
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Practical atomic multicast: a trade-off
between genuineness and performance

Tesis de Licenciatura en Ciencias de la Computación

Patricio Ezequiel Inzaghi Pronesti

Advisor: Professor Fernando Pedone (Università della Svizzera italiana)

Co-advisor: Professor Paulo R. Coelho (Universidade Federal de Uberlândia)

Buenos Aires, 2019

ABSTRACT (ESPAÑOL)

Los servicios de Internet actuales tienen requerimientos de disponibilidad y escalabili-
dad elevados. Para cumplir estándares de alta disponibilidad estos deben permanecer
funcionales a pesar de producirse fallas en sus nodos o enfrentar cáıdas completas de dat-
acenters. La escalabilidad permite incrementar la performance agregando al sistema más
componentes y con eso lograr soportar un incremento de la carga. El protocolo atomic
multicast es una pieza fundamental en este tipo de servicios. Vamos a considerar sistemas
donde los procesos pueden organizarse en grupos y los clientes env́ıan mensajes destinados
a un subconjunto de ellos. Algunos protocolos consiguen ordenar los mensajes usando
un grupo fijo de procesos o involucrando a todos ellos, sin importar a quién está desti-
nado el mensaje. Durante mucho tiempo se creyó que, para ser eficiente, un algoritmo de
atomic multicast debe ser genuino: solo el emisor y los procesos involucrados en su destino
deben comunicarse para propagar y ordenar un mensaje. Esta tesis vuelve a evaluar esta
propiedad de los protocolos de atomic multicast y experimenta con la hipótesis de que,
relajandola, se puede obtener un mejor throughput o latencia en distintas topoloǵıas de
red. Se presentan dos enfoques: BaseCast, un algoritmo de atomic multicast genuino, y
TreeCast, uno parcialmente genuino que escala con respecto al número de grupos para
mensajes enviados a un solo grupo.

Palabras claves: Sistemas Distribuidos, Atomic multicast, Máquinas de estados repli-
cadas, Escalabilidad, Autenticidad

i

ABSTRACT

Modern online services have strict availability and scalability requirements. Highly avail-
able services remain operational despite node crashes and datacenter disasters. Scalable
services can increase performance by adding system components and thereby accommo-
date increased load. Atomic multicast is a communication building block for this type of
services. We are interested in systems where processes are organized in different groups
and clients can send messages addressed to a subset of them. Some atomic multicast
protocols address this challenge by ordering all messages using a fixed group of processes
or involving all groups, regardless of the destination of the messages. It has long been
believed that to be efficient, an atomic multicast algorithm must be genuine: only the
message sender and destination processes should communicate to propagate and order a
multicast message. The thesis revisits the genuineness of atomic multicast protocols and
tests whether relaxing genuineness can lead to better throughput or latency in different
network topologies. The thesis presents two approaches: BaseCast, a genuine atomic mul-
ticast algorithm, and TreeCast, a partially genuine atomic multicast that scales with the
number of groups for messages addressed to a single group.

Keywords: Distributed Systems, Atomic multicast, State Machine Replication, Scaling,
Genuineness

iii

AGRADECIMIENTOS

Debo agradecer a la Università della Svizzera italiana por aceptarme en su Master’s Re-
search Scholarship y permitirme realizar la tesis de Licenciatura alĺı. Agradezco a mis
directores de tesis Fernando Pedone y Paulo R. Coelho por guiarme y dar su tiempo a
este trabajo.
Al Departamento de Computación por ser un lugar excepcional dentro de la Universidad
de Buenos Aires donde pude desarrollarme como alumno, docente y divulgador. Al Lab-
oratorio de Robótica y Sistemas Embebidos por darme un lugar donde poder aprender y
comenzar a entender lo que es una carrera cient́ıfica.
A Victoria, Ariel, Elisa, Julian, Marcelino, Augusto, Matias, mis compañeros de la facul-
tad, con los que recorŕı este (largo) camino. Las miles de horas de estudio y frustraciones
hubiesen sido insoportables sin su compañ́ıa.
A mis amigos Gonzalo, Cristian y Ricardo, que me ayudaron a distenderme y olvidarme
un poco de la facultad.
A mi mamá que me supo inculcar la perseverancia y el trabajo, a mi papá la curiosidad
y la locura, todas caracteŕısticas importantes para una carrera cient́ıfica. A mi hermana
por alegrarme con su sentido del humor tan Inzaghi.
Quiero agradecerles profundamente a Delia, Hugo, Jessica, Carlos, Kaethe, Nelson, Rox-
ana, Gonzalo, Naiara, Ayelen, Erik, Alejandro, Silvia y por supuesto a la pequeña Anas-
tasia, por incluirme desde siempre como parte de su familia. Son parte mi corazón desde
hace tiempo.
A mi familia universitaria: Augusto, Matias y Solange. Poco a poco nuestras reuniones
fueron siendo cada vez menos para estudiar y más para ayudarnos mutuamente.
Finalmente agradecerle a Solange, el amor de mi vida, gracias por darme todo tu cariño
y soportarme con mi falta de paciencia y complicado humor. Sigamos teniendo muchas
más aventuras juntos.

v

Para Solange, mi compañera de vida.

CONTENTS

1. Introduction . 1

2. Background . 3
2.1 Consensus . 3
2.2 Model and definitions . 3
2.3 Atomic multicast . 4
2.4 Related work . 5

3. Algorithms solving atomic multicast . 7
3.1 BaseCast . 7
3.2 TreeCast . 10
3.3 URingPaxos . 11

3.3.1 Paxos consensus . 11
3.3.2 Algorithm . 12

4. Implementation . 15
4.1 AmcastNode . 15

4.1.1 BaseCast . 16
4.1.2 TreeCast . 16

4.2 Communication . 17
4.3 Experiments . 17
4.4 Configuration . 17

5. Performance evaluation . 19
5.1 Infrastructure . 19
5.2 Experiments . 19
5.3 Results . 22

5.3.1 LAN environment . 22
5.3.2 WAN1 environment . 24
5.3.3 WAN2 environment . 26

6. Conclusions . 31
6.1 Discussion . 31
6.2 Future work . 31

ix

1. INTRODUCTION

Many modern applications need to handle a large amount of requests from clients, so they
need to be scalable and highly available. Such applications usually solve this by replicating
servers near clients, looking for a decrease of latency and increasing tolerance to failures if
one or more of the servers is faulty. In some contexts a weak consistency system could be
successful, on this kind of models the system does not guarantee that subsecuent accesses
will return the updated value of an object. This solution is not adequate for every applica-
tion because clients may observe a non-intuitive application behavior. Strong consistency
(e.g., linearizability [17]) systems are more intuitive to the users because they always
show a single image of the application’s state. However, such systems are harder to main-
tain since we need to order all the user requests across the complete system to achieve this.

Atomic multicast [16] is a building block that allows messages to be propagated to
groups of processes with reliability and order guarantees. The goal of this important prim-
itive is to provide a way to send a message to all non-faulty processes in the destination
of a message, and make them agree on the relative order of delivery. To obtain scalability
in this kind of systems we need to provide an atomic multicast that is genuine [16], this
means that only the participants involved in a message’s destination colaborate to agree
on its delivery.

State machine replication is a well-established approach to fault tolerance [19, 26].
The idea is that by executing service requests deterministically in the same order, correct
replicas will transition through the same sequence of state changes and produce the same
output for every request. Atomic broadcast can be used to guarantee that replicas deliver
requests in the same order.

State machine replication provides linearizability, a consistency criteria. A system is
linearizable if it satisfies the following requirements [5]: (i) It respects the real-time order-
ing of requests across all clients. There exists a real-time order among any two requests if
one request finishes at a client before the other request starts at a client. (ii) It respects
the semantics of the requests as defined in their sequential specification.

With state machine replication, every server has a full copy of the service state. Sev-
eral approaches have proposed to shard the service state and handle each shard as a
replicated state machine (e.g., [10, 4, 21]). Atomic multicast is a natural abstraction to
order requests in a sharded replicated system (e.g., [10, 18]). Requests that can be entirely
executed within a shard are multicast to the required shard; requests that involve data in
multiple shards must be consistently multicast to all target shards.

