
Departamento de Computación

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Tesis de Licenciatura

On-line Multi-threaded Scheduling

por

Marcelo Mydlarz

L.U.: 290/93

Director

Dr. Esteban Feuerstein

Julio de 1998

Contents

1 Introduction 9

1.1 On-line algorithms and Competitiveness 9

1.1.1 Adversaries fighting against Randomization 11

1.2 Multi-threaded Scheduling . 13

1.3 Context Definition and Conventions 15

2 Classification 17

2.1 Different On-line Paradigms . 19

2.1.1 Scheduling Jobs One By One 21

2.1.2 Scheduling Before Executing 22

2.1.3 Scheduling On Execution . 22

2.1.4 Relaxed Notions of Competitiveness 24

2.2 Objective Functions . 24

2.3 Number of Machines . 25

2.4 Precedence Restrictions . 26

1

2 CONTENTS

2.5 Machine Speed . 30

2.6 Preemption . 30

2.7 Priority . 31

2.8 Rejection . 32

2.9 Time Window Constraints . 33

2.10 Finiteness . 34

2.11 Conflict Restriction . 35

2.12 Restricting the Model . 36

3 Relations in the Classification 37

3.1 Analyzing the Precedence Constraints 37

3.1.1 SEP Graphs . 38

3.1.2 Relating SEP Graphs with Precedence Constraints 39

3.1.3 Relations among Precedence Constraints 40

3.2 Relating On-line Paradigms with Precedence Constraints 44

3.3 What about waiting? . 47

4 Competitiveness Results 53

4.1 Makespan . 54

4.2 Total Completion Time . 57

4.2.1 Scheduling Before Executing and Scheduling On Execution

for the single machine case 58

CONTENTS 3

4.2.2 Scheduling Before Executing, m ≥ 2 64

4.2.3 Scheduling On Execution, m ≥ 2 67

4.3 Start-End . 68

5 Conclusions and Open Problems 69

4 CONTENTS

Preface

This work was originally designed to be a framework for the On-line Multi-

threaded Scheduling problem, which is an extension of the classic job scheduling

problem. It was intended to comprise a taxonomy for the different scenarios of

the problem -each one modeling a group of real life contexts.

Along the development of this work, this taxonomy has been subject to change,

sometimes minor alterations, but other times big transformations, which reflected

the increase in the acquired knowledge of the problem. As a result, relations

among the different scenarios have come up.

In addition to this, we have proceeded our study in the scenarios of the Multi-

threaded Scheduling problem tackling competitiveness. Both upper and lower

bounds were conceived.

The main contributions of this work consist in:

• The definition of a framework for the on-line multi-threaded scheduling prob-

lem. The classification presented here, gives rise to many different scenarios,

leaving a wide field for future research.

• The relations found among the different features of the scenarios. They

enable us to analyze seemingly different scenarios as if they were the same

one.

• The competitiveness results achieved for some important scenarios of our

problem.

This work is divided in five chapters. The first one is introductory and presents

some basic concepts about on-line algorithms and competitive analysis, scheduling,

5

6 CONTENTS

multi-threaded contexts, multi-threaded scheduling and on-line multi-threaded

scheduling. This chapter ends with a context definition for on-line multi-threaded

scheduling and general conventions that will be used through the following chap-

ters.

In the second chapter the taxonomy is presented. The main feature that char-

acterizes an on-line multi-threaded scheduling context is the on-line paradigm,

where time plays an outstanding role. Other characteristics that shape the context

of the problem will be presented in the same chapter, as the objective functions,

the number of machines, the precedence restrictions, the machines speed, whether

preempting jobs is allowed, the use of priorities for the jobs, the possibility to reject

jobs, the time window constraints of the jobs, the finiteness or infiniteness of the

length of the threads and whether there may be or not pairs of jobs conflicting

with each other (i.e., that cannot be executed at the same time).

In the third chapter the relations among different scenarios are considered.

First we tackle the relations among the precedence constraints, and after that the

precedence constraints are related to the on-line paradigms. In the last section of

this chapter, we evaluate the convenience of waiting before executing a job while

leaving a machine idle.

Chapter 4 is devoted to competitive analysis of some of the scenarios defined in

Chapter 2. Specifically, two objective functions (Makespan and Total Completion

Time) and the three main paradigms defined in Chapter 2 are considered and

some interesting results are achieved.

In the last chapter we give an overview of this work and recall the main paths

that became open for future research. We also present there a table summarizing

the competitiveness results achieved in Chapter 4.

Acknowledgements

First of all, I would like to thank my advisor, Esteban Feuerstein, who has intro-

duced me in the wonderful land of research. It has been a great pleasure working

with him and I truly appreciate his confidence and permanent support.

I would like to thank the external reviewers Irene Loiseau and Leen Stougie for

their comments and corrections which have been very useful in the preparation of

the final version. I would specially like to thank Leen for his affability. During the

few days he was in Argentina, I enjoyed discussing about different research topics

with him and Esteban.

I owe a debt of gratitude to Alejandro Strejilevich de Loma for his corrections

and comments about the thesis and for his permanent help in the use of LATEX.

During all these years at the University of Buenos Aires, I have relied on a

small group of wonderful friends. I would specially like to thank Ro for being by

my side at each moment I needed her.

Finally, I reserve these last lines to my parents. I really appreciate their pa-

tience and understanding, and I owe them most of what I am. My deepest feeling

of gratitude is for them.

Marcelo Mydlarz.

7

8 CONTENTS

Chapter 1

Introduction

1.1 On-line algorithms and Competitiveness

The past years have seen an explosive growth in studies of on-line problems. Typ-

ically when we solve problems and design algorithms we assume that the entire

input is available beforehand. However, this may not be the case as in the In-

vestment Problem, the Ski Rental Problem, Paging, List Processing [14, 19] and

many other situations presented in the literature and largely motivated by many

real-life problems.

On-line algorithms attempt to model a real life situation, where complete data

is not known a priori (when the execution of the algorithm begins). In such cases,

the input is obtained incrementally, and the algorithm has to make decisions to

respond to the input, considering that it will not be allowed to change the past

actions -decided on-line- later. Thus, as decisions are made irrevocably, the best

action taken now may prove to be not very good some time later.

The set of actions taken has an associated cost. This cost can be reflected by

different cost functions.

Posing that each part of the solution is obtained without knowledge of future

requests, the goal is to find a solution as “good” as possible.

Generally, the on-line algorithm is compared to an optimal off-line algorithm

9

10 CHAPTER 1. INTRODUCTION

that knows the entire input in advance. The optimal off-line algorithm is defined,

for each entire input, as an algorithm that minimizes the cost of processing that

input (w.r.t. a given cost function). In this way, it is as if that off-line algorithm

knew the future. Intuitively, since on-line algorithms lack future information, it is

clear that they may perform much worse than their off-line counterparts.

In contrast it is not straightforward to define a measure of performance for

on-line algorithms, since no matter what action an on-line algorithm takes in

response to an initial set of requests, there may probably be a sequence of further

requests that makes that first action be counterproductive w.r.t. a given objective

(function).

The most widely accepted way of measuring the performance of on-line algo-

rithms is competitive analysis. This field began to achieve a steady development

since Sleator and Tarjan formally introduced it in [29]. As explained above, com-

petitive analysis addresses the comparison between the performances of the on-line

algorithm and the optimal off-line algorithm. The competitiveness of an on-line

algorithm is the ratio of its performance to the performance of an optimal off-line

algorithm.

We will formalize these notions using the notation of [22]. Let CA(σ) denote

the cost incurred by an algorithm A in satisfying a request sequence σ. Algorithm

B is c-competitive (has competitive ratio c) if there is a constant a such that, for

every request sequence σ,

for every algorithm A, CB(σ) ≤ c.CA(σ) + a.

Equivalently, if opt is the optimal off-line algorithm,

CB(σ) ≤ c.Copt(σ) + a.

An algorithm is competitive if it is c-competitive for some constant c. This

constant c is called the competitive factor. An algorithm is strongly competitive if

it achieves the smallest possible competitive factor.

It is a usual practice to treat on-line algorithms as a game between an on-line

player and an adversary. Given the on-line algorithm, this adversary picks an

input sequence to the problem so as to make the on-line algorithm look as foolish

as possible. Formally speaking, the adversary tries to maximize the ratio between

the costs of the on-line algorithm and optimal off-line algorithm.

1.1. ON-LINE ALGORITHMS AND COMPETITIVENESS 11

Presenting the problem in this way enables us to obtain both lower and upper

bounds. Each lower bound l indicates that no on-line algorithm (for the same

problem) can have a better competitive factor than l, i.e., no on-line algorithm

is better than l-competitive. Generally, to prove this lower bound, a set of input

instances is provided, such that for every on-line algorithm, the ratio between this

algorithm and the optimal off-line algorithm is at least l.

On the other hand, each upper bound u is generally achieved by providing an

on-line algorithm that is u-competitive.

For an overview of the literature on on-line optimization we refer to [10, 9].

1.1.1 Adversaries fighting against Randomization

Randomization has gained attention considering that, to construct input sequences,

adversaries predict the deterministic on-line algorithms’ behavior and try to force

them to perform as bad as possible with respect to their off-line counterparts. The

intention is to weaken the adversary’s capacity to predict.

The main characteristic of randomized algorithms is that they toss coins in

the course of their execution. This fact complicates the adversary’s objective,

who may put stones in a path that the randomized on-line algorithm will not

necessarily follow.

As the behavior of a randomized on-line algorithm B may vary even for the

same input, then B is defined to be c-competitive if there is a constant a such

that, for every request sequence σ,

for every adversary A, E(CB(σ)− c.CA(σ)) ≤ a.

In contrast with the deterministic case, for the randomized case different types

of adversaries have been defined. For all of them, it is assumed that the adversary

knows the code of the randomized on-line algorithm, but does not know the results

of the random coin tosses. Here we present three different types of adversaries:

• Oblivious Adversary. This adversary is called oblivious reflecting the fact

that he is oblivious to the random choices made by the on-line algorithm.

12 CHAPTER 1. INTRODUCTION

Thus, the adversary generates a sequence of requests without knowing any

result of the coin tosses made by the randomized on-line algorithm.

• Adaptive On-line Adversary. The adversary chooses each request after

having observed the previous choices of the on-line algorithm. For this ver-

sion, the adversary decides what action to follow without knowing the future

requests.

• Adaptive Off-line Adversary. As in the previous case, the adversary

chooses each request after having observed the previous choices of the on-line

algorithm. In contrast with the Adaptive On-line Adversary, the Adaptive

Off-line Adversary decides what action to take at each step knowing the

whole sequence of requests and the corresponding on-line algorithm behavior.

Summing up, the advantage of the adaptive adversaries over the oblivious ad-

versary is that the first one decides what request to generate after knowing the

past behavior of the on-line algorithm. In addition, the advantage of the adap-

tive off-line adversary over the adaptive on-line is that the first one knows all the

on-line algorithm’s actions before selecting any of its own.

In case these adversaries are opposed to a deterministic on-line algorithm, they

are the same: there is no advantage to observing the on-line algorithm’s behavior

since the adversary can exactly predict its behavior.

If we denote Cobl, Caon, Caof and Cdet the best possible competitive ratios

considering oblivious adversaries, adaptive on-line adversaries, adaptive off-line

adversaries and the deterministic case respectively, we have that

Cobl ≤ Caon ≤ Caof ≤ Cdet.

In [8] the following two theorems are proven.

Theorem 1.1.1.1 If there is a c-competitive randomized algorithm against adap-

tive off-line adversaries, then there is a c-competitive deterministic algorithm; in

other words, there is no advantage to randomizing when playing against adaptive

off-line adversaries.

Theorem 1.1.1.2 If there is a c-competitive randomized algorithm against oblivi-

ous adversaries and a d-competitive randomized algorithm against adaptive on-line

adversaries, then there is a cd-competitive deterministic algorithm.

1.2. MULTI-THREADED SCHEDULING 13

We will not cover randomized algorithms any further. References of this topic

are [19, 25, 23].

1.2 Multi-threaded Scheduling

Scheduling theory is concerned with the optimal allocation of scarce resources to

activities over time. “The practice of this field dates to the first time two humans

contended for a shared resource and developed a plan to share it without blood-

shed” [18]. Inspired by applications in practical computer systems, it developed

into a theoretical area with many interesting results.

We can sketch the following basic situation. Given a sequence of jobs, our

task is to process them on the available machines. Each job, characterized by its

processing time (possibly among other features), has to be scheduled (for execu-

tion) on one of the machines. Other variants that may change the set of feasible

schedules are also possible.

The goal of achieving a schedule as efficient as possible, may have different

meanings, according to the problem. In other words, many different objective

functions are possible. Minimizing the total length of the schedule (Makespan)

as well as minimizing the sum of the time each job takes to be completed (Total

Completion Time) are the most common.

