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ABSTRACT

Well quasi-orders (wqo’s) are an important mathematical tool for proving termination of
many algorithms. Under some assumptions upper bounds for the computational complexity
of such algorithms can be extracted by analyzing the length of controlled bad sequences.

We obtain tight upper bounds, in terms of the Fast Growing Hierarchy, for the length
of controlled decreasing sequences of multisets over the natural multiset ordering. Then we
study the majoring wqo ≤maj of sets of tuples, which informally states that A ≤maj B iff every
element of A is majorized by an element of B. We linearize this wqo into the multiset well-
order, to obtain an upper bound for the length of controlled ≤maj-bad sequences. We finally
apply this result to upper-bound the computational complexity of the emptiness problem for
atra, a class of automata over data trees.

Keywords: Well quasi order, Majoring ordering, Multiset ordering, Tree automata, Fast
Growing Hierarchy.
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ABSTRACT EXTENDIDO

Un cuasi-orden o preorden es una relación binaria ≤ sobre un conjunto dado A que es reflexiva
y transitiva. Una secuencia x = x0, x1, x2, . . . de elementos de A se dice buena si existen i < j
tal que xi ≤ xj . Una secuencia es mala si no es buena. Un buen cuasi-orden (wqo, por sus
siglas en inglés) es un cuasi-orden en donde todas las secuencias infinitas son buenas, o,
equivalentemente, todas las secuencias malas son finitas.

En principio, una secuencia mala sobre un wqo puede ser arbitrariamente larga. Tomemos,
por ejemplo, el orden producto entre n-uplas de números naturales, definido de la siguiente
manera: si 〈x1, . . . , xn〉, 〈y1, . . . , yn〉 ∈ Nn entonces

〈x1, . . . , xn〉 ≤pr 〈y1, . . . , yn〉
def⇔ (∀i ∈ {1, . . . , n}) xi ≤ yi.

El Lema de Dickson [11], “el teorema matemático más frecuentemente redescubierto” según [5],
dice que (Nn,≤pr) es un wqo. Es fácil verificar que para cualquier N ∈ N la secuencia

x = 〈0, 1〉, 〈N, 0〉, 〈N − 1, 0〉, 〈N − 2, 0〉, . . . , 〈1, 0〉, 〈0, 0〉 (?)

es mala. Aśı, en general no hay una cota para la longitud de las secuencias malas que empiezan
con un cierto elemento dado: las secuencias malas son finitas, pero pueden ser arbitrariamente
largas.

Si ahora restringimos de alguna manera el ‘tamaño’ que pueden tener los elementos en
la secuencia, la situación cambia. Una función de norma | · |A sobre un conjunto A es una
función | · |A : A→ N que provee a cada elemento de A con un entero positivo, su norma. La
función de norma se dice propia si {x ∈ A | |x|A < n} es finito para cada n. Sea g : N→ N una
función creciente y sea (A,≤) un wqo con una norma propia. Una secuencia x = x0, x1, x2 . . .
se dice g, t-controlada si para todo i, |xi|A < g(t+ i). Decimos que g es la función de control
para x.

Como una consecuencia del Lema de König, las secuencias malas y controladas sobre wqos
no pueden ser arbitrariamente largas: dada una función de control g y un t fijo, existe una
cota superior para la longitud de las secuencias malas y g, t-controladas.

Volvamos al ejemplo anterior de la secuencia ≤pr-mala de (?). Supongamos ahora que x es
g, 0-controlada, donde fijamos g como la función g(x) = x+ 2 y |x|N2 como la norma infinito
de x. Se puede verificar que la secuencia mala respecto al orden producto y g, 0-controlada
más larga tiene longitud 8, como lo muestra, por ejemplo, la siguiente secuencia:

〈1, 1〉, 〈2, 0〉, 〈1, 0〉, 〈0, 4〉, 〈0, 3〉, 〈0, 2〉, 〈0, 1〉, 〈0, 0〉.

Dado un wqo (A,≤), llamemos L
(A,≤)
g (t) a la longitud de las secuencias ≤-malas y g, t-

controladas más largas de elementos en A. Según el wqo elegido, la función L
(A,≤)
g puede

crecer muy rápido, por ejemplo más rápido que cualquier función primitiva recursiva. En
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vi Abstract

esta tesis clasificamos, para ciertos wqos (A,≤), la función L
(A,≤)
g en términos de su ve-

locidad de crecimiento. Para medir esta velocidad, utilizamos una clasificación de funciones
llamada Jerarqúıa Rápidamente Creciente (Fast Growing Hierarchy) (Fα), introducida por
Löb y Wainer [25]. Las clases de esta jerarqúıa están indexadas por ordinales. Por ejemplo,
la clase F1 contiene a todas las funciones lineales, la clase F2 contiene a todas las funciones
elementales, y en general

⋃
n<ω Fn coincide con la clase de las funciones primitivas recursivas.

La jerarqúıa va más allá y clasifica también funciones computables pero no necesariamente
primitivas recursivas, como la función de Ackermann, que pertenece a Fω.

La motivación de estudiar las longitudes máximas de las secuencias malas y controladas
viene del lado de las pruebas de terminación de algoritmos. A grandes rasgos, en estas de-
mostraciones la idea es que cualquier secuencia de configuraciones sucesivas de un algoritmo A
con cierta entrada k se transforma en una secuencia mala en un cierto wqo. La función de
control surge del algoritmo mismo que se está analizando y resulta siempre una función com-
putable. Aśı, encontrar una cota superior para la longitud de esta secuencia mala se traduce
en una cota superior para la complejidad del algoritmo, es decir, para la cantidad de pasos
que el algoritmo A con entrada k necesita para terminar. Cabe aclarar que estos algoritmos
resuelven problemas para los que no se conoce una mejor cota de complejidad que la que
surge de su análisis de terminación.

En la resolución de restricciones, deducción automática, análisis de programas, sistemas
de reescritura, lógica, autómatas y muchos otros campos de la matemática y las ciencias de la
computación, los wqos aparecen generalmente bajo la apariencia de herramientas espećıficas
como el lema de Dickson [11] (para tuplas de números naturales), lema de Higman [19] (para
palabras y sus subpalabras), el teorema de árboles de Kruskal [23] y su variantes (para los
árboles finitos con inmersiones), y recientemente el teorema de Robertson-Seymour [32] (para
grafos y sus menores (minors)). Existen además muchos (cuasi-) órdenes buenos que se usan
para pruebas de terminación, como el orden de multiconjuntos [9], los órdenes mayorante y
minorante [13], etc.

En esta tesis estudiaremos la longitud de las secuencias malas y controladas en el orden
de multiconjuntos y en el orden mayorante. Utilizaremos estos resultados para establecer
cotas a la complejidad del problema del lenguaje vaćıo (emptiness problem) de dos tipos de
autómatas sobre árboles con datos.

Orden de multiconjuntos. Un multiconjunto M sobre un conjunto X es una función X → N.
Intuitivamente, un multiconjunto es una generalización de un conjunto en la cual los elementos
pueden aparecer repetidos. Si x ∈ X, con M(x) denotamos la multiplicidad de x en M . Sea
X un conjunto ordenado por ≤ y M,N multiconjuntos finitos sobre X. Definimos:

N <(≤)
ms M

def⇔M 6=N ∧ (∀x∈X)[N(x)>M(x)⇒ (∃y∈X)[y>x ∧M(y)>N(y)]].

Intuitivamente, esto dice que N se puede obtener a partir de M mediante el reemplazo de
algunos de sus elementos por un numero finito (posiblemente cero) de elementos menores. Si
(X,≤) es un buen orden, entonces el conjunto de multiconjuntos finitos bajo el orden recién
definido también lo es.

Sea Lms
g,n la longitud de la secuencia decreciente y g, t-controlada mas larga de multiconjun-

tos de tuplas de naturales con el orden lexicográfico. En este trabajo probaremos el siguiente
resultado:
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Teorema. Si g es primitiva recursiva y g(t) ≥ t+ 1 entonces Lms
g,n tiene una cota superior en

el nivel Fωn de la Jerarqúıa Rápidamente Creciente. Ademas, esta cota es ajustada.

Orden mayorante. Sean A y B subconjuntos finitos de Nn, definimos:

A ≤(≤pr)
maj B

def⇔ (∀x ∈ A)(∃y ∈ B) x ≤pr y.

Se sabe que el orden ≤(≤pr)
maj sobre subconjuntos finitos de Nn es un wqo y esto es usado en

un gran número de resultados de decibilidad. Sea Lmaj
g,n la longitud de la secuencia mala y

g, t-controlada más larga de conjuntos finitos de tuplas de naturales con el orden producto.
A partir de linearizar el orden mayorante en el orden de multiconjuntos y aplicar el teorema
anterior, probaremos el siguiente resultado:

Teorema. Si g es primitiva recursiva, entonces Lmaj
g,n tiene una cota en el nivel Fωn de la

Jerarqúıa Rápidamente Creciente.

Aplicaciones. Finalmente, aplicamos la cota obtenida para Lmaj
g,n para acotar superiormente

la complejidad temporal del procedimiento de decisión conocido para el emptiness problem
—el problema de determinar si el lenguaje aceptado por un autómata es vaćıo o no— de dos
clases de autómatas sobre árboles: itca y atra. Para estos, ya se conoćıa una cota inferior
no primitiva recursiva.





