
e

Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

e

e

e
Complexity as Quality Attribute in Software Design

e
Tesis de Licenciatura en Ciencias de la Computación

e
e
e

Alumno : Andrés Rojas Paredes a eL.U.: 574/04∗

Director : Joos Heintz b

aandresrz1@gmail.comebjoos@dc.uba.ar

June 29, 2011

∗Research partially supported by the grant “Beca de Ayuda Económica Dr. Manuel Sadosky”



e



e

Resumen extendido

La arquitectura de software nació como concepto a fines de los años setenta y durante
los años ochenta con el objetivo de refinar el arte del diseño, mediante especificaciones
de grandes paquetes de programas. Desde el principio estuvo en el centro de la atención
una interacción con un tejido social, frecuentemente llamado “contrato” o “proyecto”.
Para tal fin se desarrolló un aparato conceptual con el fin de captar de manera uniforme
una gran variedad de situaciones muy diferentes entre śı. Hubo también algunos intentos
de modelización matemática, siendo la más destacable y avanzada la lógica de Hoare
del asserted programming. Aunque la lógica de Hoare es demasiado restrictiva para su
aplicación práctica, tuvo una gran repercusión en la enseñanza de la informática porque
formaliza dos aspectos fundamentales de la ingenieŕıa de software:

(1) Un programa no es simplemente un algoritmo modelizado mediante un cierto tipo
de máquina, sino contiene también una semántica definida en términos de especifi-
caciones y una demostración de su correctitud.

(2) La demostración de la correctitud de un programa no tiene la forma de una de-
mostración matemática cualquiera, sino esta sometida a una cierta estandardización.

El aspecto (2) representa una piedra fundamental para la visión arquitectónica de la
programación por dos razones. Una es la indecidibilidad de la equivalencia de programas
en lenguajes mı́nimamente recursivos y la otra es el requerimiento práctico que no debeŕıa
ser tarea del programador demostrar la conjetura de Riemann antes de meterse en la
implementación de un algoritmo de teoŕıa de números.

El ejemplo de la lógica de Hoare nos sirve en esta exposición como testigo para la afir-
mación de que no todos los aspectos de la ingenieŕıa de software tienen carácter subjetivo
o social. Existen también aspectos objetivizables e independientes del individuo.

La meta de esta tesis es elaborar algunos de estos aspectos objetivizables y estudiarlos
mediante un método cient́ıfico. Esto requiere una modelización matemática y la justifi-
cación informática de la misma. Tal modelización permite la aplicación de herramientas
matemáticas para sacar conclusiones matemáticas que a su vez deben ser retraducibles al
contexto original informático. La problemática de este procedimiento es la siguiente: la
matemática es la ciencia de las trivialidades y tautoloǵıas y por lo tanto sus herramientas
son inespećıficas. No es de esperar que una modelización exacta de un contexto informático
permita sacar grandes conclusiones matemáticas que a su vez conducen a sorprendentes y
desconocidas inferencias informáticas. Por otro lado una modelización grosera matemática
permitiŕıa solamente conclusiones muy generales e inespećıficas para la informática. Por
esta razón el trabajo propuesto se concentra en el “tuning” adecuado de la modelización
y no en el aparato matemático (que, sea dicho aparte, es de ninguna manera trivial) para
sacar conclusiones informáticas.

La ingenieŕıa de software de los años setenta y ochenta tuvo que luchar con estas
dificultades. La generalidad del planteo no permitió formular y demostrar conclusiones
rigurosas. Por esta razón este trabajo limita la aplicación de conceptos de la ingenieŕıa de

i



software al campo más reducido de la computación cient́ıfica y recurre a una restricción
adicional sobre la arquitectura fijando un nivel de abstracción predeterminado.

Dentro de la computación cient́ıfica el trabajo se concentra en problemas y algoritmos
de eliminación e interpolación polinomiales y el nivel de abstracción predeterminado es el
modelo algebraico de complejidad en cuerpos como R y C con las operaciones aritméticas
(adición, substracción, multiplicación y división) implementadas a costo unidad. La idea
es que los programas considerados admitan polimorfismo y puedan ser ejecutados tanto en
entorno numérico con precisión finita como en un entorno simbólico con precisión infinita.

Este nivel de abstracción impone sus reglas de juego. Divisiones en algoritmos del
modelo algebraico conducen a branchings, lo que no es apropiado para una interpretación
numérica. Sin embargo, ciertas divisiones de tipo 0/0 pueden ser remplazadas por lim-
ites que se adaptan mucho mejor a la interpretación numérica (un ejemplo es la regla
de L´Hôpital). Esto conduce a un modelo donde se restringen las divisiones a los casos
donde ellas representan ĺımites. Para las tareas algoŕıtmicas consideradas en este trabajo
esta restricción alcanza y representa adecuadamente el concepto sintáctico de branching–
freeness. Sin embargo, detrás de esto se esconde un concepto más profundo: los problemas
que se consideran en este trabajo admiten degeneraciones a problemas ĺımites. Por lo tanto
es natural pedir que los algoritmos que resuelven estos problemas capten estas degenera-
ciones. En teoŕıa de interpolación esto se llama informalmente “coalescencia”. La noción
de coalescencia permite una modelización ńıtida, transparente y geométrica que refleja las
divisiones admitidas en el modelo bajo consideración. Esta modelización se encuentra re-
alizada por la noción precisa y matemática de la “robustez geométrica” de una aplicación
racional. La robustez geométrica representa un atributo de calidad dicotómico (quality
attribute) de un software, y tiene su análogo discreto en el aprendizaje de patrones (ver
Sección 5.3.1). Uno de los objetivos principales del trabajo es un análisis en profundidad
de propiedades de algoritmos como la “coalescencia” o el “branching–freeness” bajo el
aspecto de atributo de calidad.

Las herramientas matemáticas utilizadas permiten ahora conclusiones sorprendentes.
Otro atributo de calidad, esta vez cuantitativo, de un algoritmo o programa es su compleji-
dad contada en cantidad de operaciones aritméticas. Las herramientas matemáticas men-
cionadas permiten ahora establecer un trade–off entre el atributo de calidad dicotómico de
la robustez geométrica y el atributo de calidad cuantitativo de la complejidad: algoritmos
generales (”universales”) y geométricamente robustos, que resuelven ciertos problemas
naturales de eliminación e interpolación, tienen necesariamente una complejidad que es
exponencial en el tamaño de la representación sintáctica de la entrada, y esto con mı́nimos
requerimientos en la arquitectura y sin haber detallado las estructuras o tipos de datos
que iban a intervenir.

La técnica para demostrar tal resultado representa en si misma una innovación en el
campo de la geometŕıa algebraica. Partes del método motivan en este campo preguntas
totalmente nuevas como la cuestión de la desingularización de una variedad uniracional
dada como imagen de un morfismo (y no por ecuaciones) o cuantos blow ups requiere la
transformación de una aplicación racional dada en una polinomial? La sorpresa es que la
cuestión de la desingularización y el análisis geométrico de las aplicaciones racionales está
ı́ntimamente relacionada con la arquitectura de software en cálculo cient́ıfico. En ambos
campos surgen las mismas preguntas y se aportan las mismas respuestas. La Sección 6.5.5
del trabajo será dedicada a la exposición de esta sorprendente relación entre dos campos

ii



que a primera vista están completamente alejados.
Necesariamente el trabajo debe contener una parte introductoria donde se explican

las herramientas matemáticas. En esta parte las demostraciones estarán remplazadas
por referencias a publicaciones recientes. Sin embargo, una parte (más pequeña) de las
herramientas es nueva y aparecerá con demostraciones en un apéndice (ver Appendix A).

La parte central y más innovativa del trabajo es la Sección 6 donde se introduce un
modelo matemático para el análisis general de tareas computacionales del cálculo cient́ıfico
en el contexto de los algoritmos seminuméricos (que usan como estructura de datos básica
los circuitos aritméticos). La atención será puesta sobre el caso particular de tareas de
eliminación en geometŕıa algebraica efectiva. El aporte principal de esta sección consiste
en la fundamentación, motivación y justificación de este modelo matemático mediante
criterios que provienen de la ingenieŕıa de software. Se demuestra que las caracteŕısticas
matemáticas esenciales son consecuencias directas de los requerimientos funcionales o no–
funcionales de software que se encuentran altamente aceptados por la comunidad de in-
genieŕıa de software y que se pueden aplicar alternativamente. El primero de estos re-
querimientos es funcional, el segundo es no–funcional. La conclusión matemática de esta
modelización en la forma dada en esta tesis, es nueva y representa un resultado informático
sorprendente: en la Sección 6.5.1 se exhibe una familia infinita de problemas básicos de
eliminación geométrica tal que cualquier algoritmo de nuestro modelo que calcula los
polinomios de eliminación asociados a partir de la entrada dada requiere un tiempo ex-
ponencial. Sin embargo, no se responde la pregunta si los polinomios de eliminación, con
el algoritmo que sea, fueran dif́ıciles de evaluar. Pretendiendo responder a esta última
pregunta, todos los intentos anteriores de atacar el problema resuelto en esta tesis, fra-
casaron. Una variante decisional de este problema es la conjetura PC 6= NPC en el modelo
de las máquinas de Turing continuas de Blum, Shub y Smale [BSS89], el modelo BSS.
Como nuestro resultado no se refiere a un contexto decisional, sino al cálculo de un objeto
matemático, un polinomio de eliminación, no demostramos esta conjetura, ni siquiera en
un modelo de recursos restringidos de máquinas de Turing BSS.

Finalmente recalcamos que el resultado principal de la Sección 6 puede ser interpre-
tado como un trade–off entre un atributo de calidad cualitativo (el requerimiento no–
funcional de la robustez en combinación con otro requerimiento, llamado isoparametŕıa) y
uno cuantitativo (una clase de complejidad algoŕıtmica). En este sentido se trata de una
certificación matemática de un trade–off entre dos atributos de calidad. No conocemos
otro caso en la literatura.

iii



e



e
e

Agradecimientos

Umberto Eco recomienda en su libro [Eco06] no agradecer al director de la
tesis. No haciendo caso a esta regla deseo expresar mi más profundo agradec-
imiento a mi director Joos Heintz por su gran dedicación para concluir este
trabajo y por su gúıa y acompañamiento en el camino de esta investigación.
Sin él este trabajo no hubiera sido posible. Agradezco de la misma forma a mi
mamá Felicidad Susana Paredes por su ayuda, sacrificio y continuo aliento
para terminar esta tesis.
Deseo agradecer también a la señorita Hvara Azul Ocar por sus ideas, conse-
jos y ayuda en la redacción de más de una sección de este trabajo. Gracias a
Diego de Estrada por sus consejos de latex que me ahorraron horas y horas de
compilación. Y gracias a mis compañeros que durante la carrera estuvieron
ahi en el “horno” junto conmigo.

Andrés Rojas Paredes

v



e



e

Complexity as Quality Attribute in Software Design

Abstract

We introduce a software architecture based computation model for Scien-
tific Computing. Its relevance becomes illustrated by the precise formulation
and solution of a more than thirty years open complexity problem in Effective
Algebraic Geometry (elimination theory).

Contents

1 Introduction 1
1.1 The subject matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Concepts and tools from Algebraic Geometry 6
2.1 Basic notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Constructible sets and constructible maps . . . . . . . . . . . . . . 8

2.2 Weakly continuous, strongly continuous, topologically robust and heredi-
tary maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 The concept of robustness for constructible maps . . . . . . . . . . . . . . . 9
2.3.1 An algebraic characterization of the notion of topological robustness 10
2.3.2 The notion of geometrical robustness . . . . . . . . . . . . . . . . . 11

3 Concepts from Software Engineering 15
3.1 Basic definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Functional and (non–functional) requirements . . . . . . . . . . . . 17

4 Univariate Hermite–Lagrange interpolation 20
4.1 Interpolation: an area of Numerical Analysis . . . . . . . . . . . . . . . . . 20
4.2 Lagrange interpolation problems and algorithms . . . . . . . . . . . . . . . 21

4.2.1 Lagrange interpolation problems . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Mathematical modeling of the notion of Lagrange interpolation

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Additional requirements: Coalescence . . . . . . . . . . . . . . . . . 23
4.2.4 Lagrange interpolation algorithms . . . . . . . . . . . . . . . . . . . 23
4.2.5 Mathematical modeling of the notion of Lagrange interpolation al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



4.3 A general interpolation model . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Relationship between interpolation and geometric elimination . . . . . . . . 26
4.5 Examples of Univariate Hermite–Lagrange interpolation . . . . . . . . . . . 27

4.5.1 Univariate Lagrange interpolation at fixed nodes . . . . . . . . . . 27
4.6 Trade-off results: complexity and coalescence . . . . . . . . . . . . . . . . . 30
4.7 Discussion of the mathematical interpolation model . . . . . . . . . . . . . 32
4.8 Polymorphism in the general interpolation model . . . . . . . . . . . . . . . 35

4.8.1 The origin of polymorphism . . . . . . . . . . . . . . . . . . . . . . 35
4.8.2 Polymorphism as a property of the implementation . . . . . . . . . 35
4.8.3 Polymorphism in object oriented programming . . . . . . . . . . . 36

4.9 A terminology dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Coalescence and branching parsimoniousness compared with other
quality attributes 48
5.1 Quality attribute scenarios for coalescence and branching parsimoniousness 48

5.1.1 Quality attribute scenario for coalescence . . . . . . . . . . . . . . . 49
5.1.2 Quality attribute scenario for branching parsimoniousness . . . . . 49

5.2 Scenario comparison with classical quality attributes . . . . . . . . . . . . . 50
5.2.1 Comparison with coalescence . . . . . . . . . . . . . . . . . . . . . 51
5.2.2 Comparison with branching parsimoniousness . . . . . . . . . . . . 52

5.3 Examples of suitable quality attributes . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Quality attributes that restrict the set of possible outputs . . . . . 54
5.3.2 Quality attributes that restrict the structure of the program . . . . 55
5.3.3 Remarks about suitable Quality Attributes . . . . . . . . . . . . . . 57

6 A software architecture based computation model for arithmetic circuits 58
6.1 Aims and paradigmatic examples . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Parameterized arithmetic circuits and their semantics . . . . . . . . . . . . 61

6.2.1 A specification language for circuits . . . . . . . . . . . . . . . . . . 65
6.3 Generic computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 A model for branching–free computation. Informal discussion . . . . . . . . 68

6.4.1 The simplified, branching–free computation model . . . . . . . . . . 72
6.4.2 The extended computation model . . . . . . . . . . . . . . . . . . . 83

6.5 Applications of the extended computation model to complexity issues of
effective elimination theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5.1 Flat families of zero–dimensional elimination problems . . . . . . . 89
6.5.2 The elimination of a block of existential quantifiers . . . . . . . . . 97
6.5.3 Arithmetization techniques for boolean circuits . . . . . . . . . . . 100
6.5.4 The multivariate resultant . . . . . . . . . . . . . . . . . . . . . . . 103
6.5.5 Divisions and blow ups . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.6 Comments on complexity models for geometric elimination . . . . . 107

7 Conclusions 112
7.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 An ontological view of our investigation . . . . . . . . . . . . . . . . . . . . 112

viii



A Appendix : Geometrical complement 114
A.1 The geometrically robust closure of an irreducible affine variety . . . . . . . 114

B Appendix : Correctness proofs 120
B.1 Correctness of Lagrange interpolation algorithms . . . . . . . . . . . . . . . 120

B.1.1 Lagrange Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.1.2 Monomial Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.1.3 Newton Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

List of Tables

1 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 A terminology dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3 Scheme of argumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

List of Figures

1 Three scientific fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Interpretation and reinterpretation . . . . . . . . . . . . . . . . . . . . . . . 3
3 Simple software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Relations between the components of a software architecture . . . . . . . . 16
5 Lagrange interpolation problem . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Algorithm in the narrow sense . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Representation of p by the coefficients r . . . . . . . . . . . . . . . . . . . . 25
8 Representation of the final result p by the vector of scalars r′ of an arith-

metic circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9 General interpolation model . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10 Interpolation model with polynomials easy to evaluate . . . . . . . . . . . . 31
11 Example of inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12 Example of overriding polymorphism . . . . . . . . . . . . . . . . . . . . . 37
13 representation vs. inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14 Parts of a Concrete Object . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
15 Correspondence between Routine and Abstract Function . . . . . . . . . . 46
16 Quality attribute scenario for coalescence . . . . . . . . . . . . . . . . . . . 49
17 Quality attribute scenario for branching parsimoniousness . . . . . . . . . . 50
18 Overview of quality attributes scenarios . . . . . . . . . . . . . . . . . . . . 51
19 Coincidences between coalescence and quality attributes . . . . . . . . . . . 51
20 Differences between coalescence and quality attributes . . . . . . . . . . . . 52
21 Coincidences between branching parsimoniousness and quality attributes . 53
22 Differences between branching parsimoniousness and quality attributes . . 54
23 Input and output of a classifier . . . . . . . . . . . . . . . . . . . . . . . . . 55
24 Training of a classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
25 Relation between (internal/external) quality attributes and tactics . . . . . 56
26 Software architecture for non-negative integers . . . . . . . . . . . . . . . . 59
27 Parts of parameterized arithmetic circuit β . . . . . . . . . . . . . . . . . . 62

ix



28 Intermediate results Gρ and Fρ . . . . . . . . . . . . . . . . . . . . . . . . . 70
29 Generation of the hypergraph HA(β) . . . . . . . . . . . . . . . . . . . . . . 76
30 Software architecture for elimination problems. . . . . . . . . . . . . . . . . 90

List of Definitions

1 Polynomial map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Rational map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Constructible set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Constructible map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Weakly, strongly continuous, topologically robust and hereditary maps . . . . . 9
7 Finitely determined map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8 Abstract Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10 Quality attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11 Arithmetic circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
12 Interpolation datum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
13 Interpolant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
14 Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
15 Interpolation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
16 Interpolation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
17 Object Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
18 Abstract Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
19 Mathematical Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
20 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
21 Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
22 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
23 Abstraction Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
24 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
25 Axioms of Abstract Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
26 Constructible Constraints of Object Class . . . . . . . . . . . . . . . . . . . . . 44
27 Implementation Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
28 Constructible Constraints of Data Structure . . . . . . . . . . . . . . . . . . . . 45
29 Function of an Abstract Data Type . . . . . . . . . . . . . . . . . . . . . . . . . 45
30 Identity and Value Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
31 Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
32 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
33 Branching parnimoniousness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
34 Robust circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

x



1 Introduction

In this thesis we hike1 through three scientific fields, namely Algebraic Geometry, Com-
putational Complexity Theory and Software Engineering2. More specifically, we combine
Complexity Theory and Software Engineering in the aim to analyse trade–offs between
computational complexity and certain other quality attributes of algorithms in Scientific
Computing, in particular in computational Algebraic Geometry. The main tool to achieve
this goal belongs to pure mathematics. Figure 1 illustrates the topography of the scientific
region where our hike takes place.

Algebraic Geometry

Software
Engineering

Computational
Complexity Theory

main tool

complexityquality
attributes

Figure 1: Three scientific fields.

The shadowy part of Figure 1 represents the area of Software Engineering where our
hike ends. We are now going to explain our itinerary. We start with our subject matter
in the next Section 1.1, continue with our main goal in Section 1.2 and describe finally in
Section 1.3 the organization of this thesis.

1.1 The subject matter

Already known results and notions from the field of Algebraic Geometry do not suffice to
state and prove the main conclusion of this thesis in Section 6.5.1. Therefore, we have
to undertake some new and genuine work, which is of its own interest in the context of
rational maps and singularities. The field of Algebraic Geometry does not only provide
our main tool for the intended trade–off analysis between quality attributes, but also our

1To go for a long walk in the land, which is left in its natural condition.
2Algebraic Geometry is a branch of Mathematics concerned with the study of algebraic va-

rieties defined by polynomial equations systems that deals with the resources necessary to solve
computational problems, see e.g. [Har92]. Computational Complexity Theory is a research area
of Computer Science, see e.g. [RW04]. Software Engineering is the field of Computer Science that
deals with the building of software systems, see e.g. [GJM03].

1



main application domain. All computational problems we consider in this thesis have a
background, which may be expressed as special instances of the general task of geometric
elimination consisting of the effective elimination of a fixed number of quantifier blocks
in prenex formulas of the first order theory of algebraically closed fields of characteristic
zero. In such formulas quantifiers may be eliminated by means of known algorithms
whose sequential time complexity in the bit model depends exponentially on the number
of occurring variables, polynomially on the number and degree, and polylogarithmically
on the bit length of the coefficients of the polynomials involved.

In this context polynomials and integers are considered as objects belonging to abstract
data types, which become implemented by their coefficients and by their bit representation,
respectively. This distinction between abstract data types and their implementations is
important because the mentioned upper bound for the complexity of geometric elimination,
which is based on the coefficient and bit implementation of polynomials and integers, turns
out to be asymptotically optimal. Therefore, improvements and refinements of this bound
can only be expected if we take into account non–standard implementations of the abstract
data types polynomial and integer, e.g. by means of arithmetic circuits.

At this point we become aware about the interaction between implementation and
complexity in geometric elimination. Since this interaction depends on the implementation
of a previously fixed abstract data type, we arrive finally to an architectural point of view
which involves not just the components of a geometric elimination algorithm, but also the
structure of these components and the relationships between them. Thus, we arrive to a
Software Engineering perspective.

In this thesis we shall limit the application of concepts of Software Engineering to the
area of elimination theory in elementary Algebraic Geometry and to Interpolation Theory.
As far as software architecture is concerned, we restrict our attention to a predetermined
level of abstraction. The level of abstraction we choose is the algebraic complexity model
over C with the arithmetic operations and the equality check implemented at unit costs.

This architectural view involves not only the implementation of the abstract data type
polynomial (or rational function) in the algebraic complexity model over C, but also the
fulfillment of certain quality attributes, also called non–functional requirements. These
quality attributes appear by means of a limit behaviour of the computational problems
considered in this thesis. Thus it is natural to require that the algorithms that solve these
problems should be able to capture such a limit behaviour. We refer to this situation using
an informal concept of Interpolation Theory, namely coalescence3.

We shall formalize the concept of coalescence by means of a mathematical model,
introducing the notion of geometrical robustness of a rational map4. In other words,
geometrical robustness will formalize the dichotomic quality attribute of coalescence and
this will allow us to draw interesting conclusions.

Another quality attribute, this time a quantitative one, is the computational complex-
ity of an algorithm, measured by the number of arithmetic operations executed in run
time. Our mathematical tools will allow to certify a trade–off between the dichotomic

3An introduction to the concept of coalescence in the context of Interpolation Theory is given in
Section 4.2.3. An interpretation of coalescence as quality attribute and its similarity with another
quality attribute, namely performance, can be found in Section 5.

4The definition of geometrical robustness can be found in Section 2.3 and the rôle of this concept
in the formulation of trade–offs is explained in Section 4.6.

2



quality attribute of geometrical robustness and the quantitative quality attribute of com-
putational complexity:
geometrically robust algorithms that solve certain natural problems of geometric elimina-
tion and interpolation, have necessarily a computational complexity that is exponential in
the size of the syntactic representation of the input.

1.2 Motivation

Our main goal is to establish a mathematical computation model that allows a kind of
trade–off considerations that are not possible in the actual state of the art in Software
Engineering. The model we are going to introduce admits certain formal mathematical
conclusions which can be reinterpreted in terms of Computer Science (see Figure 2).

Computer Science interpretation eeee Mathematical computation model

Figure 2: Interpretation and reinterpretation

Our mathematical model has two aspects. The first aspect concerns the complexity
issues of elimination in elementary Algebraic Geometry with special emphasis on lower
bounds. The second aspect is related to the first and concerns trade–offs between quality
attributes in scientific computing.

There is a practical aim behind our theoretical research. Consider the process in
software design where a software architecture is developed in order to solve a certain
computational problem which is supposed to be given by a formal specification. Assume
also that one of the non–functional requirements of the software design project consists of
a restriction on the run time computational complexity of the program which is going to be
developed. The software engineer may wish to know at an early stage of the design process
whether the decisions already taken by him will not violate at the end the non–functional
requirements which he has to satisfy. Our practical aim is to provide the software engineer
with an efficient tool which allows him to answer the question whether his software design
process is entering at some moment in conflict with the given complexity requirement. If
this is the case, the software engineer will be able to change at this early stage his design
and may look for an alternative software architecture.

An example of this way of thinking is the implementation of the mathematical concept
of a finite subset of a possibly infinite ordered ambient set, e.g. the natural numbers N.
Suppose that our task is to implement the abstract concept of finite sets and that we have
chosen an implementation by means of arrays. Figure 3 illustrates this simple software
architecture.

3



eeeSeteee

eeArrayee
e Software component

Implements relation

Figure 3: Simple software architecture

Suppose now that one has to satisfy the requirement that membership to a finite set S
of cardinality n can be decided using only O(log n) comparisons with the elements of any
given array implementing S. If the set S is implemented by an unordered array, we will
be unable to satisfy our complexity requirement. So we are forced to think in alternative
implementations of the abstract concept of a finite set, e.g. by ordered arrays, special
trees or any other data type which is well suited for our task.

This example represents a case where it may be impossible to satisfy a given complexity
requirement by means of a previously fixed software architecture. Such impossibility
results are usually difficult to infer when the number of components of the system under
consideration is large or when the predicate to decide or the function to compute becomes
more sophisticated like in polynomial equation solving.

This leads us to the idea to fix in advance only a small selection of architectural fea-
tures, e.g. the abstraction levels or part of the language of our system (not the algorithms
and routines themselves). Such a computation model should allow conclusions about the
satisfiability of certain functional and non–functional requirements.

1.3 Organization of the thesis

This thesis is composed by seven sections and two appendices, including this introductory
section. In Section 2 we recall definitions and notations from Algebraic Geometry and
develop the main tool for our research on quality attribute trade–offs. In Section 3 we
recall definitions and concepts from Software Engineering, in particular from software
architecture and the theory of quality attributes.

The exposition of our own work starts with Section 4 where we combine the concepts
introduced in Sections 2 and 3. In this section we discuss Hermite–Lagrange interpolation
and its computational issues. Following [GHMS11] we carry out a strict distinction be-
tween the concepts of interpolation problem and interpolation algorithm. This distinction
leads us to the formulation of an interpolation model in terms of software architecture
which includes quality attribute restrictions. We present the mentioned informal concept
of coalescence as a quality attribute of interpolation algorithms.

In Section 4.5 we illustrate our interpolation model by a couple of well known examples
from univariate Hermite–Lagrange interpolation. In Section 4.6 we continue explaining
how our computation model can be used in order to certify quality attribute trade–offs.
In Section 4.7 we present some open questions about our interpolation model, e.g. some
questions concerned with the rôle of memory during the execution of an interpolation
algorithm. In Section 4.8 we establish a link between the concepts of polymorphism and
software architecture of interpolation algorithms.

4



We finish Section 4 with a dictionary. The mathematical and complexity theoretical
aspects of this thesis were introduced in [GHMS11], where the authors used their own
terminology. Here we present the results of [GHMS11] from a different point of view, the
difference consisting mainly of the language which we adopt in this thesis. We standardize
the terminology of [GHMS11] by means of concepts taken from object oriented program-
ming in the spirit of B. Meyer [Mey00]. This translation of concepts is carried out by
means of a dictionary which we present and justify in Section 4.9.

In Section 5 we discuss another, quality attribute, called branching parsimoniousness,
which keeps some similarity with coalescence. These quality attributes become then anal-
ysed from the point of view of scenarios (see [BCK03]). We exhibit properties and examples
of quality attributes in Software Engineering which may be compared to coalescence and
branching parsimoniousness.

In Section 6 we present a mathematical computation model which captures all known
algorithms in effective Algebraic Geometry and almost all in symbolic or seminumeric
scientific computing. The model becomes justified by arguments coming from Software
Engineering and in Section 6.5.1 we exhibit an infinite family of simple elimination prob-
lems whose computational solution in our model requires algorithms of exponential time
complexity. The model is based on the representation of polynomials by arithmetic cir-
cuits.

In Section 6.5.5 our mathematical tools are discussed from the point of view of (qual-
itative) Algebraic Geometry, especially desingularization techniques (blow ups). Section
6.5.6 is devoted to the comparison of our point of view with other computation models.

Section 7 is devoted to conclusions, future work and open questions.
We finish this thesis with Appendix A where we present an original result which is of

its own interest for the discussion of rational functions and maps in Algebraic Geometry,
and Appendix B.1 contains the correctness proofs of the interpolation algorithms discussed
in Section 4.5.

5



2 Concepts and tools from Algebraic Geometry

In this section we use freely standard notions and notations from Commutative Algebra
and Algebraic Geometry. These can be found for example in [Lan93], [ZS60], [Kun85] and
[Sha94]. In Sections 2.2 and 2.3 we introduce the notions and definitions which constitute
our fundamental tool for the modeling of elimination problems and algorithms. All these
notions and their definitions are taken from [GHMS11].

2.1 Basic notations and definitions

2.1.1 Basic notations

For any n ∈ N, we denote by A
n := A

n(C) the n–dimensional affine space C
n equipped

with its respective Zariski and Euclidean topologies over C. In algebraic geometry, the
Euclidean topology of An is also called the strong topology. We shall use this terminology
only exceptionally.

Let X1, . . . ,Xn be indeterminates over C and let X := (X1, . . . ,Xn). We denote by
C[X] the ring of polynomials in the variables X with complex coefficients.

We denote by ΠD the C–vector space of polynomials of degree at most D of the
polynomial ring C[X].

Let V be a closed affine subvariety of An, that is, the set of common zeros in A
n of a

finite set of polynomials belonging to C[X]. As usual, we write dimV for the dimension of
the variety V . Let C1, . . . , Cs be the irreducible components of V . For 1 ≤ j ≤ s we define
the degree of Cj as the number of points which arise when we intersect Cj with dimCj
many generic affine hyperplanes of An. Observe that this number is a well determined
positive integer which we denote by degCj. The (geometric) degree deg V of V is defined
by deg V :=

∑
1≤j≤s degCj. This notion of degree satisfies the so called Bezout Inequality.

Namely, for another closed affine subvariety W of An we have

degV ∩W ≤ deg V · degW.

For details we refer to [Hei83], where the notion of geometric degree was introduced and the
Bezout Inequality was proved for the first time (other references are [Ful84] and [Vog84]).

For f1, . . . , fs, g ∈ C[X] we shall use the notation {f1 = 0, . . . , fs = 0} in order
to denote the closed affine subvariety V of A

n defined by f1, . . . , fs and the notation
{f1 = 0, . . . , fs = 0, g 6= 0} in order to denote the Zariski open subset Vg of V defined by
the intersection of V with the complement of {g = 0}. Observe that Vg is a locally closed
affine subvariety of An whose coordinate ring is the localization C[V ]g of C[V ].

We denote by I(V ) := {f ∈ C[X] : f(x) = 0 for any x ∈ V } the ideal of defini-
tion of V in C[X] and by C[V ] := {ϕ : V → Ce; there exists f ∈ C[X] with ϕ(x) =
f(x) for any x ∈ V } its coordinate ring. Observe that C[V ] is isomorphic to the quotient
C–algebra C[V ] := C[X]/I(V ). If V is irreducible, then C[V ] is zero–divisor free and we
denote by C(V ) the field formed by the rational functions of V with maximal domain
which is called the rational function field of V . Observe that C(V ) is isomorphic to the
fraction field of the integral domain C[V ].

In the general situation where V is an arbitrary closed affine subvariety of An, the
notion of a rational function of V has also a precise meaning. The only point to underline

6



is that the domain, say U , of a rational function of V has to be a maximal Zariski open
and dense subset of V to which the given rational function can be extended. In particular,
U has a nonempty intersection with any of the irreducible components of V .

We denote by C(V ) the C–algebra formed by the rational functions of V . In algebraic
terms, C(V ) is the total quotient ring of C[V ] and is isomorphic to the direct product of
the rational function fields of the irreducible components of V .

Table 1 summarizes these notations.

Notation Meaning
An the n–dimensional affine space Cn

C[X ] the ring of polynomials in the variable X

with complex coefficients
ΠD the C–vector space of polynomials

of degree at most D of C[x]
dimV the dimension of the variety V

deg V the (geometric) degree of the variety V

{f1 = 0, . . . , fs = 0} the closed affine subvariety V of An

defined by f1, . . . , fs ∈ C[X ]
I(V ) the ideal of definition of V in C[X ]
C[V ] the coordinate ring of V in C[X ]
C(V ) the C–algebra formed by the

rational functions of V

Table 1: Basic notations

2.1.2 Basic definitions

Let be given a partial map φ : V 99K W , where V and W are closed subvarieties of some
affine spaces An and A

m, and let φ1, . . . , φm be the components of φ. With these notations
we have the following definitions which can be found in [GHMS11]:

Definition 1 (Polynomial map) The map φ is called a morphism of affine varieties or
just polynomial map if the complex valued functions φ1, . . . , φm belong to C[V ]. Thus, in
particular, φ is a total map.

Definition 2 (Rational map) We call φ a rational map of V to W , if the domain U of
φ is a Zariski open and dense subset of V and φ1, . . . , φm are the restrictions of suitable
rational functions of V to U .

Observe that our definition of a rational map differs from the usual one in Algebraic
Geometry, since we do not require that the domain U of φ is maximal. Hence, in the case
m := 1, our concepts of rational function and rational map do not coincide.

7



2.1.3 Constructible sets and constructible maps

Let M be a subset of some affine space A
n and, for a given nonnegative integer m, let

φ : M 99K A
m be a partial map.

Definition 3 (Constructible set) We call the set M constructible if M is definable by
a Boolean combination of polynomial equations.

A basic fact we shall use in the sequel is that if M is constructible, then its Zariski
closure is equal to its Euclidean closure (see, e.g. [Mum88], Chapter I, §10, Corollary 1).
In the same vein we have the following definition.

Definition 4 (Constructible map) We call the partial map φ constructible if the graph
of φ is constructible as a subset of the affine space A

n × A
m.

We say that φ is polynomial if φ is the restriction of a morphism of affine varieties
A
n → A

m to a constructible subset M of An and hence a total map from M to A
m.

Furthermore we call φ a rational map of M if the domain U of φ is contained in M and
φ is the restriction to M of a rational map of the Zariski closure M of M. In this case U
is a Zariski open and dense subset of M.

Since the elementary, i.e. first order theory of algebraically closed fields with constants
in C admits quantifier elimination, constructibility means just elementary definability. In
particular, φ constructible implies that the domain and the image of φ are constructible
subsets of An and A

m, respectively.
A useful fact concerning constructible maps we are going to use in the sequel is the

following result (see, e.g. [Mar02], Proposition 3.2.14).

Lemma 1 Let M be a constructible subset of An and let φ : M 99K A
m be a partial map.

Then φ is constructible if and only if there exists a partition of its domain in finitely many
constructible subsets, say M1, . . . ,Ms, such that for any 1 ≤ k ≤ s the restriction of φ to
Mk is a rational map of Mk which is defined at any point of Mk.

In particular, if φ : M → A
m is a total constructible map, then there exists a Zariski

open and dense subset U of M such that the restriction φ|U of φ to U is a rational map.

2.2 Weakly continuous, strongly continuous, topologically
robust and hereditary maps

We are now going to introduce the notions of a weakly continuous, a strongly continuous, a
topologically robust, a geometrically robust and a hereditary map of the constructible set
M. These five notions will constitute our fundamental tool for the modeling of elimination
problems and algorithms.

Definition 5 (Conditions and notions) Let M be a constructible subset of An and let
φ : M → A

m be a (total) constructible map. We consider the following four conditions:

(i) there exists a Zariski open and dense subset U of M such that the restriction φ|U
of φ to U is a rational map of M and the graph of φ is contained in the Zariski
closure of the graph of φ|U in M× A

m;

8



(ii) φ is continuous with respect to the Euclidean, i.e. strong, topologies of M and A
m;

(iii) for any sequence (xk)k∈N of points of M which converges in the Euclidean topology
to a point of M, the sequence (φ(xk))k∈N is bounded;

(iv) for any constructible subset N of M the restriction φ|N : N → A
m is an extension

of a rational map of N and the graph of φ|N is contained in the Zariski closure of
this rational map in N × A

m.

We call the map φ

• weakly continuous if φ satisfies condition (i),

• strongly continuous if φ satisfies condition (ii),

• topologically robust if φ satisfies conditions (i) and (iii),

• hereditary if φ satisfies condition (iv).

In all these cases we shall refer to M as the domain of definition of φ or we shall say
that φ is defined on M.

Remark 2 Let φ : M → A
m be a weakly continuous total constructible map. Then φ is

topologically robust if and only if there exists a Zariski open and dense subset U of M such
that the restriction φ|U of φ to U is a rational map of M and, for any sequence (xk)k∈N
of points of U which converges in the Euclidean topology to a point of M, the sequence
(φ(xk))k∈N is bounded.

Let us now describe the existing interdependence of the notions of a weakly continuous,
a strongly continuous, a topologically robust and a hereditary map.

Lemma 3 Let φ : M → A
m be a strongly continuous constructible map. Then φ is weakly

continuous, topologically robust and hereditary.

On the other hand, a weakly continuous or a topologically robust map is not necessarily
strongly continuous (see [GHMS11], Example 5).

The concept of hereditarity sounds rather abstract and axiomatic. We shall need it
in Section 6 for a mathematically correct and complete formulation of our computation
model. In Section 2.3 we shall establish an algebraic condition, namely geometric robust-
ness, which implies hereditarity.

2.3 The concept of robustness for constructible maps

In this section we introduce an algebraic–geometric tool we shall use in Section 4 and 6 for
the mathematical modeling of the informal concept of coalescence. The exact definition
of coalescence depends on the context. For example in Interpolation Theory coalescence
refers to certain types of “convergence” of problems and algorithms (see [BC97], [dBR92],
[Olv06] and Section 4.2.3 for details).

The main issue of this section will be the notion of a geometrically robust map which
captures simultaneously the concepts of topological robustness and hereditarity introduced

9



in Section 2.2. We start with an algebraic characterization of the notion of a topologically
robust map (Theorem 5 and Corrollary 6 below). Then we introduce the notion of a
geometrically robust map and show that such maps are always hereditary (see Theorem
9 and Proposition 8 below).

2.3.1 An algebraic characterization of the notion of topological robust-
ness

In this subsection we shall exhibit a series of algebraic–geometric results of [GHMS11]
which we shall use later in Sections 4 and 6. The proofs can be found in [GHMS11] and
will be omitted here.

For the moment let us fix a constructible subset M of the affine space An and a (total)
constructible map φ : M → A

m with components φ1, . . . , φm. Suppose the map φ is
weakly continuous in the sense of Definition 5 in Section 2.2, namely,

there exists a Zariski open and dense subset U of M such that the restriction φ|U
is a rational map of M and the graph of φ is contained in the Zariski closure Γ of
the graph of φ|U in M× A

m.

Observe that Γ is a constructible subset of An × A
m that contains the graph of φ.

Furthermore, let π:
A
n × A

m → A
n

⊂ ⊂

Γ
π
→ M

be the first projection of Γ onto M which for (x, y) ∈ Γ is defined by π(x, y) := x. Observe
that π is a polynomial map.

We recall from Definition 5 of Section 2.2 that the constructible map φ : M → A
m

is topologically robust if and only if it is weakly continuous and satisfies the following
condition:

(∗) for any sequence (xk)k∈N of M which converges in the Euclidean topology to a point
of M, the sequence (φ(xk))k∈N is bounded.

This condition is equivalent to the robustness of the surjective polynomial map
π : Γ → M in the sense of [CGH+03], Definition 3. More precisely, we have the following
result.

Remark 4 With notations and assumptions as above, the weakly continuous constructible
map φ satisfies condition (∗) if and only if for any sequence (xk, yk)k∈N of points of Γ such
that (xk)k∈N converges to a point x0 ∈ M, there exists an accumulation point y0 of the
sequence of (yk)k∈N with (x0, y0) ∈ Γ.

We consider now the Zariski closure M of the constructible subset M of An. Observe that
M is a closed affine subvariety of An and that we may interpret C(M) as a C[M]–module
(or C[M]–algebra).

Fix now an arbitrary point x of M.
By Mx we denote the maximal ideal of coordinate functions of C[M] which vanish at

the point x.

10



By C[M]Mx we denote the local C–algebra of the variety M at the point x, i.e. the
localization of C[M] at the maximal ideal Mx.

By C(M)Mx we denote the localization of the C[M]–module C(M) at Mx.
We suppose now that the constructible map φ : M → A

m is topologically robust. Then
we may interpret φ1, . . . , φm as rational functions of the affine variety M and therefore as
elements of the total fraction ring C(M) of C[M].

Thus C[M][φ1, . . . , φm] and C[M]Mx [φ1, . . . , φm] are C–subalgebras of C(M) and
C(M)Mx which contain C[M] and C[M]Mx , respectively.

With these notations we are able to formulate the following statement which establishes
the bridge to an algebraic understanding of the notion of topological robustness.

Theorem 5 ([GHMS11], Theorem 9) Let notations and assumptions be as before. As-
sume that the constructible map φ : M → A

m is topologically robust and let x be an
arbitrary point of M. Then C[M]Mx [φ1, . . . , φm] is a finite C[M]Mx–module.

Theorem 5 is an immediate consequence of Remark 4 and [CGH+03], Lemma 3, which
in its turn is based on a non-elementary and deep result from Algebraic Geometry, namely
Zariski’s Main Theorem (see e.g. [Ive73], §IV.2). In the context of Interpolation and
Elimination Theory, Theorem 5 and Theorem 9 below will be omnipresent in Sections 4
and 6. They contribute to establish a well–founded link between Computer Science and
Algebraic Geometry.

