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DEL AZAR CON DOS SÍMBOLOS
AL AZAR CON TRES SÍMBOLOS

En 1909 Borel definió normalidad como una noción de aleatoriedad de los d́ıgitos de la
representación de un número real en cierta base (expansión fraccionaria). Si pensamos la
representación de un número en una base dada como una secuencia infinita de śımbolos de
un alfabeto finito A, se puede dar la definición de normalidad directamente para secuencias
de śımbolos de A: Una secuencia x es normal para el alfabeto A si cualquier bloque
finito de śımbolos de A aparece con igual frecuencia asintótica en x que cualquier otro
bloque de la misma longitud. Se encontraron muchos ejemplos de secuencias normales
siendo Champernowne en 1933 el primero en conseguir dar expĺıcitamente un ejemplo
sencillo. También se logró caracterizar cómo seleccionar subsecuencias de una secuencia
normal x preservando su normalidad, siempre dejando el alfabeto A fijo. En este trabajo
consideramos el problema dual que consiste insertar śımbolos en infinitas posiciones de
una secuencia dada, de manera tal de preservar la normalidad. Espećıficamente, dado un
śımbolo s que no está en el alfabeto original A y dada una secuencia x normal para el
alfabeto A, resolvemos el problema de cómo insertar el śımbolo s en infinitas posiciones
de la secuencia x de modo tal que la secuencia resultante sea normal para el alfabeto
extendido A ∪ {s}.

Palabras claves: normalidad, secuencias, azar, inserción, śımbolos, alfabeto.
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FROM RANDOMNESS IN TWO SYMBOLS
TO RANDOMNESS IN THREE SYMBOLS

In 1909 Borel defined normality as a notion of randomness of the digits of the representa-
tion of a real number over certain base (fractional expansion). If we think the represen-
tation of a number over a base as an infinite sequence of symbols from a finite alphabet
A, we can define normality directly for words of symbols of A: A word x is normal to
the alphabet A if every finite block of symbols from A appears with the same asymptotic
frequency in x as every other block of the same length. Many examples of normal words
have been found since its definition, being Champernowne in 1933 the first to show an
explicit and simple instance. Moreover, it has been characterized how we can select subse-
quences of a normal word x preserving its normality, always leaving the alphabet A fixed.
In this work we consider the dual problem which consists of inserting symbols in infinite
positions of a given word, in such a way that normality is preserved. Specifically, given a
symbol s that is not present on the original alphabet A and given a word x that is normal
to the alphabet A we solve how to insert the symbol s in infinite positions of the word x
such that the resulting word is normal to the expanded alphabet A ∪ {s}.

Keywords: normality, words, randomness, insertion, symbols, alphabet.
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1. INTRODUCTION AND STATEMENT OF RESULTS

In 1909, Borel [3] defined normality as a notion of randomness of the digits of the fractional
expansion of a real number over some base. Since then many examples of normal words
have been found, Champernowne[5] in 1933 was the first to show an explicit and simple
instance,

12345678910111213141516171819202122232425262728 . . .

the concatenation of all the natural numbers in the natural order is a normal word for
the alphabet A = {0, 1, . . . , 9}. Moreover, it has been characterized how we can select
subsequences of a normal word x preserving its normality, always leaving fixed the alphabet
A, see [1, 7, 9].

In this work we consider how normality of words is affected when we add new symbols
to the alphabet. Clearly, if a word x is normal to a given alphabet A it is not normal to
an alphabet A′ that results from adding a new symbol to A, because the word x contains
no appearances of this new symbol. A natural question that comes up is if it is possible to
insert occurrences of this new symbol along the word x to make it normal in the expanded
alphabet. We give a positive answer of this question in Theorem 1.

Fix an alphabet A and a new symbol s. For any given normal word x in Aω the proof
of Theorem 1 gives a way of inserting occurrences of the new symbol s along the word x
that depends on the speed of convergence of normality of the word x. The proof is purely
combinatorial and it is completely elementary except for the use of the characterization
of normality given by Piatetski-Shapiro [8, 4] also known as the Hot Spot Lemma.