1. INTRODUCTION

1.1 Well quasi-orders and controlled bad sequences

A quasi-order is a binary relation ≤ over a given set A such that is reflexive and transitive. A
sequence x = x0, x1, x2, . . . of elements of A is called good if there are i < j such that xi ≤ xj .
A sequence is bad if it is not good. A well quasi-order (wqo) is a quasi-order where all infinite
sequences are good, or, equivalently, all bad sequences are finite.

Wqo’s are widely used in termination proofs of algorithms in constraint solving, automated
deduction, program analysis, verification and model checking, rewriting systems, logic, etc.
They usually appear under the guise of some specific tool like: Dickson’s lemma for tuples
of natural numbers (see Definition 1.5), Higman’s lemma for words and their subwords (see
Definition 4.1), Kruskal’s tree theorem [23] for homeomorphic embeddings on finite trees and,
more recently, Robertson-Seymour theorem [32] for graphs and its minors. However, many
other well (quasi-) orders exists which are fundamental for termination arguments, like the
multiset ordering [9] or the majoring and minoring orderings on sets [13].

From the analysis of a termination proof of a given algorithm S, whose correctness is
grounded in the analysis of certain wqo, one may extract a computational complexity upper
bound for S. Roughly, the idea is that any sequence of successive configurations of S (with
respect to a given input) is transformed into a bad sequence in the wqo. Thus, having an
upper bound for the length of the bad sequence entails an upper bound for the number of
steps that the algorithm needs to terminate.

For example, let us take the subtraction-based version of Euclid’s famous algorithm for
obtaining the greatest common divisor of two numbers a and b:

Algorithm 1 Euclid’s algorithm

function gcd(a, b)
if a = 0 then

return b
while b 6= 0 do

if a > b then
a← a− b

else
b← b− a

return a

Let ai and bi be the value of the variables a and b in the i-th iteration of the algorithm’s
cycle. For input a and b a run of Algorithm 1 is represented by a sequence

〈a0, b0〉, 〈a1, b1〉, 〈a2, b2〉, . . . , (1.1)

where a0 = a and b0 = b. The run terminates if and only of the sequence is finite. For

1



2 1. Introduction

example, the run of gcd(9,7) is:

〈9, 7〉, 〈2, 7〉, 〈2, 5〉, 〈2, 3〉, 〈2, 1〉, 〈1, 1〉, 〈1, 0〉. (1.2)

One way to prove termination, is to find a function f : N2 → N which converts a run like
(1.1) into a decreasing, hence finite, sequence of natural numbers:

f(a0, b0) > f(a1, b1) > f(a2, b2), . . . . (1.3)

In the example of Algorithm 1, we may take f(x, y) = x+ y. So for the run of (1.2) we get

16, 9, 7, 5, 3, 2, 1.

In general a run of a given algorithm S with certain input x is a sequence

S0, S1, S2, . . . (1.4)

such that Si is a tuple containing the values of all the variables of S at step i. Each Si is a
configuration of S on input x. We can prove termination of S on input x if there is a function f
which maps each configuration into a natural number and such that successive configurations
Si and Si+1 of a run of S satisfies f(Si) > f(Si+1). In fact, this last condition may be too
strong in some cases. It suffices that for each run (1.4) the sequence f(S1), f(S2), f(S3), . . .
be a bad sequence over some wqo —which would typically depend on the nature of S.

Let us consider a more complex example. Suppose the following non-deterministic algo-
rithm extracted from [34]:

Algorithm 2 Very fast growing algorithm

function simple(a, b)
c← 1
While a > 0 ∧ b > 0

〈a, b, c〉 ← 〈a− 1, b, 2c〉
Or
〈a, b, c〉 ← 〈2c, b− 1, 1〉

end

The product ordering ≤pr is defined over Nk as follows:

〈x1, x2. . . . , xk〉 ≤pr 〈y1, y2, . . . , yk〉
def⇔ (∀i ∈ {1, . . . , k}) xi ≤ yi (1.5)

Dickson’s Lemma [11], “The most frequently rediscovered mathematical theorem” according
to [5], is the statement that (Nk,≤pr) is a wqo.

No matter the choice made in each iteration, it can be shown that in any run

〈a0, b0, c0〉, 〈a1, b1, c1〉, 〈a2, b2, c2〉, . . .

it occurs that 〈ai, bi〉 6≤pr 〈aj , bj〉 for all j > i, i.e., any run is a bad sequence in (N2,≤pr).
Hence, the algorithm terminates for any input a and b. Now, how many steps can this
algorithm take to terminate? Consider one possible sequence of computation for simple(3,3):

〈3, 3, 20〉, 〈2, 3, 21〉, 〈1, 3, 22〉, 〈23, 2, 1〉, . . . , 〈1, 2, 223−1〉, 〈223 , 1, 1〉, . . . , 〈1, 1, 222
3−1〉, 〈0, 1, 222

3

〉



1.1. Well quasi-orders and controlled bad sequences 3

This run has length 3 + 23 + 22
3

+ 1, which is non-elementary1 in the size of the initial
values (that is to say, for instance, that it cannot even be computed in expspace). With the
tools developed in [14] for the study of complexity bounds for termination proofs that relies
on Dickson’s Lemma, this non-elementary lower bound is proven to be tight.

We have seen that a run of gcd can be mapped to a decreasing sequence of N. Notice that
it can also be trivially mapped to a bad sequence of N2 over the product ordering. Observe
that to count the number of steps that gcd needs to terminate, it is better to use the former
approach over the latter, since it leads to sharper upper bounds.

We aim at finding upper bounds for the length of bad sequences over some wqos. But
with no further hypothesis this task is simply impossible, because bad sequences can be, in
principle, arbitrarily large. For example, for N2 and any N ∈ N, the sequence

〈0, 1〉, 〈N, 0〉, 〈N − 1, 0〉, 〈N − 2, 0〉, . . . , 〈1, 0〉, 〈0, 0〉 (1.6)

is bad and has length greater than N . What makes this possible is the uncontrolled jump
from an element like 〈0, 1〉 to an arbitrarily large next element 〈N, 0〉. Therefore, in general
there is no bound to the length of a bad sequence starting with a given element.

In practice, in the analysis of termination proofs, one has two additional assumptions of
a wqo (A,≤). First, one has some effective way of measuring the size of each element x ∈ A,
notated |x|A or simply |x|.

Definition 1.1.1. [33] A norm function | · |A over a set A is a mapping | · |A : A → N that
provides every element of A with a positive integer, its norm. The norm function is said to
be proper if {x ∈ A | |x|A < n} is finite for every n.

Second, we may restrict ourselves to bad sequences x = x0, x1, x2 . . . with a controlled
behaviour, which means that there is an effective way of computing, given i, an upper bound
for |xi|.

Definition 1.1.2. Let g : N → N be a computable increasing function and let (A,≤) be a
wqo with a proper norm. A bad sequence x = x0, x1, x2 . . . is g, t-controlled if for all i, xi is
g, t-controlled, i.e. |xi|A < g(t+ i). We say that g is the control function for x.

As a consequence of König’s Lemma, controlled bad sequences over wqos cannot be arbi-
trarily large: given a control, there exist upper bounds for their lengths.

Let us go back to the example of the ≤pr-bad sequence in (1.6). If we further impose that
the sequence is g, 0-controlled, where we fix g to be g(x) = x+ 2 and |x|N2 to be the infinity
norm (see (3.1)) of x then the reader may verify that the longest g, 0-controlled bad sequence
has length 8, as shown by the following sequence:

〈1, 1〉, 〈2, 0〉, 〈1, 0〉, 〈0, 4〉, 〈0, 3〉, 〈0, 2〉, 〈0, 1〉, 〈0, 0〉. (1.7)

In this thesis we give upper bounds for the length of g, t-controlled bad sequences, when
t is a parameter. That is, given a well (quasi) order under study (we address multiset and
majoring, to be defined later on) (A,≤), we define LAg (t) as the length of the longest g, t-

controlled bad sequence in (A,≤), and we study upper bounds for LAg , which are classified in
the Fast Growing Hierarchy (Fα)α<ε0 of Löb and Wainer [25], a sub-recursive hierarchy which
classifies functions according to its rate of growth.

1 The class E of elementary functions is the smallest class of functions containing the initial functions x+ y
and x− y, closed under composition and closed under bounded sum and product.
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1.2 History and related work

The theory of well quasi-orderings was initially developed by Higman [19] (under the name
of “finite basis property”) and by Erdös and Rado in an unpublished manuscript. Some early
evidence of the theory, however, had already appeared in a work by Neumann [28]. Further
developments were [31, 22, 23], and more recently [32].

Wqo’s have become a key ingredient in a great number of decidability/ finiteness/regularity
results appearing in areas like termination proofs for rewriting systems [8, 10], their exten-
sions [30, 24], complexity upper bounds [12, 27], well-structured transition systems [2, 16, 1,
3], etc. Much more recent is the study of constructive aspects of the theory of wqo’s.