Let us observe here that the proof of Theorem 5 requires sophisticated tools from
Algebraic Geometry.

Let φ : M → A
m be a topologically robust constructible map and let u be an arbitrary

point of M. From Theorem 5 one deduces easily that for all sequences (uk)k∈N of points
uk ∈ M which converge to u the sequences (φ(uk))k∈N have only finitely many distinct
accumulation points. In what follows, Theorem 5 will be only used in Section 6 in order
to comment the notion of coalescence introduced here.

From Theorem 5 we deduce the following results.

Corollary 6 Let notations and assumptions be as before and suppose in particular that
the constructible map φ : M → A

m is weakly continuous. Then φ is topologically robust if
and only if for any point x of M the C–algebra C[M]Mx [φ1, . . . , φm] is a finite C[M]Mx–
module.

Corollary 7 Let φ : M → A
m be topologically robust and suppose that the affine variety

M is normal at any point of M. Then φ : M → A
m is a rational map of M whose

domain contains M and is therefore strongly continuous.

2.3.2 The notion of geometrical robustness

The main mathematical tool of Sections 4 and 6 of this thesis is the notion of geometrical
robustness we are going to introduce now. We shall use the same notations as in Section
2.3.1.

Definition 6 Let M be a constructible subset of a suitable affine space and let φ : M →
A
m be a (total) constructible map with components φ1, . . . , φm. Based on Lemma 1 we

may interpret φ1, . . . , φm as rational maps of M. We call φ geometrically robust if for
any point x ∈ M the following two conditions are satisfied:

11



(i) C[M]Mx [φ1, . . . , φm] is a finite C[M]Mx–module.

(ii) C[M]Mx [φ1, . . . , φm] is a local C[M]Mx–algebra whose maximal ideal is generated by
Mx and φ1 − φ1(x), . . . , φm − φm(x).

Observe that the notion of a geometrically robust map makes also sense when C is
replaced by an arbitrary algebraically closed field (of any characteristic). In this sense we
have the following fundamental result.

Proposition 8 Geometrically robust constructible maps are weakly continuous, topolog-
ically robust and hereditary. Moreover the composition of two geometrically robust con-
structible maps is geometrically robust.

We are not going to prove Proposition 8 here. Weak continuity and hereditarity of
geometrically robust constructible maps with irreducible domains of definition was shown
in [GHMS11], Proposition 16, Theorem 17 and Corollary 18. From this one deduces
immediately the same result also for the case of arbitrary domains of definition. The
alluded proofs work over arbitrary algebraically closed fields.

Topological robustness follows from the previous Corollary 6 and closedness under
composition is a consequence of the transitivity law for integral dependence.

In this thesis we shall restrict our attention to the algebraically closed field C. In this
particular case we have the following characterization of geometrically robust constructible
maps.

Theorem 9 Let assumptions and notations be as before. Then the constructible map
ϕ : M → A

m is geometrically robust if and only if φ is strongly continuous.

Proof. Suppose that the constructible map φ is geometrically robust. Since φ satisfies
condition (ii) for any point of M, we conclude that φ is weakly continuous. Let be given
an arbitrary point x ∈ M and a sequence (xk)k∈N, xk ∈ M, which converges to x in the
strong topology of M. It suffice to show that the sequence (φ(xk))k∈N converges to φ(x).

Since φ is weakly continuous, we deduce from condition (i) of Definition 6 and Corol-
lary 6 that the sequence (φ(xn))k ∈ N contains at least one accumulation point, say
a = (a1, . . . , am), which belongs to A

m. Let Y1, . . . , Ym be new indeterminates, Y :=
(Y1, . . . , Ym) and let a be the ideal of all polynomials A ∈ C[M]Mx [Y ] that vanish at
the point (x, a) ∈ A

n × A
m. Without loss of generality we may assume that the se-

quence (φ(xk))k∈N converges to a. Let ã := {A(φ);A ∈ a} be the image of the ideal a
under the surjective C[M]Mx–algebra homomorphism C[M]Mx [Y ] → C[M]Mx [φ1, . . . , φm]
which maps Y1, . . . , Ym onto φ1, . . . , φm. Observe that ã is an ideal of C[M]Mx [φ1, . . . , φm].

We are now going to show the following statement.

Claim 10 The ideal ã is proper.

Proof of the claim. Suppose that the ideal ã is not proper. Then there exists a
polynomial A =

∑
j1,...,jm

aj1...jmY
j1
1 . . . Y jm

m of a, with aj1...jm ∈ C[M]Mx , which satisfies

the condition
∑

j1,...,jm
aj1...jmφ

j1
1 . . . φjmm = A(φ) = 1. Since for any m–tuple of indices

j1, . . . , jm the rational function aj1...jm of M is defined at x and the sequence (xk)k∈N

12



converges to x, we may assume without loss of generality that aj1...jm is defined at xk
for any k ∈ N and that (aj1...jm(xk))k∈N converges to aj1...jm(x). We may therefore write

A(x′) :=
∑
aj1...jm(x

′)Y j1
1 . . . Y jm

m ∈ C[Y ] for x′ := x or x′ := xk, k ∈ N. From A ∈ a we
deduce A(x)(a) = 0. By assumption (φ(xk))k∈N converges to a. Hence the sequence of
complex numbers (A(xk)(φ(xk)))k∈N converges to A(x)(a) = 0. On the other hand A(φ) = 1
and the weak continuity of φ imply A(xk)(φ(xk)) = 1 for any k ∈ N. This contradiction
proves our claim.
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

From condition (ii) of Definition 6 we deduce that the C[M]Mx–algebra
C[M]Mx [φ1, . . . , φm] contains a single maximal ideal, say M, and that M is generated by
Mx and φ1 − φ1(x), . . . , φm − φm(x).

Since by Claim 10 the ideal ã is proper, ã must be contained in M. Observe that the
polynomials Y1−a1, . . . , Ym−am belong to a. Hence φ1−a1, . . . , φm−am belong to ã and
therefore also to M. Since M is proper, this is only possible if a1 = φ1(x), . . . , am = φm(x)
holds.

Thus the sequence (φ(xk))k∈N converges to φ(x).
Suppose now that the constructible map φ is strongly continuous. From Lemma 3 we

deduce that φ is topologically robust. Corollary 6 implies now that φ satisfies condition
(i) of Definition 6 at any point of M.

Let x be an arbitrary point of M. We have to show that φ satisfies at x condition (ii)
of Definition 6.

Since the graph of φ is constructible, its strong and Zariski closures inM×A
m coincide.

Moreover, since φ is by assumption strongly continuous, its graph is closed with respect to
the strong topology of M×A

m and therefore also with respect to the Zariski topology. Let
a be an arbitrary maximal ideal of the C[M]Mx–algebra C[M]Mx [φ1, . . . , φm]. Then there
exists a point a = (a1, . . . , am) of A

m such that a is generated by Mx and φ1−a1, . . . , φm−
am. Thus (x, a) ∈ M×A

m belongs to the Zariski closure of the graph of φ in M×A
m and

therefore to the graph of φ itself. This implies a = φ(x). With other words, a is generated
by Mx and φ1−φ1(x), . . . , φm−φm(x). There is exactly one ideal of C[M]Mx [ϕ1, . . . , ϕm]
which satisfies this condition. Therefore the C[M]Mx–algebra C[M]Mx [ϕ1, . . . , ϕm] is local
and condition (ii) and Definition 6 is satisfied at the point x ∈ M.
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Theorem 9 is new. It gives a topological motivation for the rather abstract, algebraic
notion of geometrical robustness. The reader not acquainted with commutative algebra
may just identify the concept of geometrical robustness with that of strong continuity of
constructible maps.

Observe that Proposition 8 follows immediately from Theorem 9 in the case of the
algebraically closed field C.

Definition 7 (Finitely determined map) Let M be a constructible subset of a suitable
affine space and φ : M → A

m and ψ : M → A
r two geometrically robust constructible

maps. Let x ∈ M. We say that ψ is finitely determined by φ at x if for any sequence
(xk)k∈N with xk ∈ M such that (φ(xk))k∈N converges to φ(x) the sequence (ψ(xk))k∈N is
bounded. Otherwise we call ψ indetermined by φ at x. If ψ is finitely determined by φ at
any point x ∈ M then we call ψ finitely determined by φ. Otherwise we call ψ idetermined
by φ.

13



We are now going to show that indeterminacy of ψ by φ at a given point x ∈ M has
a very strong meaning.

Lemma 11 Let assumptions and notations be as in Definition 7 and suppose that the
constructible set {(φ(x), ψ(x));x ∈ M} is locally closed in A

m × A
r. Let x be a point of

M and suppose that ψ is indetermined by φ at x. Then there exists a sequence (zk)k∈N
with zk ∈ M and φ(zk) = φ(x) such that (ψ(zk))k∈N is unbounded. In particular, if r = 1,
the set of complex numbers {ψ(z); z ∈ M, φ(z) = φ(x)} is cofinite. If ψ is indetermined
by φ then there exists a point x ∈ M having this property.

Proof. Let φ = (φ1, . . . , φm) and ψ = (ψ1, . . . , ψr) and interpret φ1, . . . , φm and ψ1, . . . , ψr
as rational functions of M. Let be given x ∈ M and suppose that ψ is indetermined by φ
at x. Then there exists a sequence (xk)k∈N with xk ∈ M such that (φ(xk))k∈N converges
to φ(x) and such that (ψ(xk))k∈N is unbounded. Without loss of generality we may
suppose that the sequence of complex numbers (ψ1(xk))k∈N is unbounded. Let T1, . . . , Tm
and Y1, . . . , Yr be new indeterminates, let T := (T1, . . . , Tm) and Y := (Y1, . . . , Yr) and
consider the ideal a of all polynomials A ∈ C[T, Y ] such that A(φ,ψ) = 0 holds in C(M).

Since φ1, . . . , φm and ψ are continuous with respect to the strong topologies of M and
C, we have A(φ(z), ψ(z)) = 0 for any A ∈ a and z ∈ M.

Claim 12 Any A ∈ a ∩ C[T, Y1] satisfies the condition A(φ(x), Y1) = 0.

Proof of Claim. Suppose at the contrary that there exists a polynomial A ∈ a∩C[T, Y1]
with A(φ(x), Y1) 6= 0. Then we may suppose without loss of generality that A(φ(xk), Y1) 6=
0 holds for any k ∈ N. Since (φ(xk))k∈N converges to φ(x) there exists a constant c > 0
such that for k ∈ N the absolute value of all zeros of A(φ(xk), Y1) is bounded by c. From
A(φ(xk), ψ1(xk)) = 0 we deduce now the estimate |ψ1(xk)| ≤ c for any k ∈ N. This
implies that the sequence (ψ1(xk))k∈N is bounded, contradicting our assumptions on ψ1

and (xk)k∈N.
From the claim we deduce that the ideal ax := {A(φ(x), Y );A ∈ a} is proper and

defines a closed subvariety Vx of Ar which has positive dimension. Since by assumption
the constructible set {(φ(z), ψ(z)); z ∈ M} is locally closed in A

m × A
r there exists a

Zariski open subset Ox of Ar with {y ∈ A
r;∃z ∈ M, φ(z) = φ(x), y = ψ(z)} = Vx ∩ Ox.

Since Vx ∩ Ox is a locally closed subvariety of Ar of positive dimension, we deduce from
[CGH+03], Lemma 1, that Vx∩Ox is unbounded. Therefore there exists a sequence (zk)k∈N
with zk ∈ M and φ(zk) = φ(x) such that (ψ(zk))k∈N is unbounded. In case r := 1 this
means that the constructible set {ψ(z); z ∈ M, φ(z) = φ(x)} is cofinite.

The origin of the concept of a geometrically robust map can be found, implicitly, in
[GH01] as an analysis of the Example 21 in Section 6.5.5 of this thesis. This analysis refers
to a Hermite–Lagrange interpolation problem in the sense of Section 4 and is therefore
well motivated from the point of view of Computer Science.

Our conclusion is that the mathematical notion of a geometrically robust map is highly
meaningful for Computer Science applications as those treated in Sections 4 and 6 of this
thesis.

14



3 Concepts from Software Engineering

In this section we collect some basic facts from Software Engineering which allow us to
establish a computationally meaningful mathematical model for fundamental aspects of
interpolation and effective geometric elimination theory. We use standard notions and
notations, which can be found in [BCK03], [Mey00], [GJM91] and [CBB+02].

3.1 Basic definitions and notations

According to Ghezzi [GJM03], Software Engineering is the field of Computer Science that
deals with the building of large software systems by teams of programmers. This process
of building software involves various aspects such as management and technical activities.
Management is necessary in order to give order and to guide the project to success. On the
other hand, the technical activities provide the main techniques for software construction.
Technical activities can be organized in specification, software design and implementation.
In this section we focus our attention on software design.

According to Pressman [Pre01], design provides a representation of the software that
will be built. This representation consist of data structures, relations between data struc-
tures, interface design and procedural description of software components. This elements
become concentrated in the main outcome of the software design activity which is the
software architecture.

3.1.1 Software architecture

According to Pressman [Pre01] a software architecture consists of a representation of the
software to be implemented. Thus a software architecture is a description of the com-
ponents of the given system, the structure of these components and the relationships
between them. Similarly, [CBB+02] describes software architecture as a complex entity
which cannot be described in a simple one–dimensional fashion. This complex entity re-
quires descriptions based on particular perspectives called viewtypes, as for example the
decomposition of the system by units of implementation (module viewtype), its decom-
position by units of runtime execution (C&C viewtype) or the mapping from software
elements to environmental structures (allocation viewtype).

In this thesis we describe software architectures which come close to the module view-
type perspective. We are now going to introduce the elements and relationships which
constitute our software architectures.

Abstract Data Types and Classes

Software architecture has its origins in the notion of abstract data type. According
to [GS94], in the historical development of abstraction techniques, abstract data types
raise from the work of programmers of the late 1960’s. They saw in data structures the
key to an easier development of software. Abstract data types was a technique to un-
derstand a module and its particular purpose. For example, the services provided by a
module are the functions declared in an abstract data type specification. This last charac-
teristic was adopted by object oriented programming where, according to Meyer [Mey00],
abstract data types become used as a tool to break down the given system into modules.

15



Definition 8 (Abstract Data Type) According to Meyer [Mey00] an abstract data type
is a set of elements defined by a list of operations applicable to these elements. An abstract
data type is formalized by an abstract data type specification which describes, by available
services (functions) and formal properties (axioms), a set of elements.

Abstract data types constitute the starting point to the construction of the modules
in object oriented approaches. These modules become realized by classes which become
then modular units.

Definition 9 (Class) According to [Mey00] a class is a software element describing an
abstract data type and its partial or total implementation. A class is described by a list of
features (attributes and routines). The features constitute the basis of the interaction of
the class with the rest of the software.

Here arise two important questions about a given software architecture. What are
the components? How are they composed? In object oriented programming components
may be classes. In this context, Meyer [Mey00] argues that there exist only two types of
relations between classes: client and inheritance relations.

We wish to clarify that a class may be considered as an abstract data type equipped
with a concrete implementation. This introduces another relation between the components
of an architecture, namely the “Implements” relation.

For example, consider the problem of evaluating a polynomial. Suppose that our
implementation consists of a class “Polynomial” whose evaluation returns a class “Integer”.
Here “Polynomial” is a client of the class “Integer”, i.e. the class “Polynomial” uses the
routines available on the class “Integer”, namely arithmetic operations. In this scenario we
suppose that the class “Integer” inherits relations and operations from a class “Number”
(observe that we meet here an example of inheritance relation). On the other hand,
the “Implements” relation appears in the context of the class “Polynomial”. Consider
now “Polynomial” as an abstract data type. In this meaning “Polynomial” requires an
implementation of its (abstract) objects, which may be realized by the coefficients of these
objects, which on their turn may be implemented directly by bits. Figure 4 illustrates this
kind of relations.

eeeeeee Number

eeeeeee

Polynomial eeeeeee Integer

eeeeeee

Coefficient eeeeeee

Bits eeeeeee

e Software component

Inheritance relation

Client relationeeeee

“Implements” relation

Evaluation

Figure 4: Relations between the components of a software architecture

16



In this thesis we focus our attention on the “Implements” relation between the different
levels of abstraction. In Section 4.3 we shall describe a software architecture for the
problem of Hermite–Lagrange interpolation where, for the sake of simplicity, we identify
two levels of abstraction.

Let us now introduce other important notions from software architecture.

3.1.2 Functional and (non–functional) requirements

According to [BD09] a functional requirement is a specification of a mathematical function
that the given system has to support. In other words, following [MAS+03], a functional
requirement can be expressed in mathematical terms: as an input–output behaviour of
a given (mathematical) function. An example for a functional requirement are the ax-
ioms satisfied by the functions of an abstract data type (these axioms form part of the
specification).

A linguistic analogy is described in [Dou06] where a functional requirement is compared
with a verb. In its turn, the meaning of the verb may become modified by an adverb.
This adverb plays the rôle of a non–functional requirement of the given system.

Quality attributes

According to [Cer09] “non–functional requirement” represents an old term for “quality
attribute”. We consider now the notion of quality attribute under different names in the
literature. For example, according to [Mey88] a software product is affected by quality
factors which may be present or absent in the software. Another terminology is used in
[Par72] where flexibility and comprehensibility are called benefits. Still another terminol-
ogy appears in [Med00] where non–functional properties represent additional requirements
that cannot be derived from the specification. Non–functional properties are required to
select appropriate configurations of the architecture structure under consideration.

On the other hand, [BCK98] explains that the term non–functional requirement is
incorrect. However, in the present contribution the terms “non–functional requirement”
and “quality attribute” have the same meaning. According to [BKLW95] a critical system
must satisfy functional requirements and quality attributes. The quality attributes are
properties of the service delivered by the system. In this sense, [BCK03] explains that
quality attributes affect negatively or positively other quality attributes.

Taking into account this review, we fix the meaning of the term “quality attribute” in
this thesis by the following way:

Definition 10 (Quality attribute) A quality attribute is a property or requirement on
the software system which concerns its behaviour beyond its functionality given by the spec-
ification and the correctness of the underlying programs. A quality attribute may constitute
a property of the system that affects negatively or positively other quality attributes.

In [BCK03] the author introduce a methodology for the analysis of quality attributes.
This methodology consists in so called “quality attribute scenarios” which we shall discuss
in Section 5.1.

17



Quality attribute trade–offs

The term trade–off refers to a situation where two opposing qualities become balanced.
For example, there is a trade–off between doing a task accurately and doing it quickly.
Another trade–off exists between security and performance.

This thesis is devoted to the study of the trade–off between computational complexity
as quality attribute of algorithms of scientific computing and certain other quality at-
tributes which become introduced in Section 4 and 6. According to [CBK+98], software
architecture is the discipline of quality attributes. Thus we shall deal with a central aspect
of software architecture theory.

Arithmetic circuits

Algorithms in computational algebraic geometry are usually described by software archi-
tectures where a polynomial is implemented by means of the vector of all its (or of all its
nonzero) coefficients, i.e. using the standard dense (or sparse) complexity encoding.

Taking into account that a generic n–variate polynomial of degree d ≥ 2 has
(
d+n
n

)
=

O(dn) nonzero coefficients, we see that such an implementation of multivariate polyno-
mials requires an exponential size. Moreover, their manipulation usually requires a data
structure of exponential number of arithmetic operations with respect to the parameters d
and n. In order to avoid this exponential behaviour, we are going to use alternative soft-
ware architectures where polynomials are implemented by means of arithmetic circuits (or
straight–line programs in terminology of [GHMS11]).

Definition 11 (Arithmetic circuit) Let X1, . . . ,Xn be indeterminates over C. An (or-
dinary) arithmetic circuit over C called β, with inputs X1, . . . ,Xn, consists of a labelled
directed acyclic graph (labelled DAG) satisfying the following conditions:
each node of indegree zero is labelled by a complex number (called scalar of β) or an input
variable X1, . . . ,Xn, Following the case, we shall refer to them as scalar and input nodes
of β. All other nodes of β have indegree zero and unlimited outdegree. They are called
internal nodes of β and they are labelled by one of the arithmetic operations, namely ad-
dition, subtraction, multiplication or division. At least one of the nodes become labelled
as output. Without loss of generality we shall suppose that all nodes of outdegree zero are
output nodes.

We may consider β as a syntactical object which we wish to equip with a certain
semantics. In principle there exists a canonical evaluation procedure of β which assigns
to each node a rational function of An. We call such a rational function an intermediate
result of β. The intermediate results of β which become associated with output nodes are
called final results.

The evaluation procedure may fail if we divide at some moment an intermediate result
by another one which is identically zero on A

n. If this is the case we call the circuit in-
consistent, otherwise consistent. From [CGH+03], Corollary 2 (see also [HS], Theorem 4.4
and [GH01], Lemma 3) we deduce that consistency of arithmetic circuits can be deduced
using a quantity of arithmetic operations in C which is polynomial in the size (i.e. number
of internal nodes) of the given circuit. The rest exists in a uniform probabilistic and in a
non–uniform deterministic variant which can be bolled down to the bit model. However,

18



whether this test can be performed efficiently in the uniform complexity model, is a major
open question in Computer Science.

We call the circuit β (totally) division–free if it contains only divisions by scalars. Ob-
serve that the intermediate results of division–free arithmetic circuits are all polynomials
over C in the input variables and that they are always consistent. From now on we shall
suppose that all our arithmetic circuits are consistent.

In this thesis we shall mainly be concerned with sequential complexity time, measured
in terms of the size of β. We shall limit our attention to the non–scalar size (or sequential
execution time) of the circuit β. This means that we count, at unit costs, only essential
multiplications and divisions (involving input variables in both arguments in the case of
multiplication and in the second argument in the case of a division), whereas C–linear
operations are free.

Frequently we shall use (consistent) arithmetic circuits as a data structure to represent
polynomials and rational functions. This converts them into objects of a class where two
fundamental services are available, which we are going to explain soon, namely an efficient
identity test and the evaluation function.

The arithmetic circuit β represents by its output nodes a finite number of rational
functions of C(X1, . . . ,Xn) or polynomials of C[X1, . . . ,Xn] (if β is division–free). This
defines an abstraction function from the class of arithmetic circuits into the abstract data
type of rational functions and polynomials over C (see Section 4.9). In this thesis we shall
be largely concerned with this abstraction function.

Finally we are going to explain the two services available on the class of arithmetic
circuits.

Let be given a final result F ∈ C(X1, . . . ,Xn) of the arithmetic circuit β. Then F can
be evaluated efficiently by β in almost any point of An, and, if β is division–free, in any
point of An. Thus the value of F in suitable points of An is the first service available on
input β for the class of arithmetic circuits.

Given two circuits β y β′ and two final results F and F ′ of them, we may ask whether
F = F ′ holds. This question may be answered efficiently in terms of the size of β and β′

by [CGH+03], Corollary 2. Thus the answer to the question F
?
= F ′ is the second service

available on input (β, β′) for the class of arithmetic circuits.

19



4 Univariate Hermite–Lagrange interpolation

At this point all the notions we need from Algebraic Geometry and Software Engineer-
ing have been introduced. These notions allow us to study the mathematical model for
elimination and interpolation algorithms of [GHMS11], [CGH+03] and Section 6 below
in terms of Software Engineering. We use standard notations of Numerical Analysis and
Interpolation Theory, which can be found in, e.g. [BC97], [BF02], [Gau97], [Kre07] and
[SB93].

4.1 Interpolation: an area of Numerical Analysis

Numerical Analysis deals with the approximative treatment of finite data, as vectors or
arrays (e.g. matrices) of real numbers. Methodologically it is based on Classical Analysis,
Diophantine Approximation, and, in some extent, on Algebraic Complexity Theory and
marginally also on non–archimedean theories like p–adic analysis.

In applied mathematics, generally infinite objects, as functions and maps, become
treated by Approximation Theory which deals with the following situation:
there are given a set of “complicated” functions, a set of “simple” approximants and a
metric which establishes a link between both sets. Given a “complicated” function f , the
theoretic part of Approximation Theory discusses the existence and uniqueness of a best
approximant. The next question deals with more practical aspects such as which data of
the “complicated” function f are required to determine and compute a best (or simply
good) approximant? If f is a function which maps reals onto reals, the approximants may
be special functions, e.g. rational or trigonometric functions. This gives rise to different
types of approximation.

In this thesis we are only concerned with approximants which are polynomials, i.e. with
polynomial approximation. According to [Ral70] the field of polynomial approximation
uses different techniques:

• Approximation by interpolation

• Least-squares method

• Error min-max method

Maybe the most important link between Approximation Theory and Numerical Anal-
ysis becomes represented by Interpolation Theory. Interpolation constitutes the starting
point to many methods in other areas of Numerical Analysis, e.g. in numerical differen-
tiation and solution of differential equations. Interpolation has also direct applications,
following [Con65] interpolation is normally used to:

• integrate and differentiate complicated functions replacing them by simple inter-
polants,

• evaluate a function given by values at some fixed points at an extra point.

In the present work we do not enter into the relationship between approximation and
interpolation. Thus, we do not discuss the error associated with the approximations which
is a common subject in Numerical Analysis textbooks. We discuss interpolation just as an

20



example for a software architecture which visualizes an interaction between certain quality
attributes.

Interpolation can also be interpreted as a special case of quantifier elimination in ele-
mentary Algebraic Geometry. Namely, we may formulate interpolation problems by means
of particular quantified first order formulas over suitable fields (e.g. the real numbers).
This relationship becomes explained in more detail at the end of Section 4.3 where we
introduce a mathematical model for interpolation problems and algorithms.

4.2 Lagrange interpolation problems and algorithms

Let be given a function f : C → C. In the terminology of [BF02] the Lagrange interpolation
problem consists of finding for any finite set S of distinct nodes of C the unique polynomial
of minimal degree which agrees with f on S. Such a polynomial is called an interpolant.

If we consider this formulation as part of an informal specification of an interpolation
algorithm, we see that the word finding hides important aspects concerning data types and
routines. For example, the interpolant may be represented as a Lagrange Interpolating
Polynomial, in monomial form or by Newton’s Divided–Difference Formula.

In the following sections we shall introduce a mathematical model which allows us
to reveal these hidden aspects by means of the notions of interpolation problem and
interpolation algorithm.

4.2.1 Lagrange interpolation problems

Let n be a fixed natural number. Informally, an (n–variate) Lagrange interpolation prob-
lem is determined by the following items.

Definition 12 (Interpolation datum) An interpolation datum d is a K–tuple
((x1, y1), . . . , (xK , yK)) of nodes xi ∈ A

n and values yi ∈ A
1 with xi 6= xj , 1 ≤ i < j ≤ K.

We suppose now that there is given a set O∗ of n–variate polynomials over C, called
interpolants.

Definition 13 (Interpolant) For each interpolation datum
d := ((x1, y1), . . . , (xK , yK)) as in Definition 12, there exists exactly one interpolant p ∈ O∗

which satisfies the interpolation condition p(xi) = yi for any 1 ≤ i ≤ K.

For example, the K–tuple d := ((0, 1), (1, 6), (−1, 2)) expresses that for each node
x1 := 0, x2 := 1, x3 := −1 the value of the interpolant is y1 := 1, y2 := 6, y3 := 2 respec-
tively. This interpolation condition is satisfied by the polynomial p(X) := 3X2 + 2X + 1.

At this stage we are trying to find a mathematical model for the informal concept
of an interpolation problem and we are not concerned yet with the implementation of a
solution of such a problem. In terms of Software Engineering we are only dealing with an
abstract function Φ which associates to each interpolation datum d its interpolant p. In
this spirit, the notions we have introduced, namely interpolation datum and interpolant
may be specified in the following way:

21



• The set of all tuples of interpolation data is specified by an abstract data type O.

• The set of all interpolants is specified by an abstract data type O∗.

• All the possible algorithms that relate an interpolation datum d with its correspond-
ing interpolant p are specified by the abstract function Φ. We may visualize this
situation as follows:

eeeOeee︸ ︷︷ ︸
Abstract Data Type

of interpolation data

eeeO∗eee︸ ︷︷ ︸
Abstract Data Type

of interpolants

-

Abstract Function︷︸︸︷
Φ

Figure 5: Lagrange interpolation problem

4.2.2 Mathematical modeling of the notion of Lagrange interpolation
problem

Let n, D, K be discrete parameters belonging to N. Let X := (X1, . . . ,Xn), where
X1, . . . ,Xn are indeterminates over C, and denote by Π (or, more precisely, by Π(n)) the
polynomial ring C[X] = C[X1, . . . ,Xn] and by ΠD the C–vector space of polynomials of
Π of degree at most D.

The abstract data types O, O∗ and the abstract function Φ become realized by the
following mathematical structures:

• The abstract data type O of interpolation data is a constructible subset of the affine
ambient space A

(n+1)×K consisting of suitable K–tuples
((x1, y1), . . . , (xK , yK)) of interpolation data, with xi ∈ A

n, yi ∈ A
1 and

1 ≤ i ≤ K.

• The abstract data type O∗ of interpolants is a constructible subset of the finite
dimensional vector space ΠD.

• The abstract function Φ is a surjective constructible map Φ : O → O∗ which asso-
ciates to each interpolation datum d ∈ O an interpolant Φ(d) ∈ O∗.

We may now ask whether it is meaningful from the point of view of Computer Science
to realize an abstract data type by mathematical structures like a constructible subset of
the affine ambient space A(n+1)×K or a finite dimensional vector space ΠD. This question
is justified since an abstract data type is a notion of Software Engineering and apparently
unrelated with algebraic–geometric structures.

By a closer view to the essence of Computer Science we see that this discipline is
effectively based on a careful manipulation of mathematical objects which appear there in
a highly structured way. There is a clear division of types of mathematical objects which
become organized by levels of abstraction in hierarchies. The key concept is the use of
mathematical structures of low hierarchical level to represent mathematical structures of
high hierarchical level. Low level structures are used to implement high level structures,
which on their turn play the role of abstract data type specifications of the low level
structures.

22



4.2.3 Additional requirements: Coalescence

The abstract data types O, O∗ and the abstract function Φ specify an interpolation prob-
lem by means of a clear functionality:
for a given input, namely an interpolation datum, an output, namely an interpolant, is
returned.

In addition to this functionality we may consider the following property of the con-
structible abstract function Φ, which is very natural in the context of interpolation (in
another context maybe not, see e.g. machine learning in Section 5). Classical Interpolation
Theory refers to this property as coalescence.

Definition 14 (Coalescence) Let assumptions and notations be as before. We call the
abstract function Φ coalescent if the following condition is satisfied:
for any sequence (dk)k∈N of interpolation data converging to an interpolation datum d
belonging to O, the sequence (Φ(dk))k∈N converges to Φ(d).

Since by assumption the abstract function Φ is constructible, Theorem 9 of Section
2.3.2 implies that Φ is coalescent if and only if Φ is geometrically robust. Thus, in the
given context, the notions of coalescence and geometrical robustness coincide.

In the sequel we shall require that the abstract function Φ is coalescent. In mathe-
matical terms coalescence may be paraphrased as strong continuity of Φ. The map Φ and
its property of coalescence establish a certain interdependence between the interpolation
data from O and the interpolants from O∗. We require also that the essential features of
this interdependence become preserved when we restrict the elements of O to an arbitrary
constructible subset. This points to hereditarity which is guaranteed by Proposition 8 of
Section 2.3.2 if Φ is coalescent. Since O and O∗ have affine ambient spaces, the essential
feature of their interdependence is of topological or geometrical nature.

Needless to say that in classic Lagrange interpolation theory the abstract function Φ
is always strongly continuous (and hence geometrically robust).

4.2.4 Lagrange interpolation algorithms

For the modeling of the concept of a Lagrange interpolation algorithm, we have to deal
with the implementations of abstract data types, namely classes. Another point is the
relationship between abstract data type and class, which ensures that the class correctly
implements the corresponding abstract data type. For this purpose [Hoa72] introduces
the notion of an abstraction function. Finally, we have to model the concept of a routine
which computes the interpolant. This point requires special attention because of our
quality attribute concerns.

In this sense, the components which constitute an interpolation algorithm may be
listed as follows:

• A class D which implements the abstract data type O of interpolation data and a
class D∗ which implements the abstract data type O∗ of interpolants.

• The connection between abstract data types and classes is realized by abstraction
functions which we denote by ω∗ : D∗ → O∗ and id : D → O. For the sake of

23



simplicity we suppose D = O and that id : D → O is the identity function since we
do not consider alternative implementations for interpolation data. In other words,
the abstract data type O and its implementing class D are notions which reflect
distinct aspects of the same mathematical object, namely the interpolation data.
With respect to the interpolants, we wish to admit as the class D∗ more general
implementations like, for example, the domain of parameter instances of a suitable
generic arithmetic circuit (see Section 6.3 for a definition). In order to illustrate this
view we shall exhibit some examples at the end of this section.

• The algorithm in the narrow sense is a routine Ψ : D → D∗. This routine computes
for each concrete input object d of the class D a concrete output object, say Ψ(d)
of the class D∗. This relation becomes visualized by the following figure.

eeeDeee︸ ︷︷ ︸
Class

implementing O

eeeD∗eee︸ ︷︷ ︸
Class

implementing O∗

-

Routine︷︸︸︷
Ψ

Figure 6: Algorithm in the narrow sense

4.2.5 Mathematical modeling of the notion of Lagrange interpolation
algorithm

The classes D, D∗, the routine Ψ and the abstraction function ω∗ become realized by the
following mathematical structures:

• The classes D and D∗ are constructible subsets of the affine ambient spaces AN and
AM respectively, where N and M are given natural numbers.

• The abstraction function ω∗ is a polynomial map, i.e. a morphism of affine spaces
ω∗ : AM → ΠD. For the sake of notational simplicity we shall also write ω∗ : D∗ →
O∗ for the restriction of ω∗ to the domain D∗ and the image O∗ := ω∗(D∗).

• We model the routine Ψ using a total map Ψ : D → D∗ which satisfies the condition
ω∗(Ψ(d)) = Φ(d) for any d ∈ D.

We require the routine Ψ to satisfy certain additional conditions we are going to explain
now.

According to the requirement made before on the Lagrange interpolation problem, we
wish that Ψ is in some sense computable and that Ψ remains computable if we restrict its
domain to an arbitrary constructible subset of D. Thus, we require that Ψ is hereditary.

The coalescence of the abstract function Φ was one of the requirements of our formu-
lation of an interpolation problem. We may ensure coalescence of Φ by the requirement D
is irreducible and that Ψ is geometrically robust. Then Ψ is automatically constructible,
hereditary and topologically robust. Since ω∗ is a polynomial map (and hence geometri-
cally robust), the abstract function Φ := ω∗◦Ψ becomes geometrically robust and therefore

24



topologically robust and hereditary, as required. In particular Φ is coalescent (see Sec-
tion 2). e
We discuss now in the case of univariate Lagrange interpolation two examples of the class
D∗ and the abstraction function ω∗.

Coefficients e
In this example, D∗ and ω∗ constitute the representation of the interpolants by their
coefficients in the context of classical Lagrange interpolation. To be concrete, consider the
polynomial p := 3X2 + 2X + 1 which we assume to belong to O∗. The representation of
p is the tuple r := (3, 2, 1), er ∈ D∗ with p := ω∗(r) as in Figure 7.

Abstract object p := 3X2 + 2X + 1

Concrete object eeer := (3, 2, 1)eee

ω∗

Figure 7: Representation of p by the coefficients r

Arithmetic circuits e
For the notion of arithmetic circuit see Definition 11. According to [GHMS11], Section
3.1.2 we may fix a generic division–free arithmetic circuit β such that for any polynomial
p ∈ O∗ there exists a parameter instance r′ ∈ A

M such that β(r′) becomes an arithmetic
circuit, which evaluates the polynomial p. To be concrete, let β be the generic arithmetic
circuit described by the following sequence of intermediate results:

(X, eAX, eAX +B, e(AX +B) ∗X, e((AX +B) ∗X) + C) (1)

where A,B,C are new indeterminates. Then, instantiating (A,B,C) in (1) to r′ :=
(3, 2, 1), we obtain an ordinary arithmetic circuit with intermediate results (X, e3X, e3X+
2, e(3X +2) ∗X, e((3X +2) ∗X)+ 1) where the final result (((3X +2) ∗X)+ 1) computes
again the polynomial p := 3X2 + 2X + 1. Selecting this final result of (1) we obtain an

abstraction function ω∗ : A3 → Π
(1)
2 with ω∗(r′) = 3X2 + 2X + 1, as shown in Figure 8.

Abstract object p := 3X2 + 2X + 1

Concrete object eeer′ := (3, 2, 1)eee

ω∗

Figure 8: Representation of the final result p by the vector of scalars r′ of an arithmetic
circuit

4.3 A general interpolation model

We are now ready to describe a general model for Hermite–Lagrange interpolation by mul-
tivariate polynomials, which includes the quality attributes complexity and coalescence.

25



Let n, D, M and N be fixed natural numbers. Replacing in the previous discussion of
Lagrange interpolation the quantity (n+1)K or just K by the parameter N , we arrive to
the following formulation.

Definition 15 (Interpolation problem) A given Hermite–Lagrange interpolation prob-
lem is determined by:

• A suitable constructible subset O of the affine space A
N , acting as abstract data type

of interpolation data.

• A suitable surjective, topologically robust and hereditary map Φ : O → O∗, acting
as abstract function which maps elements of O to elements of O∗, where O∗ is a
suitable constructible subset of ΠD.

Definition 16 (Interpolation algorithm) Furthermore we say that a Hermite–Lagrange
interpolation algorithm solving the given interpolation problem is determined by:

• A constructible subset D∗ of the affine space A
M , acting as a class which implements

the abstract data type O∗ of interpolants.

• A polynomial map ω∗ : D∗ → O∗ acting as abstraction function which maps concrete
objects of the class D∗, with abstract objects of the abstract data type O∗.

• For D := O hereditary map Ψ : D → D∗, such that the diagram

O O∗

D D∗

-
Φ

-
Ψ

6
id

6
ω∗ (2)

commutes. The map Ψ represents the interpolation algorithm in the narrow sense.

4.4 Relationship between interpolation and geometric elim-
ination

Here a word has to be said about the relationship between the notions of Lagrange inter-
polation problem and algorithm on one side, and quantifier elimination in the first order
theory of algebraically closed fields of characteristic zero on the other.

Let notations and assumptions be as in Section 4.3. Then for any concrete object
d ∈ D the following first order formula is valid:

(∃d∗ ∈ D∗)eΦ(d) = ω∗(d∗). (3)

Eliminating now the existential quantifier block in (3) by any standard quantifier
elimination procedure, we see that for any pair of points (d, d∗) ∈ D × D∗ satisfying the
condition Φ(d) = ω∗(d∗) the entries of d∗ may be described as algebraic functions of the
entries of d (and, possibly, some extra parameters).

26



We are looking for solutions of the elimination problem expressed by (3) which satisfy
certain quality attributes. We require that the entries of d∗ depend rationally on the entries
of d and moreover we require that this dependency is consistent with the hereditarity of
Φ. This leads us to realize the solution of our elimination problem by a hereditary map
Ψ : D → D∗ which satisfies for any d ∈ D the condition

Φ(d) = ω∗(Ψ(d)) (4)

which means that the diagram (2) commutes. A similar consideration may be applied
to the requirement that Φ is coalescent.

When we look for a map Ψ : D → D∗ satisfying the mentioned non–functional re-
quirements, we solve a problem which has a background in quantifier elimination. Here,
quantifier elimination is meant in the strict sense of first order logic, although the search
for an interpolation algorithm cannot be simply reformulated as a task to eliminate quan-
tifier blocks in a first order formula of the elementary theory of algebraically closed fields
of characteristic zero.

In Algebraic Geometry it is normally accepted to call such problems elimination tasks.
In this sense the meaning of elimination theory in Algebraic Geometry slightly differs from
the strict use of the quantifier elimination in logics.

4.5 Examples of Univariate Hermite–Lagrange interpola-
tion

In this section we illustrate the general interpolation model introduced in the previous sec-
tion. We consider examples which come from standard univariate Lagrange and Hermite
interpolation at fixed nodes.

4.5.1 Univariate Lagrange interpolation at fixed nodes

Let K be a given natural number. Fix an arbitrary point α := (α1, . . . , αK) ∈ A
K with

αi 6= αj for 1 ≤ i < j ≤ K. The univariate Lagrange interpolation problem at fixed nodes
α1, . . . , αK consists in finding, for any y := (y1, . . . , yK) ∈ A

K , the unique polynomial

fα,y ∈ Π
(1)
K−1 satisfying the condition

fα,y(αj) = yj for 1 ≤ j ≤ K. (5)

We are now going to formulate this problem by means of the notions interpolation
problem and algorithm previously introduced.

Let Oα be the constructible subset Oα := {α1}×A
1×· · ·×{αK}×A

1 of A2K acting as

abstract data type of interpolation data. Let O∗
α be the constructible set Π

(1)
K−1 acting as

abstract data type of interpolants. Then the univariate Lagrange interpolation problem at
fixed nodes α1, . . . , αK is represented by the map Φα : Oα → O∗

α which associates to each
interpolation datum d := (α1, y1, . . . , αK , yK) of Oα the unique polynomial fd := fα,y of
O∗
α determined by condition (5). Since Φα is a polynomial map, we conclude that Oα and

Φα determine a Lagrange interpolation problem in the sense of Definition 15.

