently a
manual process which is time-consuming, error-prone and does not provide an automated update
procedure.

4.3. Implementation 15

4.3. Implementation

In this section we describe the overall architecture of TopoGen. Illustrative examples are gi-
ven by using the ONOS SDN controller as a sample source for topology information, and the
PowerDEVS toolkit as a sample target for simulation.

4.3.1. Architecture

Figure 4.2 details the architectural module viewtype of TopoGen. Its main components are:

Fig. 4.2: TopoGen abstract architectural view

Network: A network description to be loaded, modified or translated. It can be either a real
network (e.g. one described by an SDN controller) or a virtual one described by some des-
cription language.

Provider: A component that handles the interaction with the Network component. A Provider
retrieves (parses) network information (such as nodes, resources, connections) and translates
it into a common Topology Intermediate Format. Every Provider component is specialized
to the Network component to be accessed. Built-in providers developed in this work are
discussed in section 4.3.2.

Topology Intermediate Format (TIF): The internal in-memory representation of a network
topology, written by any Provider and read by any Builder. The main goal of a TIF is to
serve as an internal abstraction layer that permits orchestration of different Builders and
Providers in a flexible way. For implementation purposes, TIF is created as an instance of
the Topology class described in 4.4.

Builder: A component that parses a TIF and serializes it according to a desired output. A
Builder component is specialized to the Output component to be generated. Built-in builders
developed for this work are discussed in section 4.3.2.

Output: An output format that some Builder must comply with in order to perform a translation
from the TIF format. The Output can consist of a single file or a set of files, depending on
the requirements of the software tool that will ultimately consume them (in the scope of this
work it will consist of a simulation software tool)

4.3.2. Built-in Providers and Builders

Figure 4.3 shows a more detailed component architecture of TopoGen developed for this work.
It shows different Builder and Provider implementations according to the requirements of the

16 4. TopoGen

expected Network and Output. The implemented components are:

Fig. 4.3: Providers and Builders currently implemented

Providers

• Network Topology Model (NTM): The NTM provider serializes topologies described
with NTM, a new object-oriented network topology description language developed in
this work (NTM is based on Ruby, and is detailed in section 4.3.6). NTM can be used
to model existing networks or to model new draft designs.

• ONOS and OpenDayLight: Providers for the SDN Controllers ONOS and OpenDay-
Light retrieve topology information by accessing their respective exposed APIs. Each
SDN controller implements different API calls, besides different serialization respon-
ses. ONOS and OpenDayLight Providers encapsulate the logic to interact with their
respective controller API, and build upon the received responses a TIF instance. These
providers are examples for parsing existing, operative networks.

Builders

• NTM: This builder serializes a network described in the TIF format, creating a new
NTM instance. This instance is typically used to programmatically customize a to-
pology retrieved from different sources before generating a final target Output. An
example of topology augmentation is presented in section 4.4.

• PowerDEVS: This builder creates a PowerDEVS models structure for simulation. It
relies on parameterizable DEVS atomic models that provide basic behavioural buil-
ding blocks. The builder interconnect DEVS atomic (basic) models in a modular and
hierarchical way to create DEVS coupled (more complex) models. Typical DEVS ato-
mic models in the context of networks are queues, links, etc. For instance, in order
to compose a network switch, several atomic models of input/output queues are com-
posed together and parameterized as prioritized queues (with the Quality of Service
(QoS) flag activated). Meanwhile, in order to compose a regular host (e.g. a PC with
one network interface) only one input/output queue is needed, parameterized as a stan-
dard non-prioritized NIC queue.

Providers and Builders are decoupled by means of the Topology Intermediate Format. Any
provider implementation can be used with any builder implementation. TopoGen can be exten-
ded by defining new providers and builders at will. An introduction to extending the currently
supported implementations of Providers and Builders is given in section 4.3.5. Provider and Buil-
der classes implement a Strategy Pattern, where each strategy is implemented outside TopoGen.
This allows TopoGen to be adapted to different scenarios while implementing each Provider and
Builder only once.

4.3. Implementation 17

4.3.3. Class Diagram

Figure 4.4 presents a class diagram for the TopoGen implementation in the Ruby language.

Fig. 4.4: TopoGen class diagram.

When TopoGen is used, an instance of TopologyGenerator class is created and then the initia-
lize method is invoked with parameters indicating a provider, a builder (where the output will be
stored into) and a URI (where to retrieve the topology from).

The TopologyGenerator class has one TopologyProvider and one OutputBuilder instance. The
TopologyProvider class can be mapped to the Provider component showed in Figure 4.2. This
class has four children:

OnosTopologyProvider and OpenDaylightProvider classes encapsulate the logic for retrie-
ving information from SDN controllers’ APIs.

ObjectTopologyProvider class retrieves a topology from a Topology instance.

CustomTopologyProvider class retrieves information from a NTM instance.

All the mentioned classes have one Topology instance created at initialization time.
The Topology class in Figure 4.4 plays the role of the TIF in the architecture (Figure 4.2). It

uses TopologyElements classes to represent the elements in the network. A Topology can have
multiple TopologyElements, however every TopologyElement belongs to a unique Topology. The
TopologyElements box contains all the classes that can be used to create elements in a Topology
instance. The NetworkElements class represents an abstraction of the physical elements of the
network (in this case Host, Link and Router). The Flow and NetworkElement classes implement a
SerializeBehaviour, which is a module for serializing classes. The Flow class represents a flow of
packets between hosts. When creating a Flow instance, a packet rate distribution and a packet size
distribution are needed. Distribution classes are shown in the Flow Distribution box.

Finally, the OutputBuilder class represents the component Builder in Figure 4.2. This class
looks for built-in builders of each TopologyElements classes in the received URI as it is detailed
in the following section.

4.3.4. Sample Sequence Diagrams

We describe two sequence diagrams showing examples of interactions among classes depicted
in Figure 4.4. We use a sample case having an ONOS controller as a source for the Provider, and
PowerDEVS as a target for the Builder. This use case assumes an existing ONOS local installation.

Figure 4.5 (a) illustrates TopologyGenerator initialization sequence. The initialize method is
invoked with four arguments: Provider ONOS, Builder PowerDEVS, the URI where to retrieve
the initial network from (in this case a local ONOS controller), and an output folder where to
store results. The initialize method creates an OnosTopologyProvider instance by providing the
received URI as an argument. OnosTopologyProvider instance creates a Topology instance. Finally
a OnosTopologyProvider instance is returned.

The topology serialization is made by calling the generate method in Topologygenerator. The
flow produced by calling this method is shown in Figure 4.5 (b).

The generate method creates an instance of OutputBuilder using arguments previously recei-
ved in Figure 4.5 (a). Then build output method of OutputBuilder is invoked. This method requires

18 4. TopoGen

(a) Topologygenerator initialization sequence (b) Topologygenerator serialization sequence

Fig. 4.5: Sequence diagrams for initialization and serialization methods.

and includes all ruby files in Power DEVS builder directory after validating them. Methods im-
plemented in these files will run in the OutputBuilder context. In case validation fails, an error is
thrown and the execution stops. Otherwise, Builder PowerDEVS class is included and instantiated
with three arguments: ONOS topology provider, Builder PowerDEVS folder and the output folder.
Finally, build output content method is called where the expected outputs are generated.

4.3.5. How to Augment Built-in Providers and Builders

This section is focused on describing how to augment currently supported providers and buil-
ders in TopoGen.

In order to support a new source provider, a new class must be implemented. The new provi-
der class has to extend the ITopologyProvider class (see 4.4), and it has to define two methods,
the get topology method which was already discussed in section 4.3.6 when NTM was introdu-
ced, and the get path between(source,destination) method, which has to implement an algorithm
for retrieving a path between the given source and destination, and return it by returning a class
Path instance. After defining this class, a new case must be added in the current implemented
switch case method in classes Topologygenerator and CommandLineArguments. The new case is
expected to create a new instance of the recently implemented class. The current implementation
in Provider class should be changed to follow the same pattern as Builder classes. Because a lack
of time, this work has been left out as future work.

In order to support a new targeted output, a directory path were the builder is has to be provided
by argument, as it was shown in Figure 4.5 (b). In this directory, TopoGen will try to load:

Files called after the TopologyElements classes (see Figure 4.4) having appended concre-
te builder.rb at the end of them. For instance, host concrete builder.rb, link concrete builder.rb,

4.3. Implementation 19

router concrete builder.rb and flow concrete builder.rb. Each file must contain a module na-
med after the Topology Element class it represents with ConcreteBuilder appended at the
end of it. This module has to implement the serialization logic of the respective topology
element in the build output representation method. For instance HostConcreteBuilder will
encapsulate the logic on how to serialize a Host in build output representation method.

A file called output concrete builder.rb. This file has to contain a ruby module called Out-
putConcreteBuilder, with at least two methods, the initialize concrete builder method,
which will receive an instance of the topology provider being used in the execution, the
path of the directory where the builders are and the path of the output directory, that is whe-
re the desired output should be stored, and the build output content method, which will be
called in the process of generation, and it’s expected to generate the output in the specified
folder. An example of code execution process of a serialization sequence in TopoGen can
be seen in Figure 4.5 (b).

Previous explanation implies that in order to implement a new builder, all what is needed is to
define these modules with their corresponding methods.