This master thesis is about the implementation and evaluation of two different atomic
multicast protocols in different contexts. It contributes deriving TreeCast, a crash-failure
version of ByzCast [9] (a Byzantine Fault-Tolerant atomic multicast protocol) that is par-
tially genuine and scales with the number of groups for messages addressed to a single
group. TreeCast is a hierarchical protocol, it uses an overlay tree where a node in the

1

2 1. Introduction

tree is a group of processes. Two different structures of this tree will be compared to have
an insight about the performance of this protocol. We say that this protocol is partially
genuine in that messages atomically multicast to a single group of processes only require
coordination between the message sender and the destination group; messages addressed
to multiple groups of processes, however, may involve processes that are not part of the
destination (i.e., these processes help order the messages though).

Another contribution of this work is the implementation from scratch of BaseCast
[5, 15, 25] a genuine atomic multicast algorithm that scale with the number of groups.
The code base, which is written in Java, is simple to understand and extensible. Both
protocols made use of URingPaxos1, a high throughput atomic multicast protocol also
implemented in Java. The code support other ways of solving consensus, a key part of the
algorithm, so it is prepared for future optimizations and experiments if needed.

Both protocols were compared against each other in two main environments: a local-
area network configuration with very low delays between nodes and an emulated wide-area
network (emulated WAN) that emulates a real WAN with different regions and high delays
between them. With our experiments we will test whether relaxing genuineness can lead to
better throughput or latency in different network topologies. We will revisit genuineness
comparing this two different approaches.

The remainder of this thesis is structured as follows. Chapter 2 provides some the-
oretical background about the subject. Chapter 3 introduces all the algorithms used on
this work. Chapter 4 explains how the protocols are implemented in detail. Chapter 5
evaluates and compares them with experimental results and finally Chapter 6 comments
on our conclusions about this work and points to future work.

1 https://github.com/sambenz/URingPaxos

2. BACKGROUND

This chapter is intended to present the fundamental concepts of the thesis and introduce
the problem we are facing.

2.1 Consensus

Consensus is a fundamental problem in distributed systems, when a number of processes
requires agreement for a single data value. Some of these agents may fail so protocols
solving consensus need to be fault tolerant. Usually these are designed to support a lim-
ited number of faulty processes.
A process can be either correct or faulty, and two types of failures are commonly consid-
ered: benign (i.e., crash failures) or arbitrary behavior (i.e., Byzantine failure). In this
thesis we will consider systems where the first type of failure can occur.

The consensus service allows processes to propose values and ensures that eventually
one of the proposed values is decided. In its basic form consensus processes only decide
once, in real scenarios we will need to consensuate values continuously, we will call every
one of this executions a propose instance. A process in group g proposes a value (or a set
of values) x in instance i by invoking proposeg[i](x), and decides on y in instance i with
decideg[i](y).

In a crash-stop failure model, consensus is defined as follows [7]:

• Termination: Every correct process eventually decides some value.

• Agreement: No two correct processes decide differently.

• Uniform integrity: Every process decides at most once.

• Uniform validity: If a process decides v, then v was proposed by some process.

To make consensus solvable in each group [14], we further assume that all processes
at each group must have access to a weak leader election oracle [7]. The oracle outputs a
single process denoted leaderg,p such that there is (a) a correct process lg in g and (b) a
time after which, for every p in g leaderg,p = lg.

2.2 Model and definitions

We consider a system Π = {p1, ..., pn} of processes. Processes communicate by exchang-
ing messages and do not have access to a shared memory or a global clock. The system
is asynchronous: messages may experience arbitrarily large (but finite) delays and there
is no bound on relative process speeds. We assume that processes may fail by crashing
(i.e., no malicious behavior). A process that never crashes is correct; otherwise it is faulty.

Communication links are fair-lossy, i.e., links do not create, corrupt, or duplicate mes-
sages, and guarantee that for any two correct processes p and q, and any message m, if p

3

4 2. Background

sends m to q infinitely many times, then q receives m an infinite number of times.

We define Γ = {g1, ..., gm} as the set of process groups in the system. Groups are
disjoint, non-empty, and satisfy

⋃
g∈Γ

g = Π. In general, a consensus algorithm can make

progress using n = 2f+1 participants, despite the simultaneous failure of any f of them, so
each group contains 2f + 1 processes, where f is the maximum number of faulty processes
per group. Finally we will also assume the existence of a uniform consensus service in
each group g.

2.3 Atomic multicast

A message m in our model contains two attributes, the value to be sent (m.val) and a
set of destination groups m.dst (e.g., a message m = {hello, {2, 3}} will send the value
hello to groups 2 and 3). A message is called local if |m.dst| = 1 or global if |m.dst| > 1.
A process reliably multicasts a message m by invoking a non-uniform FIFO primitive r-
multicast(m) and receives the message m with primitive r-deliver(m).

To atomic multicast a message m in the system, a process invokes the primitive a-
multicast(m) and delivers m with a-deliver(m). The a-deliver primitive must not be con-
fused with r-deliver, the first one determines that the message m is ready to be processed
satisfying atomic multicast guarantees and the second one is simply the act of receiv-
ing a message from a reliable channel. We define the relation < on the set of messages
processes a-deliver as follows: m < m′ iff there exists a process that a-delivers m before m′.

Atomic multicast satisfies the following properties:

• Validity: If a correct process p a-multicasts a message m, then eventually all correct
processes q ∈ g, where g ∈ m.dst, a-deliver m.

• Agreement: If a correct process p a-delivers a message m, then eventually all
correct processes q ∈ g, where g ∈ m.dst, a-deliver m.

• Integrity: For any correct process p and any message m, p a-delivers m at most
once, and only if p ∈ g, g ∈ m.dst, and m was previously sent using a-multicast.

• Prefix order: Let {g, h} ⊆ Γ. For any two messages m and m′ and any two correct
processes p and q such that p ∈ g, q ∈ h and {g, h} ⊆ m.dst ∩m′.dst, if p a-delivers
m and q a-delivers m′, then either p a-delivers m′ before m or q a-delivers m before
m′.

• Acyclic order: The relation < is acyclic.

An atomic multicast algorithm A is genuine if and only if for any admissible run R of
A and for any correct process p in R, if p sends or receives a message, then some message
m is a-multicast, and either (a) p is the process that a-multicasts m or (b) p ∈ g and
g ∈ m.dst. [16]

For example, lets consider a system with groups Γ = {g1, g2}. If the client Alice sends
the messages [{foo1, {g1}}, {foo2, {g1, g2}}] and Bob sends [{var1, {g2}}, {var2, {g1, g2}}]

2.4. Related work 5

we expect that g1 and g2 deliver the messages foo2 and var2 in the same relative order.

The following is a valid delivery state because messages foo2 and var2 respect a rela-
tive order:

g1 receives: {foo1, {g1}} {foo2, {g1, g2}} {var2, {g1, g2}}
g2 receives: {foo2, {g1, g2}} {var1, {g2}} {var2, {g1, g2}}

This is also a valid state:

g1 receives: {foo1, {g1}} {foo2, {g1, g2}} {var2, {g1, g2}}
g2 receives: {foo2, {g1, g2}} {var2, {g1, g2}} {var1, {g2}}

But this is not a valid execution, our global messages are in different orders in both
groups:

g1 receives: {foo1, {g1}} {var2, {g1, g2}} {foo2, {g1, g2}}
g2 receives: {foo2, {g1, g2}} {var2, {g1, g2}} {var1, {g2}}

2.4 Related work

Several multicast and broadcast algorithms have been proposed in the literature [12].
Moreover, many systems ensure strong consistency with “ad hoc” ordering protocols that
do not implement all the properties of atomic multicast (e.g., [11, 28, 10]). We focus next
on atomic multicast algorithms that tolerate benign failures.

Existing atomic multicast algorithms fall into one of three categories: timestamp-
based, round-based, and ring-based. Algorithms based on timestamps (i.e., [15, 24, 27])
are all genuine and can be considered variations of an early atomic multicast algorithm
[5], designed for failure-free systems. In these algorithms, processes assign timestamps to
messages, ensure that destinations agree on the final timestamp assigned to each message,
and deliver messages following this timestamp order. The precise way in which these
properties are ensured varies from one algorithm to another. The algorithms in [15, 27]
have a best-case time complexity of 6δ (being δ the communication delay) for the delivery
of global messages. The algorithm in [24] can deliver global messages in 5δ and it ensures
another property besides genuineness called message-minimality. This property states that
the messages of the algorithm have a size proportional to the number of destination groups
of the multicast message, and not to the total number of processes. BaseCast verify this
property, and although TreeCast is not genuine with respect to global messages, it satisfies
this property for local messages which can be delivered as fast as the underlying atomic
broadcast algorithm.

In round-based algorithms, processes execute an unbounded sequence of rounds and
agree on messages delivered at the end of each round. A round-based non genuine atomic
multicast algorithm that can deliver messages in 4δ is presented in [27].