Scheduling problems have also been treated from an on-line viewpoint: the

input is not complete when the execution of the algorithm begins. Instead, both

the jobs to be processed and the characteristics of each of them are made available

during the decision process.

Among others, the following constraint must also hold: time slots of each pair

of jobs executed in the same machine must not overlap each other. An up-to-date

survey on on-line scheduling problems is given in [28].

As we will be concerned with competitive analysis, we will think of the time

that the on-line algorithm takes to calculate the assignment of the jobs as negligible

with respect to the execution time.

Later, along the description of the different on-line paradigms that can be con-

14 CHAPTER 1. INTRODUCTION

sidered, we will refer to the central role that time plays, which has been previously

enphasized in [11].

Here, we are concerned with the threaded variant of this problem. In a multi-

threaded problem, there is a certain number of threads and each one consists of an

ordered sequence of requests. Only the first request of each (non-empty) thread is

available to be served. An algorithm for this problem must decide which of these

requests to serve at any moment. In the on-line version, only the first request of

each (non-empty) thread is seen.

Multi-threaded on-line optimization problems have been proposed first in [10,

12] for the paging model. The situation is the following. There is a given number

of independent processes that simultaneously present requirements of pages of

secondary memory that must be brought into fast memory. At each moment

the algorithm that manages fast memory can see only one request per process,

precisely the first unserved request of the sequence of requests that the process

presents. The process does not see a request until the previous one in the sequence

has been served. The algorithm must decide at each moment, not only which

request(s) to serve, but also which page(s) of fast memory to evict to make place

for the incoming page(s).

Multi-threaded Scheduling scenario can be considered as a generalization of

the scheduling problem, which in many cases may be seen as a single-threaded

scheduling problem. In scheduling problems with multiple threads, the jobs are

distributed in more than one thread. Jobs are scheduled one at a time and each

job is only seen when the previous job in the same thread has been scheduled. The

threaded nature of the problem implies that a job cannot be scheduled before the

previous jobs in the same thread have been scheduled, both for the on-line and

the off-line algorithms.

The on-line multi-threaded context implies that, apart from the normal deci-

sions in single-threaded on-line optimization, the order in which the threads are

explored must also be decided. At any given moment, at most one job of each

thread (the one on top) is available to be scheduled (and, depending on the on-line

paradigm, executed). More than that, the on-line algorithm can only see those

jobs (apart from the jobs already processed).

At the time a given job j in a thread becomes available to be scheduled, the

following two facts happen. First, all the jobs preceding j (in the same thread)

1.3. CONTEXT DEFINITION AND CONVENTIONS 15

have been scheduled. Second, all the jobs following j (in the same thread) are not

ready to be scheduled.

In addition to this, as we will see in Chapter 3, the multi-threaded environment

gives rise to new precedence relation types.

References on multi-threaded on-line optimization problems are [10, 11, 12, 26,

27, 2].

1.3 Context Definition and Conventions

The context where we will be working is the following. There will be a certain

number of threads -always denoted by w- and a certain number of machines -

always denoted by m- where the jobs are to be processed. The terms running

time and processing time will be used indistinctively. Each thread will be modeled

as an ordered sequence of jobs. Each job will be characterized by its running time.

The results presented from now on apply to arbitrary real running times. Jobs

will be referenced as integer numbers.

The scheduling algorithm is designed to produce a schedule, which means that

each job is assigned to one or more machines and one or more time slots, according

to the variant of the scheduling problem. Each machine is assigned to a single job

at any time, and the processing of a job always takes at least its running time.

We say that a job has been scheduled when the decision of the machine and time

slots in which that job will be executed has been made. Given two jobs A and B

in a given thread, if A precedes B in the thread then A must be scheduled before

B.

A (legal) schedule is an assignment of the jobs of the threads where

• Each job is assigned to one of the machines and for a given time period (in

some variants, a job may be assigned to more than one time period).

• Any pair of jobs from the same thread must be assigned in the order of

precedence of the thread (i.e., in the order they are presented). This fact

does not imply that a given pair of jobs belonging to the same thread must

be executed in the order of precedence of the thread, not even if they are

16 CHAPTER 1. INTRODUCTION

scheduled to the same machine. In other words, a job A preceding another

job B may be scheduled for execution at a later time period than B’s time

period.

• There is no pair of jobs such that both are to be executed by the same ma-

chine at the same time, not even for some fraction of their running time.

There is no intersection between the time periods of two different jobs ex-

ecuted in the same machine. In other words, their running times may not

overlap.

A schedule produced from a given set of threads is said to be feasible under a

given paradigm if it can be obtained under that paradigm from the same set of

threads and satisfies any other constraint given by the problem.

All these conventions apply both for off-line and on-line algorithms. In the

on-line case, the first job of each thread has to be scheduled to some machine(s)

and time slot(s) before the next jobs in the thread are seen, consistently with other

restrictions given by the problem.

Chapter 2

Classification

This classification has been designed with a view to gaining some insight into the

relations that arise between the different contexts where Single and Multi-threaded

Scheduling make sense. These contexts are defined by many different parameters.

As it will be shown later, a slight variation in the setting of only one of these

parameters may imply a significant change in the obtained results for the problem.

For example, we have found that changing the number of machines from 1 to 2 in

a given context brings about a complete turn over in the achieved competitiveness

result: not only the competitive algorithm “discovered” for the single machine

problem does not work for the two machines problem, but also we have proven

that in this context (2 machines) no algorithm is competitive.

Both single and multi-threaded scheduling models are defined by many fea-

tures. These include the on-line paradigm, the objective function, the number

of machines, the precedence restrictions, the machine speed, the use of preemp-

tion, the use of priorities, the use of rejection, the time window constraints, the

finiteness of the number of jobs and the conflict restrictions.

Among these characteristics, special attention is given to the on-line paradigms

and the precedence constraints. We have defined three main on-line paradigms

that differ from previously related work [28]. We have found a close relation

between the on-line paradigms and the precedence constraints; this topic is covered

in the next chapter.

17

18 CHAPTER 2. CLASSIFICATION

The first main division of the scenarios we will focus on regards Data Avail-

ability. Any algorithm may be classified as

• Off-line

• On-line.

Our view will be directed to on-line algorithms. Its performance is measured

by the competitive ratio (w.r.t. some objective function). Thus, we will also be

interested in off-line algorithms, not from their algorithmic viewpoint, but for the

optimal schedules they produce, so as to compare them with the worst schedules

obtained on-line.

By the time the different ways of classifying the algorithms are presented, it

will appear that although most of them may be applied to both off-line and on-

line algorithms, a few refer only to on-line algorithms. For example, the number

of processors may be unknown for an on-line algorithm, but not for an off-line

algorithm.

It will also appear that not all the combinations of the possible values of the

parameters of our problem are equally important; furthermore, some of them are

trivial and others make little or no sense at all.

In Sgall’s survey [28], on-line scheduling has been treated, bringing on a broad

classification. We have taken the ideas emerging from that survey into account

and extended the classification for the multi-threaded case.

The present work, born with the conceptual view of Sgall, have suffered sev-

eral transformations, specially in what concerns the on-line paradigms and the

precedence constraints.

The first main topic we will be concerned in is On-line Paradigms. Its impor-

tance lies in that it defines a big part of the scenario in which the problem takes

place.

2.1. DIFFERENT ON-LINE PARADIGMS 19

2.1 Different On-line Paradigms

Many different issues shape an on-line paradigm. Among them, there are two that

stand out.

• The relation between the scheduling time and the execution time.

• Whether scheduling each job to the first available space (time slot) is manda-

tory (or not).

Both of them give evidence of the central role that time plays. This fact is a

natural consequence of the main objectives, which are functions of time.

If scheduling each job to the first available space is mandatory, then -as one

job is not scheduled before the preceding job in the thread had been scheduled-

some kind of execution precedence of the jobs is ensured. For example, if two jobs

arriving from the same thread are scheduled to the same machine, they must be

executed in the order of appearance.

On the other hand, if scheduling each job to the first available space is optional,

then jobs may be executed at any time (avoiding the overlap of two jobs in a single

processor) and in any order.

The scheduling time may be independent of the execution time or

scheduling may be done immediately before executing each job. In the first

case, time does not flow during the scheduling, but it flows during the execution.

Thus two phases can be distinguished: the scheduling phase, in which a schedule

is obtained, and the execution phase, in which execution is done according to that

schedule, obtained some time before. As the scheduling must finish before the

execution starts, all the information about the jobs must have arrived during the

scheduling and before the execution begins. Nevertheless, assignments’ decision

are made with incomplete information and irrevocably. Naturally, we will only be

concerned with the scheduling phase. This case may be seen as a transformation

from the w initial threads into m sequences, one for each machine. In this case,

scheduling each job to the first available space may be either mandatory or optional.

In the case where each job is executed immediately after being scheduled, a job

may be scheduled only when the machine receiving that job is free (idle). Here,

20 CHAPTER 2. CLASSIFICATION

time flows during the scheduling as the scheduling time and the execution time

coincide. As a consequence, information about the jobs (or the jobs themselves)

may arrive during the execution. Also, each job must be scheduled to an idle

machine.

Here we present a brief overview of the paradigms that arise when these issues

are considered. Later, we will study these paradigms in deep.

• Scheduling Jobs One By One: Under this paradigm, the running time of

each job is known when the jobs becomes available. Jobs can be scheduled

for execution at arbitrary time slots (i.e., they can be delayed). This implies

that a job can start running later than the successive jobs in the thread;

however, once we see the successive jobs we cannot change the assignment

of the previous jobs.

In this paradigm, scheduling each job to the first available space is optional

and the scheduling time is independent of the execution time.

• Scheduling Before Executing: In this paradigm each job must be scheduled

to the first available time slot of any machine. There is no need to wait to

schedule a job if the previous jobs in the same thread have been scheduled.

Jobs may be scheduled one after another without delay.

In this paradigm, scheduling each job to the first available space is mandatory

and the scheduling time is independent of the execution time.

• Scheduling On Execution: In this paradigm, each available job has to be

scheduled for immediate execution, i.e., each job is scheduled to be executed

now.

In this paradigm, scheduling each job to the first available space is mandatory

and the scheduling time and the execution time coincide.

Two variants can be considered:

– with known running time: As soon as a job is ready to be executed,

its running time becomes available.

– without known running time: The running time of each job is not

known until it has finished.

In the following paragraphs, these three paradigms are covered with greater

insight; in addition, a few paragraphs are devoted to an overview of paradigms

where the notions of competitiveness is slightly altered.

2.1. DIFFERENT ON-LINE PARADIGMS 21

2.1.1 Scheduling Jobs One By One

This paradigm was introduced in [28]. As soon as the job is presented (i.e., becomes

the first one of the thread) we know (or we are able to calculate) its running time.

We are allowed to assign the jobs to arbitrary time slots (i.e., they can be delayed),

thus a job can start running later than the successive jobs in the thread; however,

once we see the successive jobs we cannot change the assignment of the previous

jobs.

Clearly, no precedence restriction is implied regarding the order of execution.

In this paradigm, the order in which jobs are presented plays no role in the

scheduling (time plays no role) -except for the on-line algorithm knowledge of

the previously scheduled jobs. This implies that scheduling each job to the first

available space is optional.

It is clear, that there is no need to wait to schedule a job if the previous jobs

in the same thread have been scheduled. Thus, the scheduling time is independent

of the execution time.

Under this paradigm, the number of threads is unimportant for any off-line

algorithm. An optimal schedule obtained off-line from a set of jobs is independent

of the number of threads in which the jobs are distributed. In other words, if there

are two instances of this problem, both of them composed of the same set of jobs

and distributed within a different number of threads, then a schedule is optimal

(off-line) for one of them if and only if that schedule is optimal for the other.

Considering the on-line point of view, the more the number of threads, the more

the number of jobs an on-line algorithm can see at any time. This fact which seems

to be an advantage, is not necessarily so. The adversary can use the first job of

each thread to hide jobs so as to make the on-line algorithm perform bad with

respect to its off-line counterpart. Besides a lower bound for the competitive ratio

achieved with a given number of threads is also a lower bound for the competitive

ratio considering a greater number of threads because some threads may be empty.

An interesting variant of this paradigm that we will not cover is scheduling

each job for execution in a given order by a given machine, instead of assigning it

to a given time slot. This variant may be useful if we know the number of jobs

to process (or process the jobs by shifts, each one a constant number of jobs) and

22 CHAPTER 2. CLASSIFICATION

makes useless to wait (i.e. to use idle times).

2.1.2 Scheduling Before Executing

In this paradigm each job must be scheduled to the first available time slot of any

machine.

There is no need to wait to schedule a job if the previous jobs in the same

thread have been scheduled. We will see that this fact makes the difference with

the following paradigm (Scheduling On Execution). The scheduling time is inde-

pendent of the execution time. As one job can be scheduled after another (in the

same machine) without delay, we can say that time does not flow. In other words,

the flow of time occurs during the execution, not during the scheduling.