4.3.6. The Network Topology Model

The Network Topology Model (NTM) is an object oriented approach to represent networks
topologies in Ruby. NTM makes it possible to describe all the elements in a network: physical
elements (e.g. hosts, routers, links, etc.), and logical elements (e.g. data flows, routing paths, etc).
NTM is currently dependent on TopoGen as it was designed to be used by the CustomTopology-
Provider class (see Figure 4.4).

NTM and TIF are two different pieces of the architecture, and none is intended to replace
existing network description languages (in fact, such existing languages can take the role of inpu-
t/output formats consumed/produced by TopoGen). We opted for defining our custom TIF to act as
an in-memory relay format, independent of any third party existing language to describe networks.
Regarding NTM, it belongs to the category of network specification languages, but has the salient
feature that multi-hop flows can be described explicitly. Besides, NTM is “native to TIF” making
the “NTM Builder” a trivial one-to-one object mapper. This sets an operational baseline that is
agnostic of any third party language. Yet, the architecture leaves the door open for new Builders
to be developed to accommodate known network description languages.

4.3.6.1. Describing a Network Topology with NTM

Fig. 4.6: Simple network topology to be described with NTM.

The following NTM Ruby code describes the network shown in Figure 4.6 including the com-
munication flow between Host1 and Host3:

20 4. TopoGen

1 module NetworkTopology
2 def get_topology
3 return @topology.topology_elements unless @topology.topology_elements.size == 0
4 hosts = []
5 router = @topology.add_router "Router1"
6 for i in 0..2
7 host = @topology.add_host "Host#{i}"
8 hosts.push host
9 end

10 bwidth = 500*1000*1000 # 500 Mbps
11 @topology.add_full_duplex_link "Link1",hosts[0],0,router,0,bwidth
12 @topology.add_full_duplex_link "Link2",hosts[1],0,router,1,bwidth
13 @topology.add_full_duplex_link "Link3",hosts[2],0,router,2,bwidth
14 link1 = @topology.get_element_by_id "Link1_up"
15 link2 = @topology.get_element_by_id "Link3_down"
16 flow_1_path = Path.new hosts[0], hosts[2]
17 flow_1_path.add_link link1
18 flow_1_path.add_link link2
19 @topology.add_flow "Flow1",10,[flow_1_path],(ExpDistrib.new 1.0/6875),(ConstDistrib.new

1000*8)
20 @topology.topology_elements
21 end
22 end

Each NTM instance must define a NetworkTopology module (line 1) and a get topology met-
hod (line 2) which returns the elements added in the Topology instance (variable @topology). To
create the topology, the router is first added in line 5 (add router method). The hosts are defined in
lines 6-9 (add host method) with a unique identifier for each host. In lines 11-13 links are added
using add full duplex link. This method expects an ID, a source element (an instance of Router or
Host), a source port number, a destination element, a destination port number and the bandwidth
(in bps), and creates a source and destination links.

The first link goes from source to destination (its ID is the concatenation of strings up and
the ID received). The second link goes from destination to source (its ID is the concatenation of
strings down and the ID received). The method returns the second link only. In lines 14 and 15
the links that define a path between Host1 and Host3 are retrieved. In lines 16 to 18 a new path is
created between Host1 and Host3 using the retrieved links. In lines 19 to 20 a new flow is added
with the add flow method (it expects an ID, a flow priority, an array of possible paths for the flow,
and stochastic distributions for packet rate and size). The NTM description ends by returning the
new elements with the topology elements method.

4.3.7. TopoGen Installation and Usage

TopoGen can be installed in a Linux environment in two different ways:

It can be installed as a Ruby Gem, and integrated in an existing Ruby project. This can be
done by adding the following line to an application’s Gemfile:

gem ’topologygenerator’

And then executing:

$ bundle

Or it can be installed by executing the following command:

$ gem install topologygenerator

It can be installed as a binary, by running the following command:

\curl -sSL https://raw.githubusercontent.com/andyLaurito92/
topologygenerator/master/install_topologygenerator.sh | bash

4.4. Support for designing the FELIX network at the ATLAS Data Acquisition System 21

TopoGen can be used both as a Ruby gem or a command line tool. The following Ruby code
excerpt shows an example using the ONOS provider and the NTM builder. The TopoGen object
then needs to be specified with a desired output directory, and an URI where the ONOS SDN
Controller API accepts requests.

1 my_topology_generator = TopoGen.new({
2 "source" => "ONOS",
3 "directory_concrete_builders" => "ruby_builder",
4 "output_directory" => "output_example",
5 "uri_resource" => "http://192.168.24.3/onos/v1/" })
6 my_topology_generator.generate

The same results are obtained with the following TopoGen command line version (a –help
option is available):

1 TopoGen source -n ONOS -o output_directory -u http://127.0.0.1/onos/v1
/ -d ntm_builders

These parameters can be changed to retrieve topologies from different providers or to gene-
rate topology files for different tools, allowing the use of TopoGen in contexts where different
technologies are available.

4.4. Support for designing the FELIX network at the ATLAS Data Acquisition
System

In this section we describe TopoGen as applied in a real world scenario. The case study builds
upon a modeling and simulation-driven engineering process [9] developed for the ATLAS TDAQ
network at CERN [34]. We show how TopoGen can assist the design phase for the network to be
implemented 2019-2020 in the ATLAS FELIX project [4].

4.4.1. The FELIX Network Requirements

The FELIX network will provide connectivity between different components of the FELIX
system (see Figure 4.1) and will handle various types of traffic which differ in their throughput,
latency, priority and availability requirements. For example, the Detector Control System (DCS)
that monitors and controls the detector’s front-end electronics requires the highest priority and
low latency to react fast, but is expected to require low throughput. Meanwhile, the detector’s data
will use most of the network bandwidth so it can have less priority to avoid saturation. Table 4.1
summarizes the different traffic types and their requirements.

The communication patterns are also different for each type of traffic. While DCS traffic fo-
llows a many-to-one pattern (all FELIX servers communicate with a single DCS server), Control
and Monitoring traffic require a many-to-few pattern. Detector data, on the other hand, uses a
simple one-to-one or two-to-one pattern from a FELIX server to SW RODs.

To provide confidence about the coexistence of these traffic types while meeting performan-
ce requirements we adopt a modeling and simulation approach to study expected throughput and
latency for each traffic type, and anticipate possible bottlenecks. Although the high level requi-
rements are defined, each subsystem’s specification is updated often during the design process.
Specific subsystem parameters (throughput, processing times, etc.) will not be known until the
final system is in place. Yet, simulation can provide guidelines for realistic ranges of candidate
parameter values (parameter sweeping).

22 4. TopoGen

Fig. 4.7: Topology of the FELIX system.

Tab. 4.1: FELIX traffic types and requirements.

Traffic type Throughput Latency Priority
Comm.
Pattern

DCS Low Low High
Many

to
one

Control and
Config. Med. - High

Many
to

few

Detector Data High - Med.
One
to

one

Monitoring High - Low
Many

to
few

Other investigations are being directed to define the underlying high-throughput technology
that will be used. The NetIO library [39] provides an abstraction layer that allows FELIX applica-
tions to transparently operate on Ethernet, Infiniband and similar interconnect technologies. NetIO
supports three different high-level programming models to support the different FELIX traffic ty-
pes: low latency, high throughput and publish/subscribe. Each of these impose different buffering
delays and that also need to be considered in the simulation model as they directly affect dataflow
patterns.

Technologies rely on different protocols, congestion control algorithms, and routing schemes
which also need to be considered in simulation studies. In particular, different restrictions are
imposed over candidate topologies depending on selected technologies (e.g. Ethernet allows for
heterogenous link speeds, Infiniband does not. Infiniband efficiently supports mesh and leaf-spine
topologies, Ethernet supports topologies with cycles but using algorithms that perform poorly).
The simulation platform needs to be able to define all these types of topologies in a flexible way
to support agile design iterations.

4.4.2. Using TopoGen to Support the Modeling and Simulation Process

Figure 4.8 shows the workflow used while applying TopoGen to aid the modeling and simu-
lation process for the FELIX network. The workflow consists of three phases: first, the topology
under design by the networking team is automatically retrieved and serialized into an NTM ins-
tance; second, the NTM topology is augmented programmatically with extra resources (nodes and
data flows), and third the new topology is serialized into a PowerDEVS simulation model. Hence
a simulation model is automatically created from an existing specification originally meant for
other purposes. This workflow deals with topology changes at design-time. Run-time adaptation
of simulations to topology changes remains a subject of future work.

Fig. 4.8: Modeling and simulation workflow using TopoGen.

In the first phase, the networking team provided a Mininet emulated environment used to test
the connectivity of a topology, including nodes only from the FELIX network. The ONOS SDN

4.4. Support for designing the FELIX network at the ATLAS Data Acquisition System 23

(a) (b)

Fig. 4.9: Simulated mean packet latency seen by the Traffic Monitoring servers. Link capacity allocated
to monitoring traffic: (a) 1 Gbps (b) 10 Gbps. Blue area: standard deviation. Red lines: min-max
range.

controller was installed within the emulated environment to provide network discovery services.
Then, the TopoGen ONOS Provider was configured to connect with the REST API exposed by
ONOS to query the topology. Once the topology is retrieved, the TopoGen NTM Builder serialized
it into an NTM instance for later use. Each time the networking team updates their emulated
topology, it can be retrieved again to keep the NTM and simulation models up-to-date. The fact
that the original topology was specified in an emulated environment is transparent for TopoGen.