The main idea in the proof of Theorem 1 is to use a Champernowne-like word in the
expanded alphabet as a reference for insertion of the new symbol s in the given normal
word x. We call the discrepancy of a finite word w with respect to the length ` to the
maximum difference between the expected frequency and the actual frequency in w of
any block of ` digits. The key ingredient of the proof of Theorem 1 is given by Lemma 9
where we prove that if the discrepancy of a finite word w in the original alphabet with
respect to a given length is low enough then inserting occurrences of the new symbol in
w according to the pattern of a Champernowne-like word yields an expanded word with
also low discrepancy but now with respect to an exponentially shorter length. The proof
of this lemma relies on bounding the number of occurrences of a word in the expanded
word. In the proof of Theorem 1 we take consecutive segments of the original word x, of
increasing length, and expand each of them according to the pattern of digits given by a
Champernowne-like word. The difficulty here is in determining the appropriate lengths of
these segments. They have to be long enough so that their discrepancy catches up with the
discrepancy of the Champernowne-like word. At last, an application of Piatetski-Shapiro’s
characterization of normality allows us to conclude the normality of the expanded word.

1.1 Primary definitions

We call an alphabet to a finite set A of symbols. Given an alphabet A, we write Ak for
the set of all words of length k, A∗ for the set of all finite words and Aω for the set of
all infinite words of A. Therefore, (Ak)∗ denotes the set of all finite words composed of
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2 1. Introduction and statement of results

the words of length k of A as symbols, or equivalently, the set of all finite words of length
multiple of k.

The length of a finite word v is denoted by |v|. Given two words u and v with u finite,
we denote uv to the word resulting of concatenating u and v. The position of symbols in
words are numbered starting from 1. For a word v, we denote v[i, j] as the substring of v
from position i to position j. We call v[i] to the symbol corresponding to the i-th position
of v. We call substring of a word v to a word of the form v[i, j] for some i, j ∈ N such
that 1 ≤ i ≤ j ≤ |v| and subsequence of v to a word of the form v[i1]v[i2] . . . v[ik] for some
i1, i2, . . . , ik ∈ N with i1 < i2 < . . . < ik ≤ |v|.

Given some alphabet A and u, v ∈ A∗, we write

||u||v = |{i ≤ |u| − |v|+ 1 : u[i, i+ |v| − 1] = v and i ≡ 1 mod |v|}|

for the number of aligned occurrences of v in u. Thus, if we split the word u in consecutive
strings of length |v| and possibly a shorter last string, ||u||v is the number of those strings
that coincide with v.

With this notation we can state the formulation of normality that is most convenient
for to solve our problem. A thorough presentation of normality can be read from the
monographs [4, 2].

Definition (Normality to a given alphabet). Given an alphabet A and some word u ∈ Aω,
we say that u is simply normal to length ` if every v ∈ A` verifies that

lim
n→∞

||u[1, `n]||v
n

=
1

|A|`
.

We say that u is normal if it is simply normal to every length ` ∈ N.

Given an alphabet A and a word v ∈ A∗ ∪ Aω, we write v � n to denote v[1, n] which
is the word consisting of the first n symbols of v, and we write v � n to denote the word
that results from removing the first n symbols of v.
From now on, we fix a base b and we define A = {0, 1, . . . , b − 1} and Â = {0, 1, . . . , b},
the alphabets whose symbols are the digits in base b and base b+ 1 respectively.

Definition (reduction operator). We define the reduction operator r : Â∗ → A∗ as the
operator that removes the symbols b from a word in Â∗. Precisely, given a word v ∈ Â∗,

v = v1v2 . . . vk

where vi is the i-th symbol of v, then

r(v) = vr1vr2 . . . vrt

where
t = |v| − ||v||b

and
ri = min({j ∈ N : |v � j| − ||v � j||b = i}).

We define the reduction operator r on infinite words v ∈ Âω in a similar way.

1.2 The main theorem

Theorem 1. Let v ∈ Aω be a normal word then there exists some normal word v̂ ∈ Âω

such that r(v̂) = v.

Before giving the proof of Theorem 1 we need some intermediate results.



2. TOOLS AND LEMMAS

We define here in a precise way how we expand a word according to the pattern of a
Champernowne-like word.

Definition (Champernowne-like words). For each n ∈ N, let wn be the word consisting
of the concatenation in lexicographical order of all the words of Ân.

Thus, for Â = {0, 1}, w3 = 000001010011100101110111.

Definition (The wildcard operator). Let B = {b, ?} the alphabet consisting of only the
symbols ′b′ and ′?′. We define the wildcard operator (?) : Â∗ → B∗ as the operator that
given v ∈ Â∗ replaces all its symbols different from ′b′ with a wildcard ′?′. Formally, if

v = v1v2 . . . vk

where vi is the i-th symbol from v, then,

(?)(v) = v?1v
?
2 . . . v

?
k

where

v?i =

{
b, if vi = b

?, otherwise

We write v? = (?)(v).

It follows easily that if u, v ∈ Â∗ then (uv)? = u?v?.

Definition (The expansion of order n of a given word). For each n ∈ N we let

`n = ||w?
n||?̂̀

n = |w?
n|.

For each i ∈ N such that 1 ≤ i ≤ ̂̀n define

m(n, i) = |{j ≤ i : (w?
n)j = ?}| = ||w?

n � i||?.

Thus, m(n, i) counts the number of wildcards in wn up to the i-th symbol.

The expansion en : A`n → Â
̂̀
n is such that, if

v = v1v2 . . . v`n

then

v̂ = v̂1v̂2 . . . v̂̂̀
n

where

v̂i =

{
b, if (wn)i = b

vm(n,i), otherwise.

3



4 2. Tools and lemmas

Thus, given a word v ∈ A`n , the expanded word en(v) is obtained as follows: take wn,
replace all its symbols different from b by a wildcard symbol, and then replace in each
wildcard symbol with the symbols of v in order. Clearly, v is a subsequence of en(v) and
the only digits that are not part of that subsequence are all b’s.

We can extend en to (A`n)∗ by concatenating the expansion of each block of `n digits.
Namely, if v ∈ (A`n)∗ such that

v = v1v2 . . . vk

where |vi| = `n for all 1 ≤ i ≤ k, then

en(v) = en(v1)en(v2) . . . en(vk).

Clearly, the reduction r is a retraction of en for all n ∈ N, that is,

r ◦ en = id.

The next observations follow from the definitions.

Observation 2. ̂̀n = n(b+ 1)n and `n = nb(b+ 1)n−1 for all n ∈ N.

Proof. Since there are (b + 1)n different words of length n using b + 1 symbols and each
word has length n we get ̂̀n = n(b+ 1)n. Since each symbol appears the same number of
times in wn then ||wn||b = n(b+ 1)n−1. It follows that

`n = |wn| − ||wn||b = n(b+ 1)n − n(b+ 1)n−1 = nb(b+ 1)n−1.

We denote 1 to the indicator function of the diagonal elements of A∗ × A∗. Namely,
we define 1 : A∗ ×A∗ → N as

1(x, y) =

{
1, if x = y

0, otherwise

We denote 1(x, y) as 1(x = y).

Observation 3. Given an alphabet C with |C| = k, some v ∈ Cn, some m ∈ N such that
m > n and some i ∈ N such that 0 ≤ i ≤ m− n, then∑

u∈Am

1(u[i+ 1, i+ n] = v) = km−n.

Observation 4. Given an alphabet C with |C| = k, some v ∈ Cn and u ∈ (Cn)∗ then

||u||v =

|u|/n−1∑
i=0

1(u[in+ 1, in+ n] = v).

Observation 5. Given v, w ∈ Â∗ then v = w if and only if v? = w? and r(v) = r(w).

Observation 6. If v ∈ Bn then ||w?
n||v = b||v||?.

Observation 7. If v ∈ A`n and w ∈ (A`n)∗ then ||w||v = ||en(w)||en(v).



5

Lemma 8. Given w ∈ Ân then ∑
u∈A`n

||en(u)||w = b`n .

Proof. By Observation 4 we have

||en(u)||w =

|u|/n−1∑
i=0

1(en(u)[in+ 1, in+ n] = w)

for all u ∈ A`n . Applying Observation 5 we get ||en(u)||w is equal to

|u|/n−1∑
i=0

1

(
(en(u)[in+ 1, in+ n])? = w?

)
1

(
r(en(u)[in+ 1, in+ n]) = r(w)

)
. (2.0.1)

Analyzing the definition of (?) we get that

(en(u)[in+ 1, in+ n])? = en(u)?[in+ 1, in+ n] = (w?
n)[in+ 1, in+ n].

By Observation 6 we conclude that

||w?
n||w? = b||w

?||? = b|w|−||w||b .

This means that there are exactly b|w|−||w||b terms of the sum in which

1

(
(en(u)[in+ 1, in+ n])? = w?

)
= 1.

