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Abstract

Program specialization is a form automatic program generation that produces different ver-
sions of a given general source program, each of them specialized to particular known data.
For example, the recursive function power, if the exponent is known to be 3, can be specialized
to a more efficient (non-recursive) function Az.x - = - , and similarly for other exponents.

Type specialization [Hughes, 1996b; Hughes, 1996a; Hughes, 1998] is a form of program
specialization based on type inference. Both the source program and its type are specialized
to a residual program and a residual type. Principal type specialization [Martinez Lépez
and Hughes, 2002; Martinez Ldépez, 2005] is a detailed formulation to this system based
on the theory of Qualified Types [Jones, 1994]. It has the property of producing principal
specializations: for each specializable source expression and type, a residual expression and
type can be generated such that they are more general than any other valid specialization,
and all of them can be obtained from it by a notion of instantiation.

An important notion in any specialization system is that of polyvariance, a feature allowing
a single source expression to be specialized to many residual results. Polyvariance can be
achieved in more than one way; in particular, the original type specialization system [Hughes,
1996b] includes constructs for polyvariant products (where an expression e is specialized to
a tuple of expressions (e],...,e,)) and polyvariant sums (where a tagged expression In e is
specialized to many tagged expressions Inj €, ..., In, €},), the latter also known as constructor
specialization [Mogensen, 1993].

Principal type specialization was formulated only for a subset of the language presented
originally; in particular, polyvariant sum types were not considered. In this thesis, we extend
the system with new constructs and rules to specialize polyvariant sums. We prove that our
contribution preserves all the properties of the original system, including that of principality,
and we incorporate our extension to PTS, a prototype implementation of the specializer.



Resumen

La especializacién de programas es una forma de generar programas autométicamente, que
consiste en producir distintas versiones de un programa fuente general, cada una especializada
segun datos particulares conocidos. Por ejemplo, la funcién recursiva potencia, sabiendo que
el exponente serd igual a 3, puede especializarse a una versién residual més eficiente (no
recursiva) A\z.x - x - x, y en forma similar para otros exponentes.

La especializacién de tipos [Hughes, 1996b; Hughes, 1996a; Hughes, 1998] es una forma de
especializacion de programas basada en inferencia de tipos. Tanto el programa fuente como
su tipo son especializados a un programa y un tipo residuales. La especializacién principal de
tipos [Martinez Lopez and Hughes, 2002; Martinez Lépez, 2005] es una formulacién detallada
de este sistema basada en la teoria de tipos calificados [Jones, 1994]. Tiene la propiedad
de generar especializaciones principales: para cada expresién y tipo fuente especializables,
se puede producir una expresion y un tipo residuales que son mas generales que cualquier
otra especializacién valida, y tales que todas ellas pueden obtenerse a partir de la primera
mediante de una nocién de instanciacion.

Un concepto importante en todo sistema de especializacion es el de polivarianza, una
caracteristica que permite que una Unica expresiéon fuente pueda ser especializada a mas de
una expresion residual. La polivarianza puede obtenerse de distintas formas; en particular,
el sistema de especializacién de tipos original [Hughes, 1996b] incluye construcciones para
productos polivariantes (donde una tnica expresion fuente e especializa a una tupla de ex-
presiones (e},...,€})) y para sumas polivariantes (donde una expresién etiquetada con un
constructor In e especializa a varias expresiones con varios constructores Inj €f,. .., In, e}).
Esta tltima se conoce también como especializacién de constructores [Mogensen, 1993].

La especializacién principal de tipos fue formulada sélo para un subconjunto del lenguaje
presentado originalmente; en particular, las sumas polivariantes no fueron consideradas. En
esta tesis extendemos el sistema con nuevas construcciones y reglas para especializar sumas
polivariantes. Demostramos que nuestra contribucion preserva todas las propiedades del
sistema orignal, incluyendo la de principalidad, e incorporamos nuestra extensién a PTS, un
prototipo de implementacién de este sistema.
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Resumen Extendido

Introducciéon

La especializacién de programas es una forma de generar programas autométicamente, que
consiste en producir distintas versiones de un programa fuente general, cada una especializada
segun datos particulares conocidos. Un ejemplo clédsico es el da la funcién potencia, que
computa x"

potencia nx = if n == 1then
x
else
z * potencia (n — 1) x

El cémputo de esta funcién involucra comparaciones y llamados recursivos, pero cuando el
parametro n es conocido, puede especializarse a una funcién no recursiva. Por ejemplo, si
sabemos que n vale 3, la funcién

potenciag x = x * (z % x)

serfa una especializacién apropiada, claramente maés eficiente que la version original para
calcular cubos. Un resultado similar se puede obtener para distintos exponentes, a partir
de la misma funcién. Al programa original se lo llama programa fuente, y a las versiones
especializadas, programas residuales.

La especializacién de programas ha sido encarada de distintas formas, entre las cuales
la més difundida es la de evaluacién parcial [Jones et al., 1993; Consel and Danvy, 1993].
Esta consiste en producir programas residuales a través de reducciones: las subexpresiones
con argumentos conocidos se reemplazan por el resultado de su evaluacién y se combinan
con los computos que no pueden hacerse. Es decir, la evaluacion parcial trabaja con el texto
del programa fijando algunos datos de entrada y combinando el computo con generacién de
codigo para producir un nuevo programa. Los programas generados, cuando se corren con
los datos restantes, arrojan el mismo resultado que el programa original corrido con todos los
datos.

La especializacién de tipos [Hughes, 1996b; Hughes, 1996a; Hughes, 1998] es una forma de
especializacion de programas basada en inferencia de tipos. Tanto el programa fuente como
su tipo son especializados a un programa y un tipo residuales.

En todos los lenguajes tipados, los tipos proveen informacién acerca de las expresiones.
Por ejemplo, cuando una expresion es de tipo Int, sabemos que si su evaluacién termina
arrojard un nimero entero. Pero si sabemos que la expresién es la constante 11, podemos
tener informacién mas refinada con un tipo que represente la propiedad de ser el entero 11:
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llamemos a este tipo 11. Teniendo toda la informacién en el tipo, ya no hay necesidad de
ejecutar el programa, asi que la constante entera puede ser reemplazada por un valor tnico
de tipo 11. En otras palabras, la expresién fuente 11 : Int puede especializarse a o : 11.

Llamamos a los tipos y operaciones conocidas estdticos, y a los que no lo son, dindmicos.
Cada subexpresién del programa fuente est4 etiquetada con los superindices * o ” respectiva-
mente. El problema de especializar un programa f con parametros zi,...,z, donde x1,...xg
son conocidos puede expresarse como la especializacién de la expresion

fQ@%z @° ... @%x, Q" x4y Q° ... @72,

donde f es una funcién y f@Qux representa la aplicacién.

Pero la especializacion de tipos es un enfoque més general, que permite combinaciones
mucho mas flexibles de anotaciones estaticas y dindmicas. Los tipos residuales pueden expre-
sar informacion “parcialmente estatica”, de manera tal que cierta informacién estatica puede
ser asociada con valores dindmicos y propagada con mecanismos analogos a los de inferencia
de tipos.

Ejemplo 1 Consideremos la expresién

(X flife (f @3%)) @2 (Wa.x +51°) : Int”

Tenemos expresiones lambda y aplicaciones dindmicas, que se transformardn en expre-
siones lambda y aplicaciones residuales en el programa especializado. El operador lift con-
vierte una expresion de tipo entero estatico en su valor dindamico: si un entero estatico e tiene
tipo residual n, entonces lift e especializa a n : Int.

Para especializar esta expresion, inferimos el tipo residual de cada una de sus partes. Para
empezar, f se aplica a un argumento con tipo residual 3, asf que debe tener tipo residual 3 — 7
para algiin 7. Ahora bien, este también debe ser el tipo de ()\Dm.x +° 15), con lo que x debe
ser de tipo residual 3. Entonces (w +71° ) debe tener tipo 4; conlcuimos que 7 es 4, f esde
tipo 3 — 4y f @” 3 es de tipo 4. Finalmente, la operacién lift puede especializarse a 4, y el
resultado es:

(Af.4)Q (Az.e) : Int

Hemos obtenido el valor 4 en el cédigo residual sin desdoblar ninguna de las funciones. ¢

Hasta aqui hemos descripto brevemente la especializacién de tipos tal como fue presentada
originalmente por Hughes. La especializacién principal de tipos [Martinez Lépez and Hughes,
2002; Martinez Lopez, 2005] es una formulacién detallada de este sistema basada en la teoria
de tipos calificados [Jones, 1994]. Tiene la propiedad de generar especializaciones principales:
para cada expresion y tipo fuente especializables, se pueden producir una expresién y un tipo
residuales que son maés generales que cualquier otra especializacién vélida, y tales que todas
ellas pueden obtenerse a partir de la primera mediante de una nocién de instanciacién.

Un concepto importante en todo sistema de especializacién es el de polivarianza, una
caracteristica que permite que una tUnica expresion fuente pueda ser especializada a mas de
una expresion residual. La polivarianza puede obtenerse de distintas formas; en particular,
el sistema de especializacién de tipos original [Hughes, 1996b] incluye construcciones para
productos polivariantes (donde una tnica expresién fuente e especializa a una tupla de ex-
presiones (€},...,e})) y para sumas polivariantes (donde una expresién etiquetada con un
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constructor In e especializa a varias expresiones con varios constructores Inj €, ..., In, e},).
Esta tltima se conoce también como especializacién de constructores [Mogensen, 1993].

La especializacion principal de tipos fue formulada sélo para un subconjunto del lenguaje
presentado originalmente; en particular, las sumas polivariantes no fueron consideradas. En
esta tesis extendemos el sistema con nuevas construcciones y reglas para especializar sumas
polivariantes. Demostramos que nuestra contribucién preserva todas las propiedades del
sistema orignal, incluyendo la de principalidad, e incorporamos nuestra extensién a PTS, un
prototipo de implementacién de este sistema.

Especializacion Principal de Tipos

En esta seccion describimos con ejemplos las caracteristicas méas importantes del sistema
de especializacién principal de tipos, con énfasis en las partes mayormente invoulcradas con
nuestro trabajo. Trabajamos tUnicamente con un subconjunto del lenguaje propuesto por
Martinez Lépez [2005], suficiente para ilustrar los elementos caracteristicos del sistema.

La clave para obtener especializacién de tipos es la riqueza del sistema de tipado residual.
En él se pretende capturar toda la informacién estdtica proveniente de la expresién fuente,
y mas aun, especializar en forma general cualquier subexpresion. Motivado por esto ultimo,
el sistema estd basado en la teoria de tipos calificados de Mark Jones [1994], que provee un
nivel intermedio entre el tipado monomorfico y el polimérifco introduciendo predicados que
restringen tipos. Por ejemplo, si P(t) es un predicado sobre tipos, entonces se usan esquemas
de la forma Vt.P(t) = f(t) para representar el conjunto

{f(7)|7 es un tipo tal que vale P(7)}

Recordemos que la especializacién en este sistema se especifica a través de reglas de espe-
cializacion, de la misma forma que un sistema de tipos se especializa con reglas de inferencia.
Los juicios del sistema son de la forma

i .
AlThHe:T — e:7

expresando que el término e de tipo T especializa a la expresién residual €’ de tipo 7/ bajo
los contextos I' (donde se asume cémo especializan las variables libres de e) y A (donde se
asumen predicados sobre los tipos residuales).

Esta forma de especificacién para un especializador tiene la ventaja de ser modular:
pueden agregarse nuevas construcciones al lenguaje fuente simplemente agregando nuevas
reglas, sin necesidad de cambiar el resto del sistema.

Ejemplo 2 Las siguientes son especializaciones vélidas en el contexto vacio. Se observa
como cada expresién anotada como dindmica aparece en el término residual, mientras que la
informacién de expresiones estaticas es trasladada al tipo residual.

1. +117 : Int® — 11 : Int

2. F11° : Int® — e: 11

3. F (2P +717) 4717 : Int” — (2+1)+1: Int
4. F(2° +519) +°1° 1 Int® — e : 4
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Predicados y evidencia

Consideremos la especializacién de la funcién que toma un entero estatico y lo convierte en
uno dindmico:
Nz lift = : Int® —" Int”

Siendo una funcién dinamica, esperamos que se convierta en una funcién residual, cuyo resul-
tado, especializacion de una expresién lift, debe ser un entero residual. Una especializacién
posible, por ejemplo, seria la que parte de asumir que el argumento es 3°:

2’3 : 3P Int
Otra, la que asume que el argumento es 8°:
'8 : 8 =P Int

y de la misma forma para cualquier n. Para obtener una especializacién general de esta
funcidn, se hace uso de variables de tipo, ligadas con el operador V. Una primera aproximacion
serfa darle tipo residual Vt.t — Int. Sin embargo, este describe las funciones que toman
argumento de cualquier tipo y devuelven un entero. En este caso, la funcién no puede recibir
“cualquier tipo”, sino sdlo uno de la forma n. Usamos entonces un predicado que describe la
propiedad de ser de esta forma: el predicado IsInt. El tipo residual de la funcién es entonces

Vt.IsInt ¢t = Int

Ahora bien, resta definir nuestra expresion residual, o méas precisamente, a qué valor entero
debe especializar el cuerpo de la funcién. Hemos visto que para una expresién de tipo 7, el
operador lift sobre ella debe especializar al entero n.

Para modelar esto, usamos la nocién de evidencia introducida por Jones. La idea basica es
que un objeto de tipo A = 7 sélo puede usarse si ademds tenemos una evidencia apropiada de
que los predicados de A efectivamente valen. La evidencia se define junto con cada predicado
como un término ad-hoc, y se nota v : § para decir que v es evidencia de . Ademas, se cuenta
con un conjunto numerable de variables de evidencia h, y con las operaciones de abstraccion
y aplicacion de evidencia, Ah.e y e((v)) respectivamente. La abstraccién de evidencia en una
expresién indica que se estd asumiendo que vale cierto predicado, que estara presente en el
tipo de la expresion. Las reglas de especializacion fuerzan a que exista una abstraccién de
evidencia en la expresién por cada predicado en su tipo. La aplicacién es la operacién inversa,
que permite eliminar un predicado del tipo por haberlo “demostrado”, esto es, habiendo
construido evidencia para él.

En el caso del predicado Islnt, la evidencia es el nimero del tipo: en otras palabras,
decimos que n : IsInt n. Ahora bien, en nuestro caso no tenemos directamente un tipo n
sino una variable que lo representa: usamos entonces una h que nos permite asumir que vale
IsInt ¢t. Esta variable aparecera abstraida en la expresiéon, y es justamente la que usamos para
el cuerpo de la funcion.

I—P Xz lift = : Int® =" Int”® — AhAx'.h:VtIsInt t =t — Int
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Polivarianza

Hasta ahora, hemos mostrado ejemplos de especializacién monovariante, es decir, aquella en
que las variables estaticas pueden tomar sélo un valor estatico. Por ejemplo, la expresion

let” f = Nzlift x in f Q" 11° : Int”

puede especializarse a
let f' = \2/.11 in f'Qe : Int

Pero esta otra expresion, similar,

let” f= Nzlift x
in (f @”11°, f @D6S)D : (IntD,IntD)D

no se puede especializar, porque f’ no puede tener tipos 11 — Int y 6 — Int simultdneamente.
Cualquier especializador 1til necesita especializacién polivariante, generando en este caso al
menos dos versiones de f’: una por cada argumento estdtico.

Introducimos el operador poly para producir especializaciones polivariantes. Una ex-
presién encapsulada con la palabra poly especializa a un tipo residual general (también
envuelto en una anotacién poly) que se puede instanciar con cada uso. El operador spec
produce una instanciacién adecuada.

Con estos operadores, la funciéon f de arriba puede hacerse polivariante, para poder ser
aplicada a méas de un argumento estatico. Como ya no tendra tipo funcién, no podra ser
aplicada directamente, sino que tendra que llevar un spec antes.

let” f = poly X’z.lift =
in (spec f @"11% spec f @”6%) " : (Int”,Int") "

Ahora f especializa a la expresién general que ya hemos visto para esta funcién: Ah.A\z'.h :
poly (Vt.IsInt ¢t = t). Llamemos f' = Ah.\2'.h y o = Vt.IsInt ¢ = t. Veamos cémo generar
cada instanciacion.

Como spec f aparece aplicada a 11°, sabemos que debe tener tipo residual 11 — Int. Si
debemos ver este tipo como una instancia del tipo de f’, es decir como una instancia de o,
podemos entender que efectivamente lo es, en el sentido de que 11 es un caso particular de t.
Este concepto se modela en el sistema a través de una relacién llamada mds general, notada
con el simbolo >. Informalmente, decimos que o1 es més general que o9 si toda vez que se
requiere un objeto de tipo o9 puede usarse uno de tipo o1 en su lugar. En nuestro caso, vale
que

VtIsInt t =t > 11 — Int

Ahora bien, esta definiciéon no estd completamente refinada. En realidad, las reglas de tipado
no permiten, en general, usar un término de tipo o1 donde se requiere uno de tipo os. Por
ejemplo, en nuestro caso, no podemos usar f’ directamente como especializacién de spec f,
ya que deberfamos aplicarla a e : 11. Para aplicar algo a esta expresién, las reglas de espe-
cializacién (siguiendo la linea de reglas de tipado) exigen que se trate exactamente de una
funcién 11 — Int (sin predicados ni variables de tipo).

Lo que falta es un modo de adaptar f’ de manera tal que efectivamente tenga el tipo que
necesitamos. Observemos que en Ah.\z’.h hay una abstraccién de evidencia, necesaria para
asumir el predicado IsInt t. En algo de tipo 11 — Int, no necesitamos dicha abstraccion,
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ya que 11 ocupa el lugar de t y sabemos que 11 es la evidencia que corresponde. En otras
palabras, estarfamos demostrando que vale IsInt ¢ al asociar ¢ con 11 y construir evidencia
11. Como mencionamos antes, la operacién de eliminar predicados y demostrarlos se refleja
en la expresién a través de la aplicacion de evidencia.

(AR A2 .B)(11)) > Az'.11

Esta operacién de aplicar la evidencia 11 no sirve sélo para nuestra expresién en particular,
sino para convertir cualquier expresién de tipo ¢ en una de tipo 11 — Int. Usamos una
forma de contexto, llamada conversion, para expresar esta operacién en términos abstractos.
Finalmente, la relacién “més general” tiene en realidad tres partes: un tipo general o;, una
instancia o9, y una conversion que transforma expresiones del primer tipo en el segundo.

[(11) : Vt.IsInt t =t > 11 — Int

Teniendo esto, sélo queda aplicar la evidencia 11 a f’ antes de utilizarla como funcién. La
instanciacién correspondiente a spec 6 es andloga. Nuestra expresién puede especializarse
finalmente a
let f/ = Ah.\2'.h
in (f'((11))@e, f'(6))@e) : (Int, Int)

Principalidad

La propiedad mas importante de este sistema es la existencia de especializaciones principales:
toda subexpresion especializable tiene una especializacién que es mas general que cualquier
otra valida, y tal que todas ellas pueden obtenerse a partir de la primera segin una nocién
apropiada de instanciacion.

Sumas Polivariantes

La formulacién original de Martinez Lopez fue hecha sélo para un pequenio subconjunto de
un lenguaje fuente completo. En particular, las sumas dindmicas no fueron consideradas alli
sino en una extensién propuesta por Alejandro Russo [2004].

Las sumas son tipos definidos por el programador, como una serie de constructores apli-
cados a un argumento. Por ejemplo, a partir de la definicién

data FitherSD” = Sta” Int® | Dyn" Int”
podemos construir la expresién
(StaD 4% Sta” 95) b (EitherSDD , EitherSDD) b

Tratandose de sumas dindmicas, esperamos que las construcciones asociadas con ellas per-
manezcan en el cédigo residual: la declaracién del tipo, las expresiones acompanadas de
un constructor y las operaciones de pattern matching. La expresion anterior especializa al
siguiente codigo residual:

data EitherSD' = Stal 4
data EitherSD? = Sta?9

(Sta' e, Sta® e) : (EitherSD', EitherSD?)

que ilustra varias de las caracteristicas de la especializacién de sumas dindmicas:



e Se pueden generar varias declaraciones de tipos residuales a partir de una tnica decla-
racién fuente. En este caso, no hay necesidad de que los dos argumentos de la tupla
especialicen a algo del mismo tipo. Entonces, han sido generados dos tipos residuales
distintos, distinguidos por superindices, y los constructores han sido numerados en forma
acorde.

e No todo constructor que aparece en la declaracién fuente debe aparecer en las declara-
ciones residuales. En este caso, como Dyn no es utilizado para construir ninguna ex-
presion, no es necesario que forme parte del tipo.

e Los constructores aparecen en el cddigo residual, pero sus argumentos son especializados
normalmente, y en caso de haber informacién estatica, esta pasa a la declaracién del
tipo. En el ejemplo, los argumentos son enteros estaticos, con lo cual especializan a
la constante e, y su valor pasa al tipo de cada constructor residual: Sta' 4 y Sta? 9
respectivamente.

A pesar de poder generar varias copias de un mismo tipo fuente, dentro de cada copia,
puede haber al menos un constructor residual por cada constructor en la definicién fuente.
Por ejemplo, la siguiente es una expresion similar a la anterior

let” id = X’z.x in
(id @" (Sta” 4%),id Q" (Sta” 9%)) © : (EitherSD" , EitherSD" ) "

pero no puede ser especializada. Como las dos expresiones con constructores son argumento
de una misma funcién, deben tener el mismo tipo residual EitherSD’, jpero este tipo no
puede tener los constructores Sta 4 y Sta 9 al mismo tiempo!

Las sumas dindmicas polivariantes, la contribucién principal de nuestro trabajo, permiten
generar multiples copias de un mismo constructor dentro de la misma declaracion residual.
Declaramos una suma polivariante con la palabra polydata, obteniendo la siguiente espe-
cializacién:

data EitherSD” = Stal 4| Stal 9
let id' = X°2'.2' in
(id'@Q(Sta} e),id'@Q(Sta} e)): (EitherSD', EitherSD")

donde se ha generado una tnica declaracién residual con dos constructores Sta, distinguidos
con subindices, cada uno con el argumento adecuado.

Las sumas polivariantes son una forma alternativa para obtener polivarianza. En el ejem—
plo anterior, el constructor Sta se aplica a dos argumentos con distinto tipo residual — 4 y
9 — para producir expresiones con el mismo: EitherSD'. De esta manera, permiten también
pasar distintos argumentos estaticos a la misma funcién, ¢d en este caso. Volviendo a la
expresion que no podiamos especializar sin el uso de anotaciones poly y spec

let” f = Xz.lift
in (f @”11°, f @D6S)D : (IntD,IntD)D

ahora podemos, en lugar de dar polivarianza a la funcién f, darsela a sus argumentos, encap-
sulandonos en un constructor de una suma polivariante, que llamamos Poly, y usando pattern
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matching para desencapsularlo.
polydata P” = Poly” Int®

let” f = X’pz.case” pr of
Poly” z — lift =
in (f @7 (Poly” 117), f @” (Poly” 6°)) ” : (Int”,Int" ) "

Esta expresion especializa a
data P* = Poly} 11 | Poly} 6

let f' = A\pz'.case pz’ of
Polyl =z — 11
Polyy = — 6
in (fQ(Poly} e), fQ(Polys e)): (Int, Int)

lo cual ilustra la caracteristica mas importante de las sumas polivariantes: la capacidad de
replicar las ramas de una expresién de pattern matching tantas veces como copias de los
constructores se hayan generado, y de especializar cada una de ellas segtin el argumento de
la copia que le corresponde.

Predicados y evidencia para sumas polivariantes

La definicion de las reglas de especializacién para sumas polivariantes sigue el esquema pro-
puesto para todo el sistema, compuesto de dos fases:

1. La especializacion propiamente dicha, donde se construye una descripcién del problema:
tipos restringidos con predicados y expresiones residuales intermedias que contienen la
evidencia necesaria (abstraida en forma de variables) para construir el término residual
final.

2. La resolucion o constraint solving, donde se encuentra una solucién al problema cons-
truido. Se obtiene la evidencia de cada predicado y se la usa en la expresién intermedia,
que una vez que cuenta con toda la informacién, se reduce al término residual final.

En nuestro caso, durante la fase de especializacion, cada suma residual esta representada
por una variable de tipo, y un conjunto de predicados describe como debe estar formado:
qué constructores debe tener, con qué argumentos, etc. Sélo durante la fase de resolucién se
construye efectivamente la definicién de una suma residual, de manera tal que satisfaga todos
los predicados reunidos en la especializacion.

El siguiente ejemplo muestra una especializacion de la primera fase. A partir de él,
describimos brevemente los predicados y formas de evidencia introducidos para especializar
sumas polivariantes, y cémo esta tltima participa de la construccion de las expresiones finales.

Ejemplo 3 La expresién

polydata EitherSD” = Sta” Int® | Dyn” Int”

let” f = X’z.case”z of
Sta” y — lift y
Dyn” y — 4"
in (f @7 (Sta” 11%), f @ (Sta” 6°)) © : (Int”, Int”) "
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especializa a

Ahy, ha, hs, ha, hs, he, I
let /" = \2/.polycase, ' with h; and (hg, h7) of
Sta — Ah.\y'.h
Dyn — \y/.4
in (fQ(Sta e), fQ(Sta"s e))
: Vt. hq : IsPolySum ¢,
hy : HasMGC t Sta (Vt'IsInt t' = t'),
hs : HasMGC ¢t Dyn Int,
hy : HasPolyC t Sta 11,
hs : HasPolyC ¢ Sta 6,
he : HasMGBr t Sta (Vt'.IsInt ¢’ = t' — Int) Int,
h7 : HasMGBr ¢t Dyn (Int — Int) Int = (Int, Int)

o

La sola presencia de una suma polivariante en el tipo fuente genera una variable de tipo
t con el predicado IsPolySum ¢, que indica simplemente que ¢ representa una suma resi-
dual. Esta suma, una vez resuelta, puede estar definida de distintas formas, tener todos
los constructores (Sta y Dyn en este caso) o no, y distinto niimero de copias con distintos
argumentos. Sin embargo, no cualquier suma residual serfa un resultado razonable. Por
ejemplo, la declaracién en el programa fuente indica que el argumento de Sta es un entero
estatico. Entonces, una suma residual donde dicho constructor aparezca, por ejemplo, con un
argumento de tipo funcién, no deberia valer, ya que de ningiin modo un entero estatico puede
especializar a una funcién. Motivado por esta observacion, el predicado HasMGC introduce
una cota superior en todo posible argumento de cada constructor. Por ejemplo, el predicado
de evidencia ho indica que cada argumento de Sta en la definicién residual de t debe ser una
instancia de Vt'.IsInt ' = ¢/, en el sentido de la relacién “mds general” ya introducida.

La construccién de las expresiones Sta” 11° y Sta” 6° en el programa fuente, ambas
argumento de f, impone més restricciones sobre ¢t. Necesariamente debera incluir al menos dos
copias del constructor Sta, uno con argumento 11 y otro con argumento 6. Para expresar esto,
se usa el predicado HasPolyC, que impone requerimientos sobre la presencia de constructores
y sus argumentos en el tipo. La evidencia para estos predicados representa el nimero de
declaracién a la que corresponde el argumento (recordemos que podria generarse mas de una
declaracién residual) y el nimero de copia del constructor, de manera tal que con hy y hs se
generaran los indices adecuados para Sta en la expresion residual.

La especializacién de la estructura de pattern matching es la mas compleja. Como no
se conoce a priori exactamente qué constructores tendra el tipo residual, no puede saberse
qué ramas debe tener el case residual. Resolvemos esta especializacion con una estrategia
andloga a la de las funciones polivariantes: especializamos cada rama una unica vez, como
una funcién general, y cada replicacién es una instanciaciéon de dicha rama.

La expresion intermedia polycase, especializa cada rama vista como una funcién que
toma la variable de pattern matching y devuelve el lado derecho de la rama. Por ejemplo, la
rama Sta” y — lift y puede verse como la funcién \’y.lift y, que especializa a la funcién
general Ah.\y'.h : VtIsInt t = t — Int. Ahora toda posible rama sobre el constructor
Sta deberd ser una instancia de esta funcién, donde el argumento estard especializado. En
otras palabras, para todo posible argumento residual 7 del constructor, la funcién de tipo
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7 — Int debe ser una instancia de Vi.IsInt ¢ = ¢t — Int. El predicado HasMGBr expresa esta
restriccién. El caso del constructor Dyn es andlogo: la rama especializa a la funcién general
Ay .4 : Int — Int y el predicado HasMGBr restringe todas las posibles ramas poniendo este
tipo como cota superior.

Veamos ahora cémo se resolveria esta expresién. Asociamos ¢ con los inicos constructores
requeridos, Stal 11y Sta% 6. La evidencia h; de que t es una suma residual es el conjunto
de sus constructores, {Sta%, Sta%}. De esto se deduce que Dyn no aparece en el tipo (notemos
que en el programa fuente no se utilizé para construir ninguna expresién), y entonces la rama
correspondiente no va a aparecer en el case residual. Por este motivo, la evidencia h; no se
usa.

La evidencia hg es la clave para generar las ramas replicadas del constructor Sta. Esta
evidencia representa el hecho de que todos las ramas son una instancia de la general; en otras
palabras, una vez resuelta, contiene las conversiones que asocian cada rama instanciada con
el tipo general. En particular en nuestro caso:

N((12) : (V¢ IsInt ¢’ = ' — Int) > (11 — Int)
1(6)) : (V¢.IsInt ' = ¢ — Int) > (6 — Int)

Ademas, tenemos que:
(AhAY.R)(11)) > Ay/.11
(AR XY .R)(6) > M\y'.6

iy con esto, las funciones resultantes pueden volver a verse como ramas! De \y’.11 podemos
pasar nuevamente a Sta% Yy’ — 11, y de la misma forma para la otra rama:

data EitherSD' = Stal 11 | Sta} 6

let f' = \x’.case 2’ of
Stal y — 11
Sta y — 6
in (fQ(Stal e), fQ(Stal e)): (Int, Int)

Resumen y trabajo futuro

En esta tesis, extendimos el sistema de especializén principal de tipos para especializar sumas
polivariantes. Incorporamos nuevas construcciones al lenguaje de términos y tipos fuente,
términos y tipos residuales, predicados y evidencia, y agregamos las reglas de especializacién
necesarias. Ademds, demostramos que nuestra extensiéon preserva las propiedades del sis-
tema, en particular, la existencia de especializaciones principales. Extendimos el algoritmo
para computar especializaciones principales, dimos una heuristica para constraint solving y
extendimos la implementacién de ambos en un prototipo escrito en Haskell.

Dentro de las posibilidades de trabajo futuro se encuentra formalizar y mejorar la fase de
constraint solving para sumas dinamicas. Existe una formalizacién de este proceso formulado
Unicamente para un pequeno conjunto de predicados; incorporar las sumas dinamicas ayudaria
a definir este mecanismo mas precisamente y encontrar posibilidades de mejora.

En cuanto al sistema en general, el lenguaje fuente todavia necesita ser extendido. De
las caracteristicas que todavia no posee la méas importante es sin dudas la especializacion de
funciones recursivas dindmicas. Ademads, puede considerarse la generaciéon de sumas dindmicas
paramétricas y recursivas (lo cual permitirfa modelar listas, arboles, etc.).
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Chapter 1

Introduction

1.1 Program Specialization

Automatic program production is to programming as a weaving machine is to cloth making.
Some repetitive, error-prone or time-consuming tasks no longer need to be performed by a
human being, leaving room for more sophisticated activities such as planning and designing,
and improving the discipline to levels originally limited by human ability and physical or
mental state. We can find many examples of programs generating programs, most of them
restricted to a specific domain, such as parser generators.

Automatic program generation studies this problem from a general point of view. There are
several different ways to automatically produce a program; program specialization is perhaps
the most successful. When solving a set of similar problems, a programmer can choose between
writing many small efficient programs and writing a bigger, less efficient program which solves
any of them depending on the data. Program specialization takes the best of both worlds:
given a general program, it produces one or more versions of it, each specialized to particular
data. The program used as input is called the source program, and those produced as output
are called the residual programs.

A classic example is the power function calculating "

power nx = if n == 1then
x
else
z % power (n—1)z

whose computation involves several comparisons and recursive calls, but when the input
parameter n is known, it can be specialized to a non-recursive residual version. For example,
if n is known to be 3, the function

powersx = x * (T % )
would be a proper specialization, clearly much more efficient than the source version when
computing cubes.
1.1.1 Partial evaluation

Program specialization has been studied from several different approaches; partial evalua-
tion [Jones et al., 1993; Consel and Danvy, 1993] is by far the most popular and well-known.



2 CHAPTER 1. INTRODUCTION

Partial evaluation produces residual programs by using a generalized form of reduction:
subexpressions with known arguments are replaced by the result of their evaluation and
combined with the computations that cannot be performed. That is, a partial evaluator
works with the text of the source program by fixing some of the input data (the static data)
and performing a mixture of computation and code generation to produce a new program.
The programs produced, when run on the remaining data (the dynamic data), yield the same
result as the original program run on all the data.

Partial evaluation may sound like a sophisticated form of constant folding, but in fact a
wide variety of powerful techniques are needed to do it successfully, and these may completely
transform the structure of the original program.

An area where partial evaluation is particularly successful is the automatic production of
compilers: compilation is obtained by specializing an interpreter for a language to a given
object program [Futamura, 1971; Jones et al., 1985; Jones et al., 1989; Wand, 1982; Hannan
and Miller, 1992]. Let us suppose we have an interpreter for language B written in language
A, and we specialize it taking an object program Pp as static data. The residual program,
P!, run by itself behaves the same way as running Pp on the interpreter. So P is a compiled
version of Pp to language Al

Another layer of complexity can be added when the partial evaluator is written in the
language it specializes: self-application becomes possible, and thus compilers can be generated
as well. The (code of the) partial evaluator is the source program and the interpreter is
the static data; the resulting residual program performs specializations of the interpreter
mentioned above. Now the residual program expects an object program as input and produces
a compiled version of it: a compiler! This is very useful in the area of domain-specific
languages [Thibault et al., 1998], where the cost of generating a compiler must be kept to a
minimum.

Other areas where partial evaluation has been applied successfully include software ar-
chitectures [Marlet et al., 1999], networking [Muller et al., 1998], hardware design and ver-
ification [Hogg, 1996; Au et al., 1991], virtual worlds [Beshers and Feiner, 1997], numerical
computation [Lawall, 1998] and aircraft crew planning [Augustsson, 1997].