In the second phase, additional nodes are added to the NTM topology to also represent the
HLT network (see Figure 4.7). To generate a meaningful simulation model extra information is
needed about the traffic generated by different servers. Nodes and data flows, along their respective
parameters, were added programmatically into the original NTM instance guided by the network
engineers. For this case study, only the Detector Data traffic type and the Monitoring traffic type
were considered (see Table 4.1).

In the third phase, the augmented NTM instance is loaded by the TopoGen NTM Provider
and used by the PowerDEVS Builder to generate all necessary files for simulation.

The recently explained phases were automatize by the development of a unique execution bash
script.

The network actually simulated with PowerDEVS is the one presented in Figure 4.7. It inclu-
des the FELIX network nodes (automatically retrieved from the SDN controller) and the HLT net-
work nodes, the Detector Data and Monitoring traffic flows (added programmatically with NTM).
Exact parameters for traffic generation will remain unknown until the final setup, so parameter
sweeping is used in simulations to scan possible ranges of values. This case study focused on
network behaviour under different intensities of Monitoring traffic rates, matching an engineering
requirement.

4.4.3. Simulation Results

We studied the potential effects on the average latency of FELIX Monitoring traffic in the case
of an upgrade of the bottlenecked links from 1 Gbps to 10 Gbps. Figure 4.9 (a) shows the average
packet latency for FELIX Monitoring flows in different scenarios with increasing monitoring th-
roughput for all servers. As monitoring traffic grows the latency slightly increases until a transition
is observed at the point when each server generates 650 Mbps of monitoring data. After that point
the latency increases rapidly denoting the presence of congestion. The buffer sizes and link utili-
zation at the switches (not included in this report) indicate that the source of congestion are the 1
Gbps links of monitoring servers. We then updated the topology in the NTM instance, now with a
link capacity of 10 Gbps for monitoring nodes. The PowerDEVS simulation model was regenera-
ted with TopoGen, and new experiments were run. Figure 4.9 (b) shows how the saturation point
moves up to 6500 Mbps of monitoring traffic. The congestion point in the topology remains at the

24 4. TopoGen

links directly connecting the monitoring servers.

4.5. Conclusions

We presented TopoGen, a reference architecture and tool for systematic translation and ge-
neration of network topologies. We also introduced NTM, a network topology model to describe
networks programmatically using the Ruby language. Decoupled Providers, Builders, and a To-
pology Intermediate Format allow the creation of flexible topology transformation workflows that
can suit diverse needs. We focused on the generation of DEVS simulation models starting from
network information available at SDN Controllers.

We applied TopoGen successfully in the context of a real-world network design process: the
FELIX system of the ATLAS TDAQ network at CERN. TopoGen proved effective to retrieve a
large topology from an ONOS controller, export it to a programmable network model, augment the
model manually according to particular simulation needs, and generate a fully operational DEVS
simulation for the PowerDEVS tool.

When compared with previous experiences in our team achieving the same results and in the
same context, TopoGen strongly reduced the time to completion, complexity and error-proneness.
In the next section we details future steps for TopoGen.

4.6. Future work

In this section we introduce features which were left-out from development process because
of a lack of time. These features are a good starting point for contributions to TopoGen.

4.6.1. Augment supported Providers and Builders

Many information sources exist for retrieving networks topologies that are yet not supported.
Some examples of these sources are: Infiniband ([31]) , The Internet Topology Zoo ([22]), OM-
NeT++ ([42]), Frenetic [17]. On the other hand, and because of their extended uses, it would be
useful to implement built-in Builders for: YANG (([8]), NS3 ([37]) and DEVS ([12]) (besides
the current PowerDEVS builder implemented). Augmenting providers and builders can extend
TopoGen current reachability scenarios of work, and make of TopoGen a more general-purpose
tool.

4.6.2. Extend TopoGen to become a Serialization Graph Tool

Nowadays TopoGen is a general-purpose serialization graph tool in the SDN environment.
By implementation of new Providers and extension of the current Topology Elements classes,
TopoGen can become a generic serialization graph tool. The key point in this task is to increment
reachability of TopoGen over new scenarios, including the existing ones. Regarding the study of
the current thesis, this point is of interest for enabling the use of operational graph semantics
libraries from TopoGen.

4.6.3. Improve NTM to become a Network Topology Language for PowerDEVS

The Network Topology Model presented in this chapter is a Ruby framework within TopoGen
used to describe network topologies. Extending NTM to become a Network Topology Language
for PowerDEVS can be of great use for the Simulator. Nowadays network models are either pro-
gram in C++ or built in using the UI provided by PowerDEVS. As it was explained in section 4.2,
this is an error-prone and time-consuming task when large-size networks are targeted. Extending
NTM to a PowerDEVS network topology language can help to decrease complexity of this task.

4.6. Future work 25

4.6.4. Run-Time Adaptations of Network Topologies

Network topologies tend to change because of different factors. Every time a topology chan-
ges, TopoGen must be re-run in order to maintain up to-date the topology model. Implementing
run-time adaptations of network topologies is an important feature to keep up to date targeted
generated models. A possible starting point of this work concerns the study of monitor implemen-
tation in controllers.

26 4. TopoGen

5. HAIKUNET

5.1. Introduction

In this section we introduce Haikunet, which is a Domain Specific Language for programming
intents in the SDN architecture. This section is organized as follows: We start by introducing
the motivations for developing Haikunet. Then, representative program examples are given, and
attainable errors are discussed within the context of the different programs. Subsequently, standard
terminology is introduced and the notion of errors is given in terms of graph grammars. Finally, a
design and implementation perspective of Haikunet is presented, and brief installation and tutorial
guidelines are given.

5.2. Why Haikunet?

The name Haikunet comes from a combination of Haiku and Network. A Haiku is a Japanese
poem which usually describes the nature from the point of view of an observer. Haikunet aimed at
being an easy-to-use programming language for describing functional requirements of the underl-
ying network. Haikunet is though to be used by non-expert network users, i.e. Haikunet programs
are intended to be written from the viewpoint of a network user, which is the purpose of an intent
programming language.

5.3. Motivations

Despite intent-oriented programming languages (IOPL) approach has advantages, it also pre-
sents some limitations. IOPL are usually developed to run in specific vendor controllers, which
introduces unnecessary coupling between intents and controllers. This problem arises in part be-
cause there is still no standard for controller’s API. Consequently, intents need to be rewritten
when using different controllers. For instance, NEMO relies on OpenDayLight [28], Frenetic re-
lies on NOX [18] and NetKAT relies on the OpenFlow controller [27].

Another important shortcoming is that existing IOPLs do not provide mechanisms for detec-
ting errors before intents are applied to the network. As a consequence, intents are first tested in
simulated networks such as Mininet [15], before they are applied to the real network. Testing in-
tents over simulated networks forces developers to maintain the simulated environment, which is
a time-consuming and error prone task.

Finally, IOPL are usually implemented without mathematical formalism, e.g. NEMO, Nettle
[45] (a functional reactive programming language for OpenFlow Networks), Procera [46] (a lan-
guage for high-level reactive network control), FatTire [36] (a declarative fault tolerance language)
and Flog [21] (a logic programming language for SDNs). Few are the IOPL that present such mat-
hematical formalism. An example of such a language is NetKAT [3]. Giving mathematical foun-
dations create opportunities for known software-engineering solutions to be applied to intents, for
instance applying static/dynamic analysis techniques.

In this chapter we introduce Haikunet, an interpreted Intent programming language agnostic
to a specific controller that implements a semantic checker. Haikunet semantic checker can detect
a group of errors, which will be introduced in the following sections. Haikunet was developed to
act as a client consumer of an API. It currently implements consumers for the OpenDayLight and
ONOS controllers API but, as will be explained later on, the Haikunet architecture can be extended
to consider other options.

27

28 5. Haikunet

5.4. Program Examples

In this section we introduce Haikunet by example, by given the program and the network in
which it will be executed. Haikunet implements the following features:

Variables, which context is the entirely program.

Explicit named parameters for referring to network elements properties, such as mac or ip.

Pre-defined keywords to referred to specific network elements, such as: Host, Flow or Intent.

Basic type expressions, such as Strings and Arrays.

Features detailed above are used in the following program examples:

5.4.1. First Example: A Simple Network

We start by showing a program that defines a flow between two hosts in the network depicted
in Figure 5.1.

Fig. 5.1: The Simple Network of Example 1

The following program achieves the desired behaviour.

1
2 first_host := Host(mac="00:00:00:00:00:02")
3
4 second_host := Host(mac="00:00:00:00:00:03")
5
6 my_flow := Flow(src=first_host, dst=second_host, priority="55")
7
8 Intent newFlow
9 Select my_flow

5.4. Program Examples 29

The expression Host(mac=”00:00:00:00:00:02”) in line 2 denotes a host associated with the
mac address ”00:00:00:00:00:02”. When this intent is run over the network in Figure 5.1, the
expression Host(mac=”00:00:00:00:00:02” refers to Host1. The assignment bounds the local
variable first host to Host1. A host can be denoted either by its ip or its mac address. Variable
names are non-empty sequences of alphanumeric values not ending with a period. Line 4 shows
the definition of second host to denote Host2 of figure 5.1.

Line 6 creates a new flow with Host1 as its source and Host2 as its target. The priority number
represents a quality attribute assigned to the packets of this flow. The new flow is then bound
to the local variable my flow. A flow is defined by giving its source and its target. Source and
target are respectively specified by providing src and dst parameters. In this case, the values for
those properties can be either an array of elements denoting hosts or an element denoting a host.
Examples of elements that denote hosts are variables bound to a host, such as first host, or a string
containing a valid IP or MAC address.