Ring-based algorithms propagate messages along a predefined ring overlay and ensure
atomic multicast properties by relying on this topology. An atomic multicast algorithm in

6 2. Background

this category is proposed in [13], where consensus is run among the members of each group.
The time complexity of this algorithm is proportional to the number of destination groups.

Multi-Ring Paxos [23], Spread [1, 2], and Ridge [3] are ring-based non-genuine atomic
multicast protocols. On the one hand, to deliver a message m, they require communication
with processes outside of the destination groups of m. On the other hand, these protocols
do not require disjoint groups.

3. ALGORITHMS SOLVING ATOMIC MULTICAST

In this work we present two algorithms that solve atomic multicast: BaseCast, a genuine
atomic multicast algorithm and TreeCast, a partially genuine atomic multicast that scales
with the number of groups for messages addressed to a single group .

BaseCast requires six communication delays to order global messages and is the base
of FastCast [8], a novel optimistic algorithm atomic multicast algorithm with reduced
number of communication delays for ordering the same type of messages.

TreeCast is inspired in ByzCast [9], a Byzantine Fault-Tolerant atomic multicast pro-
tocol. We propose a simplified version of this algorithm supporting only benign failures
and using a consensus service for this same model.

3.1 BaseCast

In BaseCast, each process implements a logical clock [19] and assigns timestamps to mes-
sages based on the logical clock. The correctness of BaseCast stems from two basic prop-
erties: (i) processes in the destination of an a-multicast message first assign tentative
timestamps to the message and eventually agree on the message’s final timestamp; and
(ii) processes a-deliver messages according to their final timestamp. Every atomically mul-
ticast global message is delivered in at least 6 δ, where δ is the communication delay of
the system [8].

a-
m

ul
tic

as
t

Reliable multicast
from sender to every

involved group

Consensus
local at each involved

group

Reliable multicast
from each involved group
to every involved group

Consensus
local at each involved

group a-
de

liv
er

Task 1 Tasks 3,4 Tasks 2,4 Tasks 3,4

Fig. 3.1: Steps of the BaseCast protocol

BaseCast contains five tasks that execute in isolation (Fig. 3.1) and are described in
Algorithm 1. It contains six variables: CH implements a process’s logical clock, used to
assign hard tentative timestamps to messages; B contains timestamps assigned to mes-
sages not yet a-delivered; kp and kd index consensus instances; and sequences ToOrder
and Ordered are used to totally order messages among processes in a group. Let S and R
be two sequences. S⊕R denotes S followed by R and S \R denotes S without the entries
that exist in R.

BaseCast defines four main meta-messages types: START , SET -HARD, SEND-
HARD and SY NC-HARD. It uses consensus within each group to ensure that processes
in the same group evolve through the same sequence of state changes and produce the
same outputs. Consensus is needed within a group to order START messages (we call
this consensus a SET -HARD step) and SEND-HARD messages (we call this consen-

7

8 3. Algorithms solving atomic multicast

sus a SY NC-HARD step). Ordering SET -HARD and SY NC-HARD events within a
group ensures that processes in the group assign the same hard tentative timestamp to an
a-multicast message m and update their logical clock in the same deterministic way upon
handling hard tentative timestamps from m’s destination groups. We refer to the propa-
gation of the START message followed by the SET -HARD step and the propagation of
SEND-HARD messages as the first phase of the algorithm, and to the SY NC-HARD
step as the second phase of the algorithm. The meta-message syntax is defined as follow:
〈type, group, timestamp,message〉. We will denote an undefined field of the meta-message
with ⊥.

To a-multicast a message m, process p in group g r-multicasts m to m’s destinations
using a 〈START,⊥,⊥,m〉 message. When p r-delivers message 〈START,⊥,⊥,m〉 in Task
1 (respectively, 〈SEND-HARD,h, x,m〉 in Task 2), p adds 〈SET -HARD, g,⊥,m〉 (re-
spectively, 〈SY NC-HARD,h, x,m〉) to ToOrder to be ordered by consensus in Tasks
3 and 4. Consensus instances are independent and can execute concurrently. However,
decision events are handled sequentially according to the order determined by kd in Task 4.

Process p handles a 〈SET-HARD,⊥,⊥,m〉 tuple in Task 4 by choosing a tentative
hard timestamp for m, given by CH , and propagating the chosen timestamp to m’s des-
tinations using a 〈SEND-HARD, g, CH ,m〉 message, if m is global; if m is local, p adds
the chosen timestamp to B as a 〈SY NC-HARD, g, CH ,m〉 tuple.

Process p handles a 〈SY NC-HARD,h, x,m〉 tuple by updating its local clock CH and
including the tuple in B.
In Task 5, if p has received tentative timestamps from all groups in m’s destinations (i.e.,
SYNC-HARD tuples in B), p determines m’s final timestamp as the maximum timestamp
among the tentative timestamps assigned to m by m’s destinations. Process p a-delivers
m when it ascertains that no a-multicast message m0 will have a final timestamp smaller
than m’s. This happens when no a-multicast message m0 rdelivered by p has (a) a final
timestamp smaller than m’s and (b) a tentative timestamp smaller than m’s final times-
tamp, if p has not received tentative timestamps from all of m0’s destinations yet.

3.1. BaseCast 9

1 Initialization
2 CH ← 0;
3 B ← ∅;
4 kp ← 0; kd ← 0;
5 ToOrder ← ε; Ordered← ε;

6 To a-multicast message m
7 r-multicast 〈START,⊥,⊥,m〉 to m.dst ;

8 when r-deliver 〈START,⊥,⊥,m〉 /* Task 1 */

9 ToOrder ← ToOrder ⊕ 〈SET-HARD, g,⊥,m〉 ;

10 when r-deliver 〈SEND-HARD,h,x,m〉 /* Task 2 */

11 if ∀y : 〈SYNC-HARD, h, y,m〉 /∈ ToOrder then
12 ToOrder ← ToOrder ⊕ 〈SYNC-HARD, h, x,m〉;

13 when ToOrder \Ordered 6= ∅ /* Task 3 */

14 proposeg[kp](ToOrder \Ordered);
15 kp ← kp + 1;

16 when Decided := decideg[kd] /* Task 4 */

17 foreach z, h, x,m : 〈z, h, x,m〉 ∈ Decided \Ordered in order do
18 if z =SET-HARD then
19 CH ← CH + 1;
20 if |m.dst| > 1 then
21 B ← B ∪ {〈SEND-HARD, g, CH ,m〉};
22 r-multicast〈 SEND-HARD,g, CH ,m〉 to m.dst;

23 else
24 B ← B ∪ {〈SYNC-HARD, g, CH ,m〉};
25 if z =SYNC-HARD then
26 B ← B \ {〈SEND-HARD, h, x,m〉};
27 B ← B ∪ {〈SYNC-HARD, h, x,m〉};
28 Ordered← Ordered⊕ 〈z, h, x,m〉;
29 kd ← kd + 1;

30 when ∃m ∀h ∈ m.dst ∃x : 〈SYNC-HARD, h, x,m〉 ∈ B /* Task 5 */

31 ts← max({x : 〈SYNC-HARD, h, x,m〉 ∈ B});
32 foreach z, h, x : 〈z, h, x,m〉 ∈ B do B ← B \ {〈z, h, x,m〉} ;
33 B ← B ∪ {〈FINAL,⊥, ts,m〉};
34 while ∃〈FINAL,⊥, ts,m〉 ∈ B : ∀〈z, h, x,m′〉 ∈ B,m 6= m′ : ts < x do
35 a-deliver m;
36 B ← B \ {〈FINAL,⊥, ts,m〉};

Algorithm 1: BaseCast algorithm (for process p in group g)

10 3. Algorithms solving atomic multicast

3.2 TreeCast

TreeCast is a hierarchical protocol and compared to BaseCast is simpler (Algorithm 2). It
uses an overlay tree where a node in the tree is a group of processes. Each group of pro-
cesses runs an instance of atomic broadcast that encompasses the processes in the group.
Hence, ordering messages multicast to a single group is easy enough: it suffices to use the
atomic broadcast instance implemented by the destination group. Ordering messages that
address multiple groups is trickier. First, it requires ordering such a message in the lowest
common ancestor group of the message’s destinations (in the worst case the root). Then,
the message is successively ordered by the lower groups in the tree until it reaches the
message’s destination groups. The main invariant of TreeCast is that the lower groups in
the tree preserve the order induced by the higher groups.

g1

g2

g3

g4

g5

g6

g7

m1

m1

m1

m1

m1

m1

m3

m3

m a-multicast(m)

m a-deliver(m)

time

x-broadcast

x-deliver

m2

m2

m2

m2

m2

m1

Fig. 3.2: An execution of TreeCast with three messages: m1 is a-multicast to {g2, g3, g5}, m2 to
{g4, g5} and m3 to g7

We have the same model described in Section 2.2, with the difference that now groups
can’t communicate with any group freely, they must respect the hierarchy of the tree. We
define the reach of a group x, reach(x), as the set of target groups that can be reached from
x by walking down the tree. We denote the children of a group x in the tree as children(x).

g1

g2

g4 g5

g3

g6 g7

Fig. 3.3: An overlay tree with seven groups in a binary tree topology where g1 is the root

To a-multicast a message m to a set of target groups in m.dst, a process first x0-

3.3. URingPaxos 11

broadcasts m in the lowest common ancestor group x0 of m.dst, denoted lca(m.dst).
When m is xk-delivered by process in xk, each process xk+1-broadcasts m in xk’s child
group xk+1 if xk+1’s reach intersects m.dst. This procedure continues until target groups
in m.dst xk-deliver m, which triggers the a-deliver of m.