For the wqo (Nn,≤pr) (Dickson’s lemma), McAloon [26], in 1984, shows an upper bound
for the length of the longest g, t-controlled bad sequence for linear g and place it in the level
Fn+1 of the Fast Growing Hierarchy. In 1986, Clote [7] simplifies McAloon’s argument but
gives a upper bound which is not as tight: Fn+6. All of these proofs are rather complex, and
none of them is self-contained. In 2011, D. and S. Figueira, Schmitz and Schnoebelen [14] show
an upper bound in Fn with a much simpler argument based on a more general mathematical
framework of disjoint unions of powers of N. In 2012, Abriola, Figueira y Senno [4] provide
an even simpler argument based in the idea of linearizing the wqo (N,≤pr) to N with the
lexicographic ordering, which is a well order. This result is based on a constructive proof of
Dickson’s lemma given by Harwood, Moller y Setzer [18].

For the wqo Γ∗p (finite words over a finite alphabet with p symbols) with the subword
ordering (Higman’s Lemma), in 1998, Cichoń and Tahhan Bittar exhibit a reduction method,
deducing bounds (for tuples of) words on Γ∗p from bounds on the Γ∗p−1 case. Their decompo-
sition is clear and self-contained, with the control function made explicit. The paper ends up
with some in-equalities [6, §8], from which it is not clear what precisely are the upper bounds
one can extract. In 2002, Touzet claims a bound on Fωp with an analysis based on iterated
residuations but the proof (given in [35]) is incomplete. In [36, Corollary 6.3], Weiermann
gives an Fωp−1-like bound for Γ∗p for sequences produced by term rewriting systems, but his
analysis is considerably more involved (as can be expected since it applies to the more gen-
eral Kruskal Theorem). In 2011, based on the techniques developed in [14], Schnoebelen and
Schmitz [33] exhibit a new and self-contained proof of a result which is even more general
than Weiermann’s. Finally these authors, in [17], extend their results from [33] to work with
words over infinite alphabets and an upper bound in F

ωωk is given for the length of the longest

bad sequence in (Nk)∗ with the subword ordering.

1.3 Main contribution and outline

In [21] Jurdzińki and Lazić introduce the class atra (alternating top-down register automata)
of automata over data trees with alternating control and one register to store and test data.
They prove that the emptiness problem for atra —i.e., the problem of determining whether
the language that an automaton of such class accepts is the empty one— is decidable. This
is done by first proving decidability of the emptiness problem for itca (incrementing tree
counter automata, also introduced in [21]) and then giving a pspace translation of atra
automata to itca automata. Termination of such decision procedure relies on the majoring
wqo, which we will define later on. Along with the decision procedure, a non primitive recur-
sive lower bound on the computational complexity is established.
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Our main contribution is an upper bound for the complexity of the emptiness problem for
itca and atra, which we will reach with the following plan:

• In Chapter 2, we start with some general definitions of the theory of well-quasi-orders
and introduce the reader to the Fast Growing Hierarchy (Fα)α<ε0 .

• In Chapter 3, we give tight upper bounds, in terms of the Fast Growing Hierarchy, for
Lms
g,n(t), the length of the longest g, t-controlled decreasing sequence of multisets of Nn

with respect to the multiset ordering and the underlying lexicographic ordering.

• In Chapter 4, we show that one can linearize the majoring ordering to the multiset
ordering, thus obtaining an upper bound for Lmaj

g,n (t), the length of the longest g, t-
controlled ≤maj-bad sequence of finite subsets of Nn.

• Finally, in Chapter 5, we arrive to the desired upper bound for the complexity of the
mentioned emptiness problems by showing a translation from a sequence of configura-
tions of itca into a sequence of finite subsets of tuples which is bad with respect to the
majoring ordering.

Most of the results of this thesis were published in [4].





2. PRELIMINARIES

2.1 Notation

If A is a set then |A| denotes its cardinality. If x ∈ An then the i-th coordinate of x is denoted
x[i], So x = 〈x[1], . . . , x[n]〉. Sequences are always in boldface and if x is a finite sequence
then |x| denotes its length. The concatenation of the sequence x and the element x at the
rightmost place is denoted xax.

2.2 The Fast Growing Hierarchy

The Fast Growing Hierarchy (Fα)α<ε0 of Löb and Wainer [25] is a way of characterizing
subrecursive functions by their rate of growth. This classification comprises both a hierarchy
within the primitive recursive functions, and generalizations of it like Ackermann function,
etc.

To give its formal definition we first need to present some definitions regarding countable
ordinal numbers.

Ordinal terms. Let ω be the first infinite ordinal, i.e., the order type of N with the usual
ordering. We will be considering countable ordinals in Cantor Normal Form (CNF), i.e.,
ordinals of the form:

α = ωβ1 + ωβ2 + · · ·+ ωβm

with β1 ≥ β2 ≥ · · · ≥ βm (this ordering is defined below) ordinals in CNF. For example
α = ω2 + ω1 + ω0 + ω0 + ω0 + ω0 (where 1 = ω0, 2 = ω0 + ω0)

An ordinal is either 0 (when m=0) or one of the following:

• A successor ordinal. If βm = 0 then we say that α is a successor. α + 1 will denote
the successor of α.

• A limit ordinal. If βm 6= 0 then we say that α is a limit ordinal. λ will denote a limit
ordinal.

The ordering over these ordinals can be defined inductively as follows:

α < α′
def
=


α = 0 y α′ 6= 0, o

α = ωβ + γ, α′ = ωβ
′
+ γ′ y

{
β < β′, o
β = β′ y γ < γ′

(where ωβ ≥ γ, ωβ′ ≥ γ′)

7
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The Fast Growing Hierarchy (Fα)α<ε0. It is defined as

F0(x)
def
= x+ 1

Fα+1(x)
def
= F x+1

α (x)

Fλ
def
= Fλx(x),

where in general gk denotes the k-th iteration of g (i.e. g1 = g and gk+1 = g ◦ gk), α is
an ordinal, ε0 = sup{ω, ωω, ωωω

, . . . }, λ < ε0 is a limit ordinal and (λx)x≤ω is an increasing
sequence of ordinals with limit λ (a fundamental sequence), which we fix to be:

(γ + ωβ+1)x
def
= γ + ωβ · (x+ 1) (γ + ωλ)x

def
= γ + ωλx .

The class Fα of the Fast Growing Hierarchy is the closure under substitution and limited
recursion (defined below) of the constant, sum, projections, and the functions Fβ with β ≤ α.

• substitution If h0, h1, . . . , hn ∈ Fα, then f ∈ Fα, where

f(x1, . . . , xn) = h0(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn))

• limited recursion If h1, h2, h3 ∈ Fα, then f ∈ Fα, where

f(0, x1, . . . , xn) = h1(x1, . . . , xn)

f(y + 1, x1, . . . , xn) = h2(y, x1, . . . , xn, f(y, x1, . . . , xn))

f(y, x1, . . . , xn) ≤ h3(y, x1, . . . , xn)

It can be shown that F0 = F1 contains all linear functions, F2 contains all the elementary
functions, F3 contains al the tetration functions.

⋃
n<ω Fn is the class of all primitive recursive

functions. In general,
⋃
α<ωk Fα is the class of k-recursive functions [29], i.e. the class of

functions obtainable from the initial functions by composition and nested recursion in at
most k variables. Nested recursion in, at least, 2 variables escapes from the class of primitive
recursive functions. For example, the following function φ defined from n + 1 by nested
recursion in two variables is not primitive recursive [29, §10.1]:

φ(0, n) = n+ 1

φ(m+ 1, 0) = φ(m, 1)

φ(m+ 1, n+ 1) = φ(m,φ(m+ 1, n))

There are a number of important monotonicity results regarding the Fast Growing Hi-
erarchy: for ordinals α < β < ε0, the function Fα is strictly increasing, Fα+1 ≥ Fα, Fα is
eventually majorized by Fβ, and then Fα ( Fβ (except α = 0 and β = 1), etc. For more
results on the Fast Growing Hierarchy, cf. [25].



3. MULTISET ORDERING

In this chapter we give tight upper bounds, in terms of the Fast Growing Hierarchy, for the
length of the longest g, t-controlled decreasing sequence of multisets of Nn with respect to
the multiset ordering and the underlying lexicographic ordering. We first formally introduce
the orderings involved (multiset and lexicographic), then we study the maximizing strategy
to get the longest decreasing sequence of controlled multiset, and finally we show lower and
upper bounds for the length of such sequence.

A multiset M over a set X is a function X → N. Intuitively a multiset is a generalization
of a set, where elements may be repeated. For x ∈ X, M(x) is called the multiplicity of x. A
multiset is finite if the set of elements with positive multiplicity is finite. We notate x ∈ M
for M(x) > 0. Let M<∞(X) denote the class of finite multisets over X.

Let (X,≤) be a poset (i.e., ≤ is a quasi-order which is also antisymmetric) and let M,N ∈
M<∞(X). The multiset ordering is defined as follows:

N <(≤)
ms M

def⇔M 6=N ∧ (∀x∈X)[N(x)>M(x)⇒ (∃y∈X)[y>x ∧M(y)>N(y)]].

Intuitively, it says that N can be obtained from M by replacing some elements by finitely
many (possibly zero) smaller (with respect to ≤) elements. If (X,≤) is a well-order then

(M<∞(X),≤(≤)
ms ) also is.

The lexicographic ordering over Nn is defined as follows:

x <lex y
def⇔ x[1] < y[1] ∨ (x[1] = y[1] ∧ 〈x[2], . . . , x[n]〉 <lex 〈y[2], . . . , y[n]〉) .