Finally, line 8 and 9 denotes an intent called newFlow. This intent creates the previous flow by
using the Select keyword. Intent and Select are both keywords used for denoting an intent and a
flow respectively. Intent keyword must always be followed by the intent name, meanwhile Select
must always be followed by an expression denoting a flow.

5.4.2. Second Example: Connecting Multiple Hosts

The second program example concerns the network depicted in Figure 5.2. The goal is to
program an intent that creates a flow having Host5 as source and Host2, Host3 and Host4 simulta-
neously as target.

Fig. 5.2: Connecting Multiple Hosts Network Example 2.

The following Haikunet program achieves the problem commented above:

30 5. Haikunet

1
2 myHost5 := Host(mac="00:00:00:00:00:05")
3
4 myNewFlows := Flow(src=myHost5, dst=["127.0.0.2", "127.0.0.3", "

127.0.0.4"])
5
6 Intent newFlows
7 Select myNewFlows

Line 2 shows the definition of myHost5 to denote the host with mac ”00:00:00:00:00:05”.
In line 4 a new flow is created where myHost5 variable denotes the source host, and the array
of Ips [”127.0.0.2”, ”127.0.0.3”, ”127.0.0.4”] denotes the target. When this intent is run over
the network in Figure 5.2, expression [”127.0.0.2”, ”127.0.0.3”, ”127.0.0.4”] refers to Host2,
Host3 and Host4 respectively. The new flow is then assigned to the variable myNewFlows. In this
example, we avoid defining each host with a variable (as it was done in the previous example), and
use instead an array where the IP of each host is provided.

Finally, line 6 and 7 denotes an intent called newFlows which creates the previous flow.

5.5. Attainable Errors

When presenting program examples in the previous section, several mistakes could have been
made. For instance: 1. Denoting a Host with a property that is misspelled; 2. Creating a Flow
with an unexisting property (for example by providing an invalid source ip); 3. Creating a Flow
between hosts which have no physical connection between them.

Previous mistakes made in a program lead to execution errors in the targeted controller or
errors in the resultant network. Sometimes these types of errors are difficult to find, making trou-
bleshooting considerable time-consuming. This section explores situations in which errors are
introduced when developing a Haikunet program.

Following errors are presented with a name, a network in which they occur, a Haikunet pro-
gram which introduces the issue and finally a detailed description of the problem.

5.5.1. Flow Property Definition Error

First Haikunet program error concerns the network depicted in figure 5.3.

5.5. Attainable Errors 31

Fig. 5.3: Flow Property Definition Error Network Example

The following is an example of a program which contains an error in the depicted network.

1
2 source_host := Host(mac="00:00:00:00:00:02")
3
4 my_flow := Flow (src=source_host, dst="127.0.0.10", priority="55")
5
6 Intent firstExample
7 Select my_flow

The problem here is that the named property dst = ”127.0.0.10” is not a valid IP in the given
network (i.e. The IP does not denote a host in the network depicted in Figure 5.3). Because of this,
the property cannot be neither inferred nor found from the context.

Previous program has an error because the mistake is made in Flow definition (line 4). If the
misspelled would have been made in Host definition (line 2) as it is shown in the following code:

1
2 source_host := Host(ip="127.0.0.10")
3
4 my_flow := Flow (src=source_host, dst="127.0.0.3", priority="55")
5
6 Intent firstExample
7 Select my_flow

The program would not be considered as having an error. This is because the semantic of the
program above is: 1) Create a host with ip ”127.0.0.10”, 2) Create a flow between the new Host
and Host with ip 127.0.0.3. When a Host is created without mac, the underlying controller is in
charge of setting up a new mac address if possible. If this is not possible, and exception is raised.

32 5. Haikunet

5.5.2. No Path Error

This error concerns the creation of a flow between two network elements that do not have
physical connection between them. Figure 5.4 depicts the initial network topology.

Fig. 5.4: No Path Error Network Example

The Haikunet program belows contains a No Path Error error when executed in the above
network.

1 source_host := Host(ip="127.0.0.2")
2
3 destiny_host := Host(ip="192.168.1.3")
4
5 my_flow := Flow (src=source_host, dst=destiny_host, priority="55")
6
7 Intent firstExample
8 Select my_flow

It can be seen in Figure 5.4 that the error is thrown because there is no path between hosts
127.0.0.2 and 192.168.1.3.

5.6. A Formal Description of Haikunet

This section formalizes the concepts previously presented and standardize vocabulary that will
be use along this chapter. Towards this section errors already defined are categorized, intents and
their behaviour are formally defined, and an operational semantic is introduced.

5.6.1. Definitions

5.6.1.1. Network Element

A network element is either a Link or a Host. For the purpose of this and later sections, we do
not distinguish between different kinds of Hosts, such as: an end station, a router, or a switch.

5.7. Haikunet Backus Naur Form 33

5.6.1.2. Network as a Mutable Graph

A network can be easily seen as a graph that describes its topology. For instance, we can get
a graph representation from the network topology by matching hosts to nodes and links to edges.
There are multiple events that can caused a topology to change, for instance: 1. the failure of a
network element 2. a network element being disconnected on purpose by a network operator, 3.
one or several intents being applied to a controller.
All the mentioned events can alter the expected behaviour of an intent being executed in a net-
work. For this reason, this work focus on the ability of describing how this events alter a network
topology. Because a matter of complexity, this thesis narrows the study of all possible events to
study only the event of one intent being applied to a controller. We left as future work the study of
the remaining events.

5.6.1.3. Intent as a Sequence of Transformations over a Graph

An intent must always be applied to a network. Formally, an intent is defined as a sequence of
transformations over a graph. For instance, the intent presented in section 5.4.2 can be seen as the
following sequence of transformations: 1. Set Host 5 endpoint as source, 2. Set Host 2, Host 3 and
Host 4 as targets (this could be detailed in three steps, but it is collapsed into one for simplicity),
3. Create the forwarding rules needed in each node, 4. Define a new flow with source Host 5 and
targets Host 2, Host 3 and Host 4.

Given a specific transformation and a graph representing a network, we would like to define
whether a transformation can be applied over the graph. In order to achieve this goal, we provide a
formal semantics for Haikunet, which formalizes all the transformations made by an intent when
applied over a network. The formal semantics for Haikunet are further detailed in section 5.9.

In the following section we introduce Haikunet syntax in the Backus-Naur Form(BNF).

5.7. Haikunet Backus Naur Form

Haikunet programs are built upon the following Backus-Naur Form:

P ::= /0 |A;P | Intent V Select V ;P

A ::= V := E

E ::= H1 |F

F ::= Flow(src = H2,dst = H2, priority = N)

H1 ::= Host((mac = MAC | ip = IP))

H2 ::= [(MAC,)∗MAC] | [(IP,)∗IP] |MAC | IP |V

Fig. 5.5: Haikunet Backus Naur Form

P is a non-terminal that denotes a Haikunet program and stands for a sequence of expressions.
The simplest Haikunet program is the empty program, denoted by /0.

The expression A;P denotes a program that starts with an assignment A and then follows as
P. The non-terminal A represents the assignment of an expression E to a variable V. V is the non-
terminal for identifiers (its definition is standard, and hence omitted). The non-terminal E denotes
two possible types of expressions: 1. Host expressions H1 or 2. Flow expressions F.

A Host expression H1 has as named parameter either a MAC or an IP expression (grammar
rules for MAC and IP are omitted because they are standard). The non-terminal F denotes a Flow
expression, which has three parameters , namely, src, dst and priority. The first two named para-
meters respectively denote the source an target host of the flow, while priority is a natural number
(the rules for natural numbers N are omitted). We remark that H2 stands either for: 1. a single IP
or MAC, 2. a sequence of either of them, 3. an identifier denoting a host expression.

34 5. Haikunet

Finally, the expression Intent V Select V;P denotes the creation of an intent. As stated before,
non-terminal V is the non-terminal for identifiers. This expression remarks that more than one
intent can be specified in a program.

5.8. Haikunet Implicit Type System

We now present a simple type system that rule out ill-formed intents, e.g., programs in which
variables bound to a Flow are used when a host is expected. The type-system presented in this
section uses the type-judgments analogous to the the lambda calculus. Formally, a type-judgment
is a relation over typing contexts (or type environments), expressions e, and types τ. The judgment:

Γ� e : τ

is read as e has type τ in context Γ. A typing context (also called a type environment) Γ is a a
partial function from variables to types. The “comma” operator stands for disjoint union.

In this work we assumed the following basic types: 1. String: for alphanumeric strings enclo-
sed by quotation marks; 2.MAC: for the set of mac addresses; 3. IP: for the set of IP addresses.

We start by introducing type-judgments for expressions.

5.8.1. Expressions Type Judgments

(HOST MAC DEFINITION)

Γ� x : MAC
Γ�Host(mac = x) : Host

(HOST IP DEFINITION)

Γ� x : IP
Γ�Host(mac = x) : Host

(FLOW DEFINITION)

Γ� x : Host Γ� y : Host Γ� z : Number
Γ�Flow(src = x,dst = y,priority = z) : Flow

(ARRAY IP DEFINITION)

∀i /ei : IP
Γ� [e1,e2, ...,en] : Host

(ARRAY MAC DEFINITION)

∀i /ei : MAC
Γ� [e1,e2, ...,en] : Host

Host MAC Definition denotes that a Host creation expression is of type Host, whenever the
expression x is of type MAC. Host IP Definition judgment is analogous to Host MAC Definition
but for IP addresses.
Flow Definition states that a Flow creation is of type Flow, whenever x and y are of type Host (x
and y) and z is a number.
Array IP Definition states that the sequence [e1,e2, ...,en] denotes a host when every element
has type IP. Array MAC Definition judgment is analogous to Array IP Definition but for MAC
addresses.
We next introduce type judgments that characterized valid programs in Haikunet.