In the original algorithm (i.e., ByzCast) every process had to wait for xk-deliver(m)
f+1 times, this condition was removed because in our model it can’t occur any Byzantine
failure, only benign ones.

1 Initialization
2 T is an overlay tree with groups Γ;
3 A-delivered ← ∅;

4 To a-multicast message m
5 x0 ← lca(m.dst);
6 x0-broadcast(m);

7 Each server process p in group xk executes as follows:
8 when xk-deliver m
9 for each xk+1 ∈ children(xk) such that m.dst ∩ reach(xk+1) 6= ∅ do

10 xk+1-broadcast(m);
11 if xk ∈ m.dst and m /∈ A-delivered then
12 a-deliver(m);
13 A-delivered ← A-delivered ∪ {m};

Algorithm 2: TreeCast algorithm

Let’s consider the execution of TreeCast in Fig. 3.2 with messages m1, m2 and m3

a-multicast to groups {g2, g3, g5}, {g4, g5} and g7, respectively. Assuming an overlay tree
T with seven groups described in Fig. 3.3, m1 is first x1-broadcast in group g1. Upon
g1-delivering m1, processes in g1 atomically broadcast m1 in g2 and g3. After that, g2 x5-
broadcast in group g5. The order between m1 and m2 is determined by their delivery order
at g2 since g2 is the highest group to deliver both messages. Message m3 is g7-broadcast
in g7 directly since it is addressed to a single group.

3.3 URingPaxos

3.3.1 Paxos consensus

BaseCast and TreeCast use consensus to order messages inside each group, so this is a
very crucial part of our implementation. Different ways to solve consensus exist, Paxos is
a family of protocols for solving consensus in a network of unreliable processors/channels
working in an asynchronous model that can tolerate crash failures. The Paxos protocol
was first published in 1989 and named after a fictional legislative consensus system used
on the Paxos island in Greece.

Paxos is a distributed and failure-tolerant consensus protocol. It was proposed by
Lamport [20] and combines many properties which are required in practice. While Paxos
operates in an asynchronous model and over unreliable channels, it can tolerate crash

12 3. Algorithms solving atomic multicast

failures. By using stable storage, it can even recover from failures. To guarantee progress,
Paxos assumes a leader-election oracle.

The protocol has three roles ilustred in Fig. 3.4: proposers, acceptors and learners. In
typical implementations, a single processor may play one or more roles at the same time.
This does not affect the correctness of the protocol. The algorithm works as follows: In
phase 1a a proposer sends a message with a unique number (the ballot) to all acceptors.
If the acceptors never saw a higher number for this consensus instance, they confirm the
reservation of the ballot by sending back a phase 1b message. If the proposer receives
at least a quorum d(n + 1)/2e of acceptor answers, it can start with phase 2a. To get a
quorum, a majority of acceptors must be alive. This means that Paxos requires 2f + 1
acceptor nodes to tolerate up to f failures.

P1

P2

A2

A3

A1

L1

1a: ballot n
proposed

1b: ballot n
accepted 2a: < n, v > 2b: value v

confirmed

Fig. 3.4: Trivial execution of the Paxos algorithm, in which no acceptor crashes and multiple
proposers do not try to reserve the same consensus instance

Phase 2a starts with a message, including the value to be proposed and the ballot
number, from the proposer to all acceptors. If the ballot in the message corresponds to
what the acceptors in phase 1 promised to accept, they will store the value. All acceptors
will propagate their decision with a phase 2b message.

3.3.2 Algorithm

Several ways to implement Paxos exist. We decided to use URingPaxos1, a high-throughput
atomic multicast based on Ring Paxos [22]. We selected this library because we need a
really optimized consensus protocol and this library has a lot of work and effort on it.

URingPaxos is implemented as a collection of coordinated Ring Paxos instances, or
rings for short, such that a distinct multicast group is assigned to each ring. Each ring
in turn relies on a sequence of consensus instances, implemented as an optimized version
of Paxos. Similarly to Paxos, Ring Paxos differentiates processes as proposers, acceptors,

1 https://github.com/sambenz/URingPaxos

3.3. URingPaxos 13

and learners, where one of the acceptors is elected as the coordinator. All processes in Ring
Paxos communicate through a unidirectional ring overlay. Using a ring topology for com-
munication enables a balanced use of networking resources and results in high performance.

14 3. Algorithms solving atomic multicast

4. IMPLEMENTATION

The code is implemented under Java OpenJDK 8, a language that is widely used in real
implementations, with clear abstractions and a good collection of concurrency libraries.
Also, the consensus library used in this project is implemented in Java so developing it in
other programming language would have led us out of the focus of this work.

The entry points of our protocol are the AmcastClient and the AmcastNode interfaces
(also called replica). The decision of how to distribute the replicas in the system is a
design problem out of the scope of this thesis, but the common scenario is to launch three
replicas for every group in the system, which results in a fault tolerance of one node per
group. The developed code is meant to provide a service to an application, so the meaning
of a group depends of the real scenario. For example in a key-value database we can think
of groups as a way to divide the tuples according some hash.

To atomic multicast a message m in the system one should create a new instance of
AmcastClient and execute its public method amulticast(byte[] data, Set<Integer>

dst). This is a blocking method and returns when the protocol has confirmed the correct
delivery of the message.

4.1 AmcastNode

The AmcastNode (Fig. 4.1) needs Consensus and AmcastServerCommunication imple-
mentations. These interfaces enable different ways of solving consensus within each group
and of sending messages between nodes. Our project provides all the implementations re-
quired using Java blocking sockets in the ar.uba.dc.amcast.communication.io.* pack-
age. There is also a proxy class URingPaxosConsensus which communicates with the
URingPaxos library described in Section 3.3. TTYNode is an example of usage of the
AmcastNode and can be found in the ar.uba.dc.amcast.lab package.

Node

ConsensusWorker

AmcastServerCommunication

start(): void

Consensus

propose(byte[] bytes): FutureDecision

AmcastNode

proposeMessages(List<Message> messages): void

receiveFromCommunication(Message message, ...): void

handleDecision(List<Message> decided): void

AmcastServerCommunication

send(Message m, SocketAddress to) : void

receive(Message m, SocketAddress from) : void

ConsensusWorker

Consensus

propose(List<Message> messages) : void

Fig. 4.1: Node class diagram, an implementation of AmcastNode interface and its related objects.

15

16 4. Implementation

When the start() method is called two main threads are launched: ConsensusWorker
and AmcastServerCommunication.
The first one manages the proposals and decisions needed in the protocol; AmcastServerCommunication
(Fig. 4.2) allows the communication between replicas.
Two implementations of AmcastNode are provided: BasecastNode and TreecastNode

(Chapter 3). Both extend the Node class because of their common behavior. We will
discuss the details of these protocols in the next sections.

4.1.1 BaseCast

Upon message delivery the BasecastNode saves its content in a local cache and when all
the replicas know the new value they start using a message ID to identify it. Caching
messages prevents the transmission of unnecessary data between replicas and improves
performance.