1.1.2 Optimality

An important notion in the program specialization approach is that of optimality. Intuitively,
optimal specializations are those that leave no unnecessary traces of the source program in
their results. Neil Jones [1988] defines a notion of optimality (also called Jones optimality)
by specializing a self-interpreter and comparing the source program with its residual version:
if they are essentially the same, we say that the specialization was optimal. Robert Gliick
showed that Jones optimality plays an important role in binding time improvements [Gliick,
2002].

Partial evaluation alone can only obtain optimality for self-interpreters written in untyped
languages, but it cannot if they are written in a typed language. As partial evaluation works
by reduction, the type of the residual program is constrained by that of the source one.
In particular, the residual code contains tagging and untagging operations coming from the
representation of programs in the interpreter, that is, it contains traces of the source program.
That means the source and residual programs are not “essentially the same”, so optimality
is not achieved. This problem was stated by Neil Jones as one of the open problems in the
partial evaluation field [Jones, 1988].
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1.2 Type Specialization

Type specialization is an approach to program specialization proposed by John Hughes [1996b;
1996a; 1998]. His main motivation was to provide optimal specialization for interpreters writ-
ten in typed languages, which was later also achieved by applying different techniques [Thie-
mann, 1999; Thiemann, 2000; Taha et al., 2001], but it proved to be in itself a very interesting
framework for program specialization. The key idea is to specialize a source expression to-
gether with its type, to obtain a residual program with a residual type. Whereas partial
evaluation is based on a generalized form of reduction, type specialization is based on a gen-
eralized form of type inference — in this sense, it has introduced a new paradigm for program
specialization.

In all typed languages, types provide information about expressions. For example, when
an expression is of type Int, we know that, if its evaluation terminates, it will yield an
integer. But if the expression is known to be the constant 11, for example, a more refined
approximation is possible by having a type representing the property of being the integer 11
— let’s call this type 11. Having all the information in the type, there is no need to execute
the program anymore, so the integer constant can be replaced by a dummy value having type
11 — that is, the source expression 11 : Int can be specialized to e : 11.

Type specialization extends residual types to give as much information about expressions
as possible, and works by propagating static information in the source code to residual types.
This involves a more powerful residual type system, which is the key fact allowing optimal
specialization for typed interpreters.

Like many partial evaluators, type specialization processes a two-level language [Gomard
and Jones, 1991]; that is, each construct in the source program is labelled either static or
dynamic. For example, the number 3 can appear either statically (3° : Int®) or dynami-
cally (3" : Int”). We will denote static and dynamic constructs with ® and ” superscripts
respectively.

Just as a type checker can be specified by a set of type inference rules, a type specializer
is specified by a set of specialization rules. Judgments inferred by these rules are of the form
FFe:T—¢é:7
meaning expression e of type 7 specializes to expression €’ of type 7/ under context I' (con-

taining assumptions on the specialization of free variables).

Specification of a type specializer by a set of inference rules has the advantage of being
modular — new constructs can be added to the source language just by adding rules for their
specialization, without changing the rest of the system.

Example 1.1 The following are all valid specializations under the empty context. Observe
how every expression annotated as dynamic appears in the residual term, whereas information
from static expressions is moved into the residual type.

1. 117 : Int® — 11 : Int
2. F11° : Int® — e: 11
3. F (2P +P17) 4717 :Int” — (2+1)+1: Int

4. F(2° +919) 4515 - Int® — e : 4
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&

The problem of specializing a program f with parameters z1,...,z, where x1, ...z} are
known can be expressed as specializing the expression

fQ@%r @° ... @%x, Q" x4, Q7 ... @72,

where f is a function and f@ux represents application. But type specialization is a more gen-
eral approach, allowing much more flexible combinations of static and dynamic annotations.
Residual types can express ‘partially static’ information — (21, Int) represents the type of pairs
whose first component is statically 4, for example. Static information can then be associated
with dynamic values and propagated by type inference.

Example 1.2 Consider the expression

()\Df.lift (f @”3°® )) @ ()\Dx.x +7 1S) : Int”

Here, we have dynamic A-expressions and dynamic application, so they will be transformed
into residual A-expressions and applications in the specialized program. The lift operator
converts an expression of a static integer type to its dynamic value — if a static integer
expression e has residual type n, then lift e specializes to n : Int.

To specialize this expression, we infer the residual type of each subexpression. Firstly, f
is applied to an argument with residual type 3, so it must have residual type 3 — 7 for some
7. Now this must also be the type of ()\D:):.x +° 15), so z must have residual type 3. Then
(x +7 15) must have type 4 — we can conclude 7 is 4, f has type 3 — 4 and f @” 3 has type
4. Finally, the lift operation can be specialized to 4, so the dynamic application of f does
not appear in the specialized program — this is the only kind of situation where a dynamic
construct is removed from the residual code. The final result is:

(Af.4)Q (Az.e) : Int

Observe how the value 4 in the residual code has been obtained without actually unfolding
any of the functions. o

In Hughes’s formulation, both the source and the residual type systems are monomor-
phic. In addition, some of the rules are not completely syntax-directed, so for some source
expressions, different unrelated specializations can be produced. This is comparable to the
problem posed in the simply-typed A-calculus when typing expressions like Ax.x: the type of
x depends on the context of use, and no relation between the different types is expressible
in the system. The solution to this last problem is a polymorphic type system, where a
principal type expresses all possible ways to type a given term. Hughes’s type specialization
formulation lacks the property of principality.

The lack of principality has some serious consequences. Firstly, extending the system
to produce polymorphic residual code or to treat polymorphic source code is very difficult.
Secondly, a specialization algorithm dealing with a valid source expression would have to
fail or choose an arbitrary (and potentially erroneous) specialization if some of the context
information happened to be missing. And thirdly, even if all the context information could
be obtained, it is too restrictive for the whole specialization process to depend on the whole
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context — it makes it virtually impossible to achieve specialization of program modules, for
instance.

Pablo E. Martinez Lopez presented a new system for type specialization which solves
the problem of lack of principality [Martinez Lépez and Hughes, 2002]. The system, called
principal type specialization, is based on Mark Jones’s theory of qualified types [Jones, 1994],
briefly described below.

1.3 Qualified Types

Mark Jones’s theory of qualified types [Jones, 1994] develops a general approach to constrained
type systems providing an intermediate level between monomorphic and polymorphic typing
disciplines. For example, if P(t) is a predicate on types, then we can use a type scheme of
the form V¢.P(t) = f(t) to represent the set of types

{f(7)|7 is a type such that P(7) holds}

Jones describes an extension of Milner’s polymorphic type system [Milner, 1978] which
includes support for overloading based on the use of qualified types and parameterized by an
arbitrary system of predicates. He defines an ordering on the set of type schemes and shows
there is a type inference algorithm calculating principal types, that is, greatest possible types
with respect to this ordering.

The theory of qualified types has a number of applications — in particular, it provides
an elegant formalization of Haskell’s type class system [Wadler and Blott, 1989; Peterson
and Jones, 1993; Augustsson, 1993] — and is the main framework for the principal type
specialization system. In the following lines, we will describe its main features with special
emphasis on what is thoroughly used in Martinez Lépez’s and our work.

Predicates, type schemes and terms The key feature of this system is the use of a
language of predicates to describe sets of types, or more generally, relations between types.
The exact set may vary from one application to another; only a few properties on the predicate
language are expressed in the form of an entailment relation to satisfy a few simple laws. For
example, in Haskell’s type system, each class such as Eq a, Ord a, etc. is modelled as a
predicate.

Following the definition of types and type schemes in ML [Milner, 1978], a structured
language of types is defined in three syntactic categories: types 7, qualified types p on top of
them, and then type schemes o:

Tu=t | 71T
pu=0=71| T
oux=VYap | p

Here t and « range over a countably infinite set of type variables, and d ranges over a
finite set of predicates. Other type constructors such as type constants, tuples or lists can be
easily added.

The term language is based on simple untyped A-calculus with the addition of a let con-
struct to enable the definition and use of polymorphic terms [Milner, 1978; Damas and Milner,
1982; Clément et al., 1986]. That is, expressions can be either variables, A-abstractions, ap-
plications or let constructs.
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Evidence In order to discuss the semantics and evaluation of terms with qualified types,
Jones introduces the concept of evidence. The essential idea is that an object of type A = 7
can only be used if we are also supplied with suitable evidence that the predicates in A indeed
hold.

The treatment of evidence can be ignored in the basic typing algorithm — in fact, Jones’s
presentation begins by developing a language without evidence, and only then defines a new
language which includes evidence expressions as a resource for describing overloading more
precisely. However, in the principal type specialization system, evidence has a fundamental
role as a part of the residual language, so we will directly describe the use of terms and
predicates with evidence.

The set of terms is extended with a language of evidence expressions v denoting evidence
values, including a countably infinite set of evidence variables h, disjoint from the sets of term
and type variables. EV (v) represents the set of free evidence variables in v, and e[v/h] is the
substitution of all evidence variables h in e for v. These are naturally extended to sets of
variables h, sets of expressions ©# and simultaneous substitutions e[v/h].

The language must include the constructs needed for each particular application, plus
evidence abstraction (Ah.e) and evidence application (e((v))), whose use will be explained
below. We write v : § to express that v is evidence for predicate §.

The following abbreviations are useful and will be used extensively throughout this work.

Object Expression Abbreviation
Evidence assignment vy :01,...,05:0, 0:A
Qualified type h=...=20b=>7 A=T

Type scheme Vap ... Yay.p Va.p
Evidence abstraction Ahy....Ahy,.e Ah.e
Evidence application  ((e((v1)))...) (vn) e(v))

Entailment As we mentioned above, the set of predicates varies with the different applica-
tions, as do the evidence expressions that prove them. Properties of predicates are captured
by an entailment relation H-between finite lists of predicates. An entailment of the form
h: AH- v : A’ indicates that evidence @ can be constructed for the predicates in A’ assuming
evidence h for A. In a context where evidence is irrelevant, we can also write A H- A,

In order for a particular predicate system to be suitable for this theory, it must satisfy a
few rules, which are given in figure 1.1. Rule (Close) is needed to ensure that the system of
predicates is compatible with the use of parametric polymorphism; here S denotes a substi-
tution on the type variables appearing in the predicates in A. Rules (Evars) and (Rename)
express properties on the evidence language, similar to those relating terms and types in a
classic typing system.

Type inference Jones’s extends the Hindley-Milner type inference system to include qual-
ified types. Judgments are of the form

B:A‘Fl—e:a

representing the fact that, when the predicates in A are satisfied with evidence h and the
types of the free variables in e are specified in I', then e has type o.
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QUALIFIED TYPES

1) h:AHh:A
(Term) BAH"@
(Fst) ]_11 : Al,]TLQ : Ao H Bl AN

(Snd) ill : Al,ﬁg : Ao H BQ A

hi: AL H D9 : Ag BltAlH-T)g:Ag

(Univ) = — —
hliAl H_'U2:A2,U3:A3
( ) ithAlH—T)Q:AQ BQiAQH‘@gZAg
Trans = =
hi: A1 H 1_13[’[_}2/h2] VA
h:AH©:A
(Close) —
h:SAH©:SA
h:AH©:A
(Evars) =
EV(2) Ch
h:AH©:A
(Rename) — —
R AH-o[h//h] : A
BllAlH—T)l:All BQ:AQH_’DQ:AIQ
(Dist)

BliAl,iLQ:AQH*T}l:All,’I_)Q:AIQ

hi: A1 H Uy Ay El:Al,BQ:AQH"Dg:AE}

(Cut) = ——
hl : Al H- U3[U2/h2] : Ag

Figure 1.1: Rules for predicate entailment
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Ah:6,A'[Tke:p
AN | THAhe:d=p

= intr

A|TkFe:d0=p AHwv:¢
AITFe(@): s

= elim

Figure 1.2: Rules relating predicates with types in the type inference system

Figure 1.2 shows the rules to construct and deconstruct qualified types — all the other
rules correspond to the Hindley-Milner polymorphic typing system. Observe how evidence
abstraction corresponds to adding a predicate to the qualified type, and evidence application
to removing it.

Ordering on type schemes Motivated by the need to describe all of the ways in which
a particular term e can be used with a given type assignment, Jones defines a preorder (>)
(read more general). Essentially, a statement of the form (A’ |o¢’) > (A | o) means it is
possible to use an object of type ¢ in an environment satisfying the predicates in A whenever
an object of type o’ is required in an environment satisfying the predicates in A’. He calls
the pair (A | o) a constrained type scheme.

For example, if P is a predicate on types and () H- P(Int), then it is true that

(0 | Vt.P(t) =t —t— Bool) > (0| Int — Int — Bool)
usually abbreviated as
Vt.P(t) =t — t — Bool > Int — Int — Bool

This should mean that an object of type Vt.P(t) = t — t — Bool could be used in any
context where an object of type Int — Int — Bool was required. However, the typing rules
in figure 1.2 make sure that evidence is abstracted whenever a predicate is introduced into
the type, and applied when it is removed. So by virtue of these rules, an object of type
Int — Int — Bool should have a different structure than one of type Vt.P(t) = t — t — Bool
— namely they would differ in the presence of evidence abstraction and application.

The observation above motivates the introduction of a third component into the > relation:
a conversion. We write C : (A" | 6’) > (A | o) when any object of type ¢’ (in an environment
constrained by A’) can be converted to an object of type ¢ (in an environment constrained
by A) by adding or removing evidence abstractions and applications. Jones gives a precise
definition of conversions as a particular set of terms of the language. Martinez Lépez’s
formulation involves the use of the > relation and all the concepts mentioned here, but
conversions are defined differently — namely as a particular set of contexts.

1.4 Principal Type Specialization

Principal type specialization is a new formulation to type specialization presented by Pablo
E. Martinez Lépez [2002; 2005]. Based on Jones’s theory of qualified types, the system can
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produce principal type specializations — for any source term and type, a specialization exists
such that any other can be obtained from it by a suitable notion of instantiation.

Specialization is separated into two independent phases: constraint generation and con-
straint solving. The first phase works with information flow as it was described in section 1.2;
when some of the information depends on the context of use, constraints play a crucial role.
In the second phase, when there is enough information from the contexts, all the constraints
are gathered and a suitable residual program is calculated [Martinez Lépez and Badenes,
2003]. This separation provides a better understanding of the information flow during spe-
cialization, and enables the application of different heuristics to the process of calculating the
right residual program. It also makes it possible to define modular specialization: for each
module, a principal specialization can be computed independently, and when linking each
residual code to the residual main program, the right instantiation can be produced.

An important notion in any specialization system is that of polyvariance. We say a
specialization is monovariant when static variables can take only one static value. Monovariant
specializations are seriously limited — for example, if f : Int® — Int” is applied to both 3°
and 4° in the same source program, specialization cannot be achieved, because f cannot be
assigned both residual types 3 — Int and 4 — Int. A polyvariant system, in contrast, allows
static variables to take more than one value.

Polyvariance can be achieved in more than one way; in particular, Hughes’s system in-
cludes constructs for polyvariant products and polyvariant sums [Hughes, 1996b], the latter
also known as constructor specialization [Mogensen, 1993].

Principal type specialization was originally formulated for a subset of the language pre-
sented by John Hughes. In particular, dynamic sum types were not considered. Later,
Alejandro Russo [2004] extended the system to manipulate dynamic sum types — a set of
tagged values in the form of constructors applied to arguments. Russo’s extension incorporates
named data types without recursion and provides monovariant specialization of expressions
involving sum types, preserving the property of principality.

1.5 Contribution of this work

The main contribution of this work is to extend Martinez Lépez’s system [Martinez Lépez
and Hughes, 2002; Martinez Lépez, 2005] and Russo’s additions [Russo, 2004] to include
polyvariant sum types. Expressions of the form L x, where L is a constructor and x is
a static variable, can now be specialized to more than one value, generating copies of the
constructor Ly, Ls, etc, one for each different use of x. As in Russo’s extension, recursive
data types are not considered.

We also give an alternative formulation to one of Russo’s rules that allows better use of
the static information involving the sum’s definition. Our extension to polyvariant sums is
based on this new formulation. We extend the source and residual languages, all the formal
system rules and proofs to manipulate the new constructs, and we prove that the property of
principality is preserved by our addition.

Constructor specialization is a useful feature on any specializer. The addition of poly-
variant sums to the system is a small step toward making principal type specialization more
powerful and closer to a real programming language.
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1.6 Overview

This thesis is organized in six chapters. Chapter 2 introduces the principal type specialization
system as formulated by Martinez Lépez and extended by Russo. An alternative formulation
to one of Russo’s original rules for dynamic sum types is analyzed and explained in chapter 3.
In chapter 4, we introduce polyvariant sum types to the system, and in chapter 5, we extend
the algorithm computing type specializations and prove that the property of principality is
preserved by our extensions. Finally, in chapter 6 we discuss related and future work and
conclude.

Two appendixes are given so that the main reading is not interrupted. The first one
contains some technical definitions and auxiliary systems. The second consists of the proofs
of all the properties stated in chapters 4 and 5.

Together with this thesis, we present a prototype of a principal type specializer. Written
in Haskell, it is an extension to the type specializer introduced by Martinez Lépez [2005,
chapter 10] that handles all our new constructs.



Chapter 2

Principal Type Specialization

In this chapter, we present the principal type specialization system. We explain the concepts
behind type specialization in general and this system in particular, with emphasis on the
elements that are most involved with our work.

The material in this chapter is based completely on Martinez Lépez’s work [2005, chapter
6 and section 9.6] and Russo’s extensions [2004, chapter 3].

2.1 Source Language

The source language we consider is a A-calculus enriched with local definitions, tuples and
arithmetic constants and operations. Expressions are annotated as either static or dynamic,
with superscripts © and ” respectively.

Definition 2.1 Let x denote a source term variable from a countably infinite set of variables,
and let n denote an integer number. A source term, denoted by e, is an element of the language
defined by the following grammar:

en=zx | n® | n”
| e+e | e+"e | lift e
| Nx.e | e@”e | let” z=cine
| (eror)® | whpe
| polye | spec e
where (e, ...,e,)" is a finite tuple of expressions for every possible arity n. The projections

7Ti 5 e and 7r§ o e may be abbreviated fst” e and snd” e respectively.

Annotation © is interpreted as the requirement to remove an expression from the source
program, by computing it and moving its result into the residual type, and annotation ” as
the requirement to keep the expression in the residual code. The lift operator casts a static
expression into a dynamic value. The poly and spec annotations express polyvariance: the
former allows a single expression to produce several different residual results in the specialized
program, and the latter chooses an appropriate one among all that can occur — this is further
explained in section 2.3.1.

Source types also reflect the static or dynamic nature of expressions. For example, the
constant 42” has type Int” and the constant 42° has type Int®. Also as an example, a

11
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dynamic function can only be dynamically applied, that is, in an expression like (X’z.x) Q" y,
both _”’s correspond to each other. Additionally, expressions annotated with poly have a
corresponding poly in their type.

Definition 2.2 A source type, denoted by 7, is an element of the language defined by the
following grammar:

o= Int’ | Int® | (r,...,7)" | 7="7 | poly 7
the type (71,...,7,) " being a finite tuple for every possible arity n.

This language is a small subset of the language of Hughes’s type specializer [Hughes,
1996b], but contains enough constructs to illustrate the basic notions. We introduce tagged
sum types in section 2.5.

2.2 Residual Language

The residual language has constructs and types corresponding to all the dynamic constructs
and types in the source language, plus additional ones used to express the result of specializing
static expressions.

2.2.1 Residual types

Based on the theory of qualified types presented in section 1.3, the residual type language
includes predicates to express restrictions imposed by the source expressions and their context.

Definition 2.3 Let t denote a type variable from a countably infinite set of variables, and
s a type scheme variable from another countably infinite set of variables, both disjoint with
any other set of variables already used. A residual type, denoted by 7/, is an element of the
language given by the grammar

Te=t|Int|n|7 =7 |(7,...,7") | poly o
pu=0d0=>p|7

o = s|Vs.o|Vto|p

§ v=Islnt 7/ |7 :=7"+7" | IsMG 0 o

The intuition for predicate IsInt is that its argument is a one-point type, n — that is, a
type with a single value, e : n. That of 7 := 71 + 7o is that the arguments are three one-point
types n, 11 and 12 such that n = n; + no. Predicate IsMG internalizes the “more general”
relation corresponding to the principal type specialization theory — see section 2.2.4.

Free variables and substitutions are defined in the obvious way — with V being the only
binder — on both the set of type variables and type scheme variables. With o we represent
an element of any of these sets.

2.2.2 Residual terms

Just as the residual types involve predicates, the term language has constructs to manipulate
evidence. These include the structural components taken from the theory of qualified types
itself — namely evidence variables, abstraction and application — and other constructs needed
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(B)  (Ah.ey)((v) > €i[h/v]
() Ahei(R) > ey (hgpv(e;))
(let,) let, z =¢) in €} > e[z /)]

(o) (viowg)[e] & vifvale]]]
Figure 2.1: Reduction for residual terms

to express specialization features. Evidence is very important in this formulation because it
abstracts the differences among the possible specializations of a given source term, and is one
of the cornerstones of the principality result.

Definition 2.4 A residual term, denoted by €/, is an element of the language defined by the
following grammar:

e = a | n | e +e | e

| M'.e/ | Qe | let 2/ =€ in €

| (ehooven) | e

| h | v[e/] | Ah.e’ | €((v)) |let, x=¢in¢
v == h | n | C | vow
C = | Ah.C | C((v)) | let, 2 =C in ¢

We use the constant e as the (only) value of one-point types. Although it is written the same
way for every type, it can be seen as a family of values e,/, a different one for each type 7’.

As presented in section 1.3, h represents evidence variables, Ah.e¢’ represents abstraction
and €'((v)) represents application.

Two particular kinds of evidence are used: numbers, as evidence for predicates of the form
IsInt and _:= _+4_, and conversions, as evidence for predicates of the form IsMG. Conversions,
denoted by C, are defined as contexts, separately from other elements in the language; the
particular forms vowv and let, z = ¢’ in ¢’ are used for composition of conversions, necessary
for technical reasons.

We work under an equivalence (=) relation on residual terms, defined as the smallest
congruence containing a-conversions for both A and A-abstractions and the reduction rules
appearing in figure 2.1. The spirit of this definition is that operations involving evidence are
meant to be solved during specialization (as opposed to regular applications, which are meant
to remain in the residual code).

2.2.3 Predicates and entailment relation

The properties relating predicates and evidence are captured by an entailment relation, as
described in section 1.3, which satisfies the structural properties established in figure 1.1.
The meaning of these predicates is defined by completing the relation with rules that are
particular to the system; these are presented in figure 2.2.

The predicate IsInt is provable when the type is a one-point type representing a number,
and the evidence is the value of that number. Similarly, the predicate _ := _4_is provable when
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(Isnt) A H-n:IsInt n
(IsOp) h:AHn:n:= N1 + Mo (whenever n=ni+ngz)

(1s0plsint) A, h: 7" := 7] + 75, A" H= h : IsInt 7/

C:(Ald)>(A]0o)
AH C:IsMG o' o

(IsMG)

AHv:IsMG o; 00 AH v :IsMG o3 03

(Comp) ;
AH- v ov:IsMG o1 03

Figure 2.2: Entailment rules for evidence construction

the three arguments are one-point types with the corresponding numbers related by addition,
and the evidence is the number corresponding to the result of the addition. The predicate
IsMG internalizes the ordering > (see section 2.2.4), and the evidence is the corresponding
conversion; rule (Comp) captures the transitivity of >.

2.2.4 Ordering between residual types

As described in section 1.3, the comparison between different types and type schemes can be
done by using a “more general” ordering, with a third component: a conversion.

Definition 2.5 Let 0 = Va;.A;r = 7 and ¢’ = Vf3;.AL = 7/ be two type schemes, and
suppose that none of 3; appears free in o, h: A, or b’ : A’. A term C is called a conversion
from (A | o) to (A"]o’), written C : (A | o) > (A’|¢’), if and only if there are types 7,
evidence variables h, and l_z’T, and evidence expressions ¥ and v’ such that:

o 7' =Tla; /7]
o W AR AL H-v: AV Ar[o/Ti], and
e C = (let, z = Ah.[| in ARL.2(())((?"))

By this definition, if A = ), we would have C' = let, z = [] in AR, .z((v")), which is equivalent
to ARz [1(@)

Equivalence is defined for conversions based on the equivalence defined for residual types,
stating that C' = C’ if for all residual expressions €/, C[e/] = C’[€/].

The most important property of conversions is that they can be used to transform an
object € of type o under a predicate assignment A into an element of type o’ under a
predicate assignment A’, changing only the evidence that appears at the top level of ¢’.

Example 2.6 Conversions are used to adjust the evidence demanded by different type
schemes. For all A it holds that

L [J(11) : (A | Vt.IsInt t = ¢t — Int) > (A | 11 — Int)
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2. C: (A | Vty,taIsInt ¢y, IsInt to = ¢ — t2) > (A | VtIsInt t = t — t) where C = Ah.[J(h)(h).
3. Ahf]: (A |11 — Int) > (A | Vt.IsInt t = 11 — Int)

o

The following propositions are useful for some of our proofs; see Martinez Lopez’s presen-
tation ([2005], propositions 6.7 and 6.9) for their proofs.

Proposition 2.7 The following assertions hold when o,0’,d” are not scheme variables:
L [:(Alo)=(Alo)
2.9fC:(Ao)>(A"| o) and C": (A" | 0') > (A" | 6”) then
C'oCi(A]0) > (A" ] o")

Proposition 2.8 For any qualified type p and predicate assignments h: A and ' = A,
1. AR : (A K A | p) > (A A = p)
2. [J(W) : (A A" = p) = (AN A | p)

3. if C:(A|o)> (A | o) and K" : A" 15"+ A", then C': (A, A" | o) > (A, A" | o)
where C' = (let, = = AR”.C[] in z((0"))

4.4 C:(Alo)>(A"]d') and a € FV(A, A" = o), then C : (A ] o) > (A" | Va.o')

2.3 Specifying Principal Specialization
2.3.1 The specialization system: P

System P (for principal type specialization) specifies how source terms and types are special-
ized. Judgments are of the form

AT e:T — €:0

meaning source expression e of type 7 specializes to residual expression ¢’ with type ¢’ under
the given context. Here A is a predicate context, and I' = {z; : 7, — ) : 0y | i=1,...,n} is
a context mapping source variables and types to residual variables and their type schemes. If
any of the contexts is empty, we usually omit it in the specialization judgment.

The rest of this section is dedicated to introducing the rules of the system, illustrating
them with examples.

Base types

Specialization of variables, dynamic constants and operators is straightforward — the residual
expression is essentially the same, with the annotations removed.

z:T7—x 7 el

A
(VAR) AlTH a7 — a7
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(OINT) ATk, n® :Int® — n:Int

(AT M € Int® — e : Int)i—10
AlTH, el +P ey Int? — €} + ¢ : Int

(D+)

Static constants and operations are meant to be removed from the code into the residual
type. Notice the use of predicate _:= _+ _in rule (S+) to make sure 7’ is the correct residual

type.
(SINT) AT, n® :Int° — e:n

(AT H, e :Int® — ef:7))im12 A v:7 :=1{4+7
A]FI—P61+SegzInts — o:7

(5+)

The lift operator casts a static expression of integer type into its residual numeric value.
Here, the predicate context must entail predicate IsInt, and the evidence is used to get the
correct residual value.

A|ThH e:Int® — ¢:7 AHv:Islnt 7/
AlTH lift e : Int” — v : Int

(LIFT)

Rules for dynamic tupling and projection are also straightforward, and analogous to their
counterparts in a usual type inference system.

(A | r l_P € T & 6; : T')i:l,..,n

AT, (e1,..ven)” (T, ) 7 = (€l,osen) (11,0, 7))

(DTUPLE)

A]Fl—Pe:(Tl,...,Tn)D — e (r,...,7))

(DPRJ)
AlTH, ﬂfne i mipe T

Notice that even though tuples are dynamic, they can have either static or dynamic
components — see below for an example.

Example 2.9 The following are all valid specializations:
Lk 117 : Int” < 11: Int
2. b, 117 : Int® — e:11
3.k (27 +717) +717 i Int” — (2+1)+1:Int

4.k (2°+71%) +91° i Int® — e:d
5.k lift (2% +1%) +717 1 Int” — 3+1:1Int

6. {z:Int” — 2’ :Int} b, (2° +°1%,2) 7 : (Int” , Int” ) ® — (e,2'): (3, Int)
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Functions and let

Dynamic A-expressions are specialized as A-expressions binding a fresh residual variable to
the specialized body.

. A . - /
AT,z g —a2 inphein — 1 Abpmn — n

(DLAM) (" fresh)

A|TH Xze:m—"m — X' — T
. D A / . -
AlTherimn—="1 = ei:mp—1 A|llKe:n < e:mn

(DAPP) D W /
A]FI—P e1 @ ey i1 — €e]Qe 7]

Rule (DAPP) is a straightforward extension of the usual typing rule for function appli-
cation — dynamic applications remain in the residual code as regular applications of the
specialized arguments.

Rule (DLAM) has two premises. The first one expresses the specialization of the body
assuming the specialization of the bound variable — this is a natural extension of a typing
rule for functions. Now if it only had this premise, we would have specializations as the
following one:

{x s Int? — 2’ Boo]} b2 Int® — z': Bool

B Xz.x: Int® - Int® — A\z’.x’ : Bool — Bool

(' fresh)

That is, we would have the identity function on integers specializing to the identity func-
tion on booleans. Clearly this should not be a valid specialization! The problem here is the
assumption that a variable of type Int” can be specialized to a variable of type Bool.

The second premise of rule (DLAM) restricts the type 75 to be a reasonable type for a
source variable of type 7. The judgment Ak, 7 — 7/ expresses a source-residual relation
between two types in a given predicate context, which essentially means it is reasonable to find
type 7’ in the result of specializing a source expression with type 7. System SR is specified
separately — see section 2.3.2 for details.

The rule for specializing dynamic let expressions is also straightforward.

AlThH ex:7g — €7y
AT z:m—a imhe:m — e 7

(DLET) (! fresh)

A|Th let” z=eyine; :m — leta' =¢)ine] : 7]

Here there is no need to restrict types 7 and 75 individually, since they are related by the
specialization of e to €.

Example 2.10 We revisit example 1.2 to show how the residual expression can be derived.
The k judgments needed to apply rule (DLAM) are easily verified — see section 2.3.2.

1. {f:Int® —" Int® <—>f’3—>21} M f@P3% . Int° — f'Qe:4
2. {f: Int* =" Int® <—>f’3—>21} s lift (f@”3%): Int” < 4:1Int

3. b XfIift (f @73%): (Int® —” Int®) —" Int” — X°f'4: (3 —4) — Int
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4. {a::IntS <—>£L'/13} I—Pz+sls cInt® < e:4
5.k Nr.x+°1° : Int® =P Int° — \r'.e:3—4

6. b, (Wf1ift (f @73%)) @7 (Xz.x+°1%) : Int” — (Af'.4)@Q(A\z'.e) : Int

o
Example 2.11 Terms can have more than one valid specialization.
L b, X lift o Int® =P Int” — Xa/.3:3 — Int
2. b, Nz lift Int® —"Int’ < Xo'n:n — Int VYn€Z
3. b Nrw +91% : Int® =P Int® — Aa'.e: 11— 12
4. Nex+51% i Int® =P Int® — M'e:n—n+1 VYneZ
o

Qualified types and type schemes

Just as the system of qualified types [Jones, 1994], system P includes structural rules to move
predicates from the context into the residual type, and conversely, to eliminate them from
the type if they can be proved by the context. The structure of the residual term changes
accordingly by means of evidence abstraction and application.

Ahs:6 T e:m — €:p
AlTh e:7 — Ahse :5=p

(QIN)

AlThe:T — e:0=p Aluvs:d
ATk e:7 — €(vs):p

(QOUT)

Generalization and instantiation of type schemes is specified in the same way as in a type
inference system.

ATk e:7 — €0
ATk e:7 — € :Vao

(GEN) (agFV(A)UFV(T))

ATk e:7 — ¢ :Vao
AT e:7 — €:S50

(INST) (dom(S)=a)

Example 2.12 By the rules above, properly constrained type variables can be introduced
to obtain a principal specialization when more than one is possible. Evidence for predicate
IsInt is used to obtain the correct residual code (see rule (LIFT)) and then abstracted to form
the qualified type. Instances of a general type scheme can be obtained by rule (INST) and
(QOUT), with the corresponding evidence application.

L {hy : IsInt t} b=, X lift o : Int® —° Int” — Xa'.hy : ¢ — Int
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2. Nz lift « : Int® = Int® — Ahy M2’ hy : Isnt t = t — Int

3. I—P Nz lift « : Int® —” Int” — Ah;M2'.hy : Vt.IsInt t =t — Int
4. b, Xalift o : Int® =" Int” — Ahg A2/ by < Islnt 11 = 11 — Int
5. b, Xwlift : Int® =" Int” — (Ahp. A2’ .hy) (11)) 11 — Int

6. b, Nz lift z : Int® —" Int” — Az/.11:11 — Int

The residual terms of items 5 and 6 are equivalent based on the definition in section 2.2.2. ¢

Polyvariance

So far, the rules specify a monovariant form of specialization — that is, one in which static
variables can take only one static value. For example, the expression

let” f= Nzlift x in f Q" 11° : Int”

can be specialized to
let f' = \2/.11 in f'Qe : Int

But the similar expression
let” f = X’z.lift x in (f @”11%, f @D6s) P (IntD,IntD) b

cannot be specialized, because f’ cannot have both types 11 — Int and 6 — Int. A useful
partial evaluator must use polyvariant specialization, generating in this case at least two
versions of f’: one for each static argument.

Operator poly is introduced to produce polyvariant specializations. An expression en-
closed by poly is specialized to a general residual type (also wrapped in a poly annotation)
that can be instantiated in each use. Operator spec produces a suitable instantiation. Rules
(POLY) and (SPEC) specify these operators, using predicate IsMG and proper evidence to
capture the relationship between the general type and its instances.

AlThe:7 — e:0" AHtv:IsMGo'o
A |Tk, poly e: poly 7 — v[e/] : poly o

(POLY)

Al e:poly T — € :polysc ARv:IsMGo7 Abgp7 < 7

SPEC
( ) A|TH spece: 1 — vle/]: 7

Rule (POLY) describes how an expression e can be made polyvariant. If it has residual
type o', then for each specialization of e we are going to use, its residual type must be an
adequate instance of ¢’. In other words, ¢’ is an upper bound for e’s polyvariant type.
However, the type is not necessarily poly ¢/, because it could be furthered constrained by
the context (for example, e could be the argument of a function expecting a more restricted
residual type than ¢’). So for any type o, as long as it is constrained by this upper bound,
poly o is a valid type. Predicate ISMG reflects this; observe how evidence v (a conversion,
in this case) is used to obtain a suitable expression of type o from €.
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Rule (SPEC) also uses predicate IsMG and its evidence, in this case to ensure a correct
instantiation of the polyvariant type. Here, 7/ must be a proper instance of o, so it constitutes
a lower bound for the type scheme. Also 7 and 7/ must be in the source-residual relation, for
reasons analogous to those of rule (DLAM).