Let D∗
α := A

K be the class which implements the elements of O∗
α := Π

(1)
K−1 by their

dense representation. This determines an abstraction function ω∗ which maps D∗
α into

27



O∗
α. Let Dα be the same constructible set as Oα and let Dα act as a class. Then we know

that for every interpolation datum d ∈ Dα, the dense representation of the interpolant
fd ∈ O∗

α is given by a routine Ψα : Dα → D∗
α. Since Ψα, ω

∗ and D∗
α determine a Lagrange

interpolation algorithm in the sense of Definition 16, the diagram

Oα O∗
α

Dα D∗
α

-
Φα

-
Ψα

6
id

6
ω∗ (6)

commutes.
Routine Ψα is an algorithm that calculates from d ∈ Dα the dense representation

of the interpolant fd := Φα(d). We shall make this now more precise. Let us fix as
before an arbitrary point (α1, . . . , αK) ∈ A

K , αi 6= αj for 1 ≤ i 6= j ≤ K and an
interpolation datum d := ((α1, y1), . . . , (αK , yk)) of Dα := Oα. Consider the interpolant
fd := Φα(d). Then there exists a unique point a := (a0, . . . , aK−1) ∈ AK such that
fd = a0+a1X+ · · ·+aK−1X

K−1 holds. We call the expression a0+a1X+ · · ·+aK−1X
K−1

the Monomial Form of the interpolant fd.

The Monomial Form of an interpolating polynomial e
For a given interpolation datum d ∈ Oα with d = ((α1, y1), . . . , (αK , yK)), the Monomial
Form will not be the only expression we shall use to describe the interpolant fd. Other
expressions will be the Lagrange and the Newton Form of the interpolant. These different
forms are due to the fact that the ring ΠK−1 is a vector space which may be described
by different canonical bases. Each one of these bases determines a particular form for the
representation of the interpolant. For example, the Monomial Form of the interpolants is
determined by the C–vector space basis

B1 :=
{
1,X,X2, . . . ,XK−1

}

of Π
(1)
K−1.
In this case, we have the routine Ψα : Dα → D∗

α which maps d ∈ Dα into D∗
α becomes

Ψα(d)e := eV −1
α yt

where Vα := (αj−1
i )1≤i,j≤K ∈ A

K×K is the Vandermonde matrix associated to α, and
y := (y1, . . . , yK) is the vector of values determined by d.

The Monomial Form determines an abstraction function ω∗ which, for a := (a0, . . . , aK−1) ∈
D∗
α, looks as follows:

ω∗(a)e := e
K−1∑

i=0

aiX
i.

The Lagrange Form of an interpolating polynomial e

For 1 ≤ i ≤ K let Li :=

K∏

j=1

j 6=i

X − αj
αi − αj

and observe that L1, . . . , LK form a C–vector space

28



basis of Π
(1)
K−1. Let d ∈ Oα with d = ((α1, y1), . . . , (αK , yK)). The Lagrange Form of the

interpolant fd is determined by the C–vector space basis

B2 := {L1 . . . , LK}

of Π
(1)
K−1.

In this case, we have D∗
α := A

K and fd = y1L1 + · · · + yKLK . The expression y1L1 +
· · ·+ yKLK is called the Lagrange Form of the interpolant fd. The routine Ψα : Dα → D∗

α

becomes the simple map
Ψα(d)e := (y1, . . . , yK).

The Lagrange Form determines an abstraction function ω∗ which for y := (y1, . . . , yK) ∈
D∗
α looks as follows:

ω∗(y)e := e
K∑

i=1

yiLi.

The Newton Form of the interpolating polynomial e
Observe that

B3 :=



1, (X − α1), (X − α1)(X − α2), . . . ,

K−1∏

j=1

(X − αj)





forms a C–vector space basis of Π
(1)
K−1.

There exists a unique point a := (a0, . . . , aK−1) ∈ A
K such that fd = a0+a1(X−α1)+

· · ·+aK
K−1∏
j=1

(X−αj) holds. We call the expression a0+a1(X−α1)+ · · ·+aK
K−1∏
j=1

(X−αj)

the Newton Form of fd. Let D
∗
α := A

K . The routine Ψα : Dα → D∗
α becomes the map

Ψα(d)e := (f [α1], . . . , f [α1, . . . , αK ])

where for 1 ≤ i ≤ K and 0 ≤ k ≤ K− i the divided difference f [αi, . . . , αi+k] is recursively
defined by

f [αi] = yi

f [αi, . . . , αi+k] =
f [αi+1, . . . , αi+k]− f [αi, . . . , αi+k−1]

αi+k − αi
.

(7)

The Newton Form determines an abstraction function ω∗ which for a := (a0, . . . , aK−1) ∈
D∗
α looks as follows:

ω∗(a)e := e
K−1∑

i=0

ai

i∏

j=1

(X − αj)

Therefore each basis of the C–vector space bases B1, B2, B3 of Π
(1)
K−1 determine their

own interpolation algorithm given by Ψα and ω∗. The correctness proofs of these algo-
rithms may be found in Section B.1.

29



4.6 Trade-off results: complexity and coalescence

In this section we discuss the trade–off between the quality attributes computational com-
plexity and coalescence. This trade–off constitutes an interpretation in terms of Software
Engineering of the lower bound complexity results of [GHMS11]. We shall focus our atten-
tion on the formulation of the concept of coalescence by means of the notion of geometrical
robustness introduced in Section 2.3.

In Section 4.2.3 we discussed the informal concept of coalescence in Interpolation
Theory and argued that it was adequately modeled by the notion of geometric robustness.
In the sequel, we consider the general interpolation model introduced in Section 4.3 and
we interpret geometrical robustness as a (dichotomic) quality attribute.

Polynomials without restrictions e
Let assumptions and notations be as in Section 4.3 and let O, O∗, Φ : O → O∗ with
O ⊂ A

N determine an interpolation problem according to Definition 15. Furthermore, let
D := O, D∗ with D∗ ⊂ A

M and ω∗ : D∗ → O∗, Ψ : D → D∗ determine an interpolation
algorithm according to Definition 16.

The given interpolation problem and algorithm become linked by the following com-
mutative diagram:

O

topologically robust
& hereditary map︷︸︸︷

Φ
−−−−−−−−−−−−→

constructible

subset of Π
(n)
D︷︸︸︷

O∗

id

x
xω∗e} polynomial function

D︸︷︷︸
constructible
subset of AN

−−−−−−−−−−→
Ψ︸︷︷︸

hereditary map

D∗︸︷︷︸
constructible
subset of AM

Figure 9: General interpolation model

According to [GHMS11], Section 5 the following estimate is consequence of the software
architecture described by Figure 9:

Suppose that the given interpolation algorithm satisfies the conditions listed in Figure
9 an that D = O is Zariski dense in A

N , then

M ≥ K =
N

(n+ 1)
. (8)

This estimate means that in the case of the multivariate interpolation problem above
with O Zariski dense in A

N the complexity of the interpolation algorithm determined by
Ψ and ω∗ is at least N/(n+1). We shall refer to Φ : O → O∗ with O Zariski dense in A

N

as a generic interpolation problem. Such problems represent in the literature the standard
case of Lagrange interpolation.

30



We exhibit now an example of a very special family O∗ of univariate polynomials which
cannot be more efficiently implemented than by classical Lagrange interpolation.

Polynomials that are easy to evaluate e
Let K andM be natural numbers with K ≥ 2 and let N := 2K, D := K−1. We consider
the following set of univariate interpolants, namely

O∗ := {F (X, t) : t ∈ C} ewhereeF (X,T ) := (TD+1 − 1)

D∑

i=0

T iXi

Observe that each polynomial f ∈ O∗ may be evaluated using O(logK) arithmetic oper-
ations, i.e. f is easy to evaluate. We consider now the following set of of interpolation
data, namely

O :=
{
((x1y1) . . . (xKyK)) ∈ A

N : ∃t ∈ Ce/eF (xi, t) = yie∀i, exi 6= xje∀i, j
}

Observe that O is a constructible subset of AN and that the map Φ : O → O∗, which
assigns to each interpolation datum d ∈ O the polynomial fd of Section 4.5.1, is a polyno-
mial map. According to [GHMS11] a polynomial map is geometrically robust and therefore
topologically robust and hereditary. Thus, (O and Φ) determine an interpolation problem
according to Definition 15.

Let be given an arbitrary interpolation algorithm, determined by D := O, D∗ with
D∗ ⊂ AM constructible, ω∗ : D∗ → O∗ and Ψ : D → D∗, according to Definition 16.
We require now that the map Ψ is geometrically robust (and not just hereditary as in the
general model depicted in Figure 9).

We obtain now the following commutative diagram:

O

polynomial map︷︸︸︷
Φ

−−−−−−−−−−→

O∗:={F (X,t):t∈C}︷︸︸︷
O∗

id

x
xω∗e} polynomial function

D︸︷︷︸
D:={(xy)∈AN :

∃t∈C,F (xi,t)=yi}

−−−−−−−−−−−−−−−→
Ψ︸︷︷︸

geometrically robust map

D∗︸︷︷︸
constructible
subset of AM

Figure 10: Interpolation model with polynomials easy to evaluate

According to [GHMS11], Section 5 the following estimate is a consequence of the
architecture described by Figure 10:

M ≥ K =
N

2
(9)

31



This result means that if an interpolation algorithm satisfies the conditions required
by the architecture of Figure 10, then the complexity of the algorithm represented by Ψ
and ω∗ is at least K = N

2 .
A somewhat different lower bound result is the main result of [GHMS11], where the set

of interpolants is the set of n–variate polynomials which can be evaluated by a division–
free arithmetic circuit of non–scalar size at most L. In this case the lower bound becomes
exponential in L (see Section 6.5.1 and Example 21 for details).

4.7 Discussion of the mathematical interpolation model

In this section we discuss some computational aspects concerning the interpolation model
introduced in Section 4.3. We discuss four topics, namely the memory consumed by
a computation, libraries, software architecture and the mathematical structure of our
interpolation model.

Memory e
Our algorithmic model is unstructured and leaves unspecified how ongoing computations
are performed and how intermediate results are handled. It even admits maps Ψ which
are difficult to identify with algorithms in the standard sense. Therefore our model is
unsuited for the treatment of memory issues. It is not clear when such an algorithm saves
the intermediate results in order to avoid unnecessary computing.

Libraries e
The libraries used in real world computation raise the following question. Let l1, . . . , lk be
routines whose computational complexity is optimal. Then, the composition

l1 ◦ l2 ◦ · · · ◦ lk

is not necessarily optimal. In this sense there may exist thinkable libraries with optimal
routines, but the composition of these routines are not necessarily complexity–optimal.
We ask when the complexity of a composition of routines is the sum of the complexities of
its components or more generally, how the complexity of a single component contributes
to the complexity of the final algorithm. In case that this component is an interpolation
algorithm belonging to a library, an answer to this question would be of high relevance in
software design.

Software Architecture e
According to [Cor01] a data structure implements a (finite) set which may be modified
by insert and delete operations. Such a data structure has a dynamic aspect in the sense
that the data structure may be expanded.

On the other hand, data structures in the sense of [Cor01] are described in this thesis
by means of classes. Thus, our classes should also include a dynamic aspect. However, we
model a class as a constructible subset of an affine space A

N where N is a fixed natural
number. How does this instantiation of the discrete parameter N affect the dynamic
aspect of a class? Doubtless, an answer to this question may increase the relevance of our
model for research in Software Engineering. Instead of dealing with vectors of previously

32



fixed length, we should be able to deal with dynamic vectors. In Section 6 we are going
to describe a model for arithmetic circuit based scientific computing which overcomes this
difficulty.

Interpolation model e
The mathematical structure of our interpolation model raises the following questions.

(i) Side effects: Let β1 and β2 be two circuits implementing a polynomial and let A
be a circuit transformation such that A(β1) = β2 holds. If the circuit β1 is modified
because one of its nodes is redundant, we want to do the same operation in β2 taking
care of side effects. How can we guarantee that side effects of the modification of β1
produce the same side effects in a possible modification of β2? This question will
be discussed in Section 6 and will lead us to the notion of “well behavedness under
reductions” for A.

(ii) Dependencies: Consider the following commutative diagram representing as before
a software architecture, with O and O∗ being abstract data types, D and D∗ being
classes and ω and ω∗ being abstraction functions:

O O∗

D D∗

-
Φ

-
Ψ

6
ω

6
ω∗ (10)

Following Diagram (10) we may interpret D as a representation of O and D∗ as
a representation of O∗. We may also interpret D∗ as generated from D by means
of Ψ. However, we cannot conclude without further assumptions that D∗ depends
directly on O.

Suppose now that Diagram (10) represents the interpolation model introduced in
Section 4.3. In this case D∗ depends clearly on O since we have D = O and ω is the
identity function.

Consider now another example, interpreting Diagram (10) as a model for the fol-
lowing computational problem. Let D be a natural number and consider the task
of computing the leading coefficient of a given univariate polynomial of degree at
most D. This problem may be expressed as a tuple (O,Φ) where O is the C–vector
space of univariate polynomials of degree at most D and Φ maps any polynomial of
O to its leading coefficient in O∗ := C. The standard algorithm which solves this
problem may be represented by D, Ψ and ω, where D is the affine space A

D+1, the
abstraction function ω : D → O is given by the dense representation of the elements
of O, D∗ := O∗, ω∗ : D∗ → O∗ is the identity function and Ψ maps each polynomial
of O to its leading coefficient.

Let d ∈ D be a coefficient instance. How do we select the leading coefficient from d?
Does the leading coefficient occupy the first, second or another position in d? This
information is intrinsic to the given polynomial and does not depend a priori on its
representation. Therefore we conclude that D∗ depends directly on O.

33



Since O is an abstract data type and D is the class which implements O, the meaning
of the elements in D is given through the abstraction function. Thus, any routine which
processes the elements in D has to take into account the abstract data type O. We shall
come back to this question in Section 4.9.

34



4.8 Polymorphism in the general interpolation model

The notion of polymorphism appears originally in functional programming in the form of
polymorphic functions and polymorphic variables. The notion of polymorphism was later
adopted by object oriented programming where several new forms of polymorphism such
as generics, overloading and overriding appeared as a consequence of inheritance.

In this section we give an overview over different forms of polymorphism. The aim is to
analyse the presence of polymorphism in the interpolation model presented in Section 4.3.

4.8.1 The origin of polymorphism

According to [Bud02] the notion of polymorphism appears first in the functional program-
ming world. The paradigm of functional programming has its roots in lambda calculus5,
where computational problems become described by functions between sets. In [Pie02]
lambda calculus is studied as the basis of functional programming. The notion of type6 is
crucial in this context. This notion gave rise to the first form of polymorphism, namely the
polymorphic function (also called parametric polymorphism in [Pie02] and polymorphic
variable in [Bud02]). We speak about a polymorphic function when a given function may
be applied to more than one type. Usually functions are associated with expressions of a
fixed type. For example, Integer is a type and the identity function of integers has type
Integer → Integer. Polymorphic functions use type variables instead of type expressions
in their signature. A type variable is a kind of variable used as a mechanism for abstract-
ing types. Moreover, a type variable allows the polymorphic function to be applied to
an argument of more than one type. For example, the identity function, when applied
to elements of any domain (type) has the type T → T , where T is a type variable which
can be replaced by any type expression. Another example given in [ASU86] is the pointer
operator &. This operator of the programming language C has type T → pointeretoeT .

Polymorphic functions are realized by adding to the set of type expressions also type
variables. This view is reflected in the polymorphic lambda calculus.

4.8.2 Polymorphism as a property of the implementation

According to [ASU86] polymorphic functions facilitate the implementation of algorithms
that manipulate data structures, regardless of the types of the elements which constitute
the given data structure. The example proposed in [ASU86] is the function that determines
the length of a list without knowing the types of the elements of the list. This function has
type list[T ] → Integer, where T is a type variable. This example reveals that polymor-
phism is a feature of the implementation, i.e. a property of the classes and the concrete
objects used in the implementation. Therefore we may ask whether polymorphism ap-
pears as a feature of implementations of Hermite–Lagrange interpolation problems and
algorithms (recall that the interpolation model introduced in Section 4.3 consist of two
parts namely the interpolation problem and the algorithm that solves the given problem).

There exist always various algorithms that compute the required interpolants. The
main difference between these algorithms is the form how the interpolant is returned,

5Lambda calculus is a formal system introduced by Alonzo Church in the 1930s.
6According to [Dat09] a type is a named set of values and it is characterized by a set of

operations [HKB93]. This definition is similar to the definition of Abstract Data Type.

35



e.g. by its coefficient vector or by an arithmetic circuit. Each such representation of the
interpolants determines a different algorithm which is formalized in the interpolation model
by a hereditary and topologically robust map Ψ : D → D∗ and a polynomial map ω∗ from
D∗ onto the interpolants. A polymorphic aspect appears when we think all possible maps
Ψ : D → D∗ as particular instances of one routine. Each such instance is characterized by
the class D∗. In terms of [ASU86], if the corresponding type is written as Ψ : D → D∗,
the expression D∗ acts as a type variable.

4.8.3 Polymorphism in object oriented programming

In object oriented programming, classes which depend on type variables are called Generics
(or Templates in C++). Functions which act on Generics are polymorphic. Another kind
of polymorphism emerges from an important feature of object oriented programming:
inheritance.

In this section we introduce the notion of inheritance and discuss the forms of poly-
morphism produced by inheritance. Finally we discuss the relation between inheritance
and the notion of representation in case of our interpolation model.

Inheritance e
According to [Mey88] inheritance is a relation between classes which has two meanings:
from the module perspective, inheritance is a key reusability technique. From the type
perspective, inheritance represents the “is–a” relation, which on its turn constitutes a set
inclusion used to describe a hierarchy of types.

For example, Figure 4.8.3 illustrates a hierarchy of types where a group is a monoid
but a monoid is not a group. The class “Monoid” is an implementation of the algebraic
structure monoid and the class “Group” is an implementation of the algebraic structure
group. The arrow between the classes “Monoid” and “Group” says that the class “Group”
inherits for example from the class “Monoid” the multiplication and its associativity. The
class “Group” is also called a child class of the parent class “Monoid”.

Figure 11: Example of inheritance

Inheritance and overriding polymorphism e

The hierarchy defined by inheritance allows a form of polymorphism called overriding.
We speak about overriding when we have to deal with two or more different versions of the

36



same routine. Typically this situation is produced by inheritance. Figure 12 illustrates an
example of overriding in the context of a graphic library.

Consider a class “Polygon” which implements all polygons by means of a list of ver-
tices. One of the routines in this class is perimeter which returns the perimeter of the
polygon under consideration. This routine is implemented as a cycle that sums successive
distances between adjacent vertices. The class “Rectangle” is a subclass of the class “Poly-
gon”. Therefore, the class “Rectangle” inherits all the routines implemented in the class
“Polygon”. However, the routine perimeter may be redefined in the class “Rectangle” as
twice the sum of the two side lengths. Thus, we have two implementations of the same
routine, a first implementation in the class “Polygon” and a more efficient one in the class
“Rectangle”.

Figure 12: Example of overriding polymorphism

Another type of polymorphism in object oriented programming is overloading. This
form is similar to overriding, it appears when the routine of a class has several implemen-
tations belonging to the same class. All the implementations have the same routine name.
The different routines become distinguished by the signature, i.e. the types and number
of parameters used.

Inheritance and the notion of representation in the interpolation model e

In this section we discuss the relation between the notion of representation in our
model and the notion of inheritance. Figure 13 illustrates this question by means of the
highlighted arrows. The first arrow indicates that D∗ is the representation of O∗ and the
second arrow indicates that the class “Group” inherits from the class “Monoid”.

Figure 13: representation vs. inheritance

37



We are going to explain that an inheritance relation between D∗ and O is not possible
in our model and therefore, the notions of representation and inheritance are different.
Hence, the notion of polymorphism as a consequence of inheritance is not compatible with
the notion of representation.

Suppose that there is a relation of inheritance between D∗ and O∗. If D∗ inherits from
O∗, all the operations available in O∗ are also available in D∗. However, O∗ is a subset of
a polynomial ring and D∗ is constructible subset of an affine space. A polynomial ring is
as algebraic structure richer than an affine space. Thus D∗ does not share operations and
properties (axioms) with O∗.

On the other hand, if O∗ inherits from D∗, all the operations available in D∗ are
available in O∗. This last situation is not possible since O∗ is part of the specification
of the problem of interpolation and D∗ is part of the implementation. Specification and
implementation are separated levels of abstraction and inheritance is a static feature of
the implementation.

38



4.9 A terminology dictionary

The mathematical and complexity theoretic aspects of this thesis were treated in [CGH+03]
and [GHMS11] where the authors introduced their own particular terminology. In this
section we shall compare this terminology with the standard terminology in Software En-
gineering, following the presentation of [Mey00]. The following Table 2 gives an overview.

Id Software Engineering Terminology in
terminology [CGH+03] and [GHMS11]

1 Abstract Data Type Object Class
2 Abstract Object Mathematical Object or

Member of an Object Class
3 Class Data Structure
4 Concrete Object or just Code or

Object Member of a Data Structure
5 Abstraction Function Encoding
6 Axioms Constructible Constraints of an

of an Abstract Data Type Object Class
7 Implementation Invariant Constructible Constraints of a

Data Structure
8 Function Identity and Value Question

of an Abstract Data Type
9 Routine Algorithm

Table 2: A terminology dictionary.

Here we remark that the correspondences 6 and 8 are not perfect, since the terminology
in [CGH+03] and [GHMS11] refers to special cases of axioms and functions.

Since the terminology of [CGH+03] and [GHMS11] was introduced in a specific context
based on particular ad–hoc definitions and the terminology in Software Engineering is
considerably more general, we have to justify our dictionary. This is done by specializing
the terminology of Software Engineering to the given specific context. In this way we may
compare both terminologies. We shall refer to them as [CGH+03][GHMS11] terms and
[Mey00] terms.

39



Our comparison follows a scheme of argumentation which looks as follows:

[Mey00] terms t1
[CGH+03][GHMS11] terms t2
Definition of t1: Definition of t1 is given.
Definition of t2: Definition of t2 is given.
Argument: Verification that t2 may be replaced

by t1 in the given context.

Table 3: Scheme of argumentation

In Section 4.3 we have introduced a general data model for Hermite–Lagrange inter-
polation. In this case our comparison is based on the following set up.

Let (O, eΦ : O → O∗) be an interpolation problem according to Definition 15. Fur-
thermore, let (D∗, eΨ : D → D∗, eω∗ : D∗ → O∗) be an interpolation algorithm according
to Definition 16 solving the given interpolation problem. Thus, our software architecture
for interpolation is described by the following commutative diagram:

O O∗

D D∗

-
Φ

-
Ψ

6
id

6
ω∗ (11)

We shall refer to this general software architecture in our subsequent comparisons.

Comparison 1 e

[Mey00] terms : Abstract Data Type
[CGH+03][GHMS11] terms : Object Class

Definition (Abstract Data Type) Following Definition 8, an Abstract Data Type
is a set of elements defined by a list of operations applicable to these elements. An Abstract
Data Type is formalized by an Abstract Data Type Specification which describes by available
services (functions) and formal properties (axioms) a set of elements.

Definition 17 (Object Class) According to [CGH+03] and [GHMS11] an Object Class
consists of a constructible subset of a suitable affine space whose elements represents math-
ematical objects of any finitary nature, e.g. polynomials over a given field. Following
the context, these mathematical objects become considered as equipped with mathematical
functions whose values satisfy certain axioms. In the case of interpolation, O and O∗

of Diagram (11) are Object Classes. The Object Class O is typically a constructible set
of interpolation data (given by nodes and values) and the elements of O∗ are the inter-
polants, e.g. polynomials in X := (X0, . . . ,Xn) over C contained in a finite–dimensional
C–linear subspace of C[X]. Here we require that O∗ forms a constructible subset of this
linear subspace.

40



Argument The definition of Abstract Data Type has two parts:

1. An Abstract Data Type is a set of elements.

2. Through its specification an Abstract Data Type is equipped with available services
which satisfy formal conditions, called axioms.

For the sake of explicitness suppose that our Object Class is a constructible subset of
a finite dimensional C–vector space of the polynomial ring C[X]. Obviously this is a set
of elements which satisfy the first condition of the definition of the notion Abstract Data
Type. On the other hand, the polynomial ring C[X] as algebraic structure includes certain
arithmetic operations (services) with the elements of C[X]. Those arithmetic operations
satisfy certain axioms, e.g. the commutative and associative law. In this sense the notion
Object Class satisfies also the second condition of the definition of the notion Abstract
Data Type. Thus, Abstract Data Type captures the meaning of Object Class in the given
context. This allows us to replace the term Object Class by the term Abstract Data Type.

Comparison 2 e

[Mey00] terms : Abstract Object
[CGH+03][GHMS11] terms : Mathematical Object or

Member of an Object Class

Definition 18 (Abstract Object) According to Meyer [Mey00] an Abstract Object is
an instance of an Abstract Data Type.

Definition 19 (Mathematical Object) According to [CGH+03] and [GHMS11] a Math-
ematical Object is a member of an Object Class.

Argument According to [Mey00] an Abstract Object is an instance of an Abstract
Data Type. Since the notion of Abstract Data Type may be replaced by the notion of
Object Class in the given context, we conclude that a Mathematical Object is a member
an Abstract Data Type. Thus, the notion of Abstract Object in [Mey00] captures the
meaning of Mathematical Object in [CGH+03] and [GHMS11]. Therefore, we may replace
the term Mathematical Object by the term Abstract Object.

Comparison 3 e

[Mey00] terms : Class
[CGH+03][GHMS11] terms : Data Structure

41



Definition (Class) Following Definition 9, a Class is a software element describing
an Abstract Data Type and its partial or total implementation. A Class is described by a list
of features (attributes and Routines). The features constitute the basis of the interaction
of the Class with the rest of the software.

Definition 20 (Data Structure) A Data Structure is a representation of an Object
Class.

For the sake of explicitness let us consider the Data Structure D∗ and the Object Class
O∗ in diagram (11). Suppose that O∗ is a constructible subset of polynomials contained
in a finite dimensional C–vector subspace of C[X]. We consider O∗ as an Abstract Data
Type.

Argument The elements belonging to D∗ represent the interpolants belonging to the
Abstract Data Type O∗. Since the elements of O∗ are polynomials of bounded degree and
number of variables, we may think them represented by their coefficients or by arithmetic
circuits or whatever else. This is just the meaning of an implementation. Since D∗

represents such an implementation of O∗, we may conclude that D∗ is a Class in the sense
of [Mey00] because the Data Structure D∗ implements the Abstract Data Type O∗. Thus,
the notion of a Class in [Mey00] captures the meaning of Data Structure in [CGH+03]
and [GHMS11]. This allows us to replace the term Data Structure by the term Class.

Comparison 4 e

[Mey00] terms : Concrete Object or just Object
[CGH+03][GHMS11] terms : Code or Member of a Data Structure

Definition 21 (Object) According to [Mey00] an Object is an instance of a Class. An
Object is a run time element, whereas a Class is an element of the program text. Figure 14
illustrates that an Object has a state which is determined by certain fields that acquire
specific values at run time. An Object may also contain operations, which are the runtime
version of the routines in the Class.

Definition 22 (Code) Let D∗ be a Data Structure which encodes the Object Class O∗.
According to [CGH+03] an element D of D∗ is called a code of an element O of O∗.

42



Values State ee

Object

Fields Operations

determine

has

contains
acquire at run time

Figure 14: Parts of a Concrete Object

Argument We have seen that the Data Structure D∗ is a Class in terms of [Mey00].
Since a Code is an instance of a Data Structure, the codes of D∗ are instances of a Class.
Thus, the notion of a Concrete Object in [Mey00] captures the meaning of Code. This
allows us to replace the term Code by the term Concrete Object.

Comparison 5 e

[Mey00] terms : Abstraction Function
[CGH+03][GHMS11] terms : Encoding

Definition 23 (Abstraction Function) According to [Mey00] a Class describes a pos-
sible representation of an Abstract Data Type; the correspondence between Class and Ab-
stract Data Type is called Abstraction Function. When we apply a given Abstraction
Function to any instance of the Class, or Concrete Object, we obtain an instance of the
Abstract Data Type, or Abstract Object.

Definition 24 (Encoding) Let D∗ be a Data Structure and O∗ an Object Class. In [CGH+03]
and [GHMS11] an Encoding of O∗ by D∗ is a constructible (elementary definable) map
ω∗ : D∗ → O∗ which is continuous with respect to the Zariski topologies of D∗ and O∗.
Frequently ω∗ is supposed to be a polynomial map. In the latter case ω∗ is called holomor-
phic.

Argument We have seen that:

1. The term Data Structure may be replaced by the term Class.

2. The term Object Class may be replaced by the term Abstract Data Type.

43



The Encoding ω∗ maps the Data Structure D∗ to the Object Class O∗. In other words,
the Encoding ω∗ maps a Class to an Abstract Data Type, i.e. for any Concrete Object D
of D∗ the image ω∗(D) is an Abstract Object that represents D. Therefore ω∗ constitutes
a correspondence between the Class D∗ and the Abstract Data Type O∗. Hence ω∗ is by
definition an Abstraction Function. Thus, the notion of Abstraction Function captures
the meaning of term Encoding. We may therefore replace the term Encoding by the term
Abstraction Function.

Comparison 6 e

[Mey00] terms : Axioms of Abstract Data Type
[CGH+03][GHMS11] terms : Constructible Constraints of Object Class

Definition 25 (Axioms of Abstract Data Type) According to [Mey00] an Abstract
Data Type defines a set of abstract objects implicitly, through the applicable functions.
Moreover, the functions themselves are also defined implicitly: instead of explicit def-
initions by reference to a concrete representation, an Abstract Data Type Specification
describes the functions properties by means of axioms. These axioms are predicates (in
the sense of logic) which express that a given condition is satisfied by any possible instance
of the Abstract Data Type.

Eventually the elements of an Abstract Data Type form a subset of an ambient set.
In this case the Abstract Data Type may contain a service which answers the membership
question in order to distinguish elements of the Abstract Data Type from the elements
of the ambient set. Such a membership question corresponds to an abstract invariant in
the sense of [LG01]. We interpret this abstract invariant as an special axiom in the sense
of [Mey00].

Definition 26 (Constructible Constraints of Object Class) e
In [CGH+03] and [GHMS11] an Object Class is given as a constructible subset of a suitable
affine space. Thus, an Object Class is defined by a restriction consisting of a Boolean
combination of polynomial equations. In other words, the Constructible Constraints of an
Object Class are Boolean combinations of polynomial equations that define the elements of
the Object Class.

Argument Following Definition 25 the Axioms of an Abstract Data Type define (im-
plicitly) the set of abstract objects of the Abstract Data Type. On the other hand, the
Constructible Constraints of Object Class define the elements of the Object Class. Since
the notion of an Abstract Data Type may be replaced by the notion of an Object Class
in the given context, the Constructible Constraints play the role of Axioms in the sense
of [Mey00]. This allows us to replace the term Constructible Constraints of Object Class
by the term Axioms of Abstract Data Type

44



Comparison 7 e

[Mey00] terms : Class Invariants
[CGH+03][GHMS11] terms : Constructible Constraints of Data Structure

Definition 27 (Implementation Invariant) According to [Mey00] an Implementation
Invariant is part of a set of assertions called Class Invariant which express general con-
sistency constraints that apply to every instance of the Class as a whole. The Implemen-
tation Invariant expresses the correctness of the representation vis-a-vis the corresponding
Abstract Data Type. In mathematical terms, the Implementation Invariant is the charac-
teristic function of the domain of the Abstraction Function, that is to say, the property
that determines when that function is applicable. The Implementation Invariant deter-
mines when a candidate Concrete Object is indeed the implementation of one (and then
only one) Abstract Object.

Definition 28 (Constructible Constraints of Data Structure) A Data Structure is
a constructible subset of a suitable affine space. Thus, a Data Structure is defined by a
Boolean combination of polynomial equations called Constructible Constraints.

Argument An Implementation Invariant is a list of restrictions which defines the in-
stances of a Class in the sense of [Mey00]. In a similar way, a Data Structure is given by
Constructible Constraints. Since the notion of Class captures the notion of Data Struc-
ture, we deduce that Constructible Constraints define the instances of a Class. Thus, the
notion of Implementation Invariant captures the meaning of Constructible Constraints of
a Data Structure. This allows us to replace the term Constructible Constraints of a Data
Structure by the term Implementation Invariant

Comparison 8 e

[Mey00] terms : Function of an Abstract Data Type
[CGH+03][GHMS11] terms : Identity and Value Question

Definition 29 (Function of an Abstract Data Type) According to [Mey00] an Ab-
stract Data Type specification describes and defines a set of elements together with services
available and applicable to each element. A Function of an Abstract Data Type is a service
consisting of a mathematical function.

Definition 30 (Identity and Value Question) The paper [CGH+03] explains two par-
ticular instances of services of an Abstract Data Type O∗ which consists of n–variate poly-
nomials: the identity and the value question. The first one is the identity relation between
elements of O∗ and the second one returns for a given polynomial p ∈ O∗ and a point
x ∈ A

n the value p(x).

45



Argument The Identity Question is realized by a Boolean valued function defined on
O∗ × O∗ and the Value Question by a complex valued function on O∗ × A

n in the sense
of [CGH+03] and [GHMS11]. These mathematical functions are applicable to each element
of O∗. Thus, Identity Question and Value Question are services in the sense of [Mey00].
This allows us to consider Identity and Value Question as Functions of an Abstract Data
Type.

There is another element in the terminology of [GHMS11] which may be interpreted as
a Function of an Abstract Data Type. This element is the map Φ of Diagram (11). This
map determines for each interpolation data in O its unique interpolant belonging to O∗.
We may interpret O as an Abstract Data Type which exports the service Φ. In this sense,
the notion Function of an Abstract Data Type captures also the meaning of the map Φ.

Comparison 9 e

[Mey00] terms : Routine
[CGH+03][GHMS11] terms : Algorithm

Definition 31 (Routine) A Routine consists in some sense of a computation (algo-
rithm) applicable to all instances of a given Class. According to [Mey00] routines may
be classified as Procedures and Functions. A Routine is called a Method in Smalltalk;
applying a routine to an Object is called sending a message to the Object.

Here a word should be said about the classification of Routine into Functions and
Procedures. Let Query, Command and Creator be classifications of the notion of Abstract
Function. Let Function and Procedure be classifications of the notion of Routine. A
Function is the implementation of a Query and correspond to a Routine which returns a
result. A Procedure is the implementation of a Command and corresponds to a Routine
which do not return an explicit result. Figure 15 illustrates the correspondence between
the notions Routine and Abstract Function.

Abstract Function

Query Command Creator

Function

Routine Procedure

implements
implements

Figure 15: Correspondence between Routine and Abstract Function

46



Definition 32 (Algorithm) In [CGH+03] an Algorithm solves a problem. An Algorithm
computes in a “uniform” and deterministic manner for each input Code an output Code.
In [GHMS11] a Hermite–Lagrange interpolation Algorithm is determined by a constructible
subset D∗ of the affine space A

M acting as an output Data Structure, a polynomial En-
coding w∗ and a hereditary map Ψ namely the Algorithm in the narrow sense.

Argument The definitions of Algorithm and Routine are similar in the sense that both
belong to the context of implementation. The notion of Routine refers to an operation
applicable to any instance of a given Class. In the same way, an Algorithm is in the sense
of [CGH+03] a computation applicable to any instance of a given Data Structure. Thus,
the notion of Routine captures the meaning of Algorithm. This allows us to replace the
term Algorithm of [CGH+03] and [GHMS11] by the term Routine.

47



5 Coalescence and branching parsimoniousness

compared with other quality attributes

At this point the intuitive concepts of coalescence and branching parsimoniousness (or
branching–freeness) were introduced as quality attributes which affect negatively the com-
plexity of interpolation and elimination algorithms. In this section we consider the method-
ology of quality attribute scenarios described in [BCK03] and we obtain examples of other
quality attributes with similar properties as coalescence.

We shall explain that the notion of branching parsimoniousness is closely related to
quality attributes such as modifiability. We shall also explain that the notion of coalescence
is closely related to a special kind of external quality attributes, namely quality attributes
that restrict the set of possible outputs. In order to achieve these conclusions, we describe
in Section 5.1 coalescence and branching parsimoniousness by means of quality attribute
scenarios. In Section 5.2 we compare, in terms of scenarios, coalescence and branching
parsimoniousness with some classical quality attributes. Finally, in Section 5.3 we ex-
hibit a couple of quality attributes with similar scenarios to coalescence and branching
parsimoniousness.

5.1 Quality attribute scenarios for coalescence and branch-

ing parsimoniousness

In this section the method of quality attribute scenarios of [BCK03] is used to define
coalescence and branching parsimoniousness.

Quality attribute scenarios e
A quality attribute scenario is a method to formulate a quality attribute as an specific
requirement. A quality attribute scenario divides a quality attribute in six parts:

- Source of stimulus : A stimulus has a generator called source. Usually the source of
stimulus is the user, e.g. a user requiring the software of a data base.

- Stimulus : It arrives to the system, e.g. as a query to the data base.

- Environment : Conditions of the system present when the stimulus arrives, e.g. data
base system overloaded of queries or data base system at normal conditions.

- Artifact : Part of the system stimulated, e.g. the algorithm that retrieve information
from the data base.

- Response : Activity undertaken in order to give response to the stimulus, e.g, the
data base processes the query.

- Response measure : It serves to test the requirement, e.g. the speed of data base
processing.

It is usual to distinguish between general scenarios and specific ones. A general scenario
formulates each part in general terms, whereas an specific scenario formulates each part
in terms of specific situations. In this section coalescence and branching parsimoniousness
are described by means of general scenarios.

48



5.1.1 Quality attribute scenario for coalescence

Let Φ be the abstract function introduced in Section 4.2.1. According to Definition 14
coalescence refers to properties of interpolation problems and algorithms, like for example:
if a sequence (di)i∈N of interpolation data converges to an interpolation datum d, then the
sequence (Φ(di))i∈N should be bounded. We describe now this situation in terms of the
following quality attribute scenario:

Figure 16: Quality attribute scenario for coalescence

The source is the user because the user chooses a sequence (di)i∈N of interpolation
data and runs the algorithm on each interpolation datum of the sequence.

The stimulus is represented by the sequence (di)i∈N of interpolation data which con-
verge to an interpolation datum d. This convergence is a “pattern to arrive” in terms
of [BCK03]. The pattern to arrive is a characteristic of the stimulus in scenarios for the
quality attribute performance. For example, when the system is supposed to achieve a
certain level of performance, it may be required that the system works properly under
stimuli arriving at high frequency. In this case the pattern to arrive is high frequency. In
the case of coalescence the pattern to arrive is convergence to a interpolation datum.

The artifact or the part of the system stimulated is the interpolation algorithm and
indirectly the service of the program which is represented by the output. In the context
of Hermite-Lagrange interpolation the interpolant is the service of the program.

The environment is described by the algorithm of interpolation at run time.
The response to the stimulus is data processing by computing the interpolant.
In case that the given sequence of interpolants converges, the measure may be the

convergence rate.

5.1.2 Quality attribute scenario for branching parsimoniousness

According to concepts of Section 6 branching parsimoniousness is a property of algorithms.

Definition 33 (Branching parnimoniousness) Branching parnimoniousness is a prop-
erty which expresses that branchings, i.e. points where the algorithm bifurcates by means
of conditionals or other control structures, are avoided when a branching–free alternative
for the computational problem under consideration exists.

This description allows the elaboration of the following quality attribute scenario:
e

The source formulates the requirement of branching parsimoniousness.

49



The stimulus is represented by the requirement of branching parsimoniousness. This
requirement is viewed as an stimulus because it determines the form and the construction
of the algorithm.

The artifact in this case is the algorithm because it is the part of the system affected
by the requirement.

The environment may be development or maintenance because requirements like branch-
ing parsimoniousness are usually solved in these stages.

The response to the stimulus is the fact that the algorithm was constructed with a
minimal number of branchings.

The measure in this case is the number of branchings. If this number is zero, the
stimulus is satisfied.

Figure 17: Quality attribute scenario for branching parsimoniousness

5.2 Scenario comparison with classical quality attributes

In this section the quality attribute scenarios of coalescence and branching parsimonious-
ness become compared with the quality attributes scenarios of performance, security,
availability, testability and usability which can be found in [BCK03]. Figure 18 gives
an overview of these quality attribute scenarios7.

7For the sake of simplicity Source and Environment features of quality attribute scenarios were
not included since they are irrelevant for our discussion.

50



Figure 18: Overview of quality attributes scenarios

5.2.1 Comparison with coalescence

Figure 19 below visualizes that the scenario of coalescence is, between the quality at-
tribute of Figure 18, most similar to the scenario of performance. The similarity between
coalescence and performance is not total since there are no coincidences in the column
of measure. This aspect reveals that measure is an important feature in the definition of
quality attributes related to coalescence.

Figure 19: Coincidences between coalescence and quality attributes



On the other hand, Figure 20 below highlights the differences between coalescence and
performance. In the case of coalescence the measure is the convergence rate of the sequence
of interpolants (which is supposed to be convergent), whereas in the case of performance
the measure is the time to process events. With respect to the other scenarios, the differ-
ences with security are response and measure, whereas the differences with testability are
artifact and measure. These facts suggest again that the key feature of coalescence is the
measure.

The measure of a quality attribute scenario for coalescence consists of the convergence
rate of the output data. This convergence rate restricts the set of possible outputs. Thus,
quality attributes similar to coalescence are those that restrict the set of possible outputs.