The main component of the BasecastNode implementation is the MessageHandler

object, it manages all the tasks and message status changes described in Algorithm 1.
This object uses several Map structures to easily obtain the current status of a given
message in the protocol. Several optimizations are done: the coordinator of each group is
responsible for proposing messages in the group and multicasting messages to others, which
prevents unnecessary repeated proposals that would slow down the protocol. In Task 2 of
Algorithm 1 the SY NC-HARD message of m is ordered using consensus upon receiving
the first SEND-HARD message. In the implementation we wait for the arrival of all
the SEND-HARD’s messages of m to propose all the corresponding SY NC-HARD’s
messages together in the group. This results in the coordinator proposing all the SY NC-
HARD messages together (i.e., only once) and reducing the amount of consensus instances.

4.1.2 TreeCast

The TreecastNode starts with the overlay tree configuration of the system; this permits
to properly calculate the lowest common ancestor of every received message. There is no
need for saving messages in cache like BasecastNode because the messages arrive only
once to every node.
The resulting implementation of Algorithm 2 is simpler because there are no state changes
in the messages. Again, the coordinator of each group is responsible for the main parts of
this protocol in order to decrease the amount of messages and proposals in the system.

When a START message arrives in Algorithm 2, the coordinator of the group sends
it to all its involved children. This process continues recursively through the tree until
all the destinations are reached. Then a bottom-up confirmation process starts: every
coordinator node sends a message delivery confirmation to its parent and when the original
coordinator of the message m (the lowest common ancestor) receives all the confirmations
it can advertise the end of the protocol to the client.

4.2 Communication

We use TCP for message exchange between processes and our application represents mes-
sages in a classical length-prefix format: a message starts with a byte representing the

4.3. Experiments 17

message size followed by the content, so the reader of the message can parse it properly.
The implementation uses standard blocking sockets, since in a normal setup the number of
concurrent connections is not too high. To improve latency and avoid message buffering,
we enable the TCP nodelay option (i.e., Nagle’s algorithm1).

ServerCommunication

AmcastNode

startServerLoop(InetSocketAddress listenAddr): void

AmcastServerCommunication

send(Message m, SocketAddress to): void

receive(Message m, SocketAddress from): void

Peer

Map<SocketAddress, ConnectionHandler> connections

connect(SocketAddress socketAddr, Socket socket): void

Extends

ConnectionHandler

Socket connection

run(): void

close(): void

*

Fig. 4.2: ServerCommunication extends a Peer class, which handles the connections with other
replicas and clients.

The ServerCommunication binds a port using the startServerLoop() method and
waits for connections from other replicas and clients. When a connection request is received
a new ConnectionHandler thread is created, to manage it. This allows the communication
main thread (ServerCommunication) to be available for new connections. Every active
connection is stored in the ConcurrentHashMap<SocketAddress, ConnectionHandler>

and all the ConnectionHandler objects store two LinkedBlockingQueue<Message> for
the messages to be sent and the ones received.

4.3 Experiments

The main tools used to evaluate our algorithms are located in the ar.uba.dc.amcast.lab
package. The ThroughputExperiment class simulates several clients sending messages to
the system. Every client that a-multicast a message must wait until its correct a-deliver
to be able to send a new one, this is simulated with a synchronized message queue with
a predefined startup size. If the queue size is very high the system can be saturated, our
experiments showed a safe value of 150 concurrent clients constantly sending messages.

4.4 Configuration

Every replica in the system is executed with the following script:

JVM_PATH="-Djava.util.logging.config.file=src/main/resources/logging.properties"

JVM_PATH="$JVM_PATH -cp target/amcast-trunk-jar-with-dependencies.jar"

GC implementation

JVM_OPTS="-XX:+UseParallelGC -Xverify:none -Xms1g"

start the program

java $JVM_PATH $JVM_OPTS ar.uba.dc.amcast.lab.TTYNode "$@"

1 https://tools.ietf.org/html/rfc896

18 4. Implementation

To distribute the configuration parameters like the IP addresses of the replicas and
to inform which replica is the coordinator in each group we used Apache ZooKeeper2, a
centralized service for maintaining configuration information, naming and providing group
services for distributed applications.

2 https://zookeeper.apache.org/

5. PERFORMANCE EVALUATION

5.1 Infrastructure

To perform a benchmark of the different protocols we will execute them in two main en-
vironments:
LAN configuration. We ran the experiments in a computer cluster provided by USI, the
infrastructure of this cluster consists of interconnected nodes through 1 GBit/s channels.
These nodes are HP SE1102 servers, with 8 GB RAM, 2x Intel Xeon L5420 2.5 GHz
(Quad-core), 500 GB of hard drive of 7.2K RPM and 16 MB of buffer. Every replica is
executed in different nodes and we have an extra node running ZooKeeper. The RTT’s
between nodes is approximately 0.1ms.
Emulated wide-area network (emulated WAN). For these experiments, we use the LAN
environment and divide nodes in three “regions”, R1, R2 and R3. The latencies between
nodes in different regions were emulated using Linux traffic control tools. We used latency
values measured in a real WAN (Fig. 5.1), with average delay of 70ms (R1←→ R2), 70ms
(R2 ←→ R3), and 150ms (R1 ←→ R3), and standard deviation of 5%. The delay of any
client to its local replica (i.e., the one on his same region) is 5ms.

Inside the scripts directory of the repository1 some of the tools used on this work
can be found: ttynode.sh runs a single replica for a given group, tmux launch group.sh
launches three replicas for a given group (cluster tmux launch group.sh does the same
job but it first connects via SSH to the USI cluster). There are also two scripts for launch-
ing the experiments: exp latency.sh and exp throughput.sh. For simplicity we also wrote
an experiments text file showing how to execute the experiments in section 5.2. Even
though this file wasn’t made for executing directly it describes how to set up the environ-
ment and reproduce them. The tmux scripts have tmux-xpanes2 as a dependency.

We asume a context where nodes don’t change its configuration or status very often
(i.e., IP address, leader on each group) so the Apache ZooKeeper service is mainly used on
startup. Using this service regularly has a high performance impact, so the configuration
is stored to avoid asking for the same information.

5.2 Experiments

To compare both implementations we first need to consider two scenarios: messages with
local and messages with global destinations. Both algorithms are genuine when messages
are addressed to one destination (i.e., local messages), so we expect to obtain the same
performance with them.

The other scenario is more complex: even though BaseCast’s network topology doesn’t
have any restriction about communications links, thus offering a more flexible solution,

1 https://gitlab.com/pinzaghi/amcast
2 https://github.com/greymd/tmux-xpanes

19

20 5. Performance evaluation

this approach increases the amount of messages needed between the involved groups to
order the client requests as the number of destinations grows.

On the other hand, when we know how the destinations of messages are distributed
we can do something better: take advantage of the hierarchy of TreeCast to organize the
groups intelligently to avoid involving all of them in the message ordering. If we lose this
knowledge, things change dramatically, we can have messages addressed only to a few
groups but ordered by almost all the groups in the system.

Let’s consider TreeCast with an overlay tree as described in Fig. 3.3. A message ad-
dressed to g4 and g5 will involve g2 because it is their lowest common ancestor, paying
an extra overhead of communication delays for ordering and delivering the message. Now
with the same tree and a message addressed to g5 and g6 our new LCA is g1. This would
result in the worst performance because TreeCast involves five groups for ordering the
message where BaseCast only needs two.

Node Group 1

Group 2

Group 7

.

.

.

.

.

.

.

.

.

Datacenter in
Region R1

Datacenter in
Region R2

Datacenter in
Region R3

~0.1ms

~0.1ms

RTT=140ms RTT=140ms

RTT=300ms

Fig. 5.1: Environment WAN1 where for every region there is one replica of each group. This
configuration supports the failure of a whole region.

Our next step is to formalize this intuition to be able to compare both algorithms in
the discussed scenarios. Let D ⊆ P({g1, g2, ..., g7}) be the set of destinations that are used
in a given experiment (i.e., P(S) is the powerset of set S). In an experiment, when a
process multicasts a message, it randomly chooses one element from D and multicasts a
message to this destination.

Let T be the tree described in Fig. 3.3 and MDH be the maximum destination
height of D with respect to a given tree. For example, if MDHT = 1 then D con-
tains only singletons (e.g., {g1}, {g2}, ... {g7}). Let’s call this D1. D2 is the subset
of P({g1, g2, ..., g7}) such that it contains destination of height 2. For example, D2 =
{{g1}, ...{g2, g3}, {g2, g4}, {g4, g5}, ...}, But D2 doesn’t contain {g5, g6} and {g4, g7}, for

5.2. Experiments 21

example. Finally D3 = P({g1, g2, ..., g7}).