5.9. Haikunet Semantics 35

5.8.2. Program Type Judgments

(EMPTY PROGRAM)

Γ� /0 : Unit

(VARIABLE ASSIGNMENT)

Γ�E : θ Γ,V : θ�P
Γ�V := E;P : Unit

(INTENT CREATION)

Γ�P : Unit Γ� x : String Γ� y : Flow
Γ� Intent x Select y;P : Unit

Program Type judgments use type Unit for denoting the well-typed programs. The first rule
concerns empty programs, which are always well-typed. Variable assignment states that a program
V := E;P is well-typed whenever E has type θ under Γ, and P is well-typed under Γ extended with
the binding V : θ. Intent creation states that P is well-typed under Γ and the first argument of an
intent declaration must be of type String meanwhile the second one must be of type Flow.

The previous type-judgments do not guarantee that programs are error-free as it will be shown
in section 5.10. In the next section we introduce the semantics of well-typed programs.

5.9. Haikunet Semantics

Haikunet semantics is given in two steps: 1. a set of graph rewriting rules describes the basic
transformations on a network topology. 2. a set of reduction rules defines the meaning of Haikunet
programs. Before introducing inference rules, we detailed how graphs are build upon.

5.9.1. Graph Representation of a Network Topology

As stated in section 5.6, we represent a network topology as a graph where hosts are nodes
and physical connections between hosts are links. Properties in either physical links or hosts, such
as MAC or IP are represented as labels in the corresponding graph element.

5.9.2. Haikunet Inference Rules

The operational semantics of Haikunet is defined as a transition relation between configura-
tions. The relation is inductively defined by a set of inference rules. Each rule defines a reduc-
tion from one configuration to another one under certain conditions. We define a configuration in
Haikunet as a pair. The first element of the pair denotes a program expression (see section 5.7),
meanwhile the second element is a graph that represents the network topology.

The first inference rules concerns Host assignment.

(HOST ASSIGNMENT)

E ↓m G
host(mac=m)−−−−−−−→ G′

< V := Host(mac = E);P,G >→< P,G′ >

Host Assignment states that the assignment V := Host(mac=E) is executed by: 1. evaluating
expression E to its normal form m (this is denoted by the down-side arrow) and 2. transforming G
to G’ accordingly to the graph grammar rules in section 5.9.3. When the pre-condition is achieved,
then Host Assignment post-condition affirms that configuration <V := Host(mac= E) ; P , G > is
reduced to < P , G’ >, where P denotes the remaining program expressions (see 5.5), and G’ the
result of performing host(mac=m) graph rewriting rule over G.

36 5. Haikunet

(FLOW ASSIGNMENT)

E1 ↓ h1 E2 ↓ h2 E3 ↓ n G
f low(src=h1,dst=h2,priority=n)−−−−−−−−−−−−−−−−−−→ G′

< V := Flow(src = E1,dst = E2,priority = E3);P,G >→< P,G′ >

Flow Assignment states that assignment V :=Flow(src=E1,dst =E2, priority=E3) is execu-
ted by: 1. evaluating expressions E1 and E2 to their host normal forms (this is denoted by the
down-side arrow), 2. evaluating expression E3 to a number normal form and 3. transforming G
to G’ accordingly to the graph grammar rules in section 5.9.3. When the pre-condition is achie-
ved, then Flow Assignment post-condition states that configuration <V := Flow(src = E1,dst =
E2, priority = E3);P,G > is reduced to < P , G’ >, where P denotes the remaining program ex-
pressions (see 5.5), and G’ the result of performing f low(src = h1,dst = h2, priority = n) graph
rewriting rule over G.

Next inference rule concerns intent creations.

(INTENT CREATION)

X ↓ s E ↓ f
< Intent X Select E;P,G >→< P,G >

Intent Creation states that an intent creation Intent X Select E is executed by: 1. evaluating
expression X to a String normal form and 2. evaluating expression E to a Flow normal form.
When the pre-condition is achieved, then Intent Creation post-condition states that configuration
< Intent X Select E ; P , G > is reduced to < P , G >, where P denotes the remaining program
expressions (see 5.5). We would like to remark that Intent Creation does not has a graph rewriting
rule associated to it. This happens because the semantic of Intent Creation is currently the same
as Flow Creation.

We will consider a Haikunet program correct whenever the program can be reduce from an
initial configuration < P,G > to < /0,G > by use of the previous inference rules.

5.9.3. Graph Rewriting Rules

Graph rewriting rules introduced in this section follow the double pushout approach.
We start with the rules for host definition, namely host(mac=aMac). The argument aMac

represents a mac address.

Fig. 5.6: host(mac=aMac) Graph Rewriting Rule: Creating a Host

There are two cases. The rule detailed in Figure 5.6 states that a host with property aMac can
be created in the current graph whenever there is no host with the same MAC within the graph.

Fig. 5.7: host(mac=aMac) Graph Rewriting Rule: Denoting an existing Host

On the contrary, when the host with property aMac already exists within the graph, then
host(mac=aMac) has no effect.

We now introduce the flow definition rule, namely flow(src=aSrc, dst=aDst ,priority=aPriority).
The arguments aSrc and aDst represent hosts, meanwhile aPriority represents a number.

5.10. Categorizing Errors 37

Fig. 5.8: flow(src=aSrc, dst=aDst ,priority=aPriority) Graph Rewriting Rule: Creating a new Flow

This rule states that if a path exist between hosts aSrc and aDst, then a new flow between them
can be created. In this rule we have the following annotation abuses:
1. A two-headed arrow between hosts aSrc and aDst represents an existing path between them,
i.e., a set of physical links connect both hosts.
2. The link newFlow represents a flow between the hosts instead of a physical connection, i.e.,
traffic data being sent from aSrc to aDst.

The advantages of having an operational semantic over Haikunet is the application of verifica-
tion techniques over the programming language. In section 5.10.2 we use the presented rules over
scenarios shown in section 5.5 to detect errors.

5.10. Categorizing Errors

This section categorizes errors previously defined in section 5.5. Categorizing errors provi-
des insights about the implementation of the semantic checker. At the end of this section, error
examples given in section 5.5 are analyzed accordingly to this characterization.

5.10.1. Definitions

5.10.1.1. Correct Program Computation

As stated in section 5.9.2, a Haikunet configuration < P0;G0 >, is said to be correct whenever
P0 can be reduced to /0. This is:

< P0;G0 >→< P1;G1 >→ ...→< Pk;Gk >→ ...→< /0;G′ >

Where each right arrow represents a reduction performed over a configuration by using the
presented inference rules. < /0;G′ > denotes the terminated configuration.

5.10.1.2. Errors

Given a configuration <P0;G0 >, an error is produced whenever <P0;G0 > cannot be reduced
to the terminated configuration. This can be summarized as follows:

< P0;G0 >→< P1;G1 >→ ...→< Pk;Gk >6→

Where < Pk;Gk >6→ represents that there is no inference rule applicable and Pk 6= /0.
Errors presented in Haikunet configuration can be categorized in either static or dynamic

errors. Depending on the category of the error, the semantic checker will behave differently. A
formal definition of the mentioned categories is presented next.

5.10.1.3. Static Errors

A static error in a configuration happens when the error presented is related to the network
topology structure. Examples of these types of errors are: Flow property Definition Error(5.5.1)
and No path Error(5.5.2).

38 5. Haikunet

5.10.1.4. Dynamic Error

A dynamic error in a configuration happens when the error is triggered by monitoring traffic
flow in the network. An example of this kind of error is when the buffers of some specific routers
drop more that 40% of packets, and a maximum threshold of 30% was set. These errors are not
characterized by the presented inference rules. Despite, Haikunet semantic checker was built con-
sidering them. We leave as future work the characterization of these types of errors with inference
rules.

5.10.2. Formalizing Errors Using Inference Rules

This section uses Haikunet operational semantics (detailed in section 5.9) to detect errors in
the examples presented in section 5.5.

5.10.2.1. Flow Property Definition Error

In the program example presented in section 5.5.1 we stated the following error: IP ”127.0.0.10”
does not reflect a property of a host in the current graph. In this section we want to identify this
error by applying Haikunet inference rules over the program example.

Scenario 5.5.1 is transformed to the following configuration: P=< source host :=Host(mac=
”00 : 00 : 00 : 00 : 00 : 02”);my f low := (src = source host,dst = ”127,0,0,10”, priority = ”55”);
Intent f irstExampleSelectmy f low, G > where G stands for the initial network state. The first
computation of this configuration is shown below:

< source host := Host(mac = ”00 : 00 : 00 : 00 : 00 : 02”);P0,G >→HostAssignmentRule

< my f low := (src = source host,dst = ”127,0,0,10”, priority = ”55”);P1,G >

This computation applies Host Assignment rule over source host:=Host(mac=”00:00:00:00:00:02”)
expression. Because mac address ”00:00:00:00:00:02” already exist in the network, host(mac=aMac)
graph rewriting rule is used as the identity function, leaving G as it was before. The result is con-
figuration < my f low := (src = source host,dst = ”127,0,0,10”, priority = ”55”);P1,G >.

The expression that follows in the current configuration is my f low :=(src= source host,dst =
”127,0,0,10”, priority = ”55”). When using Flow Assignment rule over the expression, the error
is detected. The problem is raised because flow(src=aSrc, dst=aDst ,priority=aPriority) graph
rewriting rule pre-condition is not fulfilled. This happens because there is no node in the graph
matching the label IP ”127.0.0.10”.

5.10.2.2. No Path Error

In the program example presented in section 5.5.2 we stated the following error: When trying
to create a flow between hosts with IPs ”127.0.0.2” and ”192.168.1.3”, no path between them
was detected. We now want to identify this error by applying Haikunet inference rules over the
program example.

The mentioned program is transformed to the following configuration: P =< sourcehost :=
Host(ip= ”127,0,0,2”);destiny host :=Host(ip= ”192,168,1,3”); my f low :=Flow(src= source host,dst =
destiny host, priority= ”55”); Intent f irstExampleSelectmy f low> where G stands for the initial
network state. The first two computations of this configuration are shown below:

< sourcehost := Host(ip = ”127,0,0,2”);P0,G >→HostAssignmentRule

< destiny host := Host(ip = ”192,168,1,3”);P1,G >→HostAssignmentRule

< my f low := Flow(src = source host,dst = destiny host, priority = ”55”);P2,G >

5.11. Architecture 39

The computations above apply Host Assignment rule over source host:=Host(ip=”127.0.0.2”)
and destiny host:=Host(ip=”192.168.1.3”) expressions. Since both IPs already exist in the net-
work, host(mac=aMac) graph rewriting rule is used as the identity function, leaving G as it was be-
fore. The result is configuration <my f low :=Flow(src= source host,dst = destiny host, priority=
”55”);P2,G >.

The expression that follows in the current configuration is my f low :=Flow(src= source host,dst =
destiny host, priority = ”55”). When using Flow Assignment rule over the expression, the error
is detected. The problem is raised because flow(src=aSrc, dst=aDst ,priority=aPriority) graph
rewriting rule pre-condition is not fulfilled. This happens because nodes representing source host
and destiny host have no path between them. Because of this, no injective morphism exist bet-
ween G and the left-hand side graph of flow(src=aSrc, dst=aDst ,priority=aPriority) rule, making
impossible to use it over G.

5.11. Architecture

Figure 5.9 outlines Haikunet modular decomposition.

Fig. 5.9: Haikunet Architecture

Module Arguments identifies the three arguments provided by a user to Haikunet, which are:
1. a path to a file which contains a Haikunet program. Haikunet program files are denoted by the
.hk extension, 2. a name to the targeted controller (currently supported controllers are ONOS and
OpenDayLight), 3. either a URI of a controllers API (denoting the resource where the network can
be retrieved from) or a path to a NTM file.

Haikunet has a pipeline architecture. First, the lexeme (i.e., the sequence of strings that repre-
sent a program) is retrieved from the file received as argument. Second, the lexeme is tokenized by
the module Lexer. Third, the tokenized lexeme is parsed by the module Parser. Fourth, component
Semantic Checker performs verification techniques over an abstract syntax tree and a network
representation retrieved from components Parser and Network Representation respectively. Fifth
and finally, module Code Generator create requests to the received targeted controller.

The mentioned modules are deeply describe in the following sections.

5.11.1. Lexer

Is the module in charge of tokenize the program lexeme. Haikunet has a context-free Grammar,
and this module can be seen as a push down automaton. In case a program lexeme is badly formed,
a lexical error is raised.

40 5. Haikunet

5.11.2. Parser

Haikunet implements a LL(1) parser that uses the syntax-direct grammar technique. In this
technique, each production is converted to a function that has the responsibility of parsing the
token received. The mentioned functions can raise two type of errors: syntactical errors and se-
mantical errors. A syntactical error is raised when an unexpected token is received, e.g., when
programs are badly written. On the other hand, a semantical error is raised when an identifier is
not found in a program declaration, i.e., an identifier is used in a program, but was never declared.
An example of this last error can be seen in the following program:

1 target := Host(ip="192.168.1.3")
2
3 my_flow := Flow (src=source, dst=target, priority="55")
4
5 Intent firstExample
6 Select my_flow

In the program above, source is an identifier used in a Flow declaration which was not defined
in the program.

When the program is successfully parsed, this module creates a map between expressions and
class instances that represent an entity in a program (e.g.,Hosts, Flows), which is later used by
modules Semantic Checker and Code Generator.

5.11.3. Network Representation

This module is a proxy between Haikunet and TopoGen. Module Network Representation
uses TopoGen as a Ruby gem to retrieve a graph representation of the underlying network. Topo-
Gen’s output is loaded by this module, which creates an in-memory representation of the network
topology. This in-memory representation is used by other modules.

5.11.4. Semantic Checker

This module executes verification techniques that are divided in: 1. Static verification techni-
ques and 2. Dynamic verification techniques.

Static verification techniques are performed over the graph representation created by module
Network Representation and the map created by module Parser. Module Semantic checker im-
plements methods per each error listed in section 5.5. Each method uses the input from the other
modules to detect inconsistencies in the graph and the operations trying to be performed by the
program. In case an error is found, a semantic exception is raised and the error detected is detailed
to the user. Otherwise, the dynamic verification techniques are executed over the program.

Dynamic verification techniques start by creating a DEVS representation of the network to-
pology. This task is performed by invoking the TopoGen tool via module Debug Code Generator.
Haikunet features custom topology builders, where pre-built models are used for the creation of
the DEVS simulation model. Once this representation is created, a simulation is executed by invo-
king the PowerDEVS toolkit. When the simulation ends, PowerDEVS sends the results to Scilab
numerical environment for post-processing purposes. The Scilab process invokes pre-built fun-
ctions showing the user results of having executed the simulation over the current network. As
how it is currently implemented, it is an user responsibility to identify if the results given by the
simulator have an error.

Simulation was used for the detection of dynamic errors, which cannot be detected analytically
with the information available in the model. The simulation of a network allow us to study salient
network events that can occur during a custom period of time. Since dynamic errors are defined
by monitoring traffic over the network, it is in the need of the dynamic logic to have traffic data in
the network. Measurements can be performed on these data to detect situations where thresholds
are surpassed. This task can be easily performed using a simulator such as PowerDEVS.

5.12. Class Diagram 41

Several features remain as future work, such as the implementation of graph grammar rules
to be used by the semantic checker, the automation of detection of dynamic errors (by querying
the simulator for violations of thresholds), and make programs capable of expressing dynamic
properties, among others (see the Future Work section for more details)

5.11.5. Code Generator

This module can be divided in 3 submodules: 1. Submodule ONOS Code Generator, 2. Sub-
module OpenDayLight Code Generator and 3. Submodule Debug Code Generator. The first two
submodules encapsulate the logic of creating requests to the respectively controller. These re-
quests are created by using the map built in module Parser. Submodules ONOS Code Generator
and OpenDayLight Code generator are used after the successful execution of module Semantic
Checker.

Submodule Debug Code Generator is used by module Semantic Checker in the process of crea-
ting the simulation. This submodule executes operations from the intent that modify the network
topology structure (e.g. adding hosts to the network) over the in-memory network representation
provided by module Network Representation. After performing these operations, submodule De-
bug Code Generator provides the in-memory network representation as argument of TopoGen by
using provider OBJECT and builder PowerDEVS (see Chapter 4).

Module Code Generator makes Haikunet an agnostic intent programming language regarding
the targeted controller. Next section explains in more detailed how is the process of adding a new
targeted controller.

5.12. Class Diagram

This section is concerned to explain Haikunet class diagram illustrated in Figure 5.10.

Fig. 5.10: Haikunet Class Diagram

The initial point of the code execution starts in Haikunet class. This class acts as an orches-
trator of all other classes. When a Haikunet instance is created, a Command Line Argument is
instantiated. Class Command Line Argument contains the command line logic for using Haikunet
as a binary, and implements verifications over the arguments provided by the user (these arguments

42 5. Haikunet

were introduced in section 5.9). This class uses the Commander gem (Ref [1]) to implement the
mentioned service.

Class Lexer, Parser, Semantic Checker and Code Generator can be mapped directly to their
respective modules presented in the Architecture module viewtype in figure 5.9. Module Network
Representation from figure 5.9 can be mapped to class Network Provider. This class uses Topo-
Gen to generate and instance of NTM, and for doing so it uses pre-defined builders which are
called Haikunet Builders (see Figure 5.10). These builders are particular cases of NTM Builders
presented in Chapter 4. When the NTM instance is created, this class loads the NTM instance and
returns the topology loaded. The parameters provided to TopoGen from Network Topology class
are 1. Haikunet custom builders, 2. either a URI of a controllers API or a path to a NTM file, 3.
the name of the targeted controller, and 4. an output folder.

Classes that belong to Haikunet Objects are elements used for mapping expressions in the lan-
guage to internal representations. For instance, Host and Flow expressions used in a program are
first parsed, and then an instance of Haikunet Host and Haikunet Flow are created respectively per
each expression. When a variable expression is defined in a program, a new instance of Haikunet
Identifier is created. Finally, when an intent is defined in a program, a new instance of Haiku-
net Intent is created. This mapping between expressions and classes is done within the parsing
process.