Let
I = {0 ≤ i < `n/n : 1((w?

n)[in+ 1, in+ n] = w?) = 1}.
be the set of indexes where the first term of the product of equation 2.0.1 does not vanish.
Notice that I does not depend on u.

Analyzing the second term of the product of equation 2.0.1, we observe that

1

(
r(en(u)[in+ 1, in+ n]

)
= r(w)) = 1

(
u[m(n, in) + 1,m(n, in+ n)] = r(w)

)
.

applying this we reduce (2.0.1) to

||en(u)||w =
∑
i∈I

1

(
u[m(n, in) + 1,m(n, in+ n)] = r(w)

)
. (2.0.2)

For i ∈ I we have that (en(u)[in+ 1, in+ n])? = w?, which implies that

|u[m(n, in) + 1,m(n, in+ n)]| = |r(en(u)[in+ 1, in+ n])| = |r(w)|.

Summing (2.0.2) over all u ∈ A`n we get∑
u∈A`n

||en(u)||w =
∑

u∈A`n

∑
i∈I

1(u[m(n, in) + 1,m(n, in+ n)] = r(w)).

And applying Observation 3 we get∑
u∈A`n

||en(u)||w =
∑
i∈I

b`n−|r(w)| = b|w|−||w||bb`n−|r(w)|.

And noticing that by definition of r we have that |r(w)| = |w| − ||w||b this gives us the
desired result ∑

u∈A`n

||en(u)||w = b`n .



6 2. Tools and lemmas

2.1 On discrepancies

Here we introduce a definition of discrepancy for finite words and we relate the discrepancy
of a word and the discrepancy of the expanded word. We also consider the concatenation
of a sequence of words and we bound the discrepancy of the resulting word in terms of the
discrepancies of the individual words. Most of the bounds that we give can be improved
but these simple versions will be enough for the proof of Theorem 1.

Given some word u ∈ A∗ and a fixed length ` ∈ N, for a word v ∈ A` the frequency of
aligned occurrences of v in u over all aligned substrings of length ` in u is

||u||v
b|u|/`c

.

We can measure how far is this frequency from the case where all words of length ` are
equiprobable by ∣∣∣∣ ||u||vb|u|/`c

− 1

|A|`

∣∣∣∣ .
The discrepancy of a word u in A∗ for a length ` is the maximum of this distance

among all v ∈ A` and we denote it by ∆A,`(u).

Definition (Discrepancy of a finite word for a given length `).

∆A,`(u) = max
v∈A`

(∣∣∣∣ ||u||vb|u|/`c
− 1

|A|`

∣∣∣∣) .
An easy equivalence is that u is simply normal to length ` if and only if

lim
n→∞

∆A,`(u[1, n]) = 0.

and therefore u is normal if and only if this limit is valid for every length ` ∈ N.
Let u ∈ A∗, let ` be a length and let ε be a real umber between 0 and 1. Then it

follows that
∆A,`(u) < ε

is equivalent to have for all v ∈ A`,

b|u|/`c
(

1

|A|`
− ε
)
< ||u||v < b|u|/`c

(
1

|A|`
+ ε

)
.

Lemma 9 (Main Lemma). For each n ∈ N there exists a constant cn ∈ R with cn > 0
such that for every ε > 0 and every word v ∈ (A`n)∗ if

∆A,`n(v) < ε (2.1.1)

then
∆

Â,n
(en(v)) < cnε.

Proof. Let w ∈ Ân be any word, then

||en(v)||w =
∑

û∈Â̂̀n
||en(v)||û||û||w.
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By the definition of en, the blocks of length ̂̀n of en(v) are of the form en(vi) for some
vi ∈ A`n . Then, the only non-zero terms of the sum can be the ones where û is in the
image of en, and since en is injective we can change the sum to iterate over the en(u) for
u ∈ A`n . It follows that

||en(v)||w =
∑

u∈A`n

||en(v)||en(u)||en(u)||w.

By Observation 7 it reduces to

||en(v)||w =
∑

u∈A`n

||v||u||en(u)||w.

Applying (2.1.1) we get

||en(v)||w <
∑

u∈A`n

|v|
|u|

(
1

b|u|
+ ε

)
||en(u)||w =

|v|
`n

(
1

b`n
+ ε

) ∑
u∈A`n

||en(u)||w

 .

Using Observation 8 we get

||en(v)||w <
|v|
`n

(
1

b`n
+ ε

)
b`n =

|v|
`n

(
1 + b`nε

)
.

Multiplying by |w|
|en(v)| = n

|en(v)| on both sides we obtain

|w|
|en(v)|

||en(v)||w <
n|v|

`n|en(v)|

(
1 + b`nε

)
. (2.1.2)

Since v ∈ (A`n)∗ we can write v as

v = v1v2 . . . vt

where each vi satisfies |vi| = `n. Then |v| = t`n and

en(v) = en(v1)en(v2) . . . en(vt)

where |en(vi)| = ̂̀
n for all 1 ≤ i ≤ t. So, we conclude that |en(v)| = t̂̀n.

Using this on (2.1.2) we get

|w|
|en(v)|

||en(v)||w <
nt`n

`nt̂̀n
(

1 + b`nε
)

using Observation 2 we can replace the value of ̂̀n and get

|w|
|en(v)|

||en(v)||w <
n

n(b+ 1)n

(
1 + b`nε

)
=

1

(b+ 1)n
+

b`n

(b+ 1)n
ε.

By a similar argument we get the inequality

|w|
|en(v)|

||en(v)||w >
1

(b+ 1)n
− b`n

(b+ 1)n
ε.

These two inequalities imply that

∆
Â,n

(en(v)) <
b`n

(b+ 1)n
ε.

The desired result follows taking

cn =
b`n

(b+ 1)n
.



8 2. Tools and lemmas

2.2 Some other useful results

Proposition 10. Given a finite alphabet C with |C| = k and some m,n ∈ N. We have
that for each word v ∈ (Cmn)∗ and ε ∈ R with ε > 0 such that

∆C,mn(v) < ε (2.2.1)

then
∆C,n(v) < k(m−1)nε.

Proof. Let w ∈ Cn. We have that

||v||w =
∑

u∈Cmn

||v||u||u||w.

Using 2.2.1 we get

||v||w <
∑

u∈Cmn

|v|
|u|

(
1

kmn
+ ε

)
||u||w.

Using Observation 4 we get

||v||w <
|v|
mn

(
1

kmn
+ ε

) ∑
u∈Cmn

m∑
i=0

1(u[in+ 1, in+ n] = v).

Using Observation 3 we get

||v||w <
|v|
mn

(
1

kmn
+ ε

) m∑
i=0

kmn−n =
|v|
n

(
1

kn
+ k(m−1)nε

)
.

Proposition 11. Given a finite alphabet C, some n ∈ N and u, v ∈ (Cn)∗, if

∆C,n(u) < ε (2.2.2)

and
∆C,n(uv) < ε (2.2.3)

then

∆C,n(v) <
|uv|+ |u|
|v|

ε.

Proof. Let w ∈ Cn. Then,
||v||w = ||uv||w − ||u||w.

Using (2.2.2) and (2.2.3) we get

||v||w <
|uv|
|w|

(
1

k|w|
+ ε

)
− |u|
|w|

(
1

k|w|
− ε
)

which using |uv| = |u|+ |v| is equivalent to

||v||w <
|v|
|w|

1

k|w|
+
|uv|+ |u|
|w|

ε
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which is equivalent to

||v||w <
|v|
|w|

(
1

k|w|
+
|uv|+ |u|
|v|

ε

)
.

In a similar way we can conclude

||v||w >
|v|
|w|

(
1

k|w|
− |uv|+ |u|

|v|
ε

)
.

Since both inequalities are valid for all w ∈ Cn we conclude the result.

Proposition 12. Given a finite alphabet C, some n ∈ N and u, v ∈ (Cn)∗, if

∆C,n(u) < ε (2.2.4)

and

∆C,n(v) <
|uv|+ |u|
|v|

ε (2.2.5)

then
∆C,n(uv) < 3ε.

Proof. Let w ∈ Cn. Then,
||uv||w = ||u||w + ||v||w.

Using (2.2.4) and (2.2.5) we get

||uv||w <
|u|
|w|

(
1

k|w|
+ ε

)
+
|v|
|w|

(
1

k|w|
+
|uv|+ |u|
|v|

ε

)
which using |uv| = |u|+ |v| is equivalent to

||uv||w <
|u|+ |v|
|w|

1

k|w|
+

3|u|+ |v|
|w|

ε,

and since 3|u|+ |v| < 3(|u|+ |v|) we get

||uv||w <
|u|+ |v|
|w|

(
1

k|w|
+ 3ε

)
.