A very important variable in TreeCast is the initial overlay tree, for which with any
amount of groups there is only one posible tree of minimal height (e.g., Fig. 5.2). This
tree is interesting because messages are ordered by the only parent and distributed to its
children in one communication step. We would expect to have lower delays compared to
other trees with greater height. With this configuration any global message will result
in the same LCA: the root of the tree. We want to evaluate a configuration with more
possible LCA’s and see if we can distribute the load between them. We have two extreme
cases, a degenerated tree and a balanced one. The first one doesn’t take advantage of par-
allelization because messages need to wait the finish of every consensus instance on each
group it crosses. The second one does not suffer from this problem and has the advantage
of being smaller in height, a property that we want to keep.

With this taken into account, we will compare three different configurations, all with
the same amount of groups running in the system: a) Configuration C1: TreeCast with g1

as root and six groups g2, ..., g7 as children of g1 (Fig. 5.2). b) Configuration C2: TreeCast
as described in Fig. 3.3. c) C3: BaseCast running all the seven groups. The goal is to com-
pare throughput and latency of the three configurations C1, C2 and C3 running experiments
using D1, D2 and D3 as possible message destinations. We will look for scenarios where
one configuration overcomes the others depending on the amount and type of destinations.

g1

g2 g3 g7...

Fig. 5.2: TreeCast in C1: Seven groups with g1 as root and the only parent of all other groups

All our experiments were performed in three environments: a LAN, (i.e., a network
with small delays between nodes) and in two different configurations of the emulated WAN
(i.e., applications where the nodes are geographically distributed and divided into several
regions)

The first WAN environment considered contains one participant of each group in the
same datacenter with small delays of a LAN (Fig. 5.1). An experimentation in this kind of
scenario can give more information about the advantages or disadvantages of the protocols
in realistic situations. We will call this environment WAN1.

Another way to distribute the nodes across the system is assigning every complete
group in the same region, we will call it WAN2. This can make sense when groups contain
information related to its own region and we want to decrease the latency between clients
and that information. We will asume clients live in region R2, so any message send to
groups in that region has a delay of 5ms, but contacting other regions implies delays as
indicated in Fig. 5.3.

22 5. Performance evaluation

g1g2

g4

g5

g3

g6

g7

Datacenter in
Region R1

Datacenters in
Region R2

Datacenters in
Region R3

RTT=140ms RTT=140ms

RTT=300ms

5ms

Fig. 5.3: Environment WAN2 running configuration C2 where every group is completly located in
of the three different regions. We asume clients near regions R2 with a latency of 5ms
and every group is located in a LAN.

5.3 Results

This section presents the experimental results for three scenarios: a LAN (Section 5.3.1),
a WAN with one participant of each group in the same datacenter (Section 5.3.2) and a
WAN where every group is completely contained in the same region (Section 5.3.3). We
will discuss the throughput and latency performance of the configurations C1, C2 and C3

in these environments when different types of messages are sent to the system.

5.3.1 LAN environment

The first experiment compares how our three configurations C1, C2 and C3 respond to
messages with an increasing amount of destinations. In the throughput experiment we
launched 150 clients concurrently sending messages to random destinations according to
each scenario. For example in the 1 Group scenario every message’s destination is selected
from the set {g1, g2, ..., g7} resulting in local messages. In the 4 groups scenario every mes-
sage’s destination is selected from a set of sets of length 4 (e.g., {{g1, g2, g3, g4}, {g1, g2, g3, g5}, ...}).
Fig. 5.4 shows the throughput in messages per second versus the number of groups and
Fig. 5.5 shows the latency in milliseconds versus the number of groups.

In the Fig. 5.4 we can observe that in a local message scenario (1 group) the three
configurations behave similarly. This responds to the fact that all are genuine protocols
with local messages and do a similar procedure of only one consensus instance to finish
the protocol. We can also observe the fast degradation of performance in the global mes-
sage scenarios. C3 goes from almost 55.000 msg/sec in local messages to a little less than
14.000 msg/sec when |m.dst| = 2. This happens because in the first one we only need to
execute one consensus instance, but when more groups are involved more communication
interchange between nodes and consensus instances occur.

5.3. Results 23

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 group 2 groups 3 groups 4 groups 5 groups 6 groups 7 groups

T
h

ro
u

g
h

p
u

t
[m

e
ss

a
g

e
s/

se
c]

C3: BaseCast
C1: TreeCast 1 level

C2: TreeCast 2 levels

Fig. 5.4: Atomic multicast running in a computer cluster provided by USI (LAN). Throughput
when 150 clients send messages to random destinations of increasing size. Bars show
average throughput and whiskers show 95% confidence interval

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 group 2 groups 3 groups 4 groups 5 groups 6 groups 7 groups

L
a

te
n

cy
 [

m
il
li
se

co
n

d
s]

C3: BaseCast
C1: TreeCast 1 level

C2: TreeCast 2 levels

Fig. 5.5: Atomic multicast running in a computer cluster provided by USI (LAN). Latency when
one client send messages to random destinations of increasing size. Bars show median
latency and whiskers show 90-th percentile

The performance of C3 decreases notably with the number of destinations, when more
groups are involved every one of them needs to synchronize timestamps with the others.
This doesn’t occur in C1 and C2 where only parent nodes are responsible for ordering the
messages and then communicate that order to their children. This results in only paying
a high price for passing from local to global messages but after that the performance de-
crease is negligible.

C2 overcomes C1 by almost doubling the throughput when we address messages to 7

24 5. Performance evaluation

groups. This happens because in C1 the group g1 is the only parent group and it has the
responsability for sending all the messages to six groups, lowering the global performance.
On the other hand, in C2 the responsability is divided in three groups g1, g2 and g3.
Fig. 5.5 shows something similar in regards to local and global messages. The latency
doubles when going from 1 group to 2 groups but then the increment payed for every new
group is negligible. C2 has a greater latency than the other configurations because the
consensus instances required to order the messages are concurrent only in groups that are
in the same level, but all the lower groups need to wait until their parents finish. In C1

we have six over seven groups that are in the same level, resulting in a tree with a small
height, therefore the delay impact is low.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

|m.dst|=2 m.dst ∈ D'3

T
h
ro

u
g
h
p
u
t

[m
e
ss

a
g
e
s/

se
c]

 0

 10000

 20000

 30000

 40000

 50000

 60000

D1 D2 D3

T
h
ro

u
g
h
p
u
t

[m
e
ss

a
g
e
s/

se
c]

Fig. 5.6: Performance impact of TreeCast in configuration C2. (Left) Clients sending arbitrary
messages with |m.dst| = 2 versus messages with m.dst ∈ D′

3. (Right) Clients sending
messages with m.dst ∈ D1, D2 and D3. Bars show average throughput.

In TreeCast, particularly in C2, the amount of groups addressed in a message is not the
only variable when we analise performance. If we define D′

3 := {d : d ∈ D3 \ D2 ∧ |d| = 2}
we can observe in Fig. 5.6 (Left) that sending messages to destinations in D′

3 (e.g., {g5, g6},
{g4, g7},...) results in maximum overlay trees and a throughput decrease of 30% approxi-
mately compared to arbitrary destinations of the same size.

We also measured the throughput of C2 when we increase the maximum possible height
of the overlay tree, in other words, we launched 150 clients that send messages to random
destinations in D1, D2 and D3 respectively. Fig. 5.6 (Right) shows that D2 mantains a
good relationship between performance and height of the overlay tree, but in D3 we obtain
similar results to the ones we got in the experiments showed in Fig. 5.4 for global messages.

5.3.2 WAN1 environment

The following section shows the results of executing the same set of experiments seen
in Section 5.3.1 but now in our emulated WAN environment. The purpose of this is to
evaluate how our protocols respond to more realistic scenarios with different and high/low
delays between nodes.

The results show that, compared to the LAN environment, the protocols behave in a
similar way. The throughput and delay impact is high because we changed from delays

5.3. Results 25

 0

 100

 200

 300

 400

 500

1 group 2 groups 3 groups 4 groups 5 groups 6 groups 7 groups

T
h

ro
u

g
h

p
u

t
[m

e
ss

a
g

e
s/

se
c]

C3: BaseCast
C1: TreeCast 1 level

C2: TreeCast 2 levels

Fig. 5.7: Atomic multicast running in environment WAN1. Throughput when 150 clients send
messages to random destinations of increasing size. Bars show average throughput and
whiskers show 95% confidence interval

of 0.1ms to ones several orders of magnitude higher. C1 throughput performance in the
global message scenario is a little less than a half compared to the local message scenario.
In C3 and C2 we have a similar situation but the impact is higher when we approach global
messages for 7 groups. The performance of WAN1 in the global message scenario is better
compared to the LAN environment, where we only obtained approximately one fifth of the
performance from local to global messages for 2 groups and it goes worst with more groups.