In section 5.11, when Code Generator was introduced, ONOS and OpenDayLight submodules
were presented. This submodules can be mapped into the ONOS Code Generator and the Open-
DayLight Code Generator classes respectively. Both classes implement the logic of creating a
bunch of requests to the targeted controller which their represent. In order to augment the targe-
ted controllers, a new class must be implemented. Code Generators classes receive the targeted
file name argument, and the context explained in section 5.11.4. Each class must implement the
generate output method, which receives the targeted file name as argument. This method is ex-
pected to return the desired output. This logic can be implemented because class Code Generator
implements a Strategy Pattern.

Debug Code Generator class is used within the Semantic Checker to create the DEVS model
which is later used by PowerDEVS. This code generator uses TopoGen (as a ruby gem) to genera-
te from the Ruby-based network topology obtained from class Network Provider, a DEVS model.
This model is built using the Debug Builders classes depicted in Figure 5.10. Debug Code Genera-
tor provides as argument to TopoGen: 1. OBJECT as a source; 2. The directory of the mentioned
builders; 3. The topology obtained from class Network Provider and 4. An output directory.

5.13. Installation and Use of Haikunet

Haikunet can be installed in a Linux environment by running the following command:

1
2 \curl -sSL https://raw.githubusercontent.com/andyLaurito92/haikunet/

master/download_directory.sh | bash

Once installed, Haikunet is meant to be used as a binary. In order to execute Haikunet, either
an ONOS or OpenDayLight distribution must be installed and accessible from the installation
computer.

For example, having installed ONOS locally, and assuming that the first program example
introduce in this section is in a file called firstProgramExample.hk, Haikunet can be executed as
follows:

1
2 haikunet -n firstProgramExample.hk -d ONOS -u http://127.0.0.1:8181/

onos/v1/

In this example, http://127.0.0.1:8181/onos/v1/ represents the ONOS local API. More exam-
ples and information are accessible by command line to the user by executing the help command.
This can be done by executing this:

5.14. Conclusions 43

1
2 haikunet -h

5.14. Conclusions

In this chapter we presented Haikunet, an intent-oriented programming language, agnostic to
controllers, which implements a semantic checker that performs verification techniques. These
verification techniques are divided in: 1. Static verification techniques, concerning the topology
structure of the network, and 2. Dynamic verification techniques, concerning the traffic data being
sent in the network.

We also introduced a type system and operational semantics for the mentioned programming
language. These operational semantics were given in two steps: by a set of graph rewriting rules
over the network topology and a set of reduction rules over the program expressions. Haikunet
operational semantic rules were successfully used for detecting errors in program. These features
presented are currently not implemented because a matter of time, and their implementation are
left-out as future work.

The study performed in this chapter crates new opportunities for performing verification tech-
niques on intent-oriented programming languages. For instance, model checkers can used the
presented operational semantic rules to detect if given specifications are achieved in Haikunet
programs.

Finally, we would like to remark that Haikunet was successfully tested in ONOS and Open-
DayLight controllers, avoiding in this way time-consuming troubleshooting scenarios.

In the next section we present future steps to work in Haikunet.

5.15. Future Work

In this section we present left-out works because a matter of time, and desired works to keep
improving the language.

5.15.1. Change the Current Grammar to be SLA-oriented

The management plane of the SDN architecture usually works within SLA. Haikunet is an
Intent-oriented programming language though for the management plane. Is because of this, that
Haikunet grammar should be more SLA-oriented. Users of this programming languages should be
abstracted from the network as much as possible. An approach for tackling this issue would be to
re-write the grammar using a SLA standard notation. Haikunet internal representation should then
be modified to do the mapping between a SLA and the corresponding Intent.

5.15.2. Extend the Expressive Power

Intents that can be expressed with Haikunet are very limited. Most of the Intents that can be
written are not useful for a real/practice scenario. Extending the expressive power would help the
language to grow and be used in real scenarios. A starting point is to extend the expressive power
of the language to model dynamic properties such as the following one:

hello world.hk

1 Intent firstExample
2 Select my_flow
3 Condition my_flow.packet_drops > 30%
4 Action my_flow.decreasePacketWindow(50%)

In the example above, when my flow reaches a loss packet percentage of 30%, the intent
describes that is expected that the flow decreases the packet window in a 50%.

44 5. Haikunet

5.15.3. Improve the Static Verification Techniques of the Semantic Checker

In this chapter, operational semantics and a type system for Haikunet were presented but not
implemented. Next step is to extend module Semantic Checker to implement both features provi-
ded. An approach for implementing the operational semantics given is to adapt module Semantic
Checker to use a library which implements Graph Grammar rewriting rules. An example of one
of these libraries is GraphGen [2]. GraphGen is a library implemented in Python which allows the
generation and definition of generative Graph Grammars.

5.15.4. Improve the Dynamic Verification Techniques of the Semantic Checker

The dynamic verification techniques implemented in module Semantic Checker are currently
performed by the user by verifying Scilab output. Next steps in the improvement of dynamic
verification techniques concern 1. the automation of detection of dynamic errors by querying the
simulator for violations of thresholds, and 2. the implementation of SDN-oriented DEVS models
(i.e., DEVS models that represent SDN flows, OpenFlow, SDN switches).

5.15.5. Augment Supported Targeted Controllers

Even currently supported targeted controllers are ONOS and OpenDayLight, there are still a
big variety of controllers existing nowadays in the SDN realm that are not supported by Haikunet.
Some examples are the OpenFlow controller and NOX. Extending Haikunet supported controllers
will allow the language to target new scenarios.

6. CONCLUSIONS AND FUTURE WORK

In this thesis we presented Haikunet, and intent-oriented programming language, agnostic to
controllers, that implements a semantic checker to verify intents before being applied to a net-
work. We also introduced TopoGen, a general-purpose tool for topology serialization in the SDN
paradigm which is independent of Haikunet.

We show how Haikunet can be used for detecting errors in intents before applying them to
the underlying network. This is a major advantage, since intents can produce downtime, time-
consuming troubleshooting and availability impact. The use of Haikunet in real scenarios was
not tested, and is left-out as future work. The presented operational semantics and the usage of
PowerDEVS in the semantic checker creates new possibilities to explore. For instance, model
checking techniques could be applied by relying on the presented operational semantics.

TopoGen has been successfully used in Haikunet and in the CERN ATLAS-TDAQ networking
team. In the first scenario, TopoGen proved to be useful for several vendor controllers, such as
ONOS and OpenDayLight. Besides, the usage of TopoGen in Haikunet allows Haikunet to be
used when the network topology is not physical but virtually implemented. This is due to the fact
that the Network Topology Model (NTM) is implemented in TopoGen. In the second scenario,
TopoGen has been used to reduce modeling time in simulations and allow the manipulation of
big-size network topologies.

Different existing SDN problems were encountered in this thesis, such as the lack of a com-
mon interface for Northbound API’s, the lack of verifications over intents before they are actually
applied to a network, standardization issues when topology network structures are retrieved from
different controllers. The work presented in this thesis opens different paths for future work, and
we hope that work helps in improving the SDN paradigm.

45

46 6. Conclusions and Future Work

Bibliografı́a

[1] Commander. https://github.com/commander-rb/commander, 2017.

[2] Robert Adams. Graphgen. https://github.com/drobertadams/GraphGen, 2015.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Co-
le Schlesinger, and David Walker. Netkat: Semantic foundations for networks. In ACM
SIGPLAN Notices, volume 49, pages 113–126. ACM, 2014.

[4] J Anderson, A Borga, H Boterenbrood, H Chen, K Chen, G Drake, D Francis, B Gorini,
F Lanni, G Lehmann Miotto, et al. Felix: A high-throughput network approach for interfacing
to front end electronics for atlas upgrades. In Journal of Physics: Conf. Series, volume 664,
page 082050. IOP, 2015.

[5] ATLAS Collaboration. The atlas experiment at the cern large hadron collider. Journal of
Instrumentation, 3(08):S08003, 2008.

[6] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio
Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al. Onos: towards
an open, distributed sdn os. In Proceedings of the third workshop on Hot topics in software
defined networking, pages 1–6. ACM, 2014.

[7] Federico Bergero and Ernesto Kofman. Powerdevs: a tool for hybrid system modeling and
real-time simulation. Simulation, 87(1-2):113–132, 2011.

[8] M Bjorklund. Yang-a data modeling language for the network configuration protocol. RFC
6020, IETF, October 2010.

[9] Matı́as Bonaventura, Daniel Foguelman, and Rodrigo Castro. Discrete event modeling and
simulation-driven engineering for the atlas data acquisition network. Computing in Science
& Engineering, 18(3):70–83, 2016.

[10] Stephen L Campbell, Jean-Philippe Chancelier, and Ramine Nikoukhah. Modeling and Si-
mulation in SCILAB. Springer, 2006.

[11] Gustavo Carneiro. Ns-3: Network simulator 3. In UTM Lab Meeting April, volume 20, 2010.

[12] R Castro and E Kofman. An integrative approach for hybrid modeling, simulation and control
of data networks based on the devs formalism. In Modeling and Simulation of Computer
Networks and Systems: Methodologies and Applications, chapter 18. Morgan Kaufmann,
2015.

[13] Xinjie Chang. Network simulations with opnet. In Proceedings of the 1999 Winter Simu-
lation Conference, pages 307–314, Piscataway, New Jersey, 1999. Institute of Electrical and
Electronics Engineers, Inc.

[14] J Choi. Network working group mk. shin internet-draft kh. nam intended status: Informatio-
nal etri expires: December 2012 m. kang. 2012.