In this paradigm, even time does not flow, it impacts the execution: if two jobs

are scheduled to the same machine, the one that has been scheduled before will

be executed before. This implies that two jobs coming from the same thread and

scheduled to the same machine will be executed in the order of appearance. This

is the main difference with the previous paradigm. Scheduling each job to the first

available space is mandatory.

Scheduling Before Executing paradigm can be seen as a transformation from w

queues into m rows: only the first job of any queue can be picked and scheduled

only to the first available space of some row. These restrictions were not implied

by the previous paradigm.

As it will be shown later, this paradigm guarantees the Extended Partial Order

constraint.

2.1.3 Scheduling On Execution

In this paradigm, each available job has to be scheduled for immediate execution,

i.e., each job is scheduled to be executed now. At any time, there is at most one

job of each thread ready to be executed.

Unlike the previous paradigm, the scheduling time is the same as the execution

2.1. DIFFERENT ON-LINE PARADIGMS 23

time. So, a job is ready to be scheduled if and only if a job is ready to be executed.

Here, a job can only be scheduled to an idle machine. The role that time plays in

this paradigm is critical.

A job may have to wait before being assigned for execution to a given machine,

because that machine may be executing another job. The waiting job, can also

delay the jobs that come behind it in the thread. Then, we can say that time

flows. This is the main difference with the previous paradigm.

In this paradigm, scheduling each job to the first available space is mandatory

and scheduling is done immediately before executing each job. For each job, the

scheduling time coincides with the beginning of the execution.

This paradigm also implies that two jobs coming from the same thread and

scheduled to the same machine will be executed in the order of appearance.

We can consider variants of this problem:

• with knwon running time: As soon as a job is ready to be executed, its

running time becomes available.

As it will be shown later, this paradigm implies the Start-Start constraint.

• without known running time: The running time of each job is not known

until it has finished. The on-line algorithm only knows whether a job is still

running or not. This paradigm will not be covered in this work.

In [28] a similar paradigm has been treated; it differs in that all the jobs are

available to be executed. Thus, it is different even for the single-threaded

case -where only the first job (not scheduled yet) is available. A summary

of results and references are given in [28].

Sometimes the algorithms that know the running time of a job as soon as

it arrives are called clairvoyant, in contrast to non-clairvoyant algorithms that

correspond to the previous paradigm of unknown running times [28].

24 CHAPTER 2. CLASSIFICATION

2.1.4 Relaxed Notions of Competitiveness

To face the negative results that appear in many variants of the scheduling prob-

lem, it has been allowed to use additional information or slightly more resources

to the on-line algorithm.

The following cases are summarized in [28].

• Using machines with speed 1 + ε. Results for this variant have been

obtained in [17, 24].

• Giving aditional information to the on-line algorithm. For example,

jobs ordered by non-increasing running times [16], knowledge of the total

running times of all the jobs or the existence of one buffer to temporarily

store one job or the possibility to produce two solutions and choose the best

of them afterwards [20] and knowledge of the optimum [4].

These issues go beyond the scope of this work.

2.2 Objective Functions

There are several useful objective functions that measure different aspects of the

schedule. Many of them have been summarized in [28] for the conventional on-line

scheduling problem, and some of them may be extended for the multi-threaded

case in a natural way.

The most common of these functions is the Makespan and the objective in

this case is to complete the processing of all the jobs as quickly as possible. More

formally, the makespan function measures the time at which the last job among

all the threads is completed. The goal is to minimize this function. While we

must care about the machine where each job is scheduled, the order in which the

jobs will be executed on the machines is unimportant.

Makespan may reflect the viewpoint of the owner of the machines: the lower

the makespan is, the higher utilization the machines have. In case rejection of

jobs is allowed, each rejected job is punished with a penalty that must also be

2.3. NUMBER OF MACHINES 25

minimized. Rejection may be useful when a job has long running time and small

benefit (i.e., there is a small penalty for not scheduling it).

In the user of the machines point of view, specially in interactive environments,

the time it takes to complete each individual job may be more important. Other

objective functions are considered in this situation, like total completion time

(also called Latency), total flow time (also called total response time) and total

waiting time.

The completion time of a job is the time it takes the job to be completed. Thus,

the makespan equals the maximum completion time. The total completion time is

the sum of the completion times of the jobs. Unlike in the makespan problem, the

order in which jobs are scheduled on the machines influences the total completion

time cost function.

The completion time of a scheduled job j is denoted by Cj. The makespan of

the jobs is denoted by Cmax = maxj Cj and the total completion time by
∑

j Cj.

In the conventional scheduling environment, the flow time of a job is defined

as the time the job is in the system, i.e., the completion time minus the time when

it becomes first available. The waiting time is the flow time minus the running

time of a job. In a multi-threaded environment a job may be considered available

when its preceding job has been scheduled, has started its execution or has ended

its execution, depending on the on-line paradigm. Flow time and waiting time do

not seem to be very useful in a multi-threaded context.

If preemption is allowed, minimizing the number of preempted jobs may be

also a goal, although not as important as the others.

Along this work, we will only deal with Makespan and Latency cost functions.

2.3 Number of Machines

Considering the number of machines is important when calculating the competitive

ratio of an on-line algorithm.

• Fixed.

26 CHAPTER 2. CLASSIFICATION

The number of machines is fixed and known before the scheduling begins.

The following cases define borders, where the change from one case to an-

other may mean the change from a problem for which there exists a com-

petitive algorithm to a problem for which no competitive algorithm exists.

– m = 1. There are cases where on-line algorithms are competitive if

only one machine is available to execute the jobs.

– 2 ≤ m ≤ w. When there are more than one machine, the number of

threads as well as the number of machines may influence the competitive

ratio.

– 2 ≤ w ≤ m.

• Variable.

The number of machines may vary from time to time. A possible scenario

where the number of machines may be treated as variable is a multipro-

grammed environment.

Initially, only one computation (composed of w threads) may be running,

so it may be using all the m available machines. A moment later, another

computation may be launched, taking control of at least one machine, and

leaving the old computation with fewer than m machines to go on its process-

ing. Now, the old computation faces the fact that the number of machines

available for it have decreased. More than that, we can think that the ad-

versary not only decides how much and the characteristics of the jobs that

will appear, but also the number of machines available at any given moment.

This topic has been thoroughly analyzed in [3].

2.4 Precedence Restrictions

In many applications, there are precedence restrictions that any feasible schedule

must satisfy. For example, “one job cannot start its execution before the job

that precedes it in the same thread has started”. We will browse through some

constraints that make sense in real life contexts.

In general, to get a significative competitive ratio, we must compare the on-line

algorithm to the off-line algorithm under the same constraint. We will follow that

policy when dealing with competitive analysis.

2.4. PRECEDENCE RESTRICTIONS 27

As it will be shown, outputs feasible under some constraints are not feasible

under other constraints. We will now define the precedence constraints we have

found more useful.

1. No Precedence Restrictions.

2. Start-End On Each Machine

For every pair of jobs A, B belonging to a given thread scheduled to be

executed (and executed) on the same machine, A precedes B in the thread if

and only if A finishes before B starts (or equivalently, A is executed before

B).

Start-End On Each Machine constraint may also be called partial order.

The reason is that each schedule produce by this constraint can be seen as

a transformations from the w initial threads into m sequences, one for each

machine. Each of these sequences preserves the partial order induced by

every thread.

3. Extended Partial Order

The Extended Partial Order constraint says that there is no sequence of jobs

A1, . . . , Ak such that

• Ai → Ai+1∀i ∈ {1, . . . , k − 1}

• Ak → A1,

where X → Y means that either job X precedes job Y in the same thread or

job X is scheduled to be executed before job Y in the same machine.

This constraint is not as natural as the others and it is not easy to see its

usefulness. Nevertheless, it comes to fill in a gap that exists between the

Start-End On Each Machine constraint (partial order) and the restrictions

that are guaranteed under the on-line paradigm Scheduling Before Executing.

It is useful then to see an example that shows up this fact.

A possible schedule for the threads A: A1, A2 and B: B1, B2 is the

following:

machine 1: B2, A1

machine 2: A2, B1

The problem with this schedule is that it cannot be obtained after

scheduling the first job of any thread, which is the idea behind the

28 CHAPTER 2. CLASSIFICATION

Scheduling On Execution paradigm. Nevertheless, it satisfies the

Start-End On Each Machine constraint.

This restriction models the Scheduling Before Executing paradigm.

As it will be proven later, a schedule that satisfies this constraint also satisfies

Start-End On Each Machine constraint.

4. Start-Start:

For every pair of jobs A, B belonging to a given thread, A preceding B in

this thread, B cannot start before A has started.

This restriction models the Scheduling On Execution paradigm.

As it will be proven later, a schedule that satisfies this constraint also satisfies

Extended Partial Order constraint.

5. Start-End:

For every pair of jobs A, B belonging to a given thread, A preceding B in

this thread, B cannot start before A has finished.

As it will be proven later, a schedule that satisfies this constraint also satisfies

Start-Start constraint.

6. End-End:

For every pair of jobs A, B belonging to a given thread, A preceding B in

this thread, B cannot finish before A has finished.

An instance of this model may be the following:

Suppose we have a set of machines in a network and our goal is

to process one or more sequence of packets; each packet contains

a compressed executable file and a number indicating an order

of execution. The file in each packet must be uncompressed and

delivered to a host computer for execution. Notice that the pro-

cessing of each packet ends with the delivery of the file contained

in the packet.

The following condition must also be satisfied. No packet may be

delivered if any file associated to a lower execution number packet

has not been sent. However, each packet may be unshrinked at

any time before being delivered.

Here, the End-End restriction is derived from the fact that job

i + 1 cannot end (i.e., packet i + 1 cannot be delivered) before job

i has ended.

2.4. PRECEDENCE RESTRICTIONS 29

In the next chapter, we will state and prove theorems about the relations

among these constraints. We will point out now a few considerations about them.

• For the Extended Partial Order constraint, the Start-End On Each Machine

constraint and the absence of constraints there is always a schedule that can

be viewed as a transformation of the w threads into m sequences -one for

each machine- where there are no idle times between any pair of jobs. This

property can not be guaranteed for the other constraints defined above.

• We will present an example showing that a schedule that is optimal satisfying

a given restriction may not be feasible if another constraint is imposed.

Furthermore, there may be no feasible schedule satisfying this last restriction

that has as good cost as the schedule that satisfies the first constraint.

Consider the following threads (identifying the jobs with their running times).

– A: 9, 7

– B: 1, 3, 2

An optimal schedule for Makespan cost function satisfying the Start-Start

constraint (jobi+1 may only begin if jobi has started) is:

Machine p: 9, 2 Machine q: 7, 1, 3

which has a cost of 11.

This schedule violates Start-End constraint (jobi+1 may only begin if jobi

has finished), for which the optimal schedule is

Machine p: 9, 7 Machine q: 1, 3, 2

and has a cost of 16, that is much worse than the cost obtained for the other

case.

• Other restrictions not covered by the preceding definitions can be modeled by

a directed acyclic graph; each directed edge means that the job represented

by the first of the nodes adjacent to the edge must be scheduled or executed

before the other job represented by the second node. We will not cover this

situation.

30 CHAPTER 2. CLASSIFICATION

2.5 Machine Speed

The speeds of the machines is another parameter of the problem. The following

models have appeared in [28].

• Equal Machines:

Each machine has the same speed. Then, any given job has the same running

time on each machine.

• Uniformly Related Machines:

The i-th machine has speed si > 0; a job with running time t executed on

the i-th machine, takes time t/si.

Equal Machines can be view as a special case of this one.

• Unrelated Machines:

In this case, we know for each job the relative speed of the machines. That

is, for each pair of one job and one machine, we have a possibly different

speed. As we only know the speeds, we cannot predict the running time of

a job until we know where it will be executed.

Uniformly Related Machines can be view as a special case of this one.

• Restricted Assignment:

Here, each job can be executed only on a given subset of the machines;

This case can be view as a special case of Unrelated Machines, where for-

bidden machines for a given job have speed 0 for that job.

We will only cover the Equal Machines’ case. The other cases are summarized

and referenced in [28].

2.6 Preemption

Frequently we deal with situations where the processing of a job may be suspended

and resumed (or restarted) later. The strategy of allowing processes that are

logically runnable to be temporarily suspended is called preemptive scheduling,

2.7. PRIORITY 31

and it contrasts with run to completion (also called nonpreemtive scheduling)

method.

• Without Preemption:

Every job that is assigned to a machine, runs to completion.

• With Preemption:

The on-line case gives us two variants to consider.

– Every suspended job must be restarted later.

– Every job that gains control of any machine goes on with its execution

at the same point it stopped the last time it was running.