For x ∈ Nn, recall that the infinity norm is defined as

|x|∞
def
= max{x[1], . . . , x[n]}. (3.1)

We will study (M<∞(Nn),≤(≤lex)
ms ), the multiset ordering of finite multisets of tuples with

the underlying lexicographic ordering. In this context, we write ≤ms for ≤(≤lex)
ms . Observe

that it is a well-order because (Nn,≤lex) is so. We need a notion of g, t-controlled sequence of
(multi)sets. By Definition 1.1.2 it suffices to give a proper norm:

Definition 3.0.1 (A proper norm of sets and multisets of tuples). Given X ∈ M<∞(Nn),
we define |X|, the norm of X, as the maximum between maxx∈Nn X(x) and max{|x|∞ | x ∈
Nn ∧X(x) > 0}. For X ∈ P<∞(Nn), |X| is defined analogously, as any set is a multiset.

We denote by Lms
g,n(t) the length of the longest g, t-controlled decreasing sequence in

(M<∞(Nn),≤(≤lex)
ms ), i.e. a sequence of finite multisets of Nn, with the underlying lexico-

graphic ordering.

9
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3.1 Maximizing strategy

To study the longest g, t-controlled ≤ms-descending sequence of multisets we define the max-
imizing strategy which, given a nonempty g, t-controlled multiset M , determines the greatest
g, (t + 1)-controlled multiset N which is smaller than M . The strategy says that to obtain
N one should take out one of the minimum elements of M , say m, (i.e. decrement in one the
multiplicity of m) and add as many elements smaller than m as the control function permits.

For the rest of this section, assume (X,≤) is a well-order. We write <ms instead of <
(≤)
ms .

Let M ∈ M<∞(X) which is g, t-controlled and a proper norm | · |X = | · | for X. We define
the g, t-predecessor of M as follows: For x ∈ X,

predgt (M)(x)
def
=


g(t+ 1)− 1 x < minM ∧ |x| < g(t+ 1);

M(x)− 1 x = minM ;

M(x) otherwise.

where minM
def
= min{x |M(x) > 0}.

Lemma 3.1.1. Let M be a nonempty finite multiset over a totally ordered set P , which is
g, t-controlled and let N = predgt (M). Then (1) N is g, (t + 1)-controlled; (2) N <ms M ;
and (3) if N ′ is g, (t+ 1)-controlled and N ′ <ms M then N ′ ≤ms N .

Proof. (1) It is clear from the definition of N and the fact that g is monotone increasing.

(2) It is obvious that M 6= N . By definition, if N(x) > M(x) then x < m = minM and
M(m) > N(m).

(3) Assume N ′ < M is g, (t + 1)-controlled. We show that if N ′(x) > N(x) then there is
z > x such that N(z) > N ′(z). Suppose N ′(x) > N(x).

– Suppose x < minM . Then N(x) = g(t + 1) − 1 ≥ N ′(x), contradicting N ′(x) >
N(x).

– Suppose x > minM . Then N(x) = M(x) and therefore N ′(x) > M(x). Since
N ′ <ms M there is z > x such that N(z) = M(z) > N ′(z).

– Suppose x = minM . Then N(x) = M(x) − 1, and so N ′(x) ≥ M(x). If N ′(x) >
M(x) then, since M <ms N

′, there is z > x with M(z) > N ′(z). For such z, by
definition of N , we have N(z) = M(z) > N ′(z). If N ′(x) = M(x) then, since
N ′ 6= M , there is y such that N ′(y) 6= M(y). Any such y must be different from
x. Suppose that all such y’s were smaller than x = minM . In this case M ≤ms N

′

and this contradicts the hypothesis. Hence there is y > x such that N ′(y) 6= M(y).
If N ′(y) > M(y), there is z > y > x such that N ′(z) < M(z) = N(z). If
N ′(y) < M(y), since M(y) = N(y), we conclude N ′(y) < N(y).

We represent a finite multiset M such that {x |M(x) > 0} = {x1, . . . , xn} as

M
def
= M(x1) · x1 + · · ·+M(xn) · xn.

For a finite multiset M , let Lg,M (t) denote the length minus one of the longest g, t-
controlled and <ms-decreasing sequence of multisets starting with the multiset M . For x ∈ X,
let og,x(t) = t+ Lg,1·{x}(t).
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Lemma 3.1.2. If k ≥ 1 then Lg,k·{x}(t) =
∑k−1

i=0 Lg,1·{x}(o
i
g,x(t)).

Proof. We write Lk for Lg,k·{x} and o for og,x. We first show the following

Fact 3.1.3. oi(t) = t+
∑i−1

j=0 L1(o
j(t)).

Proof. By induction in i ≥ 0. If i = 0 it is trivial. Now

oi+1(t) = o(oi(t))

= o(t+

i−1∑
j=1

L1(o
j(t))) (ind. hyp.)

= t+

i−1∑
j=1

L1(o
j(t))) + L1(o

i(t)) (Definition of o and ind. hyp.)

= t+
i∑

j=1

L1(o
j(t)).

Now we show the statement of the Lemma by induction in k ≥ 1. If k = 1 it is
straightforward. Now suppose that the longest g, t-controlled decreasing sequence of multisets
beginning with (k + 1) · {x} is

M1 >ms M2 >ms . . . , >ms Ml1 >ms N2 >ms N3 >ms . . . >ms Nl2

of length l1 + l2 − 1 and where M1 = (k + 1) · {x}, l1 = Lk(t) + 1, Ml1 = 1 · {x}, l2 =
L1(t+ Lk(t)) + 1 and Nl2 = ∅. We have

Lk+1(t) = l1 + l2 − 2

= Lk(t) + L1(t+ Lk)

=

k−1∑
i=0

L1(o
i(t)) + L1(t+

k−1∑
i=0

L1(o
i(t))) (ind. hyp.)

=
k−1∑
i=0

L1(o
i(t)) + L1(o

k(t)) + 1 (Fact 3.1.3)

=
k∑
i=0

L1(o
i(t)),

and this concludes the proof.

Corollary 3.1.4. For k ≥ 1, Lg,k·{x} ≥ Lkg,1·{x}.

Corollary 3.1.5. For k ≥ 1, Lg,k·{x}(t) ≤ k · Lg,1·{x}(ok−1g,x (t)).

In the sequel we fix (X,≤) to be (Nn,≤lex). If M ∈M<∞(Nn) then Pg,n(M, t) denotes the
length minus one of the longest g, t-controlled <ms-decreasing sequence of multisets starting
with M . If M consists of one copy of (x1, . . . , xn), we simply write Pg,n(x1, . . . , xn, t) instead
of Pg,n(1 · {(x1, . . . , xn)}, t). Observe that, having fixed (X,≤), we have Lg,M (t) = Pg,n(M, t).
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3.2 Lower bound

Define Gg,n : Nn+1 \ {(0, . . . , 0)} → N by multiple recursion as:

Gg,n(0, . . . , 0, 1, t)
def
= g(t+ 1) (3.2)

Gg,n(x, xn + 1, t)
def
= Gg(t+1)−1

g,n (x, xn, t), for x = x1, . . . , xn−1 (3.3)

Gg,n(x, xj + 1, 0, t)
def
= Gg,n(x, xj , g(t+ 1)− 1, 0, t), for x = x1, . . . , xj−1 (3.4)

Equation (3.3) applies when xi > 0 for some i, and (3.4) when j < n. Gkg,n(a, b) denotes

the k-th iteration of Gg,n in the last component, i.e. G1
g,n(a, b) = Gg,n(a, b) and Gk+1

g,n (a, b) =

Gg,n(a,Gkg,n(a, b)).

Lemma 3.2.1. If g(x) ≥ x+ 1 then Pg,n ≥ Gg,n.

Proof. By induction in the lexicographic order of x1, . . . , xn. If (x1, . . . , xn−1, xn) = (0, . . . , 0, 1)
then the longest g, t-controlled <ms-decreasing sequence starting with 1 · {(0, . . . , 0, 1)} is

1 · {(0, . . . , 0, 1)} >ms (g(t+ 1)− 1) · {(0, . . . , 0, 0)} >ms

>ms (g(t+ 1)− 2) · {(0, . . . , 0, 0)} >ms . . . >ms 0 · {(0, . . . , 0, 0)}

which has length g(t+ 1) + 1 and then

Pg,n(0, . . . , 0, 1, t) = g(t+ 1)

= Gg,n(0, . . . , 0, 1, t).

The longest g, t-controlled <ms-decreasing sequence of multisets starting with

1 · {(x1, . . . , xn−1, xn + 1)}

continues as

M1 =
∑
{(g(t+ 1)− 1) · {(y1, . . . , yn)} | (y1, . . . , yn) <lex (x1, . . . , xn−1, xn + 1)} (3.5)

Therefore

Pg,n(x1, . . . , xn−1, xn + 1, t) ≥ Pg,n((g(t+ 1)− 1) · {(x1, . . . , xn−1, xn)}, t+ 1)

≥ P g(t+1)−1
g,n (x1, . . . , xn−1, xn, t+ 1) (Corollary 3.1.4)

≥ Gg(t+1)−1
g,n (x1, . . . , xn−1, xn, t) (ind. hyp. and monot. of Gg,n)

= Gg,n(x1, . . . , xn−1, xn + 1, t)

The longest g, t-controlled <ms-decreasing sequence of multisets starting with

1 · {(x1, . . . , xj + 1, 0, . . . , 0)}

has
{(x1, . . . , xj , g(t+ 1), 0, . . . , 0)}

as one of its terms. Therefore

Pg,n(x1, . . . , xj + 1, 0, 0, . . . , 0, t) ≥ Pg,n(x1, . . . , xj , g(t+ 1)− 1, 0, . . . , 0, t)

≥ Gg,n(x1, . . . , xj , g(t+ 1)− 1, 0, . . . , 0, t) (ind. hyp.)