[15] Rogério Leão Santos De Oliveira, Ailton Akira Shinoda, Christiane Marie Schweitzer, and
Ligia Rodrigues Prete. Using mininet for emulation and prototyping software-defined net-
works. In Communications and Computing (COLCOM), 2014 IEEE Colombian Conference
on, pages 1–6. IEEE, 2014.

[16] Hartmut Ehrig, Manfred Nagl, Grzegorz Rozenberg, and Azriel Rosenfeld. Graph-grammars
and their application to computer science: 3rd international workshop, Warrenton, Virginia,
USA, December 2-6, 1986, volume 3. Springer Science & Business Media, 1987.

47

https://github.com/commander-rb/commander
https://github.com/drobertadams/GraphGen

48 Bibliografı́a

[17] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer Rexford,
Alec Story, and David Walker. Frenetic: A network programming language. In ACM Sigplan
Notices, volume 46, pages 279–291. ACM, 2011.

[18] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McKeown, and
Scott Shenker. Nox: towards an operating system for networks. ACM SIGCOMM Computer
Communication Review, 38(3):105–110, 2008.

[19] Evangelos Haleplidis, Kostas Pentikousis, Spyros Denazis, J Hadi Salim, David Meyer, and
Odysseas Koufopavlou. Software-defined networking (sdn): Layers and architecture termi-
nology. Technical report, 2015.

[20] Yannan Hu, Wendong Wang, Xiangyang Gong, Xirong Que, and Shiduan Cheng. Balance-
flow: controller load balancing for openflow networks. In Cloud Computing and Intelligent
Systems (CCIS), 2012 IEEE 2nd International Conference on, volume 2, pages 780–785.
IEEE, 2012.

[21] Naga Praveen Katta, Jennifer Rexford, and David Walker. Logic programming for software-
defined networks. In Workshop on Cross-Model Design and Validation (XLDI), volume 412,
2012.

[22] Simon Knight, Hung X Nguyen, Nick Falkner, Rhys Bowden, and Matthew Roughan. The
internet topology zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765–
1775, 2011.

[23] Guilherme Piegas Koslovski, Pascale Vicat-Blanc Primet, and Andrea Schwertner Charao.
Vxdl: Virtual resources and interconnection networks description language. In Intl. Conf. on
Networks for Grid Applications, pages 138–154. Springer, 2008.

[24] Vasileios Kotronis, Xenofontas Dimitropoulos, and Bernhard Ager. Outsourcing the routing
control logic: better internet routing based on sdn principles. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, pages 55–60. ACM, 2012.

[25] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg,
Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, 103(1):14–76, 2015.

[26] Andres Laurito, Rodrigo Daniel Castro, Matias Alejandro Bonaventura, Pozo Astigarraga,
and Mikel Eukeni. Topogen: A network topology generation architecture with application to
automating simulations of software defined networks. Technical report, ATL-COM-DAQ-
2017-026, 2017.

[27] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[28] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards a model-
driven sdn controller architecture. In A World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2014 IEEE 15th International Symposium on, pages 1–6. IEEE, 2014.

[29] Laura Victoria Morales, Andres Felipe Murillo, and Sandra Julieta Rueda. Extending the
floodlight controller. In Network Computing and Applications (NCA), 2015 IEEE 14th In-
ternational Symposium on, pages 126–133. IEEE, 2015.

[30] Eugene D Ngangue Ndih and Soumaya Cherkaoui. Simulation methods, techniques and
tools of computer systems and networks. In Mohammad S Obaidat, Faouzi Zarai, and Pe-
tros Nicopolitidis, editors, Modeling and Simulation of Computer Networks and Systems:
Methodologies and Applications, chapter 17. Morgan Kaufmann, 2015.

Bibliografı́a 49

[31] Gregory F Pfister. An introduction to the infiniband architecture. High Performance Mass
Storage and Parallel I/O, 42:617–632, 2001.

[32] Minh Pham and Doan B Hoang. Sdn applications-the intent-based northbound interface
realisation for extended applications. In NetSoft Conference and Workshops (NetSoft), 2016
IEEE, pages 372–377. IEEE, 2016.

[33] Gordon D Plotkin. A structural approach to operational semantics. 1981.

[34] Mikel Pozo Astigarraga, Eukeni ATLAS Collaboration, et al. Evolution of the atlas trigger
and data acquisition system. In Journal of Physics: Conf. Series, volume 608, page 012006.
IOP, 2015.

[35] Luca Prete, Fabio Farina, Mauro Campanella, and Andrea Biancini. Energy efficient mini-
mum spanning tree in openflow networks. In Software Defined Networking (EWSDN), 2012
European Workshop on, pages 36–41. IEEE, 2012.

[36] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. Fattire: Declarative fault tole-
rance for software-defined networks. In Proceedings of the second ACM SIGCOMM works-
hop on Hot topics in software defined networking, pages 109–114. ACM, 2013.

[37] George F Riley and Thomas R Henderson. The ns-3 network simulator. Modeling and tools
for network simulation, pages 15–34, 2010.

[38] Grzegorz Rozenberg. Handbook of Graph Grammars and Comp., volume 1. World scientific,
1997.

[39] Jorn Schumacher, Christian Plessl, and Wainer Vandelli. High-Throughput and Low-Latency
Network Communication with NetIO. In 22nd International Conf. on Computing in High
Energy and Nuclear Physics, CHEP 2016. IOP.

[40] Jeroen Van der Ham, Paola Grosso, Ronald Van der Pol, Andree Toonk, and Cees De Laat.
Using the network description language in optical networks. In Integrated Network Mana-
gement, 2007. im’07. 10th IFIP/IEEE International Symposium on, pages 199–205. IEEE,
2007.

[41] András Varga and Rudolf Hornig. An overview of the omnet++ simulation environment. In
Proceedings of the 1st international conf. on Simulation tools and techniques for communi-
cations, networks and systems, page 60. ICST, 2008.

[42] András Varga and Rudolf Hornig. An overview of the omnet++ simulation environment.
In Proceedings of the 1st international conference on Simulation tools and techniques for
communications, networks and systems & workshops, page 60. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2008.

[43] András Varga and György Pongor. Flexible topology description language for simulation
programs. In Proceedings of the 9th European Simulation Symposium (ESS’97), Passau,
Germany, pages 225–229, 1997.

[44] Jinesh Varia and Sajee Mathew. Overview of amazon web services. Amazon Web Services,
2014.

[45] Andreas Voellmy, Ashish Agarwal, and Paul Hudak. Nettle: Functional reactive program-
ming for openflow networks. Technical report, YALE UNIV NEW HAVEN CT DEPT OF
COMPUTER SCIENCE, 2010.

[46] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: a language for high-level
reactive network control. In Proceedings of the first workshop on Hot topics in software
defined networks, pages 43–48. ACM, 2012.

50 Bibliografı́a

[47] Klaus Wehrle, Mesut Günes, and James Gross. Modeling and Tools for Network Simulation.
Springer, 2010.

[48] Xia Yinben. NEMO: A network modeling language.

[49] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and Simu-
lation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic
press, 2000.

	Introduction
	Motivations
	Contributions
	Organization

	Background
	Software Defined Networking
	Intents

	Graph Grammars
	Formal Model-Based Simulation
	DEVS–Based Network Simulation With PowerDEVS

	Related Work
	Intent-Oriented Programming Languages
	Languages and standards for network topologies
	Network Simulators

	TopoGen
	Introduction
	Motivations
	Motivating case study: Designing the new FELIX network at CERN

	Implementation
	Architecture
	Built-in Providers and Builders
	Class Diagram
	Sample Sequence Diagrams
	How to Augment Built-in Providers and Builders
	The Network Topology Model
	Describing a Network Topology with NTM

	TopoGen Installation and Usage

	Support for designing the FELIX network at the ATLAS Data Acquisition System
	The FELIX Network Requirements
	Using TopoGen to Support the Modeling and Simulation Process
	Simulation Results

	Conclusions
	Future work
	Augment supported Providers and Builders
	Extend TopoGen to become a Serialization Graph Tool
	Improve NTM to become a Network Topology Language for PowerDEVS
	Run-Time Adaptations of Network Topologies

	Haikunet
	Introduction
	Why Haikunet?
	Motivations
	Program Examples
	First Example: A Simple Network
	Second Example: Connecting Multiple Hosts

	Attainable Errors
	Flow Property Definition Error
	No Path Error

	A Formal Description of Haikunet
	Definitions
	Network Element
	Network as a Mutable Graph
	Intent as a Sequence of Transformations over a Graph

	Haikunet Backus Naur Form
	Haikunet Implicit Type System
	Expressions Type Judgments
	Program Type Judgments

	Haikunet Semantics
	Graph Representation of a Network Topology
	Haikunet Inference Rules
	Graph Rewriting Rules

	Categorizing Errors
	Definitions
	Correct Program Computation
	Errors
	Static Errors
	Dynamic Error

	Formalizing Errors Using Inference Rules
	Flow Property Definition Error
	No Path Error

	Architecture
	Lexer
	Parser
	Network Representation
	Semantic Checker
	Code Generator

	Class Diagram
	Installation and Use of Haikunet
	Conclusions
	Future Work
	Change the Current Grammar to be SLA-oriented
	Extend the Expressive Power
	Improve the Static Verification Techniques of the Semantic Checker
	Improve the Dynamic Verification Techniques of the Semantic Checker
	Augment Supported Targeted Controllers

	Conclusions and Future Work