Under the Scheduling Jobs One By One and Scheduling Before Execut-

ing paradigms, each job may be assigned to one or more machine and

time slots, and (in contrast with Scheduling On Execution paradigm)

this assignment has to be determined completely as soon as the job is

presented.

In the following chapters we will assume that jobs are not allowed to be pre-

emted. A summary and references about preemption for the classic on-line schedul-

ing problem is provided in [28].

2.7 Priority

One of the characteristics of a job, apart from its running time may be a priority,

that is an identification (usually a number) indicating how important the fast

execution of the job is. The possibilities are the following.

• Without Priorities:

Each job is as important as any other.

• With Priorities:

Scheduling higher priority (and available) jobs first may be mandatory or it

may just improve the cost without being mandatory. The last case may be

modeled as a schedule with weighted jobs and a suitable cost function.

32 CHAPTER 2. CLASSIFICATION

This item is closely related to Preemption. In case of working under a

model with preemption, a job may be preempted if another job with higher

priority becomes available.

Every analysis we will make from now on will be on jobs without priorities.

2.8 Rejection

In some given contexts it may be possible to decide whether a job will be served

or not. In case there exists the possibility to reject jobs, a certain penalty must be

paid for this behavior -or similarly, if each processed job has an associated benefit,

this benefit is missed.

• Without Rejection:

In this case, rejection of jobs is not allowed. This may happen when the

jobs must necessarily be executed, or when the cost associated to a rejection

clearly surpasses any possible intend to compensate for it.

• With Rejection:

Jobs may be rejected at a certain price. Apart from its running time, each

job is characterized by a penalty that the algorithm pays in case this job is

rejected.

The model presented in [7] used the makespan (of the scheduled jobs) plus

the sum of the penalties (of the rejected jobs) as the objective function to

minimize.

As when deciding where to execute each job, in the on-line version of this

problem the decision of either to reject or to schedule a job is made before

knowing anything about the next job. Even though, in [7] the previously

rejected jobs were allowed to be scheduled later.

This situation of scheduling previously rejected jobs may happen, for exam-

ple, when an algorithm that decides always to do the best now, i.e. to do at

any time what minimizes the present value of the cost function. In such a

situation, that algorithm may decide to reject a job -because scheduling it

would increase the makespan too much- and sometime later to schedule it

to some machine -as this action would imply a decrease in the cost function.

2.9. TIME WINDOW CONSTRAINTS 33

Thus, the scenario proposed in [7] may be seen as a non-trivial generalization

of the well-known sky-rental problem [19].

Along this work, we will not be concerned with any schedule that allows rejec-

tion.

2.9 Time Window Constraints

There may be time window constraints that restrict the time at which each job

may start and/or end its execution. The release time is the earliest time at which

a job may start its execution. Let us note there may be a job that is not ready

at its release time if there is a number big enough of jobs that precede it in the

thread. For an on-line algorithm, if the release time of a job is greater than the

time the jobs that precedes it in a thread have been scheduled, the release time is

also the time at which this job is presented.

The deadline is the latest time at which a job may start (or end) its execution.

Every job belonging to a feasible schedule finishes before its deadline. There may

be jobs that cannot finish before its deadline for any feasible schedule, for example,

if the number of jobs that precede it in the thread is big enough.

There may exist for each job, a release time, a deadline, both of them or none.

As a result, the following cases may be studied.

• Interval Scheduling:

Each job must be executed within a given interval of time. The following

two cases may be considered.

– The interval of each job starts when the first job among all the threads

begins its execution.

– The interval of each job starts when the job that precedes it in the same

thread begins its execution.

• Only Release Time:

Each job has a release time. This is a particular case of the previous one,

where the deadline of each job is infinity.

34 CHAPTER 2. CLASSIFICATION

• Only Deadline:

Each job has a deadline. This is a particular case of Interval Scheduling,

where the release time of each job is 0.

• No Time Window constraints:

This is a particular case of Interval Scheduling, where the release time of

each job is 0 and its deadline is infinity.

A summary and references about this topic for the classic on-line scheduling

problem is provided in [28]. For the cases we will study no time window constraints

will be assumed.

2.10 Finiteness

Two different approaches can be considered regarding the length of the threads.

They deal with the finiteness of that length and are defined as follows.

• Finite multiple threads. In this case, algorithms are faced to a given

number of threads, each one with a finite number of jobs. Each of these

threads have to be served completely that is, the algorithm ends its task

when the last job of the each thread has been processed.

• Infinite multiple threads. Under this model, each thread contains an in-

finite number of jobs and thus, an infinite scheduled is produced. In contrast

with the finite multiple threads case, in this case we may have -according to

one of the definitions- that at every point in the decision process an algo-

rithm has to be competitive. In other words, the state of the system will

be observed after a finite number of steps, comparing the costs incurred by

different algorithms till that moment.

Other definitions of an infinite model for the Multi-threaded Paging prob-

lem that can also be applied for the Multi-threaded Scheduling problem are

defined in [13].

The conceptual difference between these models is that while in the first one

every algorithm is forced to serve the same input (the same set of threads with the

2.11. CONFLICT RESTRICTION 35

same jobs), although possibly in different orders, in the second model, at every

step different algorithms may see different set of jobs. That is, in the finite model,

there is a moment (at the end of the scheduling) when every given algorithm has

the same view of the input, while in the infinite model this may not be the case.

References for this topic applied for the Multi-threaded Paging problem are

[12, 13].

In [12] it is shown that for the paging problem, infinite multiple threads may

yield significantly different competitiveness from the case with finite threads.

Along this work, we will only be concerned in the finite model.

2.11 Conflict Restriction

There may be a conflict within some pairs of jobs. In such a case, they must not

be executing at the same time, although there is no need to execute one of them

before the other. A case where this may happen is when two processes share a

common memory space.

These are two possibilities:

• No Conflict: any pair of jobs may be executed at the same time (at different

machines) if there are no precedence constraints that relate them.

• With Conflicting jobs: this case is explained above. An undirected graph

is given, where each edge between two nodes indicates that the jobs associ-

ated to these nodes are in conflict. As a result, only an independent set of

that graph is allowed to be executing at any time.

Conflicting jobs for the non-threaded scenario are treated in [28], where a few

results and references are provided. We will not deal with conflicting jobs along

this work.

36 CHAPTER 2. CLASSIFICATION

2.12 Restricting the Model

We have defined three (3) main on-line paradigms, four (4) different objective

functions, four (4) different cases regarding the number of machines, six (6) differ-

ent precedence constraints, four (4) different cases regarding the machines speed,

two (2) different cases regarding preemption, two (2) different cases regarding pri-

orities, two (2) different cases regarding rejection of jobs, four (4) different cases

regarding time window constraints, two (2) different cases regarding finiteness and

two (2) different cases regarding conflict restrictions.

The combinations of these cases gives rise to 3∗4∗4∗6∗4∗2∗2∗2∗4∗2∗2 = 147456

different scenarios.

Some of them are trivial or easy to analyze and others do not even make any

sense. Nevertheless, it is obvious that many books would be needed to analyze all

of them. For this reason, our model will be restricted for the rest of this work to

the following framework.

We will be covering the three main paradigms without the assumption that

any precedence constraint is present unless otherwise stated. We will assume that

there are present a fixed number of machines. The objective functions we will

work with are Makespan and Total Completion time. Only the Equal machines

case will be covered, that is, all the machines will have the same speed. Jobs

will not be allowed to be preempted. No priorities will be associated to the jobs.

Rejection of jobs will not be permitted, i.e., all the jobs will have to be scheduled

and executed. There will be no time window constraints, that is, the jobs will have

neither release times nor deadlines. We will consider threads with finite number

of jobs. Finally, there will be no conflict between any pair of jobs.

Chapter 3

Relations in the Classification

This chapter can be considered the core of this work because it comes to inter-

connect different aspects of the taxonomy as well as to state some facts about

them.

We will focus on the relations that arise among different scenarios and the

convenience of waiting before executing a job while leaving a machine idle.

The first section will be devoted to the relations among the precedence con-

straints. In the following section the precedence constraints will be related to the

on-line paradigms. In the last section of this chapter, we will prove that in some

contexts leaving some machine idle is useless.

3.1 Analyzing the Precedence Constraints

Intuitively, the presence of Start-End On Each Machine constraint does not avoid

an anomaly related to some notion of cycles involving the jobs. This was what

gave us the intuition to define graphs that model the scheduling and execution flow

that arise in a given schedule.

We have found two of these graphs, one that is associated to the Start-End

On Each Machine constraint and another one that is associated to the Extended

Partial Order constraint.

37

38 CHAPTER 3. RELATIONS IN THE CLASSIFICATION

First, we will define these graphs. Then we will provide two theorems that

relate these graphs with Start-End On Each Machine and Extended Partial Order

constraints. After that, we will state and prove relations that arise among some

precedence constraints.

3.1.1 SEP Graphs

Here, we will define two kinds of directed graphs which we have called SEP

(Scheduling-Execution Precedence) graphs, because they capture precedence re-

lations that arise both during the scheduling and during the execution. These

relations are different for each schedule and so are their associated graphs.

For both of these directed graphs, each node represents a job and the edges

represent two different types of relations. The first type of directed edge represents

the thread flow, that is, a directed edge between a pair of nodes means that both

of them belong to a given thread and the first node precedes the second one in

that thread.

The second type of directed edge represents the execution flow, that is, a

directed edge between a pair of nodes means that both of them are executed on a

given machine and the first node is executed before the second one in that machine.

The first type of graph, called Particular SEP graph considers only the relations

corresponding to individual machines and -as it will be shown below- is related to

the Start-End On Each Machine constraint. We can build one of these graphs for

each machine and any given schedule.

The second type of graph, called General SEP graph considers the relations

that arise not only within each machine alone but also among all the the machines

together. As it will be shown, it is related to the Extended Partial Order constraint.

There is only one of these graphs for each schedule.

• Particular SEP Graph: Given the schedule S, the Particular SEP Graph

for machine k,Gk(S) = (V S
k , T S

k ∪ ES
k) is a directed graph such that

– V S
k = {vi : in S, job i is executed on machine k}.

– (vi, vj) ∈ T S
k if and only if

3.1 Analyzing the Precedence Constraints 39

1. {vi, vj} ⊆ V S
k

2. job i precedes job j in a given thread. This implies that job i will

be scheduled before job j.

– (vi, vj) ∈ ES
k if and only if

1. {vi, vj} ⊆ V S
k

2. job i is executed before job j on machine k for the schedule S.

Note that for schedule S, T S
k represents the “thread flow” restricted to the

jobs that are scheduled to machine k and ES
k represents the “execution flow”

of the jobs executed in machine k.

• General SEP Graph: A General SEP Graph G(S) = (V, T ∪ ES) is a

directed graph such that

– V = {vi : i is a job }.

– (vi, vj) ∈ T if and only if

1. {vi, vj} ⊆ V

2. job i precedes job j in a given thread.

– ES = ∪w
k=1E

S
k , where ES

k is defined as in the Particular SEP graph.

T represents the “threaded flow” and ES represents the “execution flow” in

the schedule S.

Note that T includes not only the union of the T S
K defined in the Particu-

lar SEP, but also the edges that represent the “thread flow” between jobs

executed on different machines.

3.1.2 Relating SEP Graphs with Precedence Constraints

Here, we relate the SEP graphs with the precedence constraints. Firstly, we state

and prove the relation between Start-End On Each Machine constraint and a set of

Particular SEP graphs. Then, we associate the Extended Partial Order constraint

with a General SEP graph.

Theorem 3.1.2.1 A schedule S satisfies the Start-End On Each Machine con-

straint if and only if for every machine k the Particular SEP graph Gk(S) has no

cycles.

40 CHAPTER 3. RELATIONS IN THE CLASSIFICATION

Proof: It is enough to prove that for the schedule S, Start-End On Each Machine

constraint is violated on machine k if and only if there is a cycle on the Particular

SEP graph Gk(S).

Firstly, suppose that for the schedule S, Start-End On Each Machine constraint

is violated on machine k. Then, there are two jobs A and B, A precedes B in a

given thread and A starts after B in machine k.

Then, in the Particular SEP graph Gk(S) = (V S
k , T S

k ∪ ES
k), there is an edge

from vA to vB in T S
k (the “thread flow”) and another edge from vB to vA in ES

k

(the “Machine execution flow” of machine k). It is clear now that there is a cycle

on the Particular SEP Graph Gk(S).

To prove the opposite implication, suppose that S satisfies the Start-End On

Each Machine constraint. That is, given two jobs i and j that come from the same

thread and are executed on the same machine, we have that if job i is scheduled

before job j in S, then job i will be executed before job j in S.

This is equivalent to say that

(vi, vj) ∈ T S
k ⇒ (vi, vj) ∈ ES

k .

Now, suppose (by contradiction) that there is a cycle on the Particular SEP

graph Gk(S) = (V S
k , T S

k ∪ ES
k). Then, there exists a cycle where each of its edges

belongs to ES
k . This implies that any job associated to a node in this cycle must

be executed before itself, which is a contradiction. 2

Theorem 3.1.2.2 A given schedule satisfies the Extended Partial Order con-

straint if and only if its General SEP graph has no cycles.

Proof: It is a straightforward consequence from the definitions of the Extended

Partial Order constraint and the General SEP graph. 2

3.1.3 Relations among Precedence Constraints

To conclude this section, we state and prove some relations that connect the

different precedence constraints. Firstly, we show that Extended Partial Order

3.1 Analyzing the Precedence Constraints 41

constraint is stronger than Start-End On Each Machine constraint, that is, that

every schedule satisfying Extended Partial Order constraint also satisfies Start-End

On Each Machine constraint.

Secondly, we show that Start-Start constraint is stronger than Extended Partial

Order constraint and we will show an example of a family of schedules that satisfy

Extended Partial Order constraint but do not satisfy Start-Start constraint.

After that, we show that Start-End constraint is stronger than Start-Start

constraint.

Finally, we show that Start-End constraint is also stronger than End-End con-

straint.

Theorem 3.1.3.1 Every schedule satisfying Extended Partial Order constraint

also satisfies Start-End On Each Machine constraint.

Proof: Given a schedule S, let GK(S) be a Particular SEP graph for some machine

k and let G(S) be a General SEP graph. Clearly (considering the Particular and

General SEP graphs’ definitions), if there is a cycle in Gk(S) then there is a cycle

in G(S).

Therefore the claim follows from Theorem 3.1.2.1 and Theorem 3.1.2.2. 2

Theorem 3.1.3.2 Every schedule satisfying Start-Start constraint also satisfies

Extended Partial Order constraint.

Proof: Suppose that a given schedule S satisfies the Start-Start constraint and

by contradiction, that S violates the Extended Partial Order constraint. Then,

there is a cycle in the General SEP graph G(S) = (V, T ∪ ES).

As Start-Start is satisfied, every edge (vi, vj) ∈ T implies that job i must start

no later than job j. Considering the definition of ES, every edge (vi, vj) ∈ ES

implies that job i is executed before job j in a given machine, and then, job i

starts before job j.

As a result, each path of G(S) from vi to vj with at least one edge in ES means

that job i must start before job j.

42 CHAPTER 3. RELATIONS IN THE CLASSIFICATION

As by definition of T , there can not be cycles consisting only of edges of T , each

cycle must have at least one edge in ES. Then any node in a cycle is associated

to a job that must start before itself, which is clearly a contradiction. 2

The converse is not true. That is, a schedule that satisfies Extended Partial

Order constraint may not satisfy Start-Start constraint. To show an example that

supports this claim, we will use the following notation.

Let J be a job. Then t(J) denotes the running time of J .

Here is the example:

In the case of a single thread A : A1, A2, A3, A4 such that

t(A1) = 7, t(A2) = 3, t(A3) = 8, t(A4) = 2,

the following schedule satisfies Extended Partial Order constraint:

machine 1: A1A2

machine 2: A3A4.

This schedule violates Start-Start constraint.

An analogous example for w threads:

W1 : A1 · · · A2m

W2 : B2,1 · · · B2,m

· · ·
Ww : Bw,1 · · · Bw,m

t(A2i+1) = 2i, t(A2i+2) = 2m − 2i

t(Bi,j) = ε where wε < 1

3.1 Analyzing the Precedence Constraints 43

The following schedule satisfies Extended Partial Order constraint (and is op-

timal for the makespan).

machine 1: A1A2B2,1 · · ·Bw,1

· · ·

machine m: A2m−1A2mB2,m · · ·Bw,m

This schedule violates Start-Start constraint. Furthermore, there is no schedule

satisfying Start-Start constraint with the same cost as the schedule that satisfies

Extended Partial Order constraint.

We may think each schedule as a transformation from an array of sequences

(the threads) into another array of sequences (the sequences for each machine).

In that case, it is interesting to observe the following property.

There exists a schedule S : a[w] → a[m] (from w threads into m machines)

that satisfies Extended Partial Order constraint if and only if there exist schedules

S1 : a[w] → a[1] (from w threads into 1 machine) and S2 : a[1] → a[m] (from

1 thread into m machines) such that both S1 and S2 satisfy Start-End On Each

Machine constraint and S = S2oS1.

Note that a schedule S : a[w] → a[1] satisfies Start-End On Each Machine

constraint if and only if S satisfies Extended Partial Order constraint and a sched-

ule S ′ : a[1] → a[m] satisfies Start-End On Each Machine constraint if and only

if S ′ satisfies Extended Partial Order constraint.

Theorem 3.1.3.3 Every schedule satisfying Start-End constraint also satisfies

Start-Start constraint.

Proof: Follows directly from the definitions of Start-End and Start-Start con-

straints. 2

Theorem 3.1.3.4 Every schedule satisfying Start-End constraint also satisfies

End-End constraint.

44 CHAPTER 3. RELATIONS IN THE CLASSIFICATION

Proof: Follows directly from the definitions of Start-End and End-End con-

straints. 2

3.2 Relating On-line Paradigms with Precedence

Constraints

In this section we relate on-line paradigms with precedence constraints. Firstly,

we note that Scheduling Jobs One By One paradigm does not force any precedence

constraint.

Secondly, we state and prove that any schedule can be obtained under the

Scheduling Before Executing paradigm if and only if it does not violate Extended

Partial Order constraint.

After that, we prove that any schedule can be obtained under the Scheduling

On Execution paradigm if and only if it does not violate Start-Start constraint.

Finally, the fact that every schedule obtained under the Scheduling On Execu-

tion paradigm can be obtained under the Scheduling Before Executing paradigm

is deduced as a corollary.

Proposition 3.2.0.5 Scheduling Jobs One By One paradigm does not imply any

precedence constraint, i.e., every schedule is feasible under the Scheduling Jobs

One By One paradigm.

Theorem 3.2.0.6 Schedules that can be obtained under the Scheduling Before

Executing paradigm are exactly those that do not violate the Extended Partial

Order constraint.

Proof: Firstly, we will prove that every schedule obtained under the Scheduling

Before Executing paradigm does not violate Extended Partial Order constraint.

After that, we will prove that every schedule satisfying Extended Partial Order

constraint can be obtained under the Scheduling Before Executing paradigm.

Let us recall the definition of Extended Partial Order constraint.

3.2 Relating On-line Paradigms with Precedence Constraints 45

There is no sequence of jobs A1, . . . , Ak such that

• Ai → Ai+1∀i ∈ {1, . . . , k − 1}
• Ak → A1,

where X → Y means that job X precedes job Y in the same thread or

job X is scheduled to be executed before job Y in the same machine.

We can infer that under the Scheduling Before Executing paradigm, if job X

precedes job Y in a given thread then X is scheduled before Y . Therefore, under

the Scheduling Before Executing paradigm, X → Y implies that X is scheduled

before Y and, by transitivity, X1 → . . .→ Xj implies that X1 is scheduled before

Xj.

Now it is clear that a cycle of “→” would imply that each node belonging to

it has been scheduled before itself, which is a contradiction.

To prove that every schedule satisfying Extended Partial Order constraint can

be obtained under the Scheduling Before Executing paradigm, we will use Theo-

rem 3.1.2.1.

Let S1 be a schedule satisfying Extended Partial Order constraint, and let

G(S1) = (V, T ∪ES1) be the General SEP graph of S1. By Theorem 3.1.2.1, G(S1)

is a DAG (directed acyclic graph). To simplify the proof, we will think that S1

does not wait, although a similar proof may be applied if this is not the case.

We will prove that the following procedure, that can be applied under the

Scheduling Before Executing paradigm, produces a schedule S2 that is equal to S1.

S2 ← ∅
While V is not empty

Pick vi ∈ V such that dout(vi) = 0

V ← V \ {vi}
assign job i to the first available space of S2 in the same

machine as in S1

(same time slot as in S1)

As each job is scheduled to the same machine in S1 as in S2 and the thread

flow is the same for S1 and S2, we must prove that the execution flow is also the

46 CHAPTER 3. RELATIONS IN THE CLASSIFICATION

same for both of them to prove that S1 = S2. That is, we must prove that any

given pair of jobs executed in the same machine (both in S1 and S2) have the same

execution order in S1 than in S2.

Suppose, by contradiction, that in S1 job i is scheduled before job j and in S2

job j is scheduled before job i. By construction, when j was scheduled in S2, vj

has no outgoing edges in G(S1); Thus, considering that j and i are scheduled to

the same machine and that j was scheduled when there were no edges from vj to vi

in G(S1), we can infer that j is scheduled before i in S1, which is a contradiction.

To conclude, we must prove that this procedure may be applied under the

Scheduling Before Executing paradigm. To show that, it suffices to prove that at

the moment a job is scheduled, either this job is the first one of a thread, or all

the preceding jobs in that thread have already been scheduled.

Suppose, by contradiction, that job i precedes job j in the same thread and

job j is scheduled before job i in S2. As job i precedes job j in the same thread,

then there is an edge from vi to vj in G(S1). Thus, by construction, job i cannot

be scheduled before j in S2, which is a contradiction. 2

Theorem 3.2.0.7 Schedules that can be obtained under the Scheduling On Exe-

cution paradigm are exactly those that do not violate the Start-Start constraint.

Proof: First we will prove that every schedule obtained under the Scheduling On

Execution paradigm satisfies Start-Start constraint.

Let A and B be two jobs in a schedule obtained under the Scheduling On

Execution paradigm such that A precedes B in a given thread. As in Scheduling

On Execution paradigm A must start its execution at the same moment in which it

is scheduled (and A must be scheduled before B), then A must start its execution

before B.

Now, we will prove that every schedule that satisfies Start-Start constraint can

be obtained under the Scheduling On Execution paradigm.

Let S be a schedule satisfying Start-Start constraint. It suffices to prove that

every job can be executed under the Scheduling On Execution paradigm at the

same time it is scheduled for execution in S. Suppose this is false.

3.3. WHAT ABOUT WAITING? 47

Let i be the first job in S that is scheduled for execution at a time that cannot

be executed under the Scheduling On Execution paradigm. The only reason for

which i may not be available for execution under the Scheduling On Execution

paradigm is that a job j preceding it in the same thread has been scheduled for

execution at a later time.

To prove that this is a contradiction, it is enough to notice that i cannot

be scheduled for execution at a later time than j because it would violate the

Start-Start constraint. 2

Corollary 3.2.0.8 Every schedule that may be obtained under the Scheduling On

Execution paradigm may also be obtained under the Scheduling Before Executing

paradigm.

Proof: It is a consequence of Theorem 3.2.0.6, Theorem 3.2.0.7 and Theorem 3.1.3.2.

2

3.3 What about waiting?

In this section we tackle the following question: how much worth is it to wait? In

other words, can we obtain any benefit if we let one or more machines to have

some idle time before executing a job? Is there any advantage in postponing a

job’s execution?

This question will be considered under the three main paradigms we are study-

ing, without any precedence constraints and for Makespan and Total Completion

Time cost functions.

Firstly, we will focus on optimal schedules obtained off-line.

Definition 3.3.1 We will consider that machine p is waiting at time t in a given

schedule if at time t, p is not executing any job and there is a job ready and

waiting to be scheduled for (immediate) execution. In this case p will be called

waiting machine.

48 CHAPTER 3. RELATIONS IN THE CLASSIFICATION

Definition 3.3.2 A schedule that is produced in the preceding situation will be

called waiting schedule.

Theorem 3.3.0.9 For the Total Completion time cost function, any optimal

schedule obtained under the Scheduling On Execution paradigm is not a waiting

schedule.

Proof: Suppose there exists an optimal schedule S such that on its execution

there exists a machine p that starts waiting at time t for δ units of time. Let A

be the job scheduled to machine p at time t + δ.

• If A is ready at time t, then let S ′ be the schedule obtained by scheduling A

to machine p at time t and all the other jobs at the same time as in schedule

S. It is clear that S ′ is feasible under the Scheduling On Execution paradigm

and its cost is smaller than the cost of S, which is a contradiction as S was

optimal.

• If A is not ready at time t, then there exists a job B, preceding A in the same

thread, which will start being executed before A, at time t + ε (0 < ε < δ).

Suppose that B is scheduled to machine q. Now let S ′ be a schedule equal to

S except that the jobs scheduled to start after time t on machine q (including

job B) are swapped with the jobs scheduled to start after time t on machine

p (including job A). It is clear that S ′ is feasible under the Scheduling On

Execution paradigm and its cost is the same as the cost of S. Let S ′′ be

a schedule equal to S ′ except that job B is scheduled to begin at time t

(instead of time t + ε). As in the previous case, S ′′ is feasible under the

Scheduling On Execution paradigm and has smaller cost than the one of S,

which is a contradiction.

2

Note: The extension of Theorem 3.3.0.9 for the case where release times are

used does not hold. The following example supports this claim.

Thread A: two jobs, A1, A2 with release times 0 and 2 respectively,

both of length 1.

3.3 What about waiting? 49

Thread B: One job B1 with release time 0 and length 8.

With only one machine, the optimal schedule is A1A2B1 with cost

1 + 3 + 11 = 15 where job A2 waits one unit of time before starting

its execution. This schedule is better than any schedule that does not

wait.

Theorem 3.3.0.10 Under the Scheduling On Execution paradigm and for the

Makespan cost function there exists an optimal schedule in which no machine is

waiting at any time.

Proof: Let I : schedules → time be a function, I(S) = t, where t is the time at

which the first waiting machine(s) starts waiting in S. That is, in S no machine

starts waiting before time t. For schedules such that no machine waits, we define

I(S) = +∞.

Let S = {S : S is an optimal schedule and for all feasible schedule S ′, I(S) ≥
I(S ′)}. That is, S is the set of optimal schedules that “wait as late as possible”.

Let S ′ = {S : S ∈ S such that the number of machines that start to wait at

time I(S) is minimum }.

Let S1 be a schedule such that S1 ∈ S ′. To prove that S1 “does not wait”,

suppose by contradiction that S1 has a machine p that starts waiting at time t for

δ units of time. Let A be the job scheduled to machine p at time t + δ.

• If A is ready at time t, then let S2 be the schedule obtained by scheduling

A to machine p at time t and all the other jobs at the same time as in

schedule S1. It is clear that S1 ∈ S and S2 ∈ S and the number of machines

that begin to wait at time I(S1) is greater than the number of machines

that begin to wait at time I(S2). This fact contradicts the assumption that

S1 ∈ S ′.

• If A is not ready at time t, then there exists a job B, preceding A in the same

thread, which will start to be executed before A, at time t + ε (0 ≤ ε < δ).

Suppose that B is scheduled to machine q. Now let S2 be a schedule equal to

S except that the jobs scheduled to start after time t on machine q (including

job B) are swapped with the jobs scheduled to start after time t on machine

50 CHAPTER 3. RELATIONS IN THE CLASSIFICATION

p (including job A). It is clear that S2 ∈ S ′. Note that we are now in the

preceding case.

Let S3 be a schedule equal to S2 except that job B is scheduled to begin

at time t (instead of time t + ε). As in the previous case, S3 ∈ S and the

number of machines that begin to wait at time I(S2) is greater than the

number of machines that begin to wait at time I(S3). This fact contradicts

the assumption that S2 ∈ S ′.

2

Note: Theorems 3.3.0.9 and 3.3.0.10 say that under the Scheduling On Execu-

tion paradigm there is always an optimal schedule with respect to the Makespan

and Total Completion Time cost functions such that it is not a waiting schedule.

The intuition behind this fact is that as the release time of each job is at the time

the preceding job is scheduled (starting its execution), there is no gain of infor-

mation while waiting -no new job will get ready- and so, waiting will not improve

the performance of a schedule.

The preceding theorems regards Scheduling On Execution paradigm. The case

of Scheduling Jobs One By One paradigm is similar if we define “waiting” as “not

scheduled to the first available time slot (of some machine)” and is stated in the

following two proposition which will not be proven. For the case of Scheduling

Before Executing paradigm this kind of analysis makes no sense.

Proposition 3.3.0.11 Any optimal schedule with respect to the Total Completion

time cost function obtained under the Scheduling Jobs One By One paradigm is

not a waiting schedule.

Proposition 3.3.0.12 There exists an optimal schedule with respect to the Makespan

cost function obtained under the Scheduling Jobs One By One paradigm in which

no machine is waiting at any time.

The preceding propositions are particular cases of scheduling problems in gen-

eral, where if no release times are considered and no precedence constraints are

present the same results also hold.

3.3 What about waiting? 51

In Theorems 3.3.0.9 and 3.3.0.10 and the preceding propositions it is stated

that both for the Makespan and Total Completion Time cost functions, waiting

does not improve the cost of a schedule. In other words, in those cases there

exists an optimal schedule that executes one job after another without leaving

any machine idle before that machine ends the processing of the sequence of jobs

it has been assigned.

Although we have treated the case where no precedence constraints are present,

by the theorems of Chapter 3, these theorems and propositions are also valid for the

case where Extended Partial Order constraint or Start-Start constraint is present.

For the other precedence constraints some further analysis is required.

Until now, we have been talking about optimal schedules. In the cases we

have treated, the conclusion was that we can find an optimal schedule that does

not wait. Do on-line algorithms hold similar properties? Can we say that, for an

on-line algorithm waiting does not improve performance?

For each of the preceding cases . . . is there an on-line algorithm that achieves

the best competitive ratio producing schedules that do not wait? In other words,

is there an on-line algorithm that achieves a better competitive ratio than any

other on-line algorithm that produces schedules that wait?

Theorem 3.3.0.13 Under the Scheduling On Execution paradigm and with re-

spect to both Makespan and Total Completion Time cost functions, for every on-

line algorithm that waits there is another on-line algorithm that does not wait and

has not worse competitive ratio.

The proof of this theorem will not be provided because it is very similar to

the one provided for optimal schedules. It may be done simulating the flow of the

time, considering that no new information (no new jobs) will be available if time

passes. In such a case, an algorithm that does not wait can make similar decisions

than another one that waits, just simulating the flow of the time.

Theorem 3.3.0.14 Under the Scheduling Jobs One By One paradigm and with

respect to Makespan cost function, for every on-line algorithm that waits there is

another on-line algorithm that does not wait and has not worse competitive ratio.

52 CHAPTER 3. RELATIONS IN THE CLASSIFICATION

Again, the proof of this theorem will not be provided because it is similar to the

preceding ones. Even though, it is worthwhile noticing that, as it will be proven in

the next chapter, if we consider Makespan cost function, algorithm working under

the Scheduling Jobs One By One and Scheduling Before Executing paradigms have

the same competitive ratio. Thus, the result of the theorem can easily be deduced

from this fact.

Even we have not reached any proof, we believe this result does not apply if

we consider Total Completion Time cost function. We base this intuition in the

fact that if waiting is not allowed, it can easily be proved that no competitive

algorithm can be achieved, while if waiting is allowed, the analysis is complex.

Chapter 4

Competitiveness Results

In this chapter, we present the competitiveness results related to some of the

contexts that have been explained above. For all of these contexts, we will assume

that the schedules are not required to satisfy any precedence constraint, unless

otherwise stated.

We will analyze the different contexts considering two objective functions. In

the first section, minimizing the Makespan will be our goal. In the second one, we

will focus on the Total Completion Time cost function.

At last, we make a short analysis considering some cases were Start-End con-

straint is applied.

First of all, we will state two lemmas and a proposition that were pointed

out in [11] and are valid for both the Makespan and the Total Completion Time

objective functions.

Lemma 4.0.0.15 Any algorithm for the on-line single-threaded scheduling prob-

lem under the Scheduling On Execution paradigm is 1-competitive.

Proof: At any point in time there is only one job available for scheduling. There-

fore an algorithm that schedules each job as soon as a machine becomes available,

yields the optimal solution. 2

53

54 CHAPTER 4. COMPETITIVENESS RESULTS

Lemma 4.0.0.16 Any algorithm for the on-line single-threaded single machine

scheduling problem under the Scheduling Before Executing paradigm is 1-competitive.

Proof: There is only one feasible solution for such a problem. 2

Proposition 4.0.0.17 Lower bounds on the competitiveness of on-line algorithms

for single-threaded problems are also valid for the multi-threaded versions.

Proof: This is easily seen from the fact that in a w-threaded problem it is always

possible to have w − 1 threads empty or, if this is not appreciated, filled with

negligible jobs. 2

4.1 Makespan

The Makespan objective function measures the time at which the last job among

all the threads is completed. This problem has an advantage over its counterpart

with the Total Completion Time objective, because the order in which jobs are

executed on the machines does not influence the Makespan.

Proposition 4.1.0.18 There exists a c-competitive algorithm under the Schedul-

ing Jobs One By One paradigm with respect to the makespan cost function if and

only if there exists a c-competitive algorithm under the Scheduling Before Execut-

ing paradigm with respect to the same cost function.

Proof: To prove this proposition, it is enough to present the following two facts.

First, that optimal (off-line) schedules obtained under each of these paradigms

have the same makespan cost. This is so because a schedule obtained under

Scheduling Jobs One By One may be reordered into another schedule such that

the last schedule can also be obtained under Scheduling Before Executing and each

job is assigned to the same machine as in the first schedule (probably in a different

order).

Second, that a schedule with the same makespan as the one obtained by an

on-line algorithm under Scheduling Jobs One By One may be obtained under

4.1. MAKESPAN 55

Scheduling Before Executing. To show this is true, it suffices to note that each job

can be assigned to the same machine as to the one used by an algorithm processing

under Scheduling Jobs One By One, but to the first available time slot, with the

same makespan cost. 2

The following theorem holds for the single-threaded case and appeared first in

[11].

Theorem 4.1.0.19 Given any algorithm A for the single-threaded makespan prob-

lem having competitive ratio ρ, there exists an algorithm Aw for the multi-threaded

version also with competitive ratio ρ.

With the goal of minimizing the Makespan objective function Graham in

1966 [15] conceived a simple deterministic greedy algorithm, called nowadays List

Scheduling, for the non-threaded scheduling problem.

As pointed out in [28], the algorithm works for Scheduling Jobs One By One

and Scheduling On Execution paradigms both with known running times (called

in [28] Jobs arrive over time) and unknown running times, for the non-threaded

version. In addition, it also works for the Scheduling Before Executing paradigm

introduced in this work.

Theorem 4.1.0.20 [15, 28] (for the non-threaded version) List Scheduling Al-

gorithm (Fig. 4.1) is (2 − 1
m

)-competitive with respect to the Makespan objective

function.

In this algorithm, both for Scheduling Jobs One By One and Scheduling Be-

fore Executing paradigms, we can rephrase “scheduling to an idle machine” as

“scheduling to the least loaded machine”.

List Scheduling for a non-threaded input has proven to be an optimal deter-

ministic algorithm for the cases m = 2 and m = 3. For m ≥ 4, better competitive

deterministic algorithms have been given, although they have not proven to be

optimal. For arbitrary m, a better algorithm was first developed in [6] with com-

petitive ratio 1.9230. Its analysis is relatively complicated. Lower bounds for this

problem -1.8520 for large m- were presented in [1, 5].

56 CHAPTER 4. COMPETITIVENESS RESULTS

Process the jobs in any feasible order

Whenever some machine is idle, we schedule on it the first

available job (i.e., it is not scheduled yet and the

current time is greater than its release time).

Figure 4.1: List Scheduling Algorithm

Better competitive ratios have been obtained using randomized algorithms.

For both deterministic and randomized algorithms, references and summarized

results are given in [28].

The same algorithm also works for the multi-threaded version.

Theorem 4.1.0.21 [11] List Scheduling is a (2 − 1
m

)-competitive algorithm for

the multi-threaded makespan problem under any of the three main paradigms.

Proof: It is known that List Scheduling is (2 − 1
m

)-competitive for any on-line

makespan problem, independently of the order in which the jobs are considered

for scheduling on the machines, as long as no idle time on any of the machines

occurs, i.e., as long as no machine is not busy while there are still jobs available

for processing. Clearly, List Scheduling combined with a round robin routine for

dealing with the threads gives a schedule that satisfies this property. 2

It is worthwhile noticing that under the Scheduling On Execution paradigm,

this algorithm proves to be optimal and almost optimal for the cases w ≥ m and

w < m respectively, as shown by the following two theorems.

Theorem 4.1.0.22 [11] Under the Scheduling On Execution paradigm, any on-

line algorithm for the multi-threaded makespan problem is at least (2− 1
m

)-competitive

for w ≥ m. This means that for this problem, List Scheduling Algorithm is strongly

competitive.

Proof: Consider the following adversarial strategy. There are m threads given.

Each of the threads begins with m− 1 jobs with processing time 1, which we call

4.2. TOTAL COMPLETION TIME 57

small jobs hitherto. One of the threads has additionally a big job with processing

time m.

Given any on-line algorithm one of the m last small jobs in the threads will

be scheduled last and cannot be started before time m(m − 1)/m = m − 1. The

adversary “hides” the big job behind this job in the same thread. Thus, also the

big job cannot be started by the on-line algorithm before time m − 1, and the

resulting makespan is at least 2m− 1.

In the optimal solution the m− 1 small jobs in the thread containing the big

job are scheduled first (at time 0) on the first m− 1 machines and the big job is

started also at time 0 on the m-the machine. After that the remaining (m − 1)2

small jobs are equally divided over the first m− 1 machines, yielding a makespan

of m. 2

Theorem 4.1.0.23 Under the Scheduling On Execution paradigm, any on-line

algorithm for the multi-threaded makespan problem is at least (2− 1
m
− 1

w
)-competitive

for w < m.

The proof for this theorem is similar to the preceding one.

Theorem 4.1.0.24 Under the Scheduling Jobs One By One and Scheduling Be-

fore Executing paradigms, the competitive ratio’s lower and upper bounds for the

non-threaded makespan problem also hold for the multi-threaded one.

Proof: Considering that the non-threaded and single-threaded problems under

the Scheduling Jobs One By One and Scheduling Before Executing paradigms are

the same, the result can be inferred from Theorem 4.1.0.19. 2

4.2 Total Completion Time

The Total Completion Time is the sum of the completion times of the jobs. Unlike

in the Makespan problem, for the Total Completion Time the on-line algorithm

has to worry about the order in which jobs are executed on the machines.

58 CHAPTER 4. COMPETITIVENESS RESULTS

All the results presented in this section will correspond to Total Completion

Time objective.

To minimize this objective function off-line, it is easy to see that the optimum

is obtained scheduling first the jobs with small running times when possible.

For the Scheduling Before Executing and Scheduling On Execution paradigms

we have reached important results. We have found a strongly competitive algo-

rithm under Scheduling Before Executing and Scheduling On Execution paradigms

for the single machine case. Also for the same paradigms, we have found that no

competitive algorithm can be obtained while processing in more than one machine.

Firstly, we will analyze the single machine case.

4.2.1 Scheduling Before Executing and Scheduling On Ex-

ecution for the single machine case

We will present first the lower bound result for our present problem and after that

we will show an on-line algorithm that achives the same value as an upper bound.

Lower bounds

The following theorem and its proof were presented in [11] regarding a lower bound

to our problem under the Scheduling Before Executing paradigm and the single

machine case. We have found that this result also applies for the Scheduling On

Execution paradigm (also for the Total Completion Time objective function and

the single machine case), with the same proof. The lower bound for these problems

equals the number of threads.

Theorem 4.2.1.1 Any on-line algorithm that is ρ-competitive under Scheduling

Before Executing and Scheduling On Execution paradigms, for the single machine

w-thread problem must have ρ ≥ w.

Proof: The proof for the single-threaded case (w = 1) is trivial. We will assume

w ≥ 2.

4.2. TOTAL COMPLETION TIME 59

To prove the theorem we establish an adversary input sequence that will force

any algorithm to be at best w-competitive. The w threads have each of them a

job with processing time 1 at the first position. Then only one of the threads has

after this job a sequence of n jobs with processing time ε each. The adversary

will “hide” this sequence of n jobs in the thread that will be explored last by the

on-line algorithm.

For this sequence the optimal schedule is obviously to start processing the first

job of the thread that contains the n small jobs. Then these n jobs with processing

time ε are processed and afterwards the remaining w− 1 jobs leading to a sum of

completion times

zOPT = 1 + n +
1

2
n(n + 1)ε + (1 + nε)(w − 1) +

1

2
(w − 1)w

= 1 + n +
1

2
n2ε +

1

2
nε + w − 1 + n(w − 1)ε +

1

2
w2 − 1

2
w

= n +
1

2
w +

1

2
w2 − 1

2
nε +

1

2
n2ε +

1

2
nwε.

The sum of completion times of the on-line algorithm is given by

zOL =
1

2
w(w + 1) + nw +

1

2
n(n + 1)ε

= nw +
1

2
w +

1

2
w2 +

1

2
nε +

1

2
n2ε.

Therefore, the ratio between the two tends to w if ε = o(n−3) and n tends to

infinity. 2

Upper bounds

The first attempt to develop a competitive algorithm for this problem was the

following.

ShortestFirst Algorithm: “Among the ready unserved jobs of each thread,

pick the shortest one and schedule it”.

The following instance shows that ShortestFirst algorithm is not c-competitive

for any constant c.

60 CHAPTER 4. COMPETITIVENESS RESULTS

There are two non-empty threads, one with n1 jobs of length 1 − ε and the

other non-empty thread starts with a job of length 1 and after it, n2 jobs of length

ε (ε < 1).

The cost of ShortestFirst algorithm is

n1∑
i=1

i(1− ε) + n1(1− ε) + 1 +
n2∑
i=1

(n1(1− ε) + 1 + iε) ≥

n2∑
i=1

n1(1− ε) =

n2n1(1− ε)

The optimal way (off-line) of assigning them is: process the job of length 1,

then the n2 jobs of length ε and finally the n1 jobs of length 1− ε.

Then, the optimal cost is

1 +
n2∑
i=1

(1 + iε) +
n1∑
i=1

(1 + n2ε + i(1− ε)) =

1 + n2 +
n2 + 1

2
n2ε + n1(1 + n2ε) +

n1 + 1

2
n1(1− ε) ≤

1 + n2 +
n2 + n2

2
n2ε + n1(1 + n2ε) +

n1 + n1

2
n1(1− ε) =

1 + n2 + n2
2ε + n1 + n1n2ε + n2

1(1− ε)

Therefore, any c-competitive algorithm must verify

c ≥ n2n1(1− ε)

1 + n2 + n2
2ε + n1 + n1n2ε + n2

1(1− ε)

We can think that ε = n−2, n1 = n and n2 = n2, in which case

c ≥ n2n(1− n−2)

1 + n2 + n4n−2 + n + nn2n−2 + n2(1− n−2)
=

n2 − 1

3n + 2

This term cannot be bounded by any constant.

4.2. TOTAL COMPLETION TIME 61

H[i]: Head of the i-th thread (first job of this thread now)

Sum[i]: Total processing time of the i-th thread up to now

for i : 1 . . . w

Sum[i] ← 0

while there exists an unserved job do

Choose i : i = minj{Sum[j] + RunningTime(H[j]): there is an

available job in the j-th thread ready to be served}
process H[i]

Sum[i] ← Sum[i] + RunningTime(H[i])

Figure 4.2: BalanceProcessing Algorithm

BalanceProcessing Algorithm

We present now BalanceProcessing Algorithm (Fig. 4.2), and we will show that

it is strongly competitive (i.e., achieves the same competitive factor as the lower

bound).

The intuitive idea behind BalanceProcessing Algorithm is as follows. At any

given moment t and for each thread the algorithm maintains the processing time

it requires to serve all the jobs of that thread that have been scheduled up to t.

We have to minimize all along the processing the maximal processing time among

all the threads, so as to keep the partial processing times of the threads balanced.

In other words, BalanceProcessing Algorithm chooses the thread that would have

the smallest cumulative processing time after serving its present available job. A

similar idea for the k-server problem appeared in [21].

To prove that BalanceProcessing Algorithm is w-competitive we will first in-

troduce some notation, and then the theorem will be proven using the lemma

below.

Notation

Sk[i]: total processing time of the i-th thread after the first k jobs among all

62 CHAPTER 4. COMPETITIVENESS RESULTS

the threads have been processed.

ji: number of jobs of the i-th thread

wik: k-th job of the i-th thread

Hk[i]: first job of the i-th thread not processed after the first k jobs among all

the threads have been processed.

pn: n-th job processed.

CA(pk): total time used by the first k jobs processed.

Lemma 4.2.1.2 pn = Hn−1[i]⇒ Sn[i] ≥ Sn[j]∀j ∈ {1, . . . , w}∀n ≥ 0. That is, if

the last processed job belongs to the i-th thread, then the total processing time of

the i-th thread is not below the total processing time of any other thread.

Proof: The proof will be done using induction on the number of processed jobs

(n).

The basic case, where n = 1, is simple: S1[i] = H0[i] ≥ 0 = S1[j]∀j 6= i.

Suppose now that n ≥ 2. Let pn+1 = Hn[i].

We will prove that Sn+1[i] ≥ Sn+1[j]∀j. Let pn = Hn−1[k]

• if k = i, that is, if the n-th and (n+1)-th processed jobs belong to the same

thread:

Sn+1[i] = Sn+1[k] ≥ Sn[k] ≥(induction hypothesis) Sn[j] = Sn+1[j]∀j 6= k

• if k 6= i, that is, if the n-th and (n + 1)-th processed jobs do not belong to

the same thread:

By construction,

Sn−1[k] + Hn−1[k] ≤ Sn−1[j] + Hn−1[j]∀j (4.1)

By (4.1),

Sn−1[k] + Hn−1[k] ≤ Sn−1[i] + Hn−1[i] (4.2)

4.2. TOTAL COMPLETION TIME 63

By the induction hypothesis,

Sn[k] ≥ Sn[j]∀j (4.3)

Sn+1[i] = Sn[i] + Hn[i] =

Sn−1[i] + Hn−1[i] ≥ by (4.2)

Sn−1[k] + Hn−1[k] = Sn[k] ≥ owing to (4.3)

Sn[j] = Sn+1[j]∀j 6= k.

To complete the proof, it is enough to show that Sn+1[i] ≥ Sn+1[k]:

Sn+1[k] = Sn[k] = Sn−1[k] + Hn−1[k] ≤ (by construction)

≤ Sn−1[i] + Hn−1[i] = Sn[i] + Hn[i] = Sn+1[i]

2

Theorem 4.2.1.3 BalanceProcessing algorithm is w-competitive under Schedul-

ing Before Executing and Scheduling On Execution paradigms, for the single ma-

chine w-thread problem with respect to the Total Completion Time objective.

Proof: Let wij = pn. Then

COL(wij) =
w∑

k=1

Sn[k] ≤
w∑

k=1

Sn[i]

owing to Lemma 4.2.1.2. Besides, Sn[i] ≤ COPT (wij), because the optimal algo-

rithm must process at least wi1, . . . , wi(j−1) before processing wij. So,

COL(wij) ≤
w∑

k=1

Sn[i] = wSn[i] ≤ wCOPT (wij)

Then, the Total Completion Time cost of the on-line algorithm is

COL =
w∑

i=1

ji∑
j=1

COL(wij) ≤
w∑

i=1

ji∑
j=1

wCOPT (wij) = wCOPT

2

64 CHAPTER 4. COMPETITIVENESS RESULTS

4.2.2 Scheduling Before Executing, m ≥ 2

We will show now that if the jobs are processed in more than one machine (m ≥ 2),

then there is no competitive algorithm under both Scheduling Before Executing

or Scheduling On Execution paradigms. We begin analyzing the first of those

paradigms.

Theorem 4.2.2.1 No competitive on-line algorithm can be obtained under Schedul-

ing Before Executing paradigm, with respect to the Total Completion Time cost

function and for m ≥ 2.

Proof: For simplicity, let us study first the case m = 2. An instance where no

competitive on-line algorithm can be found is the following: w− 1 empty threads

and one thread beginning with a job of length h2 and h jobs of length 1.

• Suppose that the on-line algorithm processes all the jobs on a unique given

machine. Its cost would be

h2 +
h∑

i=1

(h2 + i) = (h + 1)(h2 + h/2)

The optimal algorithm would process the jobs on two machines having a

cost of

h2 +
h∑

i=1

i = h2 + h(h + 1)/2

So the on-line algorithm would be at least c-competitive, where

c =
(h + 1)(h2 + h/2)

h2 + h(h + 1)/2
= 1 +

2h2

3h + 1

which is bounded by no constant.

• If the on-line algorithm processes any job in the second machine, the thread

goes on with n jobs of length ε. In this case, the n jobs of length ε are

scheduled behind one or more jobs. Thus, the on-line algorithm has cost not

better than

h2 +
h∑

i=1

i + n(1 + ε) = h2 + h(h + 1)/2 + n + nε = h(3h + 1)/2 + n + nε

4.2. TOTAL COMPLETION TIME 65

The optimal schedule is not worse than a schedule that processes in one

machine the first h + 1 jobs and the n remaining jobs in the other. Its cost

is

h2 +
h∑

i=1

(h2 + i) +
n∑

i=1

iε = (h + 1)(h2 + h/2) +
n(n + 1)

2
ε

So the on-line algorithm will be at least c-competitive, where

c =
h(3h + 1)/2 + n + nε

(h + 1)(h2 + h/2) + n(n+1)
2

ε

which tends to infinity when ε = o(n−2) and n tends to infinity.

For the case m ≥ 2 we generalize the instance above. The new instance is built

taking initially the same instance as in the case m = 2, that is, a job of length

h2 and then h jobs of length 1. As shown above, any on-line algorithm must use

at least 2 machines to try to be c-competitive for some constant c. It uses the

machines 1 and 2 (wlog).

The thread goes on with k groups of jobs (k will be defined later). The i-th

group will be composed of ni jobs, each one of length n−2i. Other threads are

empty. Group i+1 follows group i. Each group i assigns at least ni/m jobs to one

machine. Each of these machines (receiving at least ni/m jobs from group i) will

be called “loaded” machine. Machines 1 and 2 will be called loaded, too. Group k

(the last one) will be the first to load (to assign at least nk/m jobs to) an already

loaded machine. Note that as each assigned group loads at least one machine,

loading all the machines (without re-loading any machine twice) will take at most

m− 2 groups. Then k ≤ m− 1.

The cost of assigning the nt

m
jobs (at least) of group t that load one machine

will be at least
nh/m∑
i=1

in−2h.

As group k will load at least one machine already loaded, the cost of scheduling

the nk

m
jobs (at least) of group k that load one machine already loaded will be at

least
nk/m∑
i=1

(
nk−1

m
n2−2k + in−2k).

66 CHAPTER 4. COMPETITIVENESS RESULTS

As a result, any on-line algorithm will have a cost of at least

h2 +
h

m
+

n/m∑
i=1

in−2 +
n2/m∑
i=1

in−4 +

· · ·+
nk−1/m∑

i=1

in2−2k +
nk/m∑
i=1

(
nk−1

m
n2−2k + in−2k) =

= h2 +
h

m
+

n

m

n
m

+ 1

2
n−2 +

n2

m

n2

m
+ 1

2
n−4 +

· · ·+ nk−1

m

nk−1

m
+ 1

2
n2−2k +

nk

m

nk−1

m
n2−2k +

nk

m

nk

m
+ 1

2
n−2k ≥

≥ h2 +
h

m
+

n

m

n
m

2
n−2 +

n2

m

n2

m

2
n−4 + · · ·+ nk−1

m

nk−1

m

2
n2−2k +

n

m2
+

nk

m

nk

m

2
n−2k ≥

≥ 1

2m2
+

1

2m2
+ · · ·+ 1

2m2
+

n

m2
+

1

2m2
=

=
k

2m2
+

n

m2
=

=
k + 2n

2m2
.

A better way (off-line) of assigning those jobs is assigning the first h + 1 jobs

(the first of length h2 and the subsequent h of length 1) to machine 1, and each

of the groups in an empty machine. This is possible because k ≤ m− 1. Its cost

-which is obviously greater than or equal to the optimal cost- is

h2 +
h∑

i=1

(h2 + i) +
n∑

i=1

in−2 + · · ·+
nk−1∑
i=1

in2−2k +
nk∑
i=1

in−2k =

h2 + h3 +
h(h + 1)

2
+

n + 1

2n
+ · · ·+ nk−1 + 1

2nk−1
+

nk + 1

2nk
≤

4h3 +
2n

2n
+ · · ·+ 2nk−1

2nk−1
+

2nk

2nk
= 4h3 + k − 1.

Thus, a c-competitive algorithm will have

c ≥
k+2n
2m2

4h3 + k − 1
=

k + 2n

2m2(4h3 + k − 1)

which tends to infinity when n tends to infinity. 2

4.2. TOTAL COMPLETION TIME 67

4.2.3 Scheduling On Execution, m ≥ 2

The following proposition is a consequence of Lemma 4.0.0.15.

Proposition 4.2.3.1 Under Scheduling On Execution paradigm, for Total Com-

pletion Time cost function, w = 1 and m ≥ 2, an on-line algorithm that schedules

each job to the first machine that gets idle (at the time the machine gets idle) is

1-competitive.

Theorem 4.2.3.2 No competitive on-line algorithm can be obtained the under

Scheduling On Execution paradigm, with respect to the Total Completion Time

cost function for w ≥ 2 and m ≥ 2.

Proof: To prove this result, we will show an instance that makes any on-line

algorithm fail to be competitive.

Let the instance be composed of 2 non-empty threads and w−2 empty threads.

Each of the non-empty threads starts with a job of length 1. The first thread to

be served has no more jobs. The second thread to be served goes on with m − 2

jobs of length 1 and nm jobs of length ε.

After serving the job of the first non-empty thread in one machine, an on-line

algorithm cannot do better than serving the first the m− 1 jobs of the other non-

empty thread in the remaining m− 1 machines. Afterwards, the best the on-line

algorithm can do is distribute the nm jobs of length ε evenly in the m machines,

in which case n of them are scheduled to each machine.

In this way, the cost of the on-line algorithm is:

m + m
n∑

i=1

(1 + iε) = m(n + 1) + m
n(n + 1)

2
ε

On the other hand, the optimal algorithm (off-line), serves first the thread

that contains the jobs of length ε and then the other non-empty thread. Its cost

(assuming ε small enough) is:

(m− 1) +
nm∑
i=1

iε + (nmε + 1) = m +
nm(nm + 1)

2
ε + nmε = m +

nm(nm + 3)

2
ε

68 CHAPTER 4. COMPETITIVENESS RESULTS

So, a lower bound for the competitiveness of an on-line algorithm is:

m(n + 1) + mn(n+1)
2

ε

m + nm(nm+3)
2

ε
=

2(n + 1) + n(n + 1)ε

2 + n(nm + 3)ε

which tends to infinity when ε = o(n−2) and n tends to infinity. 2

4.3 Start-End

All the preceding theorems of this chapter assume that the schedules obtained

do not need to satisfy any precedence constraint. Some of these results can be

“extended” without much work for the cases were Extended Partial Order or Start-

Start constraints are present.

If we restrict the problem with the Start-End constraint, a completely new

scenario arises. The following theorem regards the case in which we have at least

one machine for each thread.

Theorem 4.3.0.3 Under any of the three main paradigms constrained with Start-

End, if w ≤ m then an algorithm that for each thread chooses one machine and as-

signs its jobs to that machine at the first time they can be assigned is 1-competitive

with respect to Makespan and Total Completion Time cost functions.

Proof: It suffices to note that the off-line algorithm cannot process any of the

jobs at an earlier time than that used by the presented on-line algorithm. 2

The same problem for the case where the number of machines is less than the

number of threads is more complex. It is left as an open problem.

Chapter 5

Conclusions and Open Problems

In this work, we have first presented a classification for the different scenarios

of the On-line Multi-threaded Scheduling problem. The different parameters that

characterize the model have been described. For each combination of the different

values for those parameters a possible new scenario arises.

Even though we have analyzed the most appealing scenarios of the classifica-

tion, there are many contexts we have not, leaving a wide field for future research.

We have analyzed the precedence constraints and found close relations among

them and between them and the on-line paradigms. Then, we turned towards the

possibility of waiting and concluded that waiting does not present any benefit in

the contexts studied.

Our main contributions beyond the classification are the results of competi-

tiveness achieved with respect to the Total Completion Time cost function under

Scheduling Before Executing and Scheduling On Execution paradigms. We have

found a strongly competitive algorithm for the single machine case and that no

competitive algorithm can be obtained if more than one thread have to be pro-

cessed in more than one machine.

A summary of the results regarding the competitive analysis done with respect

to Makespan and Total Completion cost functions is presented in Tables 5.1 and 5.3

respectively. For the Makespan cost function, results related to Scheduling Jobs

One By One and Scheduling Before Executing paradigms are presented together,

69

70 CHAPTER 5. CONCLUSIONS AND OPEN PROBLEMS

Table 5.1: Makespan

SJOBO and SBE SOE

l.b. u.b. l.b. u.b.

w ≥ m 2− 1/m 2− 1/m

w < m 1.8520 1.9230 2− 1/m− 1/w 2− 1/m

Table 5.2: SJOBO: Scheduling Jobs One By One; SBE: Scheduling Before Execut-

ing; SOE: Scheduling On Execution.

Table 5.3: Total Completion Time

SJOBO SBE SOE

l.b. u.b. l.b. u.b. l.b. u.b.

any w,m = 1 ? ? w w w w

w = 1 and m ≥ 2 ? ? ∞ − − 1

w ≥ 2 and m ≥ 2 ? ? ∞ − ∞ −

Table 5.4: SJOBO: Scheduling Jobs One By One; SBE: Scheduling Before Execut-

ing; SOE: Scheduling On Execution.

consequently with Proposition 4.1.0.18.

From these tables arise the main open problems. Firstly, it would be inter-

esting to reduce the gap between lower bounds for our problem under Scheduling

Jobs One By One and Scheduling Before Executing paradigms with respect to the

Makespan objective. This is an ancient problem, as it is the same problem to the

non-threaded one.

Other obviously emerging open problems regards the cases under Scheduling

Jobs One By One paradigm with respect to the Total Completion cost function

for which we have no results at all.

Bibliography

[1] Susanne Albers. Better bounds for online scheduling. In Proceedings of the

Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 130–

139, El Paso, Texas, 4–6 May 1997.

[2] H. Alborzi, E. Torng, P. Uthaisombut, and S. Wagner. The k-client prob-

lem. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 73–82, New Orleans, Louisiana, 5–7 January 1997.

[3] N.S. Arora, R.D. Blumofe, and C.G. Plaxton. Thread scheduling for multi-

programmed multiprocessors, 1998. Manuscript.

[4] Y. Azar and O. Regev. On-line bin-streching, 1997. Manuscript.

[5] Y. Bartal, H. Karloff, and Y. Rabani. A new lower bound for m-machine

scheduling, 1994. Inf. Process Lett., 50:113-116.

[6] Yair Bartal, Amos Fiat, Howard Karloff, and Rakesh Vohra. New algorithms

for an ancient scheduling problem. Journal of Computer and System Sciences,

51(3):359–366, December 1995.

[7] Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jǐŕı Sgall, and

Leen Stougie. Multiprocessor scheduling with rejection. In Proceedings of

the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages

95–103, New York/Philadelphia, 28–30*January 1996. ACM/SIAM.

[8] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Widgerson. On the

power of randomization in online algorithms. Technical Report TR-90-023,

ICSI, June 1990.

[9] Allan Borodin and Ran El-Yaniv. On randomization in online computation

(extended abstract). In Proceedings, Twelfth Annual IEEE Conference on

71

72 BIBLIOGRAPHY

Computational Complexity, pages 226–238, Ulm, Germany, 24–27 June 1997.

IEEE Computer Society Press.

[10] E. Feuerstein. On-line Paging of Structured Data and Multi-threaded Paging.

PhD thesis, Università degli Studi di Roma “La Sapienza”, 1995.

[11] E. Feuerstein, M. Mydlarz, and L. Stougie. Multi-threaded scheduling, 1998.

Manuscript.

[12] E. Feuerstein and A. Strejilevich de Loma. On multi-threaded paging. In Proc.

Seventh Annual International Symposium on Algorithms and Computation

(ISAAC’96), volume 1178 of Lecture Notes in Computer Science, pages 417–

426. Springer-Verlag, 1996.

[13] E. Feuerstein and A. Strejilevich de Loma. Different competitive measures

for infinite multi-threaded paging. In Proc. Workshop on On-line Algorithms

(OLA’98), 1998.

[14] Michel X. Goemans. On-line algorithms, 1994. 18.415/6854 Advanced Algo-

rithms.

[15] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System

Technical Journal, 45:1563–1581, 1966.

[16] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal

of Applied Mathematics, 17(3):416–429, March 1969.

[17] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.

In 36th Annual Symposium on Foundations of Computer Science (FOCS’95),

pages 214–223, Los Alamitos, October 1995. IEEE Computer Society Press.

[18] David Karger, Cliff Stein, and Joel Wein. Scheduling Algorithms. CRC Hand-

book on Algorithms. 1997.

[19] R. Karp. On-line algorithms versus off-line algorithms: how much is it worth

to know the future? Technical Report TR-92-044, ICSI, July 1992.

[20] H. Kellerer, V. Kotov, M.G. Speranza, and Z. Tuza. Semi on-line algorithms

for the partition problem, 1996. Oper. Res. Lett.

[21] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for

on-line problems. In Proc. of 20th ACM Symposium on Theory of Computing,

pages 322–333, 1988.

BIBLIOGRAPHY 73

[22] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for

server problems. Journal of Algorithms, 11(2):208–230, 1990.

[23] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-

bridge University Press, 1995.

[24] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-

critical scheduling via resource augmentation (extended abstract). In Proceed-

ings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,

pages 140–149, El Paso, Texas, 4–6 May 1997.

[25] P. Raghavan and M. Snir. Memory versus randomization in on-line algo-

rithms. IBM Journal of Research and Development, 38(6):683–707, November

1994.

[26] Dario G. Robak. Nuevas cotas para el problema de paginacion on-line de

multiples procesos. Tesis de licenciatura, Universidad de Buenos Aires, De-

partamento de Computación, December 1997.

[27] S. S. Seiden. Randomized online multi-threaded paging. In Proceedings of

the 6th Scandinavian Workshop on Algorithm Theory, Jul 1998. To appear.

[28] J. Sgall. On-line scheduling, 1997. Manuscript.

[29] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging

rules. Communications of ACM, 28:202–208, 1985.