= Gg,n(x1, . . . , xj + 1, 0, . . . , 0, t)

This concludes the proof.
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Theorem 3.2.2. If g ≥ F1 and g(x) ≥ x+ 2, then Lms
g,n ≥ Fωn.

Proof. We show that if xi > 0 for some i then

Gg,n(xn−1, . . . , x1, x0, t) ≥ Fα(t),

where α = ωn−1 · xn−1 + · · ·+ω0 · x0. We proceed by induction in (xn−1, . . . , x1, x0). For the
base case, observe that Gg,n(0, . . . , 0, 1, t) = g(t + 1) ≥ g(t) ≥ F1(t). Let α = ωn−1 · xn−1 +
· · ·+ ω0 · x0. We have

Gg,n(xn−1, . . . , x1, x0 + 1, t) = Gg(t+1)−1
g,n (xn−1, . . . , x1, x0, t)

≥ Gt+1
g,n (xn−1, . . . , x1, x0, t) (monot. of Gg,n and g(x) ≥ x+ 1)

≥ F t+1
α (t) (ind. hyp.)

= Fα+1(t)

Let β = ωn−1 · xn−1 + · · ·+ ωj · xj and j > 0. We have

Gg,n(xn−1, . . . , xj + 1, 0, . . . , 0, t) = Gg,n(xn−1, . . . , xj , g(t+ 1)− 1, 0, . . . , 0, t)

≥ Gg,n(xn−1, . . . , xj , t+ 1, 0, . . . , 0, t)
(monot. of Gg,n and g(x) ≥ x+ 1)

= Fβ+ωj−1·(t+1)(t) (ind. hyp.)

= Fβ+ωj (t)

Finally, for all t we have

Lms
g,n(t) ≥ Pg,n(g(t)− 1, 0, . . . , 0, t)

≥ Pg,n(t+ 1, 0, . . . , 0, t) (monot. of Pg,n and g(x) ≥ x+ 2)

≥ Gg,n(t+ 1, 0, . . . , 0, t) (Lemma 3.2.1)

≥ Fωn−1·(t+1)(t)

= Fωn(t)

and this concludes the proof.

3.3 Upper bound

Define Ug,n : Nn+1 \ {(0, . . . , 0)} → N by multiple recursion as:

Ug,n(0, . . . , 0, 1, t)
def
= g(t+ 1) (3.6)

Ug,n(x, xn + 1, t)
def
= g(t+ 1) · Ug,n(x, xn, o

g(t+1)−1
x1,...,xn (t+ 2)) (3.7)

Ug,n(x, xj + 1, 0, t)
def
= Ug,n(x, xj , g(t+ 1), 0, t+ 2) (3.8)

where ox1,...,xn(t) = t + Ug,n(x1, . . . , xn−1, xn, t); equation (3.7) applies when xi > 0 and
x=x1, . . . , xn−1; and equation (3.8) applies when j < n and x=x1, . . . , xj−1.

Lemma 3.3.1. Pg,n ≤ Ug,n.



14 3. Multiset ordering

Proof. By induction in the lexicographic order of x1, . . . , xn. For (3.6), as in the proof of
Lemma 3.2.1, the longest g, t-controlled <ms-decreasing sequence starting with 1 · {(0, 1)} has
length g(t+ 1) + 1 and then

Pg,n(0, 1, t) = g(t+ 1) = Ug,n(0, 1, t).

For (3.7) the longest g, t-controlled<ms-decreasing sequence starting withM0 = 1·{(x, xn+1)}
continues with a multiset M1whose <lex-maximum element is (x, xn), of multiplicity g(t+1)−
1. Therefore if N = g(t+ 1) · {(x, xn)} then M0 >ms N >ms M1 and N is g, (t+ 2)-controlled.
Hence

Pg,n(x, xn + 1, t) ≤ Pg,n(g(t+ 1) · {(x, xn)}, t+ 2)

≤ g(t+ 1) · Pg,n(x, xn, õ
g(t+1)−1
x1,...,xn (t+ 2))

≤ g(t+ 1) · Ug,n(x, xn, o
g(t+1)−1
x1,...,xn (t+ 2)) = Ug,n(x, xn + 1, t)

where õx1,...,xn(t) = t+ Pg,n(x1, . . . , xn, t), the second inequality follows from Corollary 3.1.5,
and the third one from ind. hyp. and monotonicity of Ug,n. For (3.7) the longest g, t-controlled
<ms-decreasing sequence of multisets starting with M ′0 = 1 · {(x, xj + 1, 0)} continues with a
multiset M ′1 whose <lex-maximum element is (x, xj , g(t+1)−1, . . . , g(t+1)−1), of multiplicity
g(t+ 1)− 1. Then M ′0 >ms N

′ >ms M
′
1, where N ′ = 1 · {(x, xj , g(t+ 1), 0)}, and hence N ′ is

g, (t+ 2)-controlled. Therefore by inductive hypothesis we have

Pg,n(x, xj + 1, 0, t) ≤ Pg,n(x, xj , g(t+ 1), 0, t+ 2)

≤ Ug,n(x, xj , g(t+ 1), 0, t+ 2) = Ug,n(x, xj + 1, 0, t),

and this concludes the proof.

Theorem 3.3.2. If g is primitive recursive and g(t) ≥ t + 1 then Lms
g,n has an upper bound

in Fωn. Also, this bound is tight.

Proof. The fact that the bound is tight follows from Theorem 3.2.2. Without loss of generality
suppose, t > 2 and let 2 ≤ e < ω such that g(t+ 1) ≤ Fe(t). By (∀∞x)ϕ(x) we mean that ϕ
holds for almost every x, i.e (∃k)(∀x > k)ϕ(x).

Fact 3.3.3. If x 6= 0 then (∀∞t)(∀x)Ug,n(0, x, t) ≤ F3(x−1)+e(t).

Proof. By induction in x 6= 0. For x = 1, observe that Ug,n(0, 1, t) = g(t + 1) ≤ Fe(t). For
the inductive step, o0,x = t+ Ug,n(0, x, t) ≤ t+ F3(x−1)+e(t) ≤ F3(x−1)+e+1(t). Now

Ug,n(0, x+ 1, t) =g(t+ 1) · Ug,n(0, x, o
g(t+1)−1
0,x

(t+ 2))

≤g(t+ 1) · F3(x−1)+e(o
g(t+1)−1
0,x

(t+ 2)) (ind. hyp.)

≤Fe(t) · Fp(x)(F
g(t+1)−1
p(x)+1 (t+ 2)) (p(x)

def
= 3(x− 1) + e)

≤Fe(t) · Fp(x)(F
g(t+1)+1
p(x)+1 (g(t+ 1))

=Fe(t) · Fp(x)(Fp(x)+2(g(t+ 1))

≤Fp(x)+2(Fp(x)+2(Fp(x)+2(Fp(x)+2(t)))

=F 4
p(x)+2(t) ≤ Fp(x)+3(t) = F3x+e. (t ≥ 3)

This concludes the proof of the Fact
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Fact 3.3.4. If x0 > 0 then

(∀∞t)(∀xn−1, . . . , x0)[Ug,n(xn−1, . . . , x0, t) ≤ Fγ(t)⇒ Ug,n(xn−1, . . . , x0 + 1, t) ≤ Fγ+3(t)].

Proof. Same idea as in Fact 3.3.3.

Fact 3.3.5. If xi > 0 for some i ≥ 1 then (∀∞t)(∀x = xn−1, . . . , x1)Ug,n(x, 0, t) ≤ Fα(t), where
α = xn−1 · ωn−1 + xn−2 · ωn−2 + · · ·+ x2 · ω2 + x1 · ω + 1.

Proof. By induction in x 6= 0. Ug,n(0, 1, 0, t) = Ug,n(0, g(t + 1), t + 2) ≤ Fd(t)(t + 2) ≤
Fd(t)+1(d(t)) = Fω(d(t)) ≤ Fω+1(t) where d(t)

def
= 3(g(t + 1) − 1) + e, the first inequality

follows from Fact 3.3.3 and the last one is true for all t ≥ k1.
Next,

Ug,n(0, x1 + 1, 0, t) =Ug,n(0, x1, g(t+ 1), t+ 2)

≤Fx1·ω+1+r(t)(t+ 2)

≤Fx1·ω+1+r(t)(r(t))

=F(x1+1)·ω(r(t))

≤F(x1+1)·ω+1(t),

where r(t)
def
= 3g(t+ 1), the first inequality follows from ind. hyp. and Fact 3.3.4 and the last

one is true for all t ≥ k2 ≥ k1 (independently of x1).
Finally, let x = xn−1, . . . , xj−1 and let β = xn−1 · ωn−1 + · · ·+ xj−1 · ωj−1.