Example 2.13 Function f in the expression above can now be made polyvariant, so it can
be applied to more than one static argument. As it no longer has a function type, it cannot
be applied directly — instead, it must be spec’ed first.

H let” f = poly Nz lift =
in (spec f @"11%, spec f @"6%) " : (Int”,Int" )" —
let f' = Ah.\x'.h
in (f'(11))Qe, f'((6)@e) : (Int, Int)

In this specialization, the type of f’ is poly (Vt.IsInt ¢t = t — Int), and h is the evidence for
predicate IsInt. In the first component of the tuple, spec f must have residual type 11 — Int.
Rule (SPEC) makes sure this is an instance of Vt.IsInt ¢ = ¢ — Int, and takes the proper
evidence (here, conversion []((11))) to form the residual expression. The derivation of the
second component is analogous. o

Example 2.14 To obtain the principal specialization when static information is missing,
type scheme variables and evidence abstractions can be used.

1. bk poly (Nzlift (x 4+°1%)) : poly (Int® —"Int”) —
ARERUARL, he A )
Vs.IsMG (Vt,¢'IsInt ¢t :==t' + 1 =t — Int) s = poly s

2. b, X fspec f@”11° : poly (Int® =" Int”) —" Int” —
ALY AR R f|Qe : Vs. IsSMG (Vt.IsInt t = ¢t — Int) s,
IsMG s (1A1 — Int)
= poly s — Int

In the first case, evidence h¥ represents a conversion proving that Vt.IsInt ¢ = ¢ — Int is
an upper bound for the polyvariant type. In the second case, the upper bound constrains the
type of f’ to respect the source type (which is part of the input). The lower bound establishes
that f must be applied to a value of type 11, and k! represents a conversion adjusting f’ for
this application. o

2.3.2 Source-Residual relation: system SR

As we have seen in rules (DLAM) and (SPEC), system P is based on an auxiliary system
that describes a source-residual relation: system SR. Judgments are of the form

AbpT — d

meaning residual type ¢’ can be obtained from a source type 7 under predicate context A.
Rules to derive this judgment are presented in figure 2.3. There is one rule for each

source type, plus the four structural rules to introduce and eliminate predicates and universal

quantification. They are all quite straightforward, and naturally similar to the corresponding

rules in system P.
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(SR-DINT) A b, Int” — Int sran) Adtgp T = p

A H IsInt 7/ Algp T = 0=p

A I—SR Int® — 7/

(SR-SINT)
Aby = 6=p AHS

(SR-QOUT)

(SR-DFUN) Abg ™ < p
Abgm = 1 Abgp T — n
AI—SRTQ—>D7'1<—>T§—>T{ N
(SR-GEN) (agFV(A))
(SR-TUPLE) Abp 7 < Vao
(Abg 7i = T))i=1,.n
A l_SR (7-17--- 7Tn)D — (T{"“’T'r/z)
A '_SR T — VYa.o
(SR-POLY) (SR-INST) (dom(S)=a)

AR
AI_SRT<—>U’ A H IsMG ¢’ o s T S0

Abgp poly 7 — poly o

Figure 2.3: Rules defining the source-residual relation

2.3.3 Typing residual terms: system RT

A system for type-checking residual terms is given in section A.1. The rules are completely
analogous to those in the specialization system. Martinez Lépez proves specialization is well-
behaved with respect to system RT [Martinez Lépez, 2005], thus proving the residual terms
are indeed typed.

2.4 Existence of a Principal Type Specialization

Martinez Lépez extends the notion of principal type scheme, originally introduced in the study
of combinatory logic [Curry and Feys, 1958; Hindley, 1969] and further studied by Damas and
Milner [1982], and Mark Jones in the theory of qualified types, to a similar result for type
specialization.

Definition 2.15 A principal type specialization of a source term e of type 7 under the spe-
cialization assignment I' is a residual term e;, of type op such that I' H, e : 7 — e; D op
and it is the case that for every A’ | T e — €’ : o there exist a conversion C and a
substitution S satisfying C : S0, > (A" | o) and Clep] = €.

One of system P’s main properties is that of principality. That is, for each specialization
assignment I' and source term e : 7, if there is a specialization of e under I', then there is a
principal specialization of e under T'.

The proof of this result follows the lines of the proof of principality for the theory of
qualified types [Jones, 1994], which is constructive — it consists in showing an algorithm
that computes principal specializations and fails when none exists. The proof proceeds in two
steps. First, system P is transformed into an intermediate syntax-directed system S, which is



22 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

proved to be equivalent to system P in an appropriate way'. Then, the algorithm —described
by system W— is introduced, proving that it is equivalent to system S. The complete system
is presented in section A.2.1.

The generalization of a qualified type p with respect to predicate and specialization as-
signments A and I', noted as Gena r(p), is defined as Va;.p where &; is the set of type and
type scheme variables FV (p) \ (FV(A)UFV(I')). When A is the empty set we also note
Genr(p).

Generalizations have some useful properties that we will use in some of our proofs.

Proposition 2.16 The relation > satisfies that, for all T’ and 7/,

1. If KW:AHv:A and C=[|(v)
then C : Genp an(A = 7') > (' : A'| 1)

2. If W:AWo:A and C=AR.[(?)
then C . Gel’lryA//(A = T/) 2 Gel’lr’A// (A, — T/)

3. for all substitutions R and all contexts A,
[ : RGenpa/(A = 7') > Gengr ra(RA = RT')
Furthermore, there is a substitution T such that TT' = RT', TA' = RA’ and
RGenr a(A = 7")=Genprra(TA=T1')

The rules describing the principal type specialization algorithm depend on a number of
auxiliary subsystems which can be summarized as follows:

Unification Unification is based on Robinson’s algorithm, with modifications to deal with
substitution under quantification (which can happen inside a polyvariant residual type). The
algorithm is specified by a system of rules to derive judgments of the form o1 ~Y oy — see
details in section A.2.2. They can be interpreted as a partial function taking two residual
types and returning a most general unifier, if it exists.

Entailment The entailment algorithm (H-w) takes a target predicate § and a current pred-
icate assignment A, and calculates a set of predicates that should be added to A in order to
entail 6. The result can be easily achieved by adding § to A with a new evidence variable h.
So the only rule necessary for specifying this algorithm is

hé|Ath5 (h fresh)

More refined algorithms can be designed — for example, to handle ground predicates (such
as IsInt n) or predicates already appearing in A, but all these cases can be handled by the
phase of simplification and constraint solving [Martinez Lépez and Badenes, 2003].

Source-Residual relation Algorithm W-SR computes the source-residual relation be-
tween types. Given a source type 7, it returns a set of predicates A and a residual type
7' such that Gengg(A = 7') is the most general type scheme SR-related to 7. The rules
defining the system are presented in section A.2.3.

! Actually, system S is not strictly syntax-directed, since some of the rules are based on the SR system,
which remains unchanged (and is not syntax-directed). However, it is still useful, since it is only introduced
as an intermediate step toward the algorithm, making the proofs simpler.
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2.5 Extension: Tagged Sum Types

The language considered so far is a small subset of a real programming language. A number
of extensions have been added to the system [Martinez Lépez, 2005], including booleans,
static functions and let expressions, static recursion and program failure. Most relevant to
our contribution is the addition of tagged sum types. Martinez Lépez incorporates only static
treatment of data types, and later Alejandro Russo [Russo, 2004] adds their dynamic version.
In this section, we describe both extensions.

2.5.1 Source language

The source language now includes data declarations resembling those of Haskell, datatype
constructors and case expressions. Datatypes are named and have no parameters. Construc-
tors are distinguished lexically and take only one argument.

Definition 2.17 Let D denote a sum type name and K a constructor name. A source term,
denoted by e, is an element of the language defined by the following grammar:

e u=[ddc]* e,
ddcl := data D™ = cs; | data D" = csq4
css =Ko T || KS T
csqg =K 1| .. || K] T
ep
K®e, | K" ¢

case” e, of [brg]"

|
| case®e, of [brs T
|
=K'z — e

brs
brg = K"z — ep

where e, extends the grammar describing source terms in definition 2.1 with two extra con-
structs in their static and dynamic versions.

Source types are extended with a new family of types — namely, the sum types defined
in the data declarations, both static and dynamic.

Definition 2.18 A source type, denoted by 7, is an element of the language defined by the
following grammar:

o= Int® | Int® | (r,...,7)” | 7="7 | poly 7 | D° | D"

where D is any element of a set of datatype names beginning with a capital letter and different
from any already existing name, like Int, etc.

Expressions involving static and dynamic sum types differ in the amount of information
that is obtained during specialization and moved into the residual type.

Constructors Specializing a constructor K ° with argument e : 7 yields €’ of type K o,
where €’ and ¢’ are the residual term and type corresponding to e, and the constructor
has been moved into the residual type. If K ” is dynamic, it is meant to be kept in the
residual code, so specialization yields K €.
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Case expressions Static case expressions are computed during specialization, that is, the
correct branch is selected and replaces the case expression, which is completely re-
moved from the residual code. Dynamic case expressions are preserved, but the control
expression and branches are of course specialized individually. Moreover, only the useful
branches are preserved. For example, if constructor K does not appear at all on the
residual code, then the branch matching the control expression with K x can be safely
removed.

Data declarations The name of a static sum type does not appear at all in the residual
code, so there is no data declaration for it. Dynamic sum types do have a declaration,
where the type argument of each constructor has been specialized and some of the
constructors removed (in the same way as case branches). Additional flexibility is
introduced by allowing a single source-type declaration to yield more than one residual
datatype — if the same constructor appears in completely unrelated expressions, each
can be specialized to different constructors belonging to different residual types.

2.5.2 Residual language

In order to achieve the behavior described above, the residual language must be extended
with new constructs for terms, evidence expressions, types and new predicates.

Definition 2.19 Let D denote a sum type name and K a constructor name. A residual
term, denoted by €/, is an element of the language defined by the following grammar:

e u=[ddcd ] e,
ddcl’ ::= data D" = cs
es' u=KPT .|| KnP T
-
e, = ...
| K e;

| case e;, of [ br)]*
| case, vj, of [bry]"
| protocase, e, with v, of [br) |*

P
bry =K — ¢
brl, =Kz — e,
v, = ... |K| e |[{K} }rer
| if, K € v, then v, else v},

Dynamic source code yields equivalent constructs in the residual code: data declarations
are added to the residual language, as well as tagged values and case expressions. The
superscripts in the data declarations allow distinguishing among all the possible data types
generated by a single source declaration.

Example 2.20 The same source datatype can be specialized to many different residual data
types if constructors appear independently. Under the following declaration

data D° = Only” Int®

the source expression
(OnlyD 11, Only” 45) P (DD,DD) b
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has two appearances of constructor Only, but they need not belong to the same residual
datatype. So the specialized code has two data declarations

data D' = Only' 11
data D* = Only* 4

and expression

(Only' o, Only? o) : (D', D?)

o

A v subscript in expressions indicates they may be reduced during specialization. Static
case expressions must be removed from the code, choosing the appropriate branch based on
the type of the control expression. However, in principal type specialization, we must be able
to specialize it independently, even if there is some information missing. The case, construct
can be reduced as soon as this information is available.

Example 2.21 Assuming the declaration
data Fither® = Left® Int” | Right® Int”
the source expression

case’ Left® 11”7 of Left° ©r — =z
Right® y — y +"10"

specializes to
case, Left of Left — 11
Right — 11+ 10

Since the information for choosing the correct branch is available, the expression above can
be reduced to 11 : Int. o

Following the same line is the protocase, construct. It is used for dynamic case ex-
pressions, where the residual code only keeps the branches that can actually occur. Since
this information might not be available, the result of specializing a dynamic case expression
is a protocase, construct, which may be reduced to a regular case expression. Similarly,
if, constructs are reduced only when the first argument is a set of constructors, and it can
be decided whether it includes one in particular or not. Reduction rules are presented in
figure 2.4.

The new constructs introduce new evidence expressions. A constructor name K appears
in case, expressions, both as the control expression and in the branches. Void evidence (o)
is meant to appear only inside the body of branches that are not actually selected. A set of
constructors { K }rer is used in the protocase, construct to indicate which constructors of
a given datatype can occur. See examples of the use of evidence in section 2.5.3.

New residual types include constructor types (coming from static tagged expressions),
sum types (from dynamic tagged expressions) and new predicates. The definition of residual
types is extended as follows.
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case, K} of (Kj — e;) > e, (keB)
JEB

rotocase, ¢’ with {K of (K [ e’-) > case € of (K z. — e’.)
p v { k}kEI J vy 1) jeB 7 1) je(InB)

if, K; € {K}, }xer then vy else v2 > v1  (Kje{K, }rer)

if, K; € {K, }rer then vy else vy > vy (K;2{K), trer)
Figure 2.4: Reduction for residual terms involving sum types

Definition 2.22 Let t denote a type variable from a countably infinite set of variables and
s a type scheme variable from another countably infinite set of variables, all of them disjoint
with any other set of variables already used. Let D and K be datatype and constructor
names respectively. A residual type, denoted by 7/, is an element of the language given by
the grammar

o=t |Int|n |7 =71 |(,...,7) | poly o | K 7| D"
p i=0=p|7
o = s|Vs.o|Vto|p
§ v=Islnt 7' |7/ :=7"+7" |IsMG oo |7~ 7|5 ]| 04
0s := IsConstrOf D 7/

| 7' :=case 7" of (K; — 7})j=1.n

| (visa K)74
0q4 := IsSum 7/

| HasC 7' K 7/

| Ket'?6

The new predicates are indicated by d, for predicates involving static sum types and d,4 for
dynamic ones, except for the unification predicate 7 ~ 7/ that is used for both. They express
relationships involving residual types generated by a sum type or by one of its constructors.
Intuitively, they have the following meaning;:

e 7 ~ 7’ is true whenever 7 and 7' unify.

IsConstrOf D 7’ is true when D is defined as a static sum type, 7’ is a constructor-type
K 7”7 and K is in D’s definition.

o 7' :=case 7" of (K; — Tj{)jzlmn is true when 7" is a constructor-type with tag K;
for an integer j between 1 and n, and 7' is 7}.

IsSum 7’ is true when 7’ is a residual sum type.

HasC 7/ K 7" is true when 7’ is a residual sum type that has constructor K 7 in its
definition.

Guarded predicates are of the form condition?§, where ¢ is a predicate that could also
appear by itself. Essentially, a guarded predicate is meant to be proved only if the condition
is satisfied, or in other words, it can be proved trivially if it is not.
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The meaning of the predicates is formalized in the entailment relation, which is presented
in figure 2.5. Observe how the meaning of each condition in the guarded predicates is defined
implicitly, by stating when the target predicate can be proved trivially and when it cannot.

New notation is used in this figure. For a residual sum type declaration

data D" = K" 71| ... | K}' 7;

we define D"(K;) to be 7/, that is, the argument of the constructor K . Similarly, we define
D?® (K) or D” (K) as the argument of constructor K in the source declaration of D.

The relation also specifies the evidence proving the predicates, where it is relevant. In
particular:

e IsConstrOf D° 7/ can be proved if 7/ is a constructor-type belonging to D®’s definition,
and the evidence is the name of the constructor.

e IsSum 7’ can be proved when 7/ is a residual sum type, and the evidence is the set of
constructors in its declaration.

e HasC 7 Kj; 7" can be proved only if 7 is a residual sum type D™ and K* 7" is in its
declaration. The evidence is n, the number of the specialized version of D” where the
constructor appears with the corresponding argument.

e Rule (IsSum-Guard) shows the evidence for a conditional predicate when the informa-
tion regarding the condition is missing. The decision is deferred by an if, construct
that may be reduced as soon as the decision can be made.

2.5.3 Specialization rules
Residual typing

System RT is extended to type the new residual terms — see section A.3.

Source-residual relation

In his extension, Martinez Lépez [2005] does not include a source-residual rule for static sum
types. It can be formulated straightforwardly but, since it is not of much relevance to our
work, we do not include it here.

Dynamic sum types do have a new rule for system SR, presented in figure 2.6. Here,
D" (K;) is the source argument of the constructor in the data definition. Rule (SR-DDATA)
states what residual types can be obtained from a dynamic sum type. It specifies that a type
7/ can be generated from a source type D if:

1. 7’ can be proved to be a sum type;

2. For every Kj in 7’s definition, if it is present in the residual version, then it has a
residual argument ’7']/- that is SR-related to the source argument.

Note the use of conditional predicates so that the second condition is applied only to the
constructors actually present in 7"’s declaration. For those that are not, all the premises can
be proved trivially — see entailment rules in figure 2.5.
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Aty DY (K) — 7
A H K : IsConstrOf D* (K 7)

(IsConstr)

AHv:6

(IsConstr-True) -
AHv:(Kiisa Ki)?79

(IsConstr-False) A H- e (Kk is a Kj) 76 (k#£j)

(Case) AH-e:7/ :=case (K 7") of (Kj — TJ/) o
JjE

D™ is defined as {K," Tl:;}]gel

IsSum
( ) AW {K} }rer : IsSum D"
AH D"(K;) ~ 7'
(HasC)
AHn:HasC D" K; 7'
K;eD" AR wv:A
(HasC-True)

AHv:K; e D7 A

K; ¢ D"

(HasC-False)
At-e: K€D 7 A

A, h:HasC 7' K; 1,A"H 1] ~ 1)
A,h:HasC 7 K; 7{,A’H h:HasC 7" K; 7}

(Unify-HasC)

AHasC 7" K; 7", A"Hv: A"

HasC-Guard
HesC Gt "N HasC 1+ K; 7, A v K, € 7/ 7 A

h: AW A A"H o?: IsSum 7/
A" h:Kjer'?AHif, Kj €v? then v else o : K; € 7/ 7 A’

(IsSum-Guard)

Figure 2.5: Entailment rules for predicates involving sum types
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A H- IsSum 7/
Aj FSR DD (KJ) — T]/'
(SR-DDATA) Al K et TA;

AH Kjer 7HasC 7' K; T]/-
D !
AI—SRD < T

KjGD

Figure 2.6: Source-residual relation for dynamic sum types

AT o7 — 27
AITH K z:D% — o/ K; 7/

(SCONSTR)

(SCASE)
A|Fl—Pe:DS — €7
A H v : IsConstrOf D° 7/

e

i:Lj tAj T H, Xajej: DY (Kj) =1 — ¢ 7]
hj  Aj Hwj : IsFunS 7 clos(7),; : Tjy — 7))
hj:Aj }_SRT — le'l

AH-vj:visa K;TA;

JjeB
A7, :=case 7, of (K; — 7)jeB
A|Tk, case’eof — case, v of
S . -
(5% = — ej)jeB T (Kj — (wj@ve;@ve’)[ﬁj/thjGB Ty

Figure 2.7: Specialization rules involving static sum types

System P

The specialization rules involving sum types are presented in figures 2.8 and 2.7. We begin
by explaining specialization of static sum types and then do the same thing for dynamic ones.

Specializing static sum types Specialization of static sum types is based on specializa-
tion of static functions, a feature added as another extension in Martinez Lépez’s presenta-
tion [2005, chapter 9] that we do not present here. Instead, we explain the meaning of the
predicates and constructs in the context of the specialization rules of our interest.

In static tagged expressions, the constructors are n-expanded and considered as static
functions — K e is a shortcut for (Xz.K*® x) @%e. Static A-expressions do not generate a
function in the residual code; instead they are unfolded and applied during specialization.
With this in mind, it is only necessary to specify how tagged variables are specialized. Rule
(SCONSTR) states a tagged source variable specializes to a residual variable, where the tag
is moved from the code into the type.

Specializing a case expression involves specializing the control expression, knowing which
summand it lies in, and statically choosing the corresponding branch. Rule (SCASE) specifies
this modularly and preserving principality.
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The first two premises involve the specialization of the control expression e : D° — it must
specialize to an expression with a residual type 7. that can be proved to be a constructor-type
from D’s definition.

The following premises involve specializing a branch; let us suppose for the moment it
is branch j. Assuming a set of predicates A;, the pattern matching variable x; is bound to
the body of the branch and specialized as a static function. Predicate IsFunS ensures type
7; is the result of specializing a static function from residual type 7/, to 7, so after (static)
application, we know the final residual expression has type 7']/-1. The third premise states types
7 and 7/; must be SR-related; this has the same purpose as rule (DLAM) in the original PTS
presentation (see section 2.3) — namely to rule out undesirable specializations.

Now in order to choose branch j correctly, we would need to know which summand the
control expression lies in. This cannot be assumed, since some of the information from the
context could be missing! This is where the new predicates — including conditional predicates
— play an important role. Indeed, specialization is not done for a particular branch j but
for all of them: for each one, a (potentially different) set of predicates A; is assumed, and all
the predicates in it are guarded so that only the ones for the correct 7 must hold. The rest of
them can be proved trivially by rule (IsConstr-False). Notice the use of evidence v to express
the correct constructor.

A similar issue appears when determining the final residual type. As we have mentioned, it
must be T]’~1 for a particular j, which is determined from the context when enough information
is available. This is expressed by predicate case-of in the last premise.

Finally, the residual expression is constructed using case, and @, expressions, that may be
reduced at specialization time. The first one uses evidence v to choose the appropriate branch
— see the first reduction rule in figure 2.4. The second one expresses the computation of
static applications, applying the function e; to the specialized control expression ¢’. Evidence
substitution is necessary from a technical point of view, to relate A; and A.

Example 2.23 Static constructors generate residual constructor types.
data SD® = Sta® Int® | Dyn® Int”
 (Sta® 11°, Dyn® 47 ) P : (SD*,SD%) 7 < (e,4) : (Sta 11, Dyn Int)

k, (Sta® 117, Sta® 4%) P : (SD°,SD%) P < (e, @) : (Sta 11, Sta 4)

o

Example 2.24 Case expressions can be specialized even when we do not know which sum-
mand the control expression lies in. All branches are specialized assuming the argument
matches, using conditional predicates to avoid incorrect assumptions, and a case, construct
to defer choosing the branch.

The expression
data SD° = Sta® Int® | Dyn® Int”

Xe.case® e of
Sta® r — lift x
Dyn® y — vy

- SD° =P Int”
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specializes to

Ahe, by, b Me .case, h, of
Sta — hy,
Dyn — €' :Vt,,t,. IsConstrOf SD t.,
(te is a Sta) ?IsInt t,,
Int := case t, of Sta — Int
Dyn — Int=t, — Int

Here, h, is the evidence for t. being a constructor type, so it represents the name of a
constructor: either Sta or Dyn. Variable h, is evidence for t, — the type of Sta’s argument —
being an integer one-point type, if t. is actually the constructor-type Sta. Predicate case-of
defers the choice of the result type.

If the function above is applied to (Dyn® 4”), then €’ has residual type Dyn Int, so
evidence can be resolved assigning value Dyn to h. and e to h,, getting:

(\é'.case, Dyn of
Sta — e
Dyn — ¢€')@Q4 : Int

and after reduction
(\e'.e")@4 : Int

where the Sta branch, whose body was not even a valid expression of type Int, has been
erased.

If alternatively, the function is applied to (Sta® 11%), then e specializes to e : Sta 11.
Evidence can be resolved assigning value Sta to he and 11 to h,, getting:

(\e'.case, Sta of
Sta — 11
Dyn — e)Qe : Int

and after reduction
(\e.11)Qe : Int

so now it is the Right branch the one with an invalid body that has been erased. o

Example 2.25 In an ordinary case expression, all the branches must have the same type.
Indeed, a case® expression is well-typed only if all the branches’ (source) types are the same.
However, the residual types need not match — the case construct is meant to disappear from
the code anyway, and only one of the branches will remain!

The following expression

data ABC® = A® Int® | B® Int® | C° Int®

Xe.case®e of A%z — 4°
By — y
%z — 9°
: ABC® =P Int®
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specializes to

Ahe, hy, by, By byt o,
Me/.case, hoof A — e
B — ¢
C — o
(Ve bz, by, te, tr. IsConstrOf ABC t.,
(te is a A) ?IsInt ¢4,
(te is a B) ?IsInt t,,
(te is a C) ?IsInt ¢,
IsInt ¢,
t, :=caset, of A — 4
B — t,
C — 9=t —t,

where each e expression has a different residual type, but only one of them is relevant to the
type of the expression. If the function above is applied for example to B® 11° | we get:

(A\e'.¢)Qe : 11
o

Example 2.26 Non-matching branches could even have a specialization that is impossible
to solve.

M Ne.case®e of A°z — let” id = Nw.w in (id @” 3% id @” 45) b
By — (y,9)"
OS2 (35,45)7
ABC® =P (Ints ) Ints) P
Ahe, by, hig, ha, ha, by, by, het, hyo, By
e .case, h. of
A — let id = ' in (id Qe id Qe)
B — (€,¢€)
C — (e,0)
:Vte, tey by, te, by, tro. IsConstrOf ABC' .,
(te is a A) ?IsInt t,,
(te is a A) ?7IsInt t;4,
(te is a A)? (tig — tig) ~ (3 — t3),
(te is a A)? (tig — tiq) ~ (4 — ta),
(te is a B) ?IsInt t,,
(te is a C) 7IsInt ¢,

IsInt tr1,
IsInt trg,
(ty1,tm0) := case t, of A — (3,3)
B — (tyvty)
C — (3,4)=>t,—t,

Here, the branch corresponding to constructor A applies a monovariant function to two
different static integers. The only way it could be specialized is if types 3 and 4 were the
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A D” — 7!
(DCONSTR) A’Fl—P e:DD(Kj) — 6/:7']{ AH*UleaSC Té Kj T]/'
A|TH K” e:D” — K7 ¢ 1

e

A|F?6:DD — €7
A H v : IsSum 7,

A"SRT‘—>T,

hj : Aj ‘ T l_P )\ij.ej : DD (KJ) —>DT —

/ /
)\a:j.ej

pT—
At w;: KjeT,7HasC 7, K 7}
A|TH, case”ecof (K,” x; — ¢j)jen: T

—s

jeB

protocase, ¢ with v¢ of

(Kjwj :L‘; — e;'[@j/ﬁj])jGB 7!

Figure 2.8: Specialization rules involving dynamic sum types

same! This is ensured by two unification predicates, but being guarded, they only need to
hold if A’s branch is taken. If the function is applied, for example, to B® 117, we get:

(Ne'.(e',€'))@e : (11,11)

If alternatively it is applied to A® 4%, the residual expression cannot be solved. o

Specializing dynamic sum types Specialization of dynamic sum types is meant to pre-
serve the constructors and case structures in the residual code. The data declarations are
preserved as well, but they can generate more than one version, and each version can be
modified to leave out unreachable constructors. The case branches corresponding to these
constructors are erased as well.

Rule (DCONSTR) specifies how a dynamic tagged expression is specialized. Firstly, the
residual type has to be SR-related to the source type; this rules out incorrect residual types,
such as those whose constructors cannot all be obtained from D’s source definition. Also, the
expression e must specialize to an expression €’ of residual type T]’- such that the residual sum
type includes a summand K T]/- in its definition. Predicate HasC expresses this last condition;
notice the use of v; to get the correct copy of the constructor.

Rule (DCASE) specifies the specialization of case expressions. The first two premises
involve the specialization of the control expression e: it must specialize a residual type 7,
that can be proved to be a sum type. The following premise states that the residual type 7/
must be SR-related to the source type. The next three conditions must hold for every branch
in the case expression. Assuming a set of predicates A; and that the constructor’s argument
has residual type TJ’-, the right hand side of each branch is specialized to an expression of type
7/ — specialization of dynamic functions is used to express this. Now since not necessarily
all the constructors in the branches will appear in 7/’s declaration, the predicates assumed
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for proving this must only hold in the cases in which they do, which explains the use of the
conditional predicate to prove A;. Similarly, only if K; appears in 7/’s declaration must T]’-
be its argument. The evidence for predicate IsSum is used in the protocase, expression as
the actual set of constructors appearing in 7.’s declaration.

Example 2.27 Evidence for predicate HasC is used to generate the correct constructor in
the residual expression.

data D° = Only” Int®

M Only” 11° : D"
< Ahi, ho.Only" e : Vt. IsSum ¢,
HasC ¢t Only 11 =t

Here, h; is evidence for ¢ being a sum type and hs is the number of D’s declaration where
Only appears with argument 11.
Similarly,

b (OnlyD 11, Only” 45) P (DD,DD) P
— Ahl, hQ, h3, h4.(On]y”2 o, Only’” 0) : Vt, t'. IsSum t,
HasC ¢t Only 11,
IsSum #/,
HasC t' Only 4= (t,t)

If constraint solving detects ¢ and ¢’ are not related, two different types can be generated,
so ho and h4 will be assigned values 1 and 2 respectively, yielding the specialization shown in
example 2.20. If, on the contrary, it detects ¢ and ¢’ must be the same, then the specialization
cannot be solved, since 11 is not the same as 4. o

Example 2.28 Not all constructors need appear in the source code. For those that do not,
only conditional information appears in the residual type.

data DS” = Dyn” Int” | Sta” Int®

b Dyn” 11" : DS”
< Ahy, ho, hg, ha.Dyn 11 : V¢, . hy : IsSum ¢,
ho : HasC t Dyn Int,
hs: Stact?HasCt Sta t/,
hy:Stact?IsInt ¢/ =t

If constructor Sta is ever applied to an argument, the type must unify with ¢’ by entailment
rules (HasC-Guard) and (Unify-HasC). If it is never used, constraint solving detects it and
removes it from the residual data declaration.

data DS' = Dyn' Int

Dyn'11: DS!
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Example 2.29 The specialization rules for dynamic sum types always expect a constructor
applied to an argument. Constructors with multiple arguments can be simulated by tuples,
whereas constructors with no arguments are n-expanded before specialization and n-reduced
after all post-processing phases.

data D° = Only” Int®

b Only” : Int® —"” D"
< Ahq, ho, hg.Only™ : V¢, t'. hy : IsInt ¢,
ho : IsSum ¢,
hs :HasCt Only t =t —t

Example 2.30 If two expressions tagged with the same constructor belong to the same
residual type, information flows from one to the other by means of predicate (Unify-HasC).

data D° = Only” Int®

I—P let” id = X’z.z
in X°z.(id @” (Only” z),id @” (Only” 4°),1ift ) ” : Int* —” (D", D", Int”)”
o
Ahi, ho, hs, hy.
let id = \2'.2/
in \2’.(id'@(Only"™ o), id'@(Only"* @), hy)
Ve, t'. hy : IsInt ¢/,
ho : IsSum ¢,
hs : HasC t Only t,
hy :HasCt Only 4 =4 — (t,t, Int)

Here, the identity function id is monovariant, so Only” z and Only” 4° must have the
same residual type ¢. Constraint solving detects this, and by predicate (Unify-HasC), ¢’ and
4 must unify so h3 and h4 are assigned the same value.

data D' = Only' 4

let id = \2'.2/
in \2’.(id'@Q(Only' e),id'@(Only' e),4) : 4 — (D', D!, Int)

Example 2.31 Specialization and entailment rules involving dynamic sum types were de-

signed so that constraint solving can detect when a case branch can never be taken, erasing
it as dead code.
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data SD” = Sta” Int® | Dyn” Int"

., case” (Sta” 117) of
Sta” x — lift
Dyn” x — x :Int"
— Ahq, ha, h3.
protocase, (Sta"? e) with h; of
Stah? 2/ — 11
Dyn" 2’ — 2/ :Vt. hy:IsSum t,
hy : HasC t Sta 11,
hs : Dyn € t?7HasC ¢ Dyn Int = Int

Constraint solving assigns the set {Sta} to h; and produces

data SD' = Sta' 11

case (Stal e) of Sta'z — 11: Int

o

Example 2.32 When there is no information regarding the use of constructors in the residual

code, all predicates that affect them are guarded, and the protocase, expression cannot be
reduced.

data SD” = Sta” Int® | Dyn” Int”

H  XNe.case” e of
Sta” n — lift n
: SDP =P Int” —
Ahy, ho, hs, hy.\e' .protocase, ¢ with hy of
Sta?n' — hs
:Vt,t'. hy : IsSum ¢,
ho : Stac t?HasC t Sta t/,
hs : Sta € t?IsInt ¢/,
hy : Dyn € t?HasCt Dyn Int =t — Int



Chapter 3

Static branch erasure in dynamic
sum types

Let us recall the meaning of static and dynamic expressions in type specialization. In general,
a static source expression is intended to disappear from the code during specialization, passing
its information to the residual type. A dynamic expression, on the contrary, must in general
remain in the program, adding no new information to the type.

One of the distinctive features of principal type specialization is that it makes use of static
information in an extensive and flexible way, even when it is only partially static information.

In this section, we propose a slight modification to one of the rules introduced by Russo’s
extension to the system (presented in section 2.5), namely rule (DCASE), to take the flexibility
and use of static information a step further. Our formulation resolves a family of conflicts
that originally prevented specialization of some case expressions, thus allowing more valid
specializations without losing consistency.

3.1 Static information in expressions involving dynamic sums

Expressions involving dynamic sum types are of two different kinds — tagged expressions,
beginning with a constructor name, and case expressions. Being dynamic, when specializing
the first kind we expect the constructor name to remain in the residual program, and for the
second kind, the case structure must be kept. This way, no information regarding the source
expressions passes directly to the residual type.

However, in Russo’s formulation for dynamic sum types, some information s obtained
statically and kept in the residual type, namely information regarding the sum’s definition —
the data declaration! A residual sum type 7’ is constrained by predicates that specify which
summands its declaration must necessarily include. During constraint solving, only these
are kept in the code. In other words, the constructors that need not be in 7/ are statically
removed from the residual program. As a result, the residual data declaration can have fewer
constructors than the corresponding source one, and the residual case expressions can have
fewer branches (because branches matching the constructors that no longer exist must also
be removed). Branch erasure during specialization of dynamic case expressions is one of its
most interesting features.

Russo’s extension introduces new guarded predicates for some of the constraints. These
make them relative to the inclusion of a certain constructor in the type’s declaration —

37
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informally, if a predicate is guarded, it must hold only when a certain constructor belongs to
a certain sum type, otherwise it can be proved trivially.