In a similar way we can conclude

||uv||w >
|u|+ |v|
|w|

(
1

k|w|
− 3ε

)
.

Since both inequalities are valid for all w ∈ Cn we conclude the result.

Our analysis so far focuses in aligned occurrences of a given word in an expanded word.
For a technical reason the proof of Theorem 1 needs to consider the number of occurrences
of any given word in the constructed expanded word. We define the number of non-aligned
occurrences of a word v in a word u as

|u|v = |{i ≤ |u| − |v|+ 1 : u[i, i+ |v| − 1] = v}|

Notice that for every symbol b ∈ A and for every word u ∈ A∗,

|u|b = ||u||b.

The following proposition gives the needed result.
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Proposition 13. Given a finite alphabet C, some n,m ∈ N with m < n some u ∈ (Cn)∗

and v ∈ Cm, if
∆C,n(u) < ε (2.2.6)

then

|u|v < |u|
(
m− 1

n
+

1

|C|m
+ |C|nε

)
− (m− 1).

Proof. For every pair of consecutive blocks of length n in u there are exactly m − 1
substrings of length m that are not fully contained in one of these blocks. Since there
are |u|/n blocks of length n in u, there are (|u|/n− 1)(m− 1) substrings of length m not
fully contained in one of the blocks. This gives us the following bound on the number of
occurrences of v in u:

|u|v ≤ (|u|/n− 1)(m− 1) +

|u|/n−1∑
i=0

|u[in+ 1, in+ n]|v

= (|u|/n− 1)(m− 1) +
∑
w∈Cn

||u||w|w|v.

Using (2.2.6) we get,

|u|v < (|u|/n− 1)(m− 1) +
∑
w∈Cn

|u|
|v|

(
1

|C|n
+ ε

)
|w|v.

Using that |w|v =
∑|w|−|v|

i=1 1(w[i, i+ |v|] = v) we get,

|u|v < (|u|/n− 1)(m− 1) +
|u|
|v|

(
1

|C|n
+ ε

) ∑
w∈Cn

n−m∑
i=1

1(w[i, i+ |v|] = v).

Using Observation 3 we get,

|u|v < (|u|/n− 1)(m− 1) +
|u|
|v|

(
1

|C|n
+ ε

) n−m∑
i=1

|C|n−m.

Which is equivalent to

|u|v < (|u|/n− 1)(m− 1) +
|u|
n

(
1

|C|m
+ |C|n−mε

)
(n−m).

And since m < n we get,

|u|v < |u|
(
m− 1

n
+

1

|C|m
+ |C|nε

)
− (m− 1),

as desired.

The first paragraph in the proof above yields the following result.

Observation 14. Given a finite alphabet C, some u, v, w ∈ C∗ then

|uv|w ≤ |u|w + |v|w + |w| − 1.
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Finally we introduce a characterization of normality that is seemingly easier than the
actual definition, because instead of asking for the limit it asks for the limsup.

Lemma 15 (Hot Spot Lemma, Piatetski-Shapiro 1951). Let x ∈ Aω. Then, x is normal
if and only if there is positive constant C such that for all lengths ` and for every word
u ∈ A`,

lim sup
n→∞

|x[1, n]|u
n

<
C

|A|`
.
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3. PROOF OF THEOREM 1

We construct inductively a sequence of nonempty finite substrings {vi}i∈N of v that verifies
that v1v2 . . . vk is a prefix of v for all k in N. Suppose that we have already defined
v1, v2, . . . , vn−1 and we want to define vn. Let Ln−1 = |v1v2 . . . vn−1| be the total length
of all substrings already defined. Since v is normal, then v � Ln−1 is also normal and
consequently given

εn =
1

(b+ 1)2nn

1

3 max(bnc2n , (b+ 1)nc2n+1)

where c2n and c2n+1 are the constants from Lemma 9, there exists a kn such that for all
k > kn in N we have

∆A,`2n+1 (v[Ln−1 + 1, Ln−1 + k]) < εn

Take tn such that tn`2n > max(kn, `2n+1) and define vn as

vn = v[Ln−1 + 1, Ln−1 + tn`2n ]

It is clear that v1v2 . . . vn = v[1, Ln−1 + tn`2n ] and thus is a prefix of v.