Ug,n(x, xj + 1, 0, t) =Ug,n(x, xj , g(t+ 1), 0, t+ 2)

≤Fβ+xj ·ωj+g(t+1)·ωj−1+1(t+ 2) (ind. hyp.)

≤Fβ+xj ·ωj+(g(t+1)+1)·ωj−1(t+ 2)

≤Fβ+xj ·ωj+(g(t+1)+1)·ωj−1(g(t+ 1))

≤Fβ+(xj+1)·ωj (g(t+ 1)) ≤ Fβ+(xj+1)·ωj+1(t),

where the last inequality is true for all t ≥ k3 ≥ k2 (independently of x, xj).

Now, let t be sufficiently large. If n = 1 then

Lms
g,n(t) ≤ Pg,n(g(t), t+ 1)

≤ Ug,n(g(t), t+ 1)

≤ F3(g(t)−1)+e(t+ 1)

≤ F3(g(t)−1)+e+1(3(g(t)− 1) + e) = Fω(3(g(t)− 1) + e)) ∈ Fω

where the second inequality follows from Lemma 3.3.1 and the third one from Fact 3.3.3. If
n > 1 we have:

Lms
g,n(t) ≤ Pg,n(g(t), 0, t+ 1)

≤ Ug,n(g(t), 0, t+ 1)

≤ Fg(t)·ωn−1+1(t+ 1)

≤ F(g(t)+1)·ωn−1(g(t))

= Fωn(g(t)) ∈ Fωn .

The second inequality follows from Lemma 3.3.1 and the third one from Fact 3.3.5.





4. MAJORING ORDERING

In this chapter we study bad sequences in the majoring ordering of set of tuples and give an
upper bound for its length in terms of the Fast Growing Hierarchy.

Definition 4.0.6 (Majoring ordering ≤maj). Let P<∞(X) denote the finite and non-empty
parts of X. For a wqo (X,≤) and A,B ∈ P<∞(X), the majoring ordering is defined as

A ≤(≤)
maj B

def⇔ (∀x ∈ A)(∃y ∈ B) x ≤ y.

The fact that the majoring ordering is a wqo follows from Higman’s lemma [19], as we will
see in Proposition 4.0.7. Let us first introduce Higman’s lemma. Given a quasi-order (X,≤)
we define the subword ordering over X∗ as follows:

x1 . . . xn v y1 . . . ym
def⇔ (∃1 ≤ i1 < · · · < in ≤ m)(∀j ∈ {1, . . . , n}) xj ≤ yij . (4.1)

Higman’s Lemma is the statement that (X∗,v) is a wqo.

Proposition 4.0.7. If (X,≤) is a wqo, then (P<∞(X),≤(≤)
maj) is a wqo.

Proof. The fact that this order is reflexive and transitive is immediate from the fact that
(X,≤) is a wqo. The fact of being a wqo is a simple consequence of Higman’s Lemma.
Each finite set {a1, . . . , an} can be seen as a sequence of elements a1 . . . an, in any order. In
this context, the subword ordering is stricter than the majoring ordering. In other words, if
a1 . . . an v a′1...a

′
m, then {a1, . . . , an} ≤maj {a′1, . . . , a′m}. By Higman’s Lemma the subword

ordering over (X,≤) is a wqo, implying that the majoring ordering is as well.

For example, the following is a bad sequence in (P<∞(N2),≤(≤pr)
maj ):

{〈3, 3〉}, {〈1, 4〉, 〈4, 1〉}, {〈5, 1〉, 〈3, 2〉}, {〈2, 1〉}, {〈1, 5〉} (4.2)

We will study (P<∞(Nn),≤(≤pr)
maj ), the majoring ordering of finite sets of tuples with the

underlying product ordering. In this context, we write ≤maj for ≤(≤pr)
maj . Let Lmaj

n,g (t) denote

the length of the longest g, t-controlled bad sequence over (P<∞(Nn),≤(≤pr)
maj ). In the following

section we give an upper bound for Lmaj
n,g (t).

4.1 Simple observations to warm up

Let Lpr
n,g(t) be the length of the longest g, t-controlled sequence in the product ordering of

Definition 1.5.

Observation 4.1.1. Lmaj
1,g = Lpr

1,g.

17
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Proof. If X = X1, . . . , Xk is a bad sequence of finite and non-empty sets of numbers, which
is g, t-controlled then supX1, . . . , supXk is a t-controlled bad sequence of numbers; therefore
Lmaj
1,g ≤ L

pr
1,g. If x = x1, . . . , xk is a g, t-controlled bad sequence of numbers then {x1}, . . . , {xk}

is a bad sequence of sets of numbers which is also g, t-controlled; hence Lpr
1,g ≤ L

maj
1,g .

Taking sup as in the above proof does not work for n > 1. Take X as in (4.2). X is a bad
sequence but

{〈3, 3〉}, {〈4, 4〉}, {〈5, 2〉}, {〈2, 1〉}, {〈1, 5〉}

is not.

Since any bad sequence of n-tuples is trivially a bad sequence of singletons, we have
Lmaj
n,g ≥ Lpr

n,g. It is not difficult to see that equality does not always hold.

Observation 4.1.2. There is g such that Lmaj
2,g (0) > Lpr

2,g(0).

Proof. Take n = 2 and control function g(x) = x+2. We saw in the introduction that longest
g, 0-controlled bad sequence has length 8. However, for example, the following sequence of
sets:

{〈1, 1〉}, {〈0, 2〉, 〈2, 0〉}, {〈0, 2〉, 〈1, 0〉}, {〈0, 1〉, 〈2, 0〉}, {〈0, 1〉, 〈1, 0〉},
{〈6, 0〉}, {〈5, 0〉}, {〈4, 0〉}, {〈3, 0〉}, {〈2, 0〉}, {〈1, 0〉};

is g, 0-controlled, bad and has length 11.

4.2 Linearizing

The strategy to derive an upper-bound for Lmaj
n,g (t) will be linearizing the wqo

(P<∞(Nn),≤maj) into the well-order (M<∞(Nn),≤ms) and then use the results of §3.

Let LAg (t) denote the length of the longest g, t-controlled bad sequences over the wqo
(A,≤A) when t is a parameter.

Linearizing the wqo (A,≤A) with a proper norm | · |A into a suitable well linear order
(B,≤B) with a proper norm | · |B means finding a function h : A+ → B such that for
every a ∈ A+ and a ∈ A, if aaa is a bad sequence in (A,≤A) then h(a) >B h(aaa). So if
a = a0, . . . , ak is bad in (A,≤A) then

b = h(a0), h(a0, a1), h(a0, a1, a2), . . . , h(a)

is descending in (B,≤B). Furthermore, for any control function g we seek a control function
g̃ such that if a is g, t-controlled then |h(a)|B < g̃(|a|+ t− 1) —here |a| denotes the length of
a.

Hence if a is g, t-controlled then b is g̃, t-controlled and therefore from a g, t-controlled
bad sequence in (A,≤A) one can get a g̃, t-descending sequence in (B,≤B) of the same length.
Hence LAg ≤ LBg̃ , and the task is now to find an upper bound for LBg̃ . In practice, these upper
bounds are easier to devise for well-orders than for wqo’s.
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4.3 Upper bound

Our linearization will be done in two steps. Given a ≤maj-bad sequence

X = X0, X1, . . . Xk

of finite and nonempty sets of n-tuples we define an intermediate sequence

T0, T1, . . . , Tk

of trees whose nodes are decorated with n-tuples. From these trees we define a sequence of
finite and nonempty multisets of n-tuples

M = M0,M1, . . . ,Mk

We show that if X is ≤maj-bad then M is <ms-decreasing. Furthermore, given a control for
X, we find a control for M. Using the results of §3 we give an answer to the question of the
maximum possible length of a controlled ≤maj-bad sequence of finite sets of n-tuples.

Let X ⊆ Nn. We say X avoids x if for all y ∈ X we have x 6≤pr y. Since X is bad, then
for any i < j, Xj avoids some tuple of Xi. In particular for all j ∈ {1, . . . , k}, Xj avoids some
tuple of X0. If a is the ≤pr-supremum of X0 then X̃ = {a}, X1, . . . Xk is also a bad sequence.
Furthermore, if X was g, t-controlled then X̃ also is, and in this case a ≤pr 〈g(t)−1, . . . , g(t)−
1〉. Even more, if X is the longest such sequence then a = 〈g(t)− 1, . . . , g(t)− 1〉. Therefore,
without loss of generality we may assume that all ≤maj-bad sequences of sets analyzed here
have a singleton as the first element.

Construction of the trees Ti.

Without loss of generality suppose X0 = {a0}. Define the following sequence of finite trees
of n-tuples. By path we always refer to a path from the root to a leaf. See Fig. 4.1 for an
example of this construction.

• T0 is a0, the root.

• Ti+1 is formed by extending Ti as follows. For any path a0, . . . , am in Ti do the following:
if for all j = 0, . . . ,m, Xi+1 avoids aj then add all the elements of Xi+1 as new children
of am.