Guarded predicates are essential for specifying branch erasure when specializing the right
hand side of the branches in a case expression. Recall the following premises in rule (DCASE).

hj:Aj |k, Najej: D (Kj)—="1 —
/ A /
ATj.€; T =T

AH—@j:KJ’ GTé?Aj

Atwj: KjeT,7HasC 7, Kj 7; ieB
These must hold for each branch of the case expression to specialize. The set of predicates
A; is assumed for specializing each branch j, but only those corresponding to a constructor
that belongs to the sum type must actually hold. During constraint solving, evidence for A;
need not be constructed if the branch can be removed. This allows solving expressions that

would otherwise be ambiguous.

Example 3.1 Given the following specialization
data FEither” = Left” Int® | Right” Int®

b, case” Left” 2° of
Left” z — lift =
Right” y — lift (y +°1°) : Int”
s
Ah1, ho, hs, hy, hs.
protocase, Left"? o with h; of
Lefth? 2/ — 2
Right™ y — hy
: th,tz,tg. h1 : IsSum t1,
hy : HasC t; Left 2,
hs : Right € t1 7 IsInt 5,
hy : Right € t1 7t3 :=to + i,
hs : Right € t1 7 HasC t1 Right t3 = Int

evidence hy can be solved to number 1, and h; to the set {Left1 } The other three predicates,
since constructor Right needs not belong to the residual sum type, can be proved trivially
with evidence e, yielding

data Either' = Left' 2

protocase, Left! o with {Leftl} of
Left'z — 2
Right®*y — e:Int

which, by means of the reduction rules for protocase, expressions, is finally reduced to

case Left' o of
Left'! x — 2:1Int
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Predicates IsInt to and t3 := ts + 1 belong to the set Ay in the premise of our rule,
corresponding to constructor Right. Had they not been guarded, there would be no feasible
evidence to replace hs and hy, so the constraint solving step could not have been performed®.
The protocase, construct would not be reduced, and we would only get the first specializa-
tion, which is not very useful! o

Examples like this one illustrate the main motivation for branch erasure, and more gener-
ally, the use of guarded predicates — they are not only convenient, but essential for achieving
reasonable specializations in a number of cases. There is a big family of valid source terms
that could not be solved into useful residual code if dead branches were not erased.

Another interesting consequence of using guarded predicates is that certain expressions
can be specialized successfully or not, just depending on what constructors appear in them.

Example 3.2 Consider the specialization

data Bool® = True” ()" | False” ()"

k. case” False” ()© of
True® z — let” id = X’z.z in (id @P” 4% id @” 35) b
False® z — (45,35) b
: (Ints , Ints) b
Ahy, ha, hs, hg, hs, he.protocase,, False's () with hy of
True 2/ — let id' = \2'.2" in (id'Qe, id'Qe)
False's 1/ — (e, 0)
1 Vi, tig. hy: IsSum ¢,
ho : True € t 7 IsInt t;q4,
hs: True € t? (tid — tid) ~ (3
hy : True € t7 (t;g — tig) ~ (41
hs : True € t ?7HasC t True ()",
he : HasC t False ()"
= (4,3)

Here the identity function X’z.z is monovariant, so it could not be applied both to 4°
and 3°. The unification predicates could never be proved together, and would therefore yield
an error in constraint solving. Indeed, the right hand side of the first branch could not be
specialized in isolation! However, as the predicate is guarded with a false condition, constraint
solving is possible, and after evidence elimination and reduction we obtain

data Bool' = False! ()

case” False! () of
False'z — (o,0) :(4,3)

which is a desirable result, since the problematic branch could never be taken in the residual
code. o

!'We say expressions like these are ambiguous, meaning they contain predicates that cannot be solved, not
because it is impossible to build evidence for them, but because we do not know which evidence is required.
Ambiguous type schemes have been defined by Mark Jones as a part of his theory of qualified types [Jones, 1994;
Jones, 1993]
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Example 3.3

data Either” = Left” Int® | Right” Int®

let” f= X2 Xy.zin
let” g = Ne. case” e of
Left” x — lift =
Right” y — let” id = X°z.z in
let” dummy = (id Q” f,id @” (/\Dx.)\Dy.y)) P in
lift y
in (f @"4% @”3%, g @" (Left” 27)) ©
: (IntS,IntD) p

This example is more complex. In the second branch, function f, which returns the
first of two (static) arguments, must have the same type as a function that returns the
second argument, by virtue of the monovariant identity function. As a result, both function
arguments would have to belong to the same residual type, and the expression f @” 4° @” 3°
could not be specialized. However, since constructor Right does not appear in the type, there
is no error.

data Either' = Left' 2

let f/ = A2’ \y/.2" in
let ¢ = \e’. case € of
Left'z — 2
in (f/Qe @e, g'Q(Left' o)) "
. (4, Int)

Should we change the source expression to

let” f=...
in (f @"4° @”3%, g @" (Right” 27))

we would not be able to solve it, since types 4 and 3 are not the same.

Here, the branches can be correctly specialized by themselves, and it is their combination
with the rest of the expression what causes the problems. The principle is the same —
knowing that the problematic part could never be evaluated in the residual code, it is good
to erase it and specialize successfully. o

It is in examples like the ones above when the partially static quality of a dynamic sum
definition becomes most noticeable. A specialization can switch from valid to impossible with
no modification whatsoever of the problematic part, only by changing which constructors must
appear in the type! We have seen this behavior in static case expressions — see example 2.26.

The following examples are similar to the examples above, only making the sum types
and case expressions static instead of dynamic. As a result, the constructors and the case
structure are removed from the residual code. The appropriate branch is taken and the rest
of them are naturally discarded, even if they cannot be specialized correctly in isolation, or
if they cause problems when combined with the rest of the expression.
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Example 3.4

data Bool® = True® ()” | False® ()"

., case® False® ()" of
True® z — let” id = X’z.z in (id @”4° id @” 35) b
False® © — (45,35) b
: (Ints , Ints) b
s
case, False of
True — let id = X°2'.2" in (id'Qe, id' Qe)
False — (e,0)
- (4,3)

where the residual expression reduces to

Example 3.5

data Either® = Left® Int® | Right® Int®

let” f =Xz y.zin
let” g = Xe. case® e of
Left® z — lift
Right® y — let” id = X’z.z in
let” dummy = (id Q@ f,id @” (ADx.ADy.y)) P in
lift y
in (f @”4°% @”3%, g @7 (Left® 27)) "
: (Ints , IntD) P

Here, function ¢ is applied to an argument that specializes to residual type Left 2, so e
must have the same type. The case, construct generated by the static case can then be
reduced choosing the Left branch, getting

let f/ = X2’ \y/.2’ in

let ¢ = A\e'.2
in (f'Q e Qe, g'Qe)”
: (4, Int)

o

These examples illustrate the similarities between static and dynamic sum type special-
ization. Indeed, in both levels there is static information allowing to discard the parts that
would lead to a specialization failure. There is certainly more static information in a static
case expression than in a dynamic one — with the former we can tell during specialization
precisely which branch will be taken, whereas with the latter, we can only know certain
branches will not be taken!



42 CHAPTER 3. STATIC BRANCH ERASURE

Example 3.6 It is not always possible to discard the presence of a dynamic constructor in
the residual type. In that case, no branches can be erased.

data Bool® = True” ()7 | False” ()"

let” id = X°z.z in
let” true =id Q° (True” ()”) in
let” false =id Q" (False” ()”) in
case” (fst” (false, true)”) of
True” x — let” id = X’z.z in (id @” 4% id @” 35) p
False” © — (4°,3%)"
: (Ints , Ints) b
Compare this expression to example 3.2. Here, the fst projection is meant to remain in
the residual code, so both constructors must belong to the residual type. No branches can be
erased; in particular, the first one needs to be specialized, which cannot be done successfully
since 4 and 3 are different residual types. o

3.2 Enhancing branch erasure

Russo’s formulation uses static information as we have shown, mainly to allow solving other-
wise ambiguous expressions, which occur rather frequently — at least every time a constructor
with a static argument is not used in the source program. The effect of guarded predicates
in rule (DCASE) is to somehow ignore the specializations of branches that are removed from
the code. However, they are not entirely ignored! The first premise involving specialization
of the branches —see premises transcribed above— states that they should all specialize to
the same residual type 7/, including those that will be removed from the residual code. This
is independent of making the predicate contexts A; conditional.

Example 3.7
data Bool” = True” ()" | False” ()"

case” False” ()" of
True” © — (115,35) b
False” z — (4°,3%) 7 : (Int* , Int”) ”

Applying rule (DCASE) to this expression, the set of predicates A; is empty in both
branches, because no assumption is needed for specializing tuples of static numbers. However,
specialization is not possible, because the body of the first branch has residual type (ﬂ,f’))
whereas the second branch has residual type (4,3). Making A, conditional does not help: the
residual types are not the same, so the rule cannot be applied. o

Compare this example to example 3.2, where the expression has a similar structure. In
that example, specialization was possible despite the problems in the first branch. Here,
specialization cannot be achieved because the first and second branches have different residual
types, even though the first branch can never be taken. Surely this is an undesirable limitation
— if certain branches can be safely erased, their residual types need not be taken into account.

In our approach, we relax some of the rules so that only the branches that will remain
in the code must have the same residual type. This has the effect of ignoring unnecessary
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ATk e:D” — ¢ :7!
A H- v‘f: IsSum 7,
Abp T = '
hj:Aj | Tk, Najej: DY (Kj) =77 — el 1) — 7/
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(DCASE-2) Atw;: Kjer,7HasC 7, K 7}

) 1ot
AW Kjertri~r1 icB

A|TH, case’cof (K, xj — ¢j)jep:T
—
protocase, ¢ with v¢ of
(K" 2 — €i[vj/hj))jen : 7'

AH;»}_RT e 7l
A Hv?: IsSum 7/
L. I "
hj'Aj‘Ifx'_RT )\$j.€j.7j—>7'j
AH‘T)jIKjETé?Aj
(RT-DCASE-2) At wj: Kjer,7HasC 7, Kj 7;
A Kjertri~1

AT

jEB

protocase, ¢ with v¢ of

(K;"” oy — €ei[vj/hj))jen = 7'

T

Figure 3.1: New version of rules for branch elimination in dynamic case expressions

branches completely, as opposed to just ignoring the constraints used for their specialization.
We argue it is an improvement over the original formulation, in the sense that it yields more
valid specializations without losing consistency.

Our proposal involves changing two of the rules defined by Russo [2004] (see section 2.5)
namely rules (DCASE) and (RT-DCASE). The new versions are presented in figure 3.1.

Rule (DCASE-2) differs from rule (DCASE) in how the specialization of branches is spec-
ified. Instead of having all the same residual type 7/, now the body of each branch has a
potentially different residual type 7']’-’ . The last premise states that they must all unify with
the final residual type 7/, by means of a predicate that is made conditional, as the rest of
them. As a result, only the branches appearing in the specialized case expression must have
the same residual type; otherwise the unification predicate can be proved trivially.

Rule (RT-DCASE-2) is a natural adaptation of rule (RT-DCASE) to fit the new corre-
sponding specialization rule.

Example 3.8 Having modified the rules, the following expression
data Bool” = True” ()" | False” ()"

case” False” ()" of
True” z — (115,35) b
False” z — (4°,3%) 7 : (Int® , Int”) ”
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can be specialized to

Ahy, ha, hs, hy.
protocase, False"® () with h; of
True® z — (e,0)
False" z — (o,0) : Vit t1,to. hy : IsSum ¢,
ho : True € t 7HasC t True (),
hs : HasC t False (),
he : True € t 7 (11,3) ~ (4,3) = (4,3)

Constraint solving can detect constructor True needs not appear in the code, so hz can
be assigned value 1, hy is {False'}, and hy and hy are assigned evidence e. Finally we get

data Bool' = False! ()

protocase, False' () with {False'} of
True*x — (eo,0)
False'z — (o,0):(4,3)

and after reduction,

case False' () of
False'z — (o,0):(4,3)

&

The new rules preserve all the properties proved for the original extension. The proofs
are presented together with those of the next chapter, for the propositions involving the rules
that have changed.

In summary, we have explored the role of partially static information in the specialization
of dynamic case expressions. We have shown it is not only convenient but essential for
achieving useful specializations in a big family of terms. Guided by this notion, we have
introduced a slight modification to the rule for specializing case expressions which improves the
use of static information. Our proposal takes better advantage of branch erasure and allows
more valid specializations than the original formulation, keeping consistency and preserving
all the good properties of the system.
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Type Specialization of Polyvariant
Sums

The specialization of dynamic sum types we have presented so far can generate multiple
copies of a data type, but for each copy, there can be at most one residual summand for each
constructor in the corresponding source definition. For example, given the data declaration

data D° = Only” Int®

the source expression
(OnlyD 11°%, Only” 45) b (DD,DD) b

can be specialized and solved to

data D' = Only' 11
data D* = Only*4

(Only' o, Only? o) : (D', D?)
but the similar expression

let” id = X’z.z in
(id @7 (Only” 11%),id Q" (Only” 4°))? : (D", D")”

cannot be specialized at all. Function ¢d being monovariant, both tagged expressions must
specialize to the same residual sum type D’, but D’ cannot be defined to have constructors
Only 11 and Only 4 at the same time!

Certainly, function ¢d could be made polyvariant so each tagged expression could belong to
a different residual type — we would then have constructors Only' 11 and Only? 4 belonging
to residual types D' and D? respectively, as before. But we could also build a new residual
type D’ having both summands, and let id specialize to type D’ — D’. We would then have
the following residual code:

data D' = Only, 11 | Only, 4

let id' = \a’.2" in
(¢d'@Q(Only, e),id'@(Only, )) : (D', D")

45
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let” f = Xzlift z in (f @ 11%, f @"6°) " : (Int”,Int”) "

Expression cannot be specialized

let” f = poly X’z.lift = let” f = X’pz.case” pz of
in (spec f @"11° spec f @"6°) " Poly” x — lift x
: (Int”, Int” ) ® in (f @" (Poly” 11%), f @” (Poly” 6°)) ”
: (IntD,IntD) b
let f' = Ah.\z'.h let f' = \pa.case p2 of
in (f/(11)@s, f/(6)as) Poly, v — 11
: (Int, Int) Poly, z — 6
in (f@(Poly, e), fQ(Poly, e))
: (Int, Int)
Specialization via polyvariant functions Specialization via polyvariant sums

Figure 4.1: Alternatives for achieving polyvariance

Here function 7d needs not be polyvariant, because both arguments belong to the same residual
type. Indeed, specializing dynamic tagged terms this way is an alternative approach for
achieving polyvariance! In the expression above, constructor Only is applied to expressions
with different residual types — 11° and 4° — to produce expressions with the same one —
D’. Thus, they provide another way to pass different static arguments to the same function, id
in this case. For this reason, sum types that can be specialized this way are called polyvariant
sum types. Figure 4.1 compares the two approaches for polyvariance in a simple example.

In this chapter we extend the principal type specialization system to introduce polyvariant
sum types. These are not presented as a modification to dynamic sum types but as an
addition: both kinds of sum types are kept, identified by a keyword used in their declaration
and specialized accordingly.

The extension involves adding new constructs to the term and type languages, in both
the source and residual versions, to express polyvariant sum types. New predicates are in-
troduced, as well as new rules for entailment, residual term reduction, specialization and
residual typing. Our extension is mainly based on dynamic sum types (see section 2.5 and
modifications in chapter 3) and takes elements from specialization of polyvariant functions as
well (section 2.3.1).

4.1 Source language

We extend the source language to allow polyvariant sum declarations together with regular
data declarations. As before, constructors are distinguished lexically and take only one ar-
gument. As we use letter D for regular dynamic sum types and K for their constructors, we
will use letters Y and L for their polyvariant counterparts.

Definition 4.1 Let D and Y denote sum type names and K and L constructor names. A
source term, denoted by e, is an element of the language defined by the following grammar:
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e = [ddcl]* ep
ddcl ::= ... | polydata Y” = es
es =L 1| ... || LS T
ep = ...|L"%¢

| ... |case”e, of [br, |t
brp, ==Lz — ¢

The structure of the grammar is the same as the one presented in section 2.5, with
the only addition of the polydata keyword to declare polyvariant sum types. Polyvariant
constructors can appear wherever regular dynamic ones can, and the case construct is the
same for expressions of any of these types.

Source types are only extended with polyvariant sum names.

Definition 4.2 A source type, denoted by 7, is an element of the language defined by the
following grammar:

o= Int" | Int* | (1,...,7)" | 7="7 | poly 7 | D” | Y”
where the type (71,...,7,) " is a finite tuple for every possible arity n. The names D and Y
cannot be names that already exist, like Int, etc.
4.2 Residual language

4.2.1 Residual terms

Residual terms also have a similar structure to those defined previously for dynamic data
types.

Definition 4.3 Let D and Y denote sum type names and K and L constructor names. A
residual term, denoted by €, is an element of the language defined by the following grammar:

¢ u=[ddd']" e,
ddcl’ ::= ... |data Y" = es'
/ vl o
es' u=Ly" T .. || La" T
e, u=...|Le,
| ... |case e; of [b"";)]+
| ... | polycase, e, with v, and [v, |* of [bry |*
br, ==Lz — ¢,
bryp ==L — ¢,
vy, u= | {Lk,z‘}kel,iel,; |7 <n, (U;’)ielf> | v o),

Residual expressions involving sum-types may now be generated by polyvariant or mono-
variant definitions — they are both declared with the data keyword. Constructors generated
by polyvariant sums can appear in tagged values and case expressions just as regular dynamic
ones. Superscripts in L tags are used as a pair ", where n distinguishes among all the pos-
sible data types generated by a single source declaration, and ¢ identifies the different copies
generated by a single source constructor. When v = ", we will note L as L, .
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Example 4.4 Polyvariant sum types can generate multiple residual data types just as mono-
variant sum types can. They can also generate multiple versions of their constructors. The
following expression

polydata P” = Poly” Int®

let” id = X’z.z in
(id @" (Poly” 11%),id @” (Poly” 4%), Poly” 9°)? : (P”,P",P")"
has three appearances of constructor Poly: the first two must belong to the same residual type

since they are both arguments of ¢d, but the third appears independently. So the specialized
code has two data declarations, the first of which has two copies of the constructor.

data P* = Polyi 11 | Poly} 4
data P> = Poly? 9

let id = X272 in
(id'@(Polyt e),id'@Q(Polys e), Poly? e): (P', P!, P?)
<

Specialization of a case expression on polyvariant sum types requires information about
the residual data definition: if a constructor does not appear in it, the branches must be
erased, and if it does, a different branch must be built for each of its versions. Now all
this information might not be available if the expression is specialized independently. The
polycase, structure — just as the protocase, for regular dynamic sum types — expresses
the result of specializing a case construct when some information is missing, and can be
reduced to a residual case expression as soon as it is possible — see section 4.2.4.

New forms of evidence are necessary for gathering this information. Described by UI’J in
the grammar above, they are explained in detail in section 4.2.3.

4.2.2 Residual types

Residual types are extended with polyvariant sum-type names and with new predicates.

Definition 4.5 Let ¢ denote a type variable from a countably infinite set of variables and s
a type scheme variable from another countably infinite set of variables, all of them disjoint
with any other set of variables already used. A residual type, denoted by 7/, is an element of
the language given by the grammar

Tu=t|Int|n| -7 |(,...,7) | poly o | D" | Y"
p i=d0=p|7

o = s|Vs.o|Vto|p

§ v=Islnt 7' |7/ :=7"+ 7" |IsSMG 0 0 | 64| O

dqg == IsSum 7/ |HasC 7" K 7' | K € 7'7¢

de := IsPolySum 7’

| HasMGC 7" Ly o

| HasMGBr 7/ Ly o 7/
| HasPolyC 7/ Ly 7/

| Let'?0
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The predicates described by . express relationships between residual types generated
from a polyvariant sum and their constructors. Intuitively, they have the following meaning:

e IsPolySum 7’ is true whenever type 7’ is a residual sum type generated from a polyvari-
ant sum definition.

e HasMGC 7 L, o is true if 7/ is a residual type including summands Liy Tlyeens

L}, 7, such that type scheme o is more general than 7] for i = 1,...,m.

e HasMGBr 7" Ly o 7" 1is true if 7’ is a residual type including summands L; 7{,...,
L}, T, such that type scheme o is more general than the function type 7; — 7" for
1=1,...,m.

e HasPolyC 71 Lj 74 is true if type 7{ is a residual sum type that includes a summand
L 7).
ki '2

4.2.3 Entailment and evidence

The idea behind the predicates is formalized in the entailment relation, whose new rules are
stated in figure 4.2.
New notation is introduced for some of these rules. For a residual sum type declaration

we define Y"™(L, , ) to be 7; ., that is, the argument of the constructor L;', , whereas oy,(Y™)
denotes the number of copiés of constructor L in Y™’s declaration. 7

Entailment rules describe under what conditions a predicate can be proved, providing
evidence for it when necessary. Of the eight rules presented in figure 4.2, the first four reflect
the basic meaning of each predicate:

e IsPolySum 7’ can only be proved if 7/ is a sum type generated from a polyvariant source
declaration, and the evidence for this is the set of constructor names in its definition.

e HasMGC 7 Lj o can be proved if ¢ can be proved to be more general than any
argument of a constructor Ly in 7’.

e HasMGBr 7/ L, o 7" can be proved if 7/ is a sum type Y™ and o can be proved to be
more general than function 7, , — 7" for any L], 7/, in 7"’s declaration. The evidence
has two components: the first one is 7 and the second is an enumeration of the evidence
proving the more general relation between ¢ and each function.

This predicate is used to express constraints on the possible branches of a case expression
on 7 — see explanation of rule (POLYCASE) in section 4.4. Intuitively, it constrains
the arguments of each constructor Ly so that all the residual branches corresponding to
this tag can be correctly generated. Whereas predicate HasMGC constrains the residual
arguments themselves, predicate HasMGBr places restrictions on the branches they can
generate.

e HasPolyC 7/ Lj; 7" can be proved if 7/ is a sum type Y™, and there exists L}, 75 in
its declaration such that 75 ; and 7" unify. The evidence is then the pair .
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Y™ is defined as {L]?Z T;QI}

(IsPolySum) kel icl]
At {Lkvi}kel,iell’c : IsPolySum Y™
AR IsMG o' Y™(L, . ));— .
(HasMGC) ( g ( ki ))1—1,...,0%()/ )

A HasMGC Y" L; o

(A i TSMG o (Y(1y;) — 7))

(HasMGBr) i=1,...,a(Y")
A H=(n, (Vki)izt,.ap(vn)) : HSMGBr Y™ Ly o' 7/
ARY™L,,)~T
(HasPolyC) P ’ S
AR HasPolyC Y™ Ly 7
A H HasMGC 7" Ly o) AH IsMG o o4
(Comp-MGC)

A K HasMGC 7/ Ly o}

h:AHv:HasMGBr 7" Ly o 7 h:AH v :IsMG oo’
h:AH vov :HasMGBr 7/ Ly o 7

(Comp-MGBr)

A,HasPolyC 7/ Ly, 7", A" v : A"
A,HasPolyC 7/ L, 7" A'Hwv:L,er ?7A"

(HasPolyC-Guard)

h:AH 7 : A" A" H oY : IsPolySum 7/

(IsPolySum-Guard) —
A h:Lyer"?AHRif, Ly € vY then v/ else o : Ly, € 7/ 7 A/

Figure 4.2: Entailment rules for predicates involving polyvariant sums
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(n, Wier) 0v > (n, (v 0 v)igy)

polycase, e/ with {Lk,z‘}kel,iel,’c and <<7”Lj, (,Ujvi)ielj’->)

of (L< — e’-’)
J J jeB
> (Uj,,-[e;’] > )\:cszegl)

case ¢’ of

jEB

( ) . — €. )
Jir I Pt) je(BnI) el
Figure 4.3: Reduction rules for parallel composition and the polycase, construct

The other four rules are just natural extensions to the system for dynamic sum types.
Rule (Comp-MGC) gives an alternative way for proving HasMGC 7/ L o by proving it for
a type scheme ¢’ and proving o is more general than ¢’. Rule (Comp-MGBr) is the equivalent
for predicate HasMGBr — evidence vy ¢ v5 represents composition of a single conversion with
an enumeration of them, see reduction rules in figure 4.3. Rule (HasPolyC-Guard) expresses
that when HasPolyC 7/ L, 7" holds, we are sure that Lj; belongs to 7/. Finally, rule
(IsPolySum-Guard) provides evidence for a conditional predicate involving a polyvariant sum
type when we have no hypothesis as to whether the condition holds.

The predicates and entailment rules respect the good properties of Mark Jones’s abstract
predicate system [1994] (see section 1.3), and in particular, rules (Trans), (Close), (Evars)
and (Cut), which will be repeatedly used in our proofs. Substitution of type variables in
predicates and of evidence variables in expressions is straightforward — see extensions in
appendices A.4 and A.5.

The following lemma allows applying rule (IsPolySum-Guard) with a little more flexibility.

Lemma 4.6 If h:AH oY :IsPolySum 7/,
hy: Af B9y 2 Al and
;L:AH*’I_)l:LkET/?All
then h: AW-v' : Ly € 7' 7 Al
where v’ = if, Ly € v¥ then 0[v1/h1] else o

4.2.4 Reduction of residual terms

As we have mentioned, a polycase, expression can be reduced to a residual case expression
when all the required information is available. Figure 4.3 shows the reduction rule, together
with a reduction rule for one of the evidence expressions introduced.

The evidence construct v ¢ v represents parallel composition. It can be reduced when vy
is of the form <n, (vh) ic I>, and the result is composing v with each v].

A polycase, construct that can be reduced has four elements:

e The control expression €.

e A constructor set {Lm}kg’ig;ﬁ. It is meant to be the set of constructors that make up
the type of €.
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e For each branch Lj, a modified branch L; — ¢//. Here, the variable that is normally
bound by pattern matching is embedded in €.

e For each branch L;, a piece of evidence <nj, (v§ Z) > where n is an index and each

. ’
zelj

"] reduces to a residual lambda expression

vi,; represents a conversion such that v ,[e’
7 2

Ax;,i.e;,i.
The reduction has two main aspects. Firstly, only the branches corresponding to the
constructors that are actually part of the sum type remain — branches in the resulting case
expression are those for j € (I N B), just as in the protocase, reduction rule. Secondly, for
the constructors that do remain, a separate branch is generated for each conversion available
— there is intended to be one per constructor copy. After applying the conversions, variables
x;z can be again bound by pattern matching.
Example 4.7 In the following expression

polycase, ¢’ with {Poly;, Polys} and (1, ([]((6)),[](11)))
of Poly — Ah.)\z.h

there are two conversions for a single constructor. Both of them can be applied to the body
of the branch, yielding expressions Az.6 and Ax.11 respectively. Then the term reduces to

case ¢’
of Polyl 2 — 6
Poly} = — 11
o

Additionally, the equivalence of residual terms is extended to handle polycase, expres-
sions with free evidence variables, that cannot be reduced. See appendix A.6 for details.

4.3 Residual typing

System RT specifies the typing of residual terms. We extend it with two rules for type
checking tagged and case expressions on polyvariant sum types — the rules are presented in
figure 4.4. They have a natural correspondence with specialization rules in section 4.4.2 so
they will not be further explained here.

The following lemma does not appear in Martinez Lopez’s work but is necessary for some
of our proofs.

Lemma 4.8 If E:A|QFRT6’:U
then EV(e/) C h

The proofs of the following propositions are extended for the new rules. The first one states
that an RT judgment can be weakened by strengthening the predicate context; the second
shows that a conversion between two type schemes indeed relates them in their contexts.

Proposition 4.9 If h:A|L iy € 10 and A H- 01 A
then A" | T, by €'[0/R] : 0
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/,7_/

AL gy e o]
(RT-POLYCONSTR) A H-IsPolySum 7/ A H-wv; : HasPolyC 7" L; TJ/-

TANY N oy L;j e .7

€

A H- Y : IsPolySum 7/
hkiAk’Iﬁl_RTelklzak
(RT-POLYCASE) At v s Ly € 7T Ay
At wy: Ly € 7,2 HasMGBr 7/ Ly o 7'
AT, by polycase, ¢ with vV and (wy),cp of
(Le — eilon/hi]) e 7

A|l;l—RTe’:7"

keB

Figure 4.4: Residual typing rules involving polyvariant sum types

A H- IsPolySum 7/
Ak l_SR Y(Lk) — Ok

(SR-POLYDATA) AW L,et?A;
AH L e 7' 7 HasMGC 7/ Ly o

D !
AI—SRY — T

LyeYy

Figure 4.5: Source-residual relation for polyvariant sum types

Theorem 4.10 If h:A|L €0, and C:(h:Alo)> (' :A] )
then b : A" | T, Fyp Cle'] : 0

4.4 Specialization rules

4.4.1 SR Relation

The SR relation associates source types with residual types that can be generated from them.
It is one of the two relations that make up the specialization system, and is essential to the
achievement of principality as shown by Martinez Lépez [2002; 2005]. Our extension to the
SR system consists of just one rule, specifying which residual types can be obtained from the
only source type we have added — Y. The rule is presented in figure 4.5. We define Y (Ly,)
as the argument of constructor Ly in the (source) definition of Y.

Rule (SR-POLYDATA) specifies that an expression of residual type 7/ can be generated
from one of source type Y if:

1. 7/ has been generated from a polyvariant sum type;

2. For every Ly in the definition of 7/, there is a type scheme o, SR-related to the source
argument of L; and more general than any of the residual arguments of Ly.

The conditional predicates in the second condition restrict it to apply only to constructors
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AR Y? — 7
(POLYCONSTR) ATk e:Y(Lj) — e :7) AHv;:HasPolyC 7. L; 7
A|TH LY e:Y? — Li7¢é:7,

[

AlThe:Y? — ¢:7
A H oY : IsPolySum 7/
Abpt = 7
hie: Ap | T, Nzpeep : Y(Ly) =77 — €} 1o
AH- v Ly ETé?Ak
(POLYCASE) AW wy: L € 7. ?7HasMGBr 7 Ly, op 7
A|ThH, case”eof (L, xp — ep)rep:T
s

keB

polycase, ¢/ with v¥ and (wy),cp

of (Lk — 62[17]@/Bk])k63:7'/

Figure 4.6: Specialization rules involving polyvariant sums

actually present in the definition of 7/. For the ones that do not, premises are trivially proved
with evidence e — see entailment rules in figure 4.2.
System SR has several useful properties, which are preserved by our addition.

Proposition 4.11 If Ak, 7 < 0o
then SAbp 7 — So

Proposition 4.12 If Ak, 7 — o0 and A'H A
then 'k 7 — o

Theorem 4.13 If Ak, 7 < ocandC: (h:A|o)> (W :A|d)
then A'kp 7 — o

We also add the following lemma, necessary for some of our proofs.

Lemma 4.14 If Ak, YY" — ¢
then o =VB.A' = 1 and
A, A’ - IsPolySum 7

4.4.2 P Relation

Finally, we extend specialization rules to specialize tagged and case expressions that involve
polyvariant sums. These are presented in figure 4.6.

Rule (POLYCONSTR) specifies how a constructor expression from a polyvariant sum
type is specialized. Firstly, the residual type has to be SR-related to the source type; this
premise is analogous to the one in rule (DCONSTR) for specializing dynamic sum types (sec-
tion 2.5.3) and has the same purpose — to rule out undesirable specializations. Additionally,
the expression e must specialize to an expression e’ of residual type T],- such that the residual
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sum type must include a summand L, Tj{ in its definition. Predicate HasPolyC expresses this
last condition; evidence v; is used to obtain the right copy of both the data definition and
the constructor.

Rule (POLYCASE) specifies the specialization of case expressions. The first two premises
involve the specialization of the control expression e — it must specialize to an expression
with a residual type 7. that can be proved to be generated from a polyvariant sum. The next
premise states that the residual type 7 must be SR-related to the source type. The next
three conditions must hold for every branch in the case expression, that is for each k in the
set B of branch numbers. The pattern variable zj, is bound to the body e; and specialized as
a dynamic function — notice the resulting type is not syntactically restricted to be a function
type as in rule (DCASE) but can be any type scheme. The specialized function is used to
build the branches of the resulting polycase, expression. Now since each constructor can
generate more than one copy, each branch could be replicated. The last premise uses predicate
HasMGBr to constrain every possible branch: seen as functions, they must all be a suitable
instance of o}, and all bodies must have residual type 7/, the type of the final specialized
expression — see entailment rule (HasMGBr) in figure 4.2. Evidence for this predicate is
also a part of the polycase, construct and is used for generating the correct branches when
reducing it — see figure 4.3.

As in rule (DCASE), guarded predicates are used to discard the branches corresponding
to constructors that do not appear in the definition of 7.. Evidence substitution in the body
of the specialized branches relates A to Ay.

Example 4.15 Specialization of polyvariant sum expressions can lead to multiple data dec-
larations as in regular dynamic sums, and also to replication of the constructors in a single
declaration.

polydata P” = Poly” Int®

b (Po]yD 11°, Poly” 45) b (PD,PD) P
Ahy, ho, hs, hy, hs, he.
(Poly”* e, Poly"6 @) : Vt1,t5. hy : IsPolySum t1,
ho : HasMGC ¢, Poly (Vt.IsInt ¢t = t),
hs : HasPolyC t; Poly 11,
hy4 : IsPolySum o,
hs : HasMGC to Poly (Vt.IsInt ¢t = t),

h6 : HasPolyC to Po]y 41 = (tl,tg)

If constraint solving detects t; and to are independent, two different types are generated: hs
is assigned value i and hg, % The rest of the predicates are successfully verified but the
evidence is not used in the expression.

data P = Poly; 11
data P> = Poly? 4

(Poly! e, Poly? e): (P!, P?)