Figure 20: Differences between coalescence and quality attributes

5.2.2 Comparison with branching parsimoniousness

Figure 21 below visualizes that the scenario of branching parsimoniousness is, between
the quality attributes of Figure 18, most similar to the scenario of modifiability. The lack
of comparable properties in column “Response” of Figure 21 reveals the relevance of this
feature for quality attributes related to branching parsimoniousness.

On the other hand, Figure 22 below highlights the difference between branching par-
simoniousness and modifiability. In the case of branching parsimoniousness the (positive)
response consists of a branching–free design of the algorithm, whereas in the case of modi-
fiability the response consists of a modification of the algorithm. With respect to the other

52



scenarios, the main difference is in the response column. This fact suggest that response
is the key feature of branching parsimoniousness.

The response in a quality attribute scenario for branching parsimoniousness captures
a restriction on the structure of a program, in this case branching–freeness. Thus, qual-
ity attributes which are comparable to branching parsimoniousness have to restrict the
structure of the program.

Figure 21: Coincidences between branching parsimoniousness and quality attributes

53



Figure 22: Differences between branching parsimoniousness and quality attributes

5.3 Examples of suitable quality attributes

According to Ghezzi [GJM91] and Meyer [Mey88] quality attributes can be classified as:
external and internal ones. An alternative classification in [BCK98] distinguishes between
attributes which are observable via execution and those which are not. The following
examples consider both classifications.

5.3.1 Quality attributes that restrict the set of possible outputs

External quality attributes are visible to the user of the system or program. The output
of a program is always visible to the user. Thus, quality attributes that restrict the set of
possible outputs are external.

There are important examples of external quality attributes such as efficiency and
usability. However, it is difficult to find examples which can be compared with coalescence.
The main difficulty for the exhibition of suitable examples is the continuous aspect of the
coalescence restriction. Another difficult point is the similarity between restricting the
output and formulating a functional requirement.

Despite of these difficulties, we are able to exhibit an example in the context of machine
learning. A classifier is an algorithm that is used to classify data. For example, such a
classifier could categorize clients of a bank by means of selected variables. The classifier

54



identifies clients that will leave the bank and clients that will continue stay in the bank.
The input of the classifier is a set of variables representing a client and the output is the
type of the client, see Figure 23.

Figure 23: Input and output of a classifier

The classifier is based on a model which in Figure 23 becomes represented by the gear.
This model includes in its construction a training of the classifier. This training represents
some common feature with coalescense.

Figure 24 illustrates the process of training a classifier. The training consists of feeding
the classifier with selected client examples. Each example helps the classifier to construct
a model that captures the characteristics of the clients that will leave the bank.

Figure 24: Training of a classifier

It is supposed that if the examples converge to the characterization of a client that
leaves the bank, the training process leads to a model which recognize clients that leaves
the bank. This may be compared with the convergence of a output data sequence in
interpolation, i.e. with coalescence. If the “convergence” does not take place during the
training, an inappropriate model is obtained.

Thus the “convergence” of the examples is a requirement which restricts the output
of the classifier. The problem is how to realize this restriction. In the context of machine
learning this could be a problem difficult to solve.

5.3.2 Quality attributes that restrict the structure of the program

The quality attributes related to the structure of the software are called internal quality
attributes. For example modifiability is a quality attribute related to the cost of changing

55



the system and is therefore internal. Observe that internal quality attributes are visible to
the developer of the system, but not to the user. The developer may use certain internal
quality attributes in order to satisfy other quality attributes which are difficult to realize
directly. This is the case of the quality attribute reliability.

Nevertheless, internal quality attributes do not affect directly the structure of a system.
The satisfaction of internal quality attributes requires techniques which are called tactics.
For example, a system is easily modified when it is structured, modularized and well
documented.

According to [BCK03] a tactic is a design decision that influences the control of a
quality attribute response8. In Section 5.2 it was explained that the key feature of branch-
ing parsimoniousness is its response. Since tactics act on the feature response, branching
parsimoniousness becomes achieved by tactics.

The relation between quality attributes and tactics is explained with more detail by
the following example.

Figure 25 below illustrates that testability requires modularity. Therefore modularity
is a tactic or a design decision which allows to achieve testability. Modularity is viewed
as a tactic because modularity is a technique which the program designer uses in order
to satisfy certain previously fixed requirements. Relevant is the distinction between the
’what’ and the ’how’. For example, testability is the ’what’ and modularity is the ’how’.
Another example of a tactic that appears in Figure 25 is redundancy. According to [BW96]
the tactic of redundancy promotes directly the quality attribute reliability. Notice that
redundancy is based on a decomposition of the system into modules or components. Thus,
redundancy includes modularity.

Modularity Testability

Redundancy

Verifiability

Reliability

need

similar to

necessary for
promote

Tactics
Internal Quality Attributes

External Quality Attribute

Figure 25: Relation between (internal/external) quality attributes and tactics

8According to [PA09] the notion of design decision is quite general. It could refer to a decision
about data format or operations on data; the hardware devices or other components with which the
software must interoperate; protocols of messages between components, or the choice of algorithms.

56



Figure 25 illustrates two interesting points. The first point is that quality attributes
depend on tactics or design decisions such as modularity or redundancy. The second
point is that these tactics can be viewed as restrictions on the structure of the system.
Restrictions on the structure, as e.g. redundancy and loose of coupling9, are typically
linked to modularity.

5.3.3 Remarks about suitable Quality Attributes

Our previous considerations suggest that we should focus our attention to tactics for
the realization of quality attributes linked to branching parsimoniousness and that the
comparison of branching parsimoniousness with other, standard, quality attributes is only
clumsy and less relevant. Tactics are the tool for achieving quality attributes including
quality attributes which restrict the structure of the system. Thus, exploring tactics is the
best way to find elements of software engineering relevant for branching parsimoniousness.
Among the known tactics, modularity is the most important one because it constitutes a
fundamental design concept.

On the other hand, coalescence is very close to external quality attributes such as
performance. This proximity suggests the exploration of the relation between coalescence
and other external quality attributes.

9Loose of coupling is a characteristic of a modularized system where the modules have low
coupling, i.e. low dependencies between modules. According to [Mey88] the quality attribute
reusability requires loose of coupling.

57



6 A software architecture based computation model

for arithmetic circuits

6.1 Aims and paradigmatic examples

The aim of this section is to introduce and motivate a practically feasible, software archi-
tecture based model of branching–free (or at least branching parsimonious) computation
using the circuit representation of rational functions as fundamental data type. In this
computation model, a procedure or routine will accept a circuit as input and produce
another circuit as output. Since the basic ingredients of our computations with circuits
are supposed to be branching–free and circuits themselves may be interpreted as com-
putations, the circuits used as data types in our model should be branching–free too.
This leads us, after some motivating considerations, to introduce and discuss the concept
of a parameterized arithmetic circuit. However, branchings are sometimes unavoidable.
Nevertheless, frequently they may be replaced by limit processes. In order to capture
this situation, we shall also introduce and discuss the notion of a robust parameterized
arithmetic circuit.

An important issue of this section is the concept of well behavedness, under certain
modifications of the input circuits, of procedures and routines, which solve formally spec-
ified computational problems. This concept will finally allow us to establish our software
architecture based model of computation with robust parameterized arithmetic circuits.

It is well known that there exist geometric elimination problems which are closely
related to NP–hardness, although the arithmetic and the bit computation models are
substantially different (see e.g. [BSS89], [SS95], [BCSS98] and [HM93]). In the bit model,
branchings may be mimicked by boolean operations and appear more related to algorithms
than to the computational problem itself.

It is well known that an efficient general purpose algorithm may become inefficient
when it becomes applied to a subproblem consisting of non–generic input instances. This
may even occur in unexpected situations as e.g. in the case of the knapsack based Merkle–
Hellman cryptosystem which in 1984 was broken by a specific polynomial time algorithm
([Sha84]).

In the continuous world of arithmetic computation models over fields like R and C,
things look quite different. The reader might be aware that, in the formulation of a
Hermite–Lagrange interpolation problem in Section 4.2, we limited our attention to topo-
logically robust and hereditary constructible maps Φ. The reason was to allow that the
subsequent interpolation algorithms, which solve these problems, could be performed in a
numerically meaningful and, in particular, branching–free way on any given input. With-
out this limitation we implicitly would have admitted algorithmic situations where branch-
ings are unavoidable. Especially, if the constructible map Φ is geometrically robust, we
may conclude that Φ is also topologically robust and hereditary and that the Hermite–
Lagrange interpolation problem determined by Φ can be solved by a geometrically robust
algorithm.

With the conceptual couple of topological robustness and hereditarity, and the con-
cept of geometrical robustness we were able to introduce into the discussion a certain
architectural requirement that guarantees “well behavedness” of interpolation problems

58



(and algorithms) under restrictions of the inputs to special sets of instances (this includes
also the case of specializations to single inputs). Problems and algorithms which are well
behaved under restrictions have the following property:

if we restrict the inputs we obtain a subproblem and a subalgorithm, respec-
tively.

A more home–made way to tackle this kind of situations consists of extracting from
the given interpolation problem “meaningful” classes of subproblems and submit them to
individual solutions.

In the bit–world nobody questions the existence of such a hierarchy of “meaningful”
problems. This becomes visualized by the following example. Although the general graph
coloring problem is NP–complete, nobody considers as senseless the search for polynomial
time coloring algorithms for special graph types. This illustrates also the implicit ubiquity
of conceptual opposition of branchings and branching–freeness even for computational
problems formulated in the bit model.

Until now we modeled in this thesis concrete objects by means of points belonging to
affine spaces of fixed dimension and characterized routines by means of (mostly topological
robust and hereditary) constructible maps of a fixed number of arguments. This entailed
the non–uniform nature of our computation model. Our routines operated between com-
plex vectors of fixed length and not, as usual in programming, on the corresponding
dynamic objects. However, in real world Software Engineering, abstract data types and
classes implementing them have often an interleaved recursive structure which must be
taken into account in the program design. Let us illustrate this alternative view by means
of two examples: integer multiplication in the bit model and matrix multiplication in the
arithmetic model.

In the first case we start from the (non–unique) representation of non–negative integers
by (not too short) dynamic bit vectors. This representation may be implemented in
different ways, e.g. by stacks or nested (linear) arrays. Figure 26 illustrates this software
architecture.

Non–Negative Integer

Dynamic Bit Vector

Stack Nested (Linear) Array
e Software component

Implements relation

Figure 26: Software architecture for non-negative integers

Let us first consider the stack implementation of integers of bit length n. In this case
we may realize integer multiplication by a recursive algorithm using O(n2) bit operations.
It is unlikely that the asymptotic order of this complexity can be improved for the stack
implementation of integers.

59



Things change drastically when integers become implemented by nested arrays. The
Karatsuba–Ofman and the Schönhage–Strassen integer multiplication algorithms ([vzGG03])
are designed for the nested array implementation of integers and the complexity of these
procedures, counted in bit operations, becomes now of order O(nlog 3) = O(n1.585) and
O(n log n log log n), respectively.

In a similar way matrices over fields may be implemented by stacks of stacks or by
nested (bidimensional) arrays. In the first case the multiplication of two (n×n)–matrices
may be realized by a (for this implementation probably optimal) recursive algorithm using
O(n3) field operations and in the second case by Strassens’s recursive matrix multiplication
algorithm which uses only O(nlog 7) = O(n2.804) arithmetical operations.

In the cases of the array based fast integer and matrix multiplication the following
occurs. Let us fix two positive integers n and m subject to the condition n ≤ 2m (for
example m := ⌈log n⌉). Let be given two n–bit vectors α and β representing integers a
and b and let α′ and β′ be the 2m–bit vectors obtained by “filling up” the boolean vectors
α and β at the right hand end by zero bits. Observe that the 2m–bit vectors α′ and β′

still represent the integers a and b.
Similarly let be given two (n× n)–matrices A and B representing two C–linear endo-

morphisms ϕ and ψ of the C–linear space A
n. Let A′ and B′ be the (2m × 2m)–matrices

obtained by “filling up” the matrices A and B at the top and at the right hand end by
suitable zero rows and columns. Then ϕ and ψ may be canonically extended to C–linear
endomorphisms ϕ′ and ψ′ of the C–linear space A

2m .
Now we represent α′, β′ and A′, B′ by nested arrays and apply to α′, β′ the Karatsuba–

Ofman or the Schönhage–Strassen integer multiplication and to A′, B′ the Strassen matrix
multiplication algorithm. The outcome is a 2m+1–bit vector γ′ which represents the integer
ab and the (2m × 2m)–matrix A′B′ which represents the composition ϕ′ ◦ ψ′ of the C–
linear maps ϕ′ and ψ′. A (2n − 1)–bit vector γ representing the product ab and the
entries of the matrix AB representing the composition ϕ ◦ ψ can now easily be read–
off from the (2m − 1)–bit vector γ′ and the 2m × 2m–matrix A′B′ without realizing any
additional boolean or arithmetic operations. The Karatsuba–Ofman and the Schönhage–
Strassen integer multiplication algorithms compute γ′ using O(2m log 3) and O(2mm logm)
bit operations, respectively, and the Strassen matrix multiplication algorithm computes
A′B′ using O(2me log 7) arithmetical operations. The corresponding computations may be
arranged, following the context, as boolean or arithmetic circuits.

If we consider now the entries of α and β as boolean variables and the entries of A and
B as indeterminates over C, we see that the computation of γ′ and A′B′ (and hence of
γ and AB) involves only O(nlog 3), O(n log n log log n) and O(nlog 7) genuine boolean and
arithmetical operations, independently of the current value of m. The rest of the boolean
or arithmetic operations become applied to pairs of arguments from which at least one
has the value zero. These operations may therefore be canceled out, avoiding side effects.
This cancellation process is purely combinatorial and does not require any computational
effort. Of course, each cancellation involves a rearrangement of the circuit representing the
computation. In the sequel we shall refer to this kind of operations, namely cancellations
and circuit rearrangements, as circuit reductions.

If we consider now the problems of the efficient multiplication of n bit integers and (n×
n)–matrices as multiplication of 2m–bit integers and (2m × 2m)–matrices, we see that the
recursive, array based Karatsuba–Ofman and Schönhage–Strassen integer multiplication

60



and the Strassen matrix multiplication algorithms are well behaved under restrictions.
This means that these algorithms admit an efficient adaptation to reduced input instances,
by means of a simple combinatorial cancellation and rearrangement, namely a reduction
process.

A separate class of algorithms in scientific complexity consists of the approximative
ones. The concept of approximative algorithms is motivated by numerical analysis ap-
plications. Approximative algorithms constitute an important tool for fast matrix multi-
plication (see e.g. [Sch81] or [BCS97], Chapter 15) and for polynomial equation solving
over C as well as over R (see e.g. [Can88], [GH93], [HKP+00]). In all these cases the ap-
proximative algorithm under consideration becomes finally transformed into a symbolic,
infinite precision routine. This is done by a division by an infinitesimal which disguises in
fact a blow up (see Section 6.5.5 below).

Instead of introducing infinitesimals we shall adopt in this thesis another point of
view which comes closer to that of “numerical algebraic geometry” (see e.g. [Ste04],
[SW05], [EGL97] and [CYGM09]). Under the name of “coalescence” (term borrowed from
interpolation theory) we shall algebraically mimic a kind of convergence of algorithms.
A basic requirement for that will be well behavedness under restrictions (see Section 6.4
below).

6.2 Parameterized arithmetic circuits and their semantics

The routines of our computation model, which will be introduced in Section 6.4, operate
with circuits representing parameter dependent rational functions. They will behave well
under restrictions. In this spirit, the objects of our abstract data types will be parame-
ter dependent multivariate rational functions over C, the concrete objects of our classes
will be parameterized arithmetic circuits and our abstraction function will be the circuit
representation of rational functions. In what follows, C may always be replaced, mutatis
mutandis, by an arbitrary algebraically closed field (of any characteristic).

Let us fix natural numbers n and r, indeterminates X1, . . . ,Xn and a non–empty
constructible subset M of A

r. By π1, . . . , πr we denote the restrictions to M of the
canonical projections Ar → A

1.
A (by M) parameterized arithmetic circuit β (with basic parameters π1, . . . , πr and

inputs X1, . . . ,Xn) is a labelled directed acyclic graph (labelled DAG) satisfying the fol-
lowing conditions:
each node of indegree zero is labelled by a scalar from C, a basic parameter π1, . . . , πr or a
input variable X1, . . . ,Xn. Following the case, we shall refer to the scalar, basic parameter
and (standard) input nodes of β. All others nodes of β have indegree two and are called
internal. They are labelled by arithmetic operations (addition, subtraction, multiplica-
tion, division). A parameter node of β depends only on scalar and basic parameter nodes,
but not on any input node of β. An addition or multiplication node whose two ingoing
edges depend on an input is called essential. The same terminology is applied to division
nodes whose second argument depends on an input. Moreover, at least one circuit node
becomes labelled as output. Without loss of generality we may suppose that all nodes of
outdegree zero are outputs of β. Figure 27 illustrates this description.

We consider β as a syntactical object which we wish to equip with a certain semantics.
In principle there exists a canonical evaluation procedure of β assigning to each node a

61



ee
output
node

parameter
node ee

essential
node

ee ee

ee π1 . . . πr X1 . . . Xn

scalar
node

basic parameter
node

input variable
node

node of
out degree zero

internal nodes of
indegree two

nodes of
indegree zero

Figure 27: Parts of parameterized arithmetic circuit β

rational function of M× A
n which, in case of a parameter node, may also be interpreted

as a rational function of M. We call such a rational function an intermediate result of β.
The evaluation procedure may fail if we divide at some moment an intermediate result

by another one which vanishes on a Zariski dense subset of a whole irreducible component
of M× An. If this occurs, we call the labelled DAG β inconsistent, otherwise consistent.
From [CGH+03], Corollary 2 (compare also [HS], Theorem 4.4 and [GH01], Lemma 3)
one deduces easily that testing whether an intermediate result of β vanishes on a Zariski
dense subset of a whole irreducible component of M×A

n can efficiently be reduced to the
same task for circuit represented rational functions of M (the procedure is of non–uniform
deterministic or alternatively of uniform–probabilistic nature).

Mutatis mutandis the same is true for identity checking between intermediate results
of β. If M is irreducible, both tasks boil down to an identity–to–zero test on M. In case
that M is not Zariski dense in A

r, this issue presents a major open problem in modern
Theoretical Computer Science (see [Sax09] for details).

From now on we shall always assume that β is a consistent parameterized arithmetic
circuit. The intermediate results associated with output nodes will be called final results
of β.

We call an intermediate result associated with a parameter node a parameter of β and
interpret it generally as a rational function of M. A parameter associated with a node
which has an outgoing edge into a node which depends on one of the inputs of β is called
essential. In the sequel we shall refer to the constructible set M as the parameter domain
of β.

We consider β as a syntactic object which represents the final results of β, i.e. the
rational functions of M×A

n assigned to its output nodes. In this way becomes introduced
an abstraction function which associates with β these rational functions. This abstraction
function assigns therefore to β a rational map M× A

n
99K A

q, where q is the number of

62



output nodes of β. On its turn, this rational map may also be understood as a (by M)
parameterized family of rational maps An 99K A

q.
Now we suppose that the parameterized arithmetic circuit β has been equipped with

an additional structure, linked to the semantics of β. We assume that for each node ρ of
β there is given a total constructible map M× A

n → A
1 which extends the intermediate

result associated with ρ. Therefore, if β has K nodes, we obtain a total constructible map
Ω : M× A

n → A
K which extends the rational map M× A

n
99K A

K given by the labels
at the indegree zero nodes and the intermediate results of β.

Definition 34 (Robust circuit) Let notations and assumptions be as before. The pair
(β,Ω) is called a robust parameterized arithmetic circuit if the constructible map Ω is
geometrically robust.

We shall make the following two observations to this definition.
We state our first observation. Suppose that (β,Ω) is robust. Then the constructible

map Ω : M×A
n → A

K is geometrically and hence also topologically robust and hereditary.
Moreover, there exists at most one geometrically robust constructible map Ω : M×A

n →
A
K which extends the rational map M × A

n
99K A

K introduced before. Therefore we
shall apply the term “robust” simply to the circuit β.

Let us now state our second observation. We may consider the parameterized circuit β
as a program which solves the problem to evaluate, for any sufficiently generic parameter
instance u ∈ M, the rational map A

n
99K A

q which we obtain by specializing to the point
u the first argument of the rational map M×A

n
99K A

q defined by the final results of β.
In this sense, the “problem” solved by β is given by the final results of β.

Being robust becomes now an architectural requirement for the circuit β and for its
output. Robustness implies well behavedness under restrictions as described in Section
6.1. Let us formulate this more precisely.

Let N be a constructible subset of M and suppose that (β,Ω) is robust. Then the
restriction Ω|N×An of the constructible map Ω to N × A

n is still a geometrically robust
constructible map.

This implies that (β,Ω) induces a by N parameterized arithmetical circuit βN such
that (βN ,Ω|N×An) becomes robust. We call (βN ,Ω|N×An), or simply βN , the restriction
of (β,Ω) or β to N .

We say that the parameterized arithmetic circuit β is totally division–free if any divi-
sion node of β corresponds to a division by a non–zero complex scalar.

We call β essentially division–free if only parameter nodes are labelled by divisions.
Thus the property of β being totally division–free implies that β is essentially division–free,
but not vice versa. Moreover, if β is totally division-free, the rational map given by the
intermediate results of β is polynomial and therefore a geometrically robust constructible
map. Thus, any by M parameterized, totally division–free circuit is in a natural way
robust.

In the sequel we shall need the following elementary fact whose easy proof we omit
here.

Lemma 13 Let notations and assumptions be as before and suppose that the parameter-
ized arithmetic circuit β is robust. Then all intermediate results of β are polynomials in

63



X1, . . . ,Xn over the C–algebra of geometrically robust constructible functions defined on
M.

The statement of this lemma should not lead to confusions with the notion of an
essentially division–free parameterized circuit. We say just that the intermediate results
of β are polynomials in X1, . . . ,Xn and do not restrict the type of arithmetic operations
contained in β.

Whether divisions of polynomials by their factors may always be substituted efficiently
by additions and multiplications is an important issue in Theoretical Computer Science
(compare [Str73]).

To our parameterized arithmetic circuit β we may associate different complexity mea-
sures and models. In this thesis we shall mainly be concerned with sequential computing
time, measured by the size of β. Here we refer with “size” to the number of internal
nodes of β which count for the given complexity measure. Our basic complexity measure
is the non–scalar one (also called Ostrowski measure) over the ground field C. This means
that we count, at unit costs, only essential multiplications and divisions (involving basic
parameters or input variables in both arguments in the case of a multiplication and in
the second argument in the case of a division), whereas C–linear operations are free (see
[BCS97] for details).

We describe now how, based on its semantics, the given parameterized arithmetic
circuit β may be rewritten into a new circuit which computes the same final results as β.

The resulting two rewriting procedures, called reduction and broadcasting, will neither
be unique and nor generally confluent. For his easiness, the reader may suppose that there
is given an (efficient) algorithm which allows identity checking between intermediate results
of β. However, we shall not make explicit reference to this assumption. We are now going
to introduce the first rewriting procedure.

Suppose that the parameterized arithmetic circuit β computes at two different nodes,
say ρ and ρ′, the same intermediate result. Assume first that ρ neither depends on ρ′, nor
ρ′ on ρ. Then we may erase ρ′ and its two ingoing edges (if ρ′ is an internal node) and
draw an outgoing edge from ρ to any other node of β which is reached by an outgoing
edge of ρ′. If ρ′ is an output node, we label ρ also as output node. Observe that in this
manner a possible indexing of the output nodes of β may become changed but not the
final results of β themselves.

Suppose now that ρ′ depends on ρ. Since the DAG β is acyclic, ρ does not depend on
ρ′. We may now proceed in the same way as before, erasing the node ρ′.

Let β′ be the parameterized arithmetic circuit obtained, as described before, by erasing
the node ρ′. Then we call β′ a reduction of β and call the way we obtained β′ from β a
reduction step. A reduction procedure is a sequence of successive reduction steps.

One sees now easily that a reduction procedure applied to β produces a new parame-
terized arithmetic circuit β∗ (also called a reduction of β) with the same basic parameter
and input nodes, which computes the same final results as β (although their possible
indexing may be changed). Moreover, if β is a robust parameterized circuit, then β∗ is
robust too. Observe also that in the case of robust parameterized circuits our reduction
commutes with restriction.

Now we introduce the second rewriting procedure.

64



Let assumptions and notations be as before and let be given a set P of nodes of β
and a robust parameterized arithmetic circuit γ with parameter domain M and #P input
nodes, namely for each ρ ∈ P one which becomes labelled by a new input variable Yρ. We
obtain a new robust parameterized arithmetic circuit, denoted by β ∗P γ, when we join γ
with β, replacing for each ρ ∈ P the input node of γ, which is labelled by the variable Yρ,
by the node ρ of β. The output nodes of β constitute also the output nodes of β ∗P γ.
Thus β and β ∗P γ compute the same final results. We call the circuit β ∗P γ and all
its reductions broadcastings of β. Thus broadcasting a robust parameterized arithmetic
circuit means rewriting it using only valid polynomial identities.

Notice that our treatment of the Strassen matrix multiplication algorithm in Section
6.1 contains a reduction procedure which involves additionally the erasing of certain output
nodes. If we consider arithmetic circuits as computer programs, then reduction represents
a kind of program transformation.

6.2.1 A specification language for circuits

Computer programs (or “programmable algorithms”) written in high level languages are
not the same thing as just “algorithms” in Complexity Theory. Whereas in the uniform
view algorithms become implemented by suitable machine models and in the non–uniform
view by devices like circuits, specifications and correctness proofs are not treated by the
general theory, but only, if necessary, outside of it in an ad–hoc manner. The meaning of
“algorithm” in Complexity Theory is therefore of syntactic nature.

On the other hand, computer programs, as well as their subroutines (modules) in-
clude specifications and correctness proofs, typically written in languages organized in a
hierarchy of different abstraction levels. In this sense programmable algorithms become
equipped with semantics. This is probably the main difference between Complexity Theory
and Software Engineering.

In this thesis we are only interested in algorithms which in some sense are pro-
grammable. The routines of our computation model will operate on parameterized arith-
metic circuits (see Section 6.4). Therefore we are now going to fix a (many–sorted) first
order specification language L for these circuits.

The language L will include the following non–logical symbols:

- 0, 1,+,−,×, and a constant for each complex number,

- as variables
n1, . . . , ns . . .

α(1), . . . , α(t) . . .

β1, . . . , βk . . .

ρ1, . . . , ρl . . .

M1, . . . ,Mk . . .

U (1), . . . , U (m) . . .

X(1), . . . ,X(h) . . .

Y (1), . . . , Y (q) . . .

65



to denote non–negative integers and vectors of them, robust parameterized arith-
metic circuits, their nodes, their parameter domains, their parameter instances,
their input variable vectors and instances of input variable vectors in suitable affine
spaces,

- suitable binary predicate symbols to express relations like “ρ is a node of the circuit
β”, “multiplication is the label of the node ρ of the circuit β”, “M is the parameter
domain of the circuit β”, “U is a parameter instance of the circuit β”, “r is a non–
negative integer and the vector length of U is r”, “X is the input variable vector of
the circuit β” and “n is a non–negative integer and the vector length of X is n”,

- a ternary predicate symbol to express “ρ1 and ρ2 are nodes of the circuit β and
there is an edge of β from ρ1 to ρ2”,

- binary function symbols to express “U is a parameter instance, k is a natural number
and Uk is the k–th entry of U” and “X is an input variable vector, n is a natural
number and Xn is the n–th entry of X” and “Y is a variable vector instance, n is
a natural number and Yn is the n–th entry of Y ”,

- a unary function and a binary predicate symbol to express “the set of output nodes
of the circuit β” and “ρ is an output node of the circuit β”

- a quaternary function symbol Gρ(β;U ;X) to express “ρ is a node of the circuit β,
U is a parameter instance and X is the input variable vector of β and Gρ(β;U ;X)
is the intermediate result of β at the node ρ and the parameter instance U”,

- a predicate symbol for equality for any of the sorts just introduced.

For the treatment of non–negative integers we add the Presburger arithmetic to our
first order specification language L.

At our convenience we may add new function and predicate symbols and variable sorts
to L. Typical examples are for β a circuit, U a parameter instance, X the input variable
vector and ρ, ρ1, . . . , ρm nodes of β:
“degree of Gρ(β;U ;X)” and “the vector lengths of X and Y are equal (say n) and Y
is a point of the closed subvariety of An defined by the polynomials Gρ1(β;U ;X), . . . ,
Gρm(β;U ;X)”.

In the same spirit, we may increase the expressive power of L in order to be able
to express for a robust parameterized circuit β with irreducible parameter domain, U
a parameter instance, X the input variable vector, ρ a node of β and α a vector of
non–negative integers of the same length as X (say n), “the coefficient of the monomial
Xα occurring in the polynomial Gρ(β;U ;X)” (recall Lemma 13). Here we denote for
X := (X1, . . . ,Xn) and α := (α1, . . . , αn) by X

α the monomial Xα := Xα1

1 , . . . ,Xαn
n .

The semantics of the specification language L is determined by the universe of all robust
parameterized arithmetic circuits, where we interpret all variables, function symbols and
predicates as explained before. We call this universe the standard model of L. The set of
all closed formulas of L which are true in this model form the elementary theory of L.

66



6.3 Generic computations

In the sequel we shall use ordinary arithmetic circuits over C as generic computations
[BCS97] (also called computation schemes in [Hei89]). The indegree zero nodes of these
arithmetic circuits are labelled by scalars and parameter and input variables.

The aim is to represent different parameterized arithmetic circuits of similar size and
appearance by different specializations (i.e. instantiations) of the parameter variables
in one and the same generic computation. For a suitable specialization of the parame-
ter variables, the original parameterized arithmetic circuit may then be recovered by an
appropriate reduction process applied to the specialized generic computation.

This alternative view of parameterized arithmetic circuits will be fundamental for the
design of routines of the branching–free computation model we are going to describe in
Section 6.4.1. The routines of our computation model will operate on robust parameterized
arithmetic circuits and their basic ingredients will be subroutines which calculate param-
eter instances of suitable, by the model previously fixed, generic computations. These
generic computations will be organized in finitely many families which will only depend
on a constant number of discrete parameters. These discrete families constitute the basic
building block of our model for branching–free computation.

We shall now exemplify these abstract considerations in the concrete situation of the
given parameterized arithmetic circuit β. Mutatis mutandis we shall follow the exposition
of [KP96], Section 2. Let l, L0, . . . , Ll+1 with L0 ≥ r+n+1 and Ll+1 ≥ q be given natural
numbers. Without loss of generality we may suppose that the non–scalar depth of β is
positive and at most l, and that β has an oblivious leveled structure of l+2 levels of width
at most L0, . . . , Ll+1. Let U1, . . . , Ur be new indeterminates (they will play the role of a
set of “special” parameter variables which will only be instantiated by π1, . . . , πr).

We shall need the following indexed families of “scalar” parameter variables (which
will only be instantiated by complex numbers).

- for n+ r < j ≤ L0 the indeterminate Vj

- for 1 ≤ i ≤ l, 1 ≤ j ≤ Li, 0 ≤ h ≤ i, 1 ≤ k ≤ Lh, the indeterminates A
(h,k)
i,j , B

(h,k)
i,j

and Si,j, Ti,j

- for 1 ≤ j ≤ Ll+1, 1 ≤ k ≤ Ll the indeterminate Ckj .

We consider now the following function Q which assigns to every pair (i, j), 1 ≤ i ≤ l,
1 ≤ j ≤ Li and (l + 1, j), 1 ≤ j ≤ Ll+1 the rational expressions defined below:

Q0,1 := U1, . . . , Q0,r := Ur,

Q0,r+1 := X1, . . . , Q0,r+n := Xn,

Q0,r+n+1 := Vr+n+1, . . . , Q0,L0
:= VL0

For 1 ≤ i ≤ l and 1 ≤ j ≤ Li the value Qi,j of the function Q is recursively defined by

Qi,j := Si,j(
∑

0≤h<i

1≤k≤Lh

A
(h,k)
i,j Qh,ke.

∑

0≤k′<i

1≤k′≤Lh′

B
(h′,k′)
i,j Qh′,k′)e+

67



Qi,j =Ti,j(
∑

0≤h<i

1≤k≤Lh

A
(h,k)
i,j Qh,ke/

∑

0≤h′<i

1≤k′≤Lh′

B
(h′,k′)
i,j Qh′,k′)

Finally, for (l + 1, j), 1 ≤ j ≤ Ll+1 we define Q(l+1,j) :=
∑

1≤k≤Ll
CkjQl,k e

We interpret the function Q as a (consistent) ordinary arithmetic circuit, say Γ, over
Z (and hence over C) whose indegree zero nodes are labelled by the “standard” input
variables X1, . . . ,Xn, the special parameter variables U1, . . . , Ur and the scalar parameter
variables just introduced.

We consider first the result of instantiating the scalar parameter variables contained in
Γ by complex numbers. We call such an instantiation a specialization of Γ. It is determined
by a point in a suitable affine space. Not all possible specializations are consistent, giving
rise to an assignment of a rational function of C(U1, . . . , Ur,X1, . . . ,Xn) to each node of
Γ as intermediate result.

We call the specializations which produce a failing assignment inconsistent. If in the
context of a given specialization of the scalar parameter variables of Γ we instantiate for
each index pair (i, j), 1 ≤ i ≤ l, 1 ≤ j ≤ Li the variables Si,j and Ti,j by two different
values from {0, 1}, the labelled directed acyclic graph Γ becomes an ordinary arithmetic
circuit over C of non–scalar depth at most l and non–scalar size at most L1+ · · ·+Ll with
the inputs U1, . . . , Ur,X1, . . . ,Xn.

We may now find a suitable specialization of the circuit Γ into a new circuit Γ′ over C
such that the following condition is satisfied:

the (by M) parameterized circuit obtained from Γ′ by replacing the special
parameter variables U1, . . . , Ur by π1, . . . , πr, is consistent and can be reduced
to the circuit β.

We may now consider the circuit Γ as a generic computation which allows to recover
β by means of a suitable specialization of its scalar and special parameter variables into
complex numbers and basic parameters π1, . . . , πr and by means of circuit reductions.
Moreover, any by M parameterized, consistent arithmetic circuit of non–scalar depth at
most l, with inputs X1, . . . ,Xn and q outputs, which has an oblivious level structure with
l+2 levels of width at most L0, . . . , Ll+1, may be recovered from Γ by suitable specializa-
tions and reductions (see [BCS97], Chapter 9 for more details on generic computations).

6.4 A model for branching–free computation. Informal dis-

cussion

We are now going to introduce a model of branching–free computation with parame-
terized arithmetic circuits. We shall first require that the routines of this computation
model should be well behaved under restrictions of the inputs. We discuss this issue now
informally.

Suppose for the moment that our computation model is already established. Then its
routines transform a given parameterized arithmetic (input) circuit into another parame-
terized (output) circuit such that both circuits have the same parameter domain. Applied
to a given parameterized input circuit, a routine of our computation model generates by

68



means of its intermediate steps a DAG of parameterized arithmetic circuits, one contained
in the other, which have all the same parameter domain.

Let A be a routine of our computation model and consider the previously introduced
parameterized circuit β. Let N be a constructible subset of M and suppose that β is
an admissible input for the routine A. Then A produces on input β a parameterized
arithmetic output circuit with parameter domain M which we denote by A(β). In order
to formulate for the routine A the requirement of well behavedness under restriction of
the inputs, we must be able to restrict β and A(β) to N . Thus β and A(β) should be
robust, βN should be an admissible input for A and A(βN ) should be robust too.

Our first architectural requirement on the routine A may now be formulated as follows:

The parameterized arithmetic circuit A(βN ) can be recovered from A(β) by
restriction to N and circuit reduction.

We call this requirement well behavedness under restrictions.
The routine A performs with the parameterized arithmetic circuit β a transformation

whose crucial feature is that only nodes which depend on the inputs X1, . . . ,Xn of β
become modified, whereas parameter nodes remain substantially conserved. This needs
an explanation.

Suppose that β has t essential parameter nodes. Then the essential parameters (in-
termediate results) of β associated with these nodes define a geometrically robust con-
structible map θ : M → A

t. The image T of θ is a constructible subset of At. We require
now that, as far as A performs arithmetic operations with parameters of β, A does it only
with essential ones, and that all essential parameters of A(β) are obtained in this way.
Further we require that there exists a geometrically robust constructible map ν defined
on T (e.g. a polynomial map) such that the results of these arithmetic operations occur
as entries of the composition map ν ◦ θ. For this we make use of the following elementary
fact.

Lemma 14 Let notations and assumptions be as before. Then ν ◦ θ is a geometrically
robust, constructible map defined on M.

Our basic construction method of routines will be recursion. A routine of our compu-
tation model which can be obtained in this way is called recursive.

Suppose now that A is a recursive routine of our computation model. Then A should
be organized in such a way that for each internal node ρ of β, which depends on at least one
input, there exists a set of nodes of A(β), also denoted by ρ, with the following property:

the elements of the set ρ of nodes of A(β) represent the outcome of the action
of A at the node ρ of β.

We fix now a node ρ of β which depends on at least one input. Let Gρ be the
intermediate result associated with the node ρ of β and let Fρ be a vector whose entries
are composed by the intermediate results of A(β) at the nodes contained in the set ρ of
nodes of A(β). Thus Fρ is a vector of rational functions in a suitable tuple of (standard)
variables, say X ′. Figure 28 illustrates this description.

69



e e

β e eeee A(β)

e e

e e

intermediate result

Gρ
e e

vector of
intermediate results

Fρ

e e

A

set ρ

ρ

Figure 28: Intermediate results Gρ and Fρ

Recall that by assumption β and A(β) are robust parameterized arithmetic circuits
with parameter domain M. Therefore we deduce from Lemma 13 that Gρ and the entries
of Fρ are in fact polynomials in X1, . . . ,Xn and X ′, respectively, and that this coefficients
are geometrically robust functions defined on M.

As part of our second and main requirement of our computation model we demand
now that A satisfies at the node ρ of β the following isoparametricity condition:

(i) for any two parameter instances u1 and u2 of M the assumption

Gρ(u1,X1, . . . ,Xn) = Gρ(u2,X1, . . . ,Xn)

implies
Fρ(u1,X

′) = Fρ(u2,X
′).

Let θρ be the coefficient vector of Gρ and observe that θρ is a geometrically robust
constructible map defined on M, whose image, say Tρ, is an irreducible constructible
subset of a suitable affine space.

Since the first order theory of the algebraically closed field C admits quantifier elim-
ination, one concludes easily that condition (i) is satisfied if and only if there exists a
constructible map σρ defined on Tρ such that the composition map σρ ◦ θρ (which is also
constructible) represents the coefficient vector of (all entries of) Fρ.

In the sequel we shall need that the dependence σρ of the coefficient vector of Fρ on
the coefficient vector of Gρ is in some stronger sense uniform (and not just constructible).
Therefore we include the following condition in our requirement:

(ii) the constructible map σρ is geometrically robust.

The map σρ is uniquely determined by condition (i). Moreover, the map σρ depends
on the (combinatorial) labelled DAG structure of β below the node ρ, but not in direct
form on the basic parameters π1, . . . , πr. This is the essence of the isoparametric nature
of conditions (i) and (ii). We shall therefore require that our recursive routine is isopara-
metric in this sense, i.e. that A satisfies conditions (i) and (ii) at any internal node ρ of
β which depends at least on one input.

70



Observe that the geometrically robust constructible map σρ (which depends on β as
well as on ρ) is not an artifact, but emerges naturally from the recursive construction of a
circuit semantic within the paradigm of object oriented programming. To explain this, let
notations and assumptions be as before and suppose that A is a isoparametric recursive
routine of our model and that we apply A to the robust parameterized arithmetic circuit
β. Let ρ again be a node of β which depends at least on one input. Let u be a parameter

instance of M and denote by β(u), G
(u)
ρ , A(β)(u) and F

(u)
ρ the instantiations of β, Gρ, A(β)

and Fρ at u. Then the intermediate results of A(β)(u) contained in F
(u)
ρ depend only on the

intermediate result G
(u)
ρ of β(u) and not on the parameter instance u itself. In this spirit

we may consider the sets Γρ := {G
(u)
ρ e; eu ∈ M} and Φρ := {F

(u)
ρ e; eu ∈ M} as abstract

data types and β and A(β) as syntactic descriptions of two abstraction functions which

associate to any concrete object u ∈ M the abstract objects G
(u)
ρ and F

(u)
ρ , respectively.

The identity map idM : M → M induces now an abstract function [Mey00] from Γρ to
Φρ, namely σρ : Γρ → Φρ. In this terminology, idM is just an implementation of σρ. If
we now consider that each recursive step of the routine A on input β has to be realized
by another routine of the object oriented programming paradigm, we arrive to a situation
where a geometrically robust constructible map σρ : Γρ → Φρ necessarily arises.

In terms of Hoare logic we may interpret the map σρ : Γρ → Φρ also as a (part of a)
specification of the recursive routine A. The map σρ may be thought as an operational
specification which determines Fρ in function of Gρ. A weaker specification would be
a descriptive one which relates Gρ and Fρ without determining Fρ from Gρ completely.
Hence the existence of a geometrically robust constructible map σρ : Γρ → Φρ is closely
related to expressiveness of the recursive routine A in the sense of Hoare logic. We shall
turn back to this subject later.

We meet a similar situation in primitive recursion over N. The value of a univariate
primitive recursive function at a natural number k depends only on the unary or bit
representation of k, i.e. on the number k itself, but not on the way how k was previously
generated.

In order to motivate the requirement that the recursive routine A should be isopara-
metric, we shall consider the following condition for recursive routines which we call well
behavedness under reductions.

We only outline here this condition and leave the details until Section 6.4.1.
Suppose now that we apply a reduction procedure to the robust parameterized input

circuit β producing thus another robust, by M parameterized circuit β∗ which computes
the same final results as β. Then the reduced circuit β∗ should also be an admissible
input for the routine A. We call the recursive routine A well behaved under reductions
if on input β it is possible to extend the given reduction procedure to the output circuit
A(β) in such a way, that the extended reduction procedure, applied to A(β), reproduces
the circuit A(β∗).

Obviously well behavedness under reductions limits the structure of A(β). Later in
Section 6.4.1 we shall see that, cum grano salis, any recursive routine, which is well behaved
under restrictions and reductions, is necessarily isoparametric. Since well behavedness
under restrictions and reductions are very natural quality attributes for routines which
transform robust parameterized arithmetic circuits, the weaker requirement, namely that
recursive routines should be isoparametric, turns out to be well motivated.

71



In Section 6.4.1 we shall formally introduce a simplified version of our branching–free
computation model. We postpone for then the precise definition of the notion of well
behavedness under reductions.

In the sequel we shall always tacitly assume the following properties of our computation
model.

(i) All parameterized arithmetic circuits are robust and have irreducible parameter do-
main.

(ii) If A is a routine of our computation model admitting the robust parameterized arith-
metic circuit β as input, and if β∗ is a reduction or a restriction to a constructible
subset of the parameter domain of β, then β∗ is also an admissible input for A.

There exists a second reason to restrict the recursive routines of our computation model
to isoparametric ones. Isoparametric recursive routines have considerable advantages for
program specification and verification by means of Hoare Logics [Apt81]. We shall come
back to this issue in Section 6.4.1.

6.4.1 The simplified, branching–free computation model

In this section we shall distinguish sharply between the notions of input variable and
parameter and the corresponding categories of circuit nodes.

Input variables called “standard”, will occur in parameterized arithmetic circuits and
generic computations. The input variables of generic computations will appear subdivided
in sorts, namely as “parameter”, “argument” and “standard” input variables.

In order to further the transparency of our description, we shall refrain from exposing
a possible, more general computation model which avoids the mentioned sharp distinction
between input variables and parameters. The number of variable sorts may increase in-
definitely in this generalized computation model. However, our simplified model will be
comprehensive enough that a limited extension of it is able to capture the essence of all
known circuit based elimination algorithms in effective algebraic geometry and, mutatis
mutandis, also of all other (linear algebra and truncated rewriting) elimination proce-
dures (see Sections 6.4.2, 6.5, [Mor03], [Mor05], and the references cited therein, and for
truncated rewriting methods especially [DFGS91]). The only algorithm from symbolic
arithmetic circuit manipulation which will escape from our model is the Baur–Strassen
gradient computation [BCS97], Chapter 7.2.

Our simplified branching–free computation model will assume different shapes, each
shape being determined by a finite number of a priori given discrete (i.e. by tuples of
natural numbers indexed) families of generic computations. The labels of the inputs of
the ordinary arithmetic circuits which represent these generic computations will become
subdivided into parameter, argument and standard input variables. We shall use the
letters like U,U ′, U ′′, . . . andW,W ′,W ′′ to denote vectors of parameters, Y, Y ′, Y ′′, . . . and
Z,Z ′, Z ′′ to denote vectors of argument and X,X ′,X ′′, . . . to denote vectors of standard
input variables (see Section 6.3).

We shall not write down explicitly the indexations of our generic computations by tu-
ples of natural numbers. Generic computations will simply be distinguished by subscripts
and superscripts, if necessary.

Ordinary arithmetic circuits of the form

72



RX1
(W1;X

(1)), RX2
(W2;X

(2)), . . .

R′
X1

(W1′ ;X
(1′)), R′

X2
(W2′ ;X

(2′)), . . .

. . . . . . . . .

represent a first type of a discrete family of generic computations (for each variable
X1,X2, . . . ,Xn we suppose to have at least one generic computation). Other types of
families of generic computations are of the form

R+(W ;U, Y ;X), R+(W
′;U ′, Y ′;X ′), R+(W

′′;U ′′, Y ′′;X ′′) . . .
R./(W ;U, Y ;X), R./(W

′;U ′, Y ′;X ′), R./(W
′′;U ′′, Y ′′;X ′′) . . .

Radd(W ;Y,Z;X), Radd(W
′;Y ′, Z ′;X ′), Radd(W

′′;Y ′′, Z ′′;X ′′) . . .
Rmult(W ;Y,Z;X), Rmult(W

′;Y ′, Z ′;X ′), Rmult(W
′′;Y ′′, Z ′′;X ′′) . . .

and

Rdiv(W ;Y,Z;X), Rdiv(W
′;Y ′, Z ′;X ′), Rdiv(W

′′;Y ′′, Z ′′;X ′′) . . . .

Here the subscripts refer to addition of, and multiplication or division by a parameter (or
scalar) and to essential addition, multiplication and division. A final type of families of
generic computations is of the form

R(W ;Y ;X), eR′(W ′;Y ′;X ′), eR′′(W ′′;Y ′′;X ′′), . . .

We recall from the beginning of Section 6.4 that the objects handled by the routines
of any shape of our computation model will always be robust parameterized arithmetic
circuits with irreducible parameter domains. The inputs of these circuits will only consist
of standard variables.

From now on we have in mind a previously fixed shape when we refer to our compu-
tation model. We start with a given finite set of discrete families of generic computations
which constitute a shape as described before.

Of course, the identity routine which transforms each given circuit into itself, belongs
to our model. Let β be a robust parameterized arithmetic circuit with parameter domain
M. The constant routine determined by β assigns to each robust parameterized arithmetic
circuit, which has also parameter domain M, the circuit β.

Let γ1 and γ2 be two robust parameterized arithmetic circuits with parameter domain
M and suppose that there is given a one–to–one correspondence λ which identifies the
output nodes of γ1 with the input nodes of γ2 (thus they must have the same number).
Using this identification we may now join the circuit γ1 with the circuit γ2 in order to
obtain a new parameterized arithmetic circuit γ2 ∗λ γ1 with parameter domain M. The
circuit γ2 ∗λ γ1 has the same, input nodes as γ1 and the same output nodes as γ2 and one
deduces easily from Lemma 13 that γ2 ∗λγ1 is robust. The semantics is clear: if consistent,
the circuit γ2 ∗λ γ1 represents a composition of the rational functions defined by γ2 and
γ1. The circuit γ2 ∗λ γ1 is called the join of γ1 with γ2.

Suppose that there are given two routines A and B of our computation model which
applied to an input circuit β with parameter domain M produce as outputs two circuits
A(β) and B(β) (also with parameter domain M). Suppose that there is given a one–to–
one correspondence λ which identifies the output nodes of A(β) with the input nodes of
B(β). Then we may join A(β) and B(β) to the circuit B(β) ∗λ A(β).

73



The corresponding routine belongs also to our computation model and is called a join
of A with B. Since each circuit may be interpreted as the output of a constant routine,
we may interpret the join of two circuits as the join of two constant routines.

Observe that the final results of a given parameterized arithmetic circuit may constitute
a vector of parameters. The join of such a circuit with another circuit, say β, is called an
evaluation of β. Hence, mutatis mutandis, the notion of join of two routines includes also
the case of evaluations of circuits. All these operations with routines lead to new routines
which on a given (robust) input circuit produce new robust circuits.

Our list of simple operations with routines of our computation model may be extended,
but we shall not do this here because this is not relevant for the following considerations.

A fundamental issue is how we recursively transform a given input circuit into an-
other one with the same parameter domain. During such a transformation we make an
iterative use of previously fixed generic computations. On their turn these determine the
corresponding recursive routine of our computation model.

We consider again our input circuit β. We suppose that we have already chosen for
each node ρ, which depends at least on one of the input variables X1, . . . ,Xn, a generic
computation

R
(ρ)
Xi

(Wρ;X
(ρ)),

R
(ρ)
+ (Wρ;Uρ, Yρ;X

(ρ)),

R(ρ)
./

(Wρ;Uρ, Yρ;X
(ρ)),

R
(ρ)
add(Wρ;Yρ, Zρ;X

(ρ)),

R
(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ)),

R
(ρ)
div(Wρ;Yρ, Zρ;X

(ρ)),

and that this choice was made according to the label of ρ, namely Xi, 1 ≤ i ≤ n, or
addition of, or multiplication or division by an essential parameter, or essential addition,
multiplication or division. Here we suppose that Uρ is a single variable, whereasWρ, Yρ, Zρ
and X(ρ) may be arbitrary vectors of variables.

Furthermore we suppose that we have already precomputed for each node ρ of β, which
depends at least on one input, a vector wρ of geometrically robust constructible functions
defined on M. If ρ is an input node we assume that wρ is a vector of complex numbers.
Moreover, we assume that the length of wρ equals the length of the variable vector Wρ.
We call the entries of wρ the parameters at the node ρ of the routine A applied to the
input circuit β.

We are now going to develop the routine A step by step. The routine A takes over all
computations of β which involve only parameter nodes, without modifying them. Then
A replaces each node ρ of β which is labelled by an input variable Xi, 1 ≤ i ≤ n, by the

ordinary arithmetic circuit R
(ρ)
Xi

(wρ;X
(ρ)) over C which is obtained by substituting in the

generic computation R
(ρ)
Xi

(Wρ;X
(ρ)) for the vector of parameter variables Wρ the vector

of complex numbers wρ.
Consider now an arbitrary internal node ρ of β which depends at least on one input.

The node ρ has two ingoing edges which come from two other nodes of β, say ρ1 and ρ2.

74



Suppose that the routine A, on input β, has already computed two results, namely Fρ1
and Fρ2 , corresponding to the nodes ρ1 and ρ2. Suppose inductively that these results
are vectors of polynomials depending on those standard input variables that occur in the
vectors of the form X(ρ′), where ρ′ is any predecessor node of ρ. Furthermore, we assume
that the coefficients of these polynomials constitute the entries of a geometrically robust,
constructible map defined on M. Finally we suppose that the lengths of the vectors Fρ1
and Yρ (or Uρ) and Fρ2 and Zρ coincide.

The parameter vector wρ of the routine A forms a geometrically robust, constructible
map defined on M, whose image we denote by Kρ. Observe that Kρ is a constructible
subset of an affine space of the same dimension as the length of the vectors wρ and Wρ.
Denote by κρ the vector of the restrictions to Kρ of the canonical projections of this affine
space. We consider Kρ as a new parameter domain with basic parameters κρ. For the
sake of simplicity we suppose that the node ρ is labelled by a multiplication. Thus the
corresponding generic computation has the form

R(ρ)
./

(Wρ;Uρ, Yρ;X
(ρ)) (12)

or
R

(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ)). (13)

Let R(ρ)
./

(κρ, Uρ, Yρ,X
(ρ)) and R

(ρ)
mult(κρ, Yρ, Zρ,X

(ρ)) be the by Kρ parameterized arith-

metic circuits obtained by substituting in the generic computations (12) and (13) for the
vector of parameter variables Wρ the basic parameters κρ. We shall now make at the node
ρ the following requirement on the routine A applied to the input circuit β:

(A) The by Kρ parameterized arithmetic circuit which corresponds to the current case,
namely

R(ρ)
./

(κρ;Uρ, Yρ;X
(ρ))

or
R

(ρ)
mult(κρ;Yρ, Zρ;X

(ρ)),

should be consistent and robust.

Observe that the requirement (A) is automatically satisfied if all the generic compu-
tations of our shape are realized by totally division–free ordinary arithmetic circuits.

Assume now that the routine A applied to the circuit β satisfies the requirement (A)
at the node ρ of β.

Let us first suppose that the node ρ is labelled by a multiplication involving an essential
parameter. Recall that in this case we assumed earlier that the length of the vector Fρ1
is one, that Fρ1 is an essential parameter of β and that the vectors Fρ2 and Yρ have the
same length. Joining now to the generic computation R(ρ)

./
(Wρ;Uρ, Yρ;X

(ρ)) atWρ, Uρ and
Yρ the previous computations of wρ, Fρ1 and Fρ2 , we obtain a parameterized arithmetic
circuit with parameter domain M, whose final results are the entries of a polynomial
vector which we denote by Fρ.

Suppose now that the node ρ is labelled by an essential multiplication. Recall again
that in this second case we assumed earlier the vectors Fρ1 and Yρ and Fρ2 and Zρ have
the same length. Joining to the generic computation

R
(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ))

75



at Wρ, Yρ and Zρ the previous computations of wρ, Fρ1 and Fρ2 we obtain also a param-
eterized arithmetic circuit with parameter domain M, whose final results are the entries
of a vector which we denote again by Fρ.

One deduces easily from our assumptions on wρ, Fρ1 and Fρ2 and from the requirement
(A) in combination with Lemma 13 and 14, that in both cases the resulting parameterized
arithmetic circuit is consistent and robust. The other possible labellings of the node ρ
by arithmetic operations are treated similarly. In particular, in case that ρ is an input
node labelled by the variable Xi, 1 ≤ i ≤ n, the requirement (A) says that the ordinary

arithmetic circuit R
(ρ)
Xi

(wρ;X
(ρ)) is consistent and that all its intermediate results are

polynomials in X(ρ) over C (although R
(ρ)
Xi

(wρ;X
(ρ)) may contain divisions).

In view of our comments in the first part of Section 6.4, we call the recursive routine
A (on input β) well behaved under restrictions if the requirement (A) is satisfied at any
node ρ of β which depends at least on one input. If the routine A is well behaved
under restrictions, then A transforms step by step the input circuit β into another robust
arithmetic circuit, namely A(β), with parameter domain M.

As a consequence of the recursive structure of A(β), each node ρ of β generates a
subcircuit of A(β) which we call the component of A(β) generated by ρ. The output nodes
of each component of A(β) form the hypernodes of a hypergraph HA(β) whose hyperedges
are given by the connections of the nodes of A(β) contained in distinct hypernodes of
HA(β). The hypergraph HA(β) may be shrinked to the DAG structure of β and therefore
we denote the hypernodes of HA(β) in the same way as the nodes of β. Notice that well
behavedness under restrictions is in fact a property which concerns the hypergraph HA(β).
Figure 29 illustrates this description.

Figure 29: Generation of the hypergraph HA(β)
eeeeeeeee eeee

eee e

eee e

eee e

eee e

node ρ
of circuit β

eee e hypergraph
HA(β)

hyperedge
generates

hypernode

hypernode

component of A(β)
generated by ρ

We call A a (recursive) parameter routine if A does not introduce new standard vari-
ables. In the previous recursive construction of the routine A, the parameters at the nodes
of β, used for the realization of the circuit A(β), are supposed to be generated by recursive
parameter routines.

We are now going to consider another requirement of our recursive routine A, which
will lead us to the notion of isoparametricity of A.

76



Let us turn back to the previous situation at the node ρ of the input circuit β. No-
tations and assumptions will be the same as before. From Lemma 13 we deduce that the
intermediate result of β associated with the node ρ, say Gρ, is a polynomial in X1, . . . ,Xn

whose coefficients form the entries of a geometrically robust, constructible map defined on
M, say θρ. Let Tρ be the image of this map and observe that Tρ is a constructible subset
of a suitable affine space. The intermediate results of the circuit A(β) at the elements of
the hypernode ρ of HA(β) constitute a polynomial vector which we denote by Fρ.

We shall now make another requirement at the node ρ on the routine A applied to the
input circuit β:

(B) There exists a geometrically robust, constructible map σρ defined on Tρ such that
σρ ◦ θρ constitutes the coefficient vector of Fρ.

In view of the comments made at the beginning of Section 6.4 we call the recursive
routine A isoparametric (on input β) if requirement (B) is satisfied at any node ρ of β
which depends at least on one input.

Let assumptions and notations be as before and consider again the node ρ of the circuit
β. Assume that the recursive routine A is well behaved under restrictions and that A,
applied to the circuit β, fulfills the requirement (B) at ρ. Then the topological robustness
(which is a consequence of the geometrical robustness) of σρ implies that the following
condition is satisfied:

(B′) Let (uk)k∈N be a (not necessarily convergent) sequence of parameter instances uk ∈
M and let u ∈ M such that (θρ(uk))k∈N converges to θρ(u). Denote by τρ the
coefficient vector of Fρ. Then τρ is a geometrically robust constructible map defined
on M and the sequence (τρ(uk))k∈N is bounded.

Suppose now that the recursive routine A is well behaved under restrictions and sat-
isfies instead of (B) only condition (B′) at the node ρ of β. Let u ∈ M be an arbitrary
parameter instance. Then τρ takes on the set {u′ ∈ M; θρ(u

′) = θρ(u)} only finitely many
values whose number is a priori bounded. Moreover, for Mu being the vanishing ideal of
the C–algebra C[θρ] at θρ(u), the entries of τρ are integral over the local C–algebra C[θρ]Mu

(the argument for that relies on Zariski’s Main Theorem and is exhibited in [CGH+03],
Sections 3.2 and 5.1). This algebraic characterization implies that for given u ∈ M all
the sequences (τρ(uk))k∈N of condition (B′) have only finitely many distinct accumulation
points. This shows that requirement (B) and condition (B′) are closely related.

On the other hand, suppose that condition (B′) is not satisfied at the node ρ of β.
Then following Definition 7 in Section 2.3.2 the geometrically robust constructible map
τρ is indetermined by θρ. Since our model is aimed to be branching–free at this stage we
suppose that membership to the constructible set Nρ := {(θρ(u), τρ(u));u ∈ M} can be
decided by a branching–free algorithm. Moreover we suppose that M is locally closed in
its ambient space A

r. Then the set Nρ is locally closed in its ambient space. Therefore
Lemma 11 in Section 2.3.2 may be applied to conclude that there exists a parameter
instance u ∈ M and a sequence (uk)k∈N with uk ∈ M and θρ(uk) = θρ(u) such that the
sequence (τρ(uk))k∈N is unbounded. In particular the image of {u ∈ M; θρ(u

′) = θρ(u)}
under one of the entries of τρ is a cofinite set of complex numbers. This shows that τρ is
highly indetermined by θρ at u.

77



We shall see later that this situation cannot occur if the recursive routine A is expres-
sive in the sense of Hoare Logics adapted to our computation model.

Adopting the terminology of [GHMS11] (see also Section 4.2.3 of this thesis) we call
A coalescent (on input β), if A satisfies condition (B′) for any node ρ of β. Thus isopara-
metricity implies coalescence for A, but not vice versa. Nevertheless the notions of isopara-
metricity and coalescence become quite close for recursive routines which are well behaved
under restrictions.

Suppose again that the recursive routine A is well behaved under restrictions. We call
A well behaved under reductions (on input β) if A(β) satisfies the following requirement:

Let ρ and ρ′ be distinct nodes of β which compute the same intermediate
results. Then the intermediate results at the hypernodes ρ and ρ′ of HA(β)

are identical. Mutatis mutandis the same is true for the computation of the
parameters of A at any node of β.

Assume that the routine A is recursive and well behaved under restrictions. One
verifies then easily that, taking into account the hypergraph structure HA(β) of A(β), any
reduction procedure on β may canonically be extended to a reduction procedure of A(β).

In the first part of Section 6.4 we claimed that, cum grano salis, the requirement of
well behavedness under reductions implies the requirement of isoparametricity for recursive
routines. We are going now to prove this.

Let notations and assumptions be as before and let us analyse what happens to the
recursive routine A at the node ρ of β. For this purpose we shall use the following
broadcasting argument.

Recall that Gρ and the entries of Fρ are the intermediate results of β and A(β) asso-
ciated with ρ, where ρ is interpreted as a node of the input circuit β in the first case and
as a hypernode of HA(β) in the second one. Moreover recall that Gρ is a polynomial in
X1, . . . ,Xn, that the geometrically robust, constructible map θρ, defined on M, represents
the coefficient vector of Gρ and that the irreducible constructible set Tρ is the image of
θρ. We consider now the parameterized arithmetic circuit γρ which realizes the following
trivial evaluation of the polynomial Gρ:

- compute simultaneously from π1, . . . , πr all entries of θρ and from X1, . . . ,Xn all
monomials occurring in Gρ

- compute Gρ as a linear combination of the monomials of Gρ using as coefficients the
entries of θρ.

Since θρ is a robust, constructible map defined on M, it is easy to see that the compu-
tation of the entries of θρ can be realized by a robust subcircuit of γρ . Thus γρ becomes a
robust parameterized arithmetic circuit with parameter domain M. Observe that γρ has
a single output node, say ρ′, which computes the polynomial Gρ.

Now we paste, as disjointly as possible, the circuit γρ to the circuit β obtaining thus
a new robust, parameterized arithmetic circuit βρ with parameter domain M. Observe
that βρ contains β and γρ as subcircuits and that ρ and ρ′ are distinct nodes of βρ
which compute the same intermediate result, namely Gρ. The entries of θρ are essential
parameters of γρ and hence also of βρ. We suppose now that βρ is, like β, an admissible

78



input for the recursive routine A. Let Fρ′ be a vector whose entries are the intermediate
results at the nodes of A(βρ) contained in the hypernode ρ′ of HA(βρ). Analyzing now how
A operates on the structure of the subcircuit γρ of βρ, we see immediately that there exists
a geometrically robust constructible map σρ defined on Tρ such that the composition map
σρ ◦ θρ constitutes the coefficient vector of Fρ. Since by assumption the recursive routine
A is well behaved under reductions and the intermediate results of βρ at the nodes ρ and
ρ′ consist of the same polynomial Gρ, we conclude that the intermediate results at the
hypernodes ρ and ρ′ of HA(βρ) are also the same. Therefore we may assume without loss of
generality Fρ = Fρ′ . This implies that the geometrically robust, constructible map σρ ◦ θρ
constitutes the coefficient vector of Fρ.

This proves that the recursive routine A satisfies, on input β and at the node ρ,
the requirement (B). Since β was an arbitrary admissible input circuit for the recursive
routine A and ρ was an arbitrary node of β which depends on at least one input, we may
conclude that A is isoparametric. The only assumption we made to draw this conclusion
was that the extended circuit βρ is an admissible input for the routine A. This conclusion
is however not very restrictive because β and βρ compute the same final results.

At the beginning of Section 6.4 we mentioned that isoparametric routines are advan-
tageous for program specification and verification. We are now going to explain this.

Let notations and assumptions be as before and let in particular A be a recursive
routine of our computation model which behaves well under restrictions. Assume that
β is an admissible input for A and consider the specification language L introduced in
Section 6.2.1. Suppose that the routine A is given by an asserted program Π formulated
in the elementary Hoare Logics of L ([Apt81]). The standard model of the elementary
theory of L provides us with the states which define the semantics of Π. The asserted
program Π represents the routine A as a loop. Then, by its instructions, the program Π
transforms node by node the labelled DAG structure of β into the labelled DAG structure
of A(β).

At each step of the loop a purely syntactic action, namely a graph manipulation, takes
place. This action consists of the join of two or more labelled directed acyclic graphs.
Simultaneously, in order to guarantee the correctness of the program Π, a loop invariant,
formulated in our specification language L, has to be satisfied.

This involves the semantics of L consisting of the universe of all robust parameterized
arithmetic circuits. A loop invariant as above is given by a formula

∧
(β1, β2,M1,M2, ρ1, ρ2)

of L containing the free variables β1, β2 for circuits, M1, M2 for their parameter domains
and ρ1, ρ2 for their (hyper)nodes which become instantiated by β, A(β), M, the node
ρ of β and the hypernode ρ of A(β). The variables U (1), . . . , U (m), . . . and the standard
input variable vectors X(1), . . . ,X(h), . . . occur only bounded in

∧
(β1, β2,M1,M2, ρ1, ρ2)

and the variables ρ1, . . . , ρl, . . . occur all bounded except two, namely ρ1 and ρ2.
For π := (π1, . . . , πr) and given variables X,X ′ and ρ expressing a parameter instanti-

ation, the input variable vectors of β and A(β) and a node of β, we denote by Gρ(β;π;X)
and Fρ(A(β);π;X ′) the function symbols (or vectors of them) which express the interme-
diate results of β or A(β) corresponding to ρ.

We require now that any formula of L built up by Gρ1 , . . . , Gρl and Fρ′1 , . . . , Fρ′l′
, and

containing only β, M and ρ1 as free variables is equivalent to a formula built up only
by Gρ1 , . . . , Gρl and Gρ′1 , . . . , Gρ′l′

. This implies that in L the intermediate result Fρ of

79



A(β) is definable in terms of the intermediate result Gρ of β. Applied to the node ρ of
the concrete circuit β with parameter domain M, this means that for θρ and τρ being the
coefficient vectors of Gρ(β, π,X) and Fρ(A(β), π,X ′) and Tρ being the image of θρ, there
exists a constructible map σρ with domain of definition Tρ such that τρ = σρ ◦θρ holds. In
particular, for u′, u′′ ∈ M the assumption θρ(u

′) = θρ(u
′′) implies τρ(u

′) = τρ(u
′′). Hence

for any u ∈ M and any sequence (uk)k∈N with uk ∈ M and θρ(uk) = θρ(u) the sequence
(τρ(uk))k∈N is bounded. If M is locally closed in A

r we deduce now from our previous
argumentation that A satisfies condition (B′) at the node ρ of β.

Let β1, β2,M1,M2 and ρ1, ρ2 be variables for robust parameterized arithmetic cir-
cuits, their parameter domains and their (hyper)nodes. We assume that for any formula
Φ(β1,M1) of L in the free variables β1 and M1 there exist two formulas

Ψ(β1, β2,M1,M2, ρ1, ρ2) and Ω(β1, β2,M1,M2, ρ1, ρ2)

in the free variables β1, β2,M1,M2, ρ1, ρ2 such that for any concrete, for A admissible
circuit β with parameter domain M and basic parameter vector π and for any node ρ of
β the following two conditions are satisfied:

(i) the validity of Φ(β,M) entails that Ψ(β,A(β),M,M, ρ, ρ′) implies all existing,
in L expressible relations between Gρ(β, π,X) and Fρ(A(β), π,X ′) (here ρ′ is the
hypernode ρ of A(β) and X and X ′ are vectors of the input variables of β and
A(β)).

(ii) Ω(β,A(β),M,M, ρ, ρ′) determines the polynomial Fρ(A(β), π,X ′) in terms ofGρ(β, π,X).

If L and A satisfy this assumption we say in the spirit of Hoare Logics that L is
expressive for the routine A.

From our previous considerations we conclude that expressivity of L for A implies
coalescence of A for input circuits β whose parameter domains are locally closed in their
ambient spaces. Moreover admissibility for A is given by a precondition which can be
expressed by a formula in L which contains only two free variables, one for the input
circuit and one for its parameter domain.

Suppose now that our specification language L is expressive for the asserted program
Π, i.e. for the recursive routine A. Then Π can be derived by means of the inference
rules of Hoare Logics from the elementary theory of the specification language L (see
[Apt81], Section 2.8 for details). Moreover, any in L formulated postcondition on the
output circuits entails a weakest precondition on the input circuits of A.

Let A and B be recursive routines as before and suppose that they are well behaved
under restrictions and isoparametric or well behaved under reductions. Assume that A(β)
is an admissible input for B. We define the composed routine B ◦ A in such a way that
B(A(β)) becomes the output of B◦A applied to the input β. Since the routinesA and B are
well behaved under restrictions, we see easily that (B ◦ A)(β) := B(A(β)) is a consistent,
robust parameterized arithmetic circuit with parameter domain M. From Lemma 13 and
14 we deduce that B ◦A is a isoparametric recursive routine if A and B are isoparametric.
In case that A and B are well behaved under reductions, one verifies immediately that
B ◦A is also well behaved under reductions. Therefore, under these assumptions, we shall
consider B ◦ A also as a routine of our computation model.

80



Unfortunately the composition of two arbitrary coalescent recursive routines need not
to be coalescent. Therefore we shall focus in the sequel our attention on isoparametric
recursive routines as basic building blocks of the branching–free computation model we
are going to introduce.

The identity and any constant routine are trivially well behaved under restrictions and
reductions and in particular isoparametric.

Let A and B be two routines of our computation model and suppose for the sake of
simplicity that they are recursive. Assume that the robust parameterized arithmetic circuit
β is an admissible input for A and B and that there is given a one–to–one correspondence
λ which identifies the output nodes of A(β) with the input nodes of B(β). Often, for a
given input circuit β, the correspondence λ is clear by the context. If we limit ourselves
to input circuits β where this occurs, we obtain from A and B a new routine, called their
join, which transforms the input circuit β into the output circuit B(β)∗λA(β). Analyzing
now B(β) ∗λ A(β), we see that the join of A with B is well behaved under restrictions
in the most obvious sense. Since by assumption the routines A and B are recursive, the
circuits A(β) and B(β) inherit from β a superstructure given by the hypergraphs HA(β)

and HB(β). Analyzing again this situation, we see that any reduction procedure on β can
be extended in a canonical way to the circuit B(β) ∗λA(β). This means that the join of A
with B is also well behaved under reductions. More caution is at order with the notions
of isoparametricity and coalescence. In a simple minded and strict sense, the join of two
isoparametric or coalescent recursive routines A and B is not necessarily isoparametric
or coalescent. However the conditions (B) or (B′) are still satisfied between the output
nodes of β and B(β) ∗λ A(β). A routine with one of these two properties is called output
isoparametric or output coalescent, respectively.

The union of the routines A and B assigns to the input circuit β the juxtaposition of
A(β) and B(β). Thus, on input β, the final results of the union of A and B are the final
results of A(β) and B(β) (taken separately in case of ambiguity). The union of A and B
is an output isoparametric routine which behaves well under restrictions and reductions.

Observe also that for a recursive routine A which behaves well under restrictions and
reductions the following holds: let β be a robust parameterized arithmetic circuit that
broadcasts to a circuit β∗ and assume that β and β∗ are admissible circuits for A. Then
A(β) broadcasts to A(β∗).

From these considerations we conclude that routines, constructed as before by iterated
applications of the operations recursion, composition, join and union, are still, in a suitable
sense, well behaved under restrictions and output isoparametric. If only recursive routines
become involved that behave well under reductions, we may also allow broadcastings at
the interface of two such operations.

This remains true when we introduce, as we shall do now, in our computational model
the following additional type of routine construction.

Let β be the robust, parameterized circuit considered before, and let R(W ;Y ;X) be
a generic computation belonging to our shape list. Let w be a vector of complex numbers
and suppose that w and W have the same vector length. Moreover suppose that the final
results of β form a vector of the same length as Y .

We denote by R(w;Y ;X) the ordinary arithmetic circuit over C obtained by substi-
tuting in the generic computation R(W ;Y ;X) the vector of parameter variables W by w.
We shall now make the following requirement:

81



(C) The ordinary arithmetic circuit R(w;Y ;X) should be consistent and robust.

Observe that requirement (C) is obsolete when R(W ;Y ;X) is a totally division–free
ordinary arithmetic circuit.

Suppose now that requirement (C) is satisfied. Then the new routine, say B, applied to
the circuit β, consists of joining to the generic computation R(W ;Y ;X) and of replacing
W by the vector w.

From Lemma 13 and 14 we deduce that the resulting parameterized arithmetic circuit
B(β) has parameter domain M and is consistent and robust. One sees immediately that
the routine B is well behaved under restrictions and reductions and is output isoparametric.

From now on we shall always suppose that all our recursive routines are isoparametric
and well behaved under restrictions and that requirement (C) is satisfied when we apply
this last type of routine construction.

An elementary routine of our simplified branching–free computation model is finally
obtained by the iterated application of all these construction patterns, in particular the
last one, recursion, composition and join. As far as only recursion becomes involved
that is well behaved under reductions, we allow also broadcastings at the interface of two
constructions. Of course, the identity and any constant routine belong also to our model.
The set of all these routines is therefore closed under these constructions and operations.

We call an elementary routine essentially division–free if it admits as input only essen-
tially division–free, robust parameterized arithmetic circuits and all generic computations
used to compose it are essentially division–free. The outputs of essentially division–free
elementary routines are always essentially division–free circuits. The set of all essentially
division–free elementary routines is also closed under the mentioned constructions and
operations.

We have seen that elementary routines are, in a suitable sense, well behaved under
restrictions. In the following statement we formulate explicitly the property of an ele-
mentary routine to be output isoparametric. This will be fundamental in our subsequent
complexity considerations.

Proposition 15 Let A be an elementary routine of our branching–free computation model.
Then A is output isoparametric. More explicitly, let β be a robust, parameterized arith-
metic circuit with parameter domain M. Suppose that β is an admissible input for A.
Let θ be a geometrically robust, constructible map defined on M such that θ represents
the coefficient vector of the final results of β and let T be the image of θ. Then T is a
constructible subset of a suitable affine space and there exists a geometrically robust, con-
structible map σ defined on T such that the composition map σ◦θ represents the coefficient
vector of the final results of A(β).

A complete proof of this proposition is just tedious and will be omitted here. In case
that A is a recursive routine, Proposition 15 expresses nothing but the requirement (B)
applied to the output nodes of β.

Let us observe that Proposition 15 implies the following result.

Corollary 16 Let assumptions and notations be as in Proposition 15. Then the routine
A is output coalescent and satisfies the following condition:

82



(∗) Let u be an arbitrary parameter instance of M and let Mu be the vanishing ideal
of the C–algebra C[θ] at the point θ(u). Then the entries of the coefficient vector of
the final results of A(β) are integral over the local C–algebra C[θ]Mu.

The output coalescence of A and condition (∗) are straight–forward consequences of the
output isoparametricity of A. We remark here that condition (∗) follows already directly
from the output coalescence of A. This highlights again the close connection between
isoparametricity and coalescence. The argument requires Zariski’s Main Theorem. For
details we refer to [CGH+03], Sections 3.2 and 5.1.

Before finishing this Section 6.4.1, let us make the following two observations.
In a practical project design of an elementary routine, requirements like (A), (B)

and (C) become properties of subroutines which have to be verified. It is clear that
an equational theory is sufficient for this purpose. In this aim one has to work with
specifications which can be expressed by a low level (concrete) object language. This
language has to deal with constructible sets (and their elements), robust constructible
maps defined on them and even with rational functions depending on parameters and
input variables and with circuits of them. For example, the constructible sets M and T of
Proposition 15 are classes of objects, namely points of suitable affine spaces, which have
to be described by class invariants taking the form of boolean combinations of polynomial
equations. Of course, many such class invariants are possible for given M and T . They act
as pre– and postconditions of a given correctness proof of the routine under consideration.
Notice also that requirement (B) is particularly well suited for proofs based on induction
on recursive elementary routines.

We mentioned already that our simplified branching–free computation model may be
generalized.

In our simplified model the parameter vectors of an elementary recursive routine A
applied to the input circuit β are always geometrically robust constructible maps defined
on the parameter domain M of β. The entries of these parameter vectors may now be
replaced by intermediate results of robust, parameterized arithmetic circuits with param-
eter domain M. These intermediate results have to depend on inputs consisting of new
parameter variables which are distinct from the standard input variables which become
introduced when the routine A is applied to the input β. This implies that the input
variables of the generalized model have to be subdivided into an infinite, hierarchical sys-
tem of categories. The arguments needed to justify the description of this more general
branching–free computation model are very similar to those used for the simplified one.
It is not clear what could be the contribution of such a generalization and therefore we
refrain from going into details.

6.4.2 The extended computation model

We are now going to extend our simplified branching–free computation model of elemen-
tary routines by a new model consisting of algorithms and procedures which may contain
some limited branchings. Our description of this model will be rather informal. An algo-
rithm will be a dynamic DAG of elementary routines which will be interpreted as pipes.
At the end point of the pipes, decisions may be taken which involve only identity tests
between robust constructible functions defined on the parameter domain under consid-
eration. The output of such an identity test is a boolean vector which determines the

83



next elementary routine (i.e. pipe) to be applied to the output circuit produced by the
preceding elementary routine (pipe). This gives now rise to a extended computation model
which contains branchings. These branchings depend on a limited type of decisions at the
level of the underlying abstract data type, namely the mentioned identity tests. We need
to include this type of branchings in our extended computation model in order to capture
the whole spectrum of known elimination procedures in effective algebraic geometry. Be-
cause of this limitation of branchings, we shall call the algorithms of our model branching
parsimonious (compare [GH01] and [CGH+03]). A branching parsimonious algorithm A
which accepts a robust parameterized arithmetic circuit β with parameter domain M as
input produces a new robust circuit A(β) with parameter domain M such that A(β) does
not contain any branchings. In this sense A acts uniformly on β.

Recall that our two main constructions of elementary routines depend on a previous
selection of generic computations from our shape list. This selection may be handled
by calculations with the indexations of its members. We shall think that these calcula-
tions become realized by deterministic Turing machines. At the beginning, for a given
robust parametric input circuit β with parameter domain M, a tuple of fixed (i.e. of β
independent) length of natural numbers is determined. This tuple constitutes an initial
configuration of a Turing machine computation which determines the generic computa-
tions of our shape list that intervene in the elementary routine under construction. The
entries of this tuple of natural numbers are called invariants of the circuit β. These in-
variants, whose values may also be boolean (i.e. realized by the natural numbers 0 or 1),
depend mainly on algebraic or geometric properties of the final results of β. However,
they may also depend on structural properties of the labelled DAG β.

For example, the invariants of β may express that β has r parameters, n inputs and
outputs, (over C) non–scalar size and depth at most L and l, that β is totally division–
free and that the final results of β have degree at most d ≤ 2l and form for all parameter
instances a reduced regular sequence in C[X], where X := (X1, . . . ,Xn) and X1, . . . ,Xn

are the inputs of β.
Some of these invariants (e.g. the syntactical ones like number of parameters, inputs

and outputs and non–scalar size and depth) may simply be read–off from the labelled DAG
structure of β. Others, like the truth value of the statement that the final results of β form
a reduced regular sequence, have to be precomputed by an elimination algorithm from a
previously given software library in effective commutative algebra or algebraic geometry or
its value has to be fixed in advance (generally to the boolean value one) as a precondition
for the elementary routine which becomes applied to β.

In the same vein we may equip any elementary routine A with a Turing computable
function which from the values of the invariants of a given input circuit β decides whether
β is admissible for A, and, if this is the case, determines the generic computations of our
shape list which intervene in the application of A to β.

We shall now go a step further letting depend the structure of A itself on the invariants
of β. In the simplest case this means that we admit that the vector of invariants of
β, denoted by inv(β), determines the internal structure of an elementary routine, say
Ainv(β), which admits β as input. Observe that the internal structure of the elementary
routines of our computation model may be characterized by tuples of fixed length of
natural numbers. We consider this characterization as an indexation of the elementary
routines of our computation model. We may now use this indexation in order to combine

84



dynamically elementary routines by composition and join. Let us limit the attention to
the case of composition. In this case the output circuit of one elementary routine is the
input for the next routine. The elementary routines which compose this display become
implemented as pipes which start with the final results of the input circuits of the routine
representing the pipe and end with the final results of the output circuits of the routine.
Given such a pipe and an input circuit γ for the elementary routine B representing the
pipe, we may apply suitable identity tests to the final results of B(γ) in order to determine
a boolean vector which we use to compute the index of the next elementary routine (seen
as a new pipe) which will be applied to B(γ) as input.

A low level program of our extended computation model is now a text, namely the
transition table of a deterministic Turing machine which computes a function ψ realizing
the following tasks.

Let β be as before a robust parameterized arithmetic circuit. Then ψ returns first
on input inv(β) a boolean value, zero or one, where one is interpreted as the informal
statement “β is an admissible input”. If this is the case, then ψ returns the index vector
inv(β) of an elementary routine, say Ainv(β), which admits β as input. Then ψ determines
on inv(β) the identity tests which have to be realized with the final results of Ainv(β)(β).
The outcome of these identity tests determine an index value ψ1(β) corresponding to a
new elementary routine Aψ1(β) which admits Ainv(β)(β) as input. In this way we continue

and obtain as end result an elementary routine A(β), which applied to β, produces a final
output circuit A(β)(β). The function ψ represents all these index computations.

The algorithm represented by ψ is the partial map between robust parametric arith-
metic circuits that assigns to each admissible input β the circuit A(β)(β) as output. Ob-
serve that elementary routines are particular algorithms. If the pipes of an algorithm are
all represented by essentially division–free elementary routines, we call the algorithm itself
essentially division–free.

One sees easily that the “Kronecker algorithm” [GLS01] (compare also [GHM+98],
[GHH+97] and [GHMP97]) may be programmed in our extended computation model.
Nevertheless, the Kronecker algorithm requires more than a single elementary routine for
its design. In order to understand this, recall that the Kronecker algorithm accepts as
input an ordinary division–free arithmetic circuit which represents by its output nodes a
reduced regular sequence of polynomials G1, . . . , Gn belonging to C[X1, . . . ,Xn]. In their
turn, the polynomials G1, . . . , Gn determine a degree pattern, say ∆ := (δ1, . . . , δn), with
δi := deg{G1 = 0, . . . , Gi = 0} for 1 ≤ i ≤ n.

After putting the variables X1, . . . ,Xn in generic position with respect to G1, . . . ,
Gn, the algorithm performs n recursive steps to eliminate them, one after the other.
Finally the Kronecker algorithm produces an ordinary arithmetic circuit which computes
the coefficients of n + 1 univariate polynomials P, V1, . . . , Vn over C. These polynomials
constitute a “geometric solution” (see [GLS01]) of the equation system G1 = 0, . . . , Gn = 0
because they represent the zero dimensional algebraic variety V := {G1 = 0, . . . , Gn = 0}
in the following “parameterized” form:

V := {(V1(t), . . . , Vn(t)); t ∈ C, P (t) = 0} .