〈3, 3〉 〈3, 3〉

〈1, 4〉 〈4, 1〉

〈3, 3〉

〈1, 4〉

〈5, 1〉 〈3, 2〉

〈4, 1〉

〈3, 3〉

〈1, 4〉

〈5, 1〉

〈2, 1〉

〈3, 2〉

〈2, 1〉

〈4, 1〉

〈2, 1〉

〈3, 3〉

〈1, 4〉

〈5, 1〉

〈2, 1〉

〈3, 2〉

〈2, 1〉

〈4, 1〉

〈2, 1〉

〈1, 5〉
T0 T1 T2 T3 T4

Fig. 4.1: Construction of the trees for the bad sequence X0, X1, X2, X3, X4, where X0 = {〈3, 3〉};
X1 = {〈1, 4〉, 〈4, 1〉}; X2 = {〈5, 1〉, 〈3, 2〉}; X3 = {〈2, 1〉} ; X4 = {〈1, 5〉}

Proposition 4.3.1. At least one path of Ti is strictly extended in Ti+1.
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Proof. Recall that Xj 6= ∅ for all j. It is clear that if all internal nodes of Ti have a child
which is avoided by Xi+1 then there is a path a0, . . . , am in Ti such that Xi+1 avoids aj for
all j.

If Ti+1 = Ti then, by construction, there is no path a0, . . . , am with all of its elements
avoided by Xi+1. Then there is an internal node of Ti, say a, with none of its children avoided
by Xi+1. But this contradicts the badness of X since by construction the set of children of a
is Xj for some j ≤ i.

As the example in Fig. 4.1 shows, the height of Ti+1 is not necessarily greater than the
height of Ti.

The following follows by construction:

Proposition 4.3.2. Any path in Ti is a bad sequence of n-tuples with respect to the product
ordering. Furthermore if X is g, t-controlled then any such path is g, (t+ i)-controlled.

Construction of the multisets Mi.

For the construction of the multisets we will use the following linearization of (Nn,≤pr) in
(Nn,≤lex):

Theorem 4.3.3. There is a function hn : (Nn)+ → Nn such that if xax is bad in (Nn,≤pr)
and x is nonempty, then hn(xax) <lex hn(x). Furthermore if x is g, t-controlled then

|hn(x)|∞ < g̃(|x| − 1 + t),

for g̃(x) = n! g(nx)n and |x|∞ as in Definition 3.1.

Proof. For a proof of this theorem refer to [4].

Now, let Mi ∈M<∞(Nn) be defined as: Mi(y)
def
= d iff there are exactly d paths in Ti, say

p1, . . . , pd, such that hn(pj) = y for all j. In other words, Mi is the multiset where we put
hn(p) for every path p in Ti.

If the path a = a1, . . . , am in Ti is extended to a, x in Ti+1 then by Theorem 4.3.3,
hn(a, x) <lex hn(a). Then Mi+1 <ms Mi. The need for working with multisets and not simply
with sets resides in the fact that h is not injective.

Proposition 4.3.4. If X = X0, . . . , Xk is g, t-controlled then |Mk| < g̃(t+ k), for

g̃(x) = n! g(nx)n(x+1) + 1

Proof. Observe that the maximum multiplicity of an element in Mk is bounded by
∏k
j=1 g(t+

j)n ≤ g(t+k)nk < g̃(t+k). By Proposition 4.3.2 each of such path is g, (t+k)-controlled and
by the second part of Theorem 4.3.3 we have that if x ∈ Mk then |x|∞ < n! g(n(k + t))n <
g̃(t+ k).

Altogether we have shown:

Theorem 4.3.5. There is a function fn : (P<∞(Nn))+ → M<∞(Nn) such that if XaX
is a bad sequence in (P<∞(Nn),≤maj), X is nonempty and X is a nonempty set, then
fn(XaX) <ms fn(X). Furthermore if X is g, t-controlled then |fn(X)| < g̃(|X| − 1 + t),
for g̃ as in Proposition 4.3.4.
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Proof. Take fn(X) = M|X|−1 as in the above construction.

Let Lmaj
n,g (t) denote the length of the longest g, t-controlled bad sequence in (Nn,≤maj), and

let Lms
n,g(t) denote the length of the longest g, t-controlled decreasing sequence in (Nn, <ms).

Corollary 4.3.6. For any primitive recursive g there is a primitive recursive g̃ such that
Lmaj
n,g ≤ Lms

n,g̃. Hence there is an upper bound of Lmaj
n,g in Fωn.

Proof. It follows from Theorem 4.3.5 and Theorem 3.3.2.





5. APPLICATIONS

In this chapter we use our results on an upper bound for the length of the longest controlled
≤maj-bad sequence of finite subsets of Nn to upper bound the complexity of the emptiness
problem for itca (§5.3) and atra (§5.4). Before that, in §5.1 we introduce some basic
definitions regarding itca and in §5.2 we give the rudiments of the proof of decidability of
the emptiness problem for itca. In these two sections we follow [21].

5.1 Incrementing tree counter automata

Without loss of generality, we will work with binary trees such that each node will either
have both children or be a leaf, only non-leaf nodes will be labeled and the root node will be
non-leaf.

Definition 5.1.1 (Tree). A (labeled) tree is a tuple 〈N,Σ,Λ〉, where:

• N is a subset of {0, 1}∗ such that |N | > 1 and N is prefix-closed, i.e. for each n ∈ N ,
either na0 ∈ N and na1 ∈ N or na0 /∈ N and na1 /∈ N ,

• Σ is a finite alphabet,

• Λ is a mapping from the non-leaf elements of N to Σ.

itca is a class of automata over trees which have natural-valued counters with increments,
decrements and zero-tests. In the rest of this section we formally define itca.

Definition 5.1.2 (The automaton). An incrementing tree counter automaton (itca) C with
ε-transitions, is a tuple 〈Σ, Q, qI , F, k, δ〉 such that:

• Σ is a finite alphabet and Q is a finite set of states,

• qI ∈ Q is the initial state and F ⊆ Q are the final states,

• k ∈ N is the number of counters,

• δ ⊆ (Q × Σ × L × Q × Q) ∪ (Q × {ε} × L × Q) is a transition relation, where L =
{inc,dec, ifz} × {1, . . . , k} is the instruction set.

Definition 5.1.3 (Counter valuation). A counter valuation is just a tuple in Nk holding the
values of the k counters at some point during execution.

23
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For counter valuations v and v′, we write:

v
〈inc,c〉−−−−→† v′

def⇔ v′[c] = v[c] + 1 ∧ v′[x] = v[x] for x 6= c

v
〈dec,c〉−−−−→† v′

def⇔ v′[c] = v[c]− 1 ∧ v′[x] = v[x] for x 6= c

v
〈ifz,c〉−−−→† v′

def⇔ v(c) = 0 ∧ v′ = v

v
l−→ v′

def⇔ v ≤pr v†
l−→† v′† ≤pr v

′ for some v†, v
′
†

Note that what the last definition is actually saying is that the automaton can non-deterministically
increment its counters both before and after a transition. These are called incrementing errors
and are the reason why emptiness for itca is decidable.

A configuration of C is a pair 〈q, v〉, where q is a state and v is a counter valuation.

A block is a non-empty finite sequence of configurations obtainable by performing ε-
transitions, that is, for every two adjacent configurations 〈qi, vi〉 and 〈qi+1, vi+1〉 in a block,

there exists l with 〈qi, ε, l, qi+1〉 ∈ δ and vi
l−→ vi+1.

A run of C on a finite tree 〈N,Σ,Λ〉 is a mapping n 7→ Bn from the nodes to blocks such
that:

• 〈qI , 0〉 is the first configuration in Bε (here 0 denotes a k-tuple of 0’s)

• for each non-leaf n, there exists l with 〈q,Λ(n), l, r0, r1〉 ∈ δ, v
l−→ w0 and v

l−→ w1, where
〈q, v〉 is the last configuration in Bn, and 〈r0, w0〉 and 〈r1, w1〉 are the first configurations
in Bna0 and Bna1 respectively.

We regard such a run as accepting iff, for each leaf n, the state of the last configuration
in Bn is final. The language L(C) is the set of all finite trees with alphabet Σ on which C has
an accepting run.

Example 5.1.4. Let C = 〈{a, b}, {q0, q1, q2}, q0, {q2}, 2, δ〉 with δ being:

δ = {〈q0, a, inc 1, q1, q2〉, 〈q1, ε, inc 2, q1〉〈q2, ε,dec 2, q2〉, 〈q1, b,dec 1, q2, q2〉}.

The following Figure shows an input tree T and the definitions of the blocks for certain
run of C on input T :

a

b

Bε = 〈q0, 0, 0〉
B0 = 〈q1, 1, 0〉, 〈q1, 1, 1〉, 〈q1, 1, 2〉
B1 = 〈q2, 1, 0〉
B00 = 〈q2, 0, 2〉, 〈q2, 0, 1〉, 〈q2, 0, 0〉
B01 = 〈q2, 0, 2〉

The leaf nodes are 1, 00 and 01. The last configuration in each B1, B00 and B01 is in state
q2 which is final. Hence, T ∈ L(C).
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5.2 Emptiness for ITCA

In automata theory, the emptiness problem consist in determining whether the language
accepted by an automaton is empty or not. In [21], this problem is proven decidable for
itca over finite trees using the tools of the theory of well-structured transition systems [15].
In this section, we extract from such proof an explicit decision procedure, so as to make it
evident how our result upper-bounds its computational complexity.

