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Abstract

Los procesadores con múltiples núcleos de hoy en d́ıa requieren nuevas estrategias
para sacar ventaja del hardware subyacente. Dos aspectos que afectan drásticamente
el desempeño son el grado de paralelismo y la locaĺıa de datos. Una forma de mejo-
rar estos aspectos es a través del uso de compiladores que puedan, automáticamente,
paralelizar el código con muy poca intervención del programador.

Dado que los ciclos juegan un rol central en el tiempo de ejecución total de las
aplicaciones, los compiladores prestan particular atención a ellos. Esta tesis se en-
foca en el problema de paralelizar automáticamente ciclos. Un modelo matemático
llamado modelo del poliedro cubre la teoŕıa detrás del análisis y transformación de
ciclos. Sin embargo, este modelo, originalmente, esta limitado a ciclos que pueden
ser precisamente analizados en tiempo de ejecución, no puede tratar con ciclos con
accesos a memoria a través de punteros o indirecciones.

VMAD es un framework que permite instrumentación en tiempo de ejecución y
paralelización dinámica. Adaptando el modelo del poliedro a una técnica llamada
paralelización especulativa, este framework puede tratar con ciclos que no pueden
ser paralelizados utilizando las técnicas tradicionales.

Esta tesis continua el trabajo hecho en VMAD de la siguiente forma:

1. Extendiendo la cantidad de transformaciones soportadas por VMAD dando
soporte para tiling, una transformación que mejora la locaĺıa de datos.

2. Proponemos una paralelización de ciclos optimizada, para ciclos que pueden
ser paralelizados sin aplicar ningún tipo de transformación.

3. Presentamos una optimización para reducir la penalización impuesta por
utilizar paralelización especulativa.

Evaluamos emṕıricamente la efectividad de las extensiones usando una serie de
benchmarks bien conocidos.



Abstract

Today’s multi-core processors impose new strategies to take advantage of the un-
derlying hardware. Two important aspects that drastically affects the performance
are the degree of parallelism and data locality. One way to improve these aspects
is through the use of parallelizing compilers, which can automatically parallelize
code with very little programmer intervention.

Since loops play an central role in the overall execution time of every applica-
tion, compiler play particular attention to them. This thesis focuses on the prob-
lem of automatically parallelizing loops. A mathematical framework called the
polytope model cover the theory behind loop analysis and transformation. Never-
theless, this theory is originally limited to loops which can be precisely analyzed
at compile time, it cannot handle loops with memory accesses through pointers or
indirections.

VMAD is a framework which enables runtime instrumentation and dynamic
parallelization. By adapting the polytope model to a technique called speculative
parallelization, this framework is able to handle loops which cannot be parallelized
using the traditional techniques.

This thesis continues the work done in VMAD by:

1. Proposing an optimized loop parallelization, when the loop can be paral-
lelized without applying any transformation.

2. Extending the transformation scope supported in VMAD by enabling tiling,
a transformation which improves data locality.

3. Introducing an optimization to reduce the overhead imposed by speculative
parallelization.

We empirically evaluate the effectiveness of the extensions using a series of well
known benchmarks.
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Chapter 1

Introduction

This work studies the problem of automatically parallelizing programs, in partic-
ular, focusing on loops. The approach taken in this thesis is called speculative
parallelization. The techniques introduced in this work rely on the polytope model,
a mathematical framework for reasoning about loop nests. This thesis continues
previous work on a speculative parallelization framework called VMAD [18, 21] by
extending the code optimizations available in it.

1.1 Context of the work

The emergence of the multi-core processors imposes new strategies for reaching
good software performance and exploiting advantageously the underlying hard-
ware. The key to success is now radically related to parallelism, where applications
execute in such a way that many computations are performed simultaneously on
several processor cores, and data locality, to reduce the penalty introduced by the
memory accesses and communication between computing units.

There are several possible options to accomplish this: programs can be written
by explicitly describing what can be run in parallel and what cannot, a compiler
can synthesize parallel code from a formal specification, the compiler can extract
parallel computations from a serial code by performing advanced code analyses and
then generate parallel code, or the software can be run on top of a runtime system,
or virtual machine, performing on-the-fly analyses and optimizations. Neverthe-
less, although each option has been intensely studied, they all have some inherent
limitations.

Even if many parallel programming languages and extensions are available, such
as OpenMP, MPI, Cilk, TBB, HMPP, OpenCL or CUDA, parallel programming is
in general difficult. The programmer is required to handle complex issues: selecting
a convenient algorithm for parallelization, analyzing the dependences, ensuring
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correct semantics and being aware of the underlying hardware characteristics.
Algorithmic skeletons exploit some common patterns in parallel programming,

to hide some of the complexity of parallel programming. The provide some parallel
primitives which can be combined to generate more complex constructs. Never-
theless, this algorithmic skeletons are restricted to the type of parallel model they
try to express –for example data parallelism. Also, the programmer is forced to
fit its solution into the available skeletons.

An other technique to take advantage of the multi-core processors is to au-
tomatically generate parallel code from a specification. In this approach, the
programmer is released from the task of being aware of the underlying hardware.
An example of this is line of work is FXML [41], a formal language for expressing
concurrency and data precedence constraints. The FXML specification is intended
to be transformed automatically, until actually executable code is obtained. This
specification can be directly written by designers of the application, or be used as
a semantic framework for other languages.

To aid the programmer in delivering parallel code, developing compilers that
perform automatic parallelization became an active research area.

Compilers dedicated to automatic parallelization have a rich history, particu-
larly focusing on scientific computing applications. Examples of such compilers are
SUIF [40], Polaris [3], PIPS [10] and Pluto [5], that are able to automatically paral-
lelize sequential programs without the programmer’s intervention. They mostly fo-
cus on for -loops accessing multi-dimensional arrays and referencing array elements
through linear functions of the loop indices. Thanks to precise data dependence
analysis, such loops can take advantage of advanced parallelizing transformations
as tiling, loop splitting or fusion, loop interchange, loop skewing and more gener-
ally linear loop transformations.

The theory concerning loop analyses and transformations is unified in a well-
known mathematical framework called the polytope model [14, 15]. Chapter 2
presents a brief introduction about the polytope model.

However, its applicability is limited to array-based applications exhibiting ex-
plicit linearity of their loop bounds and array accesses. Loops exhibiting complex
exit conditions and memory accesses through pointers or indirections cannot be
handled at compile-time using these techniques, since crucial information can only
be known at runtime. Moreover, it is generally difficult for a compiler to select
the parallelizing and optimizing transformations that would perform well under
various circumstances (in different execution contexts or on distinct processors).

The third solution is to run the targeted program in the frame of a runtime
system whose role is to use advantageously the available dynamic information
and automatically parallelize some code regions on-the-fly. One main advantage
is that the effectiveness of a code transformation can immediately be evaluated
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and the course of execution can be adjusted accordingly by the runtime system
in real time. In particular, speculative parallelizing techniques are possible since
an online verification can consecutively launch recovery actions, in case previously
speculated information is invalidated, such as cancelling wrong computations and
restarting them from the last correct state. This approach does not have, a priori,
any limitation on the type of targeted code, however it is strongly constrained by
the overhead introduced. Hence, it is impossible to perform complete analyses and
optimizations at runtime, as done by a compiler. On the other hand, generating
efficient code is mandatory.

In this current context, speculative parallelization is an essential strategy to
handle the parallelization of general-purpose codes. A well-researched direction in
speculative parallelization is thread-level speculation (TLS) [37, 26, 32, 34, 39, 33,
6, 42, 23, 22]. A TLS framework allows optimistic execution of parallel code regions
before all dependences between instructions are known. Hardware or software
mechanisms track register and memory accesses to determine if any dependence
violation occurs. In such cases, register and memory state are rolled back to a
previous correct state and sequential re-execution is initiated.

Loop tiling [1, 5] is a key loop optimization for improving data locality. Tiling
partitions a loop iteration space into smaller blocks, to take advantage of reuse in
several directions.

The contributions of this work focus on three axis:

• Adding a new transformation which requires a reduced amount of verification
and initialization code for each iteration. Chapters 4 covers this topics.

• Adding support for new code transformations, such as tiling. Chapter 5
focuses on this topic.

• To provide more information for the compile time code generation, a new
static analysis is introduced. This information is used to avoid unnecessary
verifications, during the execution of an optimized version of the code. This
is covered in Chapter 6.

The work described in this thesis is implemented as a set of extensions of the
VMAD framework. This framework adapts the polytope model to speculative
parallelization.

The VMAD framework consists on several code transformations performed at
compile time, implemented as compiler extensions, and a runtime system.

• The compiler extensions are in charge of performing static analysis and code
generation.
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• The runtime system gathers the data obtained from instrumentation, per-
forms dependence analysis, selects which transformation is the most suitable
to run, and orchestrates the execution of code versions thanks to a dedicated
chunking system.

This framework it’s not restricted by the type of code being optimized. Nev-
ertheless, since it adapts the polytope model to speculative parallelization, it’s
restricted to loops exhibiting some phases of polyhedral behavior.

An explanation on the approach to speculative parallelization of VMAD is
presented in chapter 3.

This thesis extends both components to allow new optimizations and to make
use of the new static analysis results.

Discussion over the results and conclusions are presented in chapters 7 and 8.
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Part I

Preliminars
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Chapter 2

The polytope model

The polytope model provides a mathematical framework for loop analysis and op-
timization. A polytope is a geometric object with flat sides, which exists in any
number of dimensions. In this case, we are interested only on convex polytopes.
This model provides an homogeneous representation of the loop information nec-
essary for performing precise dependence analysis.

An exhaustive presentation of applications of the polytope model in program
optimizations are given by Feautrier in multiple works [12, 13, 14, 15] and has been
addressed in many others works dedicated to compile-time [4, 5, 17] or runtime loop
optimizations [31]. For a throughout presentation of the mathematical apparatus
building the underlying background of the polytope model, the reader is referred
to the monograph of Schrijver [36]. In what follows we present only an overview.

The polytope model can only be applied for loop nests where:

• The loop bounds are affine functions1 of the surrounding loop indices and
parameters.

• Each test predicate is an affine function of the surrounding loop indices and
parameters.

• The data structures in the nest are arrays and scalars of any type.

• The array subscripts are affine functions of the surrounding loop counters
and parameters.

2.1 Definitions

We denote by ~v a vector, by |~v| its dimension, and by ~v[i] the ith element of ~v.

1See next page.
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Definition 1 (Affine function) A function f : Kn → Km is said to be affine

iff ∃ a matrix A ∈ Kn×m and a vector ~b ∈ Kn such that:

∀~x ∈ Km, f(~x) = A~x+~b.

Definition 2 (Affine hyperplane) An affine hyperplane of an n-dimensional
affine space V is a subspace of dimension n − 1, defined by a linear equation in
~x ∈ Kn of the form:

~a · ~x = b,

where ~a ∈ Kn (at least one element ~a[i] 6= 0) and b is a scalar from K.

Definition 3 (Affine half-space) An affine hyperplane divides the space into
two half-spaces, defined by the inequalities:

~a · ~x ≥ b and ~a · ~x ≤ b

where ~a ∈ Kn (at least one element ~a[i] 6= 0) and b ∈ K.

Definition 4 (Convex polyhedron) The intersection of a finite number of affine
half-spaces defines a convex polyhedron, each half-space providing a face of the
polyhedron. Formally, the polyhedron P ⊂ Kn can be expressed as a set of m
affine constraints in A ∈ Km×n and ~b ∈ Km:

P = {~x ∈ Kn|A~x+~b ≥ 0}

Definition 5 (Parametric polyhedron) A polyhedron P may be parametrized
by a vector of parameters ~p and is denoted by P (~p). It can be defined by a matrix
A ∈ Km×n, a matrix of symbolic coefficients B ∈ Km×p, where p is the dimension
of the vector of parameters |~p| = p and a vector of constants ~b ∈ Km as:

P (~p) = {~x ∈ Kn|A~x+B~p+~b ≥ 0}

Definition 6 (Polytope) A bounded polyhedron is called a polytope.

Definition 7 (Iteration vector) The iteration vector of a statement S, denoted
by ~xS, is the n-dimensional vector of values of the iterators of the n loops enclosing
S.
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for ( i = 1 ; i ≤ N; ++i ) {
for ( j = 1 ; j ≤ N; ++j ) {

S1 : A[ i ] [ j ] = A[ i −1] [ j ] + [ i ] [ j −1]
}

}

Figure 2.1: Loop nest example for the iteration domain.

2.2 Representing loops in the polytope model

The representation of loop nests in the polytope model consists of three parts
for each statement of the loop: the iteration domain, the access functions for
each memory access and the schedule. These parts are explained in the following
sections.

2.2.1 The iteration domain

Lets consider the loop nest in figure 2.1:
Notice the statement labeled as S1. Even if S1 is only a single statement, it has

several statement instances along the life time of the loop, namely S1(1,1) , S1(1,2) ,
. . . , S1(N,N)

. Each statement instance has an iteration vector associated to it. The
iteration vector for S1 is (i, j), the set of all iteration vectors for a statement is
called Domain or Index set. We can define the previous iteration domain as:

DS1 = {(i, j) ∈ Z2|1 ≤ i ≤ N, 1 ≤ j ≤ N}

The iteration domain is defined by a set of constraints. If these constraints
are affine functions of the surrounding loop indices and parameters, the set of
constraints defines a polytope. The matricial representation of DS1 is the following:

1 0 −1
−1 0 10
0 1 −1
0 −1 10

 ∗
ij

1

 ≥ 0

Definition 8 (Domain, index set) The set of all iterations vectors of a state-
ment S is called the domain or the index set of the statement, denoted by DS.

2.2.2 Data access function

To model the memory accesses of a statement, a function corresponding to this
statement has to be defined. These access functions have to be affine and must
depend on loop indices and parameters.
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Figure 2.2: Representation of the iteration domain DS1 .

The statement S1 has one write operation corresponding to A[i][j] = . . . and
two read operations corresponding to A[i−1][j] and A[i][j−1]. The access functions
corresponding to this memory accesses are:

fWA(i, j) =

(
i
j

)
=

(
1 0
0 1

)
∗
(
i
j

)
+

(
0
0

)

fRA(i, j) =

(
i− 1
j

)
=

(
1 0
0 1

)
∗
(
i
j

)
+

(
−1
0

)

fRA(i, j) =

(
i

j − 1

)
=

(
1 0
0 1

)
∗
(
i
j

)
+

(
0
−1

)

2.2.3 Statement scheduling

The iteration domain and the data access functions do not represent the order of
execution of each statement. The scheduling function gives a time stamp to each
statement instance, expressing the order in which a statement instance has to be
executed. In general, for a statement S its time stamp is defined by:

∀~x ∈ DS θS(~x) = T~x+ ~t.
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The associated timestamps allow to order the instructions according to the
lexicographic order, denoted as � , as component-wise comparison of vectors:

(a1, . . . , an)� (b1, . . . , bn)⇔ ∃i : 1 ≤ i ≤ n, ∀m : 1 ≤ m < i, am = bm ∧ ai < bi

The scheduling function also expresses the ordering between statements.
The scheduling function for statement S1 is:

θS1(i, j) = (0, i, 0, j, 0)

The constants between the iterators allow to express the order between state-
ments at the same loop level. If there was another statement executed after S1 at
the same loop level its scheduling function would be θS2(i, j) = (0, i, 0, j, 1).

Applying the scheduling function θ(~x) = T~x + ~t to the integer points of a

iteration domain D = {~x|A~x+~b}, is expressed as the polyhedron:

(
I −T
0 A

)(
θ(~x)
~x

)
=
≥

(
~t
~b

)
Scheduling matrices

Applying an affine scheduling function θS(~x) = T~x + ~t on the iteration domain
DS of a statement S, one obtains the scheduling matrix ΘS of S, where ΘS ∈
Zdt×(d+p+1), with dt = |~t|, d = |~x| and p = dimension of the global variables
vector:

∀~x ∈ DS, θS(~x) = ΘS~x = ~t

Canonical form of the scheduling matrices

To make the scheduling matrix more meaningful, Cohen et al. [2, 7] propose a
normalized representation. The encoding purposed is suitable for expressing com-
positions of transformations, as it is decomposable in three sub-matrices:

1. The iteration ordering matrix AS ∈ MdS ,dS(Z) representing the iteration
vectors;

2. The matrix of parameters ΓS ∈MdS ,dgp+1(Z), where dgp denotes the number
of global parameters;

3. The statement ordering vector β ∈ NdS+1, which specifies the order of S
among the other statements executed at the same iteration.
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The structure of the canonical schedule matrix is:

ΘS =



0 · · · 0
AS

1,1 · · · AS
1,d

0 · · · 0
AS

2,1 · · · AS
2,d

...
. . .

...
AS

d,1 · · · AS
d,d

0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0
ΓS
1,1 · · · ΓS

1,p

0 · · · 0
ΓS
2,1 · · · ΓS

2,p
...

. . .
...

ΓS
d,1 · · · ΓS

d,p

0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βS
0

ΓS
1,p+1

βS
1

ΓS
2,p+1
...

ΓS
d,p+1

βS
d


In this form, various transformations can easily be expressed: affecting AS it

is possible to define a loop interchange, skewing or loop reversal; altering ΓS can
define shifting transformations; and modifying βS redefines the execution order of
the instructions, equivalent to performing loop fission or loop fusion.

The schedule for the statement S1 its given by following matrices:

AS1 =

(
1 0
0 1

)
βS1 =

(
0
0

)
ΓS1 =

(
0 0
0 0

)
The time stamp for S1 is given by:

0 0
1 0
0 0
0 1
0 0

∣∣∣∣∣∣∣∣∣∣
0
0
0
0
0

∣∣∣∣∣∣∣∣∣∣
0
0
0
0
0

 ∗


i
j
N
1

 =


0
i
0
j
0


2.3 Dependency Analysis

To be valid, the loop transformations have to preserve the semantics of the se-
quential execution, to ensure that the resulting code preserves its correctness.

Definition 9 (Dependence of Statement Instances) Two statements S and R
are said to be dependent, if there exist two instances S( ~xS) and R( ~xR), where ~xS
and ~xR belong to the iteration domains of S and R, such that S( ~xS) and R( ~xR)
access the same memory location and at least one is a write.

To preserve the semantics, the execution of two dependent statements must be
the same in the original sequential and in the transformed parallel order. On the
other hand, two independent statements can be executed in arbitrary order.
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Note that when the two statements are read operations, there is no dependence
since the memory is not modified. However this accesses can be taken into account
to improve data locality.

Dependences are classified in three categories, depending on the order of read
and write operations:

• RAW: read-after-write, or flow dependence.

• WAR: write-after-read, or anti dependence.

• WAW: write-after-write, or output dependence.

2.3.1 Dependence vectors

If R( ~xR) depends on S( ~xS), or simply denoted R(~j) depends on S(~i), one has that
sequentially S(i) is executed before R(j). In loop dependence analysis [1], this
is equivalent to saying that iteration j of loop L depends on iteration i, where L
contains the statements S and R. Then, R depends on S with:

• the distance vector ~d = ~j −~i;

• the direction vector σ = sig(~d);

The sign of an integer i, denoted σ is

sig(i) =


1, if i > 0,
−1, if i < 0,

0, if i = 0.

The sign of a vector ~d = (d1, d2, ..., dm) is sig(~d) = (sig(d1), sig(d2), ...,
sig(dm));

• at level l = lev(~d).

Given thatm is the depth of the loop L, for a distance vector ~d = (d1, d2, ..., dm),
the leading element is the first non-zero element. If this is dl, then l rep-
resents the level of ~d and 1 ≤ l ≤ m. Also, the level of the zero vector is
defined to be m + 1. The vector d is said to be lexicographically positive or
negative if its leading element is positive or negative, respectively.

A distance vector or a direction vector of a dependence must always be lexico-
graphically non-negative.

Using the distance vectors, one can compute the dependence matrix of the loop
L, whose rows are the distance vectors of all the dependences in L, in any order.
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Schedule validation

Once the dependences between iterations are computed, one can apply polyhedral
transformations (schedules) such that no dependence violations occur.

To validate a schedule θ one computes the scalar product between each of
the transformation matrices ΘS and the dependence matrix. If in the resulting
matrices, the first non-null component of each row is positive, the schedule is
valid. This first strictly positive component defines the depth of the loop which
carries the dependence. The outermost parallel loop level is given by the first
column in the resulting matrix for which no loop is carrying a dependence at this
depth.

2.3.2 Example of a transformation

Recall the example of figure 2.1. For a given iteration (i, j), for example, to
compute A[i][j] it must read the values produced by iteration (i−1, j) and (i, j−1).
This produce the dependences d1 and d2 and the dependence matrix dM .

d1 =
(
1 0

)
d2 =

(
0 1

)

dM =

(
1 0
0 1

)
Notice that with this dependences there is no parallel loop. If we apply the

transformation T =

(
1 1
1 0

)
we obtain:

d′m = dm ∗ T =

(
1 1
1 0

)

d′1 =
(
1 1

)
d′2 =

(
1 0

)
The first non-null element of each new dependence is positive, so the trans-

formation is valid. Also the outermost loop carries the dependence, thus, the
innermost loop can be executed in parallel.

By applying this transformation we obtain a new iteration space with two new

iterators, x and y such that

(
x
y

)
=

(
i− j
i

)
.
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Figure 2.3: Representation of the iteration domain DS1 with its dependences.

Figure 2.4: Representation of the new iteration domain for S1 with its dependences.
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for ( x = 1 ; x ≤ 2N−1; ++x ) {
f o r a l l ( y = 1 ; y ≤ min (x ,N) ; ++y ) {

i = x − y
j = x
S1 : A[ i ] [ j ] = A[ i −1] [ j ] + [ i ] [ j −1]

}
}

Figure 2.5: Resulting code after applying the code transformation.
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Chapter 3

The VMAD framework

VMAD is a framework for speculative loop parallelization and instrumentation. In
the following sections, a detailed overview of the VMAD framework is presented
and how the polytope model is adapted for speculative parallelization.

3.1 VMAD Architecture

VMAD is implemented as a static-dynamic framework. We show its architecture
in figure 3.2.

The procedure for using VMAD is the following: The programmer annotates
the source code using a specific pragma, as shown in figure 3.1. This source code
is compiled using the clang C compiler, producing as output its corresponding
llvm intermediate representation[24]. In this intermediate representation, the pre-
viously annotated loop nests are identified by specific meta-data attached to the
instructions of the loop nest.

The front-end can be easily interchanged with an other language front-end
which outputs llvm-ir, making VMAD available to a wide set of programming
languages.

#pragma s p e c u l a t i v e p a r a l l e l i z a t i o n
{

loop 1
loop 2

. . .
}

Figure 3.1: Loop nest tagged for speculative parallelization.

The static component of the framework is implemented as a series of compiler
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Figure 3.2: Overview of the architecture of the VMAD framework.

extensions. The main purpose of these components is to generate several code
versions from the original loop nest:

• One version is dedicated to profiling (See section 3.3). This version includes
code to capture dynamic data of the execution of the loop nest through
instrumentation.

• Another version, corresponding to the original version of the loop nest.

• Additionally, several code-skeletons matching different kinds of code trans-
formations. In section 3.4 we explain the construction of one of this code-
skeletons.

Moreover, the VMAD static component embeds, in the binary executable, in-
formation that is statically available. This includes data about the loop nests,
such as the loop hierarchy and depth, addresses of the callbacks in the code or
values of some parameters. This information is stored in dedicated Headers.

The Runtime System is in charge of collecting dynamic information during
the actual loop execution. Using this information, the runtime system builds in-
terpolating linear functions to describe the behavior of that loop. Afterwards,
dependence analysis is performed and an adequate code-version is selected to ex-
ecute.
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3.2 Multi-versioning

With the increasing complexity of the available hardware, including multi-cores
and co-processors, multi-versioning has become a classical technique for using ef-
ficiently all available resources. It consists in compiling and embedding in the
binary different versions of a region of code. It is particularly adequate for pe-
riodic instrumentation, adaptive version selection, and dynamic optimization in
general. VMAD presents a mechanism for switching dynamically from a version
of a code to another, without interrupting the execution of the program.

Figure 3.3: Alternating the execution of different versions, during one run of the
loop nest.

In VMAD, multi-versioning is employed for generating three types of versions
for each loop nest: an original version, an instrumented version and several opti-
mized versions. At the moment of execution of the loop nest, the runtime system
will switch between the different code versions to achieve different behaviors.

3.3 Instrumentation of loop nests

Typically, the polytope model relies on loops which can be statically analyzed
and in which the data access patterns and loop bounds are affine functions of the
enclosing loop indexes.

To be able to handle loops which cannot be fully analyzed at compile time,
this model has to be extended.

Non-statically available information is captured by means of an online profiling
phase, aimed at monitoring and instrumenting the data accesses and the loop
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bounds. To limit the runtime overhead of the profiling, a suitable solution is to
perform instrumentation by sampling. Instrumenting code usually induces a huge
overhead, sampling tries to overcome this limitation by instrumenting a small
number of iterations of each loop and switching to the non-instrumented version.

Provided that the target loop executes a high number of iterations, the cost of
the instrumentation is negligible in practice.

During the instrumentation phase, VMAD monitors:

• Values taken by some scalars.

• The accessed memory locations.

• The number of iterations executed by the sub-loops.

From the values collected during instrumentation, interpolating linear functions
are built if possible. Expressing data accesses and loop trip counts1 as affine
functions makes it possible to apply the polytope model dynamically.

3.4 Adapting the polytope model for speculative

parallelization

As detailed in the previous chapter, the polytope model can be used for programs
in which it is possible to obtain an exact characterization of the data dependences.
The static analysis models program executions featuring loops by the aid of a
mathematical formulation, particularly linear algebra and integer programming2.
It consists of three main phases: (1) static analysis of the code; (2) transforma-
tion in the polyhedral model; (3) code generation for the transformed program.
Applying the traditional methodology at runtime will be inefficient because it
is extremely time consuming. For dealing with this situation, VMAD proposes a
light-weight system, able to fill-in the missing information at runtime, and perform
polyhedral transformations dynamically and automatically to parallelize loops.

With the purpose of generating parallelized code at runtime, VMAD uses a
technique known as code skeletons [19].

Code skeletons have already a long history of addressing runtime code spe-
cialization and simple optimizations. Noël et al. [27] use templates with “holes”
declared as external global variables that are filled at runtime. They perform op-
timizations based on constant propagation, strength reduction and loop unrolling.
This proposal sets the premises of our work for performing more advanced loop
optimizations dynamically.

1Number of times in a row the loop branch is taken.
2A detailed description on how the model is applied in a research compiler is given in [5]
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At compile time, several parallel code patterns are prepared, from which dif-
ferent code versions can be dynamically generated. The parallel code patterns
are built to support the generation of distinct code versions, by applying various
polyhedral transformations. A large set of parallelizing transformations can be
implemented at execution-time, by patching some predefined areas of code. This
simple and fast code generation makes it possible to generate different versions of
the code (each version obtained by applying a new transformation), from the same
pattern.

Since the key contributions of this thesis rely on extending VMAD by adding
new code patterns, a detailed description on how these patterns are constructed
is given in this chapter.

For pedagogical purposes, we present the example in figure 3.4, to introduce
how a pattern is built from the original source code.

example ( f loat ∗∗ A, f loat ∗∗ B, unsigned N) {
for ( i = 1 ; i <= N; i++) {

for ( j = 1 ; j <= N j++) {
A[ i ] [ j ] = B[ i −1] [ j ] + B[ i ] [ j −1]

}
}

}

Figure 3.4: Code example before any transformation.

Notice that this function can be invoked as example(M1,M2), which can make
this code trivially parallel if there is no aliasing between rows of the matrices. Or
we can invoke it as example(M1,M1), which produces a case very similar to the
example presented in chapter 2

3.4.1 Perfect nest

To allow a wider set of loop transformations, when generating a pattern, we convert
the original nest into its equivalent perfect for-loop nest (See fig 3.5). A perfect
loop holds one of two possible conditions, the body consists of a sequence of non-
loop statements with one entry point and one exit point, or the body consist of a
perfect loop. A perfect nest is a loop nest with all its loops perfect.

Guarding code is added to ensure that each statement is executed at the right
time.

Since a contribution of this thesis concerns this topic in particular, a wider
explanation is given in the second part of this manuscript, in section 6.1.
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while ( t rue ){
while ( t rue ) {

// i f l oop f i r s t i t e r a t i o n
i f ( c o n d i t i o n p l a c e h o l d e r ) {

i f ( i <= N) j = 1
else goto l o o p e x i t // outermost loop e x i t

}
i f ( j <= N) {

A[ i ] [ j ] = B[ i −1] [ j ] + B[ i ] [ j −1]
j++

} else {
i++

}
}

}

Figure 3.5: Code example converted to a perfect nest.

3.4.2 Virtual iterators

To be able to handle loops that do not have iterators (as do-while or while loops),
we introduce the notion of virtual iterators. They are canonical iterators inserted
in the loops, starting from 0 and incremented with a step of 1. These iterators
provide a common base for performing the predictions, interpolating the loop trip
counts, and the accessed memory addresses as affine functions of these iterators.
One virtual iterator is inserted for each loop in the nest. The new bounds for the
virtual iterations are obtained using the Fourier-Motzkin elimination algorithm
[36].

Transformation matrix

The matrix T−1 represents the inverse of the loop transformation. This matrix is
used to compute the values of the iterators in the original iteration space, from
the transformed space iterators.

In the example of figure 3.6, vix and viy represent the transformed space virtual
iterators, while vii and vij represent the value of the iterators in the original
iteration space. The original iteration space is sliced into chunks: the outermost
loop index vii is ranging from the lower to the upper bound of a chunk, which are
set at runtime. The calls to FMlbx(), FMubx(), FMlby(vix) and FMuby(vix) stand
for the previous mentioned calls to the Fourier-Motzkin elimination algorithm,
implemented in the FMlib library [29].
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Original loop bounds

Items ubvii and ubvij represent the loop bounds in the original iteration space, for
a specific iteration vector (vii, vij). The matrix UBT and the vector b are patched
by the runtime system. The value for ubvii depend on the chunk size. The values
of these bounds are required to perform the verification explained in section 3.4.5.

3.4.3 Transformation selection

In the polytope model, transformations are represented as matrices. Before launch-
ing an optimized chunk, we have to choose an appropriate transformation.

The strategy used for selecting a transformation matrix in VMAD consist of
two stages:

1. During compile-time, we perform partial static dependence analysis to pro-
pose a set of polyhedral transformations, valid with respect to the informa-
tion available.

It is often the case that little information can be statically discovered and
these versions would be soon invalidated by dependences occurring during
execution. This method could benefit significantly from an off-line profiler,
aimed to exhibit the information statically unavailable.

2. After the instrumentation phase, the dependence [20] information is com-
puted to select a suitable transformation. We iterate through the list of
transformations statically proposed for the loop nest, verifying the transfor-
mations for validity3, until a suitable one is found. The current implemen-
tation simply returns the first found valid schedule.

We select a transformation matrix, named T , and the runtime system patches
a convenient code skeleton, using the information gathered by the instrumentation
phase. By patching different values a different iteration schedule is obtained.

For pedagogical purposes, in figure 3.7 we show with which values the loop
bounds and the transformation matrix are patched. We patch the code skele-
ton with the values corresponding to the case were a skewing transformation is
applied4.

Notice how the bounds of the loop depend on the bounds of the chunk being
executed.

3As mentioned earlier, the first non-null component of each row of the dependency matrix is
positive.

4The same as in chapter 2
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for (vix = FMlbx() ; vix <= FMlbx() ; ++vix ){
for (viy = FMlby (vix) ; viy <= FMuby (vix) ; ++viy ) {(

vii
vij

)
= T−1 ∗

(
vix
viy

)
(
ubvii
ubvij

)
= UBT ∗

(
vii
vij

)
+ b

i f (vij == 0) {
i f ( i <= N) j = 1
else goto l o o p e x i t // outermost loop e x i t

}
i f ( j <= N) {

A[ i ] [ j ] = B[ i −1] [ j ] + B[ i ] [ j −1]
j++

} else {
i++

}
}

}

Figure 3.6: Code example with virtual iterators inserted.

for (vix = chunk no + 1 ; vix <= chunk no + opt im i zed chunk s i z e + N − 1 ; ++vix ){
for (viy = 1 ; viy <= min (x ,N) ; ++viy ) {(

vii
vij

)
=

(
1 −1
1 0

)
∗
(
vix
viy

)
(
ubvii
ubvij

)
=

(
0 0
0 0

)
∗
(
vii
vij

)
+

(
chunk no + optimized chunk size

N

)
. . .

}
}

Figure 3.7: Code example with patched values.

3.4.4 Initialization code

We use the linear functions obtained from the profiling phase, to initialize some
particular scalars at runtime. This value prediction mechanism is similar to the
ones presented in [38, 30, 25, 11].

Note that the scalars which need to be initialized are the ones whose values
depend on a previous iteration, i.e., which are read before being written in the
current iteration. In the SSA form [8], these correspond to the φ nodes 5.

This practice ensures that the correct starting value is assigned in the beginning

5phi nodes track the different paths from which a live variable can come.
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of each iteration. These scalars are named basic scalars, because the values of all
other variables can be deduced from them.

The initialization code is equivalent to privatization6, since all values that de-
pend on other iterations are redeclared locally in each thread and initialized with
the interpolating linear functions.

3.4.5 Verification code

Verification code is required to validate or invalidate the speculations. Since the
memory state and the control flow have been modified different types of verification
code need to be introduced.

• To verify memory accesses: As some iterations might execute before be-
ing validated by the preceding iteration space(according to the sequential
order), VMAD requires to verify all memory accesses, in the current itera-
tion. Namely, it must ensure that each instruction that accesses memory,
targets a location that has been predicted using the associated linear in-
terpolating function. This has twofold consequences. First, it ensures that
no invalid access is performed. And second, it guarantees that the state of
the memory can be safely restored, as no modification outside the predicted
memory area has been performed.

• To verify basic scalars: When the execution of the iteration completes,
the value computed by the code and the value predicted by the speculation
are compared. For this verification, the actual value with the one expected
for the next iteration in the sequential order are compared. Notice that,
since the values of the basic scalars at the end of one iteration corresponds
to the initial value of the basic scalars of the next sequential iteration, each
iteration verifies the next one in the sequential order, even if this iteration has
been executed or not. Nevertheless, any dependence violation is necessarily
detected at a given time, either before or after it occurs.

• To verify loop bounds: To ensure that no unpredicted iterations are ex-
ecuted, and that the exact number of iterations is executed (no more, no
less), code verifying the exit bounds has to be introduced. This code verifies
that the speculation on the loop bounds is correct. The verification code
consist of a compare between the original exit condition and the speculation.
Since in most non-statically analyzable nests it is impossible to predict the
iteration in which the exit conditions is reached, a miss-prediction is signaled

6A variable inside a loop can be privatized if an assignment is performed to it before any use
inside the loop.
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if the exit conditions is reached, because extra iterations might have been
executed.

To illustrate the scalar verification, figure 3.8 is presented. The first figure
represents the original iteration order of the loop nest (important: the arrows don’t
represent dependences). The iteration vector (i, j) takes the following sequence of
values: (1, 1), (1, 2), (1, 3), . . . , (2, 1), (2, 2), . . . , (3, 3).

After applying a skewing transformation to the loop nest, one obtains a new
iteration space. Since the outermost loop of this new iteration space is parallelized,
the execution of the entire iteration space is divided in two different sets, one for
thread 1 and one for thread 2 (See the third picture). Furthermore, as a skewing
transformation was applied, the iteration execution order changed: Thread 1 will
execute the iterations in the following order (1, 1), (2, 1), (1, 2) and (3, 1). (2, 2),
(1, 3), . . . . While thread 2 will execute (3, 2), (3, 3) and (2, 3).

Independently of the transformed iteration order, each iteration verifies the
next one in the original sequential order. For example, iteration (2, 2) will verify
the initial scalar values for iteration (2, 3), and iteration (2, 1) will verify the initial
scalar values for iteration (2, 2).

Figure 3.8: Verification order in a transformed iteration space
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3.4.6 Chunking

To adapt to the current behavior of a code during execution, the chunking system
is introduced. A loop chunk is defined by a slice of consecutive iterations of the
outermost loop of the nest. As an example, the first chunk may contain the first
10 iterations, the next chunk the iterations from the 11th to 70th and so on. The
execution is orchestrated such that each chunk continues the execution from the
iteration where the previous chunk ended. Hence, a target code is run as a sequence
of chunks, each of them embedding a different version of the code (instrumented,
parallel or original).

The frontiers between chunks give room for decision-making about the nature
of the next chunk, by using information collected during the execution of the
last chunk. When applying a speculative optimization, the decision can be to re-
execute the last chunk using another code version if the previous version incurred
incorrect computations or to continue with the same schedule, if the parallelization
was successful. In this manner, VMAD can execute parallel chunks followed by
sequential chunks, without missing any parallelization opportunities in partially
parallel loops [9].

Inside each parallel chunk, slices of the chunk are scheduled for each thread.
VMAD relies on libGOMP [16] for the parallel execution of slices. Notice that the
chunks are scheduled sequentially, but inside a parallel chunk, slices of the chunk
are executed by different threads.

Figure 3.9: Loop chunking.
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3.4.7 Miss-prediction handling

Once a miss-prediction is encountered, it is signaled to all threads and they stop
their execution. Next, a rollback is initiated, aimed to restore the correct state of
the memory and to allow the re-execution of the faulty iterations.

Any speculative system relies on a mechanism to restore the execution upon a
miss-speculation. Since faulty iterations can alter memory with incorrect values,
an anticipated memory backup is performed before launching a chunk of code
embedding a speculatively optimized code version. The part of memory that has
to be saved is the one that is predicted to be touched during the chunk’s execution.
Thus, for each write instruction, it is necessary to compute the memory range
susceptible to be accessed, by using the interpolating linear functions and the loop
bounds. This procedure is known under the name extreme value range analysis.
The memory in this ranges is backed up, such that it can be restored by a reversed
copy, if the iterations are canceled.

The completed code skeleton is shown in figure 3.10.
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for (vix = FMlbx() ; vix <= FMlbx() ; ++vix ){
for (viy = FMlby (vix) ; viy <= FMuby (vix) ; ++viy ) {(

vii
vij

)
= T−1 ∗

(
vix
viy

)
(
ubvii
ubvij

)
= UBT ∗

(
vii
vij

)
+ b

// i n i t i a l i z a t i o n code

i = ~vi ∗
(
vii
vij

)
+ bi

j = ~vi ∗
(
vii
vij

)
+ bj

i f (vij == 0) {
i f ( i <= N) j = 1
else r o l l b a c k ( ) // outermost loop e x i t

}
i f ( j <= N) {

predA = ~vpredA
∗
(
vii
vij

)
+ bpredA

predB1
= ~vpredB1

∗
(
vii
vij

)
+ bpredB1

predB2
= ~vpredB2

∗
(
vii
vij

)
+ bpredB2

//memory acces s v e r i f i c a t i o n
i f (&A[ i ] [ j ] != predA ) r o l l b a c k ( )
i f (&B[ i −1] [ j ] != predB1

) r o l l b a c k ( )
i f (&B[ i ] [ j −1] != predB2

) r o l l b a c k ( )

A[ i ] [ j ] = B[ i −1] [ j ] + B[ i ] [ j −1]
j++

} else {
i++

}

// loop bounds v e r i f i c a t i o n
i f ( ( j <= N) != (vij < ub { v i j } ) ) r o l l b a c k ( )

//compute next i t e r a t i o n(
viinext

vijnext

)
=

(
vii + (vij == ubvij )

(vij + 1) ∗ (vij ! = ubvij )

)
// s c a l a r v e r i f i c a t i o n

i f ( ( i != ~vi ∗
(
viinext

vijnext

)
+ bi ) r o l l b a c k ( )

i f ( ( j != ~vj ∗
(
viinext

vijnext

)
) + bj ) r o l l b a c k ( )

}
}

Figure 3.10: Code skeleton built from the code sample.
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Part II

Contributions
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Chapter 4

Straightforward code skeleton

In this chapter we introduce the Straightforward code skeleton. This pattern cor-
responds to the parallelization of a loop nest without any code transformation,
by executing in parallel the outermost or second loop. Since no transformation
is applied, important optimizations can be made compared to the other parallel
patterns supporting transformations.

The transformation matrix which corresponds to this pattern is the identity
matrix.

4.1 Motivation

Let us consider as a motivating example the loop nest in figure 4.1.

while ( node != 0x0 ) {
node−>element = 2∗node−>element + 3
node = node−>next

}

Figure 4.1: Motivating example for the straightforward pattern.

This code performs a ‘map’ over a linked list. The compiler can’t ensure that
the nodes of this list don’t alias –there may be loops in the linked list. Also, it is
impossible to know in which iteration the exit condition of the loop will be reached.
This code can’t be parallelized using the traditional compile time techniques.

If the memory accesses of this code are linear, the straightforward skeleton
can be used, only by making the outermost loop parallel. Since a speculation is
performed verification code must be executed, but the amount of verification code
is significantly reduced.
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4.2 Loop bounds

When generating the parallel code, the linear functions interpolating the loop
bounds are used directly. The coefficient values for this linear functions are patched
in the code skeleton by the runtime system, and from this values, the bounds for
each loop are computed.

This is in contrast with patterns where a transformation is applied, which
perform calls to the Fourier-Motzkin algorithm, for getting new bounds for the
loops.

Given this, for the nest in figure 4.2, the result of inserting the virtual iterators
and the loop bounds for the case of straightforward parallelization is shown in
figure 4.3.

while ( . . .) {
while ( . . .) {

/∗ body ∗/
. . .

}
}

Figure 4.2: Code example before inserting the virtual iterators.

for (vii = 0 ; vii < ubvii ; ++vii ) {
for (vij = 0 ; vij < ubvij i ∗ i + ubvij ; ++vij ) {

/∗ body ∗/
. . .

}
}

Figure 4.3: Code example of figure 4.2 after inserting the virtual iterators and the
upper bounds for the straightforward parallelization skeleton.

4.3 Basic scalars initialization and verification in

sequential order

When running a chunk, slices of the chunk are scheduled for each thread. The
basic scalars must be initialized at the beginning of each slice, using the linear
functions obtained from the instrumentation phase.
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Since no transformation is applied, inside each slice, the original sequential
execution order is kept. This implies that, at the end of each iteration, the values
of the basic scalars correspond to the initial values of the next iteration in the
transformed version. Thus, there is no need to initialize the basic scalars for the
next iteration.

Moreover, the basic scalar verification is only performed at the end of each
slice, to validate the initial values of the following slice.

The initialization iterations and the verification iterations inside each slice is
represented in the figure 4.4.

Notice that the values taken by the basic scalars may not be linear during the
execution of a slice. However, the linearity must be kept at the edges of the slices.
Even if the basic scalars are not linear, the linearity constraints over the memory
accesses and the loop bounds must be verified on every iteration.

Figure 4.4: Straightforward parallel pattern scalar verification iterations.
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Chapter 5

Tiled pattern

The code transformations which may be applied by VMAD, depend strictly on
the patterns created at compile-time. For transformations which alters the nest
structure, a new code skeleton must be created in order to handle this new trans-
formation. In this chapter, a code skeleton, which enables a transformation named
tiling, is explained.

5.1 Motivation

In parallel programs, poor data locality harms program scalability, since there may
be contention over the memory bus.

The example on figure 5.1 corresponds to a Gaussian filter with a 3× 3 stencil.
Notice that element A[i][j] accessed on one iteration, named (i′, j′), would be
referenced again by the next iteration, (i′, j′ + 1), and by iteration (i′ + 1, j′).
Although this value is reused by the next iteration, the large volume of data in the
upcoming iterations may replace the data from the cache before it can be reused
by iteration (i′ + 1, j′).

Tiling counteracts this by reordering the iterations such that iterations from
the outer loops are executed before completing iterations from the innermost loop.

Tiling is a transformation which aims to improve data locality by exploiting
reuse in several iteration directions.

The result of tiling the loop in figure 5.1, is listed in figure 5.2. Since the
number of loops is duplicated, new iterators, named iT and jT , are introduced to
iterate over each individual tile.

Notice the coefficients ti and tj which set the maximum size of the tiles. The
values of these coefficients depend strictly on the loop being parallelized and on
the underlying hardware, and must be chosen to maximize reuse. Moreover, due
to the lack of information available at compile-time for most of the loop nests, it
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for ( i = 0 ; i ≤ N; ++i ) {
for ( j = 0 ; j ≤ M; ++j ) {

B[ i ] [ j ] = (A[i + 1][j] + A[i][j − 1] + A[i][j] + A[i][j + 1] + A[i− 1][j])/5 ;
}

}

Figure 5.1: Gaussian filter nest.

for ( iT = 0 ; iT ≤ N; iT+=ti ) {
for (jT = 0 ; jT ≤ M; jT+=tj ) {

for ( i = iT ; i ≤ min (N, iT+ti−1); ++i ) {
for ( j = jT ; j ≤ min (M, jT+tj −1); ++j ) {

B[i][j] = (A[i + 1][j] + A[i][j − 1] + A[i][j] + A[i][j + 1] + A[i− 1][j])/5 ;
}

}
}

}

Figure 5.2: Tiled Gaussian filter nest.

is difficult to choose statically values for these coefficients without missing opti-
mization opportunities. Taking this into account, in section 5.4 a mechanism for
tuning dynamically the tile sizes is presented.

5.2 Loop transformation and tiling

Loop tiling transforms a n-depth loop nest in a 2n-depth loop nest. The innermost
n loops execute the iterations within a given tile, while the outermost n loops
iterate over the tile space.

In the tiling proposal of this thesis, the original loop is tiled and a loop trans-
formation is applied over the outermost n loops. In this way, the original iteration
order inside each tile is kept, but the order in which the tiles are scanned is mod-
ified.

As an example for this section, the nest in figure 3.4 from chapter 3 is repro-
duced in figure 5.3.

5.2.1 Loop nest construction

When constructing the code-skeleton which enables the tiling transformations, the
loop first is made perfect in the same way as explained in section 3.4.1. Then, for
a n-depth nest, the loop nest is surrounded by new n loops.

44



example ( f loat ∗∗ A, f loat ∗∗ B, unsigned N) {
for ( i = 1 ; i <= N; i++) {

for ( j = 1 ; j <= N j++) {
A[ i ] [ j ] = B[ i −1] [ j ] + B[ i ] [ j −1]

}
}

}

Figure 5.3: Loop nest of figure 3.4 from chapter 3.

Recalling the notion of virtual iterators, which is explained in section 3.4.2, 2n
virtual iterators are created in this pattern, n for the new loops, to iterate over
each tile, while the other half is inserted at the innermost n loops, to scan each
individual tile.(

tsvii
tsvij

)
= T−1 ∗

(
tsvix
tsviy

)
for (vix = FMlbx() ; vix <= FMlbx() ; vix += tsvix ){

for (viy = FMlby (vix) ; viy <= FMuby (vix) ; viy += tsviy ) {(
vii0
vij0

)
= T−1 ∗

(
vix
viy

)
for (vii = vii0 ; vii < min (vii0 + tsvii , ubvii ) ; vii++) {

for (vij = vij0 ; vij < min (vij0 + tsvij , ubviji ∗ i + ubvij ) ; vij++) {
i f (vij == 0) {

i f ( i <= N) j = 1
else goto l o o p e x i t // outermost loop e x i t

}
i f ( j <= N) {

A[ i ] [ j ] = B[ i −1] [ j ] + B[ i ] [ j −1]
j++

} else {
i++

}
}

}
}

}

Figure 5.4: Code example with virtual iterators inserted.

In a similar way as in the pattern explained in chapter 3, the upper-bounds
of the loops, which iterate on the transformed space, are computed using the
Fourier-Motzkin elimination algorithm. In contrast with the non-tiled skeletons,
the outermost loop iterators are incremented with a step depending on the loop tile
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size. The values taken by the tile sizes are adjusted and patched by the runtime
system.

The initial values for the tile iterators, < vii, vij >, are computed by multi-
plying the inverse of the transformation matrix, T−1, with the value of the trans-
formed space iterators. In a similar manner, since the innermost loops iterate in
the original sequential order, while the outermost iterate on the transformed it-
eration space, new tile sizes must be computed by multiplying the outermost tile
sizes with T−1.

In the loops which iterate over one tile, the upper-bound is the minimum
between the tile bound (the initial value of the corresponding iterator plus the tile
size) and the original loop bound, computed by the dot product from the iterator
values, and the coefficients interpolated by the runtime system.

5.2.2 Scalar initialization and verification

One particularity of how tiling is implemented in this code skeleton, is that the
iteration order inside each tile, keeps the original sequential order. Notice that,
at the end of an iteration of the innermost loop, the values of the basic scalars
correspond to the initial values of the next sequential iteration. This is only true
for the innermost loop, since the slices executed by the innermost loops may finish
before reaching their original exit condition; it can reach the tile bound. This is
illustrated in figure 5.5.

Figure 5.5: Scalar verification iterations in the tiling code skeleton.
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In this way, the initialization code must be executed before entering the in-
nermost loop, while the verification code is executed after exiting the innermost
loop.

The memory access verification code and the loop bounds verification is inserted
in the same way as in the other code skeletons.

5.3 Dependency analysis

In order to decide if the tiling transformation can be applied to parallelize a given
loop nest, the dependency analysis mechanism was extended.

First, a set of dependence distance vectors is obtained from the instrumentation

phase, they have the form ~dN =


d1
d2
...
dn

, where n is the depth of the loop nest.

By decomposing each vector ~dN in its canonical form, one obtains the dependence
vectors for the n-loops which iterate over the tiles.

~dN =


d1
d2
...
dn

→



d1
|d1|
0
...
0




0
d2
|d2|
...
0

 . . .


0
0
...
dn
|dn|

 ∀di, di 6= 0


.

Using this new set of dependences, we compute the scalar product between
each dependence and the transformation matrix T . Then, we verify for each
transformation if the first-non null component of each resultant vector is positive.
Since each first non-null component identifies a loop carrying a dependence, the
parallel loop is the outermost which is not carrying any dependence. If this parallel
loop exists and is the outermost or the second of the loop nest, then, it is possible
to launch a chunk with the tiled skeleton, patched in the appropriate way.

As an example, lets suppouse that the dependence vector obtained from in-

strumentation are d1 =

(
1
1

)
and d2 =

(
0
2

)
.

The new dependences for the loops which iterate over the tiles are:{(
1
0

)
,

(
0
1

)}⋃{(
0
1

)}
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If we apply the transformation

(
1 1
1 0

)
we obtain the following dependences.

Notice that the second loop is parallel, so we are able to launch a tiled chunk.{(
1
0

)
,

(
1
1

)}

5.4 Tile size adjustment

Selecting the right values for the tile sizes is mandatory to achieve good perfor-
mance when tiling. Choosing the wrong values for this coefficients may result in
pollution of the data in cache, harming the advantages obtained by the tiling trans-
formation. Furthermore, these values depend strongly on the underlying hardware
(cache size, associativity, etc...).

In the considered loop nests, there is little information available at compile-
time to select the right values for these coefficients accurately. Nevertheless, we
got an advantage over static analysis, since we can actually run and measure the
execution time of the code.

The approach that is presented is guided by:

• Dynamically adjusting the tile sizes, without making assumptions about the
underlying hardware or the loop-nest.

• Being lightweight, to avoid incurring a large overhead to the chunk execution
or the decision making mechanism.

The approach chosen for adjusting the tile sizes is the following:

1. Before executing the first chunk with a tiled skeleton, we assign random
values to the tile sizes for each thread. The idea is to execute with a different
tile size configuration, on each thread.

2. The chunk is launched, and per-thread information about the execution is
stored. In particular, we are interested in information regarding the number
of executed tiles and the running time. This information will be used to
approximate the performance of a single thread with a given tile-size config-
uration.

3. Between each chunk, the tile sizes are adjusted. By multiplying the tile sizes
tsx ∗ tsy ∗ . . . , it is possible to bound the number of iterations executed
by one tile. By multiplying this value with the number of executed tiles
(tsx ∗ tsy ∗ . . . )∗executed tiles the number of executed iterations by a thread
is approximated.
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We obtain a per-thread score by dividing the approximation of the number
of executed iterations with the time it took to execute these iterations.

score =
(tsx ∗ tsy ∗ . . . ) ∗ executed tiles

running time

4. Using the per-thread score, we select the winner tile size configuration. This
configuration is replicated for each thread, and slightly adjusted. Then, a
new chunk is launched with this new tile size configuration.

Steps 3 and 4 are repeated until a misprediction occurs or the loop exit is
reached. After this situation, all the counters are restarted, and all the information
regarding the tile sizes is discarded –A change of the behavior of the loop occurred,
so all the information collected is invalidated.

Using this approach, the tile sizes are adjusted dynamically, converging even-
tually to a ‘good’ set of tile-size values.

Performance counters

For collecting the previously mentioned information about each thread execution,
two counters are inserted. One for measuring time, and another for counting the
number of executed tiles. These counters are initialized to zero before launching
a chunk, as shown in figure 5.6.

t ime be f o r e = time ( )
for (vix = FMlbx() ; vix <= FMlbx() ; vix += tsvix ){

e x e c u t e d t i l e s = e x e c u t e d t i l e s + FMuby (vix) − FMlby (vix)

for (viy = FMlby (vix) ; viy <= FMuby (vix) ; viy += tsviy ) {
. . .
for (vii = vii0 ; vii < min (vii0 + tsvii , ubvii ) ; vii++) {

for (vij = vij0 ; vij < min (vij0 + tsvij , ubviji ∗ i + ubvij ) ; vij++) {
. . .

}
}

}
}
t i m e a f t e r = time ( )
t o t a l t i m e = t o t a l t i m e + t i m e a f t e r − t ime be f o r e

Figure 5.6: Code example with performance counters inserted.
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Tile size adjustment results

In figures 5.7 and 5.8 we show the experimental results of performing the tile size
adjustment. Notice how as the chunks execute, the average score of the threads
converge to the best score of each iteration.
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Figure 5.7: Tile size adjustment results for Adi benchmark.
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Chapter 6

Optimizations and corrections

6.1 Guarding code

For VMAD to handle a wider set of loop nests and transformations, when gener-
ating the different code skeletons, the loop nests are transformed to a perfect nest.
This allows the code-skeletons to handle transformations, such as loop interchange,
by patching a given set of scalars in the code skeleton.

For making a loop perfect, we need to move the code which is originally situated
before and after the contained loop inside the innermost loop. Also, we want to
keep the original behavior of the loop nest, thus, we must guard the code moved
inside the innermost loop to ensure that it is executed at the right time. Notice
that the code after the inner loop will be executed only after the exit condition
of the inner loop is reached. In a similar way, the code before the inner loop is
executed before the first iteration of this loop.

To check if the current iteration is the last one of the contained loop nest, we
use the inner loop exit condition. When this conditions becomes false, we execute
the code after the contained loop.

For checking if the current iteration is the first one of the contained loop nest,
the process is slightly different, since, in the more general case, without adding any
extra code, there is no way to identify if the current iteration is the first one of the
contained loop. To overcome this limitation, when generating the skeletons, we
use the virtual iterators for this purpose. But at the moment of making the nest
perfect, the virtual iterators are not inserted in the skeleton. For this reason, we
insert a placeholder for the guard condition. Once the virtual iterators are inserted
in the loop nest, we replace the placeholder with the corresponding condition.

For a n-depth loop nest, where i1, i2, . . . , in are the virtual iterators of the nest,
the guard condition for the i− th loop is (ii+1 == 0)∧ (ii+2 == 0)∧ . . . (in == 0).

An example of transforming a loop nest to perfect as described in this section
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is presented in figures 6.1 and 6.2.

while (cond1 ) {
. . . //Body1
while (cond2 ) {

. . . //Body2
}
. . . //Body3

}

Figure 6.1: Loop nest example before making it perfect.

while ( t rue ) {
while ( t rue ) {

i f (condition placeholder) {
i f (cond1 ) {

. . . //Body1
} else break ; //Outermost e x i t

}
i f (cond2 ) {

. . . //Body2
} else {

. . . //Body3
}

}
}

Figure 6.2: Loop nest example after making it perfect.
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for (vix = FMlbx() ; vix <= FMlbx() ; ++vix ){
for (viy = FMlby (x) ; viy <= FMuby (vix) ; ++viy ) {(

vii
vij

)
= T−1 ∗

(
vix
viy

)
i f (vij == 0) {

i f (cond1 ) {
. . . //Body1

} else r o l l b a c k ( ) ; //Outermost e x i t
}
i f (cond2 ) {

. . . //Body2
} else {

. . . //Body3
}

}
}

Figure 6.3: Loop nest example after making it perfect with the placeholder re-
placed.

6.2 Memory access verification avoidance

As we seen before, the amount of verification code that is inserted in the different
code skeletons can introduce a significant overhead in the loop execution.

Is there any situation where we can avoid the execution of such verification
code ?

Let us consider the example in figures 6.4, 6.5 and 6.6.

for ( . . .) {
∗( ptr +0) = . . .
∗( ptr +1) = . . .
∗( ptr +2) = . . .

...
∗( ptr +7) = . . .

}

Figure 6.4: Loop nest after an unroll transformation was applied.

The example in figure 6.4 corresponds to a loop nest, after a code transfor-
mation known as loop unrolling was applied. In this transformation, several loop
iterations are written as a sequence of similar independent statements. Notice that
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after the first memory access to ptr is verified to be linear, we can ensure that the
remaining accesses to ptr + 1, ptr + 2 and ptr + 3, are linear too.

while ( . . .) {
. . . = node−>b + . . .
node−>a = . . .

}

Figure 6.5: Loop nest were the operations are performed by accessing fields of a
structure.

The case presented in figure 6.5 is similar to the last one. To access one
field of a structure, we should add the offset which corresponds to the field we
want to access, to the base memory position in which the structure is stored.
In this example, the memory accesses are to the address node + offsetb and
node+ offseta. In the example, if the memory access to node+ offsetb is linear,
the access to node+ offseta will be necessarily linear too.

while ( . . .) {
for ( ptr = node−>data ; ptr != node−>data + length ; ++ptr ) {

∗ptr = . . .
}

}

Figure 6.6: Loop nest were the memory access address correspond to a basic scalar
value.

In the last example, of figure 6.6, the memory access is performed using as
a pointer the value of a basic scalar. The values taken by this scalar would be
interpolated with linear functions by the runtime system, and initialized using
linear functions. Thus, if a memory access is a linear transformation from the
basic scalars, we are sure it will behave as a linear function of the virtual iterators.
This last paragraph is not true for the skeletons which implements the tiling and
straightforward parallelization patterns. For the tiling skeletons it is only valid if
the basic scalar is outside the innermost loop.

We developed an analysis for identifying this situations. The analysis verifies
for each memory access in the loop, if it is a linear transformation of:

• The basic scalars of the loop nest.

• Other memory accesses inside the loop nest, which strictly dominates 1 the

1An instruction A dominates an instruction B, if every path from a start node to B must
go through A. Trivially, B dominates itself.
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memory access being verified.

The results of this analysis are encoded in the llvm intermediate representation
as meta-data attached to the memory access instructions. For a particular mem-
ory access, we attach the depth of the innermost loop nest, where a basic scalar
intervenes in the memory address computation. For example, in the nest in figure
6.6, the value attached to the unique memory access instruction would be 2. If
the memory address is computed as a linear transformation from other memory
addresses, known to be linear or verified at runtime, the value attached to the
instruction is 0. If the memory access is not linear from the basic scalars or other
memory accesses, we don’t attach any meta-data to the instruction.

When generating the multiple optimized versions, different criteria are taken
into account for deciding to insert or not verification code.

• Transformed parallel: We avoid inserting verification, only if meta-data
identifying the access as linear is attached to the instruction.

• Straightforward parallel: We insert verification code excepting when the
value attached to the memory access instruction is equal to 0.

• Tiling: We avoid inserting verification code if the value attached to the
instruction is different from the original loop nest depth (The depth of the
innermost loop in the original nest).

This analysis is implemented as a separate compiler pass. By doing a depth
first search through the instructions, starting with the memory address referenced
by the memory instruction, we traverse the data flow graph, until a conclusive
result is obtained. For a reference on the llvm instruction set the reader can refer
to [24].

Each instruction type must be handled separately in the following way:

• Constant or Instruction outside the loop nest : the analysis returns (linear, 0).

• For a Basic scalar return (linear, basic scalar depth in the nest).

• If the instruction is a Memory address known linear which dominates the
one being analyzed return (linear, 0).

• For a Cast instruction, if the cast keeps the linearity, for example, from i32
to i64 signed cast, the analysis result is the same as with the operand being
casted.

• For a Binary operator instruction:
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– For addition or subtraction the analysis is the same. First analyze both
operands, if both are linear return (linear,max(depthop1 , depthop2)),
where depthopi is the second component of the tuple returned by the
i-th operand.

– For multiplication, one of the operands must stay constant during the
execution of the loop, and the other must be linear. The same result as
with the linear operand is returned.

– For every other case, including division, we return non− linear.

• The Get element pointer is an instruction for the computation of memory
addresses. Its operands consist of one base pointer, and several indexes. The
address computation is performed in the following way: base ptr+cte0∗idx0+
cte1 ∗ idx1 + · · ·+ cten ∗ idxn, where the constants cte0, . . . , cten are known at
compile time. In a similar manner to the binary addition and subtraction, if
every operand is linear, the result is (linear,max(depthbase ptr, depthidx0 , . . . , depthidxn)).

• In every other case, return non− linear.
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Part III

Results and conclusions
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Chapter 7

Evaluation of the optimizations

In the previous chapters we introduced a technique for runtime optimization known
as speculative code parallelization. To enable adaptive behavior during execu-
tion, several code-skeletons are generated: one specialized for instrumentation,
one matching the original loop behavior, and several skeletons matching different
optimizing code transformations.

In this thesis, two new code skeletons are presented, one which enables the
tiling transformation and one which parallelizes the code, but keeps the original
sequential iteration order. Section 7.1 presents the evaluation of the different code
skeletons when parallelizing code and varying the number of threads.

The configuration on which the tests were run embeds two AMD Opteron Pro-
cessors 6172, of 12 cores each, at 2.1 Ghz, running Linux 3.2.0-36-generic x86 64,
and 32 Gb of ram memory.

The results obtained from running the benchmarks are presented in Appendix
A.

7.1 Parallel, Straightforward and Tiled code skele-

tons

In this section we present the results we obtained with speculative parallelization,
while using different code skeletons on codes which cannot be parallelized using the
traditional compile time techniques. The set of benchmarks comes from different
sources: The polyhedral benchmark suite [28], the Rosetta code website [35] and
some codes implementing linear algebra algorithms. Since some of these codes can
be handled statically, we have modified them to use dynamically allocated arrays
or pointers, preventing static analysis.

In figures 7.1, 7.3, 7.5, 7.7 and 7.9 we shows performance comparisons between

58



the original code1, the previous existing parallel code skeleton, the straightforward
parallelization skeleton and the tiling skeleton.

Opposed to the performance comparisons, to evaluate the scalability of the
code skeletons, we measured the execution time of the loop, ignoring the time
spent to perform memory backup. The results obtained are shown in figures 7.2,
7.4, 7.6, 7.8 and 7.10.

The benchmarks were run using the identity as the transformation matrix, to
be able to compare with the straightforward parallelization pattern. Additionally,
the gauss 2d kernel was run with a loop interchange.
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Figure 7.1: Adi-polybench kernel performance results.

1Compiled with gcc with the -O3 option.
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Figure 7.2: Adi-polybench kernel self speedup results.
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Figure 7.3: Gauss 2d kernel performance results.
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Figure 7.4: Gauss 2d kernel self speedup results.

For the kernels adi-polybench (See figures 7.1 and 7.2) and gauss 2d (See figures
7.3 and 7.4) speedup over the original code was never reached, even after increasing
the number of threads.

A further analysis shows that the time spent doing the memory backup cor-
responds to the 82% and 103% of the time executing the original code. Thus,
the penalty imposed by the memory backup harms any benefits of speculative
parallelization.

The results obtained by applying a loop interchange outperformed the ones par-
allelized with the identity matrix as transformation. Nevertheless, the tiled code
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skeleton reduced the performance penalty imposed by using the identity schedule.
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Figure 7.5: QR decomp kernel performance results.
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Figure 7.6: QR decomp kernel self speedup results.
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Figure 7.7: Matrixmul kernel performance results.
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Figure 7.8: Matrixmul kernel self speedup results.
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Figure 7.9: Grayscale kernel performance results.
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Figure 7.10: Grayscale kernel self speedup results.

For kernel QR, Matrixmul and the Grayscale, we obtained benefits from using
speculative parallelization.

The tiled skeleton, provided better performance results than the other skele-
tons, except for adi-polybench, were the straightforward parallelization pattern
got better results. On the other hand, the performance obtained by the straight-
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forward parallelization skeleton over the parallel code skeleton was noticeable on
all the benchmarks.

In the grayscale kernel, the tiled pattern got speedup over the original version
without parallelization (See fig 7.9). This is because this kernel traverses a big
image, by columns instead of by rows. This results in poor data locality.

The speedup results obtained for all the skeletons with a small number (less
than 8) of threads are similar. On the other hand, the performance results were
different in favor of the tiled code skeleton.

As the number of threads increases the speedup increase ratio drops, especially
for the skeletons which obtain better performance results. For the selected problem
sizes it’s impossible to obtain speedup after a certain number of threads, since the
time spent on the sequential fraction of the program –Transformation selection,
instrumentation, backup, rollback, original version execution– started dominating
the time spent on the parallel fraction. It is expected that, as the problem size in-
creases, the parallel region fraction of the program execution will increase, leading
to better speedups.

7.2 Conclusions over the results

The new code skeletons purposed in this thesis succeed in improving the perfor-
mance over the original code transformations available.

Tiling results a key transformation to achieve good performance. For most
benchmarks, applying the tiling transformation achieved better performance than
the rest of the code skeletons. One advantage of this code skeleton is that it can
counteract the penalty imposed by selecting a loop transformation with poor data
locality.

Also the straightforward parallelization skeletons outperformed the previous
existing code skeleton.

Nevertheless, the strategy implemented in VMAD is limited by the time spent
performing the memory backup. This penalty can ban any benefit obtained by
using speculative parallelization.
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Chapter 8

Conclusions

The work done in this thesis contribute to the topic of speculative parallelization,
by extending and improving VMAD, giving support for new transformations and
enabling new optimizations.

We extend the number of transformations available at runtime with two new
code versions:

• One reflecting the original code with the outermost or second loop parallel.
Since the original execution order is kept, the verification code executed on
each iteration is noticeably reduced.

• To enable the tiling transformation, we purpose a new code skeleton. The
main purpose of this transformation is to increase the data locality by re-
ordering the iteration execution such that iterations from the outer loops
are executed before completing iterations from the innermost loops. Ad-
ditionally, we purposed a mechanism for adapting the sizes of the tiles at
runtime.

This new code skeletons were implemented as extensions to the static com-
ponent of VMAD. Also, the runtime system and the dependence analysis was
extended to be aware of this new skeletons.

We successfully parallelized loops using this new code skeletons. We evaluated
the effectiveness of this contributions by running a set of benchmarks. The results
obtained confirm our idea that improving data locality and reducing the amount
of verification code are key to obtain good performance when applying specula-
tive parallelization. We obtained promising results using the tiling code skeleton,
which outperformed the results obtained using other code skeletons, or executing
the original code, for several benchmarks. The new code skeletons successfully
outperformed the previous code skeleton available in VMAD by improving data
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locality and reducing verification code. Nevertheless, for some codes it was im-
possible to achieve a performance benefit by using speculative parallelization; the
penalty imposed by the memory backup limits this strategy.

To reduce the impact of the verification code, embedded in the code skeletons,
this thesis purposes an analysis to avoid unnecessary verification when there exists
a linear relationship between a value to be verified and a value known to be linear.
This analysis captures several common cases where the amount of verification code
can be reduced: Loops where loop unroll was applied, accessing different fields of
a struct, reading several fields of the same array. This analysis is implemented as
an LLVM optimization pass, whose results are used at compile time by VMAD.

Many aspects we expect to enhance in our system are presented in the next
section.

8.1 Future work

The VMAD framework succeeds in enabling the polytope model to general purpose
codes, that require dynamic analysis and transformations. Nevertheless, there are
several topics that have to be revisited to achieve good performance.

One strategy for improving the performance of the frameworks, is to reduce
the time spent on the memory backup launched before each optimized chunk.
Currently, this is performed by several calls to the memcpy function. Another
approach would be to perform the copy of each memory location as needed, inside
each thread. Additionally, if a rollback is needed, restore the memory in parallel.

Improving the code generation of VMAD is key to achieve good performance.
To generate the optimized code, we are using a naive algorithm to select a suitable
code transformation. It is mandatory to develop an algorithm to select a suitable
code transformation which takes into account efficiency issues, such as data locality.

The number of transformations available at runtime is limited by the code
skeletons generated at compile time. An interesting strategy is to generate dy-
namically a new code version by composing different loop basic blocks. In this
way, we could be able to build loop nest whose structure is not preserved by the
transformation, such as loop fission.

From scalability measurements obtained from the results, we can conclude that
after a certain point assigning more cores to the execution of an optimized chunk
does not result in a noticeable performance improvement. To obtain a better use
of the machine resources, we could limit the number of cores assigned to the chunk
execution, while other cores perform other tasks, such as anticipating a memory
backup or searching for better transformations. On the other hand, we could
optimize VMAD to reduce the power consumption by shutting down processor
cores when increasing the parallelism doesn’t provide performance benefits.
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Appendix A

Raw results

In this section we present the results obtained from the different benchmark runs.
The measurements are in µ-seconds (10−6 of a second) and correspond to the
average measurement of three runs.

adi-polybench
Original code execution time: 9310370
Backup average time: 7688955
Threads Parallel skeleton Straightforward skeleton Tiled skeleton

1 37066182 25221893 37189056
2 22763116 16982922 23890959
4 15753914 12847902 15775522
8 12191040 11709426 13325941
16 11847743 11633639 12055411
24 11551530 11358191 11749281

QR decomp
Original code execution time: 16398426
Backup average time: 307030
Threads Parallel skeleton Straightforward skeleton Tiled skeleton

1 103256160 45905225 26930602
2 55049555 26052874 15188196
4 29923610 15280970 9708889
8 16867327 9396928 8298510
16 10533665 6607966 6579476
24 8366709 5674621 5888677
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matrixmul
Original code execution time: 16086987
Backup average time: 282860
Threads Parallel skeleton Straightforward skeleton Tiled skeleton

1 64185481 31992624 24514220
2 35576364 19105865 11352990
4 20026163 11642170 7535176
8 11772054 7507076 5754477
16 7835561 5557538 5027725
24 6508784 4905244 4690190

grayscale
Original code execution time: 9304649
Backup average time: 4502757
Threads Parallel skeleton Straightforward skeleton Tiled skeleton

1 16104522 14280905 6487343
2 11957698 10409356 6337701
4 9113262 8137345 5752809
8 7285303 6688697 5400806
16 6352299 6151061 5245322
24 6083029 6091061 5203952

Gauss 2d filter
Original code execution time: 12609505
Backup average time: 13017175
Threads Parallel

skeleton
Straight
skeleton

Tiled
skeleton

Parallel with
reversal

Tiled with
reversal

1 30960145 27885923 20908908 21031597 19855323
2 26714235 24260954 18231533 18079417 18299501
4 21454785 20103593 17448212 16734101 16637507
8 19023425 18463514 16712471 16677955 16124230
16 17386607 17873544 16088021 15873514 15584978
24 17526994 17651687 16573776 16548641 15183278
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