Given {vi}i∈N defined as above, we define the expansion v̂ as

v̂ = e21(v1)e22(v2) . . . e2i(vi) . . .

Since each vi has length ti`2i which is multiple of `2i , the expansion is well defined. It
follows easily that

r(v̂) = r(e21(v1))r(e22(v2)) . . . r(e2i(vi)) . . . = v.

We claim that v̂ is normal in base b+ 1. We can write each vn as

vn = vn,1vn,2 . . . vn,tn

where each vn,i satisfies |vn,i| = `2n . Fix n ∈ N and j ∈ N0 with 0 ≤ j ≤ tn+1, and define

v′n+1 = vn+1,1vn+1,2 . . . vn+1,j

as the prefix of vn+1 that consists of the first j blocks of length `2n+1 . By definition of vn,
we have that

∆A,`2n+1 (vn) < εn (3.0.1)

and since vnv
′
n+1 is a prefix of v � Ln−1 of length greater than kn we have

∆A,`2n+1 (vnv
′
n+1) < εn.

Using Proposition 11 we have that

∆A,`2n+1 (v′n+1) <
|vnv′n+1|+ |vn|
|v′n+1|

εn. (3.0.2)

13
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Now, by (3.0.1) and Proposition 10 we have that

∆A,`2n (vn) < b`2nεn

and applying Lemma 9 we get

∆
Â,2n

(e2n(vn)) < b`2n c2nεn (3.0.3)

Similarly, applying Lemma 9 to (3.0.2) we get

∆
Â,2n+1(e2n+1(v′n+1)) <

|vnv′n+1|+ |vn|
|v′n+1|

c2n+1εn

and by Proposition 10 we conclude

∆
Â,2n

(e2n+1(v′n+1)) <
|vnv′n+1|+ |vn|
|v′n+1|

(b+ 1)2
n
c2n+1εn. (3.0.4)

Using Proposition 12 with (3.0.3) and (3.0.4) we get that

∆
Â,2n

(e2n(vn)e2n+1(v′n+1)) < 3 max(b`2n c2n , (b+ 1)2
n
c2n+1)εn <

1

(b+ 1)2nn
. (3.0.5)

Notice that the bound does not depend on j. If j = 0 we get the special case

∆
Â,2n

(e2n(vn)) <
1

(b+ 1)2nn
. (3.0.6)

Now, we fix u ∈ Âm for some m ∈ N. For n ∈ N and j ∈ N0 with 0 ≤ j ≤ tn, we define

Ln,j = |v1v2 . . . vnvn+1,1vn+1,2 . . . vn+1,j |.

Notice that Ln,tn = Ln+1,0. We define L0,0 = 0. Given some M ∈ N with M > L1,0, there
exists some n, j ∈ N with n > 1 such that

Ln,j−1 ≤M ≤ Ln,j . (3.0.7)

By Observation 14 we get

|v̂[1,M ]|u ≤ |v̂[1, Ln,j ]|u ≤(
n−1∑
i=1

|e2i(vi)|u

)
+ |e2n(vn)e2n+1(vn+1,1) . . . e2n+1(vn+1,j)|u + (n− 1)(|u| − 1).

(3.0.8)

Given that we have (3.0.6) for each term of the sum, we can apply Proposition 13 and we
get the bound

n−1∑
i=1

|e2i(vi)|u ≤
n−1∑
i=1

|e2i(vi)|

(
|u| − 1

2i
+

1

(b+ 1)|u|
+

(b+ 1)2
i

(b+ 1)2ii

)
− (n− 1)(|u| − 1).

Noticing that
|u| − 1

2i
+

1

i
→ 0 as i→∞



15

there exists some i0 such that for all i > i0 we have

|u| − 1

2i
+

1

i
≤ 1

(b+ 1)|u|
. (3.0.9)

If M is sufficiently large, we will have n > i0 and then we can split the sum and get

n−1∑
i=1

|e2i(vi)|u ≤
i0∑
i=1

|e2i(vi)|
(
|u| − 1

2i
+

1

(b+ 1)|u|
+

1

i

)
+

n−1∑
i=i0+1

|e2i(vi)|
(
|u| − 1

2i
+

1

(b+ 1)|u|
+

1

i

)
−

(n− 1)(|u| − 1).