If, on the contrary, ¢t; and to must unify, a single data type must be built: hs and hg are
assigned values i and % respectively.
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data P' = Polyl 11 | Polys 4

(Polyi e, Polys e): (P, P

Example 4.16 Since polyvariant sum types can generate more summands than there are in
the source definition, constructors do not cause information flow between their arguments.
Compare this to example 2.30.

polydata P” = Poly” Int®

H let” id = X’z.2
in X’z.(id @” (Poly” ), id @" (Poly” 4%),1ift z) © : Int® —” (P, P Int") "
SN
Ahy, ho, hs, hy, hs.
let id' = \2".2/
in \z’.(id'Q(Poly" '), id' @(Poly"s e), hy)
: Vi1, ta. hy @ IsInt to,
ho : IsPolySum ¢,
hs : HasMGC t; Poly (Vt.IsInt ¢t = t),
h4 : HasPolyC t; Poly ts,
hs : HasPolyC ¢; Poly 4 =ty — (t1,t1, Int)

Here, constructor Poly on t; must have at least arguments ¢, and 4, but being polyvariant,
they do not have to be the same. The function could be, for instance, applied to 3°:

I—P let” id = Xz.2
in ()\Da:.(id Q" (Poly” z),id @" (Poly” 45 ), lift x) D) @” 3°
: (PD,PD,IntD) b

PN
Ah27 h‘37 h4a h5'
let id = \2'.2/

in (A\2’.(id'Q(Poly™ 2'),id'@(Poly" e), 3)) Qe
:Vit1. ho : IsPolySum tq,
hs : HasMGC t; Poly (Vt.IsInt t = t),
hy : HasPolyC ¢; Poly 3,
hs : HasPolyC t; Poly 4 = (ty,t,, Int)

which can be solved and reduced with no problems to
data P* = Poly} 3 | Poly} 4

(let id = 2’2/
in \2’.(id'Q(Poly} z'),id'@(Poly} e),3))Qe : (P!, P, Int)
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Example 4.17 Polyvariant sums are an alternative way to achieve polyvariance. Construc-
tors are applied to static arguments of different types to obtain the same one, and the correct
argument is chosen among the branches that have been replicated. The source expression

polydata P” = Poly” Int®

let” f = X’pz.case” pzr of
Poly” z — lift
in (f @" (Poly” 11%), f @” (Poly” 6°)) ” : (Int”, Int” ) "

specializes to

Ahy, o, hs, by, hs.
let f' = A\pz’.polycase, px’ with h; and hy of
Poly — AhAz.h
in (fQ(Poly" ), fQ(Poly" e))
1 Vt. hy : IsPolySum ¢,
hy : HasMGBr t Poly (Vit'IsInt ¢’ = t' — Int) Int,
hs : HasMGC t Poly (Vt'IsInt t' = ),
hy : HasPolyC t Poly 11,
hs : HasPolyC t Poly 6 = (Int, Int)

Constraint solving can detect there is only one type with two constructors and assign values i
and ; to hy and hs respectively. Then h} can Pe associated with the set {Po]y%,Po]y%}.
Predicate HasMGC is verified, since both 11 and 6 are instances of (V¢'.IsInt ¢’ = t’). Finally,
predicate HasMGBr must be proved by finding a conversion from the type scheme to the
function 7 — Int, for each argument 7 of Poly — namely for 11 and 6. It can proved with

[((11) : (V¢ IsInt ¢’ = ¢’ — Int) > (11 — Int)
((6)) : (vt IsInt t' = ' — Int) > (6 — Int)

So hg is assigned value (1, ([]((11)),[]((6)))). The residual expression and type can then be
solved to

data P* = Polyi 11 | Poly} 6

let f/ = \pa’.polycase, pz’ with {Polyi, Poly;} and (1, ([J(11)),[]((6))) of
Poly — Ah.Az.h
in (fQ(Poly} e), fQ(Polys e)): (Int, Int)

and reduced to ) )
data P* = Poly} 11 | Poly} 6

let f' = \pz’.case pz’ of
Polyl = — 11
Poly} = — 6
in (fQ(Poly} ), fQ(Poly; e)) : (Int, Int)
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Example 4.18 In the following source expressions, we will repeatedly use the following data
definition and function:

polydata Either” = Left” Int® | Right” Int®

f = Nex.case” ex of
Left” v — «x
Right” x — x +°1°

f is a function of source type Either® —" Int® .

Rules for specializing a case expression are designed so that all the branches in the residual
version have the same type. This is ensured by predicate HasMGBr.

b let” f=...in (f Q" (Left” 4°), f @” (Right” 3°)) ” : (Int®, Int*) "
— Ahq, ha, h3, hy, hs, hg, hr, hs.
let /' = \ex.polycase, ex with hy and (hs, hy) of
Left — Ah.\a'.x’/
Right — Ah,h' \x’.e
in (f'@Q(Left"" o), f'@Q(Right"s e)) "
: Vite, tr. hy : IsInt t,,
ho : IsPolySum t.,
hs : HasMGBr t. Left (Vt.IsInt t =t —t) t,,
hy : HasMGBr t, Right (Vt,t'IsInt t,t .=t 4+ 1=t —t) t,,
hs : HasMGC t. Left (Vt.IsInt t = t),
he : HasMGC t. Right (Vt.IsInt ¢t = t),
h7 : HasPolyC t. Left 41,
hg : HasPolyC t. Right 3 = (t,,t,)

The last two predicates indicate that t, must be a sum type — let us call it Either! — with
summands Left] 4 and Righti 3. In order to prove the third predicate, function 4 — t,
must be an instance of (Vt.IsInt t = t — t), so t, must unify with 4. Evidence h3 is then
assigned value (1, []((4))). Now for the fourth predicate, function 3 — 4 must be an instance
of (Vt,t'IsInt t,¢' :=t+ 1 = t — t'), which actually holds. Evidence hy is then assigned the
value (1, []((3))(4))). After solving and reducing we get

data Either' = Left} 4 | Right 3

let f' = \ex'.case” ex’ of
Leftl 2/ — 2
Right% z — e
in (f'Q(Left} o), f'Q(Right} e)): (4,4)
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If constructor Right is applied to any other value, we get a similar specialization

o let” f=...

in (f @" (Left” 4%), f Q" (Right” 3%), f @” (Right” 9°))” : (Int”, Int® , Int®) ©
< Ahy, ha, h3, hy, hs, he, h7.

let f'= ...

in (f/@(Lefth5 o), f'@(Right" o), f'@(Right"" o) ”
: Ve, ty. hy : IsInt ¢,

hs : HasPolyC t. Left 4,
he : HasPolyC t. Right 3,
h7 : HasPolyC t. Right 9 = (t,,t,,t,)

Constraint solving proceeds the same way, but now to prove the HasMGBr predicate on Right,
it must verify that both functions 3 — 4 and 9 — 4 are instances of (Vt, ' IsInt ¢, ¢ := t+1=
t — t'), which is not true! So the expression cannot be solved at all.

The fact that all residual branches must have the same type can also lead to information
flow between the arguments of different summands.

H Aylet? f=..

in (f Q" (Left” y), f Q" (Right” 3%), lift y) P Int® —P (IntS,IntS,IntD) b
— Ah’la h’27 h‘3a h47 h5a h6a h‘77 h87 h9'
Ay’ let f’ = \ex’.polycase, ex’ with hs and (hg, hs) of

Left — Ah)\z'.2’
Right — Ah,h/ \x’.e

in (f'@Q(Left" y/), f'Q(Right" e), hy) ”

ety tr. b
ho
h3
hy
hs
he
h7
hs
hg

: IsInt ¢,

: IsInt 24,

: IsPolySum ¢,

: HasMGBr t. Left (VtIslnt t =t —t) t,,

: HasMGBr t, Right (Vt,t'IsInt t,t' ==t 4+ 1=t —t) t,,
: HasMGC t. Left (Vt.IsInt t = t),

: HasMGC t. Right (Vt.IsInt t = t),

: HasPolyC t. Left t,,

: HasPolyC t, Right 3 = t, — (t,t,, Int)

Constraint solving can detect that ¢, must unify with 4 to prove the HasMGBr predicate
on Right. Now to prove it for Left, the function type t, — ¢, must be an instance of
VtIsInt t = t — t, which leads to unifying ¢, with 4 to get the function 4 — 4. The second
predicate can now be proved and he can be assigned value 4. After solving and reducing, we

get

data Either' = Left} 4 | Righti 3

Ay let f' = \ex'.case” ex’ of

Leftl 2/ — 2/
Right% z — e

in (f'Q(Left! o), f'Q(Right} ),4):3 — (4,4, Int)
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Example 4.19 As in regular dynamic sum types, conditional predicates appear when there
is not enough information on the summands. They also have the effect of ignoring branches
that cannot be reached.

The expression
polydata EitherDS” = Left” Int” | Right” Int®

K let” g = Xe.case” e of
Left” z — let” id = X’z.z in
fst” (lift (id @" 11%),1ift (id @° 15%)) "
Right” z — lift = +°1°
in (g @" (Right” 4%), g @” (Right” 2°)) " : (Int"”, Int”) "
N
Ahq, ha, hs, ha, hs, he, hr.
let ¢’ = \¢’.polycase, ¢ with hy and (hs, hs) of
Left — AR}, by, R 2’ let id' = \2'.2" in fst (b)), b))
Right — Ah.A\2’.h+1
in (¢’GQ(Right" ), ¢’ @(Right"" e))
: Vi, t'. hy : IsPolySum ¢,
ho : Left € t. ?HasMGBr t. Left (Vt. IsInt ¢,
t~ 11,
t ~ 15 = Int — Int) Int,
hs : HasMGBr t. Right (Vt.IsInt t = t — Int) Int,
hy : Left € t, 7 HasMGC t. Left Int,
hs : HasMGC t. Right (Vt.IsInt t = t),
he : HasPolyC t. Right 4,
hz : HasPolyC t. Right 2 = (Int, Int)

Function id’" has residual type ¢t — t, and evidence h| proves t is a one-point integer type.
Then the specialization of lift (id @”n) must be h for any n. But since id is applied to
arguments of types 11, and 15, they should both unify with ¢/. This is expressed in the type
scheme constraining the Left branch (the one with evidence hg).

Notice that predicate HasMGBr could never be proved if Left had any arguments —
the type scheme itself has a set of predicates that does not hold. However, since it cannot
be derived that Left is actually part of the residual sum type, all predicates regarding this
constructor appear guarded. Constraint solving, detecting it does not appear in the code,
can leave it out of the data definition, and prove these predicates with evidence e.

Now constructor Right does not have any guarded predicates, because the predicates
HasPolyC make the condition true (see rule (HasPolyC-Guard)). Constraint solving forms a
sum type with summands {Right%, Right%}, and proves the HasMGBr predicate with conver-

sions [}(4)) and [}(2)).

let f' = \é.polycase, ¢/ with {Righti, Righty} and (e, (1, ([J(4)),[](2)))) of
Left — ARY, b, hi. Axlet id = \2'.2" in fst (R, h})
Right — Ah. x.h+1

in (f'Q(Right! e), f'Q(Right’ e)) : (Int, Int)
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After reduction, we obtain
data EitherDS' = Right! 4 | Right} 2

let id = X°2/.2' in
let f/ = \e'.case ¢’ of
Right! z — 441
Right} = — 241
in (f'Q(Right! e), f'Q(Rights e)) : (Int, Int)

where the Left branch has been erased. o
The following properties show that P is well behaved with respect to systems RT and SR.

Theorem 4.20 If Al e:7 — €0

/

then A | F(RT) Mep €10
whereI(‘RT) ={z,:7 |i=1,...,n}
fP={ai:m—a,:ni=1,...,n}

Theorem 4.21 If A|ThHe:7 — ¢:0
then Abqp 7 — o

The following properties also hold.

Proposition 4.22 * If h:A|The:7 — € :0 and A'H7: A
then A" |k, e:7 — €[v/h]: 0

Proposition 4.23 x If A|l'kRe:7 — €0
then SA|STH e:1 — € : S0

Lemma 4.24 If h:A|Thke:7 < ¢:0
then EV(e/) C h

Lemma 4.25 If h:A|The:7 < ¢:0
then there exist 3, Ay and " such that o = VB.A, = 7"

4.4.3 A note on HasC, HasPolyC and upper bounds

The new rules on system P look quite similar to the ones for expressions involving regular
dynamic sum types (section 2.5.3 and changes in section 3.2). In fact, in the rules for spe-
cializing tagged expressions — rules (DCONSTR) and (POLYCONSTR) — there is only one
change in the residual sum type’s description: where there used to be a predicate HasC, now
there is a predicate HasPolyC. These two predicates in turn have very similar meanings, the
only difference being that the first one states that a type includes a constructor with an only
argument, whereas the second one states that it is one of potentially many arguments.

Predicate HasC has two additional counterparts for polyvariant sum types, used for speci-
fying the source-residual relation and for specializing case expressions respectively: predicates
HasMGC and HasMGBr.



62 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

Rules defining the SR relation for both kinds of sum types differ in just one predicate, as
well — compare rules (SR-DATA) and (SR-POLYDATA). In both of them, for a source sum
type T to be SR-related to a residual type 7/, it is necessary that the argument of each source
constructor be related to the argument(s) of the corresponding constructor(s) in 7/, if they
exist. Suppose constructor j has a source argument 7;. In the case of regular sum types, it
suffices to say that if the constructor exists in 7"’s definition, then the only argument it has is
a type 7; such that b, 73 — 7. Predicate HasC 7' Kj 7; is enough for expressing this. In
the case of polyvariant sums, there is potentially more than one of these T]/-S, and all of them
need to be in SR-relation with 7;. Since we do not know a priori how many of them there are,
we cannot use HasPolyC for stating explicitly what residual arguments the constructor has.
However, we do know that for any such set of residual types, there should be a residual type
scheme 03- more general than all of them and such that b, 7; — 03-. This is why predicate
HasMGC is useful. In this sense, it expresses an upper bound to every possible argument of
a residual constructor.

Rules specifying specialization of case expressions also have the same structure for both
kinds of sum types. Rule (POLYCASE) uses predicate HasMGBr where rule (DCASE-2) uses
predicate HasC in combination with the unification predicate. The parallel here is a little
more subtle, and is related to branches being specialized as functions.

For regular dynamic sum types, each branch can be specialized at most once. For a given
constructor Kj, the pattern matching variable is assumed to have a type 7']/- that must be the
type of the corresponding argument in the sum type definition, if it exists. Predicate HasC is
enough to express this. Separately, the body of the branch has a residual type T]’/ that must
be the same as the type of the expression only if the K is a part of the sum definition. The
guarded unification predicate ensures this last condition.

Now for polyvariant sum types, branches can be specialized more than once, but the exact
number and specific versions cannot be decided a priori. What can be determined is that
every possible branch should respect the form of a function from a summand argument to
the residual type of the expression — a general type scheme oy, such that every branch on Ly
(seen as such a function) is an instance of 0. Predicate HasMGBr expresses this condition,
acting as an upper bound to every possible branch on a certain constructor and with a certain
residual argument. In rule (POLYCASE), it appears guarded, so no restriction is placed on
the general branch if there cannot be any instances.

In conclusion, HasC has a triple purpose:

1. To specify the summands of a residual sum type;

2. To state that the arguments are the same as a certain type SR-related to the source
argument (modulo unification).

3. To make sure (in combination with the unification predicate) the only branch a con-
structor can have in a case expression is generated by specialization of the source branch.

With polyvariant sums, these three purposes are fulfilled by different predicates:

1. HasPolyC specifies the summands of a residual sum type;

2. HasMGC states that the arguments are instances of a certain type scheme SR-related
to the source argument.
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3. HasMGBr makes sure that all the branches a constructor can have in a case expression
are instances of a type scheme generated by specialization of the source branch.

Upper bounds are useful when multiple versions of a single source expression can be gen-
erated. They are a key concept for expressing polyvariance in Principal Type Specialization
(see section 2.3.1), and a natural feature of polyvariant sums.



Chapter 5

Extending The Algorithm and The
Proof

In chapter 4, we extended the principal type specialization system to handle polyvariant
sum types, and proved that certain properties are kept after our addition. However, the
preservation of the main property — that of principality — was not established there.

In this chapter, we extend the algorithm for computing principal type specializations
to consider our new rules and constructs. We follow the lines of the constructive proof
in Martinez Lépez’s formulation [2005, chapter 7]: the system has principal specializations
because there is an equivalent algorithm that computes them, for a suitable definition of
equivalence.

The algorithm we extend in this chapter is implemented in a simple prototype written in
Haskell. In section 5.3, we discuss other aspects of it that are not directly related with the
proof of principality.

5.1 A syntax-directed system, S

The rules in system P clearly specify how each construct in both term and type languages
is specialized. However, they are not suitable for describing and algorithm, because they do
not completely follow the structure of a term, that is, they are not syntaz-directed. As an
intermediate step to a specialization algorithm, a syntax-directed system — system S — is
presented, with judgments of the form

A‘FI—SQIT — e 7

The rules are adjusted so that for every term, there is at most one rule applicable. Also,
only type expressions are involved in the process, handling qualified types and type schemes
with a generalization operator — see section 2.4.

We extend system S with the rules corresponding to (POLYCONSTR) and (POLYCASE).
They are presented in figure 5.1.

Rule (S-POLYCONSTR) is exactly the same as the original, since there are no type
schemes involved. Rule (S-POLYCASE), however, is different, since the specialization of
the branches must be dealt with. Each of them is specialized under system S, and the
corresponding HasMGBr predicate is built with the generalization of the obtained results.

64
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Ay YP — 7!
(S-POLYCONSTR) A | F l_S e . Y(LJ) (SN @/ : 7-]/. A H— 'Uj : HasPolyC Té Lj T]/-
AITH L e:Y? — L7 €1

e

A]I’I—Se:YD — e 7]
A H Y : IsPolySum 7/
AbgpTm = 1
hi: Ay | TRy Nxp.er : Y (Ly) —>’i7’ — €T
or = Genr (A = 7,), €, = Ahy.€]
AW wy: L € 7. ?7HasMGBr 70 Ly, of 7
A|T e case’e of (L;” z — er)kep:T
(H
polycase, ¢’ with v¥ and (wy),cp
of (Ly — € )pcp: T

(S-POLYCASE)
keB

Figure 5.1: Syntax-directed specialization system for polyvariant sum types

The following properties are preserved by our addition. The first two show that the system
is well behaved with respect to entailment and substitutions, whereas the last establish an
equivalence between systems S and P.

Proposition 5.1 Ifh:A[l'ke:7 < ¢ :7 thenh: SA|STHe:7 — ¢ : 57

Proposition 5.2 If h:A|Tke:7 — € :7" and
A'Hv: A
then A" [T e:7 — e[h/v]: 7

Theorem 5.3 x IfA[Tke:7 — 7' then AT e:7 — € :7

Theorem 5.4 * If h:A|THe:7 — €:0
then there exist hl,, AL, €., 7. and C’, such that
Wyt AL The:m — e : 7,
CL:Genp(AL = 7)) > (h:A]0),
CLIAR.€] =¢

Theorem 5.3 establishes the soundness of the syntax-directed system with respect to the
original specialization rules. Theorem 5.4 establishes a form of completeness property showing
that every specialization can be described by a syntax-directed derivation. This cannot be
done the obvious way — for instance, if A | T’ e < e’ : o, then it will not in general
be possible to derive the same typing in system S, since o is a type scheme, not necessarily
a simple type. However, for any such derivation, theorem 5.4 guarantees the existence of
an S-derivation yielding €. : 7/ under predicate context h, : AL, such that the inferred type
scheme Genp (A’ = 77) is more general than the constrained type scheme (A | o) determined
by the original derivation, and that Ah’.e. can be converted to €.
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U

IsPolySum 7 ~V IsPolySum 7’/

T~ U AV Uy o

HasMGC 7 L o ~Y2U1 HasMGC 7/ Ly o

AT Uyo AV Uye! UpUpre ~YV3 U Uy 7l
HasMGBr 7 Ly, o 7. ~U3Y2U1 HasMGBr 7/ Ly, o' 7/

AU U AU U T

HasPolyC 7 L, 7. ~V2U1 HasPolyC 7/ L; 7.

Figure 5.2: Rules for unification of predicates involving polyvariant sums

5.2 The Principal Type Specialization Algorithm

We are now able to extend the algorithm presented by Martinez Lépez [2005] and extended by
Russo [2004], that computes the principal type specialization for a given typed source term,
and express a notion of equivalence to system P via system S.

We use a number of subsystems corresponding to the algorithmic versions of the different
systems used in - and k. They are presented next.

5.2.1 A unification algorithm

The unification algorithm is specified with judgments of the form o1 ~V &9, where o1 and o9
are input and U is output, a most general unifier for them.

We only need to extend it with unification rules for the new predicates. They are presented
in figure 5.2.

The following properties establish that the output, if it exists, is indeed a most general
unifier.

Proposition 5.5 Ifo ~V ¢’ then Uo =U o’
Proposition 5.6 If So=S50
then o ~Y o' and there exists a substitution T such that S = TU

5.2.2 An entailment algorithm

The entailment algorithm expects a predicate ¢ as input and an assumed predicate context A.
It computes the set of predicates A’ that should be added to A to entail §, and the evidence
for this entailment. Judgments are of the form

A|AHwwv:d
The only rule for this algorithm is the following;:
h:0| AHwh:d
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O = Gen@7@(Ak = T];)

IsPolySum ¢, R
(L € t?HasMGC t Ly ox)p, oy Rvse ¥

( Ak l_W—SR Y(Lk) — 7']; )
LkEY

(WSR-POLYDATA) (t fresh)

Figure 5.3: Algorithm for the source-residual relation for polyvariant sum types

That is, A’ is a singleton set assuming evidence for 4.

This formulation allows for more refined rules proving each particular predicate accord-
ing to its meaning and entailment rules. This is currently handled by simplification; see
section 5.3.

The following proposition can be easily proved.

Proposition 5.7 If A’ | At 6 then A/, AH§

5.2.3 An algorithm for the SR relation

The source-residual relation algorithm, W-SR, expects a source type as input. It calculates the
most general residual type in the sense given in proposition 5.9, and a predicate assignment
expressing the constraints on the type variables. Judgments in system W-SR are of the form
Alygr T < 7', where 7 is input and both A and 7’ are output.

We extend this system to calculate the SR relation for polyvariant sum types. Only one
rule is needed; it is presented in figure 5.3.

We extend the propositions relating system W-SR with SR. The first one proves that the
former is sound with respect to the latter. The second one shows that W-SR yields the most
general type and predicate assignment in SR-relation with the input.

Proposition 5.8 If A T 7' then Abp 7 — 7'

}_W—SR

Proposition 5.9 If Al 7 < o
then there exist A!,, 7/, and C', such that
Ay Rysp T = T with all the residual variables

fresh and C, : Geng g(Ay, = 7,) > (A o)

5.2.4 An algorithm for principal type specialization, W

The principal type specialization algorithm takes an assignment I' and a typed source term
e : 7. It returns a specialized expression €' : 7/, a predicate assignment A and a substitution
S that must be applied to I' to adjust the types appearing in it. Judgments are of the form

. L
A[SThRye:m — =7

with the same meaning as in systems P and S. For each syntax-directed rule in system S,
there is a counterpart in system W.

Figure 5.4 shows our extension to the algorithm to consider rules (POLYCONSTR) and
(POLYCASE). They are essentially the same as rules in system S, only taking substitutions
into account.

Our extension preserves the following property:
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D
All_W-SR Y? — 7/ o
A'[ST Ry e:Y(Lj) — €7
A" | A, A" Hw vj : HasPolyC 7, L; 7

AAA"| ST R, L e:YP — L7 e 7

(W-POLYCONSTR)

A€|SQFI—W6:YD — €7
Ap | Ae Hw oY : IsPolySum 7/
Asr Ry.sr
(P : A | Sk S;_ T b N aneer Y (L) =71 — ef 7)
(O’k = Geng:r(Sp, (Ax = 77)), e, = Ahk.e’k’)

T — 7

keB

keB
(W-POLYCASE) ( AL LA AL AE A Ay w )
wy, 1 Ly, € (ST 7)) ?HasMGBr (ST 7)) Ly o 7" ), 5
AL, AL AL NS Asr | SiT R, case”eof (L) z, — ex)ren: T
—

polycase, ¢ with v¥ and (wy),cp
of (L — € )pcp T

where ]
ST = (SIO(...oSi))
7 = (8108
A = STA.
AL = STA
n = |B|

Figure 5.4: Principal type specialization algorithm for polyvariant sum types
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Lemma 5.10 Ifﬁ:A|SFI—We:T — € : 7 then EV(e/) Ch

Many of the rules in the system introduce fresh variables (see appendix A.2.1 and theo-
rem 5.9), that is, variables which do not appear in the hypotheses of the rule nor in any other
distinct branches of the complete derivation. Note that it is always possible to choose type
variables in this way because the set of type variables is assumed to be countably infinite.
In the presence of fresh variables, it is convenient to work with a weaker form of equality
on substitutions, defined in the same way as in the theory of qualified types [Jones, 1994].
Two substitutions R and S are similar (written R ~ 5), if they only differ in a finite number
of fresh variables. In most cases, we can treat R ~ S as R = 5, since the only differences
between the substitutions occur at variables which are not used elsewhere in the algorithm.

The results obtained by system W are equivalent to those obtained by system S, in the
sense established in the following theorems. The first one establishes soundness of system W
with respect to system S.

Theorem 5.11 * If A|SThk,e:1 — ¢ :7
then A|STHe:7 — € :7

The completeness result expresses that every residual term and type obtained by the
syntax-directed system can be expressed as a particular case (with respect to substitutions)
of the residual term and type produced by the algorithm.

Theorem 5.12 * If h:A[SThHe:7 — & :7
then hy, : A | T, TRy e: 7 — ey, 07,
and there exist a substitution R and evidence U,, such that

5.3 Constraint Solving

The algorithm presented in the previous section computes the principal type specialization
of a given term. Because of its local quality, it produces potentially more predicates than
needed, some of them being redundant or expressible in simpler forms. Moreover, when type
or scheme variables have more than one possible value to assign, the decision is not made —
only predicates constraining the variables are gathered to describe the possibilities. This is
not enough for obtaining useful residual expressions!

Pablo E. Martinez Lépez and Herndn Badenes address this issue [Martinez Lépez and
Badenes, 2003; Martinez Lopez, 2005] with two related mechanisms:

Simplification is a variation of the process of simplification and improvement introduced
by Mark Jones [1994; 1995]. The goal is to eliminate the redundant predicates and to
decide the value of type and scheme variables with a unique solution.

Constraint solving is the process of assigning a value — even among several possibilities
— to a variable whose context information has been gathered. By the introduction of
this mechanism, a complete specialization consists of two clearly separated parts:
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e the specification part, where a description of the problem is built in the form of
constrained type schemes and residual terms with evidence expressions

e an implementation part, where a solution for the problem is found, and evidence
expressions are replaced with the associated values

Following Aiken [1999], this approach treats program specialization as a static program
analysis, where after analyzing each part of the program locally, different resolution
techniques can be applied for solving the generated constraints.

Martinez Lépez and Badenes present a thorough formalization of the simplification and
constraint solving processes, they establish their structural rules and specify them for the
predicates presented in section 2.2.3, namely IsInt, IsSum and IsMG. An extension is needed
for handling the predicates involving polyvariant sum types, which is informally described
next. A more precise specification is left for future work.

5.3.1 Our extension to constraint solving

When specializing expressions involving polyvariant sum types, the algorithm defined by
system W yields a residual type involving at least a residual sum type ¢, where ¢ is a type
variable constrained with predicates such as IsPolySum, HasMGC, HasMGBr or HasPolyC.
The residual expression may include variables representing the evidence for these predicates
— we have shown several examples of this in chapter 4.

To obtain a useful result, constraint solving must take place. More specifically, the type
variable t must be assigned a residual datatype Y™ with a fully defined set of constructors and
residual arguments. We have extended the constraint solving mechanism with an heuristic to
obtain such definition. Starting with a predicate h : IsPolySum ¢, all predicates involving ¢
(without syntactical duplicates) are gathered and solved as follows:

Step 1. Get an index n for Y that has not been used so far.

Step 2. For each distinct predicate HasPolyC ¢t Lj 7, assign an index ¢ that has not yet
been used for L; and include the summand L,?ﬂ- 7 in the definition of Y. Prove the
predicate with evidence 7.

Call I the set of indexes k such that there is at least one predicate HasPolyC ¢t Ly 7.
For each k, define I}, = {I,...,n;} where n; is the number of predicates
HasPolyC ¢t Lj 7. Then we have defined

data Y" = {Lj, Tllﬂ’i}kel.’ie%
Assign value {Ly,i}trericr; to h, the evidence for IsPolySum ¢.

Step 3. Prove each guarded predicate Ly € t70 by simplifying it to § if £k € I, and with
evidence o if k ¢ I.

Step 4. Verify each predicate HasMGC ¢t L o — by the previous step we know k € I — by
proving IsMG ¢ 7y, for each i € I;. Fail if any of them cannot be proved.

Step 5. Prove each predicate HasMGBr ¢ L, o 7 — as before we know k € I — with

evidence <n, (”i)iel,;>7 where v; : IsMG o (71, — 7). Fail if any of them cannot be

proved.
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Example 5.13 Taking the following expression as input
polydata PolySDF"” = Sta” Int® | Dyn” Int” | Fun” (Int® —" Int")

let” id = Xz.2
in case” 715 (id @ (Sta” 11%),id @” (Dyn” 57 ), id @” (Sta” 24°)) ” of
Sta® ©r — lift «
Dyn”y — vy
Fun” f — f@"3°
: Int”

the W algorithm, after simplification, yields the following specialization, where the duplicate
predicates have been removed.

Ah1, ..., hio.
let id = \2'.2’ in
polycase, 7 3 (id'Q(Sta"t e),id'@(Dyn" 5),id'Q(Sta"s e)) with h; and
(h3, h7, th) of
Sta — Ahg. ' .hy
Dyn — M./
Fun — M\f'.f'Qe
:Vt. hy : IsPolySum ¢,
he : HasMGC t Sta (Vt,.IsInt t, = t,),
hs : HasMGBr ¢ Sta (Vtg.h, : IsInt t, = t, — Int) Int,
hy : HasPolyC ¢ Sta 11,
hs : HasPolyC t Sta 24,
he : HasMGC ¢t Dyn Int,
h7 : HasMGBr t Dyn (Int — Int) Int,
hs : HasPolyC ¢t Dyn Int,
hg : Fun € t ?HasMGC t Fun (VtyIsInt t; = t; — Int),
hio : Fun € t ?HasMGBr t Fun ((3 — Int) — Int) Int = Int

Now since ¢ does not appear in the residual type, it can be solved. The constraint solving
algorithm gathers all predicates involving this variable (all of them in this example) and
proceeds as follows

Step 1. Get index 1 for PolySDF.

Step 2. a) For constructor Sta!, include summands Stal 11 and Stal 24. Assign evidence }
to hy and ; to hs.

b) For constructor Dyn', include the summand Dyn} Int. Assign evidence } to hg.

¢) Since there is no HasPolyC ¢t Fun 7 among the predicates, there are no summands
for this constructor.

Assign the set {Sta%, Stal, Dyn%} to hi.

Step 3. Only two guarded predicates remain, both on constructor Fun, that does not appear
in our constructor set. Assign e to hg and hig.
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Step 4. a) Calling ogt, = Vi, IsInt ¢, = t,, predicate HasMGC ¢t Sta og, is verified since
both IsMG og¢, 11 and ISMG og;, 24 can be proved.

b) Predicate HasMGC ¢ Dyn Int is verified by proving IsMG Int Int.

Step 5. a) Calling 0%, = Vt,.IsInt t, = t, — Int, predicate HasMGBr ¢t Sta o%, Int is
Sta Sta
verified with [|((11)) : IsSMG o%,, (11 — Int) and [|(24)) : ISMG o%,, (24 — Int).
Evidence hs is assigned value (1, ([J(11)), [](24)))).

b) Predicate HasMGBr ¢t Dyn (Int — Int) Int is verified with [| : IsMG (Int —
Int) (Int — Int). Evidence hy is assigned value (1, []).

After solving variable ¢ successfully, the residual expression is
data PolySDF' = Sta} 11 | Sta} 24 | Dyn} Int

let id = \2'.2" in
polycase, 7 3 (id'@Q(Staj e),id’@(Dyn} 5),id'Q(Sta} e)) with
{Sta%,Sta%,Dyn%} and
(L, (011, [(34)), (1, ]) o) of
Sta — Ahgz ) \x'.hg
Dyn — M./
Fun — A\f'.f'Qe
: Int

which can be reduced to

let id' = \2'.2/
in case 7 3 (id'@Q(Sta} e),id'@(Dyni 5),id'Q(Sta} e)) of
Sta% z — 11
Stal z' — 24
Dyni y' — o/
: Int

Notice how every aspect of polyvariant sum type specialization has been achieved by con-
straint solving: generation of multiple data declarations, replication of constructors with
their corresponding branches, and elimination of dead ones. o

5.3.2 Discussion

There is a fundamental difference between the processes of simplification and constraint solv-
ing. Although they are both related to instantiating variables and proving predicates, they
differ in the kind of variables about which they can make decisions. Whereas simplification
assigns unique values deduced by entailment, constraint solving chooses values that are not
a direct consequence of the context.

When solving a type variable ¢ representing a polyvariant residual sum type, it is rea-
sonable to wonder if it is in fact a solving, that is, if the value is decided among several
possibilities. Indeed, the predicates constraining ¢ might include:

o Upper bounds on the types of the summands, by predicates HasMGC and HasMGBr.
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o Requirements for the inclusion of a particular summand, by predicate HasPolyC.

Clearly these do not uniquely determine a residual sum type! The algorithm we have
described builds the data definition that includes all the summands required and only them,
provided they respect the upper bounds. Other solutions are possible — they would include
more summands, with different type arguments or even different constructors. Our algorithm
chooses the minimum definition (with respect to inclusion) that satisfies all the predicates.

Another issue to consider is the potential generation of duplicate summands. Constraint
solving can proceed on a variable as soon as it can be established that no more context
information can affect it — namely, when it does not appear in the residual type itself but
only in the predicates. This means that a sum type variable can be solved even when one of
its arguments — appearing in a HasPolyC predicate — is also a type variable and has not
yet been solved!.

Example 5.14 The following specialization is the result of the W algorithm and the simpli-
fication process.

polydata Poly” = Poly” Int®

b let” id = Xz.z
in X’z.case” fst” (id @” (Poly” 11%),id @" (Poly” z)) ” of
Poly” y — lift y : Int® —" Int”
SN
Ahy, ... he.
let id = \2'.2/
in \2’.polycase, fst (id’Q(Poly"* ), id'@(Poly"s 2')) with h; and (hs3) of
Poly — Ahy. Ay .hy
i Vig, te. hy:Islnt t hs : IsPolySum t.,
hs : HasMGC t. Poly (Vt.IsInt t = t),
hy : HasMGBr t. Poly (Vt,.hy : Isnt t, = t, — Int) Int,
hs : HasPolyC t. Poly 11,
hg : HasPolyC t. Poly t, = t, — Int

Simplification erases only syntactical duplicates, so two HasPolyC predicates remain. Con-
straint solving can take place on variable t., resulting in

data Poly' = Polyl 11 | Polys t,

Ahylet id = X2 .2
in \z’.case fst (id’@Q(Poly! e),id'@Q(Poly} z')) of
Polyl 3y — 11
Poly, y — M
i Vtg.hy : IsInt t, = t, — Int

where t, generates a separate summand from 11. The problem would arise if ¢, should be
instantiated to 11 as well, — for example, if the function was applied to 11°. In a context

"We consider that residual data declarations are inside the scope of the V binder, even though they are
displayed separate from the type of the expression. This needs further formalization; probably the grammar
presented in definitions 4.3 and 4.5 needs to be changed. See discussion in section 6.2.1.
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where constraint solving had to take place before the function application, there would be
two constructors with the same residual argument. o

This issue is analogous to one cited by Martinez Lépez when discussing constraint solving
for polyvariant functions [2005, section 8.3.3]. One possibility to avoid generating duplicate
arguments is to defer constraint solving of a sum type variable ¢ until all the other variables in
all the predicates where ¢t appears are instantiated. However, as noted by Martinez Lopez, this
option contradicts our purpose of modularity. Another is to formalize a notion of extensible
sum type so that a sum type with as few summands as possible could be defined, and extra
summands added when they are needed.

It is important to note that this is a choice involving constraint solving exclusively — the
type specialization system itself is not affected. This is one of the benefits of the principal type
specialization approach, where the constraint generation and constraint solving aspects are
separated. For a single well-defined specification, different implementations can be considered,
and different heuristics can be tried.



Chapter 6

Conclusion

6.1 Related Work

6.1.1 Constructor specialization

Dealing with types in partial evaluation has been identified as a challenging problem since
it first started being studied [Jones, 1988]. One of the open issues was if partial evaluation
could be used to generate new specialized data types, just as it could generate new specialized
functions. Indeed, new types were first generated only as simpler versions of the types in the
source program [Launchbury, 1991}, and later this limit was overcome by means of constructor
specialization.

Constructor specialization was introduced by Torben &. Mogensen [1993] as a new mech-
anism for partial evaluation that lead to better results where the traditional methods failed to
produce satisfactory specializations. Constructors are specialized with respect to the static
part of their arguments, getting multiple residual versions of a single constructor just as
partial evaluation can generate multiple copies of a single source function. Dynamic case
expressions specialize to versions with as many branches as constructors are generated in the
residual code, which in turn depend on the specialization of static arguments. Mogensen
proposes several ways to achieve this:

e Regeneration of case expressions each time a new specialization is needed for a con-
structor.

e Backpatching earlier generated case expressions by destructive updating of the residual
program.

e A multi-pass algorithm that first generates pieces of code for the case expression branch-
es and then assembles these in the final residual program.

Our approach for specializing polyvariant sum types resembles this last option, where the
first pass corresponds to specializing to a polycase, construct and the second one to solving
and reducing to the final case expression.

In his original presentation, Mogensen’s discusses two limits of constructor specialization
that are independent of how it is implemented. The first one is the fact that the residual
program can have no more data type declarations than the source program, something that is
against the general guiding rule of not letting the specialized result be limited by the structure

75
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of the input. The second one, related to the former, involves the impossibility to separate
the specialized constructors into different residual types. This means that every specialized
constructor appears in every residual case expression that uses the original version, which can
cause either run time errors or a lot of dead code in the residual program. This was later
solved by enhancing binding time analysis [Dussart et al., 1995].

None of the limits stated by Mogensen are an issue in our work. Multiple data type gen-
eration, separation of independent specializations, and dead code elimination were achieved
for type specialization of regular dynamic sum types [Russo, 2004], and specialization of
polyvariant sum types — the equivalent to constructor specialization itself — keeps both
features.

6.1.2 John Hughes’s polyvariant sums

The original formulation of type specialization [Hughes, 1996b; Hughes, 1996a; Hughes, 1998]
includes a form of polyvariant sums. In Hughes’s presentation, sum types are anonymous so
they cannot be declared to be either monovariant or polyvariant. Instead, the special name
In is used for identifying polyvariant constructors.

Anonymous sum types specialize to anonymous residual types, containing as many sum-
mands as necessary. Branch elimination and generation of independent residual data decla-
rations are not an issue, since it is simply assumed that the residual type has exactly the
required specialized constructors.

As happens with other features in this formulation, the specialization rules are not ad-
equate for principal type specialization, and difficult to relate directly to an algorithm. A
type specializer is implemented and described [Hughes, 1996b] where the residual types are
represented by the notion of open sets: sets that hold the currently known summands and
can be merged if it is found that two of them must unify.

Just as in principal type specialization, information constraining the types might depend
on the context of use. In our formulation, we deal with this issue explicitly, using predicates,
evidence expressions and the processes of constraint solving and residual term reduction.
Hughes does not handle these problems in the specification of the system, but describes how
they are dealt with in the implementation of his type specializer, with different mechanisms
such as open sets, optimistic unification, and backtracking.

6.2 Future Work

There are several aspects of principal type specialization that can be improved, extended or
strengthened. We begin by describing those directly related to our work, and then we briefly
outline those for principal type specialization in general.

6.2.1 Work on polyvariant sum types

Improving constraint solving The meaning of the predicates we have introduced to de-
scribe polyvariant sums has been explained, and they all have a clear role in the specialization
rules. However, during constraint solving, predicate HasMGC only needs to be checked for
consistency — it does not contribute with evidence or any new information to the solving.
It is not clear if this check is in fact necessary or redundant. Given the way the predicates
and their arguments are generated, it is possible that predicates of this form can never fail for
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specializations resulting from a well-typed source expression. If this was the case, the need to
verify these predicates could be relaxed, thus reducing the amount of work during constraint
solving.

Formalizing constraint solving As observed by Martinez Lépez [2005], constraint solving
is the most involved part in our approach to principal type specialization — it is where the
actual calculation of static data and information flow takes place. It is also without doubt
the part that needs most of our efforts.

A first step to study it further would be to extend the current framework [Martinez Lépez
and Badenes, 2003], so that it includes the specification of the constraint solving rules we have
described informally. This applies not only to polyvariant sums but also to other extensions
to the basic formulation — static and dynamic sum-types, static functions and recursion,
failure, etc.

Binding type variables in data declarations In both Russo’s extension and ours, when
solving a type variable representing a residual sum type, a data declaration is generated. The
definition consists of a name and a set of summands: constructor names with an argument.
Now there is no reason why these arguments should be solved before generating the data
declaration — they could be type variables themselves.

Our current formulation presents data declarations as part of a residual term (see defini-
tions 2.17 and 4.3):

e u= [ddel " e,

ddcl’ := data D" = c¢s' |dataY" = es
cs! e

es’ =

€ =

We think they should probably be part of the type, with a grammar similar to the following
(compare with definition 4.5):

T a=t|Int|n|7 -7 |(7,....,7) | poly o | D" | Y"
Th = [ddel' |* 7'
p d=ply
o == s|Vs.o|Vto|p
) .

Following this grammar, type variables in the summands of a data definition would be inside
the scope of the type scheme o, and properly constrained by predicates if necessary.

This alternative would not constitute a great alteration to our system — in fact, residual
data declarations appear only in the constraint solving phase, leaving the specialization system
intact — so it is probably a straightforward enhancement. However, some thought is required
on how this new element would interact with polyvariance, and how types of the form poly o
would be solved.

Parametric data types An option that has not yet been considered for dynamic sum
types is that of parametric data types. Parametric source data declarations can be handled as
syntactic sugar for multiple data definitions. The most interesting aspect is that of generating
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parametric residual sum types as an alternative to multiple residual type declarations. That
is, instead of allowing for a single source data type to specialize to many residual versions, we
could generate a single residual sum type and make it parametric. Where we currently have
types Y1, ..., Y™, we could have a single data definition Y ¢ ...¢; with as many arguments
as needed to identify each former Y? as Y 7 ... 7. This applies to regular dynamic sum types
as well.

Recursion John Hughes’s type specializer includes specialization of recursive dynamic data
types, a feature still missing in principal type specialization, and without which certain es-
sential data structures — such as lists — cannot be specialized.

It is not clear if recursive polyvariant sum types are of any use, so some analysis is required
before an attempt to model it.

6.2.2 Work on principal type specialization

In his original presentation, Martinez Lépez established a number of lines of work that remain
open. They are briefly outlined below.

Dynamic recursion The interaction between dynamic recursive expressions and polyvari-
ance is perhaps the most difficult problem in type specialization in general, and in principal
type specialization in particular. Due to the way polyvariant expressions are specialized, re-
cursive structures lead to predicates of the form IsMG s o where s appears in o. This cannot
be handled by the constraint solving mechanisms currently available, and needs further study.

Extending the source language Martinez Lopez mentions a few important extensions
to improve the level of expressiveness of the system. One of them is that of polyvariant
sums, contributed by this work. Dynamic recursion, as was mentioned before, is essential,
and specialization of imperative-like programs (monads) as was achieved for the original
formulation of type specialization [Dussart et al., 1997] is also a possible feature.

This framework also enables thinking about advanced features of modern languages, that
have not been considered for any other known approach to program specialization. Examples
of these are parametric polymorphism (in the source language), ad-hoc polymorphism, or
overloading (type classes, for example), and programs with lazy behavior.

Better implementation Working with a complex theory like the one we have presented
cannot be complete without an appropriate tool to test the ideas; additionally, as the final
goal is to automatically produce programs, a proper implementation is a must.

The prototype designed so far is very naive, and no attempts has been made to make it
efficient. As a result, only small examples can be tested — bigger ones take too much time.

There are many opportunities for improvement. The most time consuming part is that of
constraint solving, so here is another reason for working on better algorithms as was mentioned
before. However, there are also implementation enhancements that can be done: better
representations could be found for predicates, terms, types and conversions to speed up some
currently slow processes such as choosing a type variable to solve, performing substitutions,
and comparing for equality.
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Binding time assistant One important difference between type specialization and partial
evaluation is the role of binding time annotations — annotations making an expression either
static or dynamic. In partial evaluation, they can be deduced by a binding time analyzer. Type
specialization, in contrast, has more flexibility, and can handle combinations of annotations
that are not allowed in partial evaluation, so it is not possible to calculate them automatically,
as shown by Martinez Lépez [2005, chapter 4].

However, it has been noted that there are usually some rules of thumb on how to annotate
a given program, and perhaps it would possible to construct a tool for assisting the annotation
process. Such an assistant would suggest program points where it may be a good idea to make
an expression polyvariant, where some variable would be better considered as dynamic, etc.
It would also calculate annotations that depend on a particular choice, once it is made by the
programmer.

A binding time assistant would be an excellent complement in an environment for auto-
matic program production.

6.3 Concluding Remarks

In this thesis, we have studied the Principal Type Specialization system and extended it with
polyvariant sums. Our contribution is a little step toward a powerful type specializer that
can deal with features of a real programming language.

Working in this framework has been a challenging task, from which some observations
and also a few questions have arisen. The Principal Type Specialization system is complex,
and fully understanding it involves getting acquainted with a quite a number of elements:

e A language of source terms and types with annotations.

e A language of residual terms and types.

A language of predicates and evidence, that are part of the residual types and terms
respectively.

e An entailment relation, capturing the meaning of the predicates and their evidence,
and, from a more practical point of view, specifying how evidence can be built.

e A residual typing system, suitable for proving that the residual language is typed.

o A specialization system, the core of this framework, specifying how typed source ex-
pressions are specialized to typed residual terms.

o A source-residual relation, similar to the one above but relating only source to residual
types.

e An algorithm, composed itself by a number of subsystems, essential to proving the
property of principality.

My dear young man, don’t take it too hard. Your work is ingenious. It’s quality work.
And there are simply too many notes, that’s all. Just cut a few and it will be perfect.

Emperor Joseph II to Mozart, in Amadeus (1984)
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One cannot help but wonder why this framework seems so intricate. Why so many con-
structs, subsystems and rules? This thesis has taken around two years, the first of which
was entirely devoted to learning the system, getting familiar with it and analyzing the ele-
ments present up to that moment. Indeed, this is a very elaborate system — the number of
components and its many subtleties make it hard to master, which is certainly a disadvantage.

I believe part of the answer to this issue may be: principal type specialization takes care
of detail. Besides the presence of a two-level (annotated) source language and a residual
counterpart — which are features common to most program specializers — these many items
make up a system that models ezactly the specializations considered valid and useful for each
source expression. Moreover, it defines a specialization that represents them all (the principal
specialization), and specifies an algorithm for computing it. Despite being still incomplete, it
does provide solutions to some difficult problems, such as polyvariance, lifting and specializing
partially static expressions. These are all complex points, so it is only natural that a system
dealing with them in such detail should be complex as well.

Surely simpler presentations are possible — John Hughes’s formulation certainly is. How-
ever, his specification is more casual, it lacks all the good properties that Martinez Lépez later
achieves, and it leaves most of the tricky aspects for an implementation at least as intricate
as the principal type specialization system is.

In a certain way, this last point is illustrated by our extension of polyvariant sums. Once
achieved the necessary level of comfort working with the system, extending it was quite a
natural task. The ‘constraint generation - constraint solving’ schema led us along a clear
path: gather the specification of the residual sum type (via predicates) first, and then build
one that satisfies the specification. After trying a few options, the final structure of this
specification came out in the form of upper bounds and requirements on the arguments of
the constructors.

If we compare our solution to the one John Hughes has provided for his original type
specializer [Hughes, 1996b] (see comments in section 6.1.2), we can find some similarities
in the way the residual sum types are built. Hughes has used a notion of open sets that
are incrementally built by adding summands, and closed when it is found that no more of
them are needed. Open sets are analogous to our type variables, the operation of adding
summands is analogous to adding a predicate HasPolyC (a requirement) to our specification
and closing the set is analogous to solving the variable. So our approach is not really much
more complicated than his presentation, which is only simpler in appearance. On the contrary,
we have gained insight on the difficulties related to performing specialization of polyvariant
sums, and formulated them in a more clear way. We have achieved an acceptable solution
and left the door open for trying alternative ones.

Was it all worth it yeah yeah

Giving all my heart and soul staying up all night
Was it all worth it...

Queen, Was it all worth it (1989)

So it is possible that the complexity of our framework is well justified. But having said
that, a question remains about the type specialization approach in general: is it worth the ef-
fort? Other more mature approaches to program specialization have achieved similar results,
or can achieve them if they are complemented with different pre and post processing mech-
anisms. Martinez Lépez [2005, chapter 13] mentions several of them, among which partial
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evaluation is the most popular and best understood. Several program specializers have been
built that are efficient and powerful enough to be useful in practice.

Type specialization, on the contrary, is not well known, and still far from being fully
developed. One could claim it is just a different — and complicated! — way of performing
program specialization, with a formulation that is elegant in principle but too difficult to put
into practice. Surely we can deal with most of the problems solved by type specialization
with alternative, full-grown tools?

I cannot really venture a definitive answer to this question. With just a small subset of
a language, type specialization has proved to be a powerful, flexible approach with a lot of
potential. It can solve many of the problems currently handled with a combination of different
techniques, and it leaves the door open for tackling features not considered so far. In order
to grow, it still needs a great deal of work, and probably also the contribution of a greater
number of people. But if it does, it can certainly become the favorite framework for program
specialization.



Appendix A

Auxiliary systems and definitions

A.1 System RT
System RT is a type-checking system for residual terms. Judgments are of the form
AL €0

meaning residual expression €’ has type o under predicate context A and context I, where
L[, ={z,:7 | i=1,...,n} maps residual variables to types.
The following are the residual typing rules for the expressions presented in section 2.2.

(RT-VAR) vir el (RT-APP) AL peiimn—1 AL Hpes:n
AT e =7 AT Ry e1@eh i 7
AH v :IsInt 7 A|Frwx/175|_RT€/IT{
RT-DINT RT-LAM
( ) AII;t|_RTU:IHt ( ) A|1;:{|_RT>\£L’,.€/2T£—>T{
(AT I—RT el Int)i—1 2 (AT, |_RT e )ict.m
RT-D RT-TUPLE
(RT-D+) AT b€y +eh: Int ( ) AT by (€, ooel) (], 7h)
AW v : IsInt 7/ A‘l;c'_RTeli(T{,--.,T,;)
RT-SINT RT-PRJ
( ) A’IF‘{l_RT.ZT/ ( ) A‘I&I—RT’]rz’ne 7—1/

I ’t I,
A]I;,LI—RTeQ.TQ A\Ir‘{,a:.Tzl—RTel.Tl

(RT-LED) AL Ky let o' =ejine) i 7
Al e o’ AHv:IsMG o' o
(RT-POLY) ;
AT Fgy vle'] - poly o
AT Kyp € ipoly o AH-v:IsMG o 7/
(RT-SPEC)

AT I—RT v[e'] - 7'
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A,E:(S]E{I—RTe’:p AL peio
(RT-QIN) - — T A’ 56 p (RT-GEN) —& L b ¢ VYao (egFv(a)uFV(T, )
AL kpe:d=p Al v:d AL Ky € i Vao
(RT-QOUT) (RT-INST) (dom(S)=a)
AL Ky e'((v) i p Al kype:So

A.2 Computing principal type specializations

The systems we present below correspond to the description in section 2.4.

A.2.1 System W

System W describes an algorithm to compute principal type specializations. Judgments are
of the form
A|SThye:r — ¢ :0o

with the same meaning as in system P, where S is a substitution on the types of I'. The rules
can be interpreted as a grammar where I', e and 7 are inherited attributes (i.e. input of the
algorithm) and A, S, ¢’ and ¢’ are synthesized (i.e. output).

x:T—¢€:7 el
DIl Ry 27— e o7

(W-VAR)

(W-DINT) (| IdT . n” :Int’ — n:Int

Ay [SiT Ry er:Int” — ey :Int Ay | Sy (S1T) Ky ea: Int” — ey Int
SQAl,AQ’SQSl]._"_W e1 +7 ey Int” — e} +¢€}: Int

(W-D+)

A|SThHye:Int® — 7' A'| AHwo:Isint 7/
A" A | ST Ky, lift e Int” — v : Int

(W-LIFT)

(W-sINT) @ [ 1d T Ky, n® :Int® — e:n

Al‘Slrl—WeliIHtS ‘—>€/1:7'{
Ag | Sy (S1T) Ky €2 : Int® — b7y
A ‘ So A1, Ao Hwwv:t:= SQT{—FTé (t fresh)

A, S2 A1, Ag | S251 T Ry, e +5ey: Int® — e:t

(W-S+)

ARygr ™2 <= 75 A/|S(F,x:72<—>:c’:75)}—we:ﬁ — e 7!

ALSA[ST Ry Nare:mp—"m — '€ :Sm— 1

(W-DLAM) (' fresh)
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Al\SlI‘I—W e1:1a—"T — €]

AQ\SQ(SIF)I—WGQ:TQ — eh:Th SQT]/_NU

/
Ty — 1

(W-DAPP) (t fresh)
USzAl,UAQ | USgSﬂ“ '_W €1 @D€2 A d 6,1@6/2 Ut
B:A\SFl—We:T — 7
/ ) /
(W-POLY) A" | ) Hw v : ISMG (Geng py@(A_:> 7)) s (s frosh)
A"[ ST K, poly e:poly 7 — v[Ah.e'] : poly s
A[SThye:polyr — ¢ :7, 7, ~Upolys
/ / " / T /
(W-SPEC) ARy grT & T A" UA A Hwv:IsMG (Us) T (s fresh)
A" UAA"|UST K, spece: 7 — vle/]: 7’
Ag | STy ea:m — ey
Ay | Sy (SeT e — a2’ 7)) v €1: 71 = ey
(W-DLET) D ; (x' fresh)
SlAQ,A1|5182F|—W let r=e¢€egy1ne .7
— let 2/ =¢,in e} : 7{
Ay SiTRye:m <= ey
Ay | SpSn-1. - S1T Ry en T — e, T
(W-DTUPLE)
S 83 A1 By [ Sp.n ST
R (e1,-.ven)” (1, 0) P
— (€e),...,e): (Sn...S27,Sn...S375, ..., 7))
A|ST K ()P = e T SY (Lt
(W-DPRJ) ‘ w © (Tl Tn) cr T (1 n) (t1,...,tn fresh)

UA|UST Ry ane:n — mine Ut

A.2.2 Unification

The algorithm calculating a most general unifier for two residual types is described by rules
of the form oy ~Y o9, where o and oy are input and U is output, if it exists.

c~tde i~ R Int ~' Int
a~da a g FV(o) o~ T VT
« ~le/al o 7.{ N Té ur T{/ _ Té’
/ T / / T / / T, /
Tll ~*t1 7—21 T]_ 7—12 ~*t2 T]_ 7—22 e Tnf]_ N Tl Tln ~TT Tnf]_ e T]_ T27’L
/ / Ty....Th / /
(7_117""7—17'L)N n (7—217...,7—2n)
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NU / NU T A7
o o ola/c] o'ld/ /] (c fresh)

poly o ~V poly o’ Va.o ~YU Vo .of

T T VT UTr~Y UTT
vurT

§~U S pNU p/

T!=T1+ T2~
§=p~ U=y

o / /
=T+ Ty

o ~T'ay Toy ~YTol

IsMG oy o} ~YT IsMG o3 o)

7_NU !

IsInt 7 ~V IsInt 7/

A.2.3 System W-SR

System W-SR describes an algorithm for computing the source-residual relationship. Judg-

ments are of the form A b, o 7 — 7/ with the same meaning as system SR, where 7 is

input and A and 7 are output.

h : Isint ¢ l_W-SR Int® < t (t fresh)

Int® < Int

0k

W-SR,
! /
Aq I—W_SR 1 — 171 A I—W_SR Ty — T,
A1, Ay l_W-SR T =P 1 o Té N 7-{

(AiRysr Ti = Ti=1,.m

Av, o A Rysr (15 ) = (T, 7h)

A I_VV-SR

IsMG o s by, oy Poly 7 — poly s

T — 7

(a:Genwyw(A:M") and s fresh)

A.3 Extending system RT for sum types

Martinez Lépez’s extension [2005] does not include rules to type residual terms derived from
static sums. These are straightforward and can be deduced from the specialization rules.
The rules for system RT involving dynamic sums are the following:

AT - e : 7']’-
(RT-DCONSTR) AHIsSum 7 AH-v; : HasC 7" K TJ’-

ATy K7 €07
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A]II;I—RTB’:T’

e

AH v IsSum 7/
hi : Ay | T N RT/\xkek T — T

(RT-DCASE) AW U K € 1.7 Ag
AW wy: K € T"7HasC 7! Kk Ty, e B
AT H protocase e’ with v¢ of

R ' RT w
(K ), — € [0p/hi))ken : T/
A.4 Substitution of evidence variables

We extend the definition of substitution of evidence variables in residual expressions for the
new constructs presented in section 4.2.

(L* ¢') [0/R] = LM eig )
case e’ of = _ case 6_/[1?/ h] of
< Li* @) = €)yep ) b/ = (Ligk[v/h] T = ek[ﬁ/FLDkGB
polycase ¢/ with v¥ ) polycase, ¢'[0/h] with v¥[v/h]
and ( k:eB of [5/h] = and (w k[@/h])keB of
(L — e >keB (Lk — 6;6[@/h])k€B
({n,wi)) [0/ = (n, (wnlo/M) )

A.5 Substitution of type variables in predicates

We extend the definition of type variable substitutions for the predicates we have introduced
in section 4.2.2.

(IsPolySum 1) [7//t] = IsPolySum 7[7’/t]

(HasMGC 7 Ly o) [7'/t] HasMGC 7[r'/t] Ly o[r'/t]
(HasMGBr 7 Ly o 7) [7'/1] HasMGBr 7[7'/t] Ly o[’ /t] 7u:[7/t]
(

(

HasPolyC 71 Ly ) [7'/t] HasPolyC 77" /t] Ly m2[r'/t]
Ler?8) /] = Ler[r/t]76[r/t]

A.6 Extending the definition of equivalence of residual terms

The definition of equivalence of residual terms is extended to handle polycase, expressions
with evidence variables. The equivalence (=) relation is defined as the smallest congruence
containing the reduction rules and the following:
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polycase, ¢ with h and polycase, ¢’ with h' and
(Wk)rep f’f = (W) ke Sf
(Lk = €)yen (Lk = €iep

if and only if VY = {Lk,z}kza,iel;c

polycase, ¢'[Y/h] with Y and polycase, ¢’[Y/h'] with Y and

(wi[Y/R])ep of = (w[Y/W])ep of
(Ly, — 62; [Y/h])keB (L — eZ[Y/h/])keB
polycase, ¢’ with v¥ and polycase, ¢’ with v¥ and
(wi,... hiy...,wg) of = (wi,...,h, ..., wy) of
(Lk = €)ies (Lk = €pep
. . _ /‘
if and only if Vu = <n, (vj>j€]>
polycase, ¢'[u/h;] with v¥ and polycase, ¢”[u/h}] with v¥ and
(wilu/hg], ... u, ..., wg[u/h;]) of = (wilu/B], ... u,...,w[u/hl]) of

(Lk — e%[u/hz])keB (Lk - eg[u/h;])keB



Appendix B

Proofs

Most proofs are extensions to the proofs given in Pablo E. Martinez Lépez’s PhD thesis [2005]
and Alejandro Russo’s graduate thesis [2004].

All of them are proofs by induction on the structure of a derivation, and many follow the
same argument pattern. We have kept references to similar proofs to a minimum, so that each
one could be read independently. As a result, they may be found repetitive if read straight
through — this appendix is meant to be consulted for individual proofs instead.

We have marked with a star (%) the proofs we consider most interesting or complex.

B.1 Proof of lemma 4.6, section 4.2
Lemma 4.6 If h:AH oY :IsPolySum 7/,
hy: Af B9y : Al and
B:AH‘TH:LJQET/?AQ
then h: AW-v' : Ly € 7' 7 Al

where v’ = if, Ly € v¥ then 0[v1/h1] else o

Proof: We know that -
h: A H- oY : IsPolySum 7/

hy @ A H g 0 A

So by rule (IsPolySum-Guard),
A hy L e 7?7 AL Hif, Ly € 0¥ then 73 else o : L, € 7/ 7 Al
Let us call v] = if, Ly € v¥Y then 7, else o, so now we have:
h:Ahy:Ly €T ?7A 0 Ly € 7' 74 (B.1)

We also know by hypothesis that

h:AW-vy: Ly €' ?7A] (B.2)
By rule (Cut) on B.2 and B.1,

h: AW 0i[o1/h1] : Ly, € 7' 7 Al

88
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Let us take o' = }[v1/h1]. By evidence substitution,
v = (ifv L;, € v¥Y then 7y else O) ['Dl/ill] =if, L € Uy[f)l/ﬁl] then 172[171/?1,1] else o [T)l/ill]

Now by alpha conversion we can assume h and h; are disjoint. By rule (Evars), EV (vY) C h,
so hi do not appear free in v¥ and we finally get

v = if, L, € vY then 172[171/711} else o

which completes our proof.

B.2 Proof of lemma 4.8, section 4.3

/,O.

Lemma 4.8 If B:A|1;FRT6.
-

then EV (e/) C h
Proof: By induction on the RT derivation.

Case (RT-VAR): We have a derivation of the form

7 el
h:e AT e @' 7

We need to prove that EV (2/) C h, which is trivial, since EV (2) = ().

Case (RT-DINT): We have a derivation of the form

v : IsInt 7/
v : Int

A H
E:A]II;I—RT

We need to prove that EV(v) C h, which follows directly from rule (Evars) on the
premise of the rule.

Case (RT-D+): We have a derivation of the form

(;L A ’ Il‘% l_RT eg : IHt)Z‘:LQ
h: AT by €y + €y Int

We need to prove that EV (e} + ¢) C h.

Now by inductive hypothesis, we have that EV (e}) C h and EV (e}) C h, so
EV (¢} +¢3) = EV(e}) UEV (e3) Ch

Case (RT-SINT): We have a derivation of the form
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>

AR v IsInt 77/
AN N

>

We need to prove that EV (e) C h, which is trivial, since EV (o) = ().
Case (RT-TUPLE): We have a derivation of the form

We need to prove that EV((e],...,el)) € h. Now for all i = 1,

K ...,n, we have by
inductive hypothesis that EV (e,) C h. So

EV((e},...,e,)) =EV(e])U...UEV(e},) Ch
Case (RT-PRJ): We have a derivation of the form

We want to prove that EV(mine') C h. This follows from the inductive hypothesis, by
wich EV (€¢/) C h, and from the fact that EV (m;, ¢') = EV(€).

Case (RT-LAM): We have a derivation of the form

5 - /A /A
hieAlL,a" imy e iy

B:A|I;{}_RT)\Z',.€/:7‘5—>T{

We want to show that EV (Az’.¢’) C h. This follows directly from the inductive hypoth-
esis, by which EV (¢) C h, and from the fact that EV (\z'.¢/) = EV (¢/).

Case (RT-APP): We have a derivation of the form
he AL bgp e im—1 h:A|L ey

RT-APP L
( ) h: AT Fyp €1@ey iy

We need to prove that EVE@II@GIQ) C h. Now by inductive hypothesis, we have that
EV(e}) C h and EV (e}) C h. So

EV(e’l@eé) = EV(e'l) U EV(e'Q) Ch
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Case (RT-LET): We have a derivation of the form

h: A]IF‘{I— e 1 7} E:A]E{,x’:Tél—RTe'lle

AT, gy let o' =€ in € @ 7

We want to prove that EV(let 2/ = ¢} in ¢}) C h. Now by inductive hypothesis

EV(e}) C h and EV(e}) C h. So

EV(let 2/ = ¢} in€}) = EV(e}) UEV (e) C h

Case (RT-POLY): We have a derivation of the form

h:A|L bpe o) AHv:IsMG o' o
E:AIIRI—RTv[e’]:polyU

We need to show that EV (v[e’]) C h. N ‘Now by inductive hypothesis on the first premise
of the rule, we have that EV(¢) C h. Also, by rule (Evars) on the second premise,

EV(v) C h. So

EV (v[e']) = EV(v)UEV (') Ch

Case (RT-SPEC): We have a derivation of the form
h: AW v:IsMG o 7'

/

B:A\QI—RTe’:polya
h: AL bpvle] T

We need to show that EV (v[e/]) C h. N ‘Now by inductive hypothesis on the first premise
of the rule, we have that EV(e) C h. Also, by rule (Evars) on the second premise,

EV(v) C h. So

EV (v[]) = EV(v) UEV (¢') Ch

Case (RT-QIN): We have a derivation of the form

71_1:A,h’:5|II‘DLI—RTe’:p
h:A|L Ry AR €20 =p

We want to show that EV (AR'.€’) C h. By inductive hypothesis, we know that EV (e’) C

huU{h'}. So
EV (AR'.¢) =EV()\{r'} Ch
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Case (RT-QOUT): We have a derivation of the form

RT

AT by (@) 5

h:A|L ke :0=p h:AHv:§
h

We need to prove that EV(e'((v))) C h. By inductive hypothesis on the first premise,
EV (¢') C h, and by rule (Evars) on the second premise, EV (v) C h. So

EV((v)) =EV(¢)UEV(v)Ch
Case (RT-GEN): We have a derivation of the form

h: AT ype o
(RT-GEN)  —=——1 T g € Voo (anFV(A)uFV(FR))

We need to prove that EV (¢/) C h, which holds directly from the inductive hypothesis.
Case (RT-INST): We have a derivation of the form

h:A|L k. € : Voo
_ I (dom(S)=a)
h: Al gp e So

We need to prove that EV (¢/) C h, which holds directly from the inductive hypothesis.
Case (RT-DCONSTR): We have a derivation of the form

B:A|1;|—RT€/ZT]/-
h: A H IsSum 7/ B:AH—vj:HasCT’ K; TJ(

B:A]IF‘{F—RTK;}J‘e’:T’

We need to prove that EV (K jvj e ) C h. Now by inductive hypothesis on the first
premise, EV (¢/) C h, and by rule (Evars) on the third premise, EV (v;) C h. So

EV (Kj“f e’) = EV(v) UEV () Ch

Case (RT-DCASE): We have a derivation of the form

he AT by e 7
h:AHv?:IsSum 7/
hi o Ag | I B Azl o1 — 7
h:AH"’l_)k:KkGTé?Ak
h: AW wy: K, e1,?HasC 1) K} 7,
h: AL bk protocase, ¢ with v* of
(K" @), — e [oe/he])res = 7/

keB
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We need to prove that

rotocase, ¢’ with v¢ of -
EV<pKwk , o0/ >gh
(K™ 2, = eilon/ha]) e

Now by inductive hypothesis on the first and third premises

EV()Ch (B.3)
EV(e) C hy Vk € B (B.4)
By rule (Evars) on the remaining premises
V( ) Ch (B.5)
EV(vy) ChVkeB (B.6)
EV(wy) ChVkeB (B.7)

From B.4 we can conclude that EV (e}, [vx/hy]) = EV () by substitution. So from B.6,
EV (e}.[vp/hi]) = EV () C h (B.8)
Finally, from B.3, B.5, B.7 and B.8 we can conclude

EV< protocase, ¢’ with vd_of )
(K™ 2 — e [vn/hi])ken

EV(e"YUEV (vY) UUyep (EV (wy) UEV (e} [or/hi])) € R
As we wanted to prove.

Case (RT-DCASE-2): We have a derivation of the form

A
A ISSum 7!

Far ATj€5t T — 7]

[T b @ 57
d
| J J

H_
LA
mmj K, er?A,

IO / / o
AH—wj.KJ ETe?HaSC T Kj 7;
AN Kjentrl ~ 7

~ \;w:w

[> b‘l :'\ ;~| ;~|

JE€EB

h: AL Ky protocase e’ with v¢ of

(Kjwj i — €] [v]/h Djep = 7'

The proof that

A d
EV( protocase, ¢ with v? of ) ch

(K™ g, — e%[l_’k/ﬁk])keB

is completely analogous to the previous case.
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Case (RT-POLYCONSTR): We have a derivation of the form

B:A\I;{I—RTe’:TJ’-
h: A HIsPolySum 7/ h: AH- v, : HasPolyC 7' L; T

B:A|I1;|—RTL;)je’:T’

We need to prove that EV (L]v Te ) C h, which can be done the same way as in case
(RT-DCONSTR).

Case (RT-POLYCASE): We have a derivation of the form

he AT by e 7
h: A H-v¥ : IsPolySum 7/
Bk:Ak\IF‘{I—RTe’k’:Jk
h:AH*TJk:LkETé?Ak
h: AW wg: Ly € 7.7HasMGBr 7, Ly o 7'
h:A|T, i polycase, ¢ with v¥ and
(wi)pep Of (Lk — ef[on/hi])ren : 7'

keB

We need to prove that

polycase, ¢ with v¥ and ) .
EV v _ T Ch
( (wi)rep of (Lk — eior/hi])ken ) —

Now by inductive hypothesis on the first and third premises

EV()Ch (B.9)
EV(e.) C hy Vk € B (B.10)
By rule (Evars) on the remaining premises
EV <vd> Ch (B.11)
EV(tx) ChVk € B (B.12)
EV(wy) ChVkeB (B.13)

From B.10 we can conclude that EV (e}[vx/h]) = EV () by substitution. Then,
from B.12, B B
EV (e}.[vp/hi]) = EV () C h (B.14)

Finally, from B.9, B.11, B.13 and B.14 we can conclude

EV< polycase, ¢’ with v¥ and )
(wi)pep Of (Lk — €;lvr/hi])ken

EV(e"YUEV (W) UUgep (EV (wi) UEV (e} [or/Rhi])) € R

As we wanted to prove.
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B.3 Proof of proposition 4.9, section 4.3

Proposition 4.9 If h:A \ R RT coand A'Hv: A
then A" | T, K [v/h] Lo

Proof: By induction on the RT derivation.
Extending proofs of propositions by Martinez Lépez [2005, 6.11] and Russo [2004, 3.7].

Case (RT-DCASE-2): We have a derivation of the form

hEAIE 7!
h:AHv¢: sSumT
hj: A | T by A€l i — 1]
h: AH*UJ KGT Aj
(h AH—wj:KjETé?HaSC 7. Kj 7;
h:AWKjer?r) ~7 ,
JjEB
h:A|T, By protocase e’ with v¢ of

(K I m — € [v]/h Djep = 7'

We need to prove that

AT,

protocase, ¢ with v? of -
ar ( : o/

(K" 2, — €5[v/hj))jen

By the definition of substitution on a protocase, expression, this is the same as proving

that
t '[v/h] with v
NI R pro ?Uf?ff]” ‘ [v/ ]/W_l o v/h] of L
(K; Ty — ej[vj/h 1[0/h])jeB

We can also assume (by alpha conversion) that B- and h are disjoint for all j. Since

by lemma 4.8 on the third premise, EV (e}) = EV ()\1‘] 6J> C Bj, evidence h do not

appear free in €/, and the judgement above is equivalent to

J

) protocase, ¢'[t/h] with v?[0/h] of -
AT Py wilo/R] y e X
(K; wy — ej[v[v/h]/h])jen

Now one of our hypothesis is A’ H- o : A, so by rule (Trans) on premises 2, 4, 5 and 6:

A" H- vd[@/ﬁ]_: IsSum 7,
A H- Q_Jj[l_}/hj cKj e Té?Aj
A" W w;[v/h] : Kj € ,7HasC 1) K; T],-
A Kjer,?r) ~7

(B.15)
jeB

Also by inductive hypothesis on the first premise:
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A" T by €[0/R] < 7, (B.16)

Then, applying rule (RT-DCASE-2) to B.15, B.16 and premise 3, we can conclude that

AT b wo/H]

( protocase, ¢'[t/h] with v%[v/h] of ) -
(B, e/ hses )

as we wanted to show.

Case (RT-POLYCONSTR): We have a derivation of the form

he AL e 7

h: AR IsPolySum 7 h:AH- v, : HasPolyC 7' L; T
B:A|I;|—RTL;]je’:T’

We need to prove that

AT Fyp (L;]j o/h] : 7’
By the definition of substitution on a tagged expression, this is the same as proving
that
Ny AR
AT by (LM Ry 2 7

Now one of our hypothesis is A’ H @ : A, so by rule (Trans) on the second and third
premises:

A’ K- IsPolySum 7/

A H-v; [0/h)] : HasPolyC 7’ L; 7_]{ (B.17)
Also by inductive hypothesis on the first premise:
AT gy €T0/M] 27 (B.18)

Applying rule (RT-POLYCONSTR) on B.17 and B.18, we can conclude

AT Ry M 5 R))

- (L;’J[

as we wanted to show.

Case (RT-POLYCASE): We have a derivation of the form
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| I by € 070
: A H= oY : IsPolySum 7/
hk:Ak\If‘{l—RTe’k’:ak
E:AH*T)]C:L]QETé?Ak

h: AW wg: Ly € 7.7HasMGBr 7, Ly o 7'
h:A|T, iy polycase, ¢ with v¥ and

(wi)rep Of (L — €}[vp/hy))ken : T/

A
A

- N S S

keB

We need to prove that

lycase, e with v¥ and -
ATk POLycase, . > o/h): 7'
b P < (Wi)pep of (L — e[0r/hi])ren /0]

By the definition of substitution on a polycase, expression, this is the same as proving
that

, polycase, ¢'[v/h] with vY[v/h] and .
218 b (wnlo/h) ey of (Lic — efloe/m)lo/M)ees )

We can also assume (by alpha conversion) that hj and h are disjoint for all k. Since by

lemma 4.8 on the third premise, EV (e}) C hi, evidence h do not appear free in ey and
the judgment above is equivalent to

, polycase, ¢'[0/h] with v¥[v/h] and -
218 b (wnlo/A) ey of (L — ellaulo/h)/hul)ucs )

Now one of our hypothesis is A’ H- o : A, so by rule (Trans) on premises 2, 4 and 5:

A" H-v¥[v/h] : TsPolySum 7/
AW vp[o/h] : L € .7 A, (B.19)
A" W wg[v/h] : L € 7. 7HasMGBr 7. Ly o 7 eB

Also by inductive hypothesis on the first premise:

AT b ev/h): 7. (B.20)

Then, applying rule (RT-POLYCASE) to B.19, B.20 and premise 3, we can conclude
that

, polycase, ¢'[v/h] with vY[t/h] and o
AT i ( (wi[0/h])cp Of (L — €f[vx[0/h]/hi])ren > T

as we wanted to show.
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B.4 Proof of theorem 4.10, section 4.3

Theorem 4.10 If h:A|L o€ 0, and C:(h:Alo)> (W :A"|0')

" T
then h' : A" | Ty Fyp Cle] 0’

Proof: The proof of this theorem, presented by Martinez Lépez [2005, 6.12], does not depend
on the structure of the RT derivation but on the definition of conversions, so the extensions
we have made to the system do not modify it.

B.5 Proof of proposition 4.11, section 4.4

Proposition 4.11 If Ak, 7 — 0o
then SAbkp 7 — So

Proof: By induction on the SR relation.
Extending proofs of propositions by Martinez Lépez [2005, 6.13] and Russo [2004, 3.11].

Case (SR-POLYDATA): We have a derivation of the form

A H- IsPolySum 7/
A by V(LK) = o
AH- L € T'7? A
AW L, €7 ?HasMGC 7' Lj oy

D
AI—SRY — 7/

LkEY

We need to prove that

D /
SAI—SRY — ST

By rule (Close) on all the premises involving entailment:

S A H- S (IsPolySum 7')
SAk H S (ISMG O';€ O’k)
SAH S(Ly €7 ?A)

S AW S (Ly € 7?7 HasMGC ' Ly, ox) ) |

Which is equivalent to

S A H- IsPolySum (S 7')
S Ay = IsMG (Soy,) (S o)

SAW Ly € (S7)7(S Ay) (B.21)
SAH L€ (S7)?HasMGC (S7') Li (Soy) Liey
Also by inductive hypothesis on the SR premise:
(S Ak g Y(Li) — Sag)LkEY (B.22)
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From B.21 and B.22 by rule (SR-POLYDATA) we can conclude

D /
SAI—SRY — ST

as we wanted to prove.

B.6 Proof of proposition 4.12, section 4.4

Proposition 4.12 If Ak, 7 — o and A'H A
then 'k, 7 — o

Proof: By induction on the SR derivation.
Extending proofs of propositions by Martinez Lépez [2005, 6.14] and Russo [2004, 3.12].

Case (SR-POLYDATA): We have a derivation of the form

A H- IsPolySum 7/
A by V(LK) = o
AW L et ?7A;
AW L, €7 ?HasMGC 7' Lj o

D
AI—SRY — 7/

LkEY

We need to show that

!/ D /
A Y™ =7
By hypothesis, A’ H A, so by rule (Trans) on all the entailment premises involving A

A’ H- IsPolySum 7/

AW Ly et 74, (B.23)
AW L, € 7 THasMGC 7' Ly oy, Leey

From B.23 and the remaining premises, we can conclude by rule (SR-POLYDATA)

Ak YP 7

As we wanted.

B.7 Proof of theorem 4.13, section 4.4

Theorem 4.13 If Ak, 7 — ogand C:(h:Afo)> (W :A"|d)
then Ak 7 — o

Proof: The proof of this theorem, presented by Martinez Lépez [2005, 6.15], does not depend
on the structure of the SR derivation but on the definition of conversions, so the extensions
we have made to the system do not modify it.
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B.8 Proof of lemma 4.14, section 4.4

Lemma 4.14 If Ak, YP — o
then o =VB.A' = 1 and
A, A’ - IsPolySum 7

Proof: By induction on the SR derivation.

Case (SR-POLYDATA): We have a derivation of the form

A H- IsPolySum 7/
A by V(LK) < o
AW L et ?7A;
AW L €7 ?HasMGC 7' Lj oy

D
AI—SRY — 7/

LkEY

We need to show that 7/ = VB.A’ = 7 such that A, A’ H IsPolySum 7. This holds
taking, 8, A’ = () and 7/ = 7; A H- IsPolySum 7’ holds by the first premise of the rule.

Case (SR-QIN): We have a derivation of the form

Adbp T <= p

Abgp T = d=p

Taking =0, p = A” = 7, we have A’ = §, A”. By inductive hypothesis,
A, 6, A" i IsPolySum 7

so A, A’ - IsPolySum 7 follows trivially.

Case (SR-QOUT): We have a derivation of the form

AI—SRT — d=p AHI
AI—SRT — p

Let us take 3 =0, p = A’ = 7. We need to show that A, A’ H- IsPolySum 7. Now by
inductive hypothesis on the first premise, A, d§, A’ H- IsPolySum 7, and since A K- §, by
rule (Cut) we can conclude A, A’ - IsPolySum 7.

Case (SR-GEN): We have a derivation of the form

AP—SRT — o

aZFV(A
AI—SRT — Ya.o S e?
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We need to show that Va.o = V3.A’ = 7 such that A, A’ H- IsPolySum 7.

Let us take 0 = V&'.A’ = 7, that is 8 = o,&’. A, A’ H- IsPolySum 7 follows directly
from the inductive hypothesis.

Case (SR-INST): We have a derivation of the form

AI—SRT — Va.o
AI—SRT — So

(dom(S)=a)

We want to prove that S o = V3.A’ = 7 such that A, A’ H IsPolySum 7.

Let us take Va.o = Va,d’. A’ = 7, s0 So = Va'.S A’ = S7. Then we need to prove
that

A, S A" - IsPolySum S 7

By inductive hypothesis,

A, A’ i IsPolySum 7

Applying rule (Close),

SA,S A’ H-IsPolySum S 7

Now dom(S) = «a, and by alpha-conversion we can assume a ¢ FV(A), so SA = A
and

A, S A" - IsPolySum S 7
as we needed to show.

Given our hypothesis A k. Y?” < o, no other SR rules apply, so this completes our
proof.

B.9 Proof of theorem 4.20, section 4.4

Theorem 4.20 If A|l'hRe:7 — 0

/

then A | F(RT) Mp € 10
wherel?RT) ={z,:7m |i=1,...,n}
fP={z;:m—a,:m|i=1,...,n}

Proof: By induction on the P derivation.
Extending proofs of theorems by Martinez Lépez [2005, 6.20] and Russo [2004, 3.15].

Case (DCASE-2): We have a derivation of the form
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1)A|TH e:D? — 7!
2) A CFISSUHIT

3) A7 = 7

4) hj: Aj | T, XNxjej: DY (Kj) =1 — Mjef: 1) — 77
SN N

6) At wj: K; €7,?HasC 7, K 7}

7) AH K; 67/77”~T

JEB
A[TH case’cof (K, xj — ¢j)jep:T
—
protocase, ¢’ with v‘f of
(Kjw] x; — 69[@j/hj])j63 7!
We want to show that
A] Hr Protocase, ¢’ with v? of (K Taly — e[vi/hg))jep T
By inductive hypothesis on premises 1 and 4
A F '_RT e 7l B21)
/ " ‘
(h A | T (RT) g ATj€) 1 T — T )jeB
From B.24 and premises 2, 5, 6 and 7 by (RT-DCASE-2)
A] k. protocase, ¢’ with v of (K P al — €f[vi/hy))jen T
As we needed to show.
Case (POLYCONSTR): We have a derivation of the form
DARRY? — 7
2) AT hH e:Y(Ly) — €7
3) AH-wv; : HasPolyC 7, L; 7;
AITH L e:Y? — L7 e 7
We want to show that
vior
A | I(‘RT) bar L0 € 1 Te
Premise 1 says that A . Y? < 7/ s0 by lemma 4.14 we can conclude
A K- IsPolySum 7/ (B.25)
Also by inductive hypothesis on premise 1
L
A F(RT) Mar € 175 (B.26)

From B.25, B.26 and premise 3 of the derivation rule, applying (RT-POLYCONSTR)
A | Dy Fr L7 €070

As we needed to show.
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Case (POLYCASE): We have a derivation of the form

DA|TH e:Y? < ¢:7
2) A H Y : IsPolySum 7.
) Abpm = 7
4) hy A | T Napeep - Y (L) =" 7 — e oy
5)AH—@k:Lk€Té?Ak
6) AH wy: Ly € 7. ?HasMGBr 7. Ly of 7'
A|ThH, case”eof (L, x — ep)rep:T
s

keB

polycase, ¢/ with v¥ and (wy);cp

of (Lk — e;e[l_lk/ﬁk])keB:T’

We want to show that

A | IERT) 7 Polycase, e/ with v¥ and (wi)pep of (L — ek [0k /) ke = T’

By inductive hypothesis on premises 1 and 4

Al

-
cTe

Irr) Mar €

- (B.27)
(hk AV I(‘RT) - ey, : Uk)

keB
From B.27 and premises 2, 5, 6 and 7 by (RT-POLYCASE)

A Fr Polycase, ¢ with v and (wi),cp of (Ly — € [vp/hi])ken : 7'

Tk

As we needed to show.

B.10 Proof of theorem 4.21, section 4.4

Theorem 4.21 If A|l'Re:7 — €0
then A, 7 — o

Proof: By induction on the P derivation.
Extending proofs of theorems by Martinez Lépez [2005, 6.19] and Russo [2004, 3.14].

Case (RT-DCASE-2): We have a derivation of the form

A|Tk, e: D — € :7
AH—U(FIISSUID !
Abp T = 7
hj: Aj| T, Xajej: D (Kj) =71 — Aale 1) — 1
AH—@]‘:KJ‘GTé?A]‘
Atw;: Kjer,THasC 7, K 7}
A Kjertr)~7

AlTH case” e of (KjD Tj — €j)jeB: T
CH

jeB

protocase, ¢ with v? of
(K" 2 — €i[v;/hj))jen : T
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We want to prove that
Abp 7 < 7!

which is trivial, since it is one of the premises of the rule.
Case (POLYCONSTR): We have a derivation of the form
D
AR V" — 7

ATk e:Y(Lj) — 7] At wv;:HasPolyCr, L; 7
AITH L e:Y? — L7 7,

e

We want to prove that
D /
A '_SR YO — 7,

which is trivial, since it is one of the premises of the rule.

Case (POLYCASE): We have a derivation of the form

ATk e:Y? < ¢:7
A H Y : IsPolySum 7/
Abpr = 7
byt A | T, Nrpeep : Y(Ly) =77 — e} 1o
AH- vy Ly, ETé?Ak
AW wy: Ly € 7. ?7HasMGBr 70 Ly, o 7
A|ThH, case”eof (L, xp — ex)rep:T
<
polycase, ¢ with v¥ and (wy);,cp
of (Ly — e;c[@k/ﬁk])keB:T,

keB

We want to prove that
/
A FSR T < T

which is trivial, since it is one of the premises of the rule.

B.11 Proof of proposition 4.22, section 4.4

Proposition 4.22 * If h:A|THe:7 — € :0 and A'Hv: A
then A' |k, e:7 — €[o/h]: o

Proof: By induction on the P derivation.
Extending proofs of propositions by Martinez Lépez [2005, 6.21] and Russo [2004, 3.16].

Case (DCASE-2): We have a derivation of the form
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1) h: A’F'},@ZDDC—)GIITé
2) h: Al v?:IsSum 7/
3) h: AI—S T — 7
71 A 'k )\D.’L".e‘ZDD K; —>DT — )\w’.,e’.;r/,—>7-’./
— P I J R I J
5)@ AH"’L}jZKjGTé?A]‘
6) h: Al w;: K; € ?tHasC 7y K 7]
Nh:AWKjer?r ~7 ieB
B:A|FFP case” e of (KjD Tj — €)jeB: T

—
protocase, ¢ with v? of
(K" o — eifv/h))jen : 7'

We need to prove that

A | 'k, case” e of (KjD T; — €j)jep:T —
< protocase, ¢’ with_vd of > 5/h]
(Kjwj x; - e}[ﬂj/hj])jeB '

Which, by definition of substitutions on a protocase, expression, is equivalent to prov-
ing
A"[ThH case’cof (K" z; — ej)jep:7 —
protocase, ¢'[t/h] with v%[v/h] of
[5/h —— —
(B @l — e /][0 /) e
By alpha conversion we can assume h and E- are disjoint. By lemma 4.24 on premise 4,
EV ’ =EV )w’. e} C hj, so h do not appear free in e . Therefore e U, h v/h] =
J J J
e;[v; [v /h]/h;], so we finally need to prove that

A'| T+, case”e of KDa: — e eB T
P j 313 -
protocase, ¢'[v/h] with v%[t/h] o ,

o
w;[o/h T
(562 — fwlo/m)/h DJGB
Now, as A’ k- o : A, by rule (Trans) on premises 2, 5, 6 and 7

A" H- 4o /h) : IsSum 7,
A H- Q_Jj[l_}/hj cKj e Té?Aj
A" W w;[v/h] : Kj € 7,7HasC 1) K; T],-
A Kjer,?r) ~7

(B.28)
JjE€EB
Also by inductive hypothesis on premise 1
A'|TH e:D? — €[o/h]: 7] (B.29)
Finally, by proposition 4.12 on premise 3

A '_SR T 7 (B.30)
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From B.28, B.29, B.30 and premise 4, we can conclude by (DCASE-2)

A"|TH, case”cof (K;” xj — ej)jep:T —
protocase, ¢'[t/h] with v%[v/h] of

w;[v/h =71 /T
(B 2 — & fuyo/R Ry jes

T

As we wanted to show.

Case (POLYCONSTR): We have a derivation of the form

1)@:A\FI—P6:Y(LJ') — €7
2) h: Abp Y7 — 7

3) h: AHwv; : HasPolyC 7, L;
B:A\FI—PLjDe:YD — L;)je’:T'

e

We want to prove that
A"|TH, LPe:Y? — (L;}j e)v/h] : 7’
which, by definition of substitution on tagged expressions is equivalent to

AITH L e:Y? — LM /by o
Now by inductive hypothesis on premise 1
A"|Th e:Y(Lj) — e'[v/h] : 7 (B.31)
Also, as A’ H v : A, by proposition 4.12 on premise 2
A Fr YP — 7! (B.32)
Finally by (Trans) on premise 3
A" H-v;[0/h] : HasPolyC 7/ L; T; (B.33)
From B.31, B.32 and B.33 by rule (POLYCONSTR)
AT M L]-D e:Y? — L;.)j[ﬁ/ﬁ] ew/h): 7
As we needed to prove.
Case (POLYCASE): We have a derivation of the form
Dh:A[ThHe:Y? — €7
2) h: AH- oY : IsPolySum 7,
3 h:Abgp T — 7
4) Ek : Ak | r l_P )\Da:k.ek : Y(Lk) —>DT — 6;6 Ok
5) ZL:AH"@k:LkGTé?Ak
6) h: AW wy: Ly € 7.?HasMGBr 7. Ly o 7/

h:A|Tk, case”cof (L x — eppep:T
—

keB

polycase, ¢/ with v¥ and (wy),cp

of (Lk — ek[ﬁk/ﬁk])keB:T/
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We need to prove that

A | 'k, case”eof (L) x) — ep)ren: T —
polycase, ¢ with v¥ and (wy), 5 of ) e
_ 3 v/h] T
< (Li — eylin/hal), [o/h]

Which, by definition of substitutions on a polycase, expression, is equivalent to proving

AT M case” e of (LkD Tp — €k )keB 'T > B
polycase, ¢/[v/h] with vY[t/h] and (wk[ﬁ/h])keB of ,
T e /3 s
(Lk — e;c[vk/hk][v/h})keB
By alpha conversion we can assume h and hy, are disjoint. By lemma 4.24 on premise 4,
EV (€},) C h, so h do not appear free in €}. Therefore e} [v/hy][v/h] = €}.[vx[0/h]/h],

so we finally need to prove that

AT M case” e of (LkD Tp — €k )keB 'T > B
polycase, ¢'[0/h] with v¥[v/h] and (wk[0/h]), _, of ,
T3 iT
(Lk — e}c[vk[v/h]/hk})keB

Now, as A’ H o : A, by rule (Trans) on premises 2, 5 and 6
A" H-v¥[5/h] : TsPolySum 7/
( A/H—ﬁk[ﬁ/hj ZLkETé?Ak ) (B.34)
A"t wy[v/h] : Ly, € . T HasMGBr 7, Ly o 7'/, 1
Also by inductive hypothesis on premise 1
A'|ThH e:Y? — €[o/h]: 7, (B.35)
Finally, by proposition 4.12 on premise 3
Ak = 7 (B.36)
From B.34, B.35, B.36 and premise 4, we can conclude by (POLYCASE)

AT o case’e of (L;” zp — ep)kep:T —
polycase, ¢'[t/h] with vY[t/h] and (wk[ﬁ/l_z])keB of ,
T3 T
(Lk — e;[vk[v/h]/hk})keB

As we wanted to show.

B.12 Proof of proposition 4.23, section 4.4

Proposition 4.23 x If A|T'hRe:7 — 0
then SA|[ ST, e:7 — €: S0

Proof: By induction on the P derivation.
Extending proofs of propositions by Martinez Lépez [2005, 6.22] and Russo [2004, 3.17].
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Case (DCASE-2): We have a derivation of the form

1)A’F|}€ZDD — e 7
2) A K v*: IsSum 7/
3) Abp T = 7

4) hj: Aj T, Xajej: DP(Kj) =" 1 = \alel o 1i — 7/
5)AH‘T)j$Kj€Té?Aj

6) At wj: K; €7,7HasC 7, K 7}

AN Kjen?r] ~1

A|TH, case”eof (K,” x; — ej)jen:T
<

JEB

protocase, ¢ with v? of

(K;"7 o — €&i[vj/hi])jep 7'

We want to see that

SA[STH, case’cof (K, xj — ¢j)jep: T
(SN

protocase, ¢/ with vf of
(K" — eflvj/hi))jen - (ST))

By inductive hypothesis on premises 1 and 4
SA|SF|—P6:DD — e : 57
(S8 1 ST, Xaje; : D” (K;) =" — Aajue) : S (1) — Tj’))jeB
and since S (TJ/ N TJ{/) SN STJ/-/,
SA\SFl—Pe:YD — e : 87!

(S Aj | ST R, Xajej: DP (Kj) =71 < Maf.el: S1/— STJ{/>jeB (B.37)
Also by proposition 4.11 on premise 3
SAkp T — ST (B.38)

Finally by rule (Close) on premises 2, 5, 6 and 7

S A v IsSum (S 7))
SA v K; € (ST)7(SA)
SN Hw; : K; € (S71) 7 HasC (S7) K; (S7)) (B.39)
SA'"W-K;e(St)?ST] ~ ST ieB
From B.37, B.38 and B.39 by rule (DCASE-2)

SA[STH, case’cof (K, xj — ¢j)jep: T
—
protocase, ¢ with v¢ of
(K" — efvj/hi))jes : (ST')

As we wanted to show.
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Case (POLYCONSTR): We have a derivation of the form

DAR,Y? = 7
2) A[ThH e:Y(Ly) — €7
3) At wv;: HasPolyC 7, L; 7

AITH L e:Y? — L7 e 7

We want to prove that

SA|STH L e:YV? — L;je’:STé

By inductive hypothesis on premise 1
SA|STh, e:Y(Lj) — € :87] (B.40)
By proposition 4.11 on premise 2
SA g Y? — S7! (B.41)
By rule (Close) on premise 3
S AH-v;: S (HasPolyC 7, L; ;)
which, by definition of type substitution, is equivalent to
S AH-vj : HasPolyC (S;) Lj (ST)) (B.42)
From B.40, B.41 and B.42, by (POLYCONSTR)

SA|SF|—PLjDe:YD — L;je/:ST’

e

As we wanted to show.

Case (POLYCASE): We have a derivation of the form

DA|ITHe:Y? — 7
2) A H Y : IsPolySum 7.
3) Abpm = 7
4) hk : Ak | r l_P )\Da:k.ek : Y(Lk) —>DT — 6;6 Ok
5) AH"ﬂk:LkE’Té?Ak
6) AHwy: Ly € 7. 7HasMGBr 7. Ly o 7'
A|ThH, case”eof (L, xp — ex)rep:T
s

keB

polycase, ¢ with v¥ and (wy),cp

of (Lk — e:/lﬂ[@k/Bk])keB:T/
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We want to see that
SA|ST b case’e of (L, zp — ep)keB:T
(_>
polycase, ¢’ with v¥ and (wg),cp of
(Lk. — ek[ﬁk/hk])keB (ST
Now by inductive hypothesis on premises 1 and 4
SA[STH e:Y? — €57
(hk : SAk | ST '_P )\ka.ek : Y(Lk) —>DT — 62 : Sak)kEB

By proposition 4.11 on premise 3
SAkp T <= S 7/
Finally by rule (Close) on premises 2, 5 and 6

S AH oY : IsPolySum (S 7))
SAW v : Ly € (ST)7(S Ap)
SAM wg: Ly € (S7)) THasMGBr (S7;) Ly, (Sox) (S7) ), cp
From B.43, B.44 and B.45 by rule (POLYCASE)

SA|ST b case” e of (LkD Tk — €k)keB T
>
polycase, ¢’ with v¥ and (w)cp of
(Lk — 6;6[6k/hk])ke3 : (ST/)

as we wanted to show.

B.13 Proof of lemma 4.24, section 4.4

Lemma 4.24 If h:A|The:7 < ¢:0

then EV(e/) C h

Proof: By induction on the P derivation.
Extending proofs of lemmas by Martinez Lépez [2005, 6.23] and Russo [2004, 3.18].

Case (DCASE-2): We have a derivation of the form

)h:A|Tk e:D” — ¢ :7!

Q)B:AH—UC?:ISSumTé

3)ELAFSRT<—>T’

4) hj Aj T H, Nxj.ej: DY (Kj) =71 — el 7] — 7/
5)h:AH*’l_)j:Kj€Té7Aj

6) h: Al w;: Kj € 7,7HasC 7, Kj 7;
Nh:AWKjer ) ~7

o> SN

JEB

(B.43)

(B.44)

(B.45)

h:A|T =, case”e of (KjD Tj — €)jeB:T
—
protocase, ¢ with v? of

(K7 2 — €jlvj/hy))jen = 7
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Now by inductive hypothesis on premises 1 and 4

EV(¢)Ch (B.46)
EV(ej) Ch;VjeB (B.47)
By rule (Evars) on premises 2, 5 and 6
EV vd) Ch (B.48)
EV(v;) ChVj€ B (B.49)
EV(w;)ChVjeB (B.50)

From B.47 we can conclude that EV <e;- [Ej/ﬁj]) = EV(v;) by substitution. Then,
from B.49, - -

EV (¢}[vj/hj]) = EV(v;) C h (B.51)
Finally, from B.46, B.48, B.50 and B.51 we can conclude

EV( protocase, ¢ with v¢ of )

(K" o — €i[vj/hi])jen

EV(e) UEV () UU, e <EV(wj) UEV <e; [@j/ﬁj])) C h
As we wanted to prove.

Case (POLYCONSTR): We have a derivation of the form

h:Aby VP — 7

h:A|Tk e:Y(Lj) — e h: A K v;: HasPolyC 7. L; T
h:A|Th LY e:Y? — L7 e 7]

e

By inductive hypothesis on the first premise EV (e) C h, and by rule (Evars) on the
third premise EV (v;) C h. Therefore,

EV (L} ¢) = EV(s)) UEV (¢') UR
As we wanted to show.

Case (POLYCASE): We have a derivation of the form

Dh:A[The:Y? — €7
2) h: A H oY : IsPolySum 7.
N h:AkpT = 7
4) }_lk : Ak | r l_P )\Da:k.ek : Y(Lk) —>DT — 6;6 Ok
5)h:AH‘5k:Lk€7‘é?Ak
6) h: AHwy: Ly, € 7. ?HasMGBr 7. Ly, oy, 7'
B:A|FI—P case” e of (L, =y — e€x)keB:T
s

keB

polycase, ¢/ with v¥ and (wy),cp

of (Lk — ek[ﬁk/ﬁk])keB:T/
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Now by inductive hypothesis on premises 1 and 4

EV(/) € h
EV(el) € hiVkeB
By rule (Evars) on premises 2, 5 and 6
EV(WY) C h
EV(v,) C hVkeB
EV(wy) € hVkeB

From B.53 we can conclude that EV (e} [ty/hk]) = EV(0)) by substitution.

from B.55,
EV (e},[vr/hi]) = EV (v) C h

Finally, from B.52, B.54, B.56 and B.57 we can conclude

polycase, ¢ with v¥ and (wy),.p of
EV ! [— 7 €
(L = €i[on/ 7)) e

EV(e)UEV (vY)UUgep (EV(wr) UEV (€,[or/hi])) C h

as we wanted to prove.

B.14 Proof of lemma 4.25, section 4.4

Lemma 4.25 If h:A|Thke:7 < ¢:0

then there exist 3, Ay and 7" such that 0 =V3.Ay = 7"

Proof: By induction on the P derivation.
Extending proofs of lemmas by Martinez Lopez [2005, 6.24] and Russo [2004, 3.19].

Case (DCASE-2): We have a derivation of the form

A|F|}6ZDD — €7
A H v®: IsSum 7/

AbgpTm = 1

hj: 85| T Xujej: DY (Kj) =77 < Aal.el 1) — 7/
AH*’l_)j:KjETé?Aj

At w;: KjeT,THasC 7, K 7}

. Lot
AW Kjer,?mi~1 icB

A|TH, case”e of (KjD Tj — €)jeB: T
—
protocase, ¢ with v? of

(K7« — €jlvj/hy))jen = 7

(B.54)
(B.55)
(B.56)

Then,

(B.57)
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To show 3, A, and 7" such that
' =VB.A, = 7"
it suffices to take 3 =0, A, =0 and 7" = 7/.
Case (POLYCONSTR): We have a derivation of the form

Ak YP — 7!

A|l'H e:Y(Lj) — €7 AHwv;:HasPolyC 7; Lj 7
AITH L e:Y? — L7 €7

e

To show 3, A, and 7" such that
™ =VB.A, = 7"
it suffices to take 3 =0, A, = () and 7" = 7_.

Case (POLYCASE): We have a derivation of the form

AlThe:Y? — ¢:7

A H- oY : IsPolySum 7.

Abp T = '
hk : Ak | I }_P )\Da:k.ek : Y(Lk) —>D7' — 6% Ok
AH—Ek:LkGTé?Ak
AW wy : Ly € 7. ?7HasMGBr 7 Ly op 7
A|ThH, case”eof (L, xp — ex)ren:T

s

keB

polycase, ¢ with v¥ and (wy),cp

of (Lk — e:/lﬂ[@k/hk])keB:T/

To show 3, A, and 7" such that
7 =VB.A; = 1"

it suffices to take 3 =0, A, = 0 and 7" = 7.

B.15 Proof of proposition 5.1, section 5.1
Proposition 5.1 Ifh:A|Tke:7 — €7 thenh: SA|STHe:17 — ¢ : 57

Proof: By induction on the S derivation.
Extending proofs of propositions by Martinez Lépez [2005, 7.7] and Russo [2004, 4.3].

Case (S-POLYCONSTR): The proof is analogous to that of proposition 4.23 for case
(POLYCONSTR).
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Case (S-POLYCASE): We have a derivation of the form

A|F|—Se:YD — €7

A K oY : IsPolySum 7/

Abg T = 1
hit Ap | T K Nzp.ep : Y(Ly) —>Li7' — e} 7
O = Genp(Ak = T]:;), 6;6 = Ahke%
AW wg: Ly € 7,7HasMGBr 77 Ly of 7'

ATk case’e of (L, zp — ep)kep:T
(SN

keB

polycase, ¢ with v¥ and (wy),cp
of (Ly — € )pep T

We want to see that

SA|ST b case’e of (L, zp — ep)kep:T
(SN
polycase, ¢ with v¥ and (wy),cp
of (Ly — €)pep: ST

By inductive hypothesis on the first premise

SA|STHe:Y? — €:87 (B.58)

By proposition 4.11 on the third premise

SAkpT — ST (B.59)

By rule (Close) on the second and last premises

S A H Y : IsPolySum (S 7)) (B.60)

(SAH wy: Ly € (S7,)?HasMGBr (S7)) Ly, (Soy) (ST/))kEB

where o1, = Genr(Ag = 77,)

Now for each k, by proposition 2.16-3, there is a substitution 7T} such that T, I' = ST and
GenSF(Tk Ak =Ty T];) = SGenp(Ak = Tl;) So if we call O';€ = GenTkp(Tk Ak =T} Tl;),
we have o}, = S o, and

(SAH wy: Ly € (S7.) ?HasMGBr (S 7)) Ly o3, (S7)) (B.61)

keB

Finally, by inductive hypothesis on each k, and knowing T, I' = ST

hg: Ty Ag | ST H Nxp.er: Y(Lp) "1 — € : Ty, (B.62)
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By rule (S-POLYCASE) on B.58, B.60, B.59, B.62, and B.61 we can conclude

SA|STH case’cof (L, x1 — ex)ren: T
—
polycase, ¢/ with v¥ and (wy);cp

of (Ly — € )pep ST

as we wanted to show.

B.16 Proof of proposition 5.2, section 5.1

Proposition 5.2 If h:A|l'e:7 — € :7" and
A'Hv:A
then A" [Tk e:m — e[h/v]: 7

Proof: By induction on the P derivation.
Extending proofs of propositions by Martinez Lépez [2005, 7.8] and Russo [2004, 4.4].

Case (S-POLYCONSTR): The proof is analogous to that of proposition 4.22 for case
(POLYCONSTR).

Case (S-POLYCASE): We have a derivation of the form

B:A|F|—Se:YD — 7]

h: AH= ¥ : IsPolySum 7,

h:iAbp T < o
hp:Ag | T e Xap.ep:Y(Ly)—="1 < €] : 7]
o = Genp (A, = 77), €, = Ahy.€]
h: AW wy: Ly € 7.?2HasMGBr 7 Ly oy 7/
h:A|T H case” e of (LkD Tk — €r)keB T

C_)

keB

polycase, ¢ with v¥ and (wy),cp
of (Ly — € )pcp T

We want to prove that

A"|ThH case”cof (L, 21 — ex)ren: T
fﬁ

(polycase, ¢ with v¥ and (wy),cp of (L — €)..p) [0/h] : 7'

which, by evidence substitution, is equivalent to proving

AT k case” e of (L, wp — ex)ken:T
%
polycase, ¢[t/h] with v¥[5/h] and (w[v/h])

of (Ly — e%[@/ﬁ])keB:T’

keB
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By alpha conversion we can assume h and hj are disjoint. Moreover, by lemma 4.24,
EV (e}) C h, so h do neither appear free in e} nor in ej.. Therefore €} [v/h] = €}, and
we finally need to prove that

A"|TH case”cof (L, xr — ex)ren: T
s
polycase, ¢'[t/h] with v¥[5/h] and (wy[0/h])
of (Li, — e€},)

) keB
keB - T

Now, as A’ H o : A, by rule (Trans) on the second and last premises

A’ - v¥[v/h] : IsPolySum 7/

( A"Hwy[v/h] : L € 7,7 HasMGBr 7, Ly, oy, 7/ )keB (B.63)

Also by inductive hypothesis on the first premise
A'|THe:Y? — €[o/h]: 7 (B.64)

Finally, by proposition 4.12 on the third premise
A’ Kp T = 7 (B.65)

Applying rule (S-POLYCASE), from B.64, B.63, B.65 and the fourth premise we can
conclude

AT S case’e of (L, = — ep)kep:T
(SN
polycase, ¢/[t/h] with v¥[5/h] and (wy[v/h])
of (Ly — € )pep T

keB

as we needed to prove.

B.17 Proof of theorem 5.3, section 5.1

Theorem 5.3 x IfA[Tke:7 — 7' then AT e:7 — € :7

Proof: By induction on the S derivation.
Extending proofs of propositions by Martinez Lépez [2005, 7.9] and Russo [2004, 4.5].

Case (S-POLYCONSTR): We have a derivation of the form

Abg YP — 7

ATk e:Y(Lj) — €:7) Al wv;:HasPolyCr, L; 7]
A|ITH L e:Y? — L7 ¢ 7]

e
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We need to prove that

A|TH L e: Y7 — L;)jG/ZTé

By inductive hypothesis on the third premise

A|Th e:Y(L;j) — € :7}

117

(B.66)

The result follows from applying rule (POLYCONSTR) on the first and third premises,

and B.66.

Case (S-POLYCASE): We have a derivation of the form

A|F|—Se:YD — €7l

A H- Y : IsPolySum 7/

Abgp 7 = 7!
hp: A | T 5 XNap.ep:Y(Ly)—="1 — €] :7]
or = Genp(Ap = 1), €}, = Ahy.e}

AH wg: Ly € 7.?7HasMGBr 7 Ly op 7 heB

A|Tk case’eof (L zx — ex)ren: T
—
polycase, ¢/ with v¥ and (wy);,cp
of (L — € )pcp T

We want to see that

A|T S case’e of (L;” zp — ep)kep:T
(SN
polycase, ¢ with v¥ and (wy),cp
of (L — € )pep: T

By inductive hypothesis on the first premise
ATk e:Y? < ¢:7
Now for each branch k, also by inductive hypothesis
hp: Ay | T b Napeep : Y(Ly) =77 <€)t 7y
Applying rule (QIN) as many times as necessary
g|r M Nxp.er: Y(Ly) =" 7 — Ahg.el: Ay = 7
Applying rule (GEN) as many times as necessary
0|0k, Nag.e: Y (Ly) =71 — Ahg.€f : Genp(Ay = 77)

that is
0T H Napep: Y (L) "7 — € : oy

(B.67)

(B.68)
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By B.67, B.68 and the remaining premises, we can apply rule (POLYCASE) to conclude

A|TH, case”cof (L, zp — ep)rep: T
(H
polycase, ¢ with v¥ and (wy);,cp
of (L — € )pcp T

as we wanted to show.

B.18 Proof of theorem 5.4, section 5.1

Theorem 5.4 * If h:A|TH e: T‘—>€/:0'

then there exist hl,, AL, e, 7/ and C’, such that
A’\er T<—>e;.5,
C” Genp(A =71)>(h:A)0),
CLIAR, €] =¢

Proof: By induction on the P derivation.
Extending proofs of propositions by Martinez Lépez [2005, 7.10] and Russo [2004, 4.6].

Case (POLYCONSTR): We have a derivation of the form

h:Aby VP — 7
h:A|Tk e:Y(Lj) — e 7 h: A K v;:HasPolyC 7. L; T
h:A|Th LY e:Y? — Lj7e 7]

e

By inductive hypothesis on the second premise, we know there exist 7L§, A¢, eS, ¢ and
C¢ such that

he: AL | The:Y(Lj) — e (B.69)
C¢: Genp(AS = 78) > (h: A ] ;) (B.70)
CS[ARS.S] = ¢ (B.71)

By definition 2.5 on B.70, there must be a substitution S¢ (whose variables do not
appear free in I') and evidence ¢ such that

=875 (B.72)
h:AH9°: 8°A° (B.73)
C¢ =let, z =[] in z((7°)) (B.74)

Let us take b, = h, AL = A, ¢, = L;»Jj e¢[ve/he], 7, = 7, and O’ = [J(h)). It suffices to
verify the following properties
LR AT LY e:Y? — e i1
From B.69, by proposition 5.1, and considering S¢I" = I' since the variables in S*¢
do not appear in I'

B§:56A§|FI—S e:Y(Lj) — e : 87§

S
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From B.72 and B.73, by proposition 5.2
h:A|The:Y(Lj) — ef[v°/hg]: ]

Taking this last statement and the two remaining premises in the derivation, we
can conclude by rule (S-POLYCONSTR)

h:A|TH LY e:Y? — L7 ef[o°/hg] : 7.
And by definition of each construct,

B;:A;]FI—SLJDe:YD — €Tl

2. CL:Genp(AL=7)> (A7)
Follows directly from rule (Id) and proposition 2.16-1, since C’, = [J(h)), A, = A
and 7, = 7.

3. CL[ARL.el) = L;}j e
From B.71, B.74 and equivalence of residual terms by reduction

es[v°/hg] = (ARG.e5) (%)) = CE[ARS.€f] = ¢

So
CLIAR,€}] = (ALY e[ /R(R) = L e£[o¢/hS) = L1 ¢ = ¢,
This completes the proof.

Case (POLYCASE): We have a derivation of the form

Dh:A[The:Y? — €7

2) h: A K oY : IsPolySum 7.

B)BLAI_SRT — 7
4) hy : Ap | T Napeep - Y (L) =77 — e oy
5) h: AH 0y : Ly € 7.7 Ay
6) h:AH wy: Ly € 7.?HasMGBr 7/ Ly, o 7'

B keB
h:A|T'H, case”eof (L, xp — ex)rep:T
—
polycase, ¢’ with v¥ and (wy),cp
of (L — e;c[@k/hk])keB o7

Step 1 Let us prove that, for all k£ € B, oy is equal to Vﬁjk.Aak = T,, such that

i}k : Agyhgy, 1 Ay, | T S Xap.ep:Y(Ly) ="1 — €] 74,
h: AW wp: Ly €7,?HasMGBr 7/ Ly, o}, 7'

where

w)y, = if, L € v¥ then wy o (if, Ly € v¥ then C], else o) else o
C?c = Ahﬂk'ﬂ ((ﬂlw hﬂk))

O';C = Genr(Ak,Aak = Tgk)

e, = Ahg, €]
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By inductive hypothesis on premise 4, there exist l_tf , Af , ef ) Tlf and C f such that

h o AR | Tk Napeep 1 Y (Lp) > — e i 70 (B.75)
C¥: Genp (A7 = 77) > (Ap | %) (B.76)
HINAEE] (B.77)

By lemma 4.25 on premise 4, we know that
O = V/Bjk‘Aak = Toy, (B78)

where Bjk do not appear free in I' nor in Ay.

By definition 2.5 on B.76 and B.78, there exist a substitution Sy (such that dom(Sy) N
FV(T') = 0) and evidence 7,, such that

T = ST (B.79)
hi : Ag, hoy : Do, H Ty 2 S A (B.80)
CS - AEUk'H ((@Uk)) (B'Sl)

By proposition 5.1 applied to B.75
hg o Sk AR | STk Xagee : Y (L) =1 = €« Sy
Now by proposition 5.2 applied to the statement above, using B.79, B.80 and Sy I' =T
hi: Ak hg, Ay, | T b Nageep, : Y (L) =77 — e [Ty JHE] : Top (B.82)
Replacing B.81 in B.77
e = Moy (ARS-c5) (8,) = Ay, 5[5 /) (B.83)

Let us call o}, = Genp(Ag, Ay, = T5,). Since B, do not appear free in Ay, every free
variable in Ay must appear free in oy (see B.78). By definition 2.5

Crt (Ak | op) = (Ag | o%)
with Cy = Ahy, .[J(hk, by, ). So by entailment rule (IsSMG)
hi : A H Cp : IsMG o O
By lemma 4.6 on premises 1) and 5) and the statement above
h: AW if, L € v¥Y then C[vg/hi] else o : Ly € 7. 7IsMG o}, o
so calling O = C[vg/h] = Ahg,.[|(Uk, hoy, ), We have
h:AH-if, Ly € vY then C) else o : L € 7.7IsMG o}, 0 (B.84)
Let us call Agyy = {IsSMG o}, 0, HasMGBr 7, Ly oy 7;,}. By B.84 and premise 6)

h:AH-if, L € vY then C) else o, wy : Ly, € 7.7 Ay
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Additionally, by rule (Comp-MGBr),

1 2 1
h’aum? haux < haux

Ay = h2

aux

: HasMGBr 7. Ly o}, 7'
So by lemma 4.6 on premise 4 and the two statements above

b AW if, Ly € oY (B.85)
then wy, o (if, Lj, € v¥ then C) else o)
else o
: Ly € 7,?7HasMGBr 7, Ly o}, 7'

Calling e} = ef[@ak/ﬁg], the proof of step 1 follows from B.78, B.82, B.85 and B.83.

Step 2 Let us now complete the main proof. By inductive hypothesis on premise 1),
there exist h°, A®, e, 75 and C*° such that

BS:AS|FI—Se:YD — %77 (B.86)
C%: Genp(A® = %) > (A | 7)) (B.87)
CO[AR® 5] = ¢ (B.88)

By definition 2.5 on B.87, there exist a substitution S (such that dom(S)NFV(T') = ()
and evidence 7 such that

=871 (B.89)
h:AHT5:SAS (B.90)
C% = (@) (B.91)

By proposition 5.1 applied to B.86
ES:SAS|SF|—SG:YD — e5:87°

Now by proposition 5.2 applied to the statement above, using B.89, B.90 and ST' =T
h:A|The:Y? — e*[5° /h°) - 7!

Replacing B.91 in B.88 we have ¢/ = (Ah®.e%)(#%)) = e%[v°/h®], so replacing in the
statement above

]_IIA|F|_S€:YD‘—>€,:Té (B.92)
Let us take
W=
AL =A )
e% = p/olycasev ¢/ with v¥ and (w), .5 of (Lr — Ahg.ep), p
To=7
C5 = [(n)

It suffices to verify the following properties
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L b Al [T case”eof (L op — ep)ycp:T < €574

Follows from rule (S-POLYCASE) applied to B.92, premises 2) and 3) and step 1.
2. CL:Genp(AL=1)) > (A7)

Follows directly from rule (Id) and proposition 2.16-1.
3. C[AR).€,] = polycase, ¢’ with v¥ and (wy),cp of (Lp — ez[@k/ﬁk])keB

By definition of C’, CL[ARL.€)] = CL[Ah.€}] = (Ah.e)(h)) = €. So we must

S
prove

polycase, ¢’ with v¥ and (wy),cp of (Ly — ek[ﬁk/ﬁk])keB

polycase, ¢ with v¥ and (w}),.; of (Lp — Aﬁk.e;ﬁ)keB

Without loss of generality by definition of equivalence on a polycase, expression
(see section A.6), we can assume vY and wy, are not variables. In particular, v¥ is

of the form {Ly}rericr; and wy is of the form <n, (Ui)z‘eI;C> for all k € 1.

Let us take any k € I, wy, = <n, (v5) > By definition of wj,

iel!
wy, = if, Ly € v¥ then wy o (if, L € v¥ then C), else o) else o
and since Ly € vY is true,
wy =wp o Ch = <n, (vi 0 C;)ZEI},)
By the reduction rule for polycase, expressions, it suffices to see that
vilel, [0 /he]] = (vi 0 Cl)[Ahy.ef]
for all k € I,i € I, (k ¢ I are ignored). Indeed,
Ol [Ahg.e}] = Ci[Ahg, hoy €] = Ahg, .(Ahg, hoy€0) (0, hoy ) =
Ahg,.€}[vg/hy] = (Aﬁgk.eg) [Uk /i) = €. [0x/hu]

(vi © C)[Afech] = vil Ch[Ay.€h]] = vilel on/ ]

This completes our proof.

B.19 Proof of proposition 5.5, section 5.2
Proposition 5.5 If o ~V o' thenUo =U o’

Proof: By induction on the unification structure.
Extending proofs of propositions by Martinez Lépez [2005, 7.11] and Russo [2004, 4.7].

The result follows trivially from inductive hypothesis and the definition of substitution
(see A.5).
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B.20 Proof of proposition 5.6, section 5.2

Proposition 5.6 If So=S50'
then o ~Y o' and there exists a substitution T such that S = TU

Proof: The proof of this proposition, presented by Martinez Lépez [2005, 7.12], does not
depend on the structure of the unification derivation but only on the free variables in ¢ and
o', so the extensions we have made to the system do not modify it.

B.21 Proof of proposition 5.8, section 5.2

Proposition 5.8 If A 7 < 7 then A l_SR oo

'_W-SR

Proof: By induction on the W-SR derivation.
Extending proofs of propositions by Martinez Lépez [2005, 7.14] and Russo [2004, 4.10].

Case (WSR-POLYDATA): We have a derivation of the form

< Ak |_W-SR Y(Lk) — 7',/€ )
O = Gen@,@(Ak = 7’,/{) Leey

IsPolySum ¢, N
(Lx € t7HasMGC t Ly, o), oy Wsr Y 1

(t fresh)

Let us call A = IsPolySum ¢, (Ly € t 7 HasMGC ¢t Ly, Uk)LkeY' We need to prove that
AR Y? =t

By definition of A, we know that
A H- IsPolySum ¢ (B.93)

Now let us take any L, € Y. By inductive hypothesis,

Ap g Y(Lg) — 7
Applying rule (SR-QIN) as many times as necessary we can conclude

Dg Y(Ly) — Ap= ™
and by (SR-GEN) as many times as necessary,
0 Y(Li) — Gengg(Ap = 73)

that is
0 I—SR Y(Ly) — oy (B.94)

Trivially by rule (Term),
AW Lyer?0 (B.95)

Finally, by definition of A,
AW L € 7' ?HasMGC 7' L, oy (B.96)
From B.93, and for all Ly € Y, B.94, B.95 and B.96, applying rule (SR-POLYDATA)

we can conclude
Ay YP — ¢t

As we wanted to show.
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B.22 Proof of proposition 5.9, section 5.2

Proposition 5.9 If Ab,7 — 0
then there exist A!,, 7., and C', such that
Al Rysp T = T with all the residual variables
fresh and C, : Geng g(A), = 7,,) > (A ] 0)

Proof: By induction on the SR derivation.
Extending proofs of propositions by Martinez Lépez [2005, 7.15] and Russo [2004, 4.11].

Case (SR-POLYDATA): We have a derivation of the form

h: A H Y : IsPolySum 7/
_Ak l_SR Y(Lk) — O
h: AW L €77 A
h:AH 09 : Ly € 7" ?THasMGC 7' Ly oy,
D
Abgp Y7 = 7!

LyeY

We need to show A/, 7/ with all the type variables fresh such that

Al Rysr Y2 < Th (B.97)

We also need to construct C;, such that C7, : Geng g(A7, = 7,,) > (A ] o). So it suffices
to construct a substitution S’ and evidence ¥’ such that:

/:S/
h: AW S A, (B.99)

\]

3

g~
«
©
oo

N~—

and take C!, = [J(v")).

By inductive hypothesis on the second premise, for all Ly € Y, we have AZUk, T{Uk and
Cy, such that

Aiuk '_W—SR Y(Lk) — Tzluk

Cry, : Geng (AL, = 7, ) > (Ag | op) (B.100)

Let us call oy, = Gengg(A,, = 7, ), take 7,, = t a fresh type variable and A}, =

w
IsPolySum ¢, (L € t? HasMGC t Ly, o), )
By rule (WSR-POLYDATA), we have

Lyey’
/ D /
A, l_W-SR Y© — 1,

where all the free variables (namely ¢) are fresh. So B.97 is verified.

Now let us define S’ such that dom(S’) = {t} and S’¢ = 7/. This verifies B.98 trivially;
now only B.99 remains to be proved, where
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S"Al, = IsPolySum 7/,
(L € 7' ?HasMGC 7' Ly, o), ) Liey

We define o' = oY, (vy,), where each v}, will be constructed conveniently as shown
LEY? k

below. We have that h : A H- v¥ : IsPolySum 7/ by the first premise of the SR derivation.
We are going to show that, for each L € Y, evidence v, can be constructed to prove

h: AW, : L, €7 ?HasMGC 7' L, O';Uk
which is all we need to complete our proof.

Firstly, let us recall that, by our premises in the SR derivation,

h: A H- oY : IsPolySum 7/ (B.101)
h:AW T2 Ly et ?Ay (B.102)
h: AW 0" Ly € 7' 7THasMGC 7' Ly, oy, (B.103)

Now let us prove we can construct evidence for A H- Lj, € 7/ 7IsMG oy, 0.

As we stated in B.100, we know that C;, : (0| oy, ) > (Ax | ox). Since A} H= A} (rule
(Id)), by properties 2.7.2 and 2.8.3, we can construct Cy, such that

Cuyp t (Bg [ o3y) = (Ag | o%)
Then by rule (IsMG)

A i Cy, : IsMG o, oy, (B.104)
By lemma 4.6 on B.101, B.102 and B.104, evidence can be constructed for
AH- Ly € 7' ?IsMG oy, 0y (B.105)

In addition, by rule (Comp-MGC), we know that

HasMGC 7/ Lk Ok
IsMG oy, 0oy,

By B.103 and B.105,

) H HasMGC 7' Ly, oy, (B.106)

(B.107)

AH T ET/7 < HasMGC 7/ Lk O'k>
k !

IsMG oy, oy

So again by lemma 4.6 on B.101, B.106 and B.107 we can construct evidence v}, to
finally conclude B
h: AW vy, : Ly € 7' 7HasMGC 7' Ly, oy,

Which completes our proof.
B.23 Proof of lemma 5.10, section 5.2

Lemma 5.10 Ifﬁ:A|SFI—We:T — ¢ : 7' then EV(¢/) C h

Proof: By induction on the W derivation.
Extending proofs of theorems by Martinez Lépez [2005, 7.16] and Russo [2004, 4.12].
It holds trivially.
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B.24 Proof of theorem 5.11, section 5.2

Theorem 5.11 * If A|SThkj e:7 — €7
then A|SThHe:7 — €7

Proof: By induction on the W derivation.
Extending proofs of propositions by Martinez Lépez [2005, 7.17] and Russo [2004, 4.13].

Case (W-POLYCONSTR): We have a derivation of the form

D
A/I—W_SR YP — 7/ o
AT ST Ky e Y(Lj) — e 7]
A" | A, A" Hw vj : HasPolyC 7, L; 7;
A A AT ST Ry, LjD e:YP — L;-Jj e 7!

e

We need to prove that
AN A[STH LY e:Y? — L;)j e 7!
By proposition 5.8 on the first premise in combination with (Fst) and proposition 4.12
AN A . YP — 7 (B.108)

By inductive hypothesis on the second premise and proposition 5.2 (evidence substitu-
tion is trivial)

AN AT | ST e Y(Lj) — € 7] (B.109)

By proposition 5.7 on the third premise

A, A", A" H- HasPolyC 7, L; 7; (B.110)

The result follows fom rule (S-POLYCONSTR) applied to B.108, B.109 and B.110.

Case (W-POLYCASE): We have a derivation of the form
Al SThye:Y? — ¢ 7]

Ay | Ae Hw oY : IsPolySum 7,

AsrRygr T — T

(hk PAR [ Sk SE_ T Ry Nxg.e: Y(Ly) =71 < €] : 7',;)

keB
(O’k = Geng;; F(SITCL-H (Ak = Tl::)), 6'/,€ = Ahk'elk/)keB
AL LA AL AL A Agr w
wy : Ly, € (ST 7[) THasMGBr (ST 7)) Ly o 7" ), 1
Ay AL AL AL Asr | ST Ry, case” e of (L, xp — e€x)ken:T

(H
polycase, ¢/ with v¥ and (wy),cp
of (L — € )pep T
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Let us call A* = A ..., A}, A7, AF Agp. We need to prove that
A" [ STk case”eof (L;” xp — ep)ren: T
s
polycase, ¢’ with v¥ and (wy),cp of (L — €))icp: 7
By inductive hypothesis on the first premise
Ae|S€F|—Se:YD — e 7]
By proposition 5.1 on the statement above, since A} = ST A, and S;; = ST Se
AL[SpThHe: Y7 — e Sy
By proposition 5.2, since A/, ..., A, he @ A, A%, Agr H- he « A¥
A" [SiThHe:Y? — e :5"7 (B.111)
By proposition 5.7 on the second premise
Ay, A H Y : IsPolySum 7,
By rules (Close) — applying ST — and (Trans) — since A* H- ST (Ap, Ac) — on the

statement above
A* H- oY : IsPolySum (ST 77) (B.112)

By proposition 5.8 on the third premise
Aspbp 7 < 7!
By proposition 4.12 on the statement above, since A* - Aggr
A" 7 = 7 (B.113)
Now let us take k between 1 and n. By inductive hypothesis on the fourth premise,
hi : Ag | S Si_1 T Fs Nxp.ep : Y (L) "1 — € : 7
By proposition 5.1, applying S ; to the statement above
hi s Sip1 Ak | Sy Tk Nageey, : Y(Ly) =77 — e Spq 7 (B.114)
By proposition 5.7 on the last premise
s Q,AE,AZ,ASR H-wy : Ly € (S77))?HasMGBr (ST 7)) Ly o) 7
By rule (Trans), since A* H= A}, ..., Agr
A*Hwy: Ly € (ST 7)) ?HasMGBr (ST 7)) Li o 7 (B.115)

The result follows from applying rule (S-POLYCASE) to B.111, B.112, B.113, and for
each k, to B.114 and B.115.
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B.25 Proof of theorem 5.12, section 5.2

Theorem 5.12 % If h:A[STHe:T — €& :7'

then hy, : A | T, TRy et 7 — ey, i 7,
and there exist a substitution R and evidence v, such that
S ~ RT),,
7 =RT),
h: AW, : RA!
e = e, [,/ 1)

Proof: By induction on the S derivation.
Extending proofs of propositions by Martinez Lépez [2005, 7.18] and Russo [2004, 4.14].

Case (S-POLYCONSTR): We have a derivation of the form

B:A}—SRYD%T(Q
B:A|SFI—Se:Y(Lj) s (:’/:TJ,- ]_I:AH—UjZHaSPOIyCTé L; TJ’-
E:A]SFI—SLjDe:YD%L;)je’:T’

e

By proposition 5.9 on the first premise, there exist b/, : A/ |, 7/, and C’; such that

LR A S e (B.116)

with all the variables fresh and such that C7,; : Geng g(A}; = 7,,1) > (A | 77), that is
there is a substitution R; and evidence ., such that

Tl =RyT, (B.117)
h:AWH-v,,: R A, (B.118)
w1 = (V1)

By inductive hypothesis on the second premise,
hg Ao | T T Ry €Y (Lj) = €t Too (B.119)
and there exist Ry, U),5 such that

S =~ RQ Tzlu
7_'3/ =Ry7y
¢' = €T/ Mo
Let us take hl, : Al =kl : Al bl Al 5 B o HasPolyC 7/, L; 7.,. So trivially,
from B.116 and B.119 by (W-POLYCONSTR)
Rl AT T B LjD e:Y? — L;l;“‘ ot Tl

Let us define R such that Rt = Ryt if t € dom(R;) and otherwise Rt = Rat. Let us
also take v}, = ©},;, V9, vj. It suffices to verify
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1. S~ RT),
It follows by B.120 and the fact that Ry ~ R by definition of R.
2. 71=R7},
It follows from B.117, since by definition of R, R,
3. h: AW, : RA]
e h: AH 7, : RA,, follows from B.118, since by definition of R, RA,; =
Ry A,
e h:AH 7,,: RA,, follows from B.122, since by definition of R, RA!, =
Ry A,
e h: AR v;: R(HasPolyC 7/,
B.121 and the definition of R.

/
Ry7y,

wl_

L; ,) follows from the third premise, B.117,

R (HasPolyC 7,,, L; 7)) = HasPolyC (R7),) L; (RT,,) =

HasPolyC (Ri71) Lj (Ra27,,) =HasPolyC 7., L; 7;

) B
4L e = (L)% ey ) [0,/ 0]
From B.119 by lemma 5.10, we know that EV (¢! ,) C R/ ,, so by B.123,

€ra U/ hiy] = €nalUia/hiya) = €

Similarly, assuming h.,;, h., and k., are disjoint,

w3/ ] = hiys[vs [ hiys] = v;

So
I h! o, EQU ) T I vj
( jw3 w2) [ w/hl ] ] wg[ / ] 6;02[1)40/}7“21)] j] el

This completes the proof.

Case (S-POLYCASE): We have a derivation of the form

h A|STHe:Y? — ¢

h:AH Y. IsPolySumT

h: Al— T — 7

hk Ak|SF|— Nxp.ep Y(Lk)—>DT — 6%17'1;
O = Gengp Ak = Tk) ek = A?Lk 6//

h:AW wy: Ly € 7.7HasMGBr 7/ Ly o 7'

h.A\SI‘I—S case” e of (L, =y — e€x)keB:T
H

keB

polycase, ¢ with v¥ and (wy),cp
of (L — € )icp T



130

APPENDIX B. PROOFS

We will use the notation as defined in figure 5.4.

By inductive hypothesis on the first premise, there are R, and o, such that

M, B, | TeT Ry €0 Y el o7y (B.124)
S~ R, T, (B.125)
7, = Re Ty, (B.126)
h: AW T, : ReAy, (B.127)
e’ = ey [Uy,, /hy,] (B.128)
By proposition 5.9 on the third premise
hsr: Asr Fy.gp T < Tu (B.129)

with all the variables in Agg and 7, fresh and such that C'sp : Geng g(Asg = 7,,) >
(A | 7'), that is there exist Rgr and vy such that

" = Rgp T, (B.130)
h: AW Vg : Rsr Asr (B.131)
sk =[(Vsr)
Now let us prove that for all k = 1,...,n, there exist E;)k s AL Ty €, ¢ Tiy,» Ri and
Uy, such that
P, o Ay | T T R N xgeer Y (L) =77 — ey, T, (B.132)
S~ R,T} (B.133)
7. = R 7, (B.134)
hi : A H Ty, R A, (B.135)
= ey /) (B.136)

We proceed by induction on k. For k = 1, from B.125, we can rewrite the
fourth premise as

hi:Ar| R (TeT) by Xwyer : Y(L1) =77 — ef 17y

So by inductive hypothesis, there exist A}, : A, , T1, e, : 7., , R and Oy,

w1 wi?
such that
Wy Ay | Ty (TeT) Ry Xwyer Y (Ly) =77 — e 7l
Re ~ R1 T1

!/ __ /
7_-1 — Rl Twl

. ~ . !/
h1 : Al H- le : R1 Aw1

€1 = €4, [V, /P,

The fact that S ~ R; T} follows from S ~ R.T. ~ R 11 T..
Similarly we can prove the statement above for k + 1, assuming it holds for
k. Since S =~ Ry T}, we can rewrite the fourth premise as

Bri1 : Apy1 | Re (TET) b Xopgrertr Y (L) =77 < €t Th
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So by inductive hypothesis, there exist hwk+1 : AQUHI, Tis1, e;’}kﬂ : quuk_‘_l,
R4 and vy, , such that

hs»”kﬂ (A wk+1 | Thsr (T* I) I_VV

Napii.epyr: Y(Lgo1) =" 1 — ewk+1 :7'1’%+1

Rk ~ Ri+1 Tk+1

7—k:—&-l = Ry, wk+1

Pt s D 03, 0 Ry Ay,

eé+1 - e’warl[ wk+1/hwk+1]

The fact that S ~ Rpy1 Tk+1 follows from S ~ Ry T} ~ Ryy1Tp1 Ty,
From the proof above it also follows that

Re~RiTi=~RThyh~..~R,T,..T=R,T] (B.137)
Rk ~ Rk+1 Tk+1 IS N RTL Tn e Tk-+1 = Rn T]?+1 (B138)

Now by definition 2.5,
Ahy [J(@,,)) : Gengr (R (A, = 7,,)) = Gengr(A}, = 7)
and since S =~ R, T; (from B.133) and Ry, = R, T}!, | (from B.138)

A [J(@,) : Geng, v (R Tiq (A, = ) = Gensr(Ay = ) (B.139)

By proposition 2.16-3,

| : Rn Geng: r (7l (A, = Tuy)) > GenRLT;: r(Rn Ty (AL, = Tw,) (B.140)

Let us define o), = Geng: (T}, (A, = 7,,)), and €, = Ahl, e, . So by proposi-

tion 2.7-2 on B.139 and B.140, and rule ISMG

0 H Ahy.[J(0),) : MG (R, 0%, ) o% (B.141)

Now let us take
By Al = W, TT A,
hY, : IsPolySum (17" 7,,),
lsg : ASg,
(h’k’ : Ly, € (17" 7,,,) ?HasMGBr (17 7,,,) Ly aqlﬂk T{D)keB
By rule (W-POLYCASE) on B.124, B.129, B.132, and definition of A/,

hy A, | Tk, case”eof (L)) o — ep)ren T
(H
polycase, ¢, with hi, and (h),

of (Lk — e;ﬂk)keB:T/

cB

From B.129, all the variables in Agg and 7/, are fresh, so we can assume dom(Rgg) N
dom(S’) = 0 for every other substitution S’ involved in this proof. We define R such

that Rt = Rgrt if t € dom(RgpR), and otherwise Rt = R, t. We also define

/ _ / Yy / /
Vpw = U,we,v y USR» (wk>k€B

wy, = if, Ly € v¥ then wy o (if, Ly € v¥ then Ahy.[|(T,, ) else o) else o

It suffices to prove
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1. S~ RT}
It follows from B.133 for k = n, since RT;; = R, T}.
2. 7" =R7),
It follows from B.130, since R7,, = RsRr 7.,
3. h: AW, : RA!
e h:AH v}, : RT!'A,, holds from B.127 and B.137.
e h: AH v¥:IsPolySum (RT7 7, ) holds from the second premise, B.126 and
B.137.
. EL : A vt RAYSp, holds from B.131 and the fact that R A, = Rgp Alyp.
e h: AW wy: Ly € (RT{ 7, )?HasMGBr (RTV'7,,) Ly (Roy,) (RT,)
From B.126 and B.137 we have 7, = R, 17" 7}, = RT7' 7, . Also from B.130
we have 7/ = Rgp 7}, = R7),. So we must see that

h: AW wy: L, €7,?7HasMGBr 7, Lj, (Rol, ) 7'
From B.141 and the second premise, by lemma 4.6
h: AH-if, Ly € v¥ then Ahy.[|((7,,,)) else o : Ly € 7.7 IsMG (Roy,,) ok
Let us call

Vauz = ify Ly € 0¥ then Ahy.[J(7,,,)) else o
Aguz = IsMG (Roy, ) o, HasMGBr 77 Ly o3, 7'

By the statement above and the last premise, we have
h: AH vgyz,wy : Ly, € Té?Aaw
Also by rule (Comp-MGBr)
R hSHT s Aqua H hS™T o R{™ : HasMGBr 7, Ly, (Roy,, ) 7'
so again by lemma 4.6

h: AW if, L, € v¥ then wy, ¢ Vgys €lse ®
: Ly, € 7, ?7HasMGBr 7/ Ly, (Roy, ) ™

By definition of vgq., this is what we wanted to show.

4.
polycase, ¢’ with v? polycase, ¢, with hj,
and (wg)yep = and (hy) e [0/ )
/
of (Ly — €.)ich of (L — €, reB

By lemma 5.10 on B.124 we have EV (e},) C hi,_. Similarly for all k, from B.132 we
know EV (e}, ) C hl,, , so €y, = ARy, €y, has no free evidence variables. Assuming
by alpha conversion that hiUe, hy, and hf are disjoint, we have

polycase, ¢, with hj, polycase, €, [0, /h}, ] with
and (h/k/)keB/ [Ow/lu) = hi[v?/hiw] an‘/i (R [wr./ M) ie
of (Lk — ewk)keB of (Lk = €uw)peB
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so, by B.128 and definition of substitution, we need to prove that

polycase, ¢’ with v¥ polycase, ¢’ with v¥
and (wi)pep = and (w)),.cp
/
of (Lk — €)yep of (Li — €u) e

Without loss of generality by definition of equivalence on a polycase, expression
(see section A.6), we can assume v¥Y and wy are not variables. In particular, v¥ is

of the form {Ly;}rerier; and wy is of the form <n, (Ui)ielllc> for all k € I.
Let us take any k € I, wy = <n, (vi)i€%>. By definition of wy,
wy, = ify, Ly € v¥ then wy o (if, Ly, € vV then Ahy.[[(©),,)) else o) else o
and since Ly € vY is true,
wh, = wy o b)) = (ny (v 0 Ak [J(#0,) e )
By the reduction rule for polycase, expressions, it suffices to see that
viler] = (vi o Ay [J(T, ) [en, ]

for all k € I,i € I} (k ¢ I are ignored). Indeed, by definition of e;, , evidence
B-reduction, B.136, and definition of €},

(vi o Ay [J(Ti D)€t ] = vil A€y, (T, )] = vi[ A AR, ery, (T,)] =
Vi[Ahg.ey, [Uy, [P, )] = vilAhy.€]] = vile)]

as we needed.

This completes the proof.
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