Let β be any robust, parameterized arithmetic circuit with the same number of inputs and
outputs, say X1, . . . ,Xn and G1(U,X1, . . . ,Xn), . . . , Gn(U,X1, . . . ,Xn), respectively. Sup-
pose that the parameter domain of β, say M, is irreducible and that inv(β) expresses that

85



for each parameter instance u ∈ M the polynomialsG1(u,X1, . . . ,Xn), . . . , Gn(u,X1, . . . ,Xn)
form a reduced regular sequence in C[X1, . . . ,Xn] with fixed (i.e. from u ∈ M indepen-
dent) degree pattern. Suppose furthermore that the degrees of the individual polynomials
G1(u,X1, . . . ,Xn), . . . , Gn(u,X1, . . . ,Xn) are also fixed. Then, on input β, the Kro-
necker algorithm runs iteratively n elementary routines of our computation model until
the desired output becomes produced.

Another non–trivial example for an algorithm of our extended computation model,
which involves only limited branchings, is the Gauss elimination procedure of [Edm67]
(or [Bar68]) applied to matrices whose entries are polynomials represented by ordinary
arithmetic circuits in combination with a identity–to–zero test for such polynomials. The
variables of these polynomials are considered as basic parameters and any admissible input
circuit has to satisfy a certain precondition formulated as the non–vanishing of suitable
minors of the given polynomial matrix. Details and applications of this type of Gauss
elimination for polynomial matrices can be found in [Hei83].

We say that a given algorithm A of our extended model computes (only) parameters
if A satisfies the following condition:

for any admissible input β the final results of A(β) are all parameters.

Suppose that A is such an algorithm and β is the robust parametric arithmetic circuit
with parameter domain M which we have considered before. Observe that A(β) contains
the input variables X1, . . . ,Xn and that possibly new variables, which we call auxiliary,
become introduced during the execution of the algorithmA on input β. Since the algorithm
A computes only parameters, the input and auxiliary variables become finally eliminated
by the application of recursive parameter routines and evaluations. We may therefore
collect garbage reducing A(β) to a final output circuit Afinal(β) which computes only
parameters.

If we consider the algorithm A as a partial map which assigns to each admissible input
circuit β its final output circuit Afinal(β), we call A a procedure.

In this case, if ψ is a low level program defining A, we call ψ a low level procedure
program.

A particular feature of our extended computation model is the following:
there exist two increasing real valued functions C1 ≥ 0 and C2 ≥ 0 depending on dynamic
integer vectors, such that with the previous notations and Lβ, LA(β) denoting the non–
scalar sizes of the circuits β and A(β) the condition

LA(β) ≤ C1(inv(β))Lβ + C2(inv(β))

is satisfied.
This means that our extended computation model represents the first level of a com-

plexity hierarchy for Scientific Computing which we are going to develop in future work.
In the sequel we shall need a particular variant of the notion of a procedure which

enables us to capture the following situation.
Suppose we have to find a computational solution for a formally specified general

algorithmic problem and that the formulation of the problem depends on certain param-
eter variables, say U1, . . . , Ur, input variables, say X1, . . . ,Xn and output variables, say

86



Y1, . . . , Ys. Let such a problem formulation be given and suppose that its input is imple-
mented by the robust parameterized arithmetic circuit β considered before, interpreting
the parameter variables U1, . . . , Ur as the basic parameters π1, . . . , πn.

Then an algorithm A of our extended computation model which solves the given
algorithmic problem should satisfy the architectural requirement we are going to describe
now.

The algorithm A should be the composition of two subalgorithms A(1) and A(2) of our
computation model which satisfy on input β the following conditions:

(i) The subalgorithm A(1) computes only parameters, β is admissible for A(1) and none
of the indeterminates Y1, . . . , Ys is introduced in A(1)(β) as auxiliary variable.

(ii) The circuit A
(1)
final(β) is an admissible input for the subalgorithm A(2), the inde-

terminates Y1, . . . , Ys occur as auxiliary variables in A(2)(A
(1)
final(β)) and the final

results of A(2)(A
(1)
final(β)) depend only on π1, . . . , πr and Y1, . . . , Ys (all other aux-

iliary variables become eliminated during the execution of the subalgorithm A(2) on

the input circuit A
(1)
final(β)).

To the circuitA(2)(A
(1)
final(β)) we may, as in the case when we compute only parameters,

apply garbage collection. In this mannerA(2)(A
(1)
final(β)) becomes reduced to a final output

circuit Afinal(β) with parameter domain M which contains only the inputs Y1, . . . , Ys.
Observe that the subalgorithm A(1) is by Proposition 15 an output isoparametric

procedure of our extended computation model (the same is also true for the subalgorithm
A(2), but this will not be relevant in the sequel).

We consider the algorithm A, as well as the subalgorithms A(1) and A(2), as procedures
of our extended computation model. In case that the subprocedures A(1) and A(2) are
essentially division–free, we call also the procedure A essentially division–free. This will
be of importance in Section 6.5.

The architectural requirement given by conditions (i) and (ii) may be interpreted as
follows:

the subprocedure A(1) is a pipeline which transmits only parameters to the
subprocedure A(2). In particular, no (true) rational function is transmitted
from A(1) to A(2).

Nevertheless, let us observe that on input β the procedure A establishes by means of
the underlying low level program ψ an additional link between β and the subprocedure
A(2) applied to the input A(1)(β). The elementary routines which constitute A(2) on input
A(1)(β) become determined by index computations which realizes ψ on inv(β) and which
depend on certain output isoparametric identity tests. In this sense the subprocedure A(1)

transmits not only parameters to the subprocedure but also a limited amount of digital
information which stems from the input circuit β.

The decomposition of the procedure A into two subprocedures A(1) and A(2) satisfy-
ing conditions (i) and (ii) represents an architectural restriction which is justified when
it makes sense to require that on input β the number of essential additions and multipli-
cations contained in Afinal(β) is bounded by a function which depends only on inv(β). In

87



Section 6.5.1 we shall make a substantial use of this restriction and give such a justification
in the particular case of elimination algorithms.

Here we shall only point out the following consequence of this restriction. Let assump-
tions and notations be as before, let G, ν and F be vectors composed by the final results
of β, A(1)(β) and Afinal(β), respectively, and let θ and ϕ be the coefficient vectors of G
and F . Then the images of θ and ν are constructible subsets T and T ′ of suitable affine
spaces and there exist geometrically robust constructible maps σ and σ′ defined on T and
T ′ with ν = σ ◦ θ and ϕ = σ′ ◦ ν = σ′ ◦ σ.

Suppose that there is given a (not necessarily convergent) sequence (uk)k∈N of pa-
rameter instances uk ∈ M and that there exists a (possibly unknown) parameter instance
u ∈ M such that the sequence (θ(uk))k∈N converges to θ(u). In the terminology of [Ald84],
[Lic90] and [BCS97] the sequence of ordinary arithmetic circuits (β(uk))k∈N represents an
approximative algorithm for the instantiation G(u) of G at u. Since the constructible maps
σ and σ′ are geometrically robust, we may conclude by Theorem 9 in Section 2.3.2 that
they are continuous with respect to the Euclidean topologies of their respective ambient
spaces. Under this assumption the sequences (ν(uk))k∈N and (ϕ(uk))k∈N converge to ν(u)
and ϕ(u) and the sequence of ordinary arithmetic circuits ((Afinal(β))

(uk))k∈N represents
an approximative algorithm for F (u). This approximative algorithm has the following
particular form:

first the limit ν(u) of the sequence (ν(uk))k∈N becomes “precomputed”. Then
the procedure A(2) is applied to the input ν(u) and one obtains the ordinary
arithmetic circuit (Afinal(β))

(u) by garbage collection. The final results of
(Afinal(β))

(u) constitute the vector F (u).

Based on [HK04] and [GHKa] we shall develop in future work a high level specification
language for algorithms and procedures of our computation model. The idea is to use
a generalized variant of the extended constraint data base model introduced in [HK04]
in order to specify algorithmic problems in symbolic scientific computing, especially in
effective algebraic geometry (e.g. effective elimination problems; see Section 6.5). In this
sense the procedure A, which solves the algorithmic problem considered before, will turn
out to be query computation composed by two subprocedures namely A(1) and A(2) having
the following property:

the procedures A(1) and A(2) compute each a subquery of the query which
specifies the given algorithmic problem. All these queries are called geomet-
ric because the procedures A(1), A(2) and A are output isoparametric (see
[GHKa]).

6.5 Applications of the extended computation model to com-
plexity issues of effective elimination theory

In this section we shall always work with procedures of our extended, branching parsimo-
nious computation model. We shall study two types of examples of elimination problems
in effective algebraic geometry which certify, to a different extent, that branching parsi-
monious elimination procedures (see [GH01] and [CGH+03] for this notion) based on our
computation paradigm cannot run in polynomial time.

88



6.5.1 Flat families of zero–dimensional elimination problems

We start this section by introducing, in terms of an abstract data type, the notion of a flat
family of zero–dimensional elimination problems (see also [GH01] and [CGH+03]). Then
we fix the classes of (concrete) objects, namely robust parameterized arithmetic circuits
with suitable parameter domains, which represent (“implement”) these problems by means
of a suitable abstraction function.

Throughout this section we suppose that there are given indeterminates U1, . . . , Ur,
X1, . . . ,Xn and Y over C.

As concrete objects we shall consider robust parameterized arithmetic input and output
circuits with parameter domain A

r. The indeterminates U1, . . . , Ur will play the role of the
basic parameters. The input nodes of the input circuits will be labelled by X1, . . . ,Xn,
whereas the output circuits will have a single input node, labelled by Y . The output
circuits will implement the “general solution” of the given flat family of zero–dimensional
elimination problems.

Let us now define the meaning of the term “flat family of zero–dimensional elimination
problems” (in the basic parameters U1, . . . , Ur and the inputs X1, . . . ,Xn). Let U :=
(U1, . . . , Ur) and X := (X1, . . . ,Xn) and let G1, . . . , Gn and H be polynomials belonging
to the C–algebra C[U,X] := C[U1, . . . , Ur,X1, . . . ,Xn]. Suppose that the polynomials
G1, . . . , Gn form a regular sequence in C[U,X], thus defining an equidimensional subvariety
V := {G1 = 0, . . . , Gn = 0} of the (n+r)–dimensional affine space Ar×A

n. The algebraic
variety V has dimension r. Let δ be the (geometric) degree of V (observe that this degree
does not take into account multiplicities or components at infinity). Suppose, furthermore,
that the morphism of affine varieties π : V → A

r, induced by the canonical projection
of Ar × A

n onto A
r, is finite and generically unramified (this implies that π is flat and

that the ideal generated by G1, . . . , Gn in C[U,X] is radical). Let π̃ : V → A
r+1 be the

morphism defined by π̃(v) := (π(v),H(v)) for any point v of the variety V . The image
of π̃ is a hypersurface of A

r+1 whose minimal equation is a polynomial of C[U, Y ] :=
C[U1, . . . , Ur, Y ] which we denote by F . Let us write degF for the total degree of the
polynomial F and degY F for its partial degree in the variable Y . Observe that F is
monic in Y and that degF ≤ δ degH holds. Furthermore, for a Zariski dense set of points
u of Ar, we have that degY F is the cardinality of the image of the restriction of H to the
finite set π−1(u). The polynomial F (U,H) vanishes on the variety V .

Let us consider an arbitrary point u := (u1, . . . , ur) of A
r. For given polynomials A ∈

C[U,X] andB ∈ C[U, Y ] we denote byA(u) andB(u) the polynomialsA(u1, . . . , ur,X1, . . . ,Xn)
and B(u1, . . . , ur, Y ) which belong to C[X] := C[X1, . . . ,Xn] and C[Y ] respectively. Sim-
ilarly we denote for an arbitrary polynomial C ∈ C[U ] by C(u) the value C(u1, . . . , ur)

which belongs to the field C. The polynomials G
(u)
1 , . . . , G

(u)
n define the zero–dimensional

subvariety

V (u) :=
{
G

(u)
1 = 0, . . . , G(u)

n = 0
}
∼= π−1(u)

of the affine space A
n. The degree (i.e. the cardinality) of V (u) is bounded by δ. Denote

by π̃(u) : V (u) → A
1 the morphism induced by the polynomial H(u) on the variety V (u).

Observe that the polynomial F (u) vanishes on the (finite) image of the morphism π̃(u).
Observe also that the polynomial F (u) is not necessarily the minimal equation of the image
of π̃(u).

89



We call the equation system G1 = 0, . . . , Gn = 0 and the polynomial H a flat family
of zero–dimensional elimination problems depending on the basic parameters U1, . . . , Ur
and the inputs X1, . . . ,Xn and we call F the associated elimination polynomial, in Figure
30 below a suitable abstract function will carry out the corresponding assignment. A
point u ∈ A

r is considered as a parameter instance which determines a particular problem

instance, consisting of the equations G
(u)
1 = 0, . . . , G

(u)
n = 0 and the polynomial H(u). A

power of the polynomial F (u) is called a solution of this particular problem instance.
The equation system G1 = 0, . . . , Gn = 0 together with the polynomial H is also called

the general instance of the given flat family of elimination problems and any power of the
elimination polynomial F is also called a general solution of this flat family.

We suppose now that the general instance of the given flat family of elimination prob-
lems is implemented by an essentially division–free, robust parameterized arithmetic cir-
cuit β with parameter domain A

r and inputs X1, . . . ,Xn, whose final results are the
polynomials G1, . . . , Gn and H. The task is to find another essentially division–free, ro-
bust parameterized arithmetic circuit γ with parameter domain A

r having a single output
node, labelled by Y , which computes for a suitable integer q ∈ N the power F q of the poly-
nomial F . We suppose furthermore that this goal becomes achieved by the application of
an essentially division–free procedure A of our extended computation model to the input
circuit β. Thus we have γ = A(β) and γ may be interpreted as an essentially division–free
circuit over C[U ] with a single input Y (observe that the parameters computed by the
robust circuits β, A(β) and Afinal(β) belong to the C–algebra C[U ]). Using the geomet-
ric properties of flat families of zero–dimensional problems we deduce from [GHM+98],
[GHH+97],[GHMP97], [GLS01] or alternatively from [CGH89], [DFGS91] that such essen-
tially division–free procedures always exist and that they compute even the elimination
polynomial F (the reader may notice that one needs for this argument the full power of
our computation model which includes divisions by parameters).

We say that the essentially division–free procedure A solves algorithmically the general
instance of the given flat family of zero–dimensional elimination problems. Figure 30
illustrates our software architecture for elimination problems.

Abstract Data Type of

flat family of zero–dimentional

elimination problems︷ ︸︸ ︷
G1 = 0, . . . , Gn = 0, H

abstract

function
−−−−−−−−→

Abstract Data Type of

elimination polynomial︷ ︸︸ ︷
eeeF qeee

abstraction

function

x
xabstraction

function

eeeβeee︸ ︷︷ ︸
Class of

robust parameterized arithmetic circuit

with inputs X1, . . . ,Xn

−−−−−−−−−−→
procedure A

eeeγeee︸ ︷︷ ︸
Class of

robust parameterized arithmetic circuit

with single input Y

Figure 30: Software architecture for elimination problems.

From now on we suppose that there is given a procedureA of our extended computation
model, decomposed in two essentially division–free subprocedures A(1) and A(2) as in
Section 6.4.2, such that A solves algorithmically the general instance of any given flat

90



family of zero–dimensional elimination problems. Our circuit β is therefore an admissible
input for A and hence for A(1). The final results of A(1)(β) constitute a geometrically
robust constructible map ν defined on A

r which is an admissible input for the procedure
A(2) and γ := Afinal(β) is an essentially division–free parameterized arithmetic circuit
with parameter domain A

r and input Y .
Let S be the image of the geometrically robust constructible map ν. Then S is an

irreducible constructible subset of a suitable affine space. Analyzing now the internal
structure of the essentially division–free, robust parameterized arithmetic circuit A(2)(ν),
one sees easily that there exists a geometrically robust constructible map ψ defined on S
such that the entries of the geometrically robust composition map ν∗ := ψ ◦ ν constitute
the essential parameters of the circuit γ. Let m be the number of components of the map
ν∗. Since ν and ν∗ are composed by geometrically robust constructible functions defined
on A

r, we may interpret ν and ν∗ as vectors of polynomials of C[U ].
The circuit γ is essentially division–free. Hence there exists a vector ω of m–variate

polynomials over C such that the polynomials of C[U ], which constitute the entries of
ω(ν∗), become the coefficients of the elimination polynomial F with respect to the main
indeterminate Y (see [KP96], Section 2.1). Observe that we may write ω(ν∗) = ω ◦ ν∗

interpreting the entries of ν∗ as polynomials of C[U ].
We are now going to see what happens at a particular parameter instance u ∈ A

r. Since
β, A(1)(β), A(β) and γ = Afinal(β) are essentially division–free, robust parameterized
arithmetic circuits with parameter domain A

r, we may specialize the vector U of their
basic parameters to the parameter instance u ∈ A

r, obtaining thus ordinary division–free
arithmetic circuits over C with the same inputs. We denote them by the superscript u,

namely by β(u), (A(1)(β))(u), (A(β))(u) and γ(u). One sees immediately that G
(u)
1 , . . . , G

(u)
n

and H(u) are the final results of β(u), that the entries of ν(u) are the final results of
(A(1)(β))(u) and that (F (u))q is the final result of A(β)(u) and γ(u). Observe that the
division–free circuit γ(u) uses only the entries of ν∗(u) and fixed rational numbers as
scalars.

In the same spirit as before, we say that the procedure A solves algorithmically the
particular instance, which is determined by u, of the given flat family of zero–dimensional
elimination problems.

Let us here clarify how all this is linked to the rest of the terminology used in [CGH+03].
In this terminology the polynomial map given by ω defines a “holomorphic encoding” of
the set of solutions of all particular problem instances and ν∗(u) is a “code” of the par-
ticular solution (F (u))q. In the same context the robust constructible map ν∗ is called an
“elimination procedure” which is “robust” since the procedure A(1) is output isoparamet-
ric and since ν∗ is geometrically robust (see [CGH+03], Definition 5 and Lemma 13 and
Proposition 15 and Corollary 16 of this thesis and the comments at the end of Section
6.4.1).

In this sense we speak about families of zero–dimensional elimination problems and
their instances and not simply about a single (particular or general) zero–dimensional
elimination problem.

Let us now turn back to the discussion of the given essentially division–free procedure
A which solves algorithmically the general instance of any flat family of zero–dimensional
elimination problems.

We are now going to show the main result of this whole section, namely that the given

91



procedure A cannot run in polynomial time.

Theorem 17 Let notations and assumptions be as before. For any natural number n
there exists an essentially division–free, robust parameterized arithmetic circuit βn with
basic parameters T , U1, . . . , Un and inputs X1, . . . ,Xn which for U := (U1, . . . , Un) and

X := (X1, . . . ,Xn) computes polynomials G
(n)
1 , . . . , G

(n)
n ∈ C[X] and H(n) ∈ C[T,U,X]

such that the following conditions are satisfied:

(i) The equation system G
(n)
1 = 0, . . . , G

(n)
n = 0 and the polynomial H(n) constitute a

flat family of zero–dimensional elimination problems, depending on the parameters
T , U1, . . . , Un and the inputs X1, . . . ,Xn, with associated elimination polynomial
F (n) ∈ C[T,U, Y ].

(ii) βn is an ordinary division–free arithmetic circuit of size O(n) over C with inputs T ,
U1, . . . , Un, X1, . . . ,Xn.

(iii) γn := Afinal(βn) is an essentially division–free robust parameterized arithmetic cir-
cuit with basic parameters T,U1, . . . , Un and input Y such that γn computes for
a suitable integer qn ∈ N the polynomial (F (n))qn . The circuit γn performs at
least Ω(2

n
2 ) essential multiplications and at least Ω(2n) multiplications with pa-

rameters. Therefore γn has, as ordinary arithmetic circuit over C with inputs
T,U1, . . . , Un,X1, . . . ,Xn, non–scalar size at least Ω(2n).

Proof. During our argumentation we shall tacitly adapt to the new context the
notations introduced before. We shall follow the main technical ideas behind the papers
[GH01], [CGH+03] and [GHMS11]. We fix now the natural number n and consider the
polynomials

G1 := G
(n)
1 := X2

1 −X1, . . . , Gn := G(n)
n := X2

1 −Xn

and
H := H(n) :=

∑

1≤i≤n

2i−1Xi + T
∏

1≤i≤n

(1 + (Ui − 1)Xi)

which belong to C[X] and to C[T,U,X], respectively.
Observe that G1, . . . , Gn and H may be evaluated by a division–free ordinary arith-

metic circuit β := βn over C which has non–scalar size O(n) and inputs T , U1, . . . , Un,
X1, . . . ,Xn. As parameterized arithmetic circuit β is therefore robust. Hence β satisfies
condition (ii) of the theorem.

One sees easily that G1 = 0, . . . , Gn = 0 and H constitute a flat family of zero–
dimensional elimination problems depending on the parameters T , U1, . . . , Un and the
inputs X1, . . . ,Xn.

Let us writeH as a polynomial in the main indeterminates X1, . . . ,Xn with coefficients
θκ1,...,κn ∈ C[T,U ], κ1, . . . , κn ∈ {0, 1}, namely

H =
∑

κ1,...,κn∈{0,1}

θκ1,...,κnX
κ1
1 , . . . ,Xκn

n .

Observe that for κ1, . . . , κn ∈ {0, 1} the polynomial θκ1,...,κn(0, U) ∈ C[U ] is of degree at
most zero, i.e. a constant complex number, independent of U1, . . . , Un.

92



Let θ := (θκ1,...,κn)κ1,...,κn∈{0,1} and observe that the vector θ(0, U) is a fixed point of

the affine space A
2n . We denote by M the vanishing ideal of the C–algebra C[θ] at this

point.
Consider now the polynomial

F := F (n) :=
∏

0≤j≤2n−1

(Y − (j + T
∏

1≤i≤n

U
[j]i
i ))

of C[T,U, Y ], where [j]i denotes the i–th digit of the binary representation of the integer
j, 0 ≤ j ≤ 2n−1 − 1, 1 ≤ i ≤ n. Let q := qn.

One sees easily that F is the elimination polynomial associated with the given flat
family of zero–dimensional elimination problems G1 = 0, . . . , Gn = 0 and H.

Let us write F q as a polynomial in the main indeterminate Y with coefficients ϕκ ∈
C[T,U ], 1 ≤ κ ≤ 2nq, namely

F q = Y 2nq + ϕ1Y
2nq−1 + · · ·+ ϕ2nq.

Observe that for 1 ≤ κ ≤ 2nq the polynomial ϕκ(0, U) ∈ C[U ] is of degree at most zero.
Let λκ := ϕκ(0, U), λ := (λκ)1≤κ≤2nq and ϕ := (ϕκ)1≤κ≤2nq. Observe that λ is also a fixed
point of the affine space A

2nq.
Recall that β is an admissible input for the procedure A and hence for A(1), that the

final results of A(1)(β) constitute the entries of the robust constructible map ν defined on
A
n+1, that ν is an admissible input for the procedure A(2) and that γ = Afinal(β) is an

essentially division–free, parameterized arithmetic circuit with parameter domain A
n+1

and input Y .
Furthermore recall that there exists a geometrically robust constructible map ψ defined

on the image S of ν such that the entries of ν∗ = ψ ◦ ν constitute the essential parameters
of the circuit γ, that the entries of ν and ν∗ may be interpreted as polynomials of C[T,U ]
and that for m being the number of components of the map ν∗, there exists a vector ω
of m–variate polynomials over C such that the polynomials of C[T,U ] which constitute
the entries of ω(ν∗) = ω ◦ ν∗ become the coefficients of the polynomial F q with respect
to the main indeterminate Y . Let T be the image of the coefficient vector θ of H, and
interpret θ as a geometrically robust constructible map defined on A

n+1. Observe that T
is a constructible subset of A2n . Since H is the unique, basic parameter dependent final
result of the circuit β, we deduce from Proposition 15 that there exists a geometrically
robust constructible map σ defined on T satisfying the condition ν = σ ◦ θ. This implies
ν∗ = ψ ◦ σ ◦ θ and the entries of ν∗ are polynomials of C[T,U ] which are integral over the
local C–subalgebra C[θ]M of C(T,U).

Let µ ∈ C[T,U ] be such an entry. Then there exists an integer s and polynomials
a0, a1, . . . , as ∈ C[θ] with a0 /∈ M such that the algebraic dependence relation

a0µ
s + a1µ

s−1 + · · · + as = 0 (14)

is satisfied in C[T,U ]. From (14) we deduce the algebraic dependence relation

a0(0, U)µ(0, U)s + a1(0, U)µ(0, U)s−1 + · · ·+ as(0, U) = 0 (15)

in C[U ].

93



Since the polynomials a0, a1, . . . , as belong to C[θ] and θ(0, U) is a fixed point of A2n

we conclude that α0 := a0(0, U), α1 := a1(0, U), . . . , αs := as(0, U) are complex numbers.
Moreover, a0 /∈ M implies α0 6= 0.

Thus (15) may be rewritten into the algebraic dependence relation

α0µ(0, U)s + α1µ(0, U)s−1 + · · ·+ αs = 0 (16)

in C[U ] with α0 6= 0.
This implies that the polynomial µ(0, U) of C[U ] is of degree at most zero.
Therefore w := ν∗(0, U) is a fixed point of the affine space A

m. Since γ computes the
polynomial F q and F q has the form F q = Y 2nq+ϕ1Y

2nq−1+ · · ·+ϕ2nq with ϕκ ∈ C[T,U ],
1 ≤ κ ≤ 2nq, we see that ϕ = (ϕκ)1≤κ≤2nq may be decomposed as follows:

ϕ = ω(ν∗) = ω ◦ ν∗.

Recall that λ = (λκ)1≤κ≤2nq with λκ := ϕκ(0, U), 1 ≤ κ ≤ 2nq, is a fixed point of the
affine space A

2n .
For 1 ≤ κ ≤ 2nq we may write the polynomial ϕκ ∈ C[T,U ] as follows:

ϕκ = λκ +∆κT + terms of higher degree in T (17)

with ∆κ ∈ C[U ]. From [CGH+03], Lemma 6 we deduce that the elimination polynomial
F has the form F = Y 2n +B1Y

2n−1 + · · ·+B2n where for 1 ≤ l ≤ 2n Bl is an element of
C[T,U ] with

Bl = (−1)l
∑

l≤j1<···<jl<2n

j1 . . . jl + TLl + terms of higher degree in T

and where L1, . . . , L2n ∈ C[U ] are C–linearly independent.
Choose now different complex numbers η0, . . . , η2nq from C− {j ∈ Z; 0 ≤ j < 2n} and

observe that for 0 ≤ κ′ ≤ 2nq the identities

∂F q

∂T
(0, U, ηκ′) = qF q−1(0, U, ηκ′)

∂F

∂T
(0, U, ηκ′) = q

∏

0≤j<2n

(ηκ′ − j)
∑

1≤l≤2n

Llη
l
κ′

and
∂F q

∂T
(0, U, ηκ′) =

∑

1≤κ≤2nq

∆κη
κ
κ′

hold.
From the non–singularity of the Vandermonde matrix (ηκκ′)0≤κ,κ′≤2nq we deduce now

that 2n many of the polynomials ∆1, . . . ,∆2nq of C[U ] are C–linearly independent.
Consider now an arbitrary point u ∈ A

n and let ǫu : A1 → A
m and δu : A1 → A

2nq

be the polynomial maps defined for t ∈ A
1 by ǫu(t) := ν∗(t, u) and δu(t) := ϕ(t, u). Then

we have ǫu(0) = ν∗(0, u) = w with w ∈ A
m and δu(0) = ϕ(0, u) = λ with λ ∈ A

2nq,
independently of u. Moreover, from ϕ = ω ◦ ν∗ we deduce δu = ω ◦ ǫu.

Thus (17) implies

(∆1(u), . . . ,∆2nq(u)) =
∂ϕ

∂t
(0, u) = δ′u(0) = (Dω)w(ǫ

′
u(0)), (18)

94



where (Dω)w denotes the (first) derivative of the m–variate polynomial map ω at the
point w ∈ A

m and δ′u(0) and ǫ′u(0) are the derivatives of the parameterized curves δu
and ǫu at the point 0 ∈ A

1. We rewrite now (18) in matricial form, replacing (Dω)w
by the corresponding transposed Jacobi matrix M ∈ A

m×2nq and δ′u(0) and ǫ′u(0) by the
corresponding points of A2nq and A

m, respectively.
Then (18) takes the form

(∆1(u), . . . ,∆2nq(u)) = ǫ′u(0)M, (19)

where the complex (m× 2nq)–matrix M is independent of u.
Since 2n many of the polynomials ∆1, . . . ,∆2n ∈ C[U ] are C–linearly independent, we

may chose points u1, . . . , u2n ∈ A
n such that the complex (2n × 2nq)–matrix

N := (∆κ(ul)) 1 ≤ l ≤ 2n

1 ≤ κ ≤ 2nq

has rank 2n.
Let K be the complex (2n ×m)–matrix whose rows are ǫ′u1(0), . . . , ǫ

′
u2n

(0).
Then (19) implies the matrix identity

N = K ·M.

Since N has rank 2n, the rank of the complex (m × 2n)–matrix M is at least 2n. This
implies

m ≥ 2n. (20)

Therefore the circuit γ contains m ≥ 2n essential parameters.
Let L be the number of essential multiplications executed by the parameterized arith-

metic circuit γ and let L′ be the total number of multiplications of γ, excepting those by
scalars from C. Then, after a well known standard rearrangement [PS73] of γ, we may
suppose without loss of generality, that there exists a constant c > 0 (independent of the

input circuit γ and the procedure A) such that L ≥ cm
1
2 and L′ ≥ cm holds.

From the estimation (20) we deduce now that the circuit γ performs at least Ω(2
n
2 )

essential multiplications and at least Ω(2n) multiplications, including also multiplications
with parameters. This finishes the proof of the theorem.

Observation Let assumptions and notations be as before. In the proof of Theorem
17 we made a substantial use of the output isoparametricity of the procedure A(1) when
we applied Proposition 15 in order to guarantee the existence of a geometrically robust
constructible map σ defined on T which satisfies the condition ν = σ ◦ θ. The conclusion
was that the entries of ν∗ = ψ ◦ ν are polynomials of C[T,U ] which are integral over
C[θ]M. This implied finally that ν∗(0, U) is a fixed point of the affine space A

m. Taking
into account the results of [CGH+03], Sections 3.2 and 5.1 it suffices to require that
the procedure A(1) is output coalescent in order to arrive at the same conclusion. This
means that Theorem 17 remains valid if we require only that the procedure A(1) is output
coalescent.

In the proof of Theorem 17 we have exhibited an infinite sequence of flat families of
zero–dimensional elimination problems represented by robust parameterized arithmetic

95



circuits of small size, such that any implementation of their associated elimination poly-
nomials, obtained by a procedure of our extended computation model which solves the
given elimination task for any instance, requires circuits of exponential size.

The statement of Theorem 17 may also be interpreted in terms of a mathematically
certified trade–off of quality attributes. Suppose for the moment that we would have built
our model for branching parsimonious computation in the same way as in Section 6.4,
however omitting the requirement (B) for recursive routines. Recall that this requirement
implies the output isoparametricity of any algorithm of our extended computation model
and recall from Section 6.4.1 that well behavedness under reduction is a quality attribute
which implies output isoparametricity and therefore also the conclusion of Theorem 17.

A complexity class like “exponential time in worst case” represents also a quality
attribute. Thus we see that the quality attribute “well behavedness under reduction”
implies the quality attribute “exponential time in worst case” for any essentially division–
free procedure of our extended computation model which solves algorithmically the general
instance of any given flat family of zero–dimensional problems.

The proof of Theorem 17 depends substantially on the decomposition of the elimination
procedure A into two subprocedures A(1) and A(2) satisfying conditions (i) and (ii) of
Section 6.4.2. We are now going to justify this architectural restriction on the procedure
A for the particular case of elimination algorithms.

As at the beginning of this section, let U := (U1, . . . , Ur), X := (X1, . . . ,Xn), G1, . . . , Gn,
H ∈ C[U,X] and F ∈ C[U, Y ] such that G1 = 0, . . . , Gn = 0 and H constitute a flat fam-
ily of zero–dimensional elimination problems and F its associated elimination polynomial.
Suppose that G1, . . . , Gn and H are implemented by an essentially division–free, robust
parameterized arithmetic circuit β with parameter domain A

r and inputs X1, . . . ,Xn.
All known algorithms which solve the general instance of any flat family of zero–

dimensional elimination problems may be interpreted as belonging to our restricted set of
procedures. They compute directly the elimination polynomial F (and not an arbitrary
power of it). Thus let A be such a known algorithm and let A(1) and A(2) be the subalgo-
rithms which compose A in the same way as before. Then A(1) computes the coefficients
of F , where F is considered as a univariate polynomial over C[U ] in the indeterminate Y .
The subalgorithm A(2) may be interpreted as the Horner scheme which evaluates F from
its precomputed coefficients and Y .

Observe that F , and hence degY F , depends only on the polynomials G1, . . . , Gn and
H, but not on the particular circuit β. Therefore degY F is determined by inv(β).
ee

For any parameter instance u ∈ A
r we may think (A(1)(β))(u) as a constraint database

(in the sense of [HK04] and [GHKa]) which allows to evaluate the univariate polynomial
F (u) ∈ C[Y ] as often as we want for arbitrary inputs y ∈ A

1, using each time a number
of arithmetic operations in C, namely degY F , which does not depend on the non–scalar
size of β.

Let now A be an arbitrary, essentially division–free algorithm of our extended com-
putation model which solves the general instance of any flat family of zero–dimensional
elimination problems and let β be an input circuit for A which represents a particular
family of such problems. Let F be the associated elimination polynomial.

Then the complexity of the algorithm A becomes only competitive with known elimi-
nation algorithms if we require that the number of essential additions and multiplications

96



of Afinal(β) must be bounded by 2degY F . This leads us to the requirement that A must
be decomposable in two subalgorithms A(1) and A(2) as above.

Therefore any elimination algorithm of our extended computation model which is
claimed to improve upon known algorithms for all admissible input circuits β, must have
this architectural structure. In particular, such an algorithm cannot call the input circuit
β when the output variable Y became already involved. This justifies the architectural
restriction we made in the statement and proof of Theorem 17.

Recall from Section 6.4.2 that there exist increasing real valued functions C1 ≥ 0 and
C2 ≥ 0 depending on dynamic integer vectors, such that for Lβ and LA(β) being the
non–scalar sizes of the circuits β and A(β) the inequality

LA(β) ≤ C1(inv(β))Lβ + C2(inv(β))

holds. From Theorem 17 and its proof we deduce now the lower worst case bound

max{C1(inv(β)), C2(inv(β))} = Ω(
δ

n
),

where n is the number of inputs of β and δ is the geometric degree of the subvariety of
A
r × A

n defined by G1, . . . , Gn (observe that 2n is the geometric degree of {X2
1 −X1 =

0, . . . ,X2
n−Xn = 0}). This means that the complexity of the Kronecker algorithm [GLS01]

is asymptotically optimal in our extended computation model. The particular case of
a flat family of zero–dimensional elimination problems in just one input variable was
treated in [HMPW98], Sections 2.1 and 2.2 with reference to ordinary arithmetic circuits
over C and to the usual non–uniform complexity model of Algebraic Complexity Theory.
Reformulated in our terminology the outcome was the worst case estimate C1(inv(β)) =
Ω(δ) for the case n := 1.

Theorem 17 and its proof depends essentially on the assumption that the elimination
procedure A produces on the input circuit βn, n ∈ N a branching–free computation A(βn).
This contrasts with the fact that it is possible to construct for any n ∈ N a computation
tree that decides in nO(1) steps whether for a given real input (t, u1, . . . , un, y) ∈ [0, 1]n+2

the polynomial equation system G
(n)
1 (X) = 0, . . . , G

(n)
n (X) = 0, H(n)(t, u1, . . . , un,X) = y

has a solution. However, this computation tree uses a number of branchings which is
exponential in n and has to be stored in advance (see [GHKb]).

6.5.2 The elimination of a block of existential quantifiers

Let notations be the same as in the proof of Theorem 17 in Section 6.5.1. Let n ∈ N,

S1, . . . , Sn new indeterminates, S := (S1, . . . , Sn), Ĝ
(n)
1 := X2

1 − X1 − S1, . . . , Ĝ
(n)
n :=

X2
n −Xn − Sn and again H(n) :=

∑
1≤i≤n 2

i−1Xi + T
∏

1≤i≤n(1 + (Ui − 1)Xi).

Observe that the polynomials Ĝ
(n)
1 , . . . , Ĝ

(n)
n form a reduced regular sequence in C[S, T, U,X]

and that they define a subvariety V̂n of the affine space A
n × A

1 × A
n × A

n which is iso-
morphic to An × A1 × An and hence irreducible and of dimension 2n+ 1.

Moreover the morphism π̂n : V̂n → A
n × A

1 × A
n × A

1 which associates to any
(s, t, u, x) ∈ V̂n the point (s, t, u,H(n)(t, u, x)) ∈ A

n × A
1 × A

n × A
1 is finite and its

image π̂n(V̂n) is a hypersurface of An × A
1 × A

n × A
1 with irreducible minimal equation

F̂ (n) ∈ C[S, T, U, Y ].

97



Therefore Ĝ
(n)
1 = 0, . . . , Ĝ

(n)
n = 0 and H(n) represent a flat family of zero–dimensional

elimination problems whose associated elimination polynomial is just F̂ (n).
Observe deg F̂ (n) = degY F̂

(n) = 2n and that for 0 ∈ A
n the identity F̂ (n)(0, T, U, Y ) =

F (n)(T,U, Y ) holds, where F (n) is the elimination polynomial associated with the flat
family of zero dimensional elimination problems given by X2

1 −X1 = 0, . . . , X2
n −Xn = 0

and H(n). Since F̂ (n) is irreducible, any equation of C[S, T, U, Y ] which defines π̂n(V̂n) in
A
n ×A

1 × A
n ×A

1 is without loss of generality a power of F̂ (n).
We consider S1, . . . , Sn, T, U1, . . . , Un as basic parameters, X1, . . . ,Xn as input and Y

as output variables.
Let A′ be an essentially division–free procedure of our extended computation model

satisfying the following condition:

A′ accepts as input any robust parameterized arithmetic circuit β which rep-
resents the general instance of a flat family of zero–dimensional elimination
problems with associated elimination polynomial F and A′

final(β) has a single
input Y and a single final result which defines in A

n × A
1 × A

n × A
1 the

hypersurface given by F .

With this notions and notations we have the following result.

Proposition 18 There exist an ordinary division–free arithmetic circuit β̂n of size O(n)

over C with inputs S1, . . . , Sn, T , U1, . . . , Un, X1, . . . ,Xn and final results Ĝ
(n)
1 , . . . , Ĝ

(n)
n ,H(n).

The essentially division–free, robust parameterized arithmetic circuit γ̂n := A′
final(β̂n) de-

pends on the basic parameters S1, . . . , Sn, T , U1, . . . , Un and the input Y and its single
final result is a power of F̂ (n). The circuit γ̂n performs at least Ω(2

n
2 ) essential multipli-

cations and at least Ω(2n) multiplications with parameters. As ordinary arithmetic circuit
over C with inputs S1, . . . , Sn, T , U1, . . . , Un and Y , the circuit γ̂n has non–scalar size at
least Ω(2n).

Proof. The existence of an ordinary division–free arithmetic circuit as in the statement
of Proposition 18 is evident. The rest follows immediately from the proof of Theorem 17
in Section 6.5.1 by restricting the parameter domain A

n × A
1 × A

n of β̂n to A
1 × A

n, i.e.
by specializing S to 0 ∈ A

n. e

Suppose now that there is given another essentially division–free procedure A′′ of our
extended computation model satisfying the following condition:

A′′ accepts as input any robust arithmetic circuit β which represents the
general instance of a flat family of zero–dimensional elimination problems
with associated elimination polynomial F and there exists a boolean circuit
b in as many variables as the number of final results of A′′

final(β) such that
the algebraic variety defined by F coincides with the constructible set which
can be described by plugging into b the final results of A′′

final(β) as polynomial
equations.

Observe that this represents the most general architecture we can employ to adapt in
the spirit of Section 6.4.2 our extended computation model for functions to parametric
decision problems.

98



Let s ∈ N and A1, . . . , As new indeterminates with A := (A1, . . . , As). We suppose
that there is given an essentially division–free procedure B of our extended computation
model which accepts as input any essentially division–free, robust parameterized arith-
metic circuit γ which depends on the basic parameters A1, . . . , As and the input variable
Y such that Bfinal(γ) depends on the same basic parameters and the same input variable
and has a single final result, namely the greatest common divisor in C[A,Y ] of the final
results of γ.

In this sense we call the procedure B a GCD algorithm.
e

Let C1 ≥ 0, C2 ≥ 0 and D1 ≥ 0, D2 ≥ 0 be four increasing real valued functions which
depend on dynamic integer vectors and which satisfy, with the notations of Section 6.4.2,
the estimates

LA(β) ≤ C1(inv(β))Lβ + C2(inv(β))

and
LB(γ) ≤ D1(inv(γ))Lγ +D2(inv(γ)).

We consider again the ordinary division–free arithmetic circuit β̂n of Proposition 15

which represents the polynomials Ĝ
(n)
1 , . . . , Ĝ

(n)
n and H(n).

With these notions and notations we may now formulate the following statement.

Theorem 19 Let assumptions and notations be as before. Then we have

max{Ci(inv(β̂n)),Di(inv(A
′′
final(β̂n))); i = 1, 2} = Ω(

2
n
2

n
)

Proof. If we plug into the boolean circuit b the final results of A′′
final(β̂n) as polynomial

equations, we obtain by assumption a description of the hypersurface π̂(V̂n) of the affine
space A

n × A
1 × A

n × A
1. This implies that between the final results of A′′

final(β̂n) there
exists a selection, say the polynomials P1, . . . , Pm and R1, . . . , Rt of C[S, T, U, Y ] such that
the formula

P1 = 0 ∧ · · · ∧ Pm = 0 ∧R1 6= 0 ∧ · · · ∧Rt 6= 0

defines a nonempty Zariski open (and dense) subset of the irreducible surface π̂(V̂n) of
A
n ×A

1 × A
n ×A

1.
Let R := R1 . . . Rm and observe that the greatest common divisor of P1, . . . , Pm has the

form (F̂ (n))q ·Q, where q belongs to N and Q is a greatest common divisor of P1, . . . , Pm, R.
Therefore we may compute (F (n))q in the following way: erasing suitable nodes from the
circuit A′′

final(β̂n) and adding t−1 multiplication nodes we obtain two robust parameterized

arithmetic circuits γ
(n)
1 and γ

(n)
2 with basic parameters S1, . . . , Sn, T , U1, . . . , Un and input

Y whose final results are P1, . . . , Pm and P1, . . . , Pm, R respectively.

The final results of Bfinal(γ
(n)
1 ) and Bfinal(γ

(n)
2 ) are (F̂ (n))q · Q and Q. Connecting

Bfinal(γ
(n)
1 ) and Bfinal(γ

(n)
2 ) by a division node and labelling this node as output we obtain

finally a robust parameterized arithmetic circuit with basic parameters S1, . . . , Sn, T ,
U1, . . . , Un and input Y whose single final result is (F̂n)q.

Joining the circuits A′′(β̂n), Bfinal(γ
(n)
1 ), Bfinal(γ

(n)
2 ) and the final division node we

obtain an ordinary arithmetic circuit of non–scalar size at most

1 + 2LB(A′′
final

(β̂n))
≤

99



1 + 2(D1(inv(A
′′
final(β̂n)))LA′′

final
(β̂n)

) +D2(inv(A
′′
final(β̂n))) ≤

1 + 2C1(inv(β̂n))D1(inv(A
′′
final(β̂n)))Lβ̂n+

2C2(inv(βn))D1(inv(A
′′
final(β̂n))) +D2(inv(Afinal(β̂n))).

On the other hand we deduce from Proposition 15

L
β̂n

= O(n) and 1 + 2LB(A′′
final

(β̂n))
= Ω(2n).

This implies the estimate of Theorem 19. e

In a simple minded understanding, Theorem 19 says that in our extended computation
model either the elimination of a single existential quantifier block in a prenex first order
formula of the elementary language of C or the computation of a greatest common divisor
of a finite set of circuit represented polynomials requires exponential time. Complexity
results in this spirit became already achieved in [GH01] and [CGH+03] (compare also
Proposition 18 and Observation in Section 6.5.1).

6.5.3 Arithmetization techniques for boolean circuits

Let m ∈ N and let 0, 1 and Z1, . . . , Zm be given constants and variables. Let Z :=
(Z1, . . . , Zm). Following the context we shall interpret 0, 1 as boolean values or the corre-
sponding complex numbers and Z1, . . . , Zm as boolean variables or indeterminates over C.
With ∧,∨, ē we denote boolean “and”, “or” and “not”. A boolean circuit b with inputs
Z1, . . . , Zm is a DAG whose indegree zero nodes are labelled by 0, 1 and Z1, . . . , Zm and
whose inner nodes have indegree two or one. In the first case an inner node is labelled by
∧ or ∨ and in the second by ē. Some inner nodes of b become labelled as outputs. We
associate with b a semantics as follows:

- indegree zero nodes which are labelled by 0, 1 become interpreted by the correspond-
ing constant functions {0, 1}m → {0, 1},

- indegree zero nodes which are labelled by Z1, . . . , Zm become interpreted by the
corresponding projection function {0, 1}m → {0, 1},

- let ρ be an inner node of b of indegree two whose parent nodes ρ1 and ρ2 became
already interpreted by boolean functions gρ1 , gρ2 : {0, 1}m → {0, 1}. If ρ is labelled
by ∧, we interpret ρ by the boolean function gρ := gρ1 ∧ gρ2 and if ρ is labelled by
∨, we interpret ρ by the boolean function gρ := gρ1 ∨ gρ2 ,

- let ρ be an inner node of b of indegree one whose parent node ρ′ became already
interpreted by a boolean function gρ′ : {0, 1}

m → {0, 1}. Then we interpret ρ by
the boolean function gρ := gρ′ .

For a node ρ of b we call gρ the intermediate result of b at ρ. If ρ is an output node,
we call gρ a final result of b. An arithmetization β of the boolean circuit b consists of the
same DAG as b with a different labelling as follows.

Let U, V be new indeterminates over C.

100



The constants 0, 1 become interpreted by the correspondent complex numbers and
Z1, . . . , Zm as indeterminates over C. Let ρ be an inner node of β. If ρ has indegree two,
then ρ becomes labelled by a polynomial Rρ ∈ Z[U, V ] and if ρ has indegree one by a
polynomial Rρ ∈ Z[U ]. The output nodes of β and b are the same.

Representing for each inner node ρ of β the polynomial Gρ by a division–free ordinary
arithmetic circuit over Z in the inputs U, V or U , we obtain an ordinary division–free
arithmetic circuit over Z in the inputs Z1, . . . , Zm.

Although this transformation of the DAG of β depends on the choice we made to
represent for each node ρ of β the label Rρ, we shall denote the resulting arithmetic
circuit also by β.

Just as we did in Section 6.4.1 we may associate with β a semantics which determines
for each node ρ of β a polynomial Gρ ∈ Z[Z]. We say that β is an arithmetization of the
boolean circuit b if the following condition is satisfied:

for any node ρ of b and any argument z ∈ {0, 1}m the boolean value gρ(z)
coincides with the arithmetic value Gρ(z) (in a somewhat imprecise notation:
gρ(z) = Gρ(z)).

An example of an arithmetization procedure is given by the map which associates to
each node ρ of b a polynomial [gρ] of Z[Z] satisfying the following conditions:

- [0] = 0, [1] = 1, [Z1] = Z1, . . . , [Zm] = Zm

- for ρ an inner node of indegree two of b with parents ρ1 and ρ2:

[gρ] = [gρ1 ] · [gρ2 ] if the label of ρ is ∧

and
[gρ] = [gρ1 ] + [gρ2 ]− [gρ1 ].[gρ2 ] if the label of ρ is ∨

- for ρ an inner node of indegree one of b with parent ρ′:

[gρ] = 1− [gρ′ ].

The resulting arithmetic circuit is called the standard arithmetization of b (see e.g.
[Sha92] and [BF91]).

Let n, r ∈ N and U1, . . . , Ur,X1, . . . ,Xn be new variables. For m := n + r we replace
now Z by U and X, where U := (U1, . . . , Ur) and X := (X1, . . . ,Xn). We shall interpret
U1, . . . , Ur as parameters and X1, . . . ,Xn as input variables.

Let b be a boolean circuit with the inputs U1, . . . , Ur,X1, . . . ,Xn and just one final
result h : {0, 1}r × {0, 1}n → {0, 1}.

We wish to describe the set of instances u ∈ {0, 1}r where h(u,X1, . . . ,Xn) is a satis-
fiable boolean function.

For this purpose let us choose an arithmetization β of b. We interpret β as an ordinary
arithmetic circuit over Z with the parameters U1, . . . , Ur and the inputs X1, . . . ,Xn. The
single final result of β is a polynomial H ∈ Z[U,X] which satisfies for any u ∈ {0, 1}r ,
x ∈ {0, 1}n the following condition:

h(u, x) = H(u, x).

101



With out loss of generality we may suppose that the polynomials X2
1 −X1, . . . , X

2
n −Xn

are intermediate results of β. We relabel now β such that these polynomials and H become
the final results of β and observe that X2

1 −X1 = 0, . . . ,X2
n −Xn = 0 and H represents a

flat family of zero–dimensional elimination problems.
Let Y be a new indeterminate and let F ∈ Z[U, Y ] the associated elimination polyno-

mial. One verifies easily the identity

F (U, Y ) =
∏

x∈{0,1}n

(Y −H(U, x)).

Let A be an essentially division–free procedure of our extended computation model
which solves algorithmically the general instance of any flat family of zero–dimensional
elimination problems. Then β is an admissible input for A and there exists an integer
q ∈ N such that F q is the final result of Afinal(β).

We consider now the task to count for any u ∈ {0, 1}r the number k of instances
x ∈ {0, 1}n with h(u, x) = 1.

The polynomial F q encodes two possible solutions of this task.
The first solution is the following: let l be the order of the univariate polynomial

F q(u, Y ) at zero. Then q divides l and we have k = 2n − l
q
.

The second and more interesting solution is the following: write F q = Y 2nq+ϕ1Y
2nq−1+

· · ·+ ϕ2nq with ϕ1, . . . , ϕ2nq ∈ Z[U ]. Then ϕ1(u) is an integer which is divisible by q and

we have k = −ϕ(u)
q

.
Observe also degϕ1 ≤ degU H.
These considerations show the relevance of an efficient evaluation of the polynomial

F q (e.g. by the circuit Afinal(β)).
We ask therefore whether Afinal(β) can be polynomial in the size of the boolean circuit

b. The following example illustrates that the answer may become negative.
In the sequel we are going to exhibit for r := 2n + 1 a boolean circuit b of size O(n)

which evaluates a function h : {0, 1}r × {0, 1}n such that the standard arithmetization
β of b represents a flat family of zero–dimensional elimination problems with associated
elimination polynomial F and such that any essentially division–free procedure A of our
extended computation model that accepts the input β and computes by means of Afinal(β)
a power of F , requires time Ω(2n) for this task. This means that it is unlikely that
algorithms designed following the paradigm of object oriented programming are able to
evaluate the polynomial ϕ1 efficiently.

On the other hand, since the degree of ϕ1 is bounded by degU H and therefore “small”,
there exists a polynomial time interactive protocol which checks for any u ∈ {0, 1}r and
any c ∈ Z the equation ϕ1(u) = c. Thus this problem belongs to the complexity class IP
(see [LFKN92] for details).

We are now going to exhibit an example of a boolean circuit which highlights the
unfeasibility of our computation task.

For this purpose let r := 2n+1 and S1, . . . , Sn, T, U1, . . . , Un parameters andX1, . . . ,Xn

input variables and let S := (S1, . . . , Sn) and U := (U1, . . . , Un).
We consider the boolean function h : {0, 1}2n+1 × {0, 1}n → {0, 1} defined by the

boolean formula

φ :=
∧

1≤i≤n

(Xi ∨ (Si ∧Xi)) ∨ (T ∧
∧

1≤i≤n

(Xi ∨ (Ui ∧Xi))).

102



From the structure of the formula φ we infer that h can be evaluated by a boolean circuit
b of size O(n) in the inputs S1, . . . , Sn, T, U1, . . . , Un.

Let β be the standard arithmetization of the boolean circuit b and let H be the final
result of β. Observe that the total, and hence the non–scalar size of β is O(n). Then we
have

H =
∏

1≤i≤n

(1 + (Si − 1)Xi) + (1−
∏

1≤i≤n

(1 + (Si − 1)Xi))T
∏

1≤i≤n

(1 + (Ui − 1)Xi).

Observe that the equations X2
1−X1 = 0, . . . ,X2

n−Xn = 0 and the polynomial H represent
a flat family of zero–dimensional elimination problems. Let F be the associated elimination
polynomial. Then F can be written as

F = Y 2n +B1Y
2n−1 + · · ·+B2n

with

Bk = (−1)k
∑

0≤j1<···<jk<2n

∏

1≤h≤k

(−(
∏

1≤i≤n

S
[jh]i
i + (1−

∏

1≤i≤n

S
[jh]i
i )T

∏

1≤i≤n

U
[jh]i
i ))

for 1 ≤ k ≤ 2n.
Let

Lk :=
∑

0≤j1<···<jk<2n

∑

1≤h≤k

∏

1≤i≤n

S
[j1]i
i . . . (1−

∏

1≤i≤n

S
[jh]i
i ) · · ·

∏

1≤i≤n

S
[jk]i
i

∏

1≤i≤n

U
[jh]i
i ,

where 1 ≤ k ≤ 2n.
Then we have

Bk = (−1)k
∑

0≤j1<···<jk<2n

∏

1≤i≤n

S
[j1]i
i · · ·

∏

1≤i≤n

S
[jk]i
i +(−1)kLk.T+ terms of higher degree in T

Observe now that for 1 ≤ k ≤ 2n the monomial
∏

1≤i≤n S
[1]i
i · · ·

∏
1≤i≤n S

[k]i
i

∏
1≤i≤n U

[k]i
i

occurs only in Lk with a non–zero coefficient.
This implies that L1, . . . , L2n are C–linearly independent in C[S, T, U ].
With this preparation we are now able to repeat textually the arguments in the proof

of Theorem 17 of Section 6.5.1 in order to show the following statement.

Theorem 20 Let A be an essentially division free procedure of our extended computation
model which accepts the arithmetic circuit β as input. Suppose that Afinal(β) has a unique
final result and that it is a power of the elimination polynomial F . Then the non–scalar
size of Afinal(β) is at least Ω(2n).

6.5.4 The multivariate resultant

Let X0 be a new indeterminate.

103



Turning back to the proof of Theorem 17, one verifies easily that the polynomial F is
the (multivariate) resultant of the, in the variables X0, . . . ,Xn homogeneous, polynomial
equation system

X2
1 −X0X1 =0,

...ee

X2
n −X0Xn =0,

H =0,

(21)

with H := Y Xn
0 −

∑
1≤i≤n 2

i−1Xn−1
0 Xi − T

∏
1≤i≤n(X0 + (Ui − 1)Xi).

Supposing that the polynomials of the equation system (21) are the final results of a
given robust parameterized arithmetic circuit β with basic parameters Y, T, U1, . . . , Un and
inputs X0, . . . ,Xn and applying to β any procedure A of our extended computation model
such that A returns a circuit γ for the resultant of the system (21), we are unable to deduce
from Theorem 17 any lower bound for the size of γ, except we make the architectural
requirement that the procedure A does not apply joins to elementary subroutines that
involve recursion. This drawback is due to the fact that the given resultant procedure
A treats the parameters Y, T, U1, . . . , Un of the circuit β in equal conditions, whereas the
procedure of Theorem 17 distinguishes between T,U1, . . . , Un as basic parameters and Y
as output variable. However, many applications of resultant computations distinguish
between the nature of the parameters occurring in the given homogeneous input system
and in these cases Theorem 17 may be applied. Mutatis mutandis the same conclusion is
true for all known standard procedures for resultant computation.

This point of view is also supported by experience in effective elimination theory.
Classically the (implicit) distinction between basic parameters and input variables appears
already in [Kro87]. The parameters become treated as elements of a ring R which contain
the coefficients of the input polynomials. The input variables are treated symbolically.
The classic elimination procedures are based on linear algebra in R. The correctness
proofs of these procedures use specializations, i.e. C–algebra homomorphisms R → C.
This is exactly the way we did proceed before in the discussion of the particular instances
of the flat families of zero–dimensional elimination problems. The notion of a robust
parameterized arithmetic circuit makes this view sound on the level of implementations.

Suppose now we have to eliminate two blocks of quantifiers. Traditionally, the variables
of the second block are considered as basic parameters of the first one. When we eliminate
the variables of the first block we obtain expressions in these parameters. In order to apply
our algorithmic model to these expressions we have to transform the basic parameters of
the first block into new input variables. In standard elimination procedures this is achieved
by a careful analysis of the computation previously performed with the parameters of
the first block. Our way is alternative. We consider the variables of both blocks as
input variables of the initial system which become eliminated in the first round A(1)

of a procedure A like the one introduced at the end of Section 6.4.2. Then the basic
parameters of the first block, i.e. the variables of the second block, become reintroduced
as output variables in a second round, realized by the subprocedure A(2). This finishes
the elimination of the first block of quantifiers. The elimination of the second block of

104



quantifiers takes then as input the output of A(2) and proceeds as before. What remains
at the end of an iterated quantifier elimination process are only parameters.

6.5.5 Divisions and blow ups

We are now going to analyse the main argument of the proof of Theorem 17 from a
geometric point of view.

We recall first some notations and assumptions we made during this proof.
With respect to the indeterminates X1, . . . ,Xn, we considered the vector θ of coeffi-

cients of the expression

H =
∑

1≤i≤n

2i−1Xi + T
∏

1≤i≤n

(1 + (Ui − 1)Xi)

as a polynomial map A
n+1 → A

2n with image T . Recall that T is an irreducible con-
structible subset of A2n .

Further, with respect to the indeterminate Y , we considered the vector ϕ of nontrivial
coefficients of the monic polynomial

F =
∏

1≤j≤2n−1

(Y − (j + T
∏

1≤i≤n

U
[j]i
i ))

also as a polynomial map A
n+1 → A

2n .
One sees immediately that there exists a unique polynomial map η : T → A

2n such
that ϕ = η ◦ θ holds. Using particular properties of θ and ϕ we showed implicitly in the
proof of Theorem 17 that η satisfies the following condition:

Let m be a natural number, ζ : T → A
m a geometrically robust constructible

and π : Am → A
2n a polynomial map such that η = π(ζ) = π ◦ ζ holds. Then

we have the following estimate:

m ≥ 2n.

This means that the following computational task cannot be solved efficiently:

Allowing certain restricted divisions reduce the datum θ consisting of 2n entries to a
datum ζ consisting of only m ≤ 2n entries such that the vector η may be recovered from
ζ without using any division, i.e. by an ordinary division–free arithmetic circuit over C.

Here the divisions become restricted to those which lead to quotients which are still
geometrically robust functions defined on T .

In order to simplify the following discussion we shall assume without loss of generality
that all our constructible maps may be robustly extended to T .

Let f and g be two elements of the coordinate ring C[T ] of the affine variety T and
suppose that g 6= 0 holds and that the element f

g
of the rational function field C(T ) may

be extended to a robust constructible function defined on T , which we denote also by f
g
,

since this extension is unique.
Then we have two cases: the coordinate function g divides f in C[T ] or not. In the

first case we may compute f
g
, by means of an ordinary division–free arithmetic circuit over

105



C, from the restrictions to T of the canonical projections A
2n → A

1. Thus f
g
belongs to

the coordinate ring C[T ]. In the second case this is not possible and C[T ][f
g
] is a proper

extension of C[T ] in C(T ). In both cases C[T ][f
g
] is the coordinate ring of an affine chart

of the blow up of C[T ] at the ideal generated by f and g. We refer to this situation as a
division blow up which we call essential if f

g
does not belong to C[T ].

Therefore we have shown in the proof of Theorem 17 that essential division blow ups
do not help to solve efficiently the reduction task formulated before.

These comments lead us to the consideration of the following situation.

Example 21 Let L be a natural number, let nL :=

(
2L+n
n

)
and let WL,n be the set

of coefficient vectors of all polynomials of C[X1, . . . ,Xn] which can be evaluated by an
ordinary division–free arithmetic circuit of non–scalar size at most L. Let WL,n be the
Zariski closure of WL,n in A

nL. The polynomials whose coefficient vectors belong to
WL,n have degree at most 2L and therefore we may interpret them also as elements of
C[X1, . . . ,Xn]2L :=

{
f ∈ C[X1, . . . ,Xn]; deg f ≤ 2L

}
(observe that C[X1, . . . ,Xn]2L and

A
nL are isomorphic as C–vector spaces).
Following [CGH+03], Corollary 2 we may chose K := L(L + n + 1)2 + 2, points

α1, . . . , αK ∈ Z
n of bit length at most 4(L + 1) such that the polynomial map Ξ :

WL,n → A
K , defined for f ∈ WL,n by Ξ := (f(α1), . . . , f(αK)), becomes injective. Let

DL,n := Ξ(WL,n). It turns out that DL,n is an irreducible, closed affine subvariety of
A
K and that the by Ξ induced morphism between irreducible affine varieties, denoted

by ΞL,n : WL,n → DL,n is finite, birrational and bijective (but definitely not an isomor-
phism of varieties). The inverse map of ΞL,n induces therefore a geometrically robust
constructible map ΦL,n : DL,n → C[X1, . . . ,Xn]2L which to any point y = (y1, . . . , yK) of
DL,n assigns the (unique) polynomial f ∈ WL,n with f(α1) = y1, . . . , f(αK) = yK . Thus
ΦL,n determines a geometrically robust Hermite–Lagrange interpolation problem in the
sense of Section 4.

A geometrically robust solution of this interpolation problem is now given by a geo-
metrically robust constructible map Ψ : DL,n → A

M (with irreducible, constructible image
D∗) and a polynomial map ω : D∗ → C[X1, . . . ,Xn]2L such that ΦL,n = ω ◦ Ψ holds (see
Section 4.3)

From [GHMS11], Theorem 23 we deduce now M ≥

(
2⌊

L
2
−1⌋−1+n
n

)
= 2Ω(Ln). This

means that one has to perform at least 2Ω(Ln) divisions for the geometrically robust eval-
uation of Ψ. With other words, any decomposition of the rational map ΦL,n in (essential)
division blow ups and a polynomial map requires at least 2Ω(Ln) blow ups.

Following [Har92], Theorem 7.2.1 any rational map may be decomposed into a finite
sequence of successive blow ups followed by a regular morphism of algebraic varieties. Our
method indicates the interest to find lower bounds for the number of blow ups (and their
embedding dimensions) necessary for an effective variant of this result.

Problem adapted methods for proving lower bounds for the number of blow ups nec-
essary to resolve singularities would also give indications which order of complexity can
be expected for efficient desingularization algorithms (see [EV00]). At this moment only
upper bound estimations are known [Bla09].

106



6.5.6 Comments on complexity models for geometric elimination

The question, whether P 6= NP or PC 6= NPC holds in the classical or the BSS Turing
Machine setting, concerns only computational decision problems. These, on their turn, are
closely related to the task to construct efficiently, for a given prenex existential formula,
an equivalent, quantifier free one (compare [BSS89], [HM93], [SS95] and [BCSS98]). In the
sequel we shall refer to this and to similar, geometrically motivated computational tasks
as “effective elimination”.

Theorem 17 in Section 6.5.1 does not establish a fact concerning decision problems
like the PC 6= NPC question. It deals with the evaluation of a function which assigns
to suitable prenex existential formulas over C canonical, equivalent and quantifier–free
formulas of the same elementary language.

Theorem 17 says that in our computation model this function cannot be evaluated
efficiently. If we admit also non–canonical quantifier–free formulas as function values
(i.e. as outputs of our algorithms), then this conclusion remains true, provided that the
calculation of parameterized greatest common divisors is feasible and efficient in our model
(see [CGH+03], Section 5).

It is not clear what this implies for the PC 6= NPC question.
Intuitively speaking, our exponential lower complexity bound for effective geometric

elimination is only meaningful and true for computer programs designed in a professional
way by software engineers. Hacker programs are excluded from our considerations.

This constitutes an enormous difference between our approach and that of Turing
machine based complexity models, which always include the hacker aspect. Therefore the
proof of a striking lower bound for effective elimination seems unfeasible in these models.
Experience confirms this conclusion.

Our argumentation is based on the requirement of output parametricity which on its
turn is the consequence of two other requirements, a functional and a non–functional
one, that we may employ alternatively. More explicitly, we require that algorithms (and
their specifications) are described by sound asserted programs or, alternatively, that they
behave well under reductions (see Sections 6.4.1 and 6.4.2).

Let us observe that the complexity statement of Theorem 17 refers to the relationship
input–output and not to a particular property of the output alone. In particular, Theorem
17 does not imply that certain polynomials, discussed below, like the permanent or the
Pochhammer polynomials, are hard to evaluate.

Let notations and assumptions be as in Section 6.5.1. There we considered for arbitrary
n ∈ N the flat family of zero dimensional elimination problems

G
(n)
1 = 0, . . . , G(n)

n = 0,H(n)

given by

G
(n)
1 := X2

1 −X1, . . . , G
(n)
n := X2

n −Xn

and
H(n) :=

∑

1≤i≤n

2i−1Xie+ eT
∏

1≤i≤n

(1 + (Ui − 1)Xi)

Let Xn+1, . . . ,X3n−1 be new indeterminates and let us consider the following polynomials

G
(n)
n+1 := Xn+1 − 2X2 −X1, . . . , G

(n)
j := Xj −Xj−1 − 2j−nXj−n+1, en+ 2 ≤ j ≤ 2n− 1,

107



G
(n)
2n := X2n − U1X1 +X1 − 1,

G
(n)
k := Xk − Uk−2n+1Xk−1Xk−2n+1 +Xk−1Xk−2n+1 −Xk−1, e2n+ 1 ≤ k ≤ 3n− 1

and
L(n) := X2n−1 + TX3n−1.

One verifies easily that G
(n)
1 = 0, . . . , G

(n)
3n−1 = 0, L(n) is another flat family of zero dimen-

sional elimination problems and that both families have the same associated elimination
polynomial, namely

F (n) :=
∏

(Y − (j + T
∏

1≤i≤n

U
[ρ]i
i ))

Suppose now that there is given an essential division–free procedure A of our extended
computation model which solves algorithmically the general instance of any given flat
family of zero–dimensional elimination problems.

Let βn and β∗n be two essentially division–free, robust parameterized arithmetic cir-
cuits which implement the first and the second flat family of zero dimensional elimination
problems we are considering.

Then βn and β∗n are necessarily distinct circuits. Therefore Afinal(βn) and Afinal(β
∗
n)

represent two (not necessarily distinct) implementations of the elimination polynomial
F (u) by essentially division–free, robust parameterized arithmetic circuits.

From Theorem 17 and its proof we are only able to deduce that the circuit Afinal(βn)
has non–scalar size at least Ω(2n) but nothing about the non–scalar size of Afinal(β

∗
n).

In the past, many attempts to show the non–polynomial character of the elimination
of just one existential quantifier block in the arithmetic circuit based elementary language
over C, employed the reduction to the proof that a certain sequence of specific polynomials
was hard to evaluate (this approach was introduced in [HM93] and became adapted to the
BSS model in [SS95]).

The Pochhammer polynomials and the generic permanents discussed below form such
sequences.

We are now going to analyse the relationship of Theorem 17 and its proof with se-
quences of polynomials which presumably are not evaluable in polynomial time.

The following flat family of zero dimensional elimination polynomials is inspired for
n ∈ N in the corresponding real knapsack problem (see [BCS97], Chapter 3.4):

G
(n)
1 = 0, . . . , G(n)

n = 0,K(n)

with G
(n)
1 := X2

1 − X1, . . . , G
(n)
n := X2

n − Xn and K(n) := U1X1 + · · · + UnXn. The
associated elimination polynomial P (n) is

P (n) :=
∏

(ǫ1,...,ǫn)∈{0,1}
n

(Y − (ǫ1U1 + · · ·+ ǫnUn)).

One sees easily that G
(n)
1 , . . . , G

(n)
n and K(n) may be evaluated by a division–free ordinary

arithmetic circuit β′n of non–scalar size O(n). Let us fix for the moment n ∈ N.
We consider again the essentially division–free procedureA introduced before. Observe

first that any recursive subroutine of A satisfies on input β′n the requirement (B) of Section

108



6.4.1 at any node. Therefore the requirement (B) becomes redundant on input β′n. In
particular, the output isoparametricity of A on input β′n becomes guaranteed and has not
to be required.

Moreover, the intermediate results of A(β′n) are all polynomials over C. On the other
hand, there exists for any sequence δ := (δn)n∈N of ordinary division–free circuits δn,
n ∈ N, with inputs U1, . . . , Un, Y and with a single final result, namely P (n), such that all
intermediate results of δn are polynomials over C, an essentially division–free procedure
A(δ) of our computation model satisfying the following conditions:

- A(δ) solves algorithmically the general instance of any given flat family of zero–
dimensional elimination problems,

- for any n ∈ N the robust, parameterized arithmetic circuitA
(δ)
final(β

′
n) can be reduced

to the circuit δn.

Theorem 17 implies now that a possible polynomial upper bound for the non–scalar com-
plexity of the polynomials P (n), n ∈ N, cannot be the consequence of a general upper
bound for the size of the output circuits of elimination procedures of our computational
model like the procedure A we are considering.

With other words, possible non–polynomial lower or polynomial upper bounds for the
complexity of the sequence (P (n))n∈N require ad hoc proofs. They are not consequence of
a general result about the complexity of effective elimination.

Let us finish this section with a word about hacking and interactive (zero–knowledge)
proofs.

Hackers work in an ad hoc manner and quality attributes are irrelevant for them.
We may simulate a hacker and his environment by an interactive proof system where the
prover, identified with the hacker, communicates with the verifier. Thus, in our view, a
hacker disposes over unlimited computational power, but his behaviour is deterministic.
Only his communication with the verifier underlies some quantitative restrictions: com-
munication channels are tight. Hacker and verifier become linked by a protocol of the
following (zero–knowledge) type.

Inputs are natural numbers in unary representation. Each natural number represents
a mathematical object belonging to a previously fixed abstract data type of polynomials.
For example n ∈ N may represent the 2n–th Pochhammer polynomial

T 2n :=
∏

0≤j<2n

(T − j)

or the n–th generic permanent

Permn :=
∑

τ∈Sym(n)

X1τ(1), . . . ,Xnτ(n),

where T and X11, . . . ,Xnn are new indeterminates and Sym(n) denotes the symmetric
group operating on n elements.

On input n ∈ N the hacker sends to the verifier a division–free labelled DAG Γn (i.e. a
division–free ordinary arithmetic circuit over Z) of size nO(1) and claims that Γn evaluates
the polynomial represented by n.

109



The task of the verifier is now to check this claim in uniform, bounded probabilistic
or non–uniform polynomial time, namely in time nO(1).

In the case of the Pochhammer polynomial and the permanent such a protocol exists
for the non–uniform complexity model. This can be formulated as follows.

Proposition 22 The languages

LPoch := {(n, (Γj)0≤j≤n); eΓj is for 0 ≤ j ≤ n

eea division–free labelled DAG evaluating T 2j , n ∈ N}

and
LPerm := {(n,Γ); eΓ is a labelled DAG evaluating Permn, n ∈ N}

belong to the complexity class BPP and hence to P/poly (here n ∈ N is given in unary
representation).

Proof. We show only that LPoch belongs to the complexity class P/poly. The proof
that LPoch belongs to BPP follows the same kind of argumentation and will be omitted
here. The case of the language LPerm can be treated analogously and we shall not do it
here (compare [KI04], Section 3).

Let n ∈ N and let Γ be a division–free labelled DAG with input T and a single
output node. Let Γ′ be the division–free labelled DAG which is given by the following
construction:

- choose a labelled acyclic graph µn of size n+O(1) with input T and with T − 22
n−1

as single final result

- take the union Γ of the circuits Γ and Γ ∗µn and connect the two output nodes of Γ
by a multiplication node which becomes then the single output node of the resulting
circuit Γ′.

From the polynomial identity T 2n = T 2n−1
(T )e ·eT 2n−1

(T −22
n−1

) one deduces easily that

Γ′ computes the polynomial T 2n if and only if Γ computes the polynomial T 2n−1
.

For 0 ≤ j ≤ n let Γj be a division–free labelled DAG with input T and a single output
node.

Suppose that in the previous construction the circuit Γ is realized by the labelled
directed acyclic graph Γn−1. Then one sees easily that (n, (Γj)0≤j≤n) belongs to LPoch if
and only if the following conditions are satisfied:

(i) the circuit Γ0 computes the polynomial T ,

(ii) the circuits Γ′ and Γn compute the same polynomial,

(iii) (n− 1, (Γj)0≤j≤n−1) belongs to LPoch.

Therefore, if condition (ii) can be checked in non–uniform polynomial time, the claimed
statement follows.

For 0 ≤ j ≤ n let Lj and L be the sizes of the labelled directed acyclic graphs Γj and
Γ′ and observe that L = 2Ln−1 + n+O(1) holds.

Let Pn−1 and P be the final results of the circuits Γn−1 and Γ′. From [CGH+03],
Corollary 2 we deduce that there exist m := 4(L + 2)2 + 2 integers γ1, . . . , γm ∈ Z of bit
length at most 2(L+ 1) such that the condition (ii) above is satisfied if and only

110



(iv) Pn−1(γ1) = P (γ1), . . . , Pn−1(γm) = P (γm)

holds.
From [HM] we infer that condition (iv) can be checked by a nondeterministic Turing

machine with advise in (non–uniform) time O(L3) = O((Ln−1 + n)3).
Applying this argument recursively, we conclude that membership of (n, (Γj)0≤j≤n) to

LPoch may be decided in non–uniform time O(
∑

0≤j≤n(Lj + j)3) and therefore in poly-
nomial time in the input size. Hence the language LPoch belongs to the complexity class
P/poly. The proof of the stronger result, namely LPoch ∈ BPP, is similar.

e
Finally we observe that for n ∈ N the Pochhammer polynomial T 2n is the associated
elimination polynomial of the particular problem instance, given by T := 0, of the flat

family of zero–dimensional elimination problems G
(n)
1 = 0, . . . , G

(n)
n = 0,H(n), which we

considered at the beginning of this section.
From the point of view of effective elimination, the sequence of Pochhammer polyno-

mials becomes discussed in [HM93] (see also [SS95]). From the point of view of factoring
integers, Pochhammer polynomials are treated in [Lip94].

Let us mention that our approach to effective elimination, which led to Theorem 17
and preliminary forms of it, was introduced in [HMPW98] and extended in [GH01] and
[CGH+03].

The final outcome of our considerations in Sections 6.5.1 and 6.5.6 is the following: nei-
ther mathematicians nor software engineers, nor a combination of them will ever produce
a practically satisfactory, generalistic software for elimination tasks in Algebraic Geome-
try. This is a job for hackers which may find for particular elimination problems specific
efficient solutions.

111



7 Conclusions

7.1 Concluding remarks

This thesis can be seen as a contribution to the better understanding of quality attribute
trade–offs in quantifier elimination in elementary Algebraic Geometry. We have analysed
two properties namely coalescence and branching parsimoniousness which were introduced
under the aspect of quality attributes. This properties were introduced by means of a
software architecture which was reached through an strict distinction between the problem
and the algorithm which solves it.

The mathematical notions and geometric tools which support our software architecture
come from the previous works [CGH+03] and [GHMS11]. This leads us to the formula-
tion of a terminology dictionary which translates the terminology of these works to our
terminology of software engineering represented by [Mey00]. This dictionary constitutes
an interpretation in the language of software architecture of the works [CGH+03] and
[GHMS11].

7.2 An ontological view of our investigation

The Greek philosopher Plato could be considered a software engineer from the perspec-
tive of software architecture. For example, the process of software construction can be
compared to the dialectical ascent described in the Allegory of the Cave in Plato’s The
Republic, Book VII.

In the Allegory of the Cave, according to [Her09], Plato describes fictitious prisoners
who have lived their entire lives in the depths of a cave. The prisoners are chained so they
can look only forward. Behind them there is a road over which individuals pass, carrying
a variety of objects. Behind the road a fire is blazing, causing a projection of shadows of
the travelers and the objects onto the wall in front of the prisoners. For the prisoners, the
projected shadows constitute reality. Plato then describes what might happen if one of
the prisoners were to leave the cave. Turning toward the fire would cause damage to his
eyes. Otherwise the prisoner would adjust to the flames and finally see the objects. Only
after a period of adjustment could he see things in this world and recognize that they were
more real than the shadows that he had experienced until now in the cave.

The software engineering activity looks for solutions of computational problems and
finds them by means of a process which reminds the dialectical ascent. We may think that
the shadows are specifications, that the period of adjustment is a software design process
and finally that the objects are implementations aimed to capture the entire computational
problem.

This description brings us to the philosophical kernel of our investigation. When we
ask a mathematician what he thinks about combining software engineering terminology
and mathematical thought, the answer could be that there is already enough trouble with
mathematics alone. However, mathematics becomes easy when the things we are doing are
well motivated. The problem is on another level, since the task is to ensure that our model
captures the real world which we wish to reflect by the software engineering approach.

According to [BM75] computational complexity analysis requires a computation model.
It is common sense that a model which captures accurately the reality is in better condi-

112



tions to predict and to draw conclusions. We think that we come closer to the reality when
we introduce into our computation model quality attributes and software architectures.

This argumentation is presented here under “conclusions”. But in fact this was the
very staring point of this thesis. Platonian philosophy has guided this study during all the
time. Of course this is not the first time that Plato’s viewpoint influenced developments
in Software Engineering. “Ontologies” are another example for that (see e.g. [Gru93]).

However, we do not say that we have to study all Plato’s works, there are specific
issues to treat previously, for example, software reuse and libraries which are standard
ingredients of the life of a programmer. Classes are elements of reuse and the theory
presented in the present thesis captures the notion of a class. In this sense, we shall treat
in future work reuse and combination with optimal libraries.

113



A Appendix : Geometrical complement

A.1 The geometrically robust closure of an irreducible affine
variety

In this section we restrict our attention to affine varieties over C. However, our main
results are still valid for arbitrary algebraically closed fields.

Let V be an affine variety with coordinate ring C[V ] and total quotient ring of rational
functions C(V ).

Then the set A := {ϕ : V → A
1e; eϕ geometrically robust and constructible} forms a

C–subalgebra of C(V ). Moreover A contains C[V ] and is by Definition 6 in Section 2.3.2
a finite C[V ]–submodule of C(V ).

Therefore A is a commutative ring which is finitely generated over C. Hence there
exists an irreducible affine variety W and a finite surjective morphism W → V such that
A is isomorphic to the coordinate ring C[W ] of W .

We call W → V a geometrically robust closure of V . For two geometrically robust
closures W → V and W ′ → V there exists a unique isomorphism of affine varieties
W → W ′ such that the diagram

W W ′

V
?

e

-
e

�
�

�
�	

e

commutes. In the following we fix a geometrically robust closure µ :W → V of V .
If µ is an isomorphism we say that V is closed with respect to geometrical robustness.

This means that any geometrically robust constructible function V → A
1 belongs already

to C[V ]. Observe that normal varieties are always closed with respect to geometrical
robustness.

Lemma 23 Let notations and assumptions be as above. Then W and µ satisfy the fol-
lowing conditions.

(i) µ is a finite, bijective (and hence birational) morphism of affine varieties.

(ii) µ is a homeomorphism with respect to the Zariski and strong topologies of W and
V .

(iii) W is closed with respect to geometrical robustness.

Proof.
Without loss of generality we may assume that C[W ] is contained in C(V ). We show

first statement (i).

114



Since C[W ] is a finite C[V ]–module, the morphism µ : W → V is finite and surjective.
We prove that µ is also injective. Let w and w′ be points of W with

v := µ(w) = µ(w′).

Suppose w 6= w′. Then there exists an element ϕ of C[W ], namely a geometrically robust
constructible function V → A

1, with ϕ(w) = 0 and ϕ(w′) 6= 0.
Let Mv be the vanishing ideal of C[V ] at the point v. Then C[V ]Mv is the local ring

of V at v. Since ϕ is constructible there exist by Lemma 1 in Section 2.1.3 a Zariski open
and dense subset U of V such that ϕ|U is rational. We may therefore interpret ϕ as a
rational map on U . According to condition (ii) of Definition 6 in Section 2.3.2 the C–
algebra C[V ]Mv [ϕ] is local and its maximal ideal is generated by Mv and ϕ−ϕ(v). On the
other hand C[V ]Mv [ϕ] is contained in AMv = C[W ]Mv and C[W ]Mv is finite module over
C[V ]Mv and hence also over C[V ]Mv [ϕ]. This implies that the maximal ideal of C[V ]Mv [ϕ]
generates in C[W ]Mv a proper ideal which is contained in any maximal ideal of C[W ]Mv

and in particular in the extensions to C[W ]Mv of the vanishing ideals of C[W ] at the points
w and w′.

This implies ϕ(v) = ϕ(w) = ϕ(w′), in contradiction to ϕ(w) = 0 and ϕ(w′) 6= 0.
Therefore we have w′ = w. This means that µ is injective and hence bijective.
We are now going to show statement (ii). Since µ : W → V is a finite, bijective mor-

phism of affine varieties, it is continuous and closed with respect to the Zariski topologies
of W and V . Therefore µ is a homeomorphism with respect to the Zariski topologies of
W and V .

Let us now consider the strong topologies of W and V . Let D be a closed subset of
W and let v be a point of the closure of µ(D) in V .

Then there exists a sequence (wk)k∈N of points of D such that (µ(wk))k∈N converges
to v. Since the morphism µ is finite and (µ(wk))k∈N is bounded, we conclude that (wk)k∈N
is also bounded. Therefore, we may suppose without loss of generality that (wk)k∈N
converges to a point w of W . Taking into account that all entries of the sequence (wk)k∈N
belong to D and D is closed, we conclude w ∈ D.

As a morphism of affine varieties µ is continuous with respect to the strong topologies
of W and V . This implies v = µ(w) and therefore v belongs to µ(D). Hence we conclude
that µ is closed with respect to the strong topologies of W and V and consequently a
homeomorphism.

Finally we show statement (iii). Let ϕ :W → A1 be an arbitrary geometrically robust
constructible function of W . Interpreted as an element of C(V ), the map ϕ becomes
easily boiled down to a geometrically robust constructible function V → A1. This implies
ϕ ∈ C[W ] and therefore W is closed with respect to geometrical robustness.

e
We consider now V as a topological space equipped with its Zariski topology.

For a non-empty Zariski open subset U of V let

ΓV (U) := {ϕ : U → A
1e; eϕ is geometrically robust and constructible}.

From Proposition 8 and Theorem 9 of Section 2.3.2 we deduce immediately that the map
ΓV , which associates to every non–empty Zarisky open subset U of V the C–algebra ΓV (U),
is a sheaf. Moreover ΓV (V ) is isomorphic to C[W ].

115



Lemma 24 Let f ∈ C[V ] and f 6= 0. Then ΓV (Vf ) is canonically isomorphic to C[W ]f

Proof. Observe that Vf is a non-empty Zariski open subset of V and that any element
of C[W ] may be identified with a geometrically robust constructible function V → A

1.
From Proposition 8 of Section 2.3.2 we deduce that the restriction of such a function to Vf
belongs to ΓV (Vf ). In this way we obtain a C-algebra homomorphisms C[W ] → ΓV (Vf )
which can be extended to C[W ]f → ΓV (Vf ). Suppose for the moment that f is not a
zero–divisor of C[V ]. Under this assumption we show first that these homomorphisms
are injective. It suffices to prove the injectivity of C[W ] → ΓV (Vf ). Let be given a
geometrically robust constructible function ϕ : V → A

1 with ϕ|Vf = 0. By Lemma 1 in
Section 2.1.3 there exists a non–empty Zariski open and dense subset U of V such that ϕ|U
is a rational function which is regular on U . Since by assumption f is not a zero–divisor
of C[V ], the Zariski open set Vf is also dense in V . Interpreting ϕ as an element of C(V )
we deduce from U ∩ Vf 6= ∅ and ϕ|U∩Vf = 0 that ϕ = 0 holds. We have to show that ϕ
is identically zero as map ϕ : W → C. For this purpose let w ∈W be an arbitrary point.
Since by Lemma 23 (ii) the map µ : W → V is a homeomorphism with respect to the
strong topologies of W and V , the set µ−1(U) is dense in W . Therefore there exists a
sequence (vk)k∈N, vk ∈ U such that (µ−1(vk))k∈N converges to w.

For any k ∈ N we have ϕ(µ−1(vk)) = ϕ(vk) = 0 and therefore, by the strong continuity
of µ−1 and ϕ, also ϕ(w) = 0.

This implies that the C-algebra homomorphism C[W ] → ΓV (Vf ) is injective.
Under the assumption that f is not a zero–divisor of C[V ] we are now going to show

that C[W ]f → ΓV (Vf ) is surjective. Let ϕ : Vf → A
1 be a geometrically robust con-

structible function. Interpreting ϕ as an element of C(V ) we deduce from Definition 6 in
Section 2.3.2 that ϕ satisfies in C(Vf ) an integral dependence equation over C[V ]f . There-
fore there exists a nonnegative integer r such that f rϕ satisfies in C(V ) also an integral
dependence equation over C[V ].

We consider now the function ψ : V → A
1 defined for v ∈ V by ψ(v) := (f rϕ)(v)

in case f(v) 6= 0 and by ψ(v) := 0 in case f(v) = 0. We are going to show that ψ is a
geometrically robust constructible function. Constructibility is clear by the definition of
ψ. Let v be an arbitrary point of V . Since Vf is Zariski open and dense in V and f rϕ
as rational function of V satisfies in C(V ) an integral dependence relation over C[V ], one
sees easily that ψ fulfills condition (i) of Definition 6 at the point v. In the same way
one verifies condition (ii) of Definition 6 for v belonging to Vf . Therefore let us suppose
f(v) = 0. With the previous notations this means f ∈ Mv.

By Lemma 1 in Section 2.1.3 we may interpret ϕ as a rational function of V . Observe
that C[V ]Mv [ϕ] contains C[V ]Mv [ψ] and is a finite module over C[V ]Mv and therefore also
over C[V ]Mv [ψ]. Therefore any maximal ideal of C[V ]Mv [ψ] generates in C[V ]Mv [ϕ] a
proper ideal. From f ∈ Mv we deduce now that any maximal ideal of C[V ]Mv [ϕ] contains
f rϕ. This implies that any maximal ideal of C[V ]Mv [ψ] contains ψ.

Finally we conclude that C[V ]Mv [ψ] is local and that its maximal ideal is generated
by Mv and ψ. Therefore condition (ii) of Definition 6 is satisfied at v, also in the case
f(v) = 0. This implies that ψ is geometrically robust.

The constructible map ψ can be restricted to a rational function of V , which we denote
also by ψ. In this sense we have the identity ψ = f rϕ in C(V ).

The geometrically robust constructible function ψ may be interpreted as an element

116



of C[W ] and ψ
fr

as an element of C[W ]f . One sees now easily that C[W ]f → ΓV (Vf ) maps
ψ
fr

∈ C[W ]f on ϕ ∈ ΓV (Vf ). Thus C[W ]f → ΓV (Vf ) is surjective and hence a C-algebra
isomorphism.

Suppose now that f is a zero–divisor of C[V ] with f 6= 0.
Let V ∗ be the union of the irreducible components of V where f does not vanish

identically, W ∗ := µ−1(V ∗), µ∗ := µ|W ∗ and f∗ := f |V ∗ . One verifies easily that f∗ is not
a zero–divisor of C[V ∗] and that µ∗ :W ∗ → V ∗ is a geometrically robust closure of V ∗.

From our previous argumentation we obtain a canonical isomorphism C[W ∗]f∗ →
ΓV ∗(V ∗

f∗). Taking into account C[W ∗]f∗ ∼= C[W ∗
f∗ ] = C[Wf ] ∼= C[W ]f and ΓV ∗(V ∗

f∗) =
ΓV ∗(Vf ) = ΓV (Vf ) we see that ΓV (Vf ) and C[W ]f are canonically isomorphic.

Theorem 25 Let notations and assumptions be as above. The affine variety W with its
canonical sheaf and (V,ΓV ) are isomorphic as ringed spaces. The isomorphism is induced
by µ : W → V .

Proof.
From Lemma 23 (ii), we deduce that µ : W → V is an homeomorphism with respect

to their Zariski topologies of W and V .
Therefore the sets Wf , f ∈ C[V ], form a basis of the topology of W . The canonical

sheaf of W associates to Wf , f ∈ C[V ] the C-algebra C[W ]f , which following Lemma 24
is isomorphic to ΓV (Vf ), while this isomorphism is induced by µ. Thus we conclude that
for any point w ∈ W the stalks at w and µ(w) of the ringed spaces W and (V,ΓV ) are
isomorphic. This implies that µ induces a sheaf isomorphism between W and (V,ΓV ).

e
Let µ : W → V and µ′ : W ′ → V ′ be two geometrically robust closures of two irreducible
affine varieties and let ϕ : V ′ → V be dominating morphism of affine varieties. One sees
easily that there exists a (unique) morphism of affine varieties ψ :W ′ → W such that the
diagram

W ′

µ′

��

ψ
//W

µ

��
V ′ ϕ

// V

commutes.
In particular, if V ′ is closed with respect to geometrical robustness, there exists a

(unique) morphism of affine varieties ψ : V ′ →W such that the diagram

W

µ

��
V ′

ψ
>>
|
|
|
|
|
|
|
| ϕ

// V

commutes.
e

Suppose finally that there is given an irreducible closed subvariety V ′ of V . Let µ : W → V
and µ′ :W ′ → V ′ be geometrically robust closures of V and V ′.

117



Then Theorem 25 and Proposition 8 in Section 2.3.2 imply that there exists a (unique)
morphism of affine varieties ψ : W ′ →W such that the diagram

W ′

µ′

��

ψ
//W

µ

��
eeeeeV ′ee ⊂ V e

commutes.
The inclusion of V ′ in V induces a surjective C-algebra homomorphism C[V ] → C[V ′].

We may before ask whether ψ : W ′ → W induces also a surjective C-algebra homomor-
phism C[W ] → C[W ′].

That this is not the case can easily be seen by analyzing the following particular
situation.

Example [GHMS11]eLet X1,X2 be indeterminates over C and consider the plane
curve C defined by the equation

X3
1 −X2

2 = 0

Observe that C is an irreducible curve which can be parametrized by the surjective poly-
nomial map ρ : A1 → C defined for t ∈ A

1 by ρ(t) = (t2, t3). Let ξ1, ξ2 be the coordinate
functions of C induced by X1 and X2. Then we have C[C] = C[ξ1, ξ2]. Consider the con-
structible map ϕ : C → A

1 defined for d := (d1, d2) ∈ C, d 6= (0, 0) by ϕ(d) := d2
d1

and for
d := (0, 0) by ϕ(0) := 0.

Then the restriction of ϕ to C − {(0, 0)} (also denoted by ϕ) is rational and in C(C)
we have the identities ϕ = ξ2

ξ1
and ( ξ2

ξ1
)2 − ξ1 = 0. From these identities one infers easily

that ϕ is geometrically robust.
Suppose now that there exists a geometrically robust constructible function ϕ̃ : A2 →

A
1 with ϕ̃|C = ϕ.
Since the affine space A

2 is normal, the map ϕ̃ is polynomial. Therefore there exists a
polynomial F ∈ C[X1,X2] with F (d1, d2) = ϕ̃(d) for any point d := (d1, d2) of A

2. Hence
ϕ̃|C = ϕ implies F (ξ1, ξ2) =

ξ2
ξ1

in C(C) or equivalently ξ1F (ξ1, ξ2) = ξ2 in C[C].

Since the curve C becomes parametrized by ρ : A1 → C we conclude that the identity
t2F (t2, t3) = t3 holds for any t ∈ A

1.
Let T be a new indeterminate. Then we have T 2F (T 2, T 3) = T 3 and therefore

F (T 2, T 3) = T , which is impossible. Thus there exist no geometrically robust constructible
function ϕ̃ : A2 → A

1 with ϕ̃|C = ϕ. Hence for a geometrically robust closure µ : W → C
of C the canonical C-algebra homomorphism C[X1,X2] → C[W ] is not surjective.

Corollary 26 Let notations and assumptions be as in Theorem 25 and let ϕ,ϕ1, . . . , ϕs
be geometrically robust constructible functions of V . Then the following statements are
true.

(i) ϕ 6= 0 implies that Vϕ := {v ∈ V e; eϕ(v) 6= 0} together with the restriction of the
sheaf ΓV to Vϕ is an affine variety.

(ii) If the set {v ∈ V e; eϕ1(v) = · · · = ϕs(v) = 0} is empty, then there exists geo-
metrically robust constructible functions α1, . . . , αs of V which satisfy the condition
1 = α1ϕ1 + · · ·+ αsϕs

118



(iii) If ϕ vanishes at any point v ∈ V with ϕ1(v) = · · · = ϕs(v) = 0, then there exists
a natural number r and geometrically robust constructible functions α1, . . . , αs of V
which satisfy the condition ϕr = α1ϕ1 + · · ·+ αsϕs

119



B Appendix : Correctness proofs

B.1 Correctness of Lagrange interpolation algorithms

B.1.1 Lagrange Form

Let K be a given natural number. Following Section 4.5.1 let (O, eΦ) be the univariate
Lagrange interpolation problem at fixed nodes α1, . . . , αK with αi 6= αj for 1 ≤ i < j ≤
K, such that for a given interpolation datum d := ((α1, y1), . . . , (αn, yn)) of A

2K the
corresponding interpolant is the polynomial Φ(d) defined by the Lagrange Form

Φ(d) := y1L1(X) + · · ·+ yKLK(X)

with

Li(X) :=
K∏

k:=1

k 6=i

X − αk
αi − αk

, e1 ≤ i ≤ K. (22)

Observe that for 1 ≤ i, k ≤ K the value Li(αk) satisfies the following condition:

Li(αk) =

{
1 if i = k
0 otherwise.

(23)

Furthermore let Ψ be the routine defined for any interpolation datum
d := ((α1, y1), . . . , (αK , yK)) with y := (y1, . . . , yK) by

Ψ(d) := y.

Let ω∗ be the abstraction function defined for y := (y1, . . . , yK) ∈ A
K by

ω∗(y) :=

K∑

i:=1

yiLi(X).

Proposition 27 Let assumptions and notations be as before. Then we have for any inter-
polation datum d := ((α1, y1), . . . , (αK , yK)) ∈ A

2K that ω∗(Ψ(d)) = Φ(d) holds. In other
words, the polynomial ω∗(Ψ(d)) satisfies for any 1 ≤ i ≤ K the interpolation condition

ω∗(Ψ(d))(αi) = yi. (24)

Proof. The identity (24) is an immediate consequence of (23).

B.1.2 Monomial Form

Let K be a given natural number. Following Section 4.5.1 let (O, eΦ) be the univariate
Lagrange interpolation problem at fixed nodes α1, . . . , αK such that for a given interpolation
datum d := ((α1, y1), . . . , (αK , yK)) the corresponding interpolant Φ(d) is the (unique)
polynomial with Monomial Form,

Φ(d) := a0 + a1X + · · ·+ aK−1X
K−1

120



which satisfies for any 1 ≤ i ≤ K the interpolation condition.

Φ(d)(αi) = yi.

Let Ψ be the routine defined for d := ((α1, y1), . . . , (αK , yK)) with y := (y1, . . . , yK) by

Ψ(d) := V −1
α yt,

where Vα is the Vandermonde matrix

Vα :=

∣∣∣∣∣∣∣

1 α1 . . . αK−1
1

...
...

. . .
...

1 αK . . . αK−1
K

∣∣∣∣∣∣∣
.

Finally let ω∗ be the abstraction function defined for (a0, . . . , aK−1) ∈ A
K by

ω∗((a0, . . . , aK−1)) :=

K−1∑

i:=0

aiX
i.

Proposition 28 Let assumptions and notations be as before. Then we have for any inter-
polation datum d := ((α1, y1), . . . , (αK , yK)) ∈ A2K that ω∗(Ψ(d)) = Φ(d) holds. In other
words, the polynomial ω∗(Ψ(d)) satisfies for any 1 ≤ i ≤ K the interpolation condition

ω∗(Ψ(d))(αi) = yi. (25)

Proof. In order to prove that the interpolant ω∗(Ψ(d)) satisfies the interpolation
condition (25), we are going to show that the following inhomogeneous linear equation
system in the unknowns a0, . . . , aK−1 has a unique solution.

a0 + a1α1 + · · ·+ aK−1α
K−1
0 = y1

...

a0 + a1αK + · · ·+ aK−1α
K−1
K = yK

Putting a := (a0, . . . , aK−1) and y := (y1, . . . , yK) we may rewrite this equation system in
the following matricial form:

Vαa
t := yt (26)

(here at and yt denote the transpositions of a and y).
We prove that for any given y ∈ A

K the system (26) has unique solution a ∈ A
K by

showing that det(Vα) 6= 0 holds. Lemma 29 below implies:

det(Vα) :=
∏

1≤i<j≤K(αj − αi).

Since αi 6= αj holds for any 1 ≤ i < j ≤ K, we conclude det(Vα) 6= 0.

121



Lemma 29

det(Vα) = det



1 α1 . . . αK−1

1
...

...
. . .

...

1 αK . . . αK−1
K


 =

∏

1≤i<j≤K

(αj − αi) (27)

Proof. Operating in the matrix Vα with column number K − 1 on column number
K, then with column number K − 2 on column number K − 1, etc. we obtain finally the
identity

det




1 0 . . . 0

1 α2 − α1 . . . αK−1
2 − α1α

K−2
2

...
...

. . .
...

1 αn − α1 . . . αK−1
K − α1α

K−2
K


 :=

∏K
i:=2(αi − α1) det



1 α2 . . . αK−2

2
...

. . .
...

1 αK . . . αK−2
K


 .

Lemma 29 follows from this identity iductively.

B.1.3 Newton Form

Let (O, eΦ) be the univariate Lagrange interpolation problem at fixed nodes α1, . . . , αK
such that for a given interpolation datum d := ((α1, y1), . . . , (αK , yK)) the corresponding
interpolant Φ(d) the unique polynomial in Newton Form,

Φ(d) = a0 + a1(X − α1) + · · · + aK(X − α1)...(X − αK)

which satisfies for 1 ≤ i ≤ K the interpolation condition Φ(d)(αi) = yi. Let Ψ be the
routine defined for d := ((α1, y1), . . . , (αK , yK)) by

Ψ(d) := (f [α1], . . . , f [α1, . . . , αK ])

where for 1 ≤ i ≤ K and 1 ≤ k ≤ K−i the function f is defined by the following recursion
formulas, called divided differences:

f [αi] := yi

f [αi, . . . , αi+k] :=
f [αi+1, . . . , αi+k]− f [αi, . . . , αi+k−1]

αi+k − αi
.

(28)

Let ω∗ be the Abstraction Function which for (a0, . . . , aK−1) ∈ A
K is defined as follows:

ω∗((a0, . . . , aK−1)) :=

K−1∑

i:=0

ai

i−1∏

j:=1

(X − αj)

Proposition 30 Let assumptions and notations be as before. Then we have for any inter-
polation datum d := ((α1, y1), . . . , (αK , yK)) that ω∗(Ψ(d)) = Φ(d) holds. In other words,
the polynomial ω∗(Ψ(d)) satisfies for any 1 ≤ i ≤ K the interpolation condition

ω∗(Ψ(d))(αi) = yi. (29)

122



Proof. Let (a0, . . . , aK−1) be a point of AK and consider the polynomial

p(X) := a0 + a1(X − α1) + · · · + aK−1(X − α1)...(X − αK−1)

Let y1 := p(α1), . . . , yK := p(αK). Then we obtain the following matricial identity:



1 0 0 . . . 0

1 (α2 − α1) 0
...

1 (α3 − α1) (α3 − α1)(α3 − α2)
...

. . .

1 (αK − α1) (αK − α1)(αK − α2) . . .
∏

1≤i≤K−1(αK − αi)




︸ ︷︷ ︸
A:=




a0
a1
a2
...

aK−1




︸ ︷︷ ︸
a:=

:=




y1
y2
y3
...
yK




︸ ︷︷ ︸
y:=

(30)
Note that A is a triangular matrix. Since αi 6= αj holds for 1 ≤ i < j ≤ K, we

conclude detA 6= 0. Therefore (30), interpreted as an inhomogeneus linear equation
system in the unknowns a0, . . . , aK−1, has a unique solution. Let be given such a solution
(a0, . . . , aK−1) ∈ A

K .

Claim 31 For any 0 ≤ i ≤ K − 1 we have ai = f [α1, . . . , αi+1].

In order to prove this claim we consider for 1 ≤ j ≤ K the polynomial Pj(X) which is
recursively defined as follows:

e P1(X) := f [α1]

e Pj(X) := Pj−1(X) + f [α1, . . . , αj ](X − α1) . . . (X − αj−1), 1 ≤ j ≤ K.

This proves Proposition 30 . e

Proof of Claim 31. We proceed by induction in 0 ≤ i ≤ K − 1, assuming Lemma
32 and 33 below.

The case i := 0 is easy and follows from a0 = y1 = f [α1].
Let 0 < i ≤ K − 1 and assume that the claim is true for i− 1. Then we deduce from

the i+1–th row of (30), the induction hypothesis, the definition of Pi(X) and Lemma 32
and 33 the following identities:

ai =
yi+1 − (a0 + ...+ ai−1(αi+1 − α1)...(αi+1 − αi−1))

(αi+1 − α1)...(αi+1 − αi)
=

yi+1 − (f [α1] + ...+ f [α1, . . . , αi](αi+1 − α1)...(αi+1 − αi−1))

(αi+1 − α1)...(αi+1 − αi)
=

yi+1 − Pi(αi+1)

(αi+1 − α1)...(αi+1 − αi)
= f [αi, . . . , α1, αi+1] = f [α1, . . . , αi+1].

This proves the claim.

Lemma 32 Let notations and assumptions be as before. Then we have for 1 ≤ k < j ≤ K
the identity

yj − Pj−k(αj)

(αj − α1)...(αj − αj−k)
= f(αj−k, . . . , α1, αj)

123



Proof. Let 1 < j ≤ K be fixed. We proceed by induction in 1 ≤ k < j, assuming Lemma
9.

In case k := j − 1 we have

yj − Pj−k(αj)

(αj − α1)...(αj − αj−k)
=
yj − P1(αj)

(αj − α1)
=

f [αj]− f [α1]

(αj − α1)
= f [α1, αj ].

Let 1 ≤ k < j−1 and assume Lemma 32 for k+1. Then we deduce from the definition
of Pj−k, the inductive hypothesis and Lemma 33 the identities:

yj − Pj−k(αj)

(αj − α1)...(αj − αj−k)
=

yj − Pj−k−1(αj)− f [α1, . . . , αj−k](αj − α1) . . . (αj − αj−k−1)

(αj − α1) . . . (αj − αj−k)
=

yj−Pj−k−1(αj)
(αj−α1)...(αj−αj−k−1)

− f [α1, . . . , αj−k]

αj − αj−k
=

f [αj−k−1, . . . , α1, αj ]− f [α1, . . . , αj−k]

αj − αj−k
=

f [αj−k−1, . . . , α1, αj ]− f [αj−k, . . . , α1]

αj − αj−k
= f [αj−k, . . . , α1, αj ].

Lemma 33 The divided difference function f is symmetric.

Proof. With the notations introduced before it suffices to show the following identity:

f [α1, . . . , αk] =
y1

(α1 − α2) . . . (α1 − αk)
+ · · · +

yk
(αk − α1) . . . (αk − αk−1)

(31)

We show (31) by induction in k.
The identity (31) follows in case k := 1 from f(α1) = y1.
Let k > 1. We suppose that (31) is valid for k − 1.
For 2 ≤ i ≤ k − 1 we have the following identities:

1

αk − α1

(
yi

(αi − α2) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αk)
e−

yi
(αi − α1) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αk−1)

)
=

1

αk − α1

(
1

αi − αk
−

1

αi − α1

)
yi

(αi − α2) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αk−1)
=

yi
(αi − α1) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αk)

.

124



Taking these identities into account we deduce from our induction hypothesis that

f [α1, . . . , αk] =
f [α2, . . . , αk]− f [α1, . . . , αk−1]

αk − α1

1

αk − α1




∑

2≤i≤k−1

yi
(αi − α2) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αk)

e−

∑

2≤i≤k−2

yi
(αi − α1) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αk+1)

e+

yk
(αk − α2) . . . (αk − αk−1)

−
y1

(α1 − α2) . . . (α1 − αk−1)

)

=
y1

(α1 − α2) . . . (α1 − αk)
+ · · ·+

yk
(αk − α1) . . . (αk − αk−1)

holds. This implies identity (31).

125



References

[Ald84] A. Alder. Grenzrang und Grenzkomplexität aus algebraischer und topologis-
cher Sicht. PhD thesis, Universität Zürich, Philosophische Fakultät II, 1984.

[Apt81] K. R. Apt. Ten years of Hoare’s logic: A survey–part I. ACM Transactions
on Programming Languages and Systems (TOPLAS), 3 (4) 431–483, October
1981.

[ASU86] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Boston, MA, USA, 1986.

[Bar68] E. H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian
elimination. Mathematics of Computation, 22 (103) 565–578, 1968.

[BC97] T. Bloom, J. P. Calvi. A continuity property of multivariate Lagrange inter-
polation. Math. Comp., 66 (220) 1561–1577, 1997.

[BCK98] L. Bass, P. Clements, R. Kazman. Software architecture in practice. Addison-
Wesley Longman Publishing Co., Boston, MA, USA, 1998.

[BCK03] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice. Addison–
Wesley, Boston, MA, 2. edition, 2003.

[BCS97] P. Bürgisser, M. Clausen, M. A. Shokrollahi. Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften, 315. Springer Verlag, 1997.

[BCSS98] L. Blum, F. Cucker, M. Shub, S. Smale. Complexity and Real Computation.
Springer–Verlag, 1998.

[BD09] B. Bruegge, A. H. Dutoit. Object-Oriented Software Engineering: Using UML,
Patterns and Java. Prentice–Hall, Upper Saddle River, NJ, USA, 3. edition,
2009.

[BF91] László Babai, Lance Fortnow. Arithmetization: A new method in
structural complexity theory. Computational Complexity, 1 41–66, 1991.
10.1007/BF01200057.

[BF02] R. L. Burden, J. D. Faires. Numerical methods. Brooks Cole, 3. edition, 2002.

[BKLW95] M. Barbacci, M. H. Klein, T. A. Longstaff, Ch. B. Weinstock. Quality at-
tributes. Technical report, Carnegie Mellon University, 1995.

[Bla09] R. Blanco. Complexity of Villamayor’s algorithm in the non-exceptional
monomial case. International Journal of Mathematics, 20 (6) 659–678, 2009.

[BM75] A. Borodin, I. Munro. The computational complexity of algebraic and numeric
problems. American Elsevier, New York, 1. edition, 1975.

[BSS89] L. Blum, M. Shub, S. Smale. On a theory of computation and complexity
over the real numbers: NP-completeness, recursive functions and universal
machines. Bulletin of the American Mathematical Society, 1 (21) 1–45, 1989.

126



[Bud02] T. Budd. An introduction to object–oriented programming. Addison–Wesley,
2002.

[BW96] A. Burns, A. J. Wellings. Real-Time Systems and Programming Languages.
Addison–Wesley, USA, 2. edition, 1996.

[Can88] J. Canny. Some algebraic and geometric computations in PSPACE. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, 460–467. ACM Press, 1988.

[CBB+02] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
J. Stafford. Documenting Software Architectures: Views and Beyond. Addison
Wesley, September 2002.

[CBK+98] S. J. Carriuere, M. Barbacci, R. Kazman, M. Klein, T. Longsta, H. Lipson.
The architecture trade off analysis method. Proceedings 4th International
Conference on Engineering of Complex Computer Systems (ICECCS’98).
IEEE Computer Society, 10 68–78, 14 August, 1998.

[Cer09] S. Ceria. Clase 5: Especificacion de Atributos de Calidad y QAW, 2009.

[CGH89] L. Caniglia, A. Galligo, J. Heintz. Some new effectivity bounds in computa-
tional geometry. Applied Algebra, Algebraic Algorithms and Error Correct-
ing Codes. Proc. of the 6th Intern. Conference AAECC, Best Paper Award
AAECC-6. Springer LNCS, 357 131–151, 1989.

[CGH+03] D. Castro, M. Giusti, J. Heintz, G. Matera, L. M. Pardo. The hardness of
polynomial equation solving. Foundations of Computational Mathematics, 3
(4) 347–420, 2003.

[Con65] S. D. Conte. Elementary numerical analysis: an algorithmic approach.
McGraw–Hill, New York, 1965.

[Cor01] T. H. Cormen. Introduction to Algorithms. MIT Press, Massachusetts, 2001.

[CYGM09] G. Chèze, J.-C. Yakoubsohn, A. Galligo, B. Mourrain. Computing nearest
gcd with certification. In Proceedings of the 2009 Conference on Symbolic
Numeric Computation, SNC ’09, 29–34. ACM Press, 2009.

[Dat09] C. Date. SQL and Relational Theory: How to Write Accurate SQL Code.
O’Reilly Media, 2009.

[dBR92] C. de Boor, A. Ron. The least solution for the polynomial interpolation
problem. Math. Z., 210 (3) 347–378, 1992.

[DFGS91] A. Dickenstein, N. Fitchas, M. Giusti, C. Sessa. The membership problem
of unmixed polynomial ideals is solvable in single exponential time. Discrete
Applied Mathematics, 33 73–94, 1991.

[Dou06] B. P. Douglass. Real-time UML workshop for embedded systems. Newnes, Em-
bedded technology series, Electronics and Electrical, Cambridge, MA, USA,
2006.

127



[Eco06] U. Eco. Cómo se hace una tesis. Técnicas y procedimientos de estudio, inves-
tigación y escritura. Versión castellana de L. Baranda y A. Claveŕıa Ibáñes.
8. edition, 2006.

[Edm67] J. Edmonds. Systems of distinct representatives and linear algebra. J. Res.
Nat. Bur. Standards, 71B 241–245, 1967.

[EGL97] I.Z. Emiris, A. Galligo, H. Lombardi. Certified approximate univariate GCD’s.
Journal of Pure and Applied Algebra, 117 229–251, 1997.

[EV00] S. Encinas, O. Villamayor. A course on constructive desingularization and
equivariance. Resolution of singularities: a research textbook in tribute to
Oscar Zariski. Progress in Mathematics, 181 147–227, 2000.

[Ful84] William Fulton. Intersection Theory. Number 2 in Ergebnisse der Mathematik
und ihre Grenzgebiete. Springer-Verlag, Berlin, 1984. 3. Folge.

[Gau97] W. Gautschi. Numerical analysis: an introduction. Springer, 1997.

[GH93] M. Giusti, J. Heintz. La détermination de la dimension et des points isolés
dúne variété algébrique peut se faire en temps polynomial. In Computational
Algebraic Geometry and Commutative Algebra (Cortona, 1991), 34 of Sym-
posia Mathematica, 216–256. Istituto di Alta Matematica Francesco Severi
and Cambridge University Press, Cambridge, 1993.

[GH01] M. Giusti, J. Heintz. Kronecker’s smart, little black boxes. In Foundations
of Computational Mathematics, R. A. DeVore, A. Iserles, E. Süli eds., 284 of
London Mathematical Society Lecture Note Series, 69–104. Cambridge Uni-
versity Press, Cambridge, 2001.

[GHH+97] M. Giusti, K. Hägele, J. Heintz, J. L. Montaña, J. E. Morais, L. M. Pardo.
Lower bounds for diophantine approximation. Journal of Pure and Applied
Algebra, 117 277–317, 1997.

[GHKa] M. Giusti, J. Heintz, B. Kuijpers. The evaluation of geometric queries: con-
straint databases and quantifier elimination. Manuscript University of Buenos
Aires (2007).

[GHKb] R. Grimson, J. Heintz, B. Kuijpers. Efficient evaluation of specific queries in
constraint databases. Manuscript University of Buenos Aires (2011).

[GHM+98] M. Giusti, J. Heintz, J.E. Morais, J. Morgenstern, L.M. Pardo. Straight-
line programs in geometric elimination theory. Journal of Pure and Applied
Algebra, 124 101–146, 1998.

[GHMP97] M. Giusti, J. Heintz, J. E. Morais, L. M. Pardo. Le rôle des structures de
données dans les problemes d’élimination. Comptes Rendus Acad. Sci., Serie
1 (325) 1223–1228, 1997.

[GHMS11] N. Giménez, J. Heintz, G. Matera, P. Solernó. Lower complexity bounds for
interpolation algorithms. Journal of Complexity, 27 151–187, 2011.

128



[GJM91] C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamentals of software engineering.
Prentice-Hall, Upper Saddle River, NJ, USA, 1991.

[GJM03] C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamentals of software engineering.
Prentice-Hall, Upper Saddle River, NJ, USA, 2003.

[GLS01] M. Giusti, G. Lecerf, B. Salvy. A Gröbner Free Alternative for Polynomial
System Solving. Journal of Complexity, 17 154–211, 2001.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. KNOWLEDGE ACQUISITION, 5 199–220, 1993.

[GS94] D. Garlan, M. Shaw. An introduction to software architecture. In V. Am-
briola, G. Tortora, editors, Advances in Software Engineering and Knowledge
Engineering, 1–40. World Scientific Publishing Co., 1994.

[Har92] J. Harris. Algebraic geometry: a first course. Springer Verlag, 2. edition,
1992.

[Hei83] J. Heintz. Definability and fast quantifier elimination in algebraically closed
fields. Theor. Comput. Sci., 24 239–277, 1983.

[Hei89] J. Heintz. On the computational complexity of polynomials and bilinear
mappings. A survey. Proceedings 5th International Symposium on Applied
Algebra, Algebraic Algorithms and Error Correcting Codes Springer LNCS,
356 269–300, 1989.

[Her09] B. R. Hergenhahn. An Introduction to the History of Psychology. Wadsworth,
2009.

[HK04] J. Heintz, B. Kuijpers. Constraint databases, data structures and effi-
cient query evaluation. Constraint Databases. First International Symposium
Springer LNCS, 3074 1–24, 2004.

[HKB93] B. Hoffmann, B. Krieg-Brückner. Program development by specification and
transformation, the prospectra methodology, language family, and system.
London, UK, 1993. Springer-Verlag.

[HKP+00] J. Heintz, T. Krick, S. Puddu, J. Sabia, A. Waissbein. Deformation techniques
for efficient polynomial equation solving. Journal of Complexity, 16 70–109,
March 2000.

[HM] K. Hägele, J. L. Montaña. Polynomial random test for the equivalence
of integers given by arithmetic circuits. Preprint 4/97, Departamento de
Matemática, Estad́ıstica y Computación, Universidad de Cantabria (1997).

[HM93] J. Heintz, J. Morgenstern. On the intrinsic complexity of elimination theory.
Journal of Complexity, 9 471–498, 1993.

[HMPW98] J. Heintz, G. Matera, L.M. Pardo, R. Wachenchauzer. The intrinsic complex-
ity of parametric elimination methods. Electron. J. SADIO, 1 37–51, 1998.

129



[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1 271–281, 1972.

[HS] J. Heintz, C.P. Schnorr. Testing polynomials which are easy to compute. In-
ternational Symposium on Logic and Algorithmic. Monogr. Enseig. Math. 30
(1982) 237–254 and 12th Annual Symposium ACM on Theory of Computing
(STOC’ 80) ACM Press (1980) 262–272.

[Ive73] B. Iversen. Generic Local Structure of the Morphisms in Commutative Alge-
bra. Springer-Verlag, Berlin, 1973.

[KI04] V. Kabanets, R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 1-2 (13) 1–46, 2004.

[KP96] T. Krick, L. M. Pardo. A computational method for diophantine approxi-
mation. Algorithms in Algebraic Geometry and Applications. Proceedings of
MEGA’94. Progress in Mathematics, 143 193–254, 1996.

[Kre07] R. Kress. Numerical analysis. Academic Internet Publishers Incorporated,
2007.

[Kro87] L. Kronecker. Grundzüge Einer arithmetischen Theorie der algebraischen
Grössen. Festschrift zu Herrn Ernst Kummers fünfzigjährigem Doctor-
Jubiläum. Cvelle J. Reine Angew. Math., 101 337–355, 1887.

[Kun85] E. Kunz. Introduction to commutative algebra and algebraic geometry.
Birkhäuser, Boston, 1985.

[Lan93] S. Lang. Algebra. Addison-Wesley, Massachusetts, 1993.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, Noam Nisan. Algebraic meth-
ods for interactive proof systems. J. ACM, 39 859–868, October 1992.

[LG01] B. Liskov, J. Guttag. Program development in Java: Specification, and
Object–Oriented Design. Addison-Wesley, 3. edition, 2001.

[Lic90] T. M. Lickteig. On semialgebraic decision complexity. Habilitationsschrift,
Universität Tübingen TR-90-052, Int. Comp. Sc. Inst., Berkeley, 1990.

[Lip94] R. J. Lipton. Straight–line complexity and integer factorization. Algorithmic
number theory. Springer LNCS, 877 71–79, 1994.

[Mar02] O. Marker. Model theory: An introduction, 217. Springer, New York, 2002.

[MAS+03] J. McGovern, S. W. Ambler, M. E. Stevens, J. Linn, E. K. Jo, V. Sharan.
The Practical Guide to Enterprise Architecture. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2003.

[Med00] N. Medvidovic. Software Architecture Description Languages. University of
California, 2000.

130



[Mey88] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1. edition,
1988.

[Mey00] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2. edition,
2000.

[Mor03] T. Mora. SPES I: The Kronecker-Duval Philosophy. Cambridge University
Press, 2003.

[Mor05] T. Mora. SPES II: Macaulay’s Paradigm and Groebner Technology. Cam-
bridge University Press, 2005.

[Mum88] D. Mumford. The red book of varieties and schemes, 1358. Springer, Berlin
Heidelberg, New York, 1. edition, 1988.

[Olv06] P. Olver. On multivariate interpolation. Stud. Appl. Math., 116 (2) 201–240,
2006.

[PA09] S. L. Pfleeger, J. M. Atlee. Software architecture: Theory and Practice. Pren-
tice Hall, Upper Suddle River, New Jersey, USA, 4. edition, 2009.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15 (12) 1053–1058, 1972.

[Pie02] B. C. Pierce. Types and programming languages. MIT Press, Cambridge, MA,
USA, 2002.

[Pre01] R. S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-
Hill Higher Education, 2001.

[PS73] M. S. Paterson, L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM Journal on Computing, 2 60–66,
1973.

[Ral70] A. Ralston. Introducción al Análisis Numérico. Limusa-Wiley, México, 1970.

[RW04] S. Rudich, A. Wigderson. Computational complexity theory. Volumen 10 de
IAS/Park City mathematics series. AMS Bookstore, Boston, MA, USA, 2004.

[Sax09] N. Saxena. Progress on polynomial identity testing. Bulletin of the EATCS,
90 49–79, 2009.

[SB93] J. Stoer, R. Bulirsch. Introduction to numerical analysis. Springer, New York,
2. edition, 1993.

[Sch81] A. Schönhage. Partial and total matrix multiplication. SIAM Journal of
Computing, 10 434–456, 1981.

[Sha84] A. Shamir. A polynomial time algorithm for breaking the basic Merkle–
Hellman cryptosystem. Information Theory, IEEE Transactions, 30 699–704,
1984.

131



[Sha92] A. Shamir. IP=PSPACE. J. ACM, 39 869–877, 1992.

[Sha94] I. R. Shafarevich. Basic algebraic geometry: Varieties in projective space.
Springer, Berlin Heidelberg, New York, 1994.

[SS95] M. Shub, S. Smale. On the intractability of Hilbert’s Nullstellensatz and an
algebraic version of “NP 6=P?”. Duke Math. J., 81 47–54, 1995.

[Ste04] H. J. Stetter. Numerical polynomial algebra. Society for Industrial and Ap-
plied Mathematics, 2004.

[Str73] V. Strassen. Vermeidung von Divisionen. Crelle J. Reine Angew. Math., 264
182–202, 1973.

[SW05] A. J. Sommese, Ch. W. Wampler. The numerical solution of systems of
polynomials arising in engineering and science. World Scientific, 2005.

[Vog84] W. Vogel. Results on Bézout’s Theorem. Tata Institute of Fundamental
Research. Springer, 1984.

[vzGG03] J. von zur Gathen, J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, 2003.

[ZS60] O. Zariski, P. Samuel. Commutative algebra II, 39. Springer, New York,
1960.

132


	Introduction
	The subject matter
	Motivation
	Organization of the thesis

	Concepts and tools from Algebraic Geometry
	Basic notations and definitions
	Basic notations
	Basic definitions
	Constructible sets and constructible maps

	Weakly continuous, strongly continuous, topologically robust and hereditary maps
	The concept of robustness for constructible maps
	An algebraic characterization of the notion of topological robustness
	The notion of geometrical robustness


	Concepts from Software Engineering
	Basic definitions and notations
	Software architecture
	Functional and (non–functional) requirements


	Univariate Hermite–Lagrange interpolation
	Interpolation: an area of Numerical Analysis
	Lagrange interpolation problems and algorithms
	Lagrange interpolation problems
	Mathematical modeling of the notion of Lagrange interpolation problem
	Additional requirements: Coalescence
	Lagrange interpolation algorithms
	Mathematical modeling of the notion of Lagrange interpolation algorithm

	A general interpolation model
	Relationship between interpolation and geometric elimination
	Examples of Univariate Hermite–Lagrange interpolation
	Univariate Lagrange interpolation at fixed nodes

	Trade-off results: complexity and coalescence
	Discussion of the mathematical interpolation model
	Polymorphism in the general interpolation model
	The origin of polymorphism
	Polymorphism as a property of the implementation
	Polymorphism in object oriented programming

	A terminology dictionary

	Coalescence and branching parsimoniousness compared with other quality attributes
	Quality attribute scenarios for coalescence and branching parsimoniousness
	Quality attribute scenario for coalescence
	Quality attribute scenario for branching parsimoniousness

	Scenario comparison with classical quality attributes
	Comparison with coalescence
	Comparison with branching parsimoniousness

	Examples of suitable quality attributes
	Quality attributes that restrict the set of possible outputs
	Quality attributes that restrict the structure of the program
	Remarks about suitable Quality Attributes


	A software architecture based computation model for arithmetic circuits
	Aims and paradigmatic examples
	Parameterized arithmetic circuits and their semantics
	A specification language for circuits

	Generic computations
	A model for branching–free computation. Informal discussion
	The simplified, branching–free computation model
	The extended computation model

	Applications of the extended computation model to complexity issues of effective elimination theory
	Flat families of zero–dimensional elimination problems
	The elimination of a block of existential quantifiers
	Arithmetization techniques for boolean circuits
	The multivariate resultant
	Divisions and blow ups
	Comments on complexity models for geometric elimination


	Conclusions
	Concluding remarks
	An ontological view of our investigation

	Appendix : Geometrical complement
	The geometrically robust closure of an irreducible affine variety

	Appendix : Correctness proofs
	Correctness of Lagrange interpolation algorithms
	Lagrange Form
	Monomial Form
	Newton Form