(3.0.10)

Calling

δ =

i0∑
i=1

|e2i(vi)|
(
|u| − 1

2i
+

1

(b+ 1)|u|
+

1

i

)
(notice that δ does not depend on M) and using (3.0.9) we get

n−1∑
i=1

|e2i(vi)|u ≤ δ +
2

(b+ 1)|u|

(
n−1∑

i=i0+1

|e2i(vi)|

)
− (n− 1)(|u| − 1).

Using that |e2i(vi)| = Li,0 − Li−1,0 we can reduce this to

n−1∑
i=1

|e2i(vi)|u ≤ δ + (Ln−1,0 − Li0,0)
2

(b+ 1)|u|
− (n− 1)(|u| − 1). (3.0.11)

Having (3.0.5) and using Proposition 13 with the second term of (3.0.8) we get

|e2n(vn)e2n+1(vn+1,1) . . . e2n+1(vn+1,j)|u ≤

(Ln,j − Ln−1,0)

(
|u| − 1

2n
+

1

(b+ 1)|u|
+

(b+ 1)2
n

(b+ 1)2nn

)
− (|u| − 1).

Since n > i0 we get

|e2n(vn)e2n+1(vn+1,1) . . . e2n+1(vn+1,j)|u ≤ (Ln,j − Ln−1,0)

(
2

(b+ 1)|u|

)
. (3.0.12)

Using (3.0.11) and (3.0.12) in (3.0.8) we get

|v̂[1,M ]|u ≤ δ + (Ln,j − Li0,0)
2

(b+ 1)|u|
.

Dividing both sides by |v̂[1,M ]| = M we get

|v̂[1,M ]|u
M

≤ δ

M
+
Ln,j − Li0,0

M

2

(b+ 1)|u|
. (3.0.13)

By (3.0.7) we have that

Ln,j −M ≤ Ln,j − Ln,j−1 = ̂̀
2n+1 .
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By construction of vn,
`2n+1 ≤ |vn|.

Then, since e2n(vn) is a substring of v̂[1,M ] we get that

̂̀
2n+1 ≤ |e2n(vn)| ≤M.

Which gives us the bound Ln,j ≤ 2M . Using this in (3.0.13) we get

|v̂[1,M ]|u
M

≤ δ

M
+

2M − Li0,0

M

2

(b+ 1)|u|
<

δ

M
+

4

(b+ 1)|u|
. (3.0.14)

Taking limit superior as M →∞ and since δ does not depend on M we get

lim sup
M→∞

|v̂[1,M ]|u
M

≤ 4

(b+ 1)|u|
. (3.0.15)

Since this bound is valid for all u ∈ Â∗, using the Lemma 15 (Hot Spot Lemma) with
C = 4 follows that v̂ is normal. Therefore, we constructed a normal word v̂ such that
r(v̂) = v as desired. This completes the proof of Theorem 1.



4. SOME REMARKS ABOUT THE PROOF OF THEOREM 1

4.1 On the choice of wn

We can study how flexible is the construction of the proof on the choice of the sequence
(wn). We wonder what other sequences we can choose so that the proof remains valid.
Looking at the proof, the only places where we use the explicit construction of (wn) is in
Lemma 8 and Lemma 9. The property of the sequence we are using is that

∆
Â,n

wn = 0

This means that we can change the wn for some other sequence satisfying this property.
In fact, if we only have that the discrepancy of wn is small, namely

∆
Â,n

wn < δn

we can, with a little more of work, obtain a bound similar to that of to Lemma 9 but also
involving the δn. Then, we can use this bound in the proof of the Theorem 1. If we choose
the δn to be small enough (and maybe depending of the εn) we can adapt the proof to
work for this new sequence (wn). Any normal word z ∈ Âω can be split it in consecutive
strings z1, z2, . . . , zn, . . . such that

z = z1z2 . . . zn . . .

and for each n, the word zn satisfies

∆
Â,n

(zn) < δn.

If the lengths of zn do not grow larger than exponential on n, we can use this sequence
(zn) as an alternative for (wn) to expand normal words. This means that we can do the
process to expand a normal word to Â with substrings of any normal word in Â that has
a partition into substrings with this property.

4.2 On the computability of the construction

If we know the convergence rates of the normal word to expand, we can calculate en for all
n ∈ N and we can easily compute the expanded word. If we don’t know anything about
the convergence rates, we can still compute the expanded word with a finite-injury priority
method [6], but we will not know how good will be our approximation at each step of the
algorithm.

17
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