 0

 200

 400

 600

 800

 1000

 1200

1 group 2 groups 3 groups 4 groups 5 groups 6 groups 7 groups

L
a

te
n

cy
 [

m
il
li
se

co
n

d
s]

C3: BaseCast
C1: TreeCast 1 level

C2: TreeCast 2 levels

Fig. 5.8: Atomic multicast running in environment WAN1. Latency when one client send messages
to random destinations of increasing size. Bars show median latency and whiskers show
90-th percentile

26 5. Performance evaluation

If we analyze the latency (Fig. 5.8) we can observe the same behavior as in the LAN
environment, considering again the new scale of values. We obtained 1 RTT in all con-
figurations for local messages, 2 RTT’s in C1 and C3 and 3 RTT’s in C2 for global messages.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

|m.dst|=2 m.dst ∈ D'3

T
h
ro

u
g
h
p
u
t

[m
e
ss

a
g
e
s/

se
c]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

D1 D2 D3

T
h
ro

u
g
h
p
u
t

[m
e
ss

a
g
e
s/

se
c]

Fig. 5.9: Atomic multicast running in environment WAN1. Performance impact of TreeCast in
configuration C2. (Left) Clients sending arbitrary messages with |m.dst| = 2 versus
messages with m.dst ∈ D′

3. (Right) Clients sending messages with m.dst ∈ D1, D2 and
D3. Bars show average throughput.

In Fig. 5.9 (Right) we can observe that the performance of messages sent to D1, D2

and D3 reduced in the same way as in the LAN environment. Again the degradation
is caused by augmenting the overlay trees. In Fig. 5.9 (Left) we see a lower impact of
throughput from messages with destinations of size 2 to messages in D′

3: here the high
delays don’t affect the perfomance because of the low amount of destinations, allowing for
a similar outcome in both scenarios.

5.3.3 WAN2 environment

In this environment we add a new asumption to our hypotheses: we consider an applica-
tion where groups are closely related to their region. This could make sense in distributed
databases where the stored values are related to their local clients and it is very rare to
have data queries from distant regions.

We will assume clients located in region R2 sharing it with groups g4, g5 and g2.
We can see in Fig. 5.3 that the delay of sending messages to those groups is 5ms. We
will consider destinations of increasing size but only taking into account the sets of min-
imal geographic distance to R2 and call them near destinations. For example, when
sending messages to destinations d of size 1 (i.e., local messages) we will only consider
d ∈ M1 = {{g4}, {g5}, {g2}} because they are the only destinations in the same region.
For messages of destination size 2 we will use d ∈ M2 = {{g4, g5}, {g4, g2}, {g5, g2}}. The
other sets of destinations are defined as follow: M3 = {{g4, g5, g2}}, M4 = {{g4, g5, g2, g1}}
and Mn = {d : d ∈ P({g1, g2, ..., g7}) ∧ |d| = n ∧ g1 ∈ d} for 5 ≤ n ≤ 7.

5.3. Results 27

 0

 100

 200

 300

 400

 500

 600

 700

1 group 2 groups 3 groups 4 groups 5 groups 6 groups 7 groups

T
h

ro
u

g
h

p
u

t
[m

e
ss

a
g

e
s/

se
c]

C3: BaseCast
C1: TreeCast 1 level

C2: TreeCast 2 levels

Fig. 5.10: Atomic multicast running in environment WAN2. Throughput when 150 clients send
messages to arbitrary destinations of increasing size. Bars show average throughput and
whiskers show 95% confidence interval

In the experiment of Fig. 5.10 we executed the algorithms in configurations C1, C2 and
C3 sending messages to arbitrary destinations. In this scenario the obtained throughtput is
slightly better than in WAN1.C3 has a good performance for only 2 groups because groups
are completly included in the same region, so sending messages with two destinations only
crosses one different region. C1 has a throughput decrease of 50% compared to C3 since the
first always involves the parent group, introducing a significant impact on performance.
The good performance of C3 degrades fast when more groups are addressed: it needs to
order messages across all the involved groups, forcing a lot of messages to cross multiple
regions and obtaining half of the performance compared to the other configurations. C1

and C2 keep a stable performance in the global messages scenario thanks to the tree struc-
ture.

We want to see if we can do something better, especially regarding latency and through-
put of the nearest destinations.

28 5. Performance evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

M1 M2 M3

T
h

ro
u

g
h

p
u

t
[m

e
ss

a
g

e
s/

se
c]

C3: BaseCast
C1: TreeCast 1 level

C2: TreeCast 2 levels

Fig. 5.11: Atomic multicast running in environment WAN2. Throughput when 150 clients send
messages to near destinations of increasing size. Bars show average throughput and
whiskers show 95% confidence interval

In Fig. 5.11 we show the results of sending messages to destinations M1, ...,M7 in all
the configurations. We can see a throughput of almost 8.000 msg/sec for local messages,
and 2.500 msg/sec for messages addressed to M2 and M3. These results are one level of
magnitude greater than the ones obtained in Fig. 5.10. C1 general performance is very low
compared to others because g1 (the only parent group) will order all the global messages,
which will always cross different regions, degrading the protocol. The genuineness in C3

gives a good response for messages up to three groups but it gets worse when we need to
include other distant regions.

In C2, we have three parents distributed in different regions, incrementing the chances
of getting overlay trees that execute in the same region, which decrements the message
interchange with high delay, thus obtaining better results. For messages with 4 or more
destinations the throughput of C2 is similar to the throughput seen in WAN1 but more
stable and slightly better than the rest of the configurations (Fig. 5.12).

5.3. Results 29

 0

 50

 100

 150

 200

 250

M4 M5 M6 M7

T
h

ro
u

g
h

p
u

t
[m

e
ss

a
g

e
s/

se
c]

C3: BaseCast
C1: TreeCast 1 level

C2: TreeCast 2 levels

Fig. 5.12: Atomic multicast running in environment WAN2. Throughput when 150 clients send
messages to near destinations of increasing size. Bars show average throughput and
whiskers show 95% confidence interval

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

 350

 375

 400

M1 M2 M3 M4 M5 M6 M7

L
a

te
n

cy
 [

m
il
li
se

co
n

d
s]

C3: BaseCast
C1: TreeCast 1 level

C2: TreeCast 2 levels

Fig. 5.13: Atomic multicast running in environment WAN2. Latency when one client send messages
to near destinations of increasing size. Bars show median latency and whiskers show
90-th percentile

The latency when sending messages to groups in the same region (i.e., M1, M2 and
M3) decreases from 600ms in WAN1 to approximately 25ms (Fig. 5.13) in configurations
C2 and C3. Again the topology of C1 is not appropriate for global messages, so it results
in high delays with such configurations. This time the genuineness in C3 gives the best
results with a maximum delay of 160ms for up to four groups.

30 5. Performance evaluation

6. CONCLUSIONS

6.1 Discussion

Atomic multicast is a fundamental communication abstraction in the design of scalable
and highly available, strongly consistent distributed systems. We revisited the genuine-
ness of atomic multicast protocols and tested whether relaxing genuineness can lead to
better throughput or latency in different network topologies. Two approaches were stud-
ied: BaseCast, a genuine atomic multicast algorithm, and TreeCast, a partially genuine
atomic multicast. Our implementations only differ on how the core of the protocols work,
all the communication and consensus objects are shared, making our comparison more fair.

TreeCast shows a good balance between latency and throughput, but we need to have
in mind how we build the topology tree. If our application prioritizes latency, a topology
like TreeCast can generate big delays when the overlay trees are not well conditioned. We
need a good knowledge of how the clients will behave to build the tree in a way that the
most usual destinations are near in the tree. Otherwise, tall overlay trees are needed, and
this increments the steps of the algorithm, resulting in high delay.

The results obtained show that genuineness doesn’t necessarily relate to good through-
put, especially when messages are addressed to a big majority of the groups in the system.

BaseCast performance decreases for every new destination, making genuineness a ma-
jor drawback in this configuration. Every involved node needs to keep track of the message
state to properly a-multicast it, resulting in big computations of all the nodes. In a WAN
environment this property can give better results.

To guarantee good results in TreeCast we have to assume some hypotheses about how
the clients will behave in terms of the most probable messages destinations. Then, when
the assumed behavior is not met we can get really bad performance for messages delivered
to a few groups. The latter gets worse if the height of the tree increases, making BaseCast
a better option for messages with few recipients and arbitrary destinations.

6.2 Future work

Our two discussed protocols, BaseCast and TreeCast, only manage benign failures (i.e.,
crash failures). To be able to support arbitrary behavior (i.e., Byzantine failure) some
other consensus library is needed (e.g., pBFT [6]). These kind of implementations are
usually more complex but have become increasingly appealing in distributed and decen-
tralized scenarios where there is a need for a trusted system (e.g., blockchain) and new
applications become more and more sensitive to malicious behavior. These are usually
large-scale environments including both a significantly large number of nodes and geo-
distribution, so the genuineness of the communication protocol becomes even more impor-
tant. This work would need a characterization of large-scale environments services and

31

32 6. Conclusions

benchmarks that capture the properties and operations of such services.

Regarding the implementation, the communication between nodes is done using block-
ing sockets, a very straightforward way for process communication. There are other li-
braries like Java NIO, a collection of Java programming language APIs that offer features
for intensive I/O operations. This exceeded the scope of the thesis but would be an inter-
esting improvement to have in mind.

LIST OF FIGURES

3.1 Steps of the BaseCast protocol . 7

3.2 An execution of TreeCast with three messages: m1 is a-multicast to {g2, g3, g5},
m2 to {g4, g5} and m3 to g7 . 10

3.3 An overlay tree with seven groups in a binary tree topology where g1 is the
root . 10

3.4 Trivial execution of the Paxos algorithm, in which no acceptor crashes and
multiple proposers do not try to reserve the same consensus instance 12

4.1 Node class diagram, an implementation of AmcastNode interface and its
related objects. 15

4.2 ServerCommunication extends a Peer class, which handles the connections
with other replicas and clients. 17

5.1 Environment WAN1 where for every region there is one replica of each
group. This configuration supports the failure of a whole region. 20

5.2 TreeCast in C1: Seven groups with g1 as root and the only parent of all
other groups . 21

5.3 Environment WAN2 running configuration C2 where every group is com-
pletly located in of the three different regions. We asume clients near regions
R2 with a latency of 5ms and every group is located in a LAN. 22

5.4 Atomic multicast running in a computer cluster provided by USI (LAN).
Throughput when 150 clients send messages to random destinations of in-
creasing size. Bars show average throughput and whiskers show 95% confi-
dence interval . 23

5.5 Atomic multicast running in a computer cluster provided by USI (LAN).
Latency when one client send messages to random destinations of increasing
size. Bars show median latency and whiskers show 90-th percentile 23

5.6 Performance impact of TreeCast in configuration C2. (Left) Clients sending
arbitrary messages with |m.dst| = 2 versus messages with m.dst ∈ D′

3.
(Right) Clients sending messages with m.dst ∈ D1, D2 and D3. Bars show
average throughput. 24

5.7 Atomic multicast running in environment WAN1. Throughput when 150
clients send messages to random destinations of increasing size. Bars show
average throughput and whiskers show 95% confidence interval 25

5.8 Atomic multicast running in environment WAN1. Latency when one client
send messages to random destinations of increasing size. Bars show median
latency and whiskers show 90-th percentile 25

5.9 Atomic multicast running in environment WAN1. Performance impact of
TreeCast in configuration C2. (Left) Clients sending arbitrary messages
with |m.dst| = 2 versus messages with m.dst ∈ D′

3. (Right) Clients sending
messages with m.dst ∈ D1, D2 and D3. Bars show average throughput. . . . 26

33

34 List of Figures

5.10 Atomic multicast running in environment WAN2. Throughput when 150
clients send messages to arbitrary destinations of increasing size. Bars show
average throughput and whiskers show 95% confidence interval 27

5.11 Atomic multicast running in environment WAN2. Throughput when 150
clients send messages to near destinations of increasing size. Bars show
average throughput and whiskers show 95% confidence interval 28

5.12 Atomic multicast running in environment WAN2. Throughput when 150
clients send messages to near destinations of increasing size. Bars show
average throughput and whiskers show 95% confidence interval 29

5.13 Atomic multicast running in environment WAN2. Latency when one client
send messages to near destinations of increasing size. Bars show median
latency and whiskers show 90-th percentile 29

BIBLIOGRAPHY

[1] Agarwal, D. A., Moser, L. E., Melliar-Smith, P. M., Budhia, R. K.: The totem
multiple-ring ordering and topology maintenance protocol. ACM Trans. Comput. Syst.,
16(2):93–132, May 1998.

[2] Babay, A., Amir, Y.: Fast total ordering for modern data centers. In ICDCS, 2016.

[3] Bezerra, E., Cason, D., Pedone, F.: Ridge: high-throughput, low-latency atomic multi-
cast. In SRDS, 2015

[4] Bezerra, C. E., Pedone, F., Van Renesse, R.: Scalable state-machine replication. in
DSN, 2014.

[5] Birman, K., Joseph, T.: Reliable communication in the presence of failures. Trans. on
Computer Systems, 5(1):47-76, Feb. 1987.

[6] Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. ACM Transactions on
Computer Systems, Vol. 20, No. 4, November 2002.

[7] Chandra, T. D., Toueg S.: Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

[8] Coelho, P., Schiper, N., Pedone, F.: Fast Atomic Multicast 47th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), June 2017

[9] Coelho, P., Ceolin T., Bessani, A., Dotti, F., Pedone, F.: Byzantine Fault-Tolerant
Atomic Multicast 48th IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), June 2018

[10] Corbett, J. C., Epstein M., et al: Spanner: Google’s globally distributed database. in
OSDI, 2012.

[11] Cowling, J., Liskov, B.: Low-overhead distributed transaction coordination. In
USENIX ATC, 2012.

[12] Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, 2004

[13] Delporte-Gallet, C., Fauconnier, H.: Fault-tolerant genuine atomic multicast to mul-
tiple groups. In OPODIS, 2000.

[14] Fischer, M. J., Lynch, N. A., Patterson, M. S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[15] Fritzke, U., Ingels, P., Mostéfaoui, A., Raynal, M.: Fault-tolerant total order multicast
to asynchronous groups. In SRDS, 1998.

[16] Guerraoui, R., Schiper, A.: Genuine atomic multicast in asynchronous distributed
systems Theor. Comput. Sci., vol. 254, no. 1-2, pp. 297–316, 2001

35

36 Bibliography

[17] Herlihy, M. P., Wing, J. M.: Linearizability: A correctness condition for concurrent
objects. Trans. on Programming Languages and Systems, 12(3):463–492, July 1990

[18] Hoang, L. L., Bezerra, C. E. B., Pedone, F.: Dynamic scalable state machine replica-
tion. in DSN, 2016.

[19] Lamport, L.: Time, clocks, and the ordering of events in a distributed system. CACM,
21(7):558–565, July 1978

[20] Lamport, L.: The part-time parliament ACM Transactions on Computer Systems,
16(2):133–169, May 1998.

[21] Li, B., Xu, W., Abid, M. Z., Distler, T., Kapitza, R.: SAREK: optimistic parallel
ordering in byzantine fault tolerance. in EDCC, 2016.

[22] Marandi, P. J., Primi, M., Schiper, N., Pedone, F.: Ring paxos: A high-
throughput atomic broadcast protocol. In Dependable Systems and Networks (DSN),
2010 IEEE/IFIP International Conference on, pages 527–536. IEEE, 2010.

[23] Marandi, P. J., Primi, M., Pedone, F.: Multi-ring paxos. In DSN, 2012

[24] Rodrigues, L., Guerraoui, R., Schiper, A.: Scalable atomic multicast. In IC3N, 1998

[25] Schiper, N., Pedone, F.: Optimal atomic broadcast and multicast algorithms for wide
area networks. In PODC, 2007.

[26] Schneider, F.: Implementing fault-tolerant services using the state machine approach:
A tutorial ACM Computing Surveys, vol. 22, pp. 299-319, Dec. 1990.

[27] Schiper, N., Pedone, F.: On the inherent cost of atomic broadcast and multicast in
wide area networks. In ICDCN, 2008.

[28] Sciascia, D., Pedone, F., Junqueira, F.: Scalable deferred update replication. In DSN,
2012

	Introduction
	Background
	Consensus
	Model and definitions
	Atomic multicast
	Related work

	Algorithms solving atomic multicast
	BaseCast
	TreeCast
	URingPaxos
	Paxos consensus
	Algorithm

	Implementation
	AmcastNode
	BaseCast
	TreeCast

	Communication
	Experiments
	Configuration

	Performance evaluation
	Infrastructure
	Experiments
	Results
	LAN environment
	WAN1 environment
	WAN2 environment

	Conclusions
	Discussion
	Future work