Consider an itca C = 〈Σ, Q, q0, F, k, δ〉. For counter valuations v and v′, and an instruc-

tion l, we say that v under l shields v′ lazily iff either v
l−→† v′ (i.e., there are no incrementing

errors) or l is of the form 〈dec, c〉, v(c) = 0 and v′ = v (i.e., decrementing a 0-valued counter
leaves the array of counters unchanged).

Observe that whenever v ≤ w and w
l−→ w′, there exists v′ such that v yields v′ lazily and

v′ ≤ w′.
A level of C is a finite set of configurations. We denote with Levels the set of levels of C.

For levels G and G′ of C, we say that G′ is a successor of G and write G → G′ iff G′ can be
obtained from G as follows:

• Each 〈q, v〉 ∈ G with q /∈ F is replaced either by the two configurations that some
firable transition 〈q, a, l, r0, r1〉 yields lazily, or by the one configuration that some firable
transition 〈q, ε, l, r0〉 yields lazily.

• Each 〈q, v〉 ∈ G with q ∈ F is removed.

If K ⊆ Levels, we write Succ(K) for the set of immediate successors of the levels in K, i.e.

Succ(K)
def
= {G′ ∈ Levels | ∃G ∈ K : G → G′}.

As usual,
∗−→ denotes the transitive closure of the transition relation.

Definition 5.2.1 (A quasi-ordering between configurations ≤). If 〈q, v〉 and 〈r, w〉 are con-
figurations then ≤ is defined as

〈q, v〉 ≤ 〈r, w〉 def⇔ q = r ∧ v ≤pr w

If K ⊆ Levels then,

↑K = {G′ ∈ Levels | ∃G ∈ K : G ≤(≤)
maj G

′}

If K = ↑K then we say that K is upward-closed.

The following reachability algorithm decides the emptiness problem:
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Algorithm 3 Decision procedure for emptiness for itca

1: initialConfiguration← 〈q0, 0〉
2: initialLevel← {initialConfiguration}
3: emptyLevel← ∅
4: reachableLevels← {initialLevel}
5: newReachableLevels← {initialLevel}
6: repeat
7: reachableLevels← newReachableLevels
8: newReachableLevels← reachableLevels ∪ Succ(reachableLevels)
9: until ↑newReachableLevels = ↑reachableLevels

10: return emptyLevel ∈ ↑reachableLevels

5.2.1 Termination of the decision procedure

Let X0 ⊆ X1 ⊆ X2 ⊆ . . . . be the sequence of sets of reachable levels constructed during the
execution of the algorithm, i.e.,

X0 = {initialLevel}
Xi+1 = Xi ∪ Succ(Xi)

The termination of the algorithm is a consequence of the following lemma:

Lemma 5.2.2 ([15, Lemma 2.4]). The sequence ↑X0 ⊆ ↑X1 ⊆ ↑X2 ⊆ . . . of upward-closed
sets eventually stabilizes, i.e., there exists m ∈ N such that ↑Xm = ↑Xm+1 = ↑Xm+2 . . . .

Proof. Let suppose that it does not stabilize and extract an infinite subsequence where in-
clusion is strict: ↑Xn0 ⊂ ↑Xn1 ⊂ ↑Xn2 ⊂ . . . . Now, for all i > 0 we can pick some level
Gi ∈ Xni \ Xni−1 . Since ≤maj (≤) is a wqo, the infinite sequence of Gi’s must contain an

increasing pair Gi ≤(≤)
maj Gj for some i < j. Because Gi belongs to an upward-closed set Xni we

have that Gj must also be in Xni and this contradicts the assumption that Gj /∈ Xnj−1 .

Observation 5.2.3. The m in Theorem 5.2.2 can be found effectively.

Proof. This is due to the fact that each Xi is finite and ≤(≤)
maj is decidable.

5.2.2 Correctness of the decision procedure

A basis of a upward-closed set I is a set Ib such that I = ∪x∈Ib↑x. Correctness of Algorithm 3
is grounded on the following theorems which we reproduce without proof:

Theorem 5.2.4. The set reachableLevels constructed by the algorithm is a finite basis for
↑ Succ∗({〈q0, 0〉})

Theorem 5.2.5. L(C) is non-empty iff ∅ ∈ Succ∗({〈q0, 0〉}) (i.e., the empty level is reachable
from the initial level)

Note that, since ∅ ≤(≤)
maj X ⇐⇒ X = ∅, then ∅ ∈ ↑Succ∗({〈q0, 0〉}) ⇐⇒ ∅ ∈

Succ∗({〈q0, 0〉}).
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5.3 Complexity of Emptiness for ITCA

We will extract an upper bound for the computational complexity from the proof of termina-
tion in Lemma 5.2.2.

First, note that, since Xi = Xi+1 implies ↑Xi = ↑Xi+1, and the algorithm ends when this
occurs, we have that for all i < m, Xi is strictly included in Xi+1.

As in the proof of Theorem 5.2.2, let {Gi} be the sequence of levels such that for all

i > 0, Gi ∈ Xi \ Xi−1. This is a bad sequence of levels in the ordering ≤(≤)
maj. Hence, the

complexity of the emptiness problem can be bounded by the length of the longest bad sequence

in (Levels,≤(≤)
maj).

As one can see, the application of Corollary 4.3.6 is not entirely straightforward because
it applies to the majoring ordering of finite sets of tuples of N with the underlying ≤pr and
not to levels with the underlying ordering of configurations ≤.

Reducing bad sequences of levels to bad sequences of finite set of tuples

We reduce bad sequences of levels to bad sequences of finite sets of tuples as follows. Suppose
Q = {q0, . . . , qs−1} and let q′i

def
= (i, s− i) ∈ N2. Clearly if p′ ≤pr q

′ then p′ = q′ and so p = q.
Let G be a level. Define

G′ def= {〈p′, u〉 ∈ Nk+2 | 〈p, u〉 ∈ G}.

The reader can verify that if G and H are levels then G′ ≤(≤pr)
maj H′ implies G ≤(≤)

maj H. Hence
G = G0,G1, . . . ,Gm, a bad sequence of levels of an itca with k counters, can be seen as a bad
sequence of the same length G′ = G′0,G′1, . . . ,G′m in P<∞(Nk+2) with the majoring ordering
studied in Chapter 4.

A control for the bad sequence in (P<∞(Nk+2),≤maj)

Since G0 = {q0, 0} then, in our construction, G′0 = {〈0, |Q| − 1, 0〉}. For i > 0, each G′i =
{c1, . . . , cpi} will have k+2-tuples where the first two components (the state part) are bounded
by |Q| and, at most, one of the rest of the components increments by one with respect to
the generating configuration in Gi−1. From Definition 3.0.1 we have that |G′i| = maxn{|cn|∞}.
Hence, the bad sequence of sets is g, 0-controlled by g(x) = x+ 1 + |Q|.

Now we can finally apply Corollary 4.3.6 to conclude

Theorem 5.3.1. The complexity of the emptiness problem for an itca with k counters is
upper bounded by a function in Fωk+2.

5.4 Complexity of Emptiness for ATRA

In [21], Jurdzińki and Lazić also defined the Alternating Tree Register Automaton (atra),
a top-down automaton with alternating control and one register to store and test data that
runs over data trees. A data tree is simply a labeled tree whose every node carries a data
value. A great variety of scenarios can be modeled with such trees and they are in close
relation to xml documents. For example, consider the assignment of teachers and classrooms
to courses of the computer science department. A simplified version of this problem can be
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modeled with trees described by the following grammar:

root→ (course)∗

course→ (teacher)+ classroom class−schedule

teacher→ id name

An example of such trees would be:

root

course
LyC

teacher

id
5

name
Santiago Figueira

classroom
3

class-schedule
Wednesday 17-19

course
PLP

teacher

id
7

name
Eduardo Bonelli

classroom
2

class-schedule
Tuesday 17-19hs

One can specify desirable properties and restrictions of data trees —being either about
the data values or the relationship between nodes— as accepting runs of atra.

The emptiness problem for this class of automata is proven decidable (but not primitive
recursive) via a pspace-reduction to emptiness for itca (see, [21, §3]). If the atra A has s

states then the itca C constructed in the reduction has k(s)
def
= 2s − 1 + 24s counters. Hence,

by the result of the previous section we conclude

Theorem 5.4.1. The complexity of emptiness for an atra with s states is upper bounded
by a function in Fωk(s)+2.



6. CONCLUSIONS

Upper bounds for controlled descending sequences in a well-order are easier to get than for
controlled bad sequences in a wqo’s.

We gave an upper bound for the length of controlled bad sequences over the majoring
ordering of sets of tuples by linearizing to controlled and descending sequences of multisets
with the natural multiset ordering. For the latter we also gave a tight upper bound, which is
of interest by itself. As applications we showed complexity upper bounds for the emptiness
problem for two classes of automata over trees (itca and atra).

As future work, we would like to:

• Prove, as we conjecture, that the upper bound for Lmaj
g,n (t) is tight.

• Improve the upper bound in Fωk+2 for itca. Using 2 components to represent the state
seems a little too wasteful.

As another line of research, we would like to study upper bounds for the bad sequences
over the dual of the majoring ordering, the minoring order:

A ≤(≤)
min B

def⇔ (∀y ∈ B)(∃x ∈ A) x ≤ y.

This is not in general a wqo: one needs the underlying ≤ to be an ω2-wqo [20, Theorem 1].
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