
Principal Type Specialization
for Polyvariant Sum Types
Thesis to obtain the degree of Licentiate in Computer Science

November 24, 2006

Laura Carolina Lowenthal Quastler
laulowen@dc.uba.ar

Director
Dr. Pablo E. Mart́ınez López
fidel@sol.info.unlp.edu.ar

Facultad de Cs. Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria - (Pabellón I/Planta Baja)

Intendente Güiraldes 2160 - C1428EGA

Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359

http://www.fcen.uba.ar

Especialización Principal de Tipos
para Sumas Polivariantes
Tesis para acceder al grado de Licenciada en Ciencias de la Computación

24 de Noviembre de 2006

Laura Carolina Lowenthal Quastler
laulowen@dc.uba.ar

Director
Dr. Pablo E. Mart́ınez López
fidel@sol.info.unlp.edu.ar

Facultad de Cs. Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria - (Pabellón I/Planta Baja)

Intendente Güiraldes 2160 - C1428EGA

Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359

http://www.fcen.uba.ar

Abstract

Program specialization is a form automatic program generation that produces different ver-
sions of a given general source program, each of them specialized to particular known data.
For example, the recursive function power, if the exponent is known to be 3, can be specialized
to a more efficient (non-recursive) function λx.x · x · x, and similarly for other exponents.

Type specialization [Hughes, 1996b; Hughes, 1996a; Hughes, 1998] is a form of program
specialization based on type inference. Both the source program and its type are specialized
to a residual program and a residual type. Principal type specialization [Mart́ınez López
and Hughes, 2002; Mart́ınez López, 2005] is a detailed formulation to this system based
on the theory of Qualified Types [Jones, 1994]. It has the property of producing principal
specializations: for each specializable source expression and type, a residual expression and
type can be generated such that they are more general than any other valid specialization,
and all of them can be obtained from it by a notion of instantiation.

An important notion in any specialization system is that of polyvariance, a feature allowing
a single source expression to be specialized to many residual results. Polyvariance can be
achieved in more than one way; in particular, the original type specialization system [Hughes,
1996b] includes constructs for polyvariant products (where an expression e is specialized to
a tuple of expressions (e′1, . . . , e

′
n)) and polyvariant sums (where a tagged expression In e is

specialized to many tagged expressions In1 e′1, . . . , Inn e′n), the latter also known as constructor
specialization [Mogensen, 1993].

Principal type specialization was formulated only for a subset of the language presented
originally; in particular, polyvariant sum types were not considered. In this thesis, we extend
the system with new constructs and rules to specialize polyvariant sums. We prove that our
contribution preserves all the properties of the original system, including that of principality,
and we incorporate our extension to PTS, a prototype implementation of the specializer.

i

Resumen

La especialización de programas es una forma de generar programas automáticamente, que
consiste en producir distintas versiones de un programa fuente general, cada una especializada
según datos particulares conocidos. Por ejemplo, la función recursiva potencia, sabiendo que
el exponente será igual a 3, puede especializarse a una versión residual más eficiente (no
recursiva) λx.x · x · x, y en forma similar para otros exponentes.

La especialización de tipos [Hughes, 1996b; Hughes, 1996a; Hughes, 1998] es una forma de
especialización de programas basada en inferencia de tipos. Tanto el programa fuente como
su tipo son especializados a un programa y un tipo residuales. La especialización principal de
tipos [Mart́ınez López and Hughes, 2002; Mart́ınez López, 2005] es una formulación detallada
de este sistema basada en la teoŕıa de tipos calificados [Jones, 1994]. Tiene la propiedad
de generar especializaciones principales: para cada expresión y tipo fuente especializables,
se puede producir una expresión y un tipo residuales que son más generales que cualquier
otra especialización válida, y tales que todas ellas pueden obtenerse a partir de la primera
mediante de una noción de instanciación.

Un concepto importante en todo sistema de especialización es el de polivarianza, una
caracteŕıstica que permite que una única expresión fuente pueda ser especializada a más de
una expresión residual. La polivarianza puede obtenerse de distintas formas; en particular,
el sistema de especialización de tipos original [Hughes, 1996b] incluye construcciones para
productos polivariantes (donde una única expresión fuente e especializa a una tupla de ex-
presiones (e′1, . . . , e

′
n)) y para sumas polivariantes (donde una expresión etiquetada con un

constructor In e especializa a varias expresiones con varios constructores In1 e′1, . . . , Inn e′n).
Esta última se conoce también como especialización de constructores [Mogensen, 1993].

La especialización principal de tipos fue formulada sólo para un subconjunto del lenguaje
presentado originalmente; en particular, las sumas polivariantes no fueron consideradas. En
esta tesis extendemos el sistema con nuevas construcciones y reglas para especializar sumas
polivariantes. Demostramos que nuestra contribución preserva todas las propiedades del
sistema orignal, incluyendo la de principalidad, e incorporamos nuestra extensión a PTS, un
prototipo de implementación de este sistema.

ii

Agradecimientos

Gracias Fidel, por proponerme esta tesis, guiarme, acompañarme y aconsejarme
durante todo su desarrollo, y especialmente por el esfuerzo e interés puesto en el
crecimiento de este trabajo y en el mı́o como estudiante.

Gracias también a los jurados, Ariel y Eduardo, por el tiempo dedicado a leer y
corregir este trabajo.

A mi familia, en especial a mis papás y a Sonia, por estar conmigo durante toda
la carrera, alegrarse con el más mı́nimo de mis éxitos y apoyarme en los fracasos.
Por participar de distintas formas, desde el intento de aprenderse el nombre de
las materias que cursaba hasta la preocupación por la enorme cantidad de horas
de sueño cedidas al estudio.

A todos los amigos que me acompañaron durante estos años, los más viejos y los
más nuevos, por escucharme, distraerme, y dejarme compartir este pedazo de mi
vida con ellos. A mis compañeros, que pasaron conmigo tantas horas de cursada y
trabajo haciéndolas divertidas y más fáciles. Y también a mis amigos que, siendo
más avanzados que yo en la carrera, me ofrecieron siempre su orientación y sus
consejos, y que en mayor o menor medida influyeron en mı́ para ser mejor docente
y alumna.

Finalmente, agradezco especialmente a Daniel, que vivió conmigo toda la evolución
de esta tesis, disfrutándola y sufriéndola como lo hice yo. Gracias por interesarte
en los detalles, por darme ánimo en las partes dif́ıciles y por permitirme mis
momentos obsesivos de trabajo... pero sólo moderadamente.

iii

Resumen Extendido

Introducción

La especialización de programas es una forma de generar programas automáticamente, que
consiste en producir distintas versiones de un programa fuente general, cada una especializada
según datos particulares conocidos. Un ejemplo clásico es el da la función potencia, que
computa xn

potencia n x = if n == 1 then
x

else
x ∗ potencia (n − 1) x

El cómputo de esta función involucra comparaciones y llamados recursivos, pero cuando el
parámetro n es conocido, puede especializarse a una función no recursiva. Por ejemplo, si
sabemos que n vale 3, la función

potencia3 x = x ∗ (x ∗ x)

seŕıa una especialización apropiada, claramente más eficiente que la versión original para
calcular cubos. Un resultado similar se puede obtener para distintos exponentes, a partir
de la misma función. Al programa original se lo llama programa fuente, y a las versiones
especializadas, programas residuales.

La especialización de programas ha sido encarada de distintas formas, entre las cuales
la más difundida es la de evaluación parcial [Jones et al., 1993; Consel and Danvy, 1993].
Esta consiste en producir programas residuales a través de reducciones: las subexpresiones
con argumentos conocidos se reemplazan por el resultado de su evaluación y se combinan
con los cómputos que no pueden hacerse. Es decir, la evaluación parcial trabaja con el texto
del programa fijando algunos datos de entrada y combinando el cómputo con generación de
código para producir un nuevo programa. Los programas generados, cuando se corren con
los datos restantes, arrojan el mismo resultado que el programa original corrido con todos los
datos.

La especialización de tipos [Hughes, 1996b; Hughes, 1996a; Hughes, 1998] es una forma de
especialización de programas basada en inferencia de tipos. Tanto el programa fuente como
su tipo son especializados a un programa y un tipo residuales.

En todos los lenguajes tipados, los tipos proveen información acerca de las expresiones.
Por ejemplo, cuando una expresión es de tipo Int, sabemos que si su evaluación termina
arrojará un número entero. Pero si sabemos que la expresión es la constante 11, podemos
tener información más refinada con un tipo que represente la propiedad de ser el entero 11 :

iv

v

llamemos a este tipo 1̂1. Teniendo toda la información en el tipo, ya no hay necesidad de
ejecutar el programa, aśı que la constante entera puede ser reemplazada por un valor único
de tipo 1̂1. En otras palabras, la expresión fuente 11 : Int puede especializarse a • : 1̂1.

Llamamos a los tipos y operaciones conocidas estáticos, y a los que no lo son, dinámicos.
Cada subexpresión del programa fuente está etiquetada con los supeŕındices S o D respectiva-
mente. El problema de especializar un programa f con parámetros x1, . . . , xn donde x1, . . . xk

son conocidos puede expresarse como la especialización de la expresión

f @S x1 @S . . . @S xk @D xk+1 @D . . . @D xn

donde f es una función y f@x representa la aplicación.
Pero la especialización de tipos es un enfoque más general, que permite combinaciones

mucho más flexibles de anotaciones estáticas y dinámicas. Los tipos residuales pueden expre-
sar información “parcialmente estática”, de manera tal que cierta información estática puede
ser asociada con valores dinámicos y propagada con mecanismos análogos a los de inferencia
de tipos.

Ejemplo 1 Consideremos la expresión(
λDf.lift

(
f @D 3S

))
@D

(
λDx.x +S 1S

)
: IntD

Tenemos expresiones lambda y aplicaciones dinámicas, que se transformarán en expre-
siones lambda y aplicaciones residuales en el programa especializado. El operador lift con-
vierte una expresión de tipo entero estático en su valor dinámico: si un entero estático e tiene
tipo residual n̂, entonces lift e especializa a n : Int.

Para especializar esta expresión, inferimos el tipo residual de cada una de sus partes. Para
empezar, f se aplica a un argumento con tipo residual 3̂, aśı que debe tener tipo residual 3̂ → τ
para algún τ . Ahora bien, este también debe ser el tipo de

(
λDx.x +S 1S

)
, con lo que x debe

ser de tipo residual 3̂. Entonces
(
x +S 1S

)
debe tener tipo 4̂; conlcuimos que τ es 4̂, f es de

tipo 3̂ → 4̂ y f @D 3 es de tipo 4̂. Finalmente, la operación lift puede especializarse a 4, y el
resultado es:

(λf.4) @ (λx.•) : Int

Hemos obtenido el valor 4 en el código residual sin desdoblar ninguna de las funciones. �
Hasta aqúı hemos descripto brevemente la especialización de tipos tal como fue presentada

originalmente por Hughes. La especialización principal de tipos [Mart́ınez López and Hughes,
2002; Mart́ınez López, 2005] es una formulación detallada de este sistema basada en la teoŕıa
de tipos calificados [Jones, 1994]. Tiene la propiedad de generar especializaciones principales:
para cada expresión y tipo fuente especializables, se pueden producir una expresión y un tipo
residuales que son más generales que cualquier otra especialización válida, y tales que todas
ellas pueden obtenerse a partir de la primera mediante de una noción de instanciación.

Un concepto importante en todo sistema de especialización es el de polivarianza, una
caracteŕıstica que permite que una única expresión fuente pueda ser especializada a más de
una expresión residual. La polivarianza puede obtenerse de distintas formas; en particular,
el sistema de especialización de tipos original [Hughes, 1996b] incluye construcciones para
productos polivariantes (donde una única expresión fuente e especializa a una tupla de ex-
presiones (e′1, . . . , e

′
n)) y para sumas polivariantes (donde una expresión etiquetada con un

vi

constructor In e especializa a varias expresiones con varios constructores In1 e′1, . . . , Inn e′n).
Esta última se conoce también como especialización de constructores [Mogensen, 1993].

La especialización principal de tipos fue formulada sólo para un subconjunto del lenguaje
presentado originalmente; en particular, las sumas polivariantes no fueron consideradas. En
esta tesis extendemos el sistema con nuevas construcciones y reglas para especializar sumas
polivariantes. Demostramos que nuestra contribución preserva todas las propiedades del
sistema orignal, incluyendo la de principalidad, e incorporamos nuestra extensión a PTS, un
prototipo de implementación de este sistema.

Especialización Principal de Tipos

En esta sección describimos con ejemplos las caracteŕısticas más importantes del sistema
de especialización principal de tipos, con énfasis en las partes mayormente invoulcradas con
nuestro trabajo. Trabajamos únicamente con un subconjunto del lenguaje propuesto por
Mart́ınez López [2005], suficiente para ilustrar los elementos caracteŕısticos del sistema.

La clave para obtener especialización de tipos es la riqueza del sistema de tipado residual.
En él se pretende capturar toda la información estática proveniente de la expresión fuente,
y más aún, especializar en forma general cualquier subexpresión. Motivado por esto último,
el sistema está basado en la teoŕıa de tipos calificados de Mark Jones [1994], que provee un
nivel intermedio entre el tipado monomórfico y el polimórifco introduciendo predicados que
restringen tipos. Por ejemplo, si P (t) es un predicado sobre tipos, entonces se usan esquemas
de la forma ∀t.P (t) ⇒ f(t) para representar el conjunto

{f(τ)|τ es un tipo tal que vale P (τ)}

Recordemos que la especialización en este sistema se especifica a través de reglas de espe-
cialización, de la misma forma que un sistema de tipos se especializa con reglas de inferencia.
Los juicios del sistema son de la forma

∆ | Γ
P̀

e : τ ↪→ e′ : τ ′

expresando que el término e de tipo τ especializa a la expresión residual e′ de tipo τ ′ bajo
los contextos Γ (donde se asume cómo especializan las variables libres de e) y ∆ (donde se
asumen predicados sobre los tipos residuales).

Esta forma de especificación para un especializador tiene la ventaja de ser modular:
pueden agregarse nuevas construcciones al lenguaje fuente simplemente agregando nuevas
reglas, sin necesidad de cambiar el resto del sistema.

Ejemplo 2 Las siguientes son especializaciones válidas en el contexto vaćıo. Se observa
cómo cada expresión anotada como dinámica aparece en el término residual, mientras que la
información de expresiones estáticas es trasladada al tipo residual.

1. ` 11D : IntD ↪→ 11 : Int

2. ` 11S : IntS ↪→ • : 1̂1

3. ` (2D +D 1D) +D 1D : IntD ↪→ (2 + 1) + 1 : Int

4. ` (2S +S 1S) +S 1S : IntS ↪→ • : 4̂

vii

�

Predicados y evidencia

Consideremos la especialización de la función que toma un entero estático y lo convierte en
uno dinámico:

λDx.lift x : IntS →D IntD

Siendo una función dinámica, esperamos que se convierta en una función residual, cuyo resul-
tado, especialización de una expresión lift, debe ser un entero residual. Una especialización
posible, por ejemplo, seŕıa la que parte de asumir que el argumento es 3S :

λx′.3 : 3̂→D Int

Otra, la que asume que el argumento es 8S :

λx′.8 : 8̂→D Int

y de la misma forma para cualquier n. Para obtener una especialización general de esta
función, se hace uso de variables de tipo, ligadas con el operador ∀. Una primera aproximación
seŕıa darle tipo residual ∀t.t → Int. Sin embargo, este describe las funciones que toman
argumento de cualquier tipo y devuelven un entero. En este caso, la función no puede recibir
“cualquier tipo”, sino sólo uno de la forma n̂. Usamos entonces un predicado que describe la
propiedad de ser de esta forma: el predicado IsInt. El tipo residual de la función es entonces

∀t.IsInt t ⇒ Int

Ahora bien, resta definir nuestra expresión residual, o más precisamente, a qué valor entero
debe especializar el cuerpo de la función. Hemos visto que para una expresión de tipo n̂, el
operador lift sobre ella debe especializar al entero n.

Para modelar esto, usamos la noción de evidencia introducida por Jones. La idea básica es
que un objeto de tipo ∆ ⇒ τ sólo puede usarse si además tenemos una evidencia apropiada de
que los predicados de ∆ efectivamente valen. La evidencia se define junto con cada predicado
como un término ad-hoc, y se nota v : δ para decir que v es evidencia de δ. Además, se cuenta
con un conjunto numerable de variables de evidencia h, y con las operaciones de abstracción
y aplicación de evidencia, Λh.e y e((v)) respectivamente. La abstracción de evidencia en una
expresión indica que se está asumiendo que vale cierto predicado, que estará presente en el
tipo de la expresión. Las reglas de especialización fuerzan a que exista una abstracción de
evidencia en la expresión por cada predicado en su tipo. La aplicación es la operación inversa,
que permite eliminar un predicado del tipo por haberlo “demostrado”, esto es, habiendo
construido evidencia para él.

En el caso del predicado IsInt, la evidencia es el número del tipo: en otras palabras,
decimos que n : IsInt n̂. Ahora bien, en nuestro caso no tenemos directamente un tipo n̂
sino una variable que lo representa: usamos entonces una h que nos permite asumir que vale
IsInt t. Esta variable aparecerá abstráıda en la expresión, y es justamente la que usamos para
el cuerpo de la función.

P̀
λDx.lift x : IntS →D IntD ↪→ Λh.λx′.h : ∀t.IsInt t ⇒ t → Int

viii

Polivarianza

Hasta ahora, hemos mostrado ejemplos de especialización monovariante, es decir, aquella en
que las variables estáticas pueden tomar sólo un valor estático. Por ejemplo, la expresión

letD f = λDx.lift x in f @D 11S : IntD

puede especializarse a
let f ′ = λx′.11 in f ′@• : Int

Pero esta otra expresión, similar,

letD f = λDx.lift x
in
(
f @D 11S , f @D 6S

)
D :
(
IntD , IntD

)
D

no se puede especializar, porque f ′ no puede tener tipos 1̂1 → Int y 6̂ → Int simultáneamente.
Cualquier especializador útil necesita especialización polivariante, generando en este caso al
menos dos versiones de f ′: una por cada argumento estático.

Introducimos el operador poly para producir especializaciones polivariantes. Una ex-
presión encapsulada con la palabra poly especializa a un tipo residual general (también
envuelto en una anotación poly) que se puede instanciar con cada uso. El operador spec
produce una instanciación adecuada.

Con estos operadores, la función f de arriba puede hacerse polivariante, para poder ser
aplicada a más de un argumento estático. Como ya no tendrá tipo función, no podrá ser
aplicada directamente, sino que tendrá que llevar un spec antes.

letD f = poly λDx.lift x
in
(
spec f @D 11S , spec f @D 6S

)
D :
(
IntD , IntD

)
D

Ahora f especializa a la expresión general que ya hemos visto para esta función: Λh.λx′.h :
poly (∀t.IsInt t ⇒ t). Llamemos f ′ = Λh.λx′.h y σ = ∀t.IsInt t ⇒ t. Veamos cómo generar
cada instanciación.

Como spec f aparece aplicada a 11S , sabemos que debe tener tipo residual 1̂1 → Int. Si
debemos ver este tipo como una instancia del tipo de f ′, es decir como una instancia de σ,
podemos entender que efectivamente lo es, en el sentido de que 1̂1 es un caso particular de t.
Este concepto se modela en el sistema a través de una relación llamada más general, notada
con el śımbolo ≥. Informalmente, decimos que σ1 es más general que σ2 si toda vez que se
requiere un objeto de tipo σ2 puede usarse uno de tipo σ1 en su lugar. En nuestro caso, vale
que

∀t.IsInt t ⇒ t ≥ 1̂1 → Int

Ahora bien, esta definición no está completamente refinada. En realidad, las reglas de tipado
no permiten, en general, usar un término de tipo σ1 donde se requiere uno de tipo σ2. Por
ejemplo, en nuestro caso, no podemos usar f ′ directamente como especialización de spec f ,
ya que debeŕıamos aplicarla a • : 1̂1. Para aplicar algo a esta expresión, las reglas de espe-
cialización (siguiendo la ĺınea de reglas de tipado) exigen que se trate exactamente de una
función 1̂1 → Int (sin predicados ni variables de tipo).

Lo que falta es un modo de adaptar f ′ de manera tal que efectivamente tenga el tipo que
necesitamos. Observemos que en Λh.λx′.h hay una abstracción de evidencia, necesaria para
asumir el predicado IsInt t. En algo de tipo 1̂1 → Int, no necesitamos dicha abstracción,

ix

ya que 1̂1 ocupa el lugar de t y sabemos que 11 es la evidencia que corresponde. En otras
palabras, estaŕıamos demostrando que vale IsInt t al asociar t con 1̂1 y construir evidencia
11. Como mencionamos antes, la operación de eliminar predicados y demostrarlos se refleja
en la expresión a través de la aplicación de evidencia.

(Λh.λx′.h)((11)) . λx′.11

Esta operación de aplicar la evidencia 11 no sirve sólo para nuestra expresión en particular,
sino para convertir cualquier expresión de tipo σ en una de tipo 1̂1 → Int. Usamos una
forma de contexto, llamada conversión, para expresar esta operación en términos abstractos.
Finalmente, la relación “más general” tiene en realidad tres partes: un tipo general σ1, una
instancia σ2, y una conversión que transforma expresiones del primer tipo en el segundo.

[]((11)) : ∀t.IsInt t ⇒ t ≥ 1̂1 → Int

Teniendo esto, sólo queda aplicar la evidencia 11 a f ′ antes de utilizarla como función. La
instanciación correspondiente a spec 6 es análoga. Nuestra expresión puede especializarse
finalmente a

let f ′ = Λh.λx′.h
in (f ′((11))@•, f ′((6))@•) : (Int, Int)

Principalidad

La propiedad más importante de este sistema es la existencia de especializaciones principales:
toda subexpresión especializable tiene una especialización que es más general que cualquier
otra válida, y tal que todas ellas pueden obtenerse a partir de la primera según una noción
apropiada de instanciación.

Sumas Polivariantes

La formulación original de Mart́ınez López fue hecha sólo para un pequeño subconjunto de
un lenguaje fuente completo. En particular, las sumas dinámicas no fueron consideradas alĺı
sino en una extensión propuesta por Alejandro Russo [2004].

Las sumas son tipos definidos por el programador, como una serie de constructores apli-
cados a un argumento. Por ejemplo, a partir de la definición

data EitherSDD = StaD IntS | DynD IntD

podemos construir la expresión(
StaD 4S ,StaD 9S

)
D :
(
EitherSDD ,EitherSDD

)
D

Tratándose de sumas dinámicas, esperamos que las construcciones asociadas con ellas per-
manezcan en el código residual: la declaración del tipo, las expresiones acompañadas de
un constructor y las operaciones de pattern matching. La expresión anterior especializa al
siguiente código residual:

data EitherSD1 = Sta1 4̂
data EitherSD2 = Sta2 9̂

(Sta1 •,Sta2 •) : (EitherSD1,EitherSD2)

que ilustra varias de las caracteŕısticas de la especialización de sumas dinámicas:

x

• Se pueden generar varias declaraciones de tipos residuales a partir de una única decla-
ración fuente. En este caso, no hay necesidad de que los dos argumentos de la tupla
especialicen a algo del mismo tipo. Entonces, han sido generados dos tipos residuales
distintos, distinguidos por supeŕındices, y los constructores han sido numerados en forma
acorde.

• No todo constructor que aparece en la declaración fuente debe aparecer en las declara-
ciones residuales. En este caso, como Dyn no es utilizado para construir ninguna ex-
presión, no es necesario que forme parte del tipo.

• Los constructores aparecen en el código residual, pero sus argumentos son especializados
normalmente, y en caso de haber información estática, esta pasa a la declaración del
tipo. En el ejemplo, los argumentos son enteros estáticos, con lo cual especializan a
la constante •, y su valor pasa al tipo de cada constructor residual: Sta1 4̂ y Sta2 9̂
respectivamente.

A pesar de poder generar varias copias de un mismo tipo fuente, dentro de cada copia,
puede haber al menos un constructor residual por cada constructor en la definición fuente.
Por ejemplo, la siguiente es una expresión similar a la anterior

letD id = λDx.x in(
id @D (StaD 4S), id @D (StaD 9S)

)
D :
(
EitherSDD ,EitherSDD

)
D

pero no puede ser especializada. Como las dos expresiones con constructores son argumento
de una misma función, deben tener el mismo tipo residual EitherSD′, ¡pero este tipo no
puede tener los constructores Sta 4̂ y Sta 9̂ al mismo tiempo!

Las sumas dinámicas polivariantes, la contribución principal de nuestro trabajo, permiten
generar múltiples copias de un mismo constructor dentro de la misma declaración residual.
Declaramos una suma polivariante con la palabra polydata, obteniendo la siguiente espe-
cialización:

data EitherSDD = Sta1
1 4̂ | Sta1

2 9̂

let id′ = λDx′.x′ in
(id′@(Sta1

2 •), id′@(Sta1
2 •)) : (EitherSD1,EitherSD1)

donde se ha generado una única declaración residual con dos constructores Sta, distinguidos
con sub́ındices, cada uno con el argumento adecuado.

Las sumas polivariantes son una forma alternativa para obtener polivarianza. En el ejem-
plo anterior, el constructor Sta se aplica a dos argumentos con distinto tipo residual — 4̂ y
9̂ — para producir expresiones con el mismo: EitherSD1. De esta manera, permiten también
pasar distintos argumentos estáticos a la misma función, id en este caso. Volviendo a la
expresión que no pod́ıamos especializar sin el uso de anotaciones poly y spec

letD f = λDx.lift x
in
(
f @D 11S , f @D 6S

)
D :
(
IntD , IntD

)
D

ahora podemos, en lugar de dar polivarianza a la función f , dársela a sus argumentos, encap-
sulándonos en un constructor de una suma polivariante, que llamamos Poly, y usando pattern

xi

matching para desencapsularlo.

polydata P D = PolyD IntS

letD f = λDpx.caseD px of
PolyD x → lift x

in
(
f @D (PolyD 11S), f @D (PolyD 6S)

)
D :
(
IntD , IntD

)
D

Esta expresión especializa a

data P1 = Poly1
1 1̂1 | Poly1

2 6̂

let f ′ = λpx′.case px′ of
Poly1

1 x → 11
Poly1

2 x → 6
in (f@(Poly1

1 •), f@(Poly1
2 •)) : (Int, Int)

lo cual ilustra la caracteŕıstica más importante de las sumas polivariantes: la capacidad de
replicar las ramas de una expresión de pattern matching tantas veces como copias de los
constructores se hayan generado, y de especializar cada una de ellas según el argumento de
la copia que le corresponde.

Predicados y evidencia para sumas polivariantes

La definición de las reglas de especialización para sumas polivariantes sigue el esquema pro-
puesto para todo el sistema, compuesto de dos fases:

1. La especialización propiamente dicha, donde se construye una descripción del problema:
tipos restringidos con predicados y expresiones residuales intermedias que contienen la
evidencia necesaria (abstráıda en forma de variables) para construir el término residual
final.

2. La resolución o constraint solving, donde se encuentra una solución al problema cons-
truido. Se obtiene la evidencia de cada predicado y se la usa en la expresión intermedia,
que una vez que cuenta con toda la información, se reduce al término residual final.

En nuestro caso, durante la fase de especialización, cada suma residual está representada
por una variable de tipo, y un conjunto de predicados describe cómo debe estar formado:
qué constructores debe tener, con qué argumentos, etc. Sólo durante la fase de resolución se
construye efectivamente la definición de una suma residual, de manera tal que satisfaga todos
los predicados reunidos en la especialización.

El siguiente ejemplo muestra una especialización de la primera fase. A partir de él,
describimos brevemente los predicados y formas de evidencia introducidos para especializar
sumas polivariantes, y cómo esta última participa de la construcción de las expresiones finales.

Ejemplo 3 La expresión

polydata EitherSDD = StaD IntS | DynD IntD

letD f = λDx.caseD x of
StaD y → lift y
DynD y → 4D

in
(
f @D (StaD 11S), f @D (StaD 6S)

)
D :
(
IntD , IntD

)
D

xii

especializa a

Λh1, h2, h3, h4, h5, h6, h7.
let f ′ = λx′.polycasev x′ with h1 and (h6, h7) of

Sta → Λh.λy′.h
Dyn → λy′.4

in (f@(Stah4 •), f@(Stah5 •))
: ∀t. h1 : IsPolySum t,

h2 : HasMGC t Sta (∀t′.IsInt t′ ⇒ t′),
h3 : HasMGC t Dyn Int,

h4 : HasPolyC t Sta 1̂1,

h5 : HasPolyC t Sta 6̂,
h6 : HasMGBr t Sta (∀t′.IsInt t′ ⇒ t′ → Int) Int,
h7 : HasMGBr t Dyn (Int → Int) Int ⇒ (Int, Int)

�
La sola presencia de una suma polivariante en el tipo fuente genera una variable de tipo

t con el predicado IsPolySum t, que indica simplemente que t representa una suma resi-
dual. Esta suma, una vez resuelta, puede estar definida de distintas formas, tener todos
los constructores (Sta y Dyn en este caso) o no, y distinto número de copias con distintos
argumentos. Sin embargo, no cualquier suma residual seŕıa un resultado razonable. Por
ejemplo, la declaración en el programa fuente indica que el argumento de Sta es un entero
estático. Entonces, una suma residual donde dicho constructor aparezca, por ejemplo, con un
argumento de tipo función, no debeŕıa valer, ya que de ningún modo un entero estático puede
especializar a una función. Motivado por esta observación, el predicado HasMGC introduce
una cota superior en todo posible argumento de cada constructor. Por ejemplo, el predicado
de evidencia h2 indica que cada argumento de Sta en la definición residual de t debe ser una
instancia de ∀t′.IsInt t′ ⇒ t′, en el sentido de la relación “más general” ya introducida.

La construcción de las expresiones StaD 11S y StaD 6S en el programa fuente, ambas
argumento de f , impone más restricciones sobre t. Necesariamente deberá incluir al menos dos
copias del constructor Sta, uno con argumento 1̂1 y otro con argumento 6̂. Para expresar esto,
se usa el predicado HasPolyC, que impone requerimientos sobre la presencia de constructores
y sus argumentos en el tipo. La evidencia para estos predicados representa el número de
declaración a la que corresponde el argumento (recordemos que podŕıa generarse más de una
declaración residual) y el número de copia del constructor, de manera tal que con h4 y h5 se
generarán los ı́ndices adecuados para Sta en la expresión residual.

La especialización de la estructura de pattern matching es la más compleja. Como no
se conoce a priori exactamente qué constructores tendrá el tipo residual, no puede saberse
qué ramas debe tener el case residual. Resolvemos esta especialización con una estrategia
análoga a la de las funciones polivariantes: especializamos cada rama una única vez, como
una función general, y cada replicación es una instanciación de dicha rama.

La expresión intermedia polycasev especializa cada rama vista como una función que
toma la variable de pattern matching y devuelve el lado derecho de la rama. Por ejemplo, la
rama StaD y → lift y puede verse como la función λDy.lift y, que especializa a la función
general Λh.λy′.h : ∀t.IsInt t ⇒ t → Int. Ahora toda posible rama sobre el constructor
Sta deberá ser una instancia de esta función, donde el argumento estará especializado. En
otras palabras, para todo posible argumento residual τ del constructor, la función de tipo

xiii

τ → Int debe ser una instancia de ∀t.IsInt t ⇒ t → Int. El predicado HasMGBr expresa esta
restricción. El caso del constructor Dyn es análogo: la rama especializa a la función general
λy′.4 : Int → Int y el predicado HasMGBr restringe todas las posibles ramas poniendo este
tipo como cota superior.

Veamos ahora cómo se resolveŕıa esta expresión. Asociamos t con los únicos constructores
requeridos, Sta1

1 1̂1 y Sta1
2 6̂. La evidencia h1 de que t es una suma residual es el conjunto

de sus constructores,
{
Sta1

1,Sta1
2

}
. De esto se deduce que Dyn no aparece en el tipo (notemos

que en el programa fuente no se utilizó para construir ninguna expresión), y entonces la rama
correspondiente no va a aparecer en el case residual. Por este motivo, la evidencia h7 no se
usa.

La evidencia h6 es la clave para generar las ramas replicadas del constructor Sta. Esta
evidencia representa el hecho de que todos las ramas son una instancia de la general; en otras
palabras, una vez resuelta, contiene las conversiones que asocian cada rama instanciada con
el tipo general. En particular en nuestro caso:

[]((11)) : (∀t′.IsInt t′ ⇒ t′ → Int) ≥ (1̂1 → Int)
[]((6)) : (∀t′.IsInt t′ ⇒ t′ → Int) ≥ (6̂ → Int)

Además, tenemos que:
(Λh.λy′.h)((11)) . λy′.11
(Λh.λy′.h)((6)) . λy′.6

¡y con esto, las funciones resultantes pueden volver a verse como ramas! De λy′.11 podemos
pasar nuevamente a Sta1

1 y′ → 11, y de la misma forma para la otra rama:

data EitherSD1 = Sta1
1 1̂1 | Sta1

2 6̂

let f ′ = λx′.case x′ of
Sta1

1 y′ → 11
Sta1

2 y′ → 6
in (f@(Sta1

1 •), f@(Sta1
2 •)) : (Int, Int)

Resumen y trabajo futuro

En esta tesis, extendimos el sistema de especializón principal de tipos para especializar sumas
polivariantes. Incorporamos nuevas construcciones al lenguaje de términos y tipos fuente,
términos y tipos residuales, predicados y evidencia, y agregamos las reglas de especialización
necesarias. Además, demostramos que nuestra extensión preserva las propiedades del sis-
tema, en particular, la existencia de especializaciones principales. Extendimos el algoritmo
para computar especializaciones principales, dimos una heuŕıstica para constraint solving y
extendimos la implementación de ambos en un prototipo escrito en Haskell.

Dentro de las posibilidades de trabajo futuro se encuentra formalizar y mejorar la fase de
constraint solving para sumas dinámicas. Existe una formalización de este proceso formulado
únicamente para un pequeño conjunto de predicados; incorporar las sumas dinámicas ayudaŕıa
a definir este mecanismo más precisamente y encontrar posibilidades de mejora.

En cuanto al sistema en general, el lenguaje fuente todav́ıa necesita ser extendido. De
las caracteŕısticas que todav́ıa no posee la más importante es sin dudas la especialización de
funciones recursivas dinámicas. Además, puede considerarse la generación de sumas dinámicas
paramétricas y recursivas (lo cual permitiŕıa modelar listas, árboles, etc.).

Contents

1 Introduction 1
1.1 Program Specialization . 1

1.1.1 Partial evaluation . 1
1.1.2 Optimality . 2

1.2 Type Specialization . 3
1.3 Qualified Types . 5
1.4 Principal Type Specialization . 8
1.5 Contribution of this work . 9
1.6 Overview . 9

2 Principal Type Specialization 11
2.1 Source Language . 11
2.2 Residual Language . 12

2.2.1 Residual types . 12
2.2.2 Residual terms . 12
2.2.3 Predicates and entailment relation . 13
2.2.4 Ordering between residual types . 14

2.3 Specifying Principal Specialization . 15
2.3.1 The specialization system: P . 15
2.3.2 Source-Residual relation: system SR 20
2.3.3 Typing residual terms: system RT . 21

2.4 Existence of a Principal Type Specialization 21
2.5 Extension: Tagged Sum Types . 23

2.5.1 Source language . 23
2.5.2 Residual language . 24
2.5.3 Specialization rules . 27

3 Static branch erasure 37
3.1 Static information in dynamic sums . 37
3.2 Enhancing branch erasure . 42

4 Type Specialization of Polyvariant Sums 45
4.1 Source language . 46
4.2 Residual language . 47

4.2.1 Residual terms . 47
4.2.2 Residual types . 48

xiv

CONTENTS xv

4.2.3 Entailment and evidence . 49
4.2.4 Reduction of residual terms . 51

4.3 Residual typing . 52
4.4 Specialization rules . 53

4.4.1 SR Relation . 53
4.4.2 P Relation . 54
4.4.3 A note on HasC, HasPolyC and upper bounds 61

5 Extending The Algorithm and The Proof 64
5.1 A syntax-directed system, S . 64
5.2 The Principal Type Specialization Algorithm 66

5.2.1 A unification algorithm . 66
5.2.2 An entailment algorithm . 66
5.2.3 An algorithm for the SR relation . 67
5.2.4 An algorithm for principal type specialization, W 67

5.3 Constraint Solving . 69
5.3.1 Our extension to constraint solving . 70
5.3.2 Discussion . 72

6 Conclusion 75
6.1 Related Work . 75

6.1.1 Constructor specialization . 75
6.1.2 John Hughes’s polyvariant sums . 76

6.2 Future Work . 76
6.2.1 Work on polyvariant sum types . 76
6.2.2 Work on principal type specialization 78

6.3 Concluding Remarks . 79

A Auxiliary systems and definitions 82
A.1 System RT . 82
A.2 Computing principal type specializations . 83

A.2.1 System W . 83
A.2.2 Unification . 84
A.2.3 System W-SR . 85

A.3 Extending system RT for sum types . 85
A.4 Substitution of evidence variables . 86
A.5 Substitution of type variables in predicates 86
A.6 Extending the definition of equivalence of residual terms 86

B Proofs 88
B.1 Proof of lemma 4.6, section 4.2 . 88
B.2 Proof of lemma 4.8, section 4.3 . 89
B.3 Proof of proposition 4.9, section 4.3 . 95
B.4 Proof of theorem 4.10, section 4.3 . 98
B.5 Proof of proposition 4.11, section 4.4 . 98
B.6 Proof of proposition 4.12, section 4.4 . 99
B.7 Proof of theorem 4.13, section 4.4 . 99

xvi CONTENTS

B.8 Proof of lemma 4.14, section 4.4 . 100
B.9 Proof of theorem 4.20, section 4.4 . 101
B.10 Proof of theorem 4.21, section 4.4 . 103
B.11 Proof of proposition 4.22, section 4.4 . 104
B.12 Proof of proposition 4.23, section 4.4 . 107
B.13 Proof of lemma 4.24, section 4.4 . 110
B.14 Proof of lemma 4.25, section 4.4 . 112
B.15 Proof of proposition 5.1, section 5.1 . 113
B.16 Proof of proposition 5.2, section 5.1 . 115
B.17 Proof of theorem 5.3, section 5.1 . 116
B.18 Proof of theorem 5.4, section 5.1 . 118
B.19 Proof of proposition 5.5, section 5.2 . 122
B.20 Proof of proposition 5.6, section 5.2 . 123
B.21 Proof of proposition 5.8, section 5.2 . 123
B.22 Proof of proposition 5.9, section 5.2 . 124
B.23 Proof of lemma 5.10, section 5.2 . 125
B.24 Proof of theorem 5.11, section 5.2 . 126
B.25 Proof of theorem 5.12, section 5.2 . 128

Chapter 1

Introduction

1.1 Program Specialization

Automatic program production is to programming as a weaving machine is to cloth making.
Some repetitive, error-prone or time-consuming tasks no longer need to be performed by a
human being, leaving room for more sophisticated activities such as planning and designing,
and improving the discipline to levels originally limited by human ability and physical or
mental state. We can find many examples of programs generating programs, most of them
restricted to a specific domain, such as parser generators.

Automatic program generation studies this problem from a general point of view. There are
several different ways to automatically produce a program; program specialization is perhaps
the most successful. When solving a set of similar problems, a programmer can choose between
writing many small efficient programs and writing a bigger, less efficient program which solves
any of them depending on the data. Program specialization takes the best of both worlds:
given a general program, it produces one or more versions of it, each specialized to particular
data. The program used as input is called the source program, and those produced as output
are called the residual programs.

A classic example is the power function calculating xn

power n x = if n == 1 then
x

else
x ∗ power (n − 1) x

whose computation involves several comparisons and recursive calls, but when the input
parameter n is known, it can be specialized to a non-recursive residual version. For example,
if n is known to be 3, the function

power3 x = x ∗ (x ∗ x)

would be a proper specialization, clearly much more efficient than the source version when
computing cubes.

1.1.1 Partial evaluation

Program specialization has been studied from several different approaches; partial evalua-
tion [Jones et al., 1993; Consel and Danvy, 1993] is by far the most popular and well-known.

1

2 CHAPTER 1. INTRODUCTION

Partial evaluation produces residual programs by using a generalized form of reduction:
subexpressions with known arguments are replaced by the result of their evaluation and
combined with the computations that cannot be performed. That is, a partial evaluator
works with the text of the source program by fixing some of the input data (the static data)
and performing a mixture of computation and code generation to produce a new program.
The programs produced, when run on the remaining data (the dynamic data), yield the same
result as the original program run on all the data.

Partial evaluation may sound like a sophisticated form of constant folding, but in fact a
wide variety of powerful techniques are needed to do it successfully, and these may completely
transform the structure of the original program.

An area where partial evaluation is particularly successful is the automatic production of
compilers: compilation is obtained by specializing an interpreter for a language to a given
object program [Futamura, 1971; Jones et al., 1985; Jones et al., 1989; Wand, 1982; Hannan
and Miller, 1992]. Let us suppose we have an interpreter for language B written in language
A, and we specialize it taking an object program PB as static data. The residual program,
P ′

A, run by itself behaves the same way as running PB on the interpreter. So P ′
A is a compiled

version of PB to language A!
Another layer of complexity can be added when the partial evaluator is written in the

language it specializes: self-application becomes possible, and thus compilers can be generated
as well. The (code of the) partial evaluator is the source program and the interpreter is
the static data; the resulting residual program performs specializations of the interpreter
mentioned above. Now the residual program expects an object program as input and produces
a compiled version of it: a compiler! This is very useful in the area of domain-specific
languages [Thibault et al., 1998], where the cost of generating a compiler must be kept to a
minimum.

Other areas where partial evaluation has been applied successfully include software ar-
chitectures [Marlet et al., 1999], networking [Muller et al., 1998], hardware design and ver-
ification [Hogg, 1996; Au et al., 1991], virtual worlds [Beshers and Feiner, 1997], numerical
computation [Lawall, 1998] and aircraft crew planning [Augustsson, 1997].

1.1.2 Optimality

An important notion in the program specialization approach is that of optimality. Intuitively,
optimal specializations are those that leave no unnecessary traces of the source program in
their results. Neil Jones [1988] defines a notion of optimality (also called Jones optimality)
by specializing a self-interpreter and comparing the source program with its residual version:
if they are essentially the same, we say that the specialization was optimal. Robert Glück
showed that Jones optimality plays an important role in binding time improvements [Glück,
2002].

Partial evaluation alone can only obtain optimality for self-interpreters written in untyped
languages, but it cannot if they are written in a typed language. As partial evaluation works
by reduction, the type of the residual program is constrained by that of the source one.
In particular, the residual code contains tagging and untagging operations coming from the
representation of programs in the interpreter, that is, it contains traces of the source program.
That means the source and residual programs are not “essentially the same”, so optimality
is not achieved. This problem was stated by Neil Jones as one of the open problems in the
partial evaluation field [Jones, 1988].

1.2. TYPE SPECIALIZATION 3

1.2 Type Specialization

Type specialization is an approach to program specialization proposed by John Hughes [1996b;
1996a; 1998]. His main motivation was to provide optimal specialization for interpreters writ-
ten in typed languages, which was later also achieved by applying different techniques [Thie-
mann, 1999; Thiemann, 2000; Taha et al., 2001], but it proved to be in itself a very interesting
framework for program specialization. The key idea is to specialize a source expression to-
gether with its type, to obtain a residual program with a residual type. Whereas partial
evaluation is based on a generalized form of reduction, type specialization is based on a gen-
eralized form of type inference — in this sense, it has introduced a new paradigm for program
specialization.

In all typed languages, types provide information about expressions. For example, when
an expression is of type Int, we know that, if its evaluation terminates, it will yield an
integer. But if the expression is known to be the constant 11, for example, a more refined
approximation is possible by having a type representing the property of being the integer 11
— let’s call this type 1̂1. Having all the information in the type, there is no need to execute
the program anymore, so the integer constant can be replaced by a dummy value having type
1̂1 — that is, the source expression 11 : Int can be specialized to • : 1̂1.

Type specialization extends residual types to give as much information about expressions
as possible, and works by propagating static information in the source code to residual types.
This involves a more powerful residual type system, which is the key fact allowing optimal
specialization for typed interpreters.

Like many partial evaluators, type specialization processes a two-level language [Gomard
and Jones, 1991]; that is, each construct in the source program is labelled either static or
dynamic. For example, the number 3 can appear either statically (3S : IntS) or dynami-
cally (3D : IntD). We will denote static and dynamic constructs with S and D superscripts
respectively.

Just as a type checker can be specified by a set of type inference rules, a type specializer
is specified by a set of specialization rules. Judgments inferred by these rules are of the form

Γ ` e : τ ↪→ e′ : τ ′

meaning expression e of type τ specializes to expression e′ of type τ ′ under context Γ (con-
taining assumptions on the specialization of free variables).

Specification of a type specializer by a set of inference rules has the advantage of being
modular — new constructs can be added to the source language just by adding rules for their
specialization, without changing the rest of the system.

Example 1.1 The following are all valid specializations under the empty context. Observe
how every expression annotated as dynamic appears in the residual term, whereas information
from static expressions is moved into the residual type.

1. ` 11D : IntD ↪→ 11 : Int

2. ` 11S : IntS ↪→ • : 1̂1

3. ` (2D +D 1D) +D 1D : IntD ↪→ (2 + 1) + 1 : Int

4. ` (2S +S 1S) +S 1S : IntS ↪→ • : 4̂

4 CHAPTER 1. INTRODUCTION

�

The problem of specializing a program f with parameters x1, . . . , xn where x1, . . . xk are
known can be expressed as specializing the expression

f @S x1 @S . . . @S xk @D xk+1 @D . . . @D xn

where f is a function and f@x represents application. But type specialization is a more gen-
eral approach, allowing much more flexible combinations of static and dynamic annotations.
Residual types can express ‘partially static’ information — (4̂, Int) represents the type of pairs
whose first component is statically 4, for example. Static information can then be associated
with dynamic values and propagated by type inference.

Example 1.2 Consider the expression(
λDf.lift

(
f @D 3S

))
@D

(
λDx.x +S 1S

)
: IntD

Here, we have dynamic λ-expressions and dynamic application, so they will be transformed
into residual λ-expressions and applications in the specialized program. The lift operator
converts an expression of a static integer type to its dynamic value — if a static integer
expression e has residual type n̂, then lift e specializes to n : Int.

To specialize this expression, we infer the residual type of each subexpression. Firstly, f
is applied to an argument with residual type 3̂, so it must have residual type 3̂ → τ for some
τ . Now this must also be the type of

(
λDx.x +S 1S

)
, so x must have residual type 3̂. Then(

x +S 1S
)

must have type 4̂ — we can conclude τ is 4̂, f has type 3̂ → 4̂ and f @D 3 has type
4̂. Finally, the lift operation can be specialized to 4, so the dynamic application of f does
not appear in the specialized program — this is the only kind of situation where a dynamic
construct is removed from the residual code. The final result is:

(λf.4) @ (λx.•) : Int

Observe how the value 4 in the residual code has been obtained without actually unfolding
any of the functions. �

In Hughes’s formulation, both the source and the residual type systems are monomor-
phic. In addition, some of the rules are not completely syntax-directed, so for some source
expressions, different unrelated specializations can be produced. This is comparable to the
problem posed in the simply-typed λ-calculus when typing expressions like λx.x: the type of
x depends on the context of use, and no relation between the different types is expressible
in the system. The solution to this last problem is a polymorphic type system, where a
principal type expresses all possible ways to type a given term. Hughes’s type specialization
formulation lacks the property of principality.

The lack of principality has some serious consequences. Firstly, extending the system
to produce polymorphic residual code or to treat polymorphic source code is very difficult.
Secondly, a specialization algorithm dealing with a valid source expression would have to
fail or choose an arbitrary (and potentially erroneous) specialization if some of the context
information happened to be missing. And thirdly, even if all the context information could
be obtained, it is too restrictive for the whole specialization process to depend on the whole

1.3. QUALIFIED TYPES 5

context — it makes it virtually impossible to achieve specialization of program modules, for
instance.

Pablo E. Mart́ınez López presented a new system for type specialization which solves
the problem of lack of principality [Mart́ınez López and Hughes, 2002]. The system, called
principal type specialization, is based on Mark Jones’s theory of qualified types [Jones, 1994],
briefly described below.

1.3 Qualified Types

Mark Jones’s theory of qualified types [Jones, 1994] develops a general approach to constrained
type systems providing an intermediate level between monomorphic and polymorphic typing
disciplines. For example, if P (t) is a predicate on types, then we can use a type scheme of
the form ∀t.P (t) ⇒ f(t) to represent the set of types

{f(τ)|τ is a type such that P (τ) holds}
Jones describes an extension of Milner’s polymorphic type system [Milner, 1978] which

includes support for overloading based on the use of qualified types and parameterized by an
arbitrary system of predicates. He defines an ordering on the set of type schemes and shows
there is a type inference algorithm calculating principal types, that is, greatest possible types
with respect to this ordering.

The theory of qualified types has a number of applications — in particular, it provides
an elegant formalization of Haskell’s type class system [Wadler and Blott, 1989; Peterson
and Jones, 1993; Augustsson, 1993] — and is the main framework for the principal type
specialization system. In the following lines, we will describe its main features with special
emphasis on what is thoroughly used in Mart́ınez López’s and our work.

Predicates, type schemes and terms The key feature of this system is the use of a
language of predicates to describe sets of types, or more generally, relations between types.
The exact set may vary from one application to another; only a few properties on the predicate
language are expressed in the form of an entailment relation to satisfy a few simple laws. For
example, in Haskell’s type system, each class such as Eq a, Ord a, etc. is modelled as a
predicate.

Following the definition of types and type schemes in ML [Milner, 1978], a structured
language of types is defined in three syntactic categories: types τ , qualified types ρ on top of
them, and then type schemes σ:

τ ::= t | τ → τ
ρ ::= δ ⇒ τ | τ
σ ::= ∀α.ρ | ρ

Here t and α range over a countably infinite set of type variables, and δ ranges over a
finite set of predicates. Other type constructors such as type constants, tuples or lists can be
easily added.

The term language is based on simple untyped λ-calculus with the addition of a let con-
struct to enable the definition and use of polymorphic terms [Milner, 1978; Damas and Milner,
1982; Clément et al., 1986]. That is, expressions can be either variables, λ-abstractions, ap-
plications or let constructs.

6 CHAPTER 1. INTRODUCTION

Evidence In order to discuss the semantics and evaluation of terms with qualified types,
Jones introduces the concept of evidence. The essential idea is that an object of type ∆ ⇒ τ
can only be used if we are also supplied with suitable evidence that the predicates in ∆ indeed
hold.

The treatment of evidence can be ignored in the basic typing algorithm — in fact, Jones’s
presentation begins by developing a language without evidence, and only then defines a new
language which includes evidence expressions as a resource for describing overloading more
precisely. However, in the principal type specialization system, evidence has a fundamental
role as a part of the residual language, so we will directly describe the use of terms and
predicates with evidence.

The set of terms is extended with a language of evidence expressions v denoting evidence
values, including a countably infinite set of evidence variables h, disjoint from the sets of term
and type variables. EV (v) represents the set of free evidence variables in v, and e[v/h] is the
substitution of all evidence variables h in e for v. These are naturally extended to sets of
variables h̄, sets of expressions v̄ and simultaneous substitutions e[v̄/h̄].

The language must include the constructs needed for each particular application, plus
evidence abstraction (Λh.e) and evidence application (e((v))), whose use will be explained
below. We write v : δ to express that v is evidence for predicate δ.

The following abbreviations are useful and will be used extensively throughout this work.

Object Expression Abbreviation
Evidence assignment v1 : δ1, . . . , vn : δn v̄ : ∆
Qualified type δ1 ⇒ . . . ⇒ δn ⇒ τ ∆ ⇒ τ
Type scheme ∀α1∀αn.ρ ∀ᾱ.ρ
Evidence abstraction Λh1Λhn.e Λh̄.e
Evidence application ((e((v1))) . . .) ((vn)) e((v̄))

Entailment As we mentioned above, the set of predicates varies with the different applica-
tions, as do the evidence expressions that prove them. Properties of predicates are captured
by an entailment relation `̀ between finite lists of predicates. An entailment of the form
h̄ : ∆ `̀ v̄ : ∆′ indicates that evidence v̄ can be constructed for the predicates in ∆′ assuming
evidence h̄ for ∆. In a context where evidence is irrelevant, we can also write ∆ `̀ ∆′.

In order for a particular predicate system to be suitable for this theory, it must satisfy a
few rules, which are given in figure 1.1. Rule (Close) is needed to ensure that the system of
predicates is compatible with the use of parametric polymorphism; here S denotes a substi-
tution on the type variables appearing in the predicates in ∆. Rules (Evars) and (Rename)
express properties on the evidence language, similar to those relating terms and types in a
classic typing system.

Type inference Jones’s extends the Hindley-Milner type inference system to include qual-
ified types. Judgments are of the form

h̄ : ∆ | Γ ` e : σ

representing the fact that, when the predicates in ∆ are satisfied with evidence h̄ and the
types of the free variables in e are specified in Γ, then e has type σ.

1.3. QUALIFIED TYPES 7

(Id) h̄ : ∆ `̀ h̄ : ∆

(Term) h̄ : ∆ `̀ ∅

(Fst) h̄1 : ∆1, h̄2 : ∆2 `̀ h̄1 : ∆1

(Snd) h̄1 : ∆1, h̄2 : ∆2 `̀ h̄2 : ∆2

(Univ)
h̄1 : ∆1 `̀ v̄2 : ∆2 h̄1 : ∆1 `̀ v̄3 : ∆3

h̄1 : ∆1 `̀ v̄2 : ∆2, v̄3 : ∆3

(Trans)
h̄1 : ∆1 `̀ v̄2 : ∆2 h̄2 : ∆2 `̀ v̄3 : ∆3

h̄1 : ∆1 `̀ v̄3[v̄2/h̄2] : ∆3

(Close)
h̄ : ∆ `̀ v̄ : ∆′

h̄ : S ∆ `̀ v̄ : S ∆′

(Evars)
h̄ : ∆ `̀ v̄ : ∆′

EV (v̄) ⊆ h̄

(Rename)
h̄ : ∆ `̀ v̄ : ∆′

h̄′ : ∆ `̀ v̄[h̄′/h̄] : ∆′

(Dist)
h̄1 : ∆1 `̀ v̄1 : ∆′

1 h̄2 : ∆2 `̀ v̄2 : ∆′
2

h̄1 : ∆1, h̄2 : ∆2 `̀ v̄1 : ∆′
1, v̄2 : ∆′

2

(Cut)
h̄1 : ∆1 `̀ v̄2 : ∆2 h̄1 : ∆1, h̄2 : ∆2 `̀ v̄3 : ∆3

h̄1 : ∆1 `̀ v̄3[v̄2/h̄2] : ∆3

Figure 1.1: Rules for predicate entailment

8 CHAPTER 1. INTRODUCTION

⇒ intr
∆, h : δ,∆′ | Γ ` e : ρ

∆,∆′ | Γ ` Λh.e : δ ⇒ ρ

⇒ elim
∆ | Γ ` e : δ ⇒ ρ ∆ `̀ v : δ

∆ | Γ ` e((v)) : ρ

Figure 1.2: Rules relating predicates with types in the type inference system

Figure 1.2 shows the rules to construct and deconstruct qualified types — all the other
rules correspond to the Hindley-Milner polymorphic typing system. Observe how evidence
abstraction corresponds to adding a predicate to the qualified type, and evidence application
to removing it.

Ordering on type schemes Motivated by the need to describe all of the ways in which
a particular term e can be used with a given type assignment, Jones defines a preorder (≥)
(read more general). Essentially, a statement of the form (∆′ | σ′) ≥ (∆ | σ) means it is
possible to use an object of type σ in an environment satisfying the predicates in ∆ whenever
an object of type σ′ is required in an environment satisfying the predicates in ∆′. He calls
the pair (∆ | σ) a constrained type scheme.

For example, if P is a predicate on types and ∅ `̀ P (Int), then it is true that

(∅ | ∀t.P (t) ⇒ t → t → Bool) ≥ (∅ | Int → Int → Bool)

usually abbreviated as

∀t.P (t) ⇒ t → t → Bool ≥ Int → Int → Bool

This should mean that an object of type ∀t.P (t) ⇒ t → t → Bool could be used in any
context where an object of type Int → Int → Bool was required. However, the typing rules
in figure 1.2 make sure that evidence is abstracted whenever a predicate is introduced into
the type, and applied when it is removed. So by virtue of these rules, an object of type
Int → Int → Bool should have a different structure than one of type ∀t.P (t) ⇒ t → t → Bool
— namely they would differ in the presence of evidence abstraction and application.

The observation above motivates the introduction of a third component into the≥ relation:
a conversion. We write C : (∆′ | σ′) ≥ (∆ | σ) when any object of type σ′ (in an environment
constrained by ∆′) can be converted to an object of type σ (in an environment constrained
by ∆) by adding or removing evidence abstractions and applications. Jones gives a precise
definition of conversions as a particular set of terms of the language. Mart́ınez López’s
formulation involves the use of the ≥ relation and all the concepts mentioned here, but
conversions are defined differently — namely as a particular set of contexts.

1.4 Principal Type Specialization

Principal type specialization is a new formulation to type specialization presented by Pablo
E. Mart́ınez López [2002; 2005]. Based on Jones’s theory of qualified types, the system can

1.5. CONTRIBUTION OF THIS WORK 9

produce principal type specializations — for any source term and type, a specialization exists
such that any other can be obtained from it by a suitable notion of instantiation.

Specialization is separated into two independent phases: constraint generation and con-
straint solving. The first phase works with information flow as it was described in section 1.2;
when some of the information depends on the context of use, constraints play a crucial role.
In the second phase, when there is enough information from the contexts, all the constraints
are gathered and a suitable residual program is calculated [Mart́ınez López and Badenes,
2003]. This separation provides a better understanding of the information flow during spe-
cialization, and enables the application of different heuristics to the process of calculating the
right residual program. It also makes it possible to define modular specialization: for each
module, a principal specialization can be computed independently, and when linking each
residual code to the residual main program, the right instantiation can be produced.

An important notion in any specialization system is that of polyvariance. We say a
specialization is monovariant when static variables can take only one static value. Monovariant
specializations are seriously limited — for example, if f : IntS → IntD is applied to both 3S

and 4S in the same source program, specialization cannot be achieved, because f cannot be
assigned both residual types 3̂ → Int and 4̂ → Int. A polyvariant system, in contrast, allows
static variables to take more than one value.

Polyvariance can be achieved in more than one way; in particular, Hughes’s system in-
cludes constructs for polyvariant products and polyvariant sums [Hughes, 1996b], the latter
also known as constructor specialization [Mogensen, 1993].

Principal type specialization was originally formulated for a subset of the language pre-
sented by John Hughes. In particular, dynamic sum types were not considered. Later,
Alejandro Russo [2004] extended the system to manipulate dynamic sum types — a set of
tagged values in the form of constructors applied to arguments. Russo’s extension incorporates
named data types without recursion and provides monovariant specialization of expressions
involving sum types, preserving the property of principality.

1.5 Contribution of this work

The main contribution of this work is to extend Mart́ınez López’s system [Mart́ınez López
and Hughes, 2002; Mart́ınez López, 2005] and Russo’s additions [Russo, 2004] to include
polyvariant sum types. Expressions of the form L x, where L is a constructor and x is
a static variable, can now be specialized to more than one value, generating copies of the
constructor L1, L2, etc, one for each different use of x. As in Russo’s extension, recursive
data types are not considered.

We also give an alternative formulation to one of Russo’s rules that allows better use of
the static information involving the sum’s definition. Our extension to polyvariant sums is
based on this new formulation. We extend the source and residual languages, all the formal
system rules and proofs to manipulate the new constructs, and we prove that the property of
principality is preserved by our addition.

Constructor specialization is a useful feature on any specializer. The addition of poly-
variant sums to the system is a small step toward making principal type specialization more
powerful and closer to a real programming language.

10 CHAPTER 1. INTRODUCTION

1.6 Overview

This thesis is organized in six chapters. Chapter 2 introduces the principal type specialization
system as formulated by Mart́ınez López and extended by Russo. An alternative formulation
to one of Russo’s original rules for dynamic sum types is analyzed and explained in chapter 3.
In chapter 4, we introduce polyvariant sum types to the system, and in chapter 5, we extend
the algorithm computing type specializations and prove that the property of principality is
preserved by our extensions. Finally, in chapter 6 we discuss related and future work and
conclude.

Two appendixes are given so that the main reading is not interrupted. The first one
contains some technical definitions and auxiliary systems. The second consists of the proofs
of all the properties stated in chapters 4 and 5.

Together with this thesis, we present a prototype of a principal type specializer. Written
in Haskell, it is an extension to the type specializer introduced by Mart́ınez López [2005,
chapter 10] that handles all our new constructs.

Chapter 2

Principal Type Specialization

In this chapter, we present the principal type specialization system. We explain the concepts
behind type specialization in general and this system in particular, with emphasis on the
elements that are most involved with our work.

The material in this chapter is based completely on Mart́ınez López’s work [2005, chapter
6 and section 9.6] and Russo’s extensions [2004, chapter 3].

2.1 Source Language

The source language we consider is a λ-calculus enriched with local definitions, tuples and
arithmetic constants and operations. Expressions are annotated as either static or dynamic,
with superscripts S and D respectively.

Definition 2.1 Let x denote a source term variable from a countably infinite set of variables,
and let n denote an integer number. A source term, denoted by e, is an element of the language
defined by the following grammar:

e ::= x | nS | nD

| e +S e | e +D e | lift e
| λDx.e | e @D e | letD x = e in e
| (e, . . . , e) D | πD

n,n e

| poly e | spec e

where (e1, . . . , en) D is a finite tuple of expressions for every possible arity n. The projections
πD

1,2 e and πD

2,2 e may be abbreviated fstD e and sndD e respectively.

Annotation S is interpreted as the requirement to remove an expression from the source
program, by computing it and moving its result into the residual type, and annotation D as
the requirement to keep the expression in the residual code. The lift operator casts a static
expression into a dynamic value. The poly and spec annotations express polyvariance: the
former allows a single expression to produce several different residual results in the specialized
program, and the latter chooses an appropriate one among all that can occur — this is further
explained in section 2.3.1.

Source types also reflect the static or dynamic nature of expressions. For example, the
constant 42D has type IntD and the constant 42S has type IntS . Also as an example, a

11

12 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

dynamic function can only be dynamically applied, that is, in an expression like (λDx.x) @D y,
both D ’s correspond to each other. Additionally, expressions annotated with poly have a
corresponding poly in their type.

Definition 2.2 A source type, denoted by τ , is an element of the language defined by the
following grammar:

τ ::= IntD | IntS | (τ, . . . , τ) D | τ →D τ | poly τ

the type (τ1, . . . , τn) D being a finite tuple for every possible arity n.

This language is a small subset of the language of Hughes’s type specializer [Hughes,
1996b], but contains enough constructs to illustrate the basic notions. We introduce tagged
sum types in section 2.5.

2.2 Residual Language

The residual language has constructs and types corresponding to all the dynamic constructs
and types in the source language, plus additional ones used to express the result of specializing
static expressions.

2.2.1 Residual types

Based on the theory of qualified types presented in section 1.3, the residual type language
includes predicates to express restrictions imposed by the source expressions and their context.

Definition 2.3 Let t denote a type variable from a countably infinite set of variables, and
s a type scheme variable from another countably infinite set of variables, both disjoint with
any other set of variables already used. A residual type, denoted by τ ′, is an element of the
language given by the grammar

τ ′ ::= t | Int | n̂ | τ ′ → τ ′ | (τ ′, . . . , τ ′) | poly σ
ρ ::= δ ⇒ ρ | τ ′
σ ::= s | ∀s.σ | ∀t.σ | ρ
δ ::= IsInt τ ′ | τ ′ := τ ′ + τ ′ | IsMG σ σ

The intuition for predicate IsInt is that its argument is a one-point type, n̂ — that is, a
type with a single value, • : n̂. That of τ := τ1 + τ2 is that the arguments are three one-point
types n̂, n̂1 and n̂2 such that n = n1 + n2. Predicate IsMG internalizes the “more general”
relation corresponding to the principal type specialization theory — see section 2.2.4.

Free variables and substitutions are defined in the obvious way — with ∀ being the only
binder — on both the set of type variables and type scheme variables. With α we represent
an element of any of these sets.

2.2.2 Residual terms

Just as the residual types involve predicates, the term language has constructs to manipulate
evidence. These include the structural components taken from the theory of qualified types
itself — namely evidence variables, abstraction and application — and other constructs needed

2.2. RESIDUAL LANGUAGE 13

(βv) (Λh.e′1)((v)) . e′1[h/v]

(ηv) Λh.e′1((h)) . e′1 (h 6∈EV(e′1))

(letv) letv x = e′1 in e′2 . e′2[x/e′1]

(◦v) (v1 ◦ v2)[e′] . v1[v2[e′]]

Figure 2.1: Reduction for residual terms

to express specialization features. Evidence is very important in this formulation because it
abstracts the differences among the possible specializations of a given source term, and is one
of the cornerstones of the principality result.

Definition 2.4 A residual term, denoted by e′, is an element of the language defined by the
following grammar:

e′ ::= x′ | n | e′ + e′ | •
| λx′.e′ | e′@e′ | let x′ = e′ in e′

| (e′1, . . . , e
′
n) | πn,n e′

| h | v[e′] | Λh.e′ | e′((v)) | letv x = e′ in e′

v ::= h | n | C | v ◦ v
C ::= [] | Λh.C | C ((v)) | letv x = C in e′

We use the constant • as the (only) value of one-point types. Although it is written the same
way for every type, it can be seen as a family of values •τ ′ , a different one for each type τ ′.

As presented in section 1.3, h represents evidence variables, Λh.e′ represents abstraction
and e′((v)) represents application.

Two particular kinds of evidence are used: numbers, as evidence for predicates of the form
IsInt and := + , and conversions, as evidence for predicates of the form IsMG. Conversions,
denoted by C , are defined as contexts, separately from other elements in the language; the
particular forms v ◦ v and letv x = e′ in e′ are used for composition of conversions, necessary
for technical reasons.

We work under an equivalence (=) relation on residual terms, defined as the smallest
congruence containing α-conversions for both λ and Λ-abstractions and the reduction rules
appearing in figure 2.1. The spirit of this definition is that operations involving evidence are
meant to be solved during specialization (as opposed to regular applications, which are meant
to remain in the residual code).

2.2.3 Predicates and entailment relation

The properties relating predicates and evidence are captured by an entailment relation, as
described in section 1.3, which satisfies the structural properties established in figure 1.1.
The meaning of these predicates is defined by completing the relation with rules that are
particular to the system; these are presented in figure 2.2.

The predicate IsInt is provable when the type is a one-point type representing a number,
and the evidence is the value of that number. Similarly, the predicate := + is provable when

14 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

(IsInt) ∆ `̀ n : IsInt n̂

(IsOp) h̄ : ∆ `̀ n : n̂ := n̂1 + n̂2 (whenever n=n1+n2)

(IsOpIsInt) ∆, h : τ ′ := τ ′1 + τ ′2,∆
′ `̀ h : IsInt τ ′

(IsMG)
C : (∆ | σ′) ≥ (∆ | σ)

∆ `̀ C : IsMG σ′ σ

(Comp)
∆ `̀ v : IsMG σ1 σ2 ∆ `̀ v′ : IsMG σ2 σ3

∆ `̀ v′ ◦ v : IsMG σ1 σ3

Figure 2.2: Entailment rules for evidence construction

the three arguments are one-point types with the corresponding numbers related by addition,
and the evidence is the number corresponding to the result of the addition. The predicate
IsMG internalizes the ordering ≥ (see section 2.2.4), and the evidence is the corresponding
conversion; rule (Comp) captures the transitivity of ≥.

2.2.4 Ordering between residual types

As described in section 1.3, the comparison between different types and type schemes can be
done by using a “more general” ordering, with a third component: a conversion.

Definition 2.5 Let σ = ∀αi.∆τ ⇒ τ and σ′ = ∀βi.∆′
τ ⇒ τ ′ be two type schemes, and

suppose that none of βi appears free in σ, h̄ : ∆, or h̄′ : ∆′. A term C is called a conversion
from (∆ | σ) to (∆′ | σ′), written C : (∆ | σ) ≥ (∆′ | σ′), if and only if there are types τi,
evidence variables h̄τ and h̄′τ , and evidence expressions v̄ and v̄′ such that:

• τ ′ = τ [αi/τi]

• h̄′ : ∆′, h̄′τ : ∆′
τ `̀ v̄ : ∆, v̄′ : ∆τ [αi/τi], and

• C = (letv x = Λh̄.[] in Λh̄′τ .x((v̄))((v̄′)))

By this definition, if ∆ = ∅, we would have C = letv x = [] in Λh̄′τ .x((v̄′)), which is equivalent
to Λh̄′τ .[]((v̄

′))

Equivalence is defined for conversions based on the equivalence defined for residual types,
stating that C = C ′ if for all residual expressions e′, C [e′] = C ′[e′].

The most important property of conversions is that they can be used to transform an
object e′ of type σ under a predicate assignment ∆ into an element of type σ′ under a
predicate assignment ∆′, changing only the evidence that appears at the top level of e′.

Example 2.6 Conversions are used to adjust the evidence demanded by different type
schemes. For all ∆ it holds that

1. []((11)) : (∆ | ∀t.IsInt t ⇒ t → Int) ≥ (∆ | 1̂1 → Int)

2.3. SPECIFYING PRINCIPAL SPECIALIZATION 15

2. C : (∆ | ∀t1, t2.IsInt t1, IsInt t2 ⇒ t1 → t2) ≥ (∆ | ∀t.IsInt t ⇒ t → t) where C = Λh.[]((h))((h)).

3. Λh.[] : (∆ | 1̂1 → Int) ≥ (∆ | ∀t.IsInt t ⇒ 1̂1 → Int)

�

The following propositions are useful for some of our proofs; see Mart́ınez López’s presen-
tation ([2005], propositions 6.7 and 6.9) for their proofs.

Proposition 2.7 The following assertions hold when σ, σ′, σ′′ are not scheme variables:

1. [] : (∆ | σ) ≥ (∆ | σ)

2. if C : (∆ | σ) ≥ (∆′ | σ′) and C ′ : (∆′ | σ′) ≥ (∆′′ | σ′′) then

C ′ ◦ C : (∆ | σ) ≥ (∆′′ | σ′′)

Proposition 2.8 For any qualified type ρ and predicate assignments h̄ : ∆ and h̄′ : ∆′,

1. Λh̄′.[] : (∆, h̄′ : ∆′ | ρ) ≥ (∆ | ∆′ ⇒ ρ)

2. []((h̄′)) : (∆ | ∆′ ⇒ ρ) ≥ (∆, h̄′ : ∆′ | ρ)

3. if C : (∆ | σ) ≥ (∆′ | σ′) and h̄′′′ : ∆′′′ `̀ v̄′′ : ∆′′, then C ′ : (∆,∆′′ | σ) ≥ (∆′,∆′′′ | σ′)
where C ′ = (letv x = Λh̄′′′.C [] in x((v̄′′)))

4. if C : (∆ | σ) ≥ (∆′ | σ′) and α 6∈ FV (∆,∆′ ⇒ σ), then C : (∆ | σ) ≥ (∆′ | ∀α.σ′)

2.3 Specifying Principal Specialization

2.3.1 The specialization system: P

System P (for principal type specialization) specifies how source terms and types are special-
ized. Judgments are of the form

∆ | Γ
P̀

e : τ ↪→ e′ : σ′

meaning source expression e of type τ specializes to residual expression e′ with type σ′ under
the given context. Here ∆ is a predicate context, and Γ = {xi : τi ↪→ x′i : σi | i = 1, . . . , n} is
a context mapping source variables and types to residual variables and their type schemes. If
any of the contexts is empty, we usually omit it in the specialization judgment.

The rest of this section is dedicated to introducing the rules of the system, illustrating
them with examples.

Base types

Specialization of variables, dynamic constants and operators is straightforward — the residual
expression is essentially the same, with the annotations removed.

(VAR)
x : τ ↪→ x′ : τ ′ ∈ Γ

∆ | Γ
P̀

x : τ ↪→ x′ : τ ′

16 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

(DINT) ∆ | Γ
P̀

nD : IntD ↪→ n : Int

(D+)
(∆ | Γ

P̀
ei : IntD ↪→ e′i : Int)i=1,2

∆ | Γ
P̀

e1 +D e2 : IntD ↪→ e′1 + e′2 : Int

Static constants and operations are meant to be removed from the code into the residual
type. Notice the use of predicate := + in rule (S+) to make sure τ ′ is the correct residual
type.

(SINT) ∆ | Γ
P̀

nS : IntS ↪→ • : n̂

(S+)
(∆ | Γ

P̀
ei : IntS ↪→ e′i : τ ′i)i=1,2 ∆ `̀ v : τ ′ := τ ′1 + τ ′2

∆ | Γ
P̀

e1 +S e2 : IntS ↪→ • : τ ′

The lift operator casts a static expression of integer type into its residual numeric value.
Here, the predicate context must entail predicate IsInt, and the evidence is used to get the
correct residual value.

(LIFT)
∆ | Γ

P̀
e : IntS ↪→ e′ : τ ′ ∆ `̀ v : IsInt τ ′

∆ | Γ
P̀

lift e : IntD ↪→ v : Int

Rules for dynamic tupling and projection are also straightforward, and analogous to their
counterparts in a usual type inference system.

(DTUPLE)
(∆ | Γ

P̀
ei : τi ↪→ e′i : τ ′i)i=1,..,n

∆ | Γ
P̀

(e1, . . . , en) D : (τ1, . . . , τn) D ↪→ (e′1, . . . , e
′
n) : (τ ′1, . . . , τ

′
n)

(DPRJ)
∆ | Γ

P̀
e : (τ1, . . . , τn) D ↪→ e′ : (τ ′1, . . . , τ

′
n)

∆ | Γ
P̀

πD

i,n e : τi ↪→ πi,n e′ : τ ′i

Notice that even though tuples are dynamic, they can have either static or dynamic
components — see below for an example.

Example 2.9 The following are all valid specializations:

1.
P̀

11D : IntD ↪→ 11 : Int

2.
P̀

11S : IntS ↪→ • : 1̂1

3.
P̀

(
2D +D 1D

)
+D 1D : IntD ↪→ (2 + 1) + 1 : Int

4.
P̀

(
2S +S 1S

)
+S 1S : IntS ↪→ • : 4̂

5.
P̀

lift
(
2S +S 1S

)
+D 1D : IntD ↪→ 3 + 1 : Int

6.
{
x : IntD ↪→ x′ : Int

}
P̀

(
2S +S 1S , x

)
D :
(
IntS , IntD

)
D ↪→ (•, x′) : (3̂, Int)

�

2.3. SPECIFYING PRINCIPAL SPECIALIZATION 17

Functions and let

Dynamic λ-expressions are specialized as λ-expressions binding a fresh residual variable to
the specialized body.

(DLAM)
∆ | Γ, x : τ2 ↪→ x′ : τ ′2 P̀

e : τ1 ↪→ e′ : τ ′1 ∆
S̀R

τ2 ↪→ τ ′2

∆ | Γ
P̀

λDx.e : τ2→D τ1 ↪→ λx′.e′ : τ ′2 → τ ′1
(x′ fresh)

(DAPP)
∆ | Γ

P̀
e1 : τ2→D τ1 ↪→ e′1 : τ ′2 → τ ′1 ∆ | Γ

P̀
e2 : τ2 ↪→ e′2 : τ ′2

∆ | Γ
P̀

e1 @D e2 : τ1 ↪→ e′1@e′2 : τ ′1

Rule (DAPP) is a straightforward extension of the usual typing rule for function appli-
cation — dynamic applications remain in the residual code as regular applications of the
specialized arguments.

Rule (DLAM) has two premises. The first one expresses the specialization of the body
assuming the specialization of the bound variable — this is a natural extension of a typing
rule for functions. Now if it only had this premise, we would have specializations as the
following one: {

x : IntD ↪→ x′ : Bool
}

P̀
x : IntD ↪→ x′ : Bool

P̀
λDx.x : IntD →D IntD ↪→ λx′.x′ : Bool → Bool

(x′ fresh)

That is, we would have the identity function on integers specializing to the identity func-
tion on booleans. Clearly this should not be a valid specialization! The problem here is the
assumption that a variable of type IntD can be specialized to a variable of type Bool.

The second premise of rule (DLAM) restricts the type τ ′2 to be a reasonable type for a
source variable of type τ2. The judgment ∆

S̀R
τ ↪→ τ ′ expresses a source-residual relation

between two types in a given predicate context, which essentially means it is reasonable to find
type τ ′ in the result of specializing a source expression with type τ . System SR is specified
separately — see section 2.3.2 for details.

The rule for specializing dynamic let expressions is also straightforward.

(DLET)

∆ | Γ
P̀

e2 : τ2 ↪→ e′2 : τ ′2
∆ | Γ, x : τ2 ↪→ x′ : τ ′2 P̀

e1 : τ1 ↪→ e′1 : τ ′1

∆ | Γ
P̀

letD x = e2 in e1 : τ1 ↪→ let x′ = e′2 in e′1 : τ ′1
(x′ fresh)

Here there is no need to restrict types τ2 and τ ′2 individually, since they are related by the
specialization of e2 to e′2.

Example 2.10 We revisit example 1.2 to show how the residual expression can be derived.
The

S̀R
judgments needed to apply rule (DLAM) are easily verified — see section 2.3.2.

1.
{
f : IntS →D IntS ↪→ f ′ : 3̂ → 4̂

}
P̀

f @D 3S : IntS ↪→ f ′@• : 4̂

2.
{
f : IntS →D IntS ↪→ f ′ : 3̂ → 4̂

}
P̀

lift
(
f @D 3S

)
: IntD ↪→ 4 : Int

3.
P̀

λDf.lift
(
f @D 3S

)
:
(
IntS →D IntS

)
→D IntD ↪→ λDf ′.4 :

(
3̂ → 4̂

)
→ Int

18 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

4.
{
x : IntS ↪→ x′ : 3̂

}
P̀

x +S 1S : IntS ↪→ • : 4̂

5.
P̀

λDx.x +S 1S : IntS →D IntS ↪→ λx′.• : 3̂ → 4̂

6.
P̀

(
λDf.lift

(
f @D 3S

))
@D

(
λDx.x +S 1S

)
: IntD ↪→ (λf ′.4) @ (λx′.•) : Int

�

Example 2.11 Terms can have more than one valid specialization.

1.
P̀

λDx.lift x : IntS →D IntD ↪→ λx′.3 : 3̂ → Int

2.
P̀

λDx.lift x : IntS →D IntD ↪→ λx′.n : n̂ → Int ∀n ∈ Z

3.
P̀

λDx.x +S 1S : IntS →D IntS ↪→ λx′.• : 1̂1 → 1̂2

4.
P̀

λDx.x +S 1S : IntS →D IntS ↪→ λx′.• : n̂ → ˆn + 1 ∀n ∈ Z

�

Qualified types and type schemes

Just as the system of qualified types [Jones, 1994], system P includes structural rules to move
predicates from the context into the residual type, and conversely, to eliminate them from
the type if they can be proved by the context. The structure of the residual term changes
accordingly by means of evidence abstraction and application.

(QIN)
∆, hδ : δ | Γ

P̀
e : τ ↪→ e′ : ρ

∆ | Γ
P̀

e : τ ↪→ Λhδ.e
′ : δ ⇒ ρ

(QOUT)
∆ | Γ

P̀
e : τ ↪→ e′ : δ ⇒ ρ ∆ `̀ vδ : δ

∆ | Γ
P̀

e : τ ↪→ e′((vδ)) : ρ

Generalization and instantiation of type schemes is specified in the same way as in a type
inference system.

(GEN)
∆ | Γ

P̀
e : τ ↪→ e′ : σ

∆ | Γ
P̀

e : τ ↪→ e′ : ∀α.σ
(α 6∈FV(∆)∪FV(Γ))

(INST)
∆ | Γ

P̀
e : τ ↪→ e′ : ∀α.σ

∆ | Γ
P̀

e : τ ↪→ e′ : S σ
(dom(S)=α)

Example 2.12 By the rules above, properly constrained type variables can be introduced
to obtain a principal specialization when more than one is possible. Evidence for predicate
IsInt is used to obtain the correct residual code (see rule (LIFT)) and then abstracted to form
the qualified type. Instances of a general type scheme can be obtained by rule (INST) and
(QOUT), with the corresponding evidence application.

1. {ht : IsInt t}
P̀

λDx.lift x : IntS →D IntD ↪→ λx′.ht : t → Int

2.3. SPECIFYING PRINCIPAL SPECIALIZATION 19

2.
P̀

λDx.lift x : IntS →D IntD ↪→ Λht.λx′.ht : IsInt t ⇒ t → Int

3.
P̀

λDx.lift x : IntS →D IntD ↪→ Λht.λx′.ht : ∀t.IsInt t ⇒ t → Int

4.
P̀

λDx.lift x : IntS →D IntD ↪→ Λht.λx′.ht : IsInt 1̂1 ⇒ 1̂1 → Int

5.
P̀

λDx.lift x : IntS →D IntD ↪→ (Λht.λx′.ht) ((11)) : 1̂1 → Int

6.
P̀

λDx.lift x : IntS →D IntD ↪→ λx′.11 : 1̂1 → Int

The residual terms of items 5 and 6 are equivalent based on the definition in section 2.2.2. �

Polyvariance

So far, the rules specify a monovariant form of specialization — that is, one in which static
variables can take only one static value. For example, the expression

letD f = λDx.lift x in f @D 11S : IntD

can be specialized to
let f ′ = λx′.11 in f ′@• : Int

But the similar expression

letD f = λDx.lift x in
(
f @D 11S , f @D 6S

)
D :
(
IntD , IntD

)
D

cannot be specialized, because f ′ cannot have both types 1̂1 → Int and 6̂ → Int. A useful
partial evaluator must use polyvariant specialization, generating in this case at least two
versions of f ′: one for each static argument.

Operator poly is introduced to produce polyvariant specializations. An expression en-
closed by poly is specialized to a general residual type (also wrapped in a poly annotation)
that can be instantiated in each use. Operator spec produces a suitable instantiation. Rules
(POLY) and (SPEC) specify these operators, using predicate IsMG and proper evidence to
capture the relationship between the general type and its instances.

(POLY)
∆ | Γ

P̀
e : τ ↪→ e′ : σ′ ∆ `̀ v : IsMG σ′ σ

∆ | Γ
P̀

poly e : poly τ ↪→ v[e′] : poly σ

(SPEC)
∆ | Γ

P̀
e : poly τ ↪→ e′ : poly σ ∆ `̀ v : IsMG σ τ ′ ∆

S̀R
τ ↪→ τ ′

∆ | Γ
P̀

spec e : τ ↪→ v[e′] : τ ′

Rule (POLY) describes how an expression e can be made polyvariant. If it has residual
type σ′, then for each specialization of e we are going to use, its residual type must be an
adequate instance of σ′. In other words, σ′ is an upper bound for e′’s polyvariant type.
However, the type is not necessarily poly σ′, because it could be furthered constrained by
the context (for example, e could be the argument of a function expecting a more restricted
residual type than σ′). So for any type σ, as long as it is constrained by this upper bound,
poly σ is a valid type. Predicate IsMG reflects this; observe how evidence v (a conversion,
in this case) is used to obtain a suitable expression of type σ from e′.

20 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

Rule (SPEC) also uses predicate IsMG and its evidence, in this case to ensure a correct
instantiation of the polyvariant type. Here, τ ′ must be a proper instance of σ, so it constitutes
a lower bound for the type scheme. Also τ and τ ′ must be in the source-residual relation, for
reasons analogous to those of rule (DLAM).

Example 2.13 Function f in the expression above can now be made polyvariant, so it can
be applied to more than one static argument. As it no longer has a function type, it cannot
be applied directly — instead, it must be spec’ed first.

P̀
letD f = poly λDx.lift x

in
(
spec f @D 11S , spec f @D 6S

)
D :
(
IntD , IntD

)
D ↪→

let f ′ = Λh.λx′.h
in (f ′((11))@•, f ′((6))@•) : (Int, Int)

In this specialization, the type of f ′ is poly (∀t.IsInt t ⇒ t → Int), and h is the evidence for
predicate IsInt. In the first component of the tuple, spec f must have residual type 1̂1 → Int.
Rule (SPEC) makes sure this is an instance of ∀t.IsInt t ⇒ t → Int, and takes the proper
evidence (here, conversion []((11))) to form the residual expression. The derivation of the
second component is analogous. �

Example 2.14 To obtain the principal specialization when static information is missing,
type scheme variables and evidence abstractions can be used.

1.
P̀

poly
(
λDx.lift (x +S 1S)

)
: poly

(
IntS →D IntD

)
↪→

Λhu
s .hu

s [Λh′t, ht.λx′.ht] :
∀s.IsMG

(
∀t, t′.IsInt t′, t := t′ + 1̂ ⇒ t → Int

)
s ⇒ poly s

2.
P̀

λDf.spec f @D 11S : poly
(
IntS →D IntD

)
→D IntD ↪→

Λhu.Λhl.λf ′.hl[f ′]@• : ∀s. IsMG (∀t.IsInt t ⇒ t → Int) s,

IsMG s
(
1̂1 → Int

)
⇒ poly s → Int

In the first case, evidence hu
s represents a conversion proving that ∀t.IsInt t ⇒ t → Int is

an upper bound for the polyvariant type. In the second case, the upper bound constrains the
type of f ′ to respect the source type (which is part of the input). The lower bound establishes
that f ′ must be applied to a value of type 1̂1, and hl represents a conversion adjusting f ′ for
this application. �

2.3.2 Source-Residual relation: system SR

As we have seen in rules (DLAM) and (SPEC), system P is based on an auxiliary system
that describes a source-residual relation: system SR. Judgments are of the form

∆
S̀R

τ ↪→ σ′

meaning residual type σ′ can be obtained from a source type τ under predicate context ∆.
Rules to derive this judgment are presented in figure 2.3. There is one rule for each

source type, plus the four structural rules to introduce and eliminate predicates and universal
quantification. They are all quite straightforward, and naturally similar to the corresponding
rules in system P.

2.4. EXISTENCE OF A PRINCIPAL TYPE SPECIALIZATION 21

(SR-DINT) ∆
S̀R

IntD ↪→ Int

(SR-SINT)
∆ `̀ IsInt τ ′

∆
S̀R

IntS ↪→ τ ′

(SR-DFUN)

∆
S̀R

τ1 ↪→ τ ′1 ∆
S̀R

τ2 ↪→ τ ′2

∆
S̀R

τ2→D τ1 ↪→ τ ′2 → τ ′1

(SR-TUPLE)

(∆
S̀R

τi ↪→ τ ′i)i=1,..,n

∆
S̀R

(τ1, . . . , τn) D ↪→ (τ ′1, . . . , τ
′
n)

(SR-POLY)

∆
S̀R

τ ↪→ σ′ ∆ `̀ IsMG σ′ σ

∆
S̀R

poly τ ↪→ poly σ

(SR-QIN)
∆, δ

S̀R
τ ↪→ ρ

∆
S̀R

τ ↪→ δ ⇒ ρ

(SR-QOUT)
∆

S̀R
τ ↪→ δ ⇒ ρ ∆ `̀ δ

∆
S̀R

τ ↪→ ρ

(SR-GEN)
∆

S̀R
τ ↪→ σ

∆
S̀R

τ ↪→ ∀α.σ
(α 6∈FV(∆))

(SR-INST)
∆

S̀R
τ ↪→ ∀α.σ

∆
S̀R

τ ↪→ S σ
(dom(S)=α)

Figure 2.3: Rules defining the source-residual relation

2.3.3 Typing residual terms: system RT

A system for type-checking residual terms is given in section A.1. The rules are completely
analogous to those in the specialization system. Mart́ınez López proves specialization is well-
behaved with respect to system RT [Mart́ınez López, 2005], thus proving the residual terms
are indeed typed.

2.4 Existence of a Principal Type Specialization

Mart́ınez López extends the notion of principal type scheme, originally introduced in the study
of combinatory logic [Curry and Feys, 1958; Hindley, 1969] and further studied by Damas and
Milner [1982], and Mark Jones in the theory of qualified types, to a similar result for type
specialization.

Definition 2.15 A principal type specialization of a source term e of type τ under the spe-
cialization assignment Γ is a residual term e′p of type σp such that Γ

P̀
e : τ ↪→ e′p : σp

and it is the case that for every ∆′ | Γ
P̀

e : τ ↪→ e′ : σ there exist a conversion C and a
substitution S satisfying C : S σp ≥ (∆′ | σ) and C [e′p] = e′.

One of system P’s main properties is that of principality. That is, for each specialization
assignment Γ and source term e : τ , if there is a specialization of e under Γ, then there is a
principal specialization of e under Γ.

The proof of this result follows the lines of the proof of principality for the theory of
qualified types [Jones, 1994], which is constructive — it consists in showing an algorithm
that computes principal specializations and fails when none exists. The proof proceeds in two
steps. First, system P is transformed into an intermediate syntax-directed system S, which is

22 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

proved to be equivalent to system P in an appropriate way1. Then, the algorithm —described
by system W— is introduced, proving that it is equivalent to system S. The complete system
is presented in section A.2.1.

The generalization of a qualified type ρ with respect to predicate and specialization as-
signments ∆ and Γ, noted as Gen∆,Γ(ρ), is defined as ∀ᾱi.ρ where ᾱi is the set of type and
type scheme variables FV (ρ) \ (FV (∆) ∪ FV (Γ)). When ∆ is the empty set we also note
GenΓ(ρ).

Generalizations have some useful properties that we will use in some of our proofs.

Proposition 2.16 The relation ≥ satisfies that, for all Γ and τ ′,

1. If h̄′ : ∆′ `̀ v̄ : ∆ and C= []((v̄))
then C : GenΓ,∆′′(∆ ⇒ τ ′) ≥ (h̄′ : ∆′ | τ ′)

2. If h̄′ : ∆′ `̀ v̄ : ∆ and C= Λh̄′.[]((v̄))
then C : GenΓ,∆′′(∆ ⇒ τ ′) ≥ GenΓ,∆′′(∆′ ⇒ τ ′)

3. for all substitutions R and all contexts ∆,
[] : R GenΓ,∆′(∆ ⇒ τ ′) ≥ GenR Γ,R ∆′(R ∆ ⇒ R τ ′)
Furthermore, there is a substitution T such that T Γ = R Γ, T ∆′ = R ∆′ and

R GenΓ,∆′(∆ ⇒ τ ′) = GenT Γ,T ∆′(T ∆ ⇒ T τ ′)

The rules describing the principal type specialization algorithm depend on a number of
auxiliary subsystems which can be summarized as follows:

Unification Unification is based on Robinson’s algorithm, with modifications to deal with
substitution under quantification (which can happen inside a polyvariant residual type). The
algorithm is specified by a system of rules to derive judgments of the form σ1 ∼U σ2 — see
details in section A.2.2. They can be interpreted as a partial function taking two residual
types and returning a most general unifier, if it exists.

Entailment The entailment algorithm (`̀ W) takes a target predicate δ and a current pred-
icate assignment ∆, and calculates a set of predicates that should be added to ∆ in order to
entail δ. The result can be easily achieved by adding δ to ∆ with a new evidence variable h.
So the only rule necessary for specifying this algorithm is

h : δ | ∆ `̀ W h : δ (h fresh)

More refined algorithms can be designed — for example, to handle ground predicates (such
as IsInt n̂) or predicates already appearing in ∆, but all these cases can be handled by the
phase of simplification and constraint solving [Mart́ınez López and Badenes, 2003].

Source-Residual relation Algorithm W-SR computes the source-residual relation be-
tween types. Given a source type τ , it returns a set of predicates ∆ and a residual type
τ ′ such that Gen∅,∅(∆ ⇒ τ ′) is the most general type scheme SR-related to τ . The rules
defining the system are presented in section A.2.3.

1Actually, system S is not strictly syntax-directed, since some of the rules are based on the SR system,
which remains unchanged (and is not syntax-directed). However, it is still useful, since it is only introduced
as an intermediate step toward the algorithm, making the proofs simpler.

2.5. EXTENSION: TAGGED SUM TYPES 23

2.5 Extension: Tagged Sum Types

The language considered so far is a small subset of a real programming language. A number
of extensions have been added to the system [Mart́ınez López, 2005], including booleans,
static functions and let expressions, static recursion and program failure. Most relevant to
our contribution is the addition of tagged sum types. Mart́ınez López incorporates only static
treatment of data types, and later Alejandro Russo [Russo, 2004] adds their dynamic version.
In this section, we describe both extensions.

2.5.1 Source language

The source language now includes data declarations resembling those of Haskell, datatype
constructors and case expressions. Datatypes are named and have no parameters. Construc-
tors are distinguished lexically and take only one argument.

Definition 2.17 Let D denote a sum type name and K a constructor name. A source term,
denoted by e, is an element of the language defined by the following grammar:

e ::= [ddcl]∗ ep

ddcl ::= data DnS = css | data DD = csd

css ::= K S

1 τ || . . . || K S

n τ
csd ::= K D

1 τ || . . . || K D

n τ
ep ::= . . .

| K S ep | K D ep

| caseS ep of [brs]+

| caseD ep of [brd]+

brs ::= KS x → ep

brd ::= KD x → ep

where ep extends the grammar describing source terms in definition 2.1 with two extra con-
structs in their static and dynamic versions.

Source types are extended with a new family of types — namely, the sum types defined
in the data declarations, both static and dynamic.

Definition 2.18 A source type, denoted by τ , is an element of the language defined by the
following grammar:

τ ::= IntD | IntS | (τ, . . . , τ) D | τ →D τ | poly τ | DS | DD

where D is any element of a set of datatype names beginning with a capital letter and different
from any already existing name, like Int, etc.

Expressions involving static and dynamic sum types differ in the amount of information
that is obtained during specialization and moved into the residual type.

Constructors Specializing a constructor K S with argument e : τ yields e′ of type K σ′,
where e′ and σ′ are the residual term and type corresponding to e, and the constructor
has been moved into the residual type. If K D is dynamic, it is meant to be kept in the
residual code, so specialization yields K e′.

24 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

Case expressions Static case expressions are computed during specialization, that is, the
correct branch is selected and replaces the case expression, which is completely re-
moved from the residual code. Dynamic case expressions are preserved, but the control
expression and branches are of course specialized individually. Moreover, only the useful
branches are preserved. For example, if constructor K does not appear at all on the
residual code, then the branch matching the control expression with K x can be safely
removed.

Data declarations The name of a static sum type does not appear at all in the residual
code, so there is no data declaration for it. Dynamic sum types do have a declaration,
where the type argument of each constructor has been specialized and some of the
constructors removed (in the same way as case branches). Additional flexibility is
introduced by allowing a single source-type declaration to yield more than one residual
datatype — if the same constructor appears in completely unrelated expressions, each
can be specialized to different constructors belonging to different residual types.

2.5.2 Residual language

In order to achieve the behavior described above, the residual language must be extended
with new constructs for terms, evidence expressions, types and new predicates.

Definition 2.19 Let D denote a sum type name and K a constructor name. A residual
term, denoted by e′, is an element of the language defined by the following grammar:

e′ ::= [ddcl′]∗ e′p
ddcl′ ::= data Dn = cs′

cs′ ::= K
v′p
1 τ || . . . || K v′p

n τ
e′p ::= . . .

| K e′p
| case e′p of [br′d]+

| casev v′p of [br′s]+

| protocasev e′p with v′p of [br′d]+

br′s ::= K → e′p
br′d ::= K x → e′p
v′p ::= . . . | K | • | {Kk }k∈I

| ifv K ∈ v′p then v′p else v′p

Dynamic source code yields equivalent constructs in the residual code: data declarations
are added to the residual language, as well as tagged values and case expressions. The
superscripts in the data declarations allow distinguishing among all the possible data types
generated by a single source declaration.

Example 2.20 The same source datatype can be specialized to many different residual data
types if constructors appear independently. Under the following declaration

data DD = OnlyD IntS

the source expression (
OnlyD 11S ,OnlyD 4S

)
D :
(
DD , DD

)
D

2.5. EXTENSION: TAGGED SUM TYPES 25

has two appearances of constructor Only, but they need not belong to the same residual
datatype. So the specialized code has two data declarations

data D1 = Only1 1̂1
data D2 = Only2 4̂

and expression
(Only1 •,Only2 •) : (D1, D2)

�

A v subscript in expressions indicates they may be reduced during specialization. Static
case expressions must be removed from the code, choosing the appropriate branch based on
the type of the control expression. However, in principal type specialization, we must be able
to specialize it independently, even if there is some information missing. The casev construct
can be reduced as soon as this information is available.

Example 2.21 Assuming the declaration

data EitherS = LeftS IntD | RightS IntD

the source expression

caseS LeftS 11D of LeftS x → x
RightS y → y +D 10D

specializes to
casev Left of Left → 11

Right → 11 + 10

Since the information for choosing the correct branch is available, the expression above can
be reduced to 11 : Int. �

Following the same line is the protocasev construct. It is used for dynamic case ex-
pressions, where the residual code only keeps the branches that can actually occur. Since
this information might not be available, the result of specializing a dynamic case expression
is a protocasev construct, which may be reduced to a regular case expression. Similarly,
ifv constructs are reduced only when the first argument is a set of constructors, and it can
be decided whether it includes one in particular or not. Reduction rules are presented in
figure 2.4.

The new constructs introduce new evidence expressions. A constructor name K appears
in casev expressions, both as the control expression and in the branches. Void evidence (•)
is meant to appear only inside the body of branches that are not actually selected. A set of
constructors {Kk }k∈I is used in the protocasev construct to indicate which constructors of
a given datatype can occur. See examples of the use of evidence in section 2.5.3.

New residual types include constructor types (coming from static tagged expressions),
sum types (from dynamic tagged expressions) and new predicates. The definition of residual
types is extended as follows.

26 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

casev Kk of
(
Kj → e′j

)
j∈B

. e′k (k∈B)

protocasev e′ with {Kk }k∈I of
(
Kj x′j → e′j

)
j∈B

. case e′ of
(
Kj x′j → e′j

)
j∈(I∩B)

ifv Kj ∈ {Kk }k∈I then v1 else v2 . v1 (Kj∈{Kk }k∈I)

ifv Kj ∈ {Kk }k∈I then v1 else v2 . v2 (Kj /∈{Kk }k∈I)

Figure 2.4: Reduction for residual terms involving sum types

Definition 2.22 Let t denote a type variable from a countably infinite set of variables and
s a type scheme variable from another countably infinite set of variables, all of them disjoint
with any other set of variables already used. Let D and K be datatype and constructor
names respectively. A residual type, denoted by τ ′, is an element of the language given by
the grammar

τ ′ ::= t | Int | n̂ | τ ′ → τ ′ | (τ ′, . . . , τ ′) | poly σ | K τ ′ | Dn

ρ ::= δ ⇒ ρ | τ ′
σ ::= s | ∀s.σ | ∀t.σ | ρ
δ ::= IsInt τ ′ | τ ′ := τ ′ + τ ′ | IsMG σ σ | τ ∼ τ ′ | δs | δd

δs ::= IsConstrOf D τ ′

| τ ′ := case τ ′′ of (Kj → τ ′j)j=1...n

| (v is a K) ? δ
δd ::= IsSum τ ′

| HasC τ ′ K τ ′

| K ∈ τ ′ ? δ

The new predicates are indicated by δs for predicates involving static sum types and δd for
dynamic ones, except for the unification predicate τ ∼ τ ′ that is used for both. They express
relationships involving residual types generated by a sum type or by one of its constructors.
Intuitively, they have the following meaning:

• τ ∼ τ ′ is true whenever τ and τ ′ unify.

• IsConstrOf D τ ′ is true when D is defined as a static sum type, τ ′ is a constructor-type
K τ ′′ and K is in D’s definition.

• τ ′ := case τ ′′ of (Kj → τ ′j)j=1...n is true when τ ′′ is a constructor-type with tag Kj

for an integer j between 1 and n, and τ ′ is τ ′j .

• IsSum τ ′ is true when τ ′ is a residual sum type.

• HasC τ ′ K τ ′′ is true when τ ′ is a residual sum type that has constructor K τ ′′ in its
definition.

Guarded predicates are of the form condition ? δ, where δ is a predicate that could also
appear by itself. Essentially, a guarded predicate is meant to be proved only if the condition
is satisfied, or in other words, it can be proved trivially if it is not.

2.5. EXTENSION: TAGGED SUM TYPES 27

The meaning of the predicates is formalized in the entailment relation, which is presented
in figure 2.5. Observe how the meaning of each condition in the guarded predicates is defined
implicitly, by stating when the target predicate can be proved trivially and when it cannot.

New notation is used in this figure. For a residual sum type declaration

data Dn = K n
1 τ ′1 | . . . | K n

j τ ′j

we define Dn(Ki) to be τ ′i , that is, the argument of the constructor K n
i . Similarly, we define

DS (K) or DD (K) as the argument of constructor K in the source declaration of D.
The relation also specifies the evidence proving the predicates, where it is relevant. In

particular:

• IsConstrOf DS τ ′ can be proved if τ ′ is a constructor-type belonging to DS ’s definition,
and the evidence is the name of the constructor.

• IsSum τ ′ can be proved when τ ′ is a residual sum type, and the evidence is the set of
constructors in its declaration.

• HasC τ ′ Kj τ ′′ can be proved only if τ ′ is a residual sum type Dn and K n
j τ ′′ is in its

declaration. The evidence is n, the number of the specialized version of DD where the
constructor appears with the corresponding argument.

• Rule (IsSum-Guard) shows the evidence for a conditional predicate when the informa-
tion regarding the condition is missing. The decision is deferred by an ifv construct
that may be reduced as soon as the decision can be made.

2.5.3 Specialization rules

Residual typing

System RT is extended to type the new residual terms — see section A.3.

Source-residual relation

In his extension, Mart́ınez López [2005] does not include a source-residual rule for static sum
types. It can be formulated straightforwardly but, since it is not of much relevance to our
work, we do not include it here.

Dynamic sum types do have a new rule for system SR, presented in figure 2.6. Here,
DD (Kj) is the source argument of the constructor in the data definition. Rule (SR-DDATA)
states what residual types can be obtained from a dynamic sum type. It specifies that a type
τ ′ can be generated from a source type DD if:

1. τ ′ can be proved to be a sum type;

2. For every Kj in τ ’s definition, if it is present in the residual version, then it has a
residual argument τ ′j that is SR-related to the source argument.

Note the use of conditional predicates so that the second condition is applied only to the
constructors actually present in τ ′’s declaration. For those that are not, all the premises can
be proved trivially — see entailment rules in figure 2.5.

28 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

(IsConstr)
∆

S̀R
DS (K) ↪→ τ ′k

∆ `̀ K : IsConstrOf DS (K τ ′k)

(IsConstr-True)
∆ `̀ v : δ

∆ `̀ v : (Kk is a Kk) ? δ

(IsConstr-False) ∆ `̀ • : (Kk is a Kj) ? δ (k 6=j)

(Case) ∆ `̀ • : τ ′k := case (Kk τ ′′) of
(
Kj → τ ′j

)
j∈I

(IsSum)
Dn is defined as {K n

k τ ′k}k∈I

∆ `̀ {Kk }k∈I : IsSum Dn

(HasC)
∆ `̀ Dn(Kj) ∼ τ ′

∆ `̀ n : HasC Dn Kj τ ′

(HasC-True)
Kj ∈ Dn ∆ `̀ v : ∆′

∆ `̀ v : Kj ∈ Dn ? ∆′

(HasC-False)
Kj /∈ Dn

∆ `̀ • : Kj ∈ Dn ? ∆′

(Unify-HasC)
∆, h : HasC τ ′ Kj τ ′1,∆

′ `̀ τ ′1 ∼ τ ′2

∆, h : HasC τ ′ Kj τ ′1,∆
′ `̀ h : HasC τ ′ Kj τ ′2

(HasC-Guard)
∆,HasC τ ′ Kj τ ′′,∆′ `̀ v : ∆′′

∆,HasC τ ′ Kj τ ′′,∆′ `̀ v : Kj ∈ τ ′ ? ∆′′

(IsSum-Guard)
h̄ : ∆ `̀ v̄′ : ∆′ ∆′′ `̀ vd : IsSum τ ′

∆′′, h̄ : Kj ∈ τ ′ ? ∆ `̀ ifv Kj ∈ vd then v̄′ else • : Kj ∈ τ ′ ? ∆′

Figure 2.5: Entailment rules for predicates involving sum types

2.5. EXTENSION: TAGGED SUM TYPES 29

(SR-DDATA)

∆ `̀ IsSum τ ′ ∆j S̀R
DD (Kj) ↪→ τ ′j

∆ `̀ Kj ∈ τ ′ ? ∆j

∆ `̀ Kj ∈ τ ′ ? HasC τ ′ Kj τ ′j

Kj∈D

∆
S̀R

DD ↪→ τ ′

Figure 2.6: Source-residual relation for dynamic sum types

(SCONSTR)
∆ | Γ

P̀
x : τ ↪→ x′ : τ ′

∆ | Γ
P̀

K S

j x : DS ↪→ x′ : Kj τ ′

(SCASE)

∆ | Γ
P̀

e : DS ↪→ e′ : τ ′e
∆ `̀ v : IsConstrOf DS τ ′e

h̄j : ∆j | Γ P̀
λSxj .ej : DS (Kj)→S τ ↪→ e′j : τ ′j

h̄j : ∆j `̀ wj : IsFunS τ ′j clos(τ ′e′j : τ ′j2 → τ ′j1)
h̄j : ∆j S̀R

τ ↪→ τ ′j1
∆ `̀ v̄j : v is a Kj ? ∆j

j∈B

∆ `̀ τ ′r := case τ ′e of (Kj → τ ′j1)j∈B

∆ | Γ
P̀

caseS e of(
Kj

S xj → ej

)
j∈B

: τ
↪→ casev v of(

Kj → (wj@ve
′
j@ve

′)[v̄j/h̄j]
)

j∈B
: τ ′r

Figure 2.7: Specialization rules involving static sum types

System P

The specialization rules involving sum types are presented in figures 2.8 and 2.7. We begin
by explaining specialization of static sum types and then do the same thing for dynamic ones.

Specializing static sum types Specialization of static sum types is based on specializa-
tion of static functions, a feature added as another extension in Mart́ınez López’s presenta-
tion [2005, chapter 9] that we do not present here. Instead, we explain the meaning of the
predicates and constructs in the context of the specialization rules of our interest.

In static tagged expressions, the constructors are η-expanded and considered as static
functions — KS e is a shortcut for (λSx.KS x) @S e. Static λ-expressions do not generate a
function in the residual code; instead they are unfolded and applied during specialization.
With this in mind, it is only necessary to specify how tagged variables are specialized. Rule
(SCONSTR) states a tagged source variable specializes to a residual variable, where the tag
is moved from the code into the type.

Specializing a case expression involves specializing the control expression, knowing which
summand it lies in, and statically choosing the corresponding branch. Rule (SCASE) specifies
this modularly and preserving principality.

30 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

The first two premises involve the specialization of the control expression e : DS — it must
specialize to an expression with a residual type τ ′e that can be proved to be a constructor-type
from D’s definition.

The following premises involve specializing a branch; let us suppose for the moment it
is branch j. Assuming a set of predicates ∆j , the pattern matching variable xj is bound to
the body of the branch and specialized as a static function. Predicate IsFunS ensures type
τ ′j is the result of specializing a static function from residual type τ ′j2 to τ ′j1, so after (static)
application, we know the final residual expression has type τ ′j1. The third premise states types
τ and τ ′j1 must be SR-related; this has the same purpose as rule (DLAM) in the original PTS
presentation (see section 2.3) — namely to rule out undesirable specializations.

Now in order to choose branch j correctly, we would need to know which summand the
control expression lies in. This cannot be assumed, since some of the information from the
context could be missing! This is where the new predicates — including conditional predicates
— play an important role. Indeed, specialization is not done for a particular branch j but
for all of them: for each one, a (potentially different) set of predicates ∆j is assumed, and all
the predicates in it are guarded so that only the ones for the correct j must hold. The rest of
them can be proved trivially by rule (IsConstr-False). Notice the use of evidence v to express
the correct constructor.

A similar issue appears when determining the final residual type. As we have mentioned, it
must be τ ′j1 for a particular j, which is determined from the context when enough information
is available. This is expressed by predicate case-of in the last premise.

Finally, the residual expression is constructed using casev and @v expressions, that may be
reduced at specialization time. The first one uses evidence v to choose the appropriate branch
— see the first reduction rule in figure 2.4. The second one expresses the computation of
static applications, applying the function e′j to the specialized control expression e′. Evidence
substitution is necessary from a technical point of view, to relate ∆j and ∆.

Example 2.23 Static constructors generate residual constructor types.

data SDS = StaS IntS | DynS IntD

P̀

(
StaS 11S ,DynS 4D

)
D :
(
SDS ,SDS

)
D ↪→ (•, 4) : (Sta 1̂1,Dyn Int)

P̀

(
StaS 11S ,StaS 4S

)
D :
(
SDS ,SDS

)
D ↪→ (•, •) : (Sta 1̂1,Sta 4̂)

�

Example 2.24 Case expressions can be specialized even when we do not know which sum-
mand the control expression lies in. All branches are specialized assuming the argument
matches, using conditional predicates to avoid incorrect assumptions, and a casev construct
to defer choosing the branch.

The expression
data SDS = StaS IntS | DynS IntD

λDe.caseS e of
StaS x → lift x
DynS y → y

: SDS →D IntD

2.5. EXTENSION: TAGGED SUM TYPES 31

specializes to

Λhe, hx, hr.λe′.casev he of
Sta → hx

Dyn → e′ : ∀te, tx. IsConstrOf SD te,
(te is a Sta) ? IsInt tx,
Int := case te of Sta → Int

Dyn → Int ⇒ te → Int

Here, he is the evidence for te being a constructor type, so it represents the name of a
constructor: either Sta or Dyn. Variable hx is evidence for tx — the type of Sta’s argument —
being an integer one-point type, if te is actually the constructor-type Sta. Predicate case-of
defers the choice of the result type.

If the function above is applied to (DynS 4D), then e′ has residual type Dyn Int, so
evidence can be resolved assigning value Dyn to he and • to hx, getting:

(λe′.casev Dyn of
Sta → •
Dyn → e′)@4 : Int

and after reduction
(λe′.e′)@4 : Int

where the Sta branch, whose body was not even a valid expression of type Int, has been
erased.

If alternatively, the function is applied to (StaS 11S), then e′ specializes to • : Sta 1̂1.
Evidence can be resolved assigning value Sta to he and 11 to hx, getting:

(λe′.casev Sta of
Sta → 11
Dyn → •)@• : Int

and after reduction
(λe′.11)@• : Int

so now it is the Right branch the one with an invalid body that has been erased. �

Example 2.25 In an ordinary case expression, all the branches must have the same type.
Indeed, a caseS expression is well-typed only if all the branches’ (source) types are the same.
However, the residual types need not match — the case construct is meant to disappear from
the code anyway, and only one of the branches will remain!

The following expression

data ABCS = AS IntS | BS IntS | CS IntS

λDe.caseS e of AS x → 4S

BS y → y
CS z → 9S

: ABCS →D IntS

32 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

specializes to

Λhe, hx, hy, hz, hr1, hr2.
λe′.casev he of A → •

B → e′

C → •
: ∀te, tx, ty, tz, tr. IsConstrOf ABC te,

(te is a A) ? IsInt tx,
(te is a B) ? IsInt ty,
(te is a C) ? IsInt tz,
IsInt tr,

tr := case te of A → 4̂
B → ty
C → 9̂ ⇒ te → tr

where each • expression has a different residual type, but only one of them is relevant to the
type of the expression. If the function above is applied for example to BS 11S , we get:

(λe′.e′)@• : 1̂1

�

Example 2.26 Non-matching branches could even have a specialization that is impossible
to solve.

P̀
λDe.caseS e of AS x → letD id = λDw.w in

(
id @D 3S , id @D 4S

)
D

BS y → (y, y) D

CS z →
(
3S , 4S

)
D :

ABCS →D
(
IntS , IntS

)
D ↪→

Λhe, hx, hid, h3, h4, hy, hz, hr1, hr2, hr.
λe′.casev he of

A → let id′ = λw′.w′ in (id′@•, id′@•)
B → (e′, e′)
C → (•, •)
: ∀te, tx, ty, tz, tr1 , tr2. IsConstrOf ABC te,

(te is a A) ? IsInt tx,
(te is a A) ? IsInt tid,

(te is a A) ? (tid → tid) ∼ (3̂ → t3),
(te is a A) ? (tid → tid) ∼ (4̂ → t4),
(te is a B) ? IsInt ty,
(te is a C) ? IsInt tz,
IsInt tr1,
IsInt tr2,

(tr1, tr2) := case te of A → (3̂, 3̂)
B → (ty, ty)
C → (3̂, 4̂) ⇒ te → tr

Here, the branch corresponding to constructor A applies a monovariant function to two
different static integers. The only way it could be specialized is if types 3̂ and 4̂ were the

2.5. EXTENSION: TAGGED SUM TYPES 33

(DCONSTR)

∆
S̀R

DD ↪→ τ ′e
∆ | Γ

P̀
e : DD (Kj) ↪→ e′ : τ ′j ∆ `̀ vj : HasC τ ′e Kj τ ′j

∆ | Γ
P̀

K D

j e : DD ↪→ K
vj

j e′ : τ ′e

(DCASE)

∆ | Γ
P̀

e : DD ↪→ e′ : τ ′e
∆ `̀ vd : IsSum τ ′e
∆

S̀R
τ ↪→ τ ′

h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→

λx′j .e
′
j : τ ′j → τ ′

∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j

j∈B

∆ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

Figure 2.8: Specialization rules involving dynamic sum types

same! This is ensured by two unification predicates, but being guarded, they only need to
hold if A’s branch is taken. If the function is applied, for example, to BS 11S , we get:

(λe′.(e′, e′))@• : (1̂1, 1̂1)

If alternatively it is applied to AS 4S , the residual expression cannot be solved. �

Specializing dynamic sum types Specialization of dynamic sum types is meant to pre-
serve the constructors and case structures in the residual code. The data declarations are
preserved as well, but they can generate more than one version, and each version can be
modified to leave out unreachable constructors. The case branches corresponding to these
constructors are erased as well.

Rule (DCONSTR) specifies how a dynamic tagged expression is specialized. Firstly, the
residual type has to be SR-related to the source type; this rules out incorrect residual types,
such as those whose constructors cannot all be obtained from D’s source definition. Also, the
expression e must specialize to an expression e′ of residual type τ ′j such that the residual sum
type includes a summand Kj τ ′j in its definition. Predicate HasC expresses this last condition;
notice the use of vj to get the correct copy of the constructor.

Rule (DCASE) specifies the specialization of case expressions. The first two premises
involve the specialization of the control expression e: it must specialize a residual type τ ′e
that can be proved to be a sum type. The following premise states that the residual type τ ′

must be SR-related to the source type. The next three conditions must hold for every branch
in the case expression. Assuming a set of predicates ∆j and that the constructor’s argument
has residual type τ ′j , the right hand side of each branch is specialized to an expression of type
τ ′ — specialization of dynamic functions is used to express this. Now since not necessarily
all the constructors in the branches will appear in τ ′e’s declaration, the predicates assumed

34 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

for proving this must only hold in the cases in which they do, which explains the use of the
conditional predicate to prove ∆j . Similarly, only if Kj appears in τ ′e’s declaration must τ ′j
be its argument. The evidence for predicate IsSum is used in the protocasev expression as
the actual set of constructors appearing in τ ′e’s declaration.

Example 2.27 Evidence for predicate HasC is used to generate the correct constructor in
the residual expression.

data DD = OnlyD IntS

P̀
OnlyD 11S : DD

↪→ Λh1, h2.Onlyh2 • : ∀t. IsSum t,

HasC t Only 1̂1 ⇒ t

Here, h1 is evidence for t being a sum type and h2 is the number of D’s declaration where
Only appears with argument 1̂1.

Similarly,

P̀

(
OnlyD 11S ,OnlyD 4S

)
D :
(
DD , DD

)
D

↪→ Λh1, h2, h3, h4.(Onlyh2 •,Onlyh4 •) : ∀t, t′. IsSum t,

HasC t Only 1̂1,
IsSum t′,

HasC t′ Only 4̂ ⇒ (t, t′)

If constraint solving detects t and t′ are not related, two different types can be generated,
so h2 and h4 will be assigned values 1 and 2 respectively, yielding the specialization shown in
example 2.20. If, on the contrary, it detects t and t′ must be the same, then the specialization
cannot be solved, since 1̂1 is not the same as 4̂. �

Example 2.28 Not all constructors need appear in the source code. For those that do not,
only conditional information appears in the residual type.

data DSD = DynD IntD | StaD IntS

P̀
DynD 11D : DSD

↪→ Λh1, h2, h3, h4.Dynh2 11 : ∀t, t′. h1 : IsSum t,
h2 : HasC t Dyn Int,
h3 : Sta ∈ t ? HasC t Sta t′,
h4 : Sta ∈ t ? IsInt t′ ⇒ t

If constructor Sta is ever applied to an argument, the type must unify with t′ by entailment
rules (HasC-Guard) and (Unify-HasC). If it is never used, constraint solving detects it and
removes it from the residual data declaration.

data DS1 = Dyn1 Int

Dyn1 11 : DS1

�

2.5. EXTENSION: TAGGED SUM TYPES 35

Example 2.29 The specialization rules for dynamic sum types always expect a constructor
applied to an argument. Constructors with multiple arguments can be simulated by tuples,
whereas constructors with no arguments are η-expanded before specialization and η-reduced
after all post-processing phases.

data DD = OnlyD IntS

P̀
OnlyD : IntS →D DD

↪→ Λh1, h2, h3.Onlyh3 : ∀t, t′. h1 : IsInt t′,
h2 : IsSum t,
h3 : HasC t Only t′ ⇒ t′ → t

�

Example 2.30 If two expressions tagged with the same constructor belong to the same
residual type, information flows from one to the other by means of predicate (Unify-HasC).

data DD = OnlyD IntS

P̀
letD id = λDz.z
in λDx.

(
id @D (OnlyD x), id @D (OnlyD 4S), lift x

)
D : IntS →D

(
DD ,DD , IntD

)
D

↪→
Λh1, h2, h3, h4.
let id′ = λz′.z′

in λx′.(id′@(Onlyh3 •), id′@(Onlyh4 •), h1)
: ∀t, t′. h1 : IsInt t′,

h2 : IsSum t,
h3 : HasC t Only t′,

h4 : HasC t Only 4̂ ⇒ 4̂ → (t, t, Int)

Here, the identity function id is monovariant, so OnlyD x and OnlyD 4S must have the
same residual type t. Constraint solving detects this, and by predicate (Unify-HasC), t′ and
4̂ must unify so h3 and h4 are assigned the same value.

data D1 = Only1 4̂

let id′ = λz′.z′

in λx′.(id′@(Only1 •), id′@(Only1 •), 4) : 4̂ → (D1,D1, Int)

�

Example 2.31 Specialization and entailment rules involving dynamic sum types were de-
signed so that constraint solving can detect when a case branch can never be taken, erasing
it as dead code.

36 CHAPTER 2. PRINCIPAL TYPE SPECIALIZATION

data SDD = StaD IntS | DynD IntD

P̀
caseD (StaD 11S) of

StaD x → lift x
DynD x → x : IntD

↪→ Λh1, h2, h3.

protocasev (Stah2 •) with h1 of
Stah2 x′ → 11
Dynh3 x′ → x′ : ∀t. h1 : IsSum t,

h2 : HasC t Sta 1̂1,
h3 : Dyn ∈ t ? HasC t Dyn Int ⇒ Int

Constraint solving assigns the set {Sta} to h1 and produces

data SD1 = Sta1 1̂1

case (Sta1 •) of Sta1 x → 11 : Int

�

Example 2.32 When there is no information regarding the use of constructors in the residual
code, all predicates that affect them are guarded, and the protocasev expression cannot be
reduced.

data SDD = StaD IntS | DynD IntD

P̀
λDe.caseD e of

StaD n → lift n
: SDD →D IntD ↪→
Λh1, h2, h3, h4.λe′.protocasev e′ with h1 of

Stah2 n′ → h3

: ∀t, t′. h1 : IsSum t,
h2 : Sta ∈ t ? HasC t Sta t′,
h3 : Sta ∈ t ? IsInt t′,
h4 : Dyn ∈ t ? HasC t Dyn Int ⇒ t → Int

�

Chapter 3

Static branch erasure in dynamic
sum types

Let us recall the meaning of static and dynamic expressions in type specialization. In general,
a static source expression is intended to disappear from the code during specialization, passing
its information to the residual type. A dynamic expression, on the contrary, must in general
remain in the program, adding no new information to the type.

One of the distinctive features of principal type specialization is that it makes use of static
information in an extensive and flexible way, even when it is only partially static information.

In this section, we propose a slight modification to one of the rules introduced by Russo’s
extension to the system (presented in section 2.5), namely rule (DCASE), to take the flexibility
and use of static information a step further. Our formulation resolves a family of conflicts
that originally prevented specialization of some case expressions, thus allowing more valid
specializations without losing consistency.

3.1 Static information in expressions involving dynamic sums

Expressions involving dynamic sum types are of two different kinds — tagged expressions,
beginning with a constructor name, and case expressions. Being dynamic, when specializing
the first kind we expect the constructor name to remain in the residual program, and for the
second kind, the case structure must be kept. This way, no information regarding the source
expressions passes directly to the residual type.

However, in Russo’s formulation for dynamic sum types, some information is obtained
statically and kept in the residual type, namely information regarding the sum’s definition —
the data declaration! A residual sum type τ ′ is constrained by predicates that specify which
summands its declaration must necessarily include. During constraint solving, only these
are kept in the code. In other words, the constructors that need not be in τ ′ are statically
removed from the residual program. As a result, the residual data declaration can have fewer
constructors than the corresponding source one, and the residual case expressions can have
fewer branches (because branches matching the constructors that no longer exist must also
be removed). Branch erasure during specialization of dynamic case expressions is one of its
most interesting features.

Russo’s extension introduces new guarded predicates for some of the constraints. These
make them relative to the inclusion of a certain constructor in the type’s declaration —

37

38 CHAPTER 3. STATIC BRANCH ERASURE

informally, if a predicate is guarded, it must hold only when a certain constructor belongs to
a certain sum type, otherwise it can be proved trivially.

Guarded predicates are essential for specifying branch erasure when specializing the right
hand side of the branches in a case expression. Recall the following premises in rule (DCASE).

h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→

λx′j .e
′
j : τ ′j → τ ′

∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j

j∈B

These must hold for each branch of the case expression to specialize. The set of predicates
∆j is assumed for specializing each branch j, but only those corresponding to a constructor
that belongs to the sum type must actually hold. During constraint solving, evidence for ∆j

need not be constructed if the branch can be removed. This allows solving expressions that
would otherwise be ambiguous.

Example 3.1 Given the following specialization

data EitherD = LeftD IntS | RightD IntS

P̀
caseD LeftD 2S of

LeftD x → lift x
RightD y → lift (y +S 1S) : IntD

↪→
Λh1, h2, h3, h4, h5.

protocasev Lefth2 • with h1 of
Lefth2 x′ → 2
Righth5 y → h4

: ∀t1, t2, t3. h1 : IsSum t1,

h2 : HasC t1 Left 2̂,
h3 : Right ∈ t1 ? IsInt t2,

h4 : Right ∈ t1 ? t3 := t2 + 1̂,
h5 : Right ∈ t1 ? HasC t1 Right t3 ⇒ Int

evidence h2 can be solved to number 1, and h1 to the set
{
Left1

}
. The other three predicates,

since constructor Right needs not belong to the residual sum type, can be proved trivially
with evidence •, yielding

data Either1 = Left1 2̂

protocasev Left1 • with
{
Left1

}
of

Left1 x → 2
Right• y → • : Int

which, by means of the reduction rules for protocasev expressions, is finally reduced to

case Left1 • of
Left1 x → 2 : Int

3.1. STATIC INFORMATION IN DYNAMIC SUMS 39

Predicates IsInt t2 and t3 := t2 + 1̂ belong to the set ∆2 in the premise of our rule,
corresponding to constructor Right. Had they not been guarded, there would be no feasible
evidence to replace h3 and h4, so the constraint solving step could not have been performed1.
The protocasev construct would not be reduced, and we would only get the first specializa-
tion, which is not very useful! �

Examples like this one illustrate the main motivation for branch erasure, and more gener-
ally, the use of guarded predicates — they are not only convenient, but essential for achieving
reasonable specializations in a number of cases. There is a big family of valid source terms
that could not be solved into useful residual code if dead branches were not erased.

Another interesting consequence of using guarded predicates is that certain expressions
can be specialized successfully or not, just depending on what constructors appear in them.

Example 3.2 Consider the specialization

data BoolD = TrueD () D | FalseD () D

P̀
caseD FalseD () D of

TrueD x → letD id = λDz.z in
(
id @D 4S , id @D 3S

)
D

FalseD x →
(
4S , 3S

)
D

:
(
IntS , IntS

)
D ↪→

Λh1, h2, h3, h4, h5, h6.protocasev Falseh6 () with h1 of
Trueh5 x′ → let id′ = λz′.z′ in (id′@•, id′@•)
Falseh6 x′ → (•, •)

: ∀t, tid. h1 : IsSum t,
h2 : True ∈ t ? IsInt tid,

h3 : True ∈ t ? (tid → tid) ∼ (3̂ → 3̂),
h4 : True ∈ t ? (tid → tid) ∼ (4̂ → 4̂),
h5 : True ∈ t ? HasC t True () D ,
h6 : HasC t False () D

⇒ (4̂, 3̂)

Here the identity function λDz.z is monovariant, so it could not be applied both to 4S

and 3S . The unification predicates could never be proved together, and would therefore yield
an error in constraint solving. Indeed, the right hand side of the first branch could not be
specialized in isolation! However, as the predicate is guarded with a false condition, constraint
solving is possible, and after evidence elimination and reduction we obtain

data Bool1 = False1 ()

caseD False1 () of
False1 x → (•, •) : (4̂, 3̂)

which is a desirable result, since the problematic branch could never be taken in the residual
code. �

1We say expressions like these are ambiguous, meaning they contain predicates that cannot be solved, not
because it is impossible to build evidence for them, but because we do not know which evidence is required.
Ambiguous type schemes have been defined by Mark Jones as a part of his theory of qualified types [Jones, 1994;
Jones, 1993]

40 CHAPTER 3. STATIC BRANCH ERASURE

Example 3.3

data EitherD = LeftD IntS | RightD IntS

letD f = λDx.λDy.x in
letD g = λDe. caseD e of

LeftD x → lift x
RightD y → letD id = λDz.z in

letD dummy =
(
id @D f, id @D (λDx.λDy.y)

)
D in

lift y
in
(
f @D 4S @D 3S , g @D (LeftD 2S)

)
D

:
(
IntS , IntD

)
D

This example is more complex. In the second branch, function f , which returns the
first of two (static) arguments, must have the same type as a function that returns the
second argument, by virtue of the monovariant identity function. As a result, both function
arguments would have to belong to the same residual type, and the expression f @D 4S @D 3S

could not be specialized. However, since constructor Right does not appear in the type, there
is no error.

data Either1 = Left1 2̂

let f ′ = λx′.λy′.x′ in
let g′ = λe′. case e′ of

Left1 x → 2
in
(
f ′@ •@•, g′@(Left1 •)

)
D

: (4̂, Int)

Should we change the source expression to

letD f = . . .
in
(
f @D 4S @D 3S , g @D (RightD 2S)

)
D

we would not be able to solve it, since types 4̂ and 3̂ are not the same.
Here, the branches can be correctly specialized by themselves, and it is their combination

with the rest of the expression what causes the problems. The principle is the same —
knowing that the problematic part could never be evaluated in the residual code, it is good
to erase it and specialize successfully. �

It is in examples like the ones above when the partially static quality of a dynamic sum
definition becomes most noticeable. A specialization can switch from valid to impossible with
no modification whatsoever of the problematic part, only by changing which constructors must
appear in the type! We have seen this behavior in static case expressions — see example 2.26.

The following examples are similar to the examples above, only making the sum types
and case expressions static instead of dynamic. As a result, the constructors and the case
structure are removed from the residual code. The appropriate branch is taken and the rest
of them are naturally discarded, even if they cannot be specialized correctly in isolation, or
if they cause problems when combined with the rest of the expression.

3.1. STATIC INFORMATION IN DYNAMIC SUMS 41

Example 3.4

data BoolS = TrueS () D | FalseS () D

P̀
caseS FalseS () D of

TrueS x → letD id = λDz.z in
(
id @D 4S , id @D 3S

)
D

FalseS x →
(
4S , 3S

)
D

:
(
IntS , IntS

)
D

↪→
casev False of

True → let id′ = λDz′.z′ in (id′@•, id′@•)
False → (•, •)

: (4̂, 3̂)

where the residual expression reduces to

(•, •) : (4̂, 3̂)

�

Example 3.5

data EitherS = LeftS IntS | RightS IntS

letD f = λDx.λDy.x in
letD g = λDe. caseS e of

LeftS x → lift x
RightS y → letD id = λDz.z in

letD dummy =
(
id @D f, id @D (λDx.λDy.y)

)
D in

lift y
in
(
f @D 4S @D 3S , g @D (LeftS 2S)

)
D

:
(
IntS , IntD

)
D

Here, function g is applied to an argument that specializes to residual type Left 2̂, so e
must have the same type. The casev construct generated by the static case can then be
reduced choosing the Left branch, getting

let f ′ = λx′.λy′.x′ in
let g′ = λe′.2

in (f ′@ •@•, g′@•) D

: (4̂, Int)
�

These examples illustrate the similarities between static and dynamic sum type special-
ization. Indeed, in both levels there is static information allowing to discard the parts that
would lead to a specialization failure. There is certainly more static information in a static
case expression than in a dynamic one — with the former we can tell during specialization
precisely which branch will be taken, whereas with the latter, we can only know certain
branches will not be taken!

42 CHAPTER 3. STATIC BRANCH ERASURE

Example 3.6 It is not always possible to discard the presence of a dynamic constructor in
the residual type. In that case, no branches can be erased.

data BoolD = TrueD () D | FalseD () D

letD id = λDz.z in
letD true = id @D (TrueD () D) in
letD false = id @D (FalseD () D) in
caseD

(
fstD (false, true) D

)
of

TrueD x → letD id = λDz.z in
(
id @D 4S , id @D 3S

)
D

FalseD x →
(
4S , 3S

)
D

:
(
IntS , IntS

)
D

Compare this expression to example 3.2. Here, the fst projection is meant to remain in
the residual code, so both constructors must belong to the residual type. No branches can be
erased; in particular, the first one needs to be specialized, which cannot be done successfully
since 4̂ and 3̂ are different residual types. �

3.2 Enhancing branch erasure

Russo’s formulation uses static information as we have shown, mainly to allow solving other-
wise ambiguous expressions, which occur rather frequently — at least every time a constructor
with a static argument is not used in the source program. The effect of guarded predicates
in rule (DCASE) is to somehow ignore the specializations of branches that are removed from
the code. However, they are not entirely ignored! The first premise involving specialization
of the branches —see premises transcribed above— states that they should all specialize to
the same residual type τ ′, including those that will be removed from the residual code. This
is independent of making the predicate contexts ∆j conditional.

Example 3.7
data BoolD = TrueD () D | FalseD () D

caseD FalseD () D of
TrueD x →

(
11S , 3S

)
D

FalseD x →
(
4S , 3S

)
D :
(
IntS , IntS

)
D

Applying rule (DCASE) to this expression, the set of predicates ∆j is empty in both
branches, because no assumption is needed for specializing tuples of static numbers. However,
specialization is not possible, because the body of the first branch has residual type (1̂1, 3̂)
whereas the second branch has residual type (4̂, 3̂). Making ∆j conditional does not help: the
residual types are not the same, so the rule cannot be applied. �

Compare this example to example 3.2, where the expression has a similar structure. In
that example, specialization was possible despite the problems in the first branch. Here,
specialization cannot be achieved because the first and second branches have different residual
types, even though the first branch can never be taken. Surely this is an undesirable limitation
— if certain branches can be safely erased, their residual types need not be taken into account.

In our approach, we relax some of the rules so that only the branches that will remain
in the code must have the same residual type. This has the effect of ignoring unnecessary

3.2. ENHANCING BRANCH ERASURE 43

(DCASE-2)

∆ | Γ
P̀

e : DD ↪→ e′ : τ ′e
∆ `̀ vd : IsSum τ ′e
∆

S̀R
τ ↪→ τ ′

h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : τ ′j → τ ′′j

∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

∆ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

(RT-DCASE-2)

∆ | ΓR R̀T
e′ : τ ′e

∆ `̀ vd : IsSum τ ′e
h̄j : ∆j | ΓR R̀T

λx′j .e
′
j : τ ′j → τ ′′j

∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

∆ | ΓR R̀T
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

Figure 3.1: New version of rules for branch elimination in dynamic case expressions

branches completely, as opposed to just ignoring the constraints used for their specialization.
We argue it is an improvement over the original formulation, in the sense that it yields more
valid specializations without losing consistency.

Our proposal involves changing two of the rules defined by Russo [2004] (see section 2.5)
namely rules (DCASE) and (RT-DCASE). The new versions are presented in figure 3.1.

Rule (DCASE-2) differs from rule (DCASE) in how the specialization of branches is spec-
ified. Instead of having all the same residual type τ ′, now the body of each branch has a
potentially different residual type τ ′′j . The last premise states that they must all unify with
the final residual type τ ′, by means of a predicate that is made conditional, as the rest of
them. As a result, only the branches appearing in the specialized case expression must have
the same residual type; otherwise the unification predicate can be proved trivially.

Rule (RT-DCASE-2) is a natural adaptation of rule (RT-DCASE) to fit the new corre-
sponding specialization rule.

Example 3.8 Having modified the rules, the following expression

data BoolD = TrueD () D | FalseD () D

caseD FalseD () D of
TrueD x →

(
11S , 3S

)
D

FalseD x →
(
4S , 3S

)
D :
(
IntS , IntS

)
D

44 CHAPTER 3. STATIC BRANCH ERASURE

can be specialized to

Λh1, h2, h3, h4.

protocasev Falseh3 () with h1 of
Trueh2 x → (•, •)
Falseh3 x → (•, •) : ∀t, t1, t2. h1 : IsSum t,

h2 : True ∈ t ? HasC t True (),
h3 : HasC t False (),
h6 : True ∈ t ? (1̂1, 3̂) ∼ (4̂, 3̂) ⇒ (4̂, 3̂)

Constraint solving can detect constructor True needs not appear in the code, so h3 can
be assigned value 1, h1 is {False1}, and h2 and h4 are assigned evidence •. Finally we get

data Bool1 = False1 ()

protocasev False1 () with {False1} of
True• x → (•, •)
False1 x → (•, •) : (4̂, 3̂)

and after reduction,

case False1 () of
False1 x → (•, •) : (4̂, 3̂)

�

The new rules preserve all the properties proved for the original extension. The proofs
are presented together with those of the next chapter, for the propositions involving the rules
that have changed.

In summary, we have explored the role of partially static information in the specialization
of dynamic case expressions. We have shown it is not only convenient but essential for
achieving useful specializations in a big family of terms. Guided by this notion, we have
introduced a slight modification to the rule for specializing case expressions which improves the
use of static information. Our proposal takes better advantage of branch erasure and allows
more valid specializations than the original formulation, keeping consistency and preserving
all the good properties of the system.

Chapter 4

Type Specialization of Polyvariant
Sums

The specialization of dynamic sum types we have presented so far can generate multiple
copies of a data type, but for each copy, there can be at most one residual summand for each
constructor in the corresponding source definition. For example, given the data declaration

data DD = OnlyD IntS

the source expression (
OnlyD 11S ,OnlyD 4S

)
D :
(
DD ,DD

)
D

can be specialized and solved to

data D1 = Only1 1̂1
data D2 = Only2 4̂

(Only1 •,Only2 •) : (D1, D2)

but the similar expression

letD id = λDx.x in(
id @D (OnlyD 11S), id @D (OnlyD 4S)

)
D :
(
DD ,DD

)
D

cannot be specialized at all. Function id being monovariant, both tagged expressions must
specialize to the same residual sum type D′, but D′ cannot be defined to have constructors
Only 1̂1 and Only 4̂ at the same time!

Certainly, function id could be made polyvariant so each tagged expression could belong to
a different residual type — we would then have constructors Only1 1̂1 and Only2 4̂ belonging
to residual types D1 and D2 respectively, as before. But we could also build a new residual
type D′ having both summands, and let id specialize to type D′ → D′. We would then have
the following residual code:

data D′ = Only1 1̂1 | Only2 4̂

let id′ = λx′.x′ in
(id′@(Only1 •), id′@(Only2 •)) : (D′, D′)

45

46 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

letD f = λDx.lift x in
(
f @D 11S , f @D 6S

)
D :
(
IntD , IntD

)
D

Expression cannot be specialized

letD f = poly λDx.lift x
in
(
spec f @D 11S , spec f @D 6S

)
D

:
(
IntD , IntD

)
D

let f ′ = Λh.λx′.h
in (f ′((11))@•, f ′((6))@•)

: (Int, Int)

letD f = λDpx.caseD px of
PolyD x → lift x

in
(
f @D (PolyD 11S), f @D (PolyD 6S)

)
D

:
(
IntD , IntD

)
D

let f ′ = λpx′.case px′ of
Poly1 x → 11
Poly2 x → 6

in (f@(Poly1 •), f@(Poly2 •))
: (Int, Int)

Specialization via polyvariant functions Specialization via polyvariant sums

Figure 4.1: Alternatives for achieving polyvariance

Here function id needs not be polyvariant, because both arguments belong to the same residual
type. Indeed, specializing dynamic tagged terms this way is an alternative approach for
achieving polyvariance! In the expression above, constructor Only is applied to expressions
with different residual types — 11S and 4S — to produce expressions with the same one —
D′. Thus, they provide another way to pass different static arguments to the same function, id
in this case. For this reason, sum types that can be specialized this way are called polyvariant
sum types. Figure 4.1 compares the two approaches for polyvariance in a simple example.

In this chapter we extend the principal type specialization system to introduce polyvariant
sum types. These are not presented as a modification to dynamic sum types but as an
addition: both kinds of sum types are kept, identified by a keyword used in their declaration
and specialized accordingly.

The extension involves adding new constructs to the term and type languages, in both
the source and residual versions, to express polyvariant sum types. New predicates are in-
troduced, as well as new rules for entailment, residual term reduction, specialization and
residual typing. Our extension is mainly based on dynamic sum types (see section 2.5 and
modifications in chapter 3) and takes elements from specialization of polyvariant functions as
well (section 2.3.1).

4.1 Source language

We extend the source language to allow polyvariant sum declarations together with regular
data declarations. As before, constructors are distinguished lexically and take only one ar-
gument. As we use letter D for regular dynamic sum types and K for their constructors, we
will use letters Y and L for their polyvariant counterparts.

Definition 4.1 Let D and Y denote sum type names and K and L constructor names. A
source term, denoted by e, is an element of the language defined by the following grammar:

4.2. RESIDUAL LANGUAGE 47

e ::= [ddcl]∗ ep

ddcl ::= . . . | polydata Y D = es
es ::= L D

1 τ || . . . || L D

n τ
ep ::= . . . | L D ep

| . . . | caseD ep of [brp]+

brp ::= LD x → ep

The structure of the grammar is the same as the one presented in section 2.5, with
the only addition of the polydata keyword to declare polyvariant sum types. Polyvariant
constructors can appear wherever regular dynamic ones can, and the case construct is the
same for expressions of any of these types.

Source types are only extended with polyvariant sum names.

Definition 4.2 A source type, denoted by τ , is an element of the language defined by the
following grammar:

τ ::= IntD | IntS | (τ, . . . , τ) D | τ →D τ | poly τ | DD | Y D

where the type (τ1, . . . , τn) D is a finite tuple for every possible arity n. The names D and Y
cannot be names that already exist, like Int, etc.

4.2 Residual language

4.2.1 Residual terms

Residual terms also have a similar structure to those defined previously for dynamic data
types.

Definition 4.3 Let D and Y denote sum type names and K and L constructor names. A
residual term, denoted by e′, is an element of the language defined by the following grammar:

e′ ::= [ddcl′]∗ e′p
ddcl′ ::= . . . | data Y n = es′

es′ ::= L
v′p
1 τ || . . . || L v′p

n τ
e′p ::= . . . | L e′p

| . . . | case e′p of [br′p]+

| . . . | polycasev e′p with v′p and [v′p]+ of [br′′p]+

br′p ::= L x → e′p
br′′p ::= L → e′p

v′p ::= . . . | {Lk,i}k∈I,i∈I′k
| n

i |
〈
n,
(
v′p
)
i∈I′

〉
| v′p � v′p

Residual expressions involving sum-types may now be generated by polyvariant or mono-
variant definitions — they are both declared with the data keyword. Constructors generated
by polyvariant sums can appear in tagged values and case expressions just as regular dynamic
ones. Superscripts in L tags are used as a pair n

i , where n distinguishes among all the pos-
sible data types generated by a single source declaration, and i identifies the different copies
generated by a single source constructor. When v = n

i , we will note L v
k as Ln

k,i .

48 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

Example 4.4 Polyvariant sum types can generate multiple residual data types just as mono-
variant sum types can. They can also generate multiple versions of their constructors. The
following expression

polydata P D = PolyD IntS

letD id = λDz.z in(
id @D (PolyD 11S), id @D (PolyD 4S),PolyD 9S

)
D :
(
PD ,PD ,PD

)
D

has three appearances of constructor Poly: the first two must belong to the same residual type
since they are both arguments of id, but the third appears independently. So the specialized
code has two data declarations, the first of which has two copies of the constructor.

data P1 = Poly1
1 1̂1 | Poly1

2 4̂
data P2 = Poly2

1 9̂

let id′ = λz′.z′ in
(id′@(Poly1

1 •), id′@(Poly1
2 •),Poly2

1 •) : (P1,P1,P2)
�

Specialization of a case expression on polyvariant sum types requires information about
the residual data definition: if a constructor does not appear in it, the branches must be
erased, and if it does, a different branch must be built for each of its versions. Now all
this information might not be available if the expression is specialized independently. The
polycasev structure — just as the protocasev for regular dynamic sum types — expresses
the result of specializing a case construct when some information is missing, and can be
reduced to a residual case expression as soon as it is possible — see section 4.2.4.

New forms of evidence are necessary for gathering this information. Described by v′p in
the grammar above, they are explained in detail in section 4.2.3.

4.2.2 Residual types

Residual types are extended with polyvariant sum-type names and with new predicates.

Definition 4.5 Let t denote a type variable from a countably infinite set of variables and s
a type scheme variable from another countably infinite set of variables, all of them disjoint
with any other set of variables already used. A residual type, denoted by τ ′, is an element of
the language given by the grammar

τ ′ ::= t | Int | n̂ | τ ′ → τ ′ | (τ ′, . . . , τ ′) | poly σ | Dn | Y n

ρ ::= δ ⇒ ρ | τ ′
σ ::= s | ∀s.σ | ∀t.σ | ρ
δ ::= IsInt τ ′ | τ ′ := τ ′ + τ ′ | IsMG σ σ | δd | δe

δd ::= IsSum τ ′ | HasC τ ′ Kk τ ′ | K ∈ τ ′ ? δ
δe ::= IsPolySum τ ′

| HasMGC τ ′ Lk σ
| HasMGBr τ ′ Lk σ τ ′

| HasPolyC τ ′ Lk τ ′

| L ∈ τ ′ ? δ

4.2. RESIDUAL LANGUAGE 49

The predicates described by δe express relationships between residual types generated
from a polyvariant sum and their constructors. Intuitively, they have the following meaning:

• IsPolySum τ ′ is true whenever type τ ′ is a residual sum type generated from a polyvari-
ant sum definition.

• HasMGC τ ′ Lk σ is true if τ ′ is a residual type including summands Ln
k,1 τ ′1, . . . ,

Ln
k,m τ ′m such that type scheme σ is more general than τ ′i for i = 1, . . . ,m.

• HasMGBr τ ′ Lk σ τ ′′ is true if τ ′ is a residual type including summands Ln
k,1 τ ′1, . . . ,

Ln
k,m τ ′m such that type scheme σ is more general than the function type τ ′i → τ ′′ for

i = 1, . . . ,m.

• HasPolyC τ ′1 Lk τ ′2 is true if type τ ′1 is a residual sum type that includes a summand
Ln

k,i τ ′2.

4.2.3 Entailment and evidence

The idea behind the predicates is formalized in the entailment relation, whose new rules are
stated in figure 4.2.

New notation is introduced for some of these rules. For a residual sum type declaration

data Y n = Ln
1,1 τ ′1,1 | Ln

1,2 τ ′1,2 | . . . | Ln
k,i τ ′k,i | . . . | Ln

m,j τ ′m,j

we define Y n(Lk,i) to be τ ′k,i, that is, the argument of the constructor Ln
k,i , whereas αk(Y n)

denotes the number of copies of constructor Lk in Y n’s declaration.
Entailment rules describe under what conditions a predicate can be proved, providing

evidence for it when necessary. Of the eight rules presented in figure 4.2, the first four reflect
the basic meaning of each predicate:

• IsPolySum τ ′ can only be proved if τ ′ is a sum type generated from a polyvariant source
declaration, and the evidence for this is the set of constructor names in its definition.

• HasMGC τ ′ Lk σ can be proved if σ can be proved to be more general than any
argument of a constructor Lk in τ ′.

• HasMGBr τ ′ Lk σ τ ′′ can be proved if τ ′ is a sum type Y n and σ can be proved to be
more general than function τ ′k,i → τ ′′ for any Ln

k,i τ ′k,i in τ ′’s declaration. The evidence
has two components: the first one is n and the second is an enumeration of the evidence
proving the more general relation between σ and each function.

This predicate is used to express constraints on the possible branches of a case expression
on τ ′ — see explanation of rule (POLYCASE) in section 4.4. Intuitively, it constrains
the arguments of each constructor Lk so that all the residual branches corresponding to
this tag can be correctly generated. Whereas predicate HasMGC constrains the residual
arguments themselves, predicate HasMGBr places restrictions on the branches they can
generate.

• HasPolyC τ ′ Lk τ ′′ can be proved if τ ′ is a sum type Y n, and there exists Ln
k,i τk,i in

its declaration such that τk,i and τ ′′ unify. The evidence is then the pair n
i .

50 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

(IsPolySum)
Y n is defined as

{
Ln

k,i τ ′k,i

}
k∈I,i∈I′k

∆ `̀ {Lk,i}k∈I,i∈I′k
: IsPolySum Y n

(HasMGC)
(∆ `̀ IsMG σ′ Y n(Lk,i))i=1,...,αk(Y n)

∆ `̀ HasMGC Y n Lk σ′

(HasMGBr)

(
∆ `̀ vk,i : IsMG σ′ (Y n(Lk,i) → τ ′)

)
i=1,...,αk(Y n)

∆ `̀ 〈n, (vk,i)i=1,...,αk(Y n)〉 : HasMGBr Y n Lk σ′ τ ′

(HasPolyC)
∆ `̀ Y n(Lk,i) ∼ τ ′

∆ `̀ n
i : HasPolyC Y n Lk τ ′

(Comp-MGC)
∆ `̀ HasMGC τ ′ Lk σ′2 ∆ `̀ IsMG σ′1 σ′2

∆ `̀ HasMGC τ ′ Lk σ′1

(Comp-MGBr)
h : ∆ `̀ v : HasMGBr τ ′ Lk σ′ τ ′r h : ∆ `̀ v′ : IsMG σ σ′

h : ∆ `̀ v � v′ : HasMGBr τ ′ Lk σ τ ′r

(HasPolyC-Guard)
∆,HasPolyC τ ′ Lk τ ′′,∆′ `̀ v : ∆′′

∆,HasPolyC τ ′ Lk τ ′′,∆′ `̀ v : Lk ∈ τ ′ ? ∆′′

(IsPolySum-Guard)
h̄ : ∆ `̀ v̄′ : ∆′ ∆′′ `̀ vy : IsPolySum τ ′

∆′′, h̄ : Lk ∈ τ ′ ? ∆ `̀ ifv Lk ∈ vy then v̄′ else • : Lk ∈ τ ′ ? ∆′

Figure 4.2: Entailment rules for predicates involving polyvariant sums

4.2. RESIDUAL LANGUAGE 51〈
n, (v′i)i∈I

〉
� v .

〈
n, (v′i ◦ v)i∈I

〉
polycasev e′ with {Lk,i}k∈I,i∈I′k

and
(〈

nj , (vj,i)i∈I′j

〉)
j∈B

of
(
Lj → e′′j

)
j∈B

.
case e′ of(

L
nj

j,i x′j,i → e′j,i

)
j∈(B∩I),i∈I′j

(vj,i[e′′j] . λx′j,i.e
′
j,i)

Figure 4.3: Reduction rules for parallel composition and the polycasev construct

The other four rules are just natural extensions to the system for dynamic sum types.
Rule (Comp-MGC) gives an alternative way for proving HasMGC τ ′ Lk σ by proving it for
a type scheme σ′ and proving σ is more general than σ′. Rule (Comp-MGBr) is the equivalent
for predicate HasMGBr — evidence v1 � v2 represents composition of a single conversion with
an enumeration of them, see reduction rules in figure 4.3. Rule (HasPolyC-Guard) expresses
that when HasPolyC τ ′ Lk τ ′′ holds, we are sure that Lk belongs to τ ′. Finally, rule
(IsPolySum-Guard) provides evidence for a conditional predicate involving a polyvariant sum
type when we have no hypothesis as to whether the condition holds.

The predicates and entailment rules respect the good properties of Mark Jones’s abstract
predicate system [1994] (see section 1.3), and in particular, rules (Trans), (Close), (Evars)
and (Cut), which will be repeatedly used in our proofs. Substitution of type variables in
predicates and of evidence variables in expressions is straightforward — see extensions in
appendices A.4 and A.5.

The following lemma allows applying rule (IsPolySum-Guard) with a little more flexibility.

Lemma 4.6 If h̄ : ∆ `̀ vy : IsPolySum τ ′,
h̄1 : ∆′

1 `̀ v̄2 : ∆′
2 and

h̄ : ∆ `̀ v̄1 : Lk ∈ τ ′ ? ∆′
1

then h̄ : ∆ `̀ v̄′ : Lk ∈ τ ′ ? ∆′
2

where v̄′ = ifv Lk ∈ vy then v̄2[v̄1/h̄1] else •

4.2.4 Reduction of residual terms

As we have mentioned, a polycasev expression can be reduced to a residual case expression
when all the required information is available. Figure 4.3 shows the reduction rule, together
with a reduction rule for one of the evidence expressions introduced.

The evidence construct v1 � v2 represents parallel composition. It can be reduced when v2

is of the form
〈
n, (v′i)i∈I

〉
, and the result is composing v with each v′i.

A polycasev construct that can be reduced has four elements:

• The control expression e′.

• A constructor set {Lk,i}k∈I,i∈I′k
. It is meant to be the set of constructors that make up

the type of e′.

52 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

• For each branch Lj , a modified branch Lj → e′′j . Here, the variable that is normally
bound by pattern matching is embedded in e′′j .

• For each branch Lj , a piece of evidence
〈

nj ,
(
v′j,i

)
i∈I′j

〉
where n is an index and each

v′j,i represents a conversion such that v′j,i[e
′′
j] reduces to a residual lambda expression

λx′j,i.e
′
j,i.

The reduction has two main aspects. Firstly, only the branches corresponding to the
constructors that are actually part of the sum type remain — branches in the resulting case
expression are those for j ∈ (I ∩ B), just as in the protocasev reduction rule. Secondly, for
the constructors that do remain, a separate branch is generated for each conversion available
— there is intended to be one per constructor copy. After applying the conversions, variables
x′j,i can be again bound by pattern matching.

Example 4.7 In the following expression

polycasev e′ with {Poly1, Poly2} and 〈1, ([]((6)), []((11)))〉
of Poly → Λh.λx.h

there are two conversions for a single constructor. Both of them can be applied to the body
of the branch, yielding expressions λx.6 and λx.11 respectively. Then the term reduces to

case e′

of Poly1
1 x → 6

Poly1
2 x → 11

�

Additionally, the equivalence of residual terms is extended to handle polycasev expres-
sions with free evidence variables, that cannot be reduced. See appendix A.6 for details.

4.3 Residual typing

System RT specifies the typing of residual terms. We extend it with two rules for type
checking tagged and case expressions on polyvariant sum types — the rules are presented in
figure 4.4. They have a natural correspondence with specialization rules in section 4.4.2 so
they will not be further explained here.

The following lemma does not appear in Mart́ınez López’s work but is necessary for some
of our proofs.

Lemma 4.8 If h̄ : ∆ | ΓR R̀T
e′ : σ

then EV (e′) ⊆ h̄

The proofs of the following propositions are extended for the new rules. The first one states
that an RT judgment can be weakened by strengthening the predicate context; the second
shows that a conversion between two type schemes indeed relates them in their contexts.

Proposition 4.9 If h̄ : ∆ | ΓR R̀T
e′ : σ and ∆′ `̀ v̄ : ∆

then ∆′ | ΓR R̀T
e′[v̄/h̄] : σ

4.4. SPECIALIZATION RULES 53

(RT-POLYCONSTR)

∆ | ΓR R̀T
e′ : τ ′j

∆ `̀ IsPolySum τ ′ ∆ `̀ vj : HasPolyC τ ′ Lj τ ′j
∆ | ΓR R̀T

L
vj

j e′ : τ ′

(RT-POLYCASE)

∆ | ΓR R̀T
e′ : τ ′e

∆ `̀ vy : IsPolySum τ ′e h̄k : ∆k | ΓR R̀T
e′′k : σk

∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | ΓR R̀T
polycasev e′ with vy and (wk)k∈B of(

Lk → e′′k[v̄k/h̄k]
)
k∈B

: τ ′

Figure 4.4: Residual typing rules involving polyvariant sum types

(SR-POLYDATA)

∆ `̀ IsPolySum τ ′ ∆k S̀R
Y (Lk) ↪→ σk

∆ `̀ Lk ∈ τ ′ ? ∆k

∆ `̀ Lk ∈ τ ′ ? HasMGC τ ′ Lk σk

Lk∈Y

∆
S̀R

Y D ↪→ τ ′

Figure 4.5: Source-residual relation for polyvariant sum types

Theorem 4.10 If h̄ : ∆ | ΓR R̀T
e′ : σ, and C : (h̄ : ∆ | σ) ≥ (h̄′ : ∆′ | σ′)

then h̄′ : ∆′ | ΓR R̀T
C [e′] : σ′

4.4 Specialization rules

4.4.1 SR Relation

The SR relation associates source types with residual types that can be generated from them.
It is one of the two relations that make up the specialization system, and is essential to the
achievement of principality as shown by Mart́ınez López [2002; 2005]. Our extension to the
SR system consists of just one rule, specifying which residual types can be obtained from the
only source type we have added — Y D . The rule is presented in figure 4.5. We define Y (Lk)
as the argument of constructor Lk in the (source) definition of Y .

Rule (SR-POLYDATA) specifies that an expression of residual type τ ′ can be generated
from one of source type Y D if:

1. τ ′ has been generated from a polyvariant sum type;

2. For every Lk in the definition of τ ′, there is a type scheme σk SR-related to the source
argument of Lk and more general than any of the residual arguments of Lk.

The conditional predicates in the second condition restrict it to apply only to constructors

54 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

(POLYCONSTR)

∆
S̀R

Y D ↪→ τ ′e
∆ | Γ

P̀
e : Y (Lj) ↪→ e′ : τ ′j ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j

∆ | Γ
P̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

(POLYCASE)

∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e
∆ `̀ vy : IsPolySum τ ′e
∆

S̀R
τ ↪→ τ ′ h̄k : ∆k | Γ P̀

λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk

∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

: τ ′

Figure 4.6: Specialization rules involving polyvariant sums

actually present in the definition of τ ′. For the ones that do not, premises are trivially proved
with evidence • — see entailment rules in figure 4.2.

System SR has several useful properties, which are preserved by our addition.

Proposition 4.11 If ∆
S̀R

τ ↪→ σ

then S ∆
S̀R

τ ↪→ S σ

Proposition 4.12 If ∆
S̀R

τ ↪→ σ and ∆′ `̀ ∆
then ∆′

S̀R
τ ↪→ σ

Theorem 4.13 If ∆
S̀R

τ ↪→ σ and C : (h̄ : ∆ | σ) ≥ (h̄′ : ∆′ | σ′)
then ∆′

S̀R
τ ↪→ σ′

We also add the following lemma, necessary for some of our proofs.

Lemma 4.14 If ∆
S̀R

Y D ↪→ σ

then σ = ∀β̄.∆′ ⇒ τ and
∆,∆′ `̀ IsPolySum τ

4.4.2 P Relation

Finally, we extend specialization rules to specialize tagged and case expressions that involve
polyvariant sums. These are presented in figure 4.6.

Rule (POLYCONSTR) specifies how a constructor expression from a polyvariant sum
type is specialized. Firstly, the residual type has to be SR-related to the source type; this
premise is analogous to the one in rule (DCONSTR) for specializing dynamic sum types (sec-
tion 2.5.3) and has the same purpose — to rule out undesirable specializations. Additionally,
the expression e must specialize to an expression e′ of residual type τ ′j such that the residual

4.4. SPECIALIZATION RULES 55

sum type must include a summand Lj τ ′j in its definition. Predicate HasPolyC expresses this
last condition; evidence vj is used to obtain the right copy of both the data definition and
the constructor.

Rule (POLYCASE) specifies the specialization of case expressions. The first two premises
involve the specialization of the control expression e — it must specialize to an expression
with a residual type τ ′e that can be proved to be generated from a polyvariant sum. The next
premise states that the residual type τ ′ must be SR-related to the source type. The next
three conditions must hold for every branch in the case expression, that is for each k in the
set B of branch numbers. The pattern variable xk is bound to the body ek and specialized as
a dynamic function — notice the resulting type is not syntactically restricted to be a function
type as in rule (DCASE) but can be any type scheme. The specialized function is used to
build the branches of the resulting polycasev expression. Now since each constructor can
generate more than one copy, each branch could be replicated. The last premise uses predicate
HasMGBr to constrain every possible branch: seen as functions, they must all be a suitable
instance of σ′k, and all bodies must have residual type τ ′, the type of the final specialized
expression — see entailment rule (HasMGBr) in figure 4.2. Evidence for this predicate is
also a part of the polycasev construct and is used for generating the correct branches when
reducing it — see figure 4.3.

As in rule (DCASE), guarded predicates are used to discard the branches corresponding
to constructors that do not appear in the definition of τ ′e. Evidence substitution in the body
of the specialized branches relates ∆ to ∆k.

Example 4.15 Specialization of polyvariant sum expressions can lead to multiple data dec-
larations as in regular dynamic sums, and also to replication of the constructors in a single
declaration.

polydata P D = PolyD IntS

P̀

(
PolyD 11S ,PolyD 4S

)
D :
(
P D , P D

)
D ↪→

Λh1, h2, h3, h4, h5, h6.

(Polyh3 •,Polyh6 •) : ∀t1, t2. h1 : IsPolySum t1,
h2 : HasMGC t1 Poly (∀t.IsInt t ⇒ t),
h3 : HasPolyC t1 Poly 1̂1,
h4 : IsPolySum t2,
h5 : HasMGC t2 Poly (∀t.IsInt t ⇒ t),
h6 : HasPolyC t2 Poly 4̂ ⇒ (t1, t2)

If constraint solving detects t1 and t2 are independent, two different types are generated: h3

is assigned value 1
1 and h6, 2

1 . The rest of the predicates are successfully verified but the
evidence is not used in the expression.

data P1 = Poly1
1 1̂1

data P2 = Poly2
1 4̂

(Poly1
1 •,Poly2

1 •) : (P1,P2)

If, on the contrary, t1 and t2 must unify, a single data type must be built: h3 and h6 are
assigned values 1

1 and 1
2 respectively.

56 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

data P1 = Poly1
1 1̂1 | Poly1

2 4̂

(Poly1
1 •,Poly1

2 •) : (P1,P1)

�

Example 4.16 Since polyvariant sum types can generate more summands than there are in
the source definition, constructors do not cause information flow between their arguments.
Compare this to example 2.30.

polydata P D = PolyD IntS

P̀
letD id = λDz.z
in λDx.

(
id @D (PolyD x), id @D (PolyD 4S), lift x

)
D : IntS →D

(
PD ,PD , IntD

)
D

↪→
Λh1, h2, h3, h4, h5.
let id′ = λz′.z′

in λx′.(id′@(Polyh4 x′), id′@(Polyh5 •), h1)
: ∀t1, t2. h1 : IsInt t2,

h2 : IsPolySum t1,
h3 : HasMGC t1 Poly (∀t.IsInt t ⇒ t),
h4 : HasPolyC t1 Poly t2,

h5 : HasPolyC t1 Poly 4̂ ⇒ t2 → (t1, t1, Int)

Here, constructor Poly on t1 must have at least arguments t2 and 4̂, but being polyvariant,
they do not have to be the same. The function could be, for instance, applied to 3S :

P̀
letD id = λDz.z
in
(
λDx.

(
id @D (PolyD x), id @D (PolyD 4S), lift x

)
D
)

@D 3S

:
(
PD ,PD , IntD

)
D

↪→
Λh2, h3, h4, h5.
let id′ = λz′.z′

in
(
λx′.(id′@(Polyh4 x′), id′@(Polyh5 •), 3)

)
@•

: ∀t1. h2 : IsPolySum t1,
h3 : HasMGC t1 Poly (∀t.IsInt t ⇒ t),
h4 : HasPolyC t1 Poly 3̂,

h5 : HasPolyC t1 Poly 4̂ ⇒ (t1, t1, Int)

which can be solved and reduced with no problems to

data P1 = Poly1
1 3̂ | Poly1

2 4̂

(let id′ = λz′.z′

in λx′.(id′@(Poly1
1 x′), id′@(Poly1

2 •), 3))@• : (P1,P1, Int)

�

4.4. SPECIALIZATION RULES 57

Example 4.17 Polyvariant sums are an alternative way to achieve polyvariance. Construc-
tors are applied to static arguments of different types to obtain the same one, and the correct
argument is chosen among the branches that have been replicated. The source expression

polydata P D = PolyD IntS

letD f = λDpx.caseD px of
PolyD x → lift x

in
(
f @D (PolyD 11S), f @D (PolyD 6S)

)
D :
(
IntD , IntD

)
D

specializes to

Λh1, h2, h3, h4, h5.
let f ′ = λpx′.polycasev px′ with h1 and h2 of

Poly → Λh.λx.h

in (f@(Polyh4 •), f@(Polyh5 •))
: ∀t. h1 : IsPolySum t,

h2 : HasMGBr t Poly (∀t′.IsInt t′ ⇒ t′ → Int) Int,
h3 : HasMGC t Poly (∀t′.IsInt t′ ⇒ t′),
h4 : HasPolyC t Poly 1̂1,

h5 : HasPolyC t Poly 6̂ ⇒ (Int, Int)

Constraint solving can detect there is only one type with two constructors and assign values 1
1

and 1
2 to h4 and h5 respectively. Then h1 can be associated with the set

{
Poly1

1,Poly1
2

}
.

Predicate HasMGC is verified, since both 1̂1 and 6̂ are instances of (∀t′.IsInt t′ ⇒ t′). Finally,
predicate HasMGBr must be proved by finding a conversion from the type scheme to the
function τ → Int, for each argument τ of Poly — namely for 1̂1 and 6̂. It can proved with

[]((11)) : (∀t′.IsInt t′ ⇒ t′ → Int) ≥ (1̂1 → Int)
[]((6)) : (∀t′.IsInt t′ ⇒ t′ → Int) ≥ (6̂ → Int)

So h2 is assigned value 〈1, ([]((11)), []((6)))〉. The residual expression and type can then be
solved to

data P1 = Poly1
1 1̂1 | Poly1

2 6̂

let f ′ = λpx′.polycasev px′ with
{
Poly1

1,Poly1
2

}
and 〈1, ([]((11)), []((6)))〉 of

Poly → Λh.λx.h
in (f@(Poly1

1 •), f@(Poly1
2 •)) : (Int, Int)

and reduced to
data P1 = Poly1

1 1̂1 | Poly1
2 6̂

let f ′ = λpx′.case px′ of
Poly1

1 x → 11
Poly1

2 x → 6
in (f@(Poly1

1 •), f@(Poly1
2 •)) : (Int, Int)

�

58 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

Example 4.18 In the following source expressions, we will repeatedly use the following data
definition and function:

polydata EitherD = LeftD IntS | RightD IntS

f = λDex.caseD ex of
LeftD x → x
RightD x → x +S 1S

f is a function of source type EitherD →D IntS .

Rules for specializing a case expression are designed so that all the branches in the residual
version have the same type. This is ensured by predicate HasMGBr.

P̀
letD f = . . . in

(
f @D (LeftD 4S), f @D (RightD 3S)

)
D :
(
IntS , IntS

)
D

↪→ Λh1, h2, h3, h4, h5, h6, h7, h8.
let f ′ = λex.polycasev ex with h2 and (h3, h4) of

Left → Λh.λx′.x′

Right → Λh, h′.λx′.•
in
(
f ′@(Lefth7 •), f ′@(Righth8 •)

)
D

: ∀te, tr. h1 : IsInt tr,
h2 : IsPolySum te,
h3 : HasMGBr te Left (∀t.IsInt t ⇒ t → t) tr,

h4 : HasMGBr te Right (∀t, t′.IsInt t, t′ := t + 1̂ ⇒ t → t′) tr,
h5 : HasMGC te Left (∀t.IsInt t ⇒ t),
h6 : HasMGC te Right (∀t.IsInt t ⇒ t),
h7 : HasPolyC te Left 4̂,

h8 : HasPolyC te Right 3̂ ⇒ (tr, tr)

The last two predicates indicate that te must be a sum type — let us call it Either1 — with
summands Left11 4̂ and Right11 3̂. In order to prove the third predicate, function 4̂ → tr
must be an instance of (∀t.IsInt t ⇒ t → t), so tr must unify with 4̂. Evidence h3 is then
assigned value 〈1, []((4))〉. Now for the fourth predicate, function 3̂ → 4̂ must be an instance
of (∀t, t′.IsInt t, t′ := t + 1̂ ⇒ t → t′), which actually holds. Evidence h4 is then assigned the
value 〈1, []((3))((4))〉. After solving and reducing we get

data Either1 = Left11 4̂ | Right11 3̂

let f ′ = λex′.caseD ex′ of
Left11 x′ → x′

Right11 x′ → •
in (f ′@(Left11 •), f ′@(Right11 •)) : (4̂, 4̂)

4.4. SPECIALIZATION RULES 59

If constructor Right is applied to any other value, we get a similar specialization

P̀
letD f = . . .
in
(
f @D (LeftD 4S), f @D (RightD 3S), f @D (RightD 9S)

)
D :
(
IntS , IntS , IntS

)
D

↪→ Λh1, h2, h3, h4, h5, h6, h7.
let f ′ = . . .

in
(
f ′@(Lefth5 •), f ′@(Righth6 •), f ′@(Righth7 •)

)
D

: ∀te, tr. h1 : IsInt tr,
...
h5 : HasPolyC te Left 4̂,

h6 : HasPolyC te Right 3̂,

h7 : HasPolyC te Right 9̂ ⇒ (tr, tr, tr)

Constraint solving proceeds the same way, but now to prove the HasMGBr predicate on Right,
it must verify that both functions 3̂ → 4̂ and 9̂ → 4̂ are instances of (∀t, t′.IsInt t, t′ := t+1̂ ⇒
t → t′), which is not true! So the expression cannot be solved at all.

The fact that all residual branches must have the same type can also lead to information
flow between the arguments of different summands.

P̀
λy.letD f = . . .
in
(
f @D (LeftD y), f @D (RightD 3S), lift y

)
D : IntS →D

(
IntS , IntS , IntD

)
D

↪→ Λh1, h2, h3, h4, h5, h6, h7, h8, h9.
λy′.let f ′ = λex′.polycasev ex′ with h3 and (h4, h5) of

Left → Λh.λx′.x′

Right → Λh, h′.λx′.•
in
(
f ′@(Lefth8 y′), f ′@(Righth9 •), h2

)
D

: ∀te, ty, tr. h1 : IsInt tr,
h2 : IsInt ty,
h3 : IsPolySum te,
h4 : HasMGBr te Left (∀t.IsInt t ⇒ t → t) tr,

h5 : HasMGBr te Right (∀t, t′.IsInt t, t′ := t + 1̂ ⇒ t → t′) tr,
h6 : HasMGC te Left (∀t.IsInt t ⇒ t),
h7 : HasMGC te Right (∀t.IsInt t ⇒ t),
h8 : HasPolyC te Left ty,

h9 : HasPolyC te Right 3̂ ⇒ ty → (tr, tr, Int)

Constraint solving can detect that tr must unify with 4̂ to prove the HasMGBr predicate
on Right. Now to prove it for Left, the function type ty → tr must be an instance of
∀t.IsInt t ⇒ t → t, which leads to unifying ty with 4̂ to get the function 4̂ → 4̂. The second
predicate can now be proved and h2 can be assigned value 4. After solving and reducing, we
get

data Either1 = Left11 4̂ | Right11 3̂

λy′.let f ′ = λex′.caseD ex′ of
Left11 x′ → x′

Right11 x′ → •
in (f ′@(Left11 y′), f ′@(Right11 •), 4) : 3̂ → (4̂, 4̂, Int)

�

60 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

Example 4.19 As in regular dynamic sum types, conditional predicates appear when there
is not enough information on the summands. They also have the effect of ignoring branches
that cannot be reached.

The expression

polydata EitherDSD = LeftD IntD | RightD IntS

P̀
letD g = λDe.caseD e of

LeftD x → letD id = λDz.z in
fstD

(
lift (id @D 11S), lift (id @D 15S)

)
D

RightD x → lift x +D 1D

in
(
g @D (RightD 4S), g @D (RightD 2S)

)
D :
(
IntD , IntD

)
D

↪→
Λh1, h2, h3, h4, h5, h6, h7.
let g′ = λe′.polycasev e′ with h1 and (h2, h3) of

Left → Λh′1, h
′
2, h

′
3.λx′.let id′ = λz′.z′ in fst (h′1, h

′
1)

Right → Λh.λx′.h + 1
in (g′@(Righth6 •), g′@(Righth7 •))

: ∀te, t′. h1 : IsPolySum te,
h2 : Left ∈ te ? HasMGBr te Left (∀t. IsInt t,

t ∼ 1̂1,

t ∼ 1̂5 ⇒ Int → Int) Int,
h3 : HasMGBr te Right (∀t.IsInt t ⇒ t → Int) Int,
h4 : Left ∈ te ? HasMGC te Left Int,
h5 : HasMGC te Right (∀t.IsInt t ⇒ t),
h6 : HasPolyC te Right 4̂,

h7 : HasPolyC te Right 2̂ ⇒ (Int, Int)

Function id′ has residual type t → t, and evidence h′1 proves t is a one-point integer type.
Then the specialization of lift (id @D n) must be h′1 for any n. But since id is applied to
arguments of types 1̂1, and 1̂5, they should both unify with t′. This is expressed in the type
scheme constraining the Left branch (the one with evidence h2).

Notice that predicate HasMGBr could never be proved if Left had any arguments —
the type scheme itself has a set of predicates that does not hold. However, since it cannot
be derived that Left is actually part of the residual sum type, all predicates regarding this
constructor appear guarded. Constraint solving, detecting it does not appear in the code,
can leave it out of the data definition, and prove these predicates with evidence •.

Now constructor Right does not have any guarded predicates, because the predicates
HasPolyC make the condition true (see rule (HasPolyC-Guard)). Constraint solving forms a
sum type with summands

{
Right11,Right12

}
, and proves the HasMGBr predicate with conver-

sions []((4)) and []((2)).

let f ′ = λe′.polycasev e′ with
{
Right11,Right12

}
and (•, 〈1, ([]((4)), []((2)))〉) of

Left → Λh′1, h
′
2, h

′
3.λx.let id′ = λz′.z′ in fst (h′1, h

′
1)

Right → Λh.λx.h + 1
in (f ′@(Right11 •), f ′@(Right12 •)) : (Int, Int)

4.4. SPECIALIZATION RULES 61

After reduction, we obtain

data EitherDS1 = Right11 4̂ | Right12 2̂

let id′ = λDz′.z′ in
let f ′ = λe′.case e′ of

Right11 x → 4 + 1
Right12 x → 2 + 1

in (f ′@(Right11 •), f ′@(Right12 •)) : (Int, Int)

where the Left branch has been erased. �

The following properties show that P is well behaved with respect to systems RT and SR.

Theorem 4.20 If ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then ∆ | Γ
(RT) R̀T

e′ : σ

where Γ
(RT)

= {x′i : τi | i = 1, . . . , n}
if Γ = {xi : τi ↪→ x′i : τi | i = 1, . . . , n}

Theorem 4.21 If ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then ∆
S̀R

τ ↪→ σ

The following properties also hold.

Proposition 4.22 ? If h̄ : ∆ | Γ
P̀

e : τ ↪→ e′ : σ′ and ∆′ `̀ v̄ : ∆
then ∆′ | Γ

P̀
e : τ ↪→ e′[v̄/h̄] : σ′

Proposition 4.23 ? If ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then S ∆ | S Γ
P̀

e : τ ↪→ e′ : S σ

Lemma 4.24 If h̄ : ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then EV (e′) ⊆ h̄

Lemma 4.25 If h̄ : ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then there exist β̄, ∆σ and τ ′′ such that σ = ∀β̄.∆σ ⇒ τ ′′

4.4.3 A note on HasC, HasPolyC and upper bounds

The new rules on system P look quite similar to the ones for expressions involving regular
dynamic sum types (section 2.5.3 and changes in section 3.2). In fact, in the rules for spe-
cializing tagged expressions — rules (DCONSTR) and (POLYCONSTR) — there is only one
change in the residual sum type’s description: where there used to be a predicate HasC, now
there is a predicate HasPolyC. These two predicates in turn have very similar meanings, the
only difference being that the first one states that a type includes a constructor with an only
argument, whereas the second one states that it is one of potentially many arguments.

Predicate HasC has two additional counterparts for polyvariant sum types, used for speci-
fying the source-residual relation and for specializing case expressions respectively: predicates
HasMGC and HasMGBr.

62 CHAPTER 4. TYPE SPECIALIZATION OF POLYVARIANT SUMS

Rules defining the SR relation for both kinds of sum types differ in just one predicate, as
well — compare rules (SR-DATA) and (SR-POLYDATA). In both of them, for a source sum
type τ to be SR-related to a residual type τ ′, it is necessary that the argument of each source
constructor be related to the argument(s) of the corresponding constructor(s) in τ ′, if they
exist. Suppose constructor j has a source argument τj . In the case of regular sum types, it
suffices to say that if the constructor exists in τ ′’s definition, then the only argument it has is
a type τ ′j such that

S̀R
τj ↪→ τ ′j . Predicate HasC τ ′ Kj τ ′j is enough for expressing this. In

the case of polyvariant sums, there is potentially more than one of these τ ′js, and all of them
need to be in SR-relation with τj . Since we do not know a priori how many of them there are,
we cannot use HasPolyC for stating explicitly what residual arguments the constructor has.
However, we do know that for any such set of residual types, there should be a residual type
scheme σ′j more general than all of them and such that

S̀R
τj ↪→ σ′j . This is why predicate

HasMGC is useful. In this sense, it expresses an upper bound to every possible argument of
a residual constructor.

Rules specifying specialization of case expressions also have the same structure for both
kinds of sum types. Rule (POLYCASE) uses predicate HasMGBr where rule (DCASE-2) uses
predicate HasC in combination with the unification predicate. The parallel here is a little
more subtle, and is related to branches being specialized as functions.

For regular dynamic sum types, each branch can be specialized at most once. For a given
constructor Kj , the pattern matching variable is assumed to have a type τ ′j that must be the
type of the corresponding argument in the sum type definition, if it exists. Predicate HasC is
enough to express this. Separately, the body of the branch has a residual type τ ′′j that must
be the same as the type of the expression only if the Kj is a part of the sum definition. The
guarded unification predicate ensures this last condition.

Now for polyvariant sum types, branches can be specialized more than once, but the exact
number and specific versions cannot be decided a priori. What can be determined is that
every possible branch should respect the form of a function from a summand argument to
the residual type of the expression — a general type scheme σk such that every branch on Lk

(seen as such a function) is an instance of σk. Predicate HasMGBr expresses this condition,
acting as an upper bound to every possible branch on a certain constructor and with a certain
residual argument. In rule (POLYCASE), it appears guarded, so no restriction is placed on
the general branch if there cannot be any instances.

In conclusion, HasC has a triple purpose:

1. To specify the summands of a residual sum type;

2. To state that the arguments are the same as a certain type SR-related to the source
argument (modulo unification).

3. To make sure (in combination with the unification predicate) the only branch a con-
structor can have in a case expression is generated by specialization of the source branch.

With polyvariant sums, these three purposes are fulfilled by different predicates:

1. HasPolyC specifies the summands of a residual sum type;

2. HasMGC states that the arguments are instances of a certain type scheme SR-related
to the source argument.

4.4. SPECIALIZATION RULES 63

3. HasMGBr makes sure that all the branches a constructor can have in a case expression
are instances of a type scheme generated by specialization of the source branch.

Upper bounds are useful when multiple versions of a single source expression can be gen-
erated. They are a key concept for expressing polyvariance in Principal Type Specialization
(see section 2.3.1), and a natural feature of polyvariant sums.

Chapter 5

Extending The Algorithm and The
Proof

In chapter 4, we extended the principal type specialization system to handle polyvariant
sum types, and proved that certain properties are kept after our addition. However, the
preservation of the main property — that of principality — was not established there.

In this chapter, we extend the algorithm for computing principal type specializations
to consider our new rules and constructs. We follow the lines of the constructive proof
in Mart́ınez López’s formulation [2005, chapter 7]: the system has principal specializations
because there is an equivalent algorithm that computes them, for a suitable definition of
equivalence.

The algorithm we extend in this chapter is implemented in a simple prototype written in
Haskell. In section 5.3, we discuss other aspects of it that are not directly related with the
proof of principality.

5.1 A syntax-directed system, S

The rules in system P clearly specify how each construct in both term and type languages
is specialized. However, they are not suitable for describing and algorithm, because they do
not completely follow the structure of a term, that is, they are not syntax-directed. As an
intermediate step to a specialization algorithm, a syntax-directed system — system S — is
presented, with judgments of the form

∆ | Γ
S̀

e : τ ↪→ e′ : τ ′

The rules are adjusted so that for every term, there is at most one rule applicable. Also,
only type expressions are involved in the process, handling qualified types and type schemes
with a generalization operator — see section 2.4.

We extend system S with the rules corresponding to (POLYCONSTR) and (POLYCASE).
They are presented in figure 5.1.

Rule (S-POLYCONSTR) is exactly the same as the original, since there are no type
schemes involved. Rule (S-POLYCASE), however, is different, since the specialization of
the branches must be dealt with. Each of them is specialized under system S, and the
corresponding HasMGBr predicate is built with the generalization of the obtained results.

64

5.1. A SYNTAX-DIRECTED SYSTEM, S 65

(S-POLYCONSTR)

∆
S̀R

Y D ↪→ τ ′e
∆ | Γ

S̀
e : Y (Lj) ↪→ e′ : τ ′j ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j

∆ | Γ
S̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

(S-POLYCASE)

∆ | Γ
S̀

e : Y D ↪→ e′ : τ ′e
∆ `̀ vy : IsPolySum τ ′e
∆

S̀R
τ ↪→ τ ′ h̄k : ∆k | Γ S̀

λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k
σk = GenΓ(∆k ⇒ τ ′k), e′k = Λh̄k.e

′′
k

∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

Figure 5.1: Syntax-directed specialization system for polyvariant sum types

The following properties are preserved by our addition. The first two show that the system
is well behaved with respect to entailment and substitutions, whereas the last establish an
equivalence between systems S and P.

Proposition 5.1 If h : ∆ | Γ
S̀

e : τ ↪→ e′ : τ ′ then h : S ∆ | S Γ
S̀

e : τ ↪→ e′ : S τ ′

Proposition 5.2 If h : ∆ | Γ
S̀

e : τ ↪→ e′ : τ ′ and
∆′ `̀ v : ∆

then ∆′ | Γ
S̀

e : τ ↪→ e′[h/v] : τ ′

Theorem 5.3 ? If ∆ | Γ
S̀

e : τ ↪→ e′ : τ ′ then ∆ | Γ
P̀

e : τ ↪→ e′ : τ ′

Theorem 5.4 ? If h̄ : ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then there exist h̄′s, ∆′
s, e′s, τ ′s and C ′

s such that
h̄′s : ∆′

s | Γ S̀
e : τ ↪→ e′s : τ ′s,

C ′
s : GenΓ(∆′

s ⇒ τ ′s) ≥ (h̄ : ∆ | σ),
C ′

s[Λh′s.e
′
s] = e′

Theorem 5.3 establishes the soundness of the syntax-directed system with respect to the
original specialization rules. Theorem 5.4 establishes a form of completeness property showing
that every specialization can be described by a syntax-directed derivation. This cannot be
done the obvious way — for instance, if ∆ | Γ

P̀
e : τ ↪→ e′ : σ, then it will not in general

be possible to derive the same typing in system S, since σ is a type scheme, not necessarily
a simple type. However, for any such derivation, theorem 5.4 guarantees the existence of
an S-derivation yielding e′s : τ ′s under predicate context h̄′s : ∆′

s, such that the inferred type
scheme GenΓ(∆′

s ⇒ τ ′s) is more general than the constrained type scheme (∆ | σ) determined
by the original derivation, and that Λh̄′s.e

′
s can be converted to e′.

66 CHAPTER 5. EXTENDING THE ALGORITHM AND THE PROOF

τ ∼U τ ′

IsPolySum τ ∼U IsPolySum τ ′

τ ∼U1 τ ′ U1 σ ∼U2 U1 σ′

HasMGC τ Lk σ ∼U2U1 HasMGC τ ′ Lk σ′

τ ∼U1 τ ′ U2 σ ∼U1 U2 σ′ U2 U1 τr ∼U3 U2 U1 τ ′r

HasMGBr τ Lk σ τr ∼U3U2U1 HasMGBr τ ′ Lk σ′ τ ′r

τ ∼U1 τ ′ U1 τr ∼U2 U1 τ ′r

HasPolyC τ Lk τr ∼U2U1 HasPolyC τ ′ Lk τ ′r

Figure 5.2: Rules for unification of predicates involving polyvariant sums

5.2 The Principal Type Specialization Algorithm

We are now able to extend the algorithm presented by Mart́ınez López [2005] and extended by
Russo [2004], that computes the principal type specialization for a given typed source term,
and express a notion of equivalence to system P via system S.

We use a number of subsystems corresponding to the algorithmic versions of the different
systems used in ` and

S̀
. They are presented next.

5.2.1 A unification algorithm

The unification algorithm is specified with judgments of the form σ1 ∼U σ2, where σ1 and σ2

are input and U is output, a most general unifier for them.
We only need to extend it with unification rules for the new predicates. They are presented

in figure 5.2.
The following properties establish that the output, if it exists, is indeed a most general

unifier.

Proposition 5.5 If σ ∼U σ′ then U σ = U σ′

Proposition 5.6 If S σ = S σ′

then σ ∼U σ′ and there exists a substitution T such that S = TU

5.2.2 An entailment algorithm

The entailment algorithm expects a predicate δ as input and an assumed predicate context ∆.
It computes the set of predicates ∆′ that should be added to ∆ to entail δ, and the evidence
for this entailment. Judgments are of the form

∆′ | ∆ `̀ W v : δ

The only rule for this algorithm is the following:

h : δ | ∆ `̀ W h : δ

5.2. THE PRINCIPAL TYPE SPECIALIZATION ALGORITHM 67

(WSR-POLYDATA)

(
∆k Ẁ-SR

Y (Lk) ↪→ τ ′k
σk = Gen∅,∅(∆k ⇒ τ ′k)

)
Lk∈Y

IsPolySum t,
(Lk ∈ t ? HasMGC t Lk σk)Lk∈Y

Ẁ-SR
Y D ↪→ t

(t fresh)

Figure 5.3: Algorithm for the source-residual relation for polyvariant sum types

That is, ∆′ is a singleton set assuming evidence for δ.
This formulation allows for more refined rules proving each particular predicate accord-

ing to its meaning and entailment rules. This is currently handled by simplification; see
section 5.3.

The following proposition can be easily proved.

Proposition 5.7 If ∆′ | ∆ `̀ W δ then ∆′,∆ `̀ δ

5.2.3 An algorithm for the SR relation

The source-residual relation algorithm, W-SR, expects a source type as input. It calculates the
most general residual type in the sense given in proposition 5.9, and a predicate assignment
expressing the constraints on the type variables. Judgments in system W-SR are of the form
∆

Ẁ-SR
τ ↪→ τ ′, where τ is input and both ∆ and τ ′ are output.

We extend this system to calculate the SR relation for polyvariant sum types. Only one
rule is needed; it is presented in figure 5.3.

We extend the propositions relating system W-SR with SR. The first one proves that the
former is sound with respect to the latter. The second one shows that W-SR yields the most
general type and predicate assignment in SR-relation with the input.

Proposition 5.8 If ∆
Ẁ-SR

τ ↪→ τ ′ then ∆
S̀R

τ ↪→ τ ′

Proposition 5.9 If ∆
S̀R

τ ↪→ σ

then there exist ∆′
w, τ ′w and C ′

w such that
∆′

w Ẁ-SR
τ ↪→ τ ′w with all the residual variables

fresh and C ′
w : Gen∅,∅(∆′

w ⇒ τ ′w) ≥ (∆ | σ)

5.2.4 An algorithm for principal type specialization, W

The principal type specialization algorithm takes an assignment Γ and a typed source term
e : τ . It returns a specialized expression e′ : τ ′, a predicate assignment ∆ and a substitution
S that must be applied to Γ to adjust the types appearing in it. Judgments are of the form

∆ | S Γ
Ẁ

e : τ ↪→ e′ : τ ′

with the same meaning as in systems P and S. For each syntax-directed rule in system S,
there is a counterpart in system W.

Figure 5.4 shows our extension to the algorithm to consider rules (POLYCONSTR) and
(POLYCASE). They are essentially the same as rules in system S, only taking substitutions
into account.

Our extension preserves the following property:

68 CHAPTER 5. EXTENDING THE ALGORITHM AND THE PROOF

(W-POLYCONSTR)

∆
Ẁ-SR

Y D ↪→ τ ′e
∆′ | S Γ

Ẁ
e : Y (Lj) ↪→ e′ : τ ′j

∆′′ | ∆,∆′ `̀ W vj : HasPolyC τ ′e Lj τ ′j
∆,∆′,∆′′ | S Γ

Ẁ
L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

(W-POLYCASE)

∆e | Se Γ
Ẁ

e : Y D ↪→ e′ : τ ′e

∆p | ∆e `̀ W vy : IsPolySum τ ′e

∆SR Ẁ-SR
τ ↪→ τ ′(

hk : ∆k | Sk S∗
k−1 Γ

Ẁ
λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k

)
k∈B(

σk = GenS∗
n Γ(Sn

k+1 (∆k ⇒ τ ′k)), e′k = Λhk.e
′′
k

)
k∈B(

∆′
k | ∆′

k−1, . . . ,∆
′
1,∆

∗
e,∆

∗
p,∆SR `̀ W

wk : Lk ∈ (Sn
1 τ ′e) ?HasMGBr (Sn

1 τ ′e) Lk σk τ ′

)
k∈B

∆′
n, . . . ,∆′

1,∆
∗
e,∆

∗
p,∆SR | S∗

n Γ
Ẁ

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

where
Sj

i = (Sj ◦ (. . . ◦ Si))
S∗

j = (Sj
1 ◦ Se)

∆∗
e = Sn

1 ∆e

∆∗
p = Sn

1 ∆p

n = |B|

Figure 5.4: Principal type specialization algorithm for polyvariant sum types

5.3. CONSTRAINT SOLVING 69

Lemma 5.10 If h̄ : ∆ | S Γ
Ẁ

e : τ ↪→ e′ : τ ′ then EV (e′) ⊆ h̄

Many of the rules in the system introduce fresh variables (see appendix A.2.1 and theo-
rem 5.9), that is, variables which do not appear in the hypotheses of the rule nor in any other
distinct branches of the complete derivation. Note that it is always possible to choose type
variables in this way because the set of type variables is assumed to be countably infinite.
In the presence of fresh variables, it is convenient to work with a weaker form of equality
on substitutions, defined in the same way as in the theory of qualified types [Jones, 1994].
Two substitutions R and S are similar (written R ≈ S), if they only differ in a finite number
of fresh variables. In most cases, we can treat R ≈ S as R = S, since the only differences
between the substitutions occur at variables which are not used elsewhere in the algorithm.

The results obtained by system W are equivalent to those obtained by system S, in the
sense established in the following theorems. The first one establishes soundness of system W
with respect to system S.

Theorem 5.11 ? If ∆ | S Γ
Ẁ

e : τ ↪→ e′ : τ ′

then ∆ | S Γ
S̀

e : τ ↪→ e′ : τ ′

The completeness result expresses that every residual term and type obtained by the
syntax-directed system can be expressed as a particular case (with respect to substitutions)
of the residual term and type produced by the algorithm.

Theorem 5.12 ? If h̄ : ∆ | S Γ
S̀

e : τ ↪→ e′ : τ ′

then h̄′w : ∆′
w | T ′

w Γ
Ẁ

e : τ ↪→ e′w : τ ′w
and there exist a substitution R and evidence v̄′w such that
S ≈ RT ′

w

τ ′ = R τ ′w
h̄ : ∆ `̀ v̄′w : R ∆′

w

e′ = e′w[v̄′w/h̄′w]

5.3 Constraint Solving

The algorithm presented in the previous section computes the principal type specialization
of a given term. Because of its local quality, it produces potentially more predicates than
needed, some of them being redundant or expressible in simpler forms. Moreover, when type
or scheme variables have more than one possible value to assign, the decision is not made —
only predicates constraining the variables are gathered to describe the possibilities. This is
not enough for obtaining useful residual expressions!

Pablo E. Mart́ınez López and Hernán Badenes address this issue [Mart́ınez López and
Badenes, 2003; Mart́ınez López, 2005] with two related mechanisms:

Simplification is a variation of the process of simplification and improvement introduced
by Mark Jones [1994; 1995]. The goal is to eliminate the redundant predicates and to
decide the value of type and scheme variables with a unique solution.

Constraint solving is the process of assigning a value — even among several possibilities
— to a variable whose context information has been gathered. By the introduction of
this mechanism, a complete specialization consists of two clearly separated parts:

70 CHAPTER 5. EXTENDING THE ALGORITHM AND THE PROOF

• the specification part, where a description of the problem is built in the form of
constrained type schemes and residual terms with evidence expressions

• an implementation part, where a solution for the problem is found, and evidence
expressions are replaced with the associated values

Following Aiken [1999], this approach treats program specialization as a static program
analysis, where after analyzing each part of the program locally, different resolution
techniques can be applied for solving the generated constraints.

Mart́ınez López and Badenes present a thorough formalization of the simplification and
constraint solving processes, they establish their structural rules and specify them for the
predicates presented in section 2.2.3, namely IsInt, IsSum and IsMG. An extension is needed
for handling the predicates involving polyvariant sum types, which is informally described
next. A more precise specification is left for future work.

5.3.1 Our extension to constraint solving

When specializing expressions involving polyvariant sum types, the algorithm defined by
system W yields a residual type involving at least a residual sum type t, where t is a type
variable constrained with predicates such as IsPolySum, HasMGC, HasMGBr or HasPolyC.
The residual expression may include variables representing the evidence for these predicates
— we have shown several examples of this in chapter 4.

To obtain a useful result, constraint solving must take place. More specifically, the type
variable t must be assigned a residual datatype Y n with a fully defined set of constructors and
residual arguments. We have extended the constraint solving mechanism with an heuristic to
obtain such definition. Starting with a predicate h : IsPolySum t, all predicates involving t
(without syntactical duplicates) are gathered and solved as follows:

Step 1. Get an index n for Y that has not been used so far.

Step 2. For each distinct predicate HasPolyC t Lk τ , assign an index i that has not yet
been used for Lk and include the summand Ln

k,i τ in the definition of Y n. Prove the
predicate with evidence n

i .

Call I the set of indexes k such that there is at least one predicate HasPolyC t Lk τ .
For each k, define I ′k = {1, . . . , nk} where nk is the number of predicates
HasPolyC t Lk τ . Then we have defined

data Y n =
{
Lk,i τ ′k,i

}
k∈I,i∈I′k

Assign value {Lk,i}k∈I,i∈I′k
to h, the evidence for IsPolySum t.

Step 3. Prove each guarded predicate Lk ∈ t ? δ by simplifying it to δ if k ∈ I, and with
evidence • if k /∈ I.

Step 4. Verify each predicate HasMGC t Lk σ — by the previous step we know k ∈ I — by
proving IsMG σ τ ′k,i for each i ∈ I ′k. Fail if any of them cannot be proved.

Step 5. Prove each predicate HasMGBr t Lk σ τ — as before we know k ∈ I — with
evidence

〈
n, (vi)i∈I′k

〉
, where vi : IsMG σ (τ ′k,i → τ). Fail if any of them cannot be

proved.

5.3. CONSTRAINT SOLVING 71

Example 5.13 Taking the following expression as input

polydata PolySDF D = StaD IntS | DynD IntD | FunD (IntS →D IntD)

letD id = λDz.z
in caseD πD

1,3

(
id @D (StaD 11S), id @D (DynD 5D), id @D (StaD 24S)

)
D of

StaD x → lift x
DynD y → y
FunD f → f @D 3S

: IntD

the W algorithm, after simplification, yields the following specialization, where the duplicate
predicates have been removed.

Λh1, . . . , h10.
let id′ = λz′.z′ in

polycasev π1,3 (id′@(Stah4 •), id′@(Dynh5 5), id′@(Stah8 •)) with h1 and
(h3, h7, h10) of

Sta → Λhx.λx′.hx

Dyn → λy′.y′

Fun → λf ′.f ′@•
: ∀t. h1 : IsPolySum t,

h2 : HasMGC t Sta (∀tx.IsInt tx ⇒ tx),
h3 : HasMGBr t Sta (∀tx.hx : IsInt tx ⇒ tx → Int) Int,

h4 : HasPolyC t Sta 1̂1,

h5 : HasPolyC t Sta 2̂4,
h6 : HasMGC t Dyn Int,
h7 : HasMGBr t Dyn (Int → Int) Int,
h8 : HasPolyC t Dyn Int,
h9 : Fun ∈ t ? HasMGC t Fun (∀tf .IsInt tf ⇒ tf → Int),
h10 : Fun ∈ t ? HasMGBr t Fun ((3̂ → Int) → Int) Int ⇒ Int

Now since t does not appear in the residual type, it can be solved. The constraint solving
algorithm gathers all predicates involving this variable (all of them in this example) and
proceeds as follows

Step 1. Get index 1 for PolySDF.

Step 2. a) For constructor Sta1, include summands Sta1
1 1̂1 and Sta1

2 2̂4. Assign evidence 1
1

to h4 and 1
2 to h5.

b) For constructor Dyn1, include the summand Dyn1
1 Int. Assign evidence 1

1 to h8.

c) Since there is no HasPolyC t Fun τ among the predicates, there are no summands
for this constructor.

Assign the set
{
Sta1

1,Sta1
2,Dyn1

1

}
to h1.

Step 3. Only two guarded predicates remain, both on constructor Fun, that does not appear
in our constructor set. Assign • to h9 and h10.

72 CHAPTER 5. EXTENDING THE ALGORITHM AND THE PROOF

Step 4. a) Calling σSta = ∀tx.IsInt tx ⇒ tx, predicate HasMGC t Sta σSta is verified since
both IsMG σSta 1̂1 and IsMG σSta 2̂4 can be proved.

b) Predicate HasMGC t Dyn Int is verified by proving IsMG Int Int.

Step 5. a) Calling σ′Sta = ∀tx.IsInt tx ⇒ tx → Int, predicate HasMGBr t Sta σ′Sta Int is
verified with []((11)) : IsMG σ′Sta (1̂1 → Int) and []((24)) : IsMG σ′Sta (2̂4 → Int).
Evidence h3 is assigned value 〈1, ([]((11)), []((24)))〉.

b) Predicate HasMGBr t Dyn (Int → Int) Int is verified with [] : IsMG (Int →
Int) (Int → Int). Evidence h7 is assigned value 〈1, []〉.

After solving variable t successfully, the residual expression is

data PolySDF1 = Sta1
1 1̂1 | Sta1

2 2̂4 | Dyn1
1 Int

let id′ = λz′.z′ in
polycasev π1,3 (id′@(Sta1

1 •), id′@(Dyn1
1 5), id′@(Sta1

2 •)) with{
Sta1

1,Sta1
2,Dyn1

1

}
and

(〈1, ([]((11)), []((24)))〉 , 〈1, []〉 , •) of
Sta → Λhx.λx′.hx

Dyn → λy′.y′

Fun → λf ′.f ′@•
: Int

which can be reduced to

let id′ = λz′.z′

in case π1,3 (id′@(Sta1
1 •), id′@(Dyn1

1 5), id′@(Sta1
2 •)) of

Sta1
1 x′ → 11

Sta1
2 x′ → 24

Dyn1
1 y′ → y′

: Int

Notice how every aspect of polyvariant sum type specialization has been achieved by con-
straint solving: generation of multiple data declarations, replication of constructors with
their corresponding branches, and elimination of dead ones. �

5.3.2 Discussion

There is a fundamental difference between the processes of simplification and constraint solv-
ing. Although they are both related to instantiating variables and proving predicates, they
differ in the kind of variables about which they can make decisions. Whereas simplification
assigns unique values deduced by entailment, constraint solving chooses values that are not
a direct consequence of the context.

When solving a type variable t representing a polyvariant residual sum type, it is rea-
sonable to wonder if it is in fact a solving, that is, if the value is decided among several
possibilities. Indeed, the predicates constraining t might include:

• Upper bounds on the types of the summands, by predicates HasMGC and HasMGBr.

5.3. CONSTRAINT SOLVING 73

• Requirements for the inclusion of a particular summand, by predicate HasPolyC.

Clearly these do not uniquely determine a residual sum type! The algorithm we have
described builds the data definition that includes all the summands required and only them,
provided they respect the upper bounds. Other solutions are possible — they would include
more summands, with different type arguments or even different constructors. Our algorithm
chooses the minimum definition (with respect to inclusion) that satisfies all the predicates.

Another issue to consider is the potential generation of duplicate summands. Constraint
solving can proceed on a variable as soon as it can be established that no more context
information can affect it — namely, when it does not appear in the residual type itself but
only in the predicates. This means that a sum type variable can be solved even when one of
its arguments — appearing in a HasPolyC predicate — is also a type variable and has not
yet been solved1.

Example 5.14 The following specialization is the result of the W algorithm and the simpli-
fication process.

polydata PolyD = PolyD IntS

P̀
letD id = λDz.z

in λDx.caseD fstD
(
id @D (PolyD 11S), id @D (PolyD x)

)
D of

PolyD y → lift y : IntS →D IntD

↪→
Λh1, . . . , h6.
let id′ = λz′.z′

in λx′.polycasev fst (id′@(Polyh4 •), id′@(Polyh5 x′)) with h1 and (h3) of
Poly → Λhy.λy′.hy

: ∀tx, te. h1 : IsInt txh2 : IsPolySum te,
h3 : HasMGC te Poly (∀t.IsInt t ⇒ t),
h4 : HasMGBr te Poly (∀ty.hy : IsInt ty ⇒ ty → Int) Int,

h5 : HasPolyC te Poly 1̂1,
h6 : HasPolyC te Poly tx ⇒ tx → Int

Simplification erases only syntactical duplicates, so two HasPolyC predicates remain. Con-
straint solving can take place on variable te, resulting in

data Poly1 = Poly1
1 1̂1 | Poly1

2 tx

Λh1.let id′ = λDz′.z′

in λx′.case fst (id′@(Poly1
1 •), id′@(Poly1

2 x′)) of
Poly1

1 y′ → 11
Poly1

2 y′ → h1

: ∀tx.h1 : IsInt tx ⇒ tx → Int

where tx generates a separate summand from 1̂1. The problem would arise if tx should be
instantiated to 1̂1 as well, — for example, if the function was applied to 11S . In a context

1We consider that residual data declarations are inside the scope of the ∀ binder, even though they are
displayed separate from the type of the expression. This needs further formalization; probably the grammar
presented in definitions 4.3 and 4.5 needs to be changed. See discussion in section 6.2.1.

74 CHAPTER 5. EXTENDING THE ALGORITHM AND THE PROOF

where constraint solving had to take place before the function application, there would be
two constructors with the same residual argument. �

This issue is analogous to one cited by Mart́ınez López when discussing constraint solving
for polyvariant functions [2005, section 8.3.3]. One possibility to avoid generating duplicate
arguments is to defer constraint solving of a sum type variable t until all the other variables in
all the predicates where t appears are instantiated. However, as noted by Mart́ınez López, this
option contradicts our purpose of modularity. Another is to formalize a notion of extensible
sum type so that a sum type with as few summands as possible could be defined, and extra
summands added when they are needed.

It is important to note that this is a choice involving constraint solving exclusively — the
type specialization system itself is not affected. This is one of the benefits of the principal type
specialization approach, where the constraint generation and constraint solving aspects are
separated. For a single well-defined specification, different implementations can be considered,
and different heuristics can be tried.

Chapter 6

Conclusion

6.1 Related Work

6.1.1 Constructor specialization

Dealing with types in partial evaluation has been identified as a challenging problem since
it first started being studied [Jones, 1988]. One of the open issues was if partial evaluation
could be used to generate new specialized data types, just as it could generate new specialized
functions. Indeed, new types were first generated only as simpler versions of the types in the
source program [Launchbury, 1991], and later this limit was overcome by means of constructor
specialization.

Constructor specialization was introduced by Torben Æ. Mogensen [1993] as a new mech-
anism for partial evaluation that lead to better results where the traditional methods failed to
produce satisfactory specializations. Constructors are specialized with respect to the static
part of their arguments, getting multiple residual versions of a single constructor just as
partial evaluation can generate multiple copies of a single source function. Dynamic case
expressions specialize to versions with as many branches as constructors are generated in the
residual code, which in turn depend on the specialization of static arguments. Mogensen
proposes several ways to achieve this:

• Regeneration of case expressions each time a new specialization is needed for a con-
structor.

• Backpatching earlier generated case expressions by destructive updating of the residual
program.

• A multi-pass algorithm that first generates pieces of code for the case expression branch-
es and then assembles these in the final residual program.

Our approach for specializing polyvariant sum types resembles this last option, where the
first pass corresponds to specializing to a polycasev construct and the second one to solving
and reducing to the final case expression.

In his original presentation, Mogensen’s discusses two limits of constructor specialization
that are independent of how it is implemented. The first one is the fact that the residual
program can have no more data type declarations than the source program, something that is
against the general guiding rule of not letting the specialized result be limited by the structure

75

76 CHAPTER 6. CONCLUSION

of the input. The second one, related to the former, involves the impossibility to separate
the specialized constructors into different residual types. This means that every specialized
constructor appears in every residual case expression that uses the original version, which can
cause either run time errors or a lot of dead code in the residual program. This was later
solved by enhancing binding time analysis [Dussart et al., 1995].

None of the limits stated by Mogensen are an issue in our work. Multiple data type gen-
eration, separation of independent specializations, and dead code elimination were achieved
for type specialization of regular dynamic sum types [Russo, 2004], and specialization of
polyvariant sum types — the equivalent to constructor specialization itself — keeps both
features.

6.1.2 John Hughes’s polyvariant sums

The original formulation of type specialization [Hughes, 1996b; Hughes, 1996a; Hughes, 1998]
includes a form of polyvariant sums. In Hughes’s presentation, sum types are anonymous so
they cannot be declared to be either monovariant or polyvariant. Instead, the special name
In is used for identifying polyvariant constructors.

Anonymous sum types specialize to anonymous residual types, containing as many sum-
mands as necessary. Branch elimination and generation of independent residual data decla-
rations are not an issue, since it is simply assumed that the residual type has exactly the
required specialized constructors.

As happens with other features in this formulation, the specialization rules are not ad-
equate for principal type specialization, and difficult to relate directly to an algorithm. A
type specializer is implemented and described [Hughes, 1996b] where the residual types are
represented by the notion of open sets: sets that hold the currently known summands and
can be merged if it is found that two of them must unify.

Just as in principal type specialization, information constraining the types might depend
on the context of use. In our formulation, we deal with this issue explicitly, using predicates,
evidence expressions and the processes of constraint solving and residual term reduction.
Hughes does not handle these problems in the specification of the system, but describes how
they are dealt with in the implementation of his type specializer, with different mechanisms
such as open sets, optimistic unification, and backtracking.

6.2 Future Work

There are several aspects of principal type specialization that can be improved, extended or
strengthened. We begin by describing those directly related to our work, and then we briefly
outline those for principal type specialization in general.

6.2.1 Work on polyvariant sum types

Improving constraint solving The meaning of the predicates we have introduced to de-
scribe polyvariant sums has been explained, and they all have a clear role in the specialization
rules. However, during constraint solving, predicate HasMGC only needs to be checked for
consistency — it does not contribute with evidence or any new information to the solving.

It is not clear if this check is in fact necessary or redundant. Given the way the predicates
and their arguments are generated, it is possible that predicates of this form can never fail for

6.2. FUTURE WORK 77

specializations resulting from a well-typed source expression. If this was the case, the need to
verify these predicates could be relaxed, thus reducing the amount of work during constraint
solving.

Formalizing constraint solving As observed by Mart́ınez López [2005], constraint solving
is the most involved part in our approach to principal type specialization — it is where the
actual calculation of static data and information flow takes place. It is also without doubt
the part that needs most of our efforts.

A first step to study it further would be to extend the current framework [Mart́ınez López
and Badenes, 2003], so that it includes the specification of the constraint solving rules we have
described informally. This applies not only to polyvariant sums but also to other extensions
to the basic formulation — static and dynamic sum-types, static functions and recursion,
failure, etc.

Binding type variables in data declarations In both Russo’s extension and ours, when
solving a type variable representing a residual sum type, a data declaration is generated. The
definition consists of a name and a set of summands: constructor names with an argument.
Now there is no reason why these arguments should be solved before generating the data
declaration — they could be type variables themselves.

Our current formulation presents data declarations as part of a residual term (see defini-
tions 2.17 and 4.3):

e′ ::= [ddcl′]∗ e′p
ddcl′ ::= data Dn = cs′ | data Y n = es′

cs′ ::= . . .
es′ ::= . . .
e′p ::= . . .

We think they should probably be part of the type, with a grammar similar to the following
(compare with definition 4.5):

τ ′ ::= t | Int | n̂ | τ ′ → τ ′ | (τ ′, . . . , τ ′) | poly σ | Dn | Y n

τ ′d ::= [ddcl′]∗ τ ′

ρ ::= δ ⇒ ρ | τ ′d
σ ::= s | ∀s.σ | ∀t.σ | ρ
δ ::= . . .

Following this grammar, type variables in the summands of a data definition would be inside
the scope of the type scheme σ, and properly constrained by predicates if necessary.

This alternative would not constitute a great alteration to our system — in fact, residual
data declarations appear only in the constraint solving phase, leaving the specialization system
intact — so it is probably a straightforward enhancement. However, some thought is required
on how this new element would interact with polyvariance, and how types of the form poly σ
would be solved.

Parametric data types An option that has not yet been considered for dynamic sum
types is that of parametric data types. Parametric source data declarations can be handled as
syntactic sugar for multiple data definitions. The most interesting aspect is that of generating

78 CHAPTER 6. CONCLUSION

parametric residual sum types as an alternative to multiple residual type declarations. That
is, instead of allowing for a single source data type to specialize to many residual versions, we
could generate a single residual sum type and make it parametric. Where we currently have
types Y 1, . . . , Y n, we could have a single data definition Y t1 . . . tk with as many arguments
as needed to identify each former Y i as Y τ1 . . . τk. This applies to regular dynamic sum types
as well.

Recursion John Hughes’s type specializer includes specialization of recursive dynamic data
types, a feature still missing in principal type specialization, and without which certain es-
sential data structures — such as lists — cannot be specialized.

It is not clear if recursive polyvariant sum types are of any use, so some analysis is required
before an attempt to model it.

6.2.2 Work on principal type specialization

In his original presentation, Mart́ınez López established a number of lines of work that remain
open. They are briefly outlined below.

Dynamic recursion The interaction between dynamic recursive expressions and polyvari-
ance is perhaps the most difficult problem in type specialization in general, and in principal
type specialization in particular. Due to the way polyvariant expressions are specialized, re-
cursive structures lead to predicates of the form IsMG s σ where s appears in σ. This cannot
be handled by the constraint solving mechanisms currently available, and needs further study.

Extending the source language Mart́ınez López mentions a few important extensions
to improve the level of expressiveness of the system. One of them is that of polyvariant
sums, contributed by this work. Dynamic recursion, as was mentioned before, is essential,
and specialization of imperative-like programs (monads) as was achieved for the original
formulation of type specialization [Dussart et al., 1997] is also a possible feature.

This framework also enables thinking about advanced features of modern languages, that
have not been considered for any other known approach to program specialization. Examples
of these are parametric polymorphism (in the source language), ad-hoc polymorphism, or
overloading (type classes, for example), and programs with lazy behavior.

Better implementation Working with a complex theory like the one we have presented
cannot be complete without an appropriate tool to test the ideas; additionally, as the final
goal is to automatically produce programs, a proper implementation is a must.

The prototype designed so far is very naive, and no attempts has been made to make it
efficient. As a result, only small examples can be tested — bigger ones take too much time.

There are many opportunities for improvement. The most time consuming part is that of
constraint solving, so here is another reason for working on better algorithms as was mentioned
before. However, there are also implementation enhancements that can be done: better
representations could be found for predicates, terms, types and conversions to speed up some
currently slow processes such as choosing a type variable to solve, performing substitutions,
and comparing for equality.

6.3. CONCLUDING REMARKS 79

Binding time assistant One important difference between type specialization and partial
evaluation is the role of binding time annotations — annotations making an expression either
static or dynamic. In partial evaluation, they can be deduced by a binding time analyzer. Type
specialization, in contrast, has more flexibility, and can handle combinations of annotations
that are not allowed in partial evaluation, so it is not possible to calculate them automatically,
as shown by Mart́ınez López [2005, chapter 4].

However, it has been noted that there are usually some rules of thumb on how to annotate
a given program, and perhaps it would possible to construct a tool for assisting the annotation
process. Such an assistant would suggest program points where it may be a good idea to make
an expression polyvariant, where some variable would be better considered as dynamic, etc.
It would also calculate annotations that depend on a particular choice, once it is made by the
programmer.

A binding time assistant would be an excellent complement in an environment for auto-
matic program production.

6.3 Concluding Remarks

In this thesis, we have studied the Principal Type Specialization system and extended it with
polyvariant sums. Our contribution is a little step toward a powerful type specializer that
can deal with features of a real programming language.

Working in this framework has been a challenging task, from which some observations
and also a few questions have arisen. The Principal Type Specialization system is complex,
and fully understanding it involves getting acquainted with a quite a number of elements:

• A language of source terms and types with annotations.

• A language of residual terms and types.

• A language of predicates and evidence, that are part of the residual types and terms
respectively.

• An entailment relation, capturing the meaning of the predicates and their evidence,
and, from a more practical point of view, specifying how evidence can be built.

• A residual typing system, suitable for proving that the residual language is typed.

• A specialization system, the core of this framework, specifying how typed source ex-
pressions are specialized to typed residual terms.

• A source-residual relation, similar to the one above but relating only source to residual
types.

• An algorithm, composed itself by a number of subsystems, essential to proving the
property of principality.

My dear young man, don’t take it too hard. Your work is ingenious. It’s quality work.
And there are simply too many notes, that’s all. Just cut a few and it will be perfect.

Emperor Joseph II to Mozart, in Amadeus (1984)

80 CHAPTER 6. CONCLUSION

One cannot help but wonder why this framework seems so intricate. Why so many con-
structs, subsystems and rules? This thesis has taken around two years, the first of which
was entirely devoted to learning the system, getting familiar with it and analyzing the ele-
ments present up to that moment. Indeed, this is a very elaborate system — the number of
components and its many subtleties make it hard to master, which is certainly a disadvantage.

I believe part of the answer to this issue may be: principal type specialization takes care
of detail. Besides the presence of a two-level (annotated) source language and a residual
counterpart — which are features common to most program specializers — these many items
make up a system that models exactly the specializations considered valid and useful for each
source expression. Moreover, it defines a specialization that represents them all (the principal
specialization), and specifies an algorithm for computing it. Despite being still incomplete, it
does provide solutions to some difficult problems, such as polyvariance, lifting and specializing
partially static expressions. These are all complex points, so it is only natural that a system
dealing with them in such detail should be complex as well.

Surely simpler presentations are possible — John Hughes’s formulation certainly is. How-
ever, his specification is more casual, it lacks all the good properties that Mart́ınez López later
achieves, and it leaves most of the tricky aspects for an implementation at least as intricate
as the principal type specialization system is.

In a certain way, this last point is illustrated by our extension of polyvariant sums. Once
achieved the necessary level of comfort working with the system, extending it was quite a
natural task. The ‘constraint generation - constraint solving’ schema led us along a clear
path: gather the specification of the residual sum type (via predicates) first, and then build
one that satisfies the specification. After trying a few options, the final structure of this
specification came out in the form of upper bounds and requirements on the arguments of
the constructors.

If we compare our solution to the one John Hughes has provided for his original type
specializer [Hughes, 1996b] (see comments in section 6.1.2), we can find some similarities
in the way the residual sum types are built. Hughes has used a notion of open sets that
are incrementally built by adding summands, and closed when it is found that no more of
them are needed. Open sets are analogous to our type variables, the operation of adding
summands is analogous to adding a predicate HasPolyC (a requirement) to our specification
and closing the set is analogous to solving the variable. So our approach is not really much
more complicated than his presentation, which is only simpler in appearance. On the contrary,
we have gained insight on the difficulties related to performing specialization of polyvariant
sums, and formulated them in a more clear way. We have achieved an acceptable solution
and left the door open for trying alternative ones.

Was it all worth it yeah yeah
Giving all my heart and soul staying up all night

Was it all worth it...

Queen, Was it all worth it (1989)

So it is possible that the complexity of our framework is well justified. But having said
that, a question remains about the type specialization approach in general: is it worth the ef-
fort? Other more mature approaches to program specialization have achieved similar results,
or can achieve them if they are complemented with different pre and post processing mech-
anisms. Mart́ınez López [2005, chapter 13] mentions several of them, among which partial

6.3. CONCLUDING REMARKS 81

evaluation is the most popular and best understood. Several program specializers have been
built that are efficient and powerful enough to be useful in practice.

Type specialization, on the contrary, is not well known, and still far from being fully
developed. One could claim it is just a different — and complicated! — way of performing
program specialization, with a formulation that is elegant in principle but too difficult to put
into practice. Surely we can deal with most of the problems solved by type specialization
with alternative, full-grown tools?

I cannot really venture a definitive answer to this question. With just a small subset of
a language, type specialization has proved to be a powerful, flexible approach with a lot of
potential. It can solve many of the problems currently handled with a combination of different
techniques, and it leaves the door open for tackling features not considered so far. In order
to grow, it still needs a great deal of work, and probably also the contribution of a greater
number of people. But if it does, it can certainly become the favorite framework for program
specialization.

Appendix A

Auxiliary systems and definitions

A.1 System RT

System RT is a type-checking system for residual terms. Judgments are of the form

∆ | ΓR R̀T
e′ : σ

meaning residual expression e′ has type σ under predicate context ∆ and context ΓR , where
ΓR = {x′i : τi | i = 1, . . . , n} maps residual variables to types.

The following are the residual typing rules for the expressions presented in section 2.2.

(RT-VAR)
x′ : τ ′ ∈ ΓR

∆ | ΓR R̀T
x′ : τ ′

(RT-APP)
∆ | ΓR R̀T

e′1 : τ ′2 → τ ′1 ∆ | ΓR R̀T
e′2 : τ ′2

∆ | ΓR R̀T
e′1@e′2 : τ ′1

(RT-DINT)
∆ `̀ v : IsInt τ ′

∆ | ΓR R̀T
v : Int

(RT-D+)
(∆ | ΓR R̀T

e′i : Int)i=1,2

∆ | ΓR R̀T
e′1 + e′2 : Int

(RT-SINT)
∆ `̀ v : IsInt τ ′

∆ | ΓR R̀T
• : τ ′

(RT-LAM)
∆ | ΓR , x′ : τ ′2 R̀T

e′ : τ ′1

∆ | ΓR R̀T
λx′.e′ : τ ′2 → τ ′1

(RT-TUPLE)
(∆ | ΓR R̀T

e′i : τ ′i)i=1,..,n

∆ | ΓR R̀T
(e′1, . . . , e

′
n) : (τ ′1, . . . , τ

′
n)

(RT-PRJ)
∆ | ΓR R̀T

e′ : (τ ′1, . . . , τ
′
n)

∆ | ΓR R̀T
πi,n e′ : τ ′i

(RT-LET)
∆ | ΓR R̀T

e′2 : τ ′2 ∆ | ΓR , x′ : τ ′2 R̀T
e′1 : τ ′1

∆ | ΓR R̀T
let x′ = e′2 in e′1 : τ ′1

(RT-POLY)
∆ | ΓR R̀T

e′ : σ′ ∆ `̀ v : IsMG σ′ σ

∆ | ΓR R̀T
v[e′] : poly σ

(RT-SPEC)
∆ | ΓR R̀T

e′ : poly σ ∆ `̀ v : IsMG σ τ ′

∆ | ΓR R̀T
v[e′] : τ ′

82

A.2. COMPUTING PRINCIPAL TYPE SPECIALIZATIONS 83

(RT-QIN)
∆, h̄ : δ | ΓR R̀T

e′ : ρ

∆ | ΓR R̀T
Λh.e′ : δ ⇒ ρ

(RT-GEN)
∆ | ΓR R̀T

e′ : σ

∆ | ΓR R̀T
e′ : ∀α.σ

�
α 6∈FV(∆)∪FV

�
Γ
R

��

(RT-QOUT)
∆ | ΓR R̀T

e′ : δ ⇒ ρ ∆ `̀ v : δ

∆ | ΓR R̀T
e′((v)) : ρ

(RT-INST)
∆ | ΓR R̀T

e′ : ∀α.σ

∆ | ΓR R̀T
e′ : S σ

(dom(S)=α)

A.2 Computing principal type specializations

The systems we present below correspond to the description in section 2.4.

A.2.1 System W

System W describes an algorithm to compute principal type specializations. Judgments are
of the form

∆ | S Γ
Ẁ

e : τ ↪→ e′ : σ′

with the same meaning as in system P, where S is a substitution on the types of Γ. The rules
can be interpreted as a grammar where Γ, e and τ are inherited attributes (i.e. input of the
algorithm) and ∆, S, e′ and σ′ are synthesized (i.e. output).

(W-VAR)
x : τ ↪→ e′ : τ ′ ∈ Γ

∅ | Id Γ
Ẁ

x : τ ↪→ e′ : τ ′

(W-DINT) ∅ | Id Γ
Ẁ

nD : IntD ↪→ n : Int

(W-D+)
∆1 | S1 Γ

Ẁ
e1 : IntD ↪→ e′1 : Int ∆2 | S2 (S1 Γ)

Ẁ
e2 : IntD ↪→ e′2 : Int

S2 ∆1,∆2 | S2S1 Γ
Ẁ

e1 +D e2 : IntD ↪→ e′1 + e′2 : Int

(W-LIFT)
∆ | S Γ

Ẁ
e : IntS ↪→ e′ : τ ′ ∆′ | ∆ `̀ W v : IsInt τ ′

∆′,∆ | S Γ
Ẁ

lift e : IntD ↪→ v : Int

(W-SINT) ∅ | Id Γ
Ẁ

nS : IntS ↪→ • : n̂

(W-S+)

∆1 | S1 Γ
Ẁ

e1 : IntS ↪→ e′1 : τ ′1
∆2 | S2 (S1 Γ)

Ẁ
e2 : IntS ↪→ e′2 : τ ′2

∆ | S2 ∆1,∆2 `̀ W v : t := S2 τ ′1 + τ ′2

∆, S2 ∆1,∆2 | S2S1 Γ
Ẁ

e1 +S e2 : IntS ↪→ • : t

(t fresh)

(W-DLAM)
∆

Ẁ-SR
τ2 ↪→ τ ′2 ∆′ | S (Γ, x : τ2 ↪→ x′ : τ ′2) Ẁ

e : τ1 ↪→ e′ : τ ′1

∆′, S ∆ | S Γ
Ẁ

λDx.e : τ2→D τ1 ↪→ λx′.e′ : S τ ′2 → τ ′1
(x′ fresh)

84 APPENDIX A. AUXILIARY SYSTEMS AND DEFINITIONS

(W-DAPP)

∆1 | S1 Γ
Ẁ

e1 : τ2→D τ1 ↪→ e′1 : τ ′1
∆2 | S2 (S1 Γ)

Ẁ
e2 : τ2 ↪→ e′2 : τ ′2 S2 τ ′1 ∼U τ ′2 → t

US2 ∆1, U ∆2 | US2S1 Γ
Ẁ

e1 @D e2 : τ1 ↪→ e′1@e′2 : U t
(t fresh)

(W-POLY)

h̄ : ∆ | S Γ
Ẁ

e : τ ↪→ e′ : τ ′

∆′ | ∅ `̀ W v : IsMG (GenS Γ,∅(∆ ⇒ τ ′)) s

∆′ | S Γ
Ẁ

poly e : poly τ ↪→ v[Λh̄.e′] : poly s
(s fresh)

(W-SPEC)

∆ | S Γ
Ẁ

e : poly τ ↪→ e′ : τ ′σ τ ′σ ∼U poly s
∆′

Ẁ-SR
τ ↪→ τ ′ ∆′′ | U ∆,∆′ `̀ W v : IsMG (U s) τ ′

∆′′, U ∆,∆′ | US Γ
Ẁ

spec e : τ ↪→ v[e′] : τ ′
(s fresh)

(W-DLET)

∆2 | S2 Γ
Ẁ

e2 : τ2 ↪→ e′2 : τ ′2
∆1 | S1 (S2 Γ, x : τ2 ↪→ x′ : τ ′2) Ẁ

e1 : τ1 ↪→ e′1 : τ ′1

S1 ∆2,∆1 | S1S2 Γ
Ẁ

letD x = e2 in e1 : τ1

↪→ let x′ = e′2 in e′1 : τ ′1

(x′ fresh)

(W-DTUPLE)

∆1 | S1 Γ
Ẁ

e1 : τ1 ↪→ e′1 : τ ′1
. . . ∆n | Sn Sn−1 . . . S1 Γ

Ẁ
en : τn ↪→ e′n : τ ′n

Sn . . . S2 ∆1, . . . ,∆n | Sn . . . S1 Γ

Ẁ
(e1, . . . , en) D : (τ1, . . . , τn) D

↪→ (e′1, . . . , e
′
n) : (Sn . . . S2 τ ′1, Sn . . . S3 τ ′2, . . . , τ

′
n)

(W-DPRJ)
∆ | S Γ

Ẁ
e : (τ1, . . . , τn) D ↪→ e′ : τ ′ τ ′ ∼U (t1, . . . , tn)

U ∆ | US Γ
Ẁ

πD

i,n e : τi ↪→ πi,n e′ : U ti
(t1,...,tn fresh)

A.2.2 Unification

The algorithm calculating a most general unifier for two residual types is described by rules
of the form σ1 ∼U σ2, where σ1 and σ2 are input and U is output, if it exists.

c ∼Id c

α ∼Id α

n̂ ∼Id n̂

α 6∈ FV (σ)

α ∼[α/σ] σ

Int ∼Id Int

τ ′1 ∼T τ ′′1 T τ ′2 ∼U T τ ′′2

τ ′1 → τ ′2 ∼UT τ ′′1 → τ ′′2

τ ′11 ∼T1 τ ′21 T1 τ ′12 ∼T2 T1 τ ′22 . . . Tn−1 . . . T1 τ ′1n ∼Tn Tn−1 . . . T1 τ ′2n

(τ ′11, . . . , τ
′
1n) ∼Tn...T1 (τ ′21, . . . , τ

′
2n)

A.3. EXTENDING SYSTEM RT FOR SUM TYPES 85

σ ∼U σ′

poly σ ∼U poly σ′

δ ∼U δ′ ρ ∼U ρ′

δ ⇒ ρ ∼U δ′ ⇒ ρ′

τ ∼U τ ′

IsInt τ ∼U IsInt τ ′

σ[α/c] ∼U σ′[α′/c]

∀α.σ ∼U ∀α′.σ′
(c fresh)

τ ∼T τ ′ T τ1 ∼U T τ ′1 UT τ2 ∼V UT τ ′2

τ := τ1 + τ2 ∼V UT τ ′ := τ ′1 + τ ′2

σ1 ∼T σ2 T σ′1 ∼U T σ′2

IsMG σ1 σ′1 ∼UT IsMG σ2 σ′2

A.2.3 System W-SR

System W-SR describes an algorithm for computing the source-residual relationship. Judg-
ments are of the form ∆

Ẁ-SR
τ ↪→ τ ′ with the same meaning as system SR, where τ is

input and ∆ and τ ′ are output.

h : IsInt t
Ẁ-SR

IntS ↪→ t (t fresh)

∅
Ẁ-SR

IntD ↪→ Int

∆1 Ẁ-SR
τ1 ↪→ τ ′1 ∆2 Ẁ-SR

τ2 ↪→ τ ′2

∆1,∆2 Ẁ-SR
τ2→D τ1 ↪→ τ ′2 → τ ′1

(∆i Ẁ-SR
τi ↪→ τ ′i)i=1,...,n

∆1, . . . ,∆n Ẁ-SR
(τ1, . . . , τn) D ↪→ (τ ′1, . . . , τ

′
n)

∆
Ẁ-SR

τ ↪→ τ ′

IsMG σ s
Ẁ-SR

poly τ ↪→ poly s
(σ=Gen∅,∅(∆⇒τ ′) and s fresh)

A.3 Extending system RT for sum types

Mart́ınez López’s extension [2005] does not include rules to type residual terms derived from
static sums. These are straightforward and can be deduced from the specialization rules.

The rules for system RT involving dynamic sums are the following:

(RT-DCONSTR)

∆ | ΓR R̀T
e′ : τ ′j

∆ `̀ IsSum τ ′ ∆ `̀ vj : HasC τ ′ Kj τ ′j
∆ | ΓR R̀T

K
vj

j e′ : τ ′

86 APPENDIX A. AUXILIARY SYSTEMS AND DEFINITIONS

(RT-DCASE)

∆ | ΓR R̀T
e′ : τ ′e

∆ `̀ vd : IsSum τ ′e h̄k : ∆k | ΓR R̀T
λx′k.e

′
k : τ ′k → τ ′

∆ `̀ v̄k : Kk ∈ τ ′e ? ∆k

∆ `̀ wk : Kk ∈ τ ′e ? HasC τ ′e Kk τ ′k

k∈B

∆ | ΓR R̀T
protocasev e′ with vd of

(K wk
k x′k → e′k[v̄k/h̄k])k∈B : τ ′

A.4 Substitution of evidence variables

We extend the definition of substitution of evidence variables in residual expressions for the
new constructs presented in section 4.2.

(
L vk

k e′
)
[v̄/h̄] = L

vk[v̄/h̄]
k e′[v̄/h̄]

(
case e′ of(

L vk
k x′k → e′k

)
k∈B

)
[v̄/h̄] =

case e′[v̄/h̄] of(
L

vk[v̄/h̄]
k x′k → e′k[v̄/h̄]

)
k∈B polycasev e′ with vy

and (wk)k∈B of
(Lk → e′k)k∈B

 [v̄/h̄] =
polycasev e′[v̄/h̄] with vy[v̄/h̄]
and

(
wk[v̄/h̄]

)
k∈B

of(
Lk → e′k[v̄/h̄]

)
k∈B

(〈n, wk〉) [v̄/h̄] =
〈
n,
(
wk[v̄/h̄]

)
k∈B

〉

A.5 Substitution of type variables in predicates

We extend the definition of type variable substitutions for the predicates we have introduced
in section 4.2.2.

(IsPolySum τ) [τ ′/t] = IsPolySum τ [τ ′/t]
(HasMGC τ Lk σ) [τ ′/t] = HasMGC τ [τ ′/t] Lk σ[τ ′/t]
(HasMGBr τ Lk σ τbr) [τ ′/t] = HasMGBr τ [τ ′/t] Lk σ[τ ′/t] τbr[τ/t]
(HasPolyC τ1 Lk τ2) [τ ′/t] = HasPolyC τ1[τ ′/t] Lk τ2[τ ′/t]
(L ∈ τ ? δ) [τ ′/t] = L ∈ τ [τ ′/t] ? δ[τ ′/t]

A.6 Extending the definition of equivalence of residual terms

The definition of equivalence of residual terms is extended to handle polycasev expressions
with evidence variables. The equivalence (=) relation is defined as the smallest congruence
containing the reduction rules and the following:

A.6. EXTENDING THE DEFINITION OF EQUIVALENCE OF RESIDUAL TERMS 87

polycasev e′ with h and
(wk)k∈B of
(Lk → e′k)k∈B

=
polycasev e′′ with h′ and

(w′
k)k∈B of

(Lk → e′′k)k∈B

if and only if ∀Y = {Lk,i}k∈I,i∈I′k

polycasev e′[Y/h] with Y and
(wk[Y/h])k∈B of
(Lk → e′k[Y/h])k∈B

=
polycasev e′′[Y/h′] with Y and

(w′
k[Y/h′])k∈B of

(Lk → e′′k[Y/h′])k∈B

polycasev e′ with vy and
(w1, . . . , hi, . . . , wk) of
(Lk → e′k)k∈B

=
polycasev e′′ with vy and

(w′
1, . . . , h

′
i, . . . , w

′
k) of

(Lk → e′′k)k∈B

if and only if ∀u =
〈

n,
(
v′j

)
j∈I

〉
polycasev e′[u/hi] with vy and

(w1[u/hi], . . . , u, . . . , wk[u/hi]) of
(Lk → e′k[u/hi])k∈B

=
polycasev e′′[u/h′i] with vy and

(w′
1[u/h′i], . . . , u, . . . , w′

k[u/h′i]) of
(Lk → e′′k[u/h′i])k∈B

Appendix B

Proofs

Most proofs are extensions to the proofs given in Pablo E. Mart́ınez López’s PhD thesis [2005]
and Alejandro Russo’s graduate thesis [2004].

All of them are proofs by induction on the structure of a derivation, and many follow the
same argument pattern. We have kept references to similar proofs to a minimum, so that each
one could be read independently. As a result, they may be found repetitive if read straight
through — this appendix is meant to be consulted for individual proofs instead.

We have marked with a star (?) the proofs we consider most interesting or complex.

B.1 Proof of lemma 4.6, section 4.2

Lemma 4.6 If h̄ : ∆ `̀ vy : IsPolySum τ ′,
h̄1 : ∆′

1 `̀ v̄2 : ∆′
2 and

h̄ : ∆ `̀ v̄1 : Lk ∈ τ ′ ? ∆′
1

then h̄ : ∆ `̀ v̄′ : Lk ∈ τ ′ ? ∆′
2

where v̄′ = ifv Lk ∈ vy then v̄2[v̄1/h̄1] else •

Proof: We know that
h̄ : ∆ `̀ vy : IsPolySum τ ′

h̄1 : ∆′
1 `̀ v̄2 : ∆′

2

So by rule (IsPolySum-Guard),

∆, h̄1 : Lk ∈ τ ′ ? ∆′
1 `̀ ifv Lk ∈ vy then v̄2 else • : Lk ∈ τ ′ ? ∆′

2

Let us call v̄′1 = ifv Lk ∈ vy then v̄2 else •, so now we have:

h̄ : ∆, h̄1 : Lk ∈ τ ′ ? ∆′
1 `̀ v̄′1 : Lk ∈ τ ′ ? ∆′

2 (B.1)

We also know by hypothesis that

h̄ : ∆ `̀ v̄1 : Lk ∈ τ ′ ? ∆′
1 (B.2)

By rule (Cut) on B.2 and B.1,

h̄ : ∆ `̀ v̄′1[v̄1/h̄1] : Lk ∈ τ ′ ? ∆′
2

88

B.2. PROOF OF LEMMA 4.8, SECTION 4.3 89

Let us take v̄′ = v̄′1[v̄1/h̄1]. By evidence substitution,

v̄′ = (ifv Lk ∈ vy then v̄2 else •) [v̄1/h̄1] = ifv Lk ∈ vy[v̄1/h̄1] then v̄2[v̄1/h̄1] else • [v̄1/h̄1]

Now by alpha conversion we can assume h̄ and h̄1 are disjoint. By rule (Evars), EV (vy) ⊆ h̄,
so h̄1 do not appear free in vy and we finally get

v̄′ = ifv Lk ∈ vy then v̄2[v̄1/h̄1] else •

which completes our proof.

B.2 Proof of lemma 4.8, section 4.3

Lemma 4.8 If h̄ : ∆ | ΓR R̀T
e′ : σ

then EV (e′) ⊆ h̄

Proof: By induction on the RT derivation.

Case (RT-VAR): We have a derivation of the form

x′ : τ ′ ∈ ΓR
h̄ : ∆ | ΓR R̀T

x′ : τ ′

We need to prove that EV (x′) ⊆ h̄, which is trivial, since EV (x′) = ∅.

Case (RT-DINT): We have a derivation of the form

h̄ : ∆ `̀ v : IsInt τ ′

h̄ : ∆ | ΓR R̀T
v : Int

We need to prove that EV (v) ⊆ h̄, which follows directly from rule (Evars) on the
premise of the rule.

Case (RT-D+): We have a derivation of the form

(h̄ : ∆ | ΓR R̀T
e′i : Int)i=1,2

h̄ : ∆ | ΓR R̀T
e′1 + e′2 : Int

We need to prove that EV (e′1 + e′2) ⊆ h̄.

Now by inductive hypothesis, we have that EV (e′1) ⊆ h̄ and EV (e′2) ⊆ h̄, so

EV
(
e′1 + e′2

)
= EV

(
e′1
)
∪ EV

(
e′2
)
⊆ h̄

Case (RT-SINT): We have a derivation of the form

90 APPENDIX B. PROOFS

h̄ : ∆ `̀ v : IsInt τ ′

h̄ : ∆ | ΓR R̀T
• : τ ′

We need to prove that EV (•) ⊆ h̄, which is trivial, since EV (•) = ∅.

Case (RT-TUPLE): We have a derivation of the form

(h̄ : ∆ | ΓR R̀T
e′i : τ ′i)i=1,..,n

h̄ : ∆ | ΓR R̀T
(e′1, . . . , e

′
n) : (τ ′1, . . . , τ

′
n)

We need to prove that EV ((e′1, . . . , e
′
n)) ⊆ h̄. Now for all i = 1, . . . , n, we have by

inductive hypothesis that EV (e′i) ⊆ h̄. So

EV
(
(e′1, . . . , e

′
n)
)

= EV
(
e′1
)
∪ . . . ∪ EV

(
e′n
)
⊆ h̄

Case (RT-PRJ): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : (τ ′1, . . . , τ

′
n)

h̄ : ∆ | ΓR R̀T
πi,n e′ : τ ′i

We want to prove that EV (πi,n e′) ⊆ h̄. This follows from the inductive hypothesis, by
wich EV (e′) ⊆ h̄, and from the fact that EV (πi,n e′) = EV (e′).

Case (RT-LAM): We have a derivation of the form

h̄ : ∆ | ΓR , x′ : τ ′2 R̀T
e′ : τ ′1

h̄ : ∆ | ΓR R̀T
λx′.e′ : τ ′2 → τ ′1

We want to show that EV (λx′.e′) ⊆ h̄. This follows directly from the inductive hypoth-
esis, by which EV (e′) ⊆ h̄, and from the fact that EV (λx′.e′) = EV (e′).

Case (RT-APP): We have a derivation of the form

(RT-APP)
h̄ : ∆ | ΓR R̀T

e′1 : τ ′2 → τ ′1 h̄ : ∆ | ΓR R̀T
e′2 : τ ′2

h̄ : ∆ | ΓR R̀T
e′1@e′2 : τ ′1

We need to prove that EV (e′1@e′2) ⊆ h̄. Now by inductive hypothesis, we have that
EV (e′1) ⊆ h̄ and EV (e′2) ⊆ h̄. So

EV
(
e′1@e′2

)
= EV

(
e′1
)
∪ EV

(
e′2
)
⊆ h̄

B.2. PROOF OF LEMMA 4.8, SECTION 4.3 91

Case (RT-LET): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′2 : τ ′2 h̄ : ∆ | ΓR , x′ : τ ′2 R̀T

e′1 : τ ′1

h̄ : ∆ | ΓR R̀T
let x′ = e′2 in e′1 : τ ′1

We want to prove that EV (let x′ = e′2 in e′1) ⊆ h̄. Now by inductive hypothesis,
EV (e′1) ⊆ h̄ and EV (e′2) ⊆ h̄. So

EV
(
let x′ = e′2 in e′1

)
= EV

(
e′1
)
∪ EV

(
e′2
)
⊆ h̄

Case (RT-POLY): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : σ′ ∆ `̀ v : IsMG σ′ σ

h̄ : ∆ | ΓR R̀T
v[e′] : poly σ

We need to show that EV (v[e′]) ⊆ h̄. Now by inductive hypothesis on the first premise
of the rule, we have that EV (e′) ⊆ h̄. Also, by rule (Evars) on the second premise,
EV (v) ⊆ h̄. So

EV
(
v[e′]

)
= EV (v) ∪ EV

(
e′
)
⊆ h̄

Case (RT-SPEC): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : poly σ h̄ : ∆ `̀ v : IsMG σ τ ′

h̄ : ∆ | ΓR R̀T
v[e′] : τ ′

We need to show that EV (v[e′]) ⊆ h̄. Now by inductive hypothesis on the first premise
of the rule, we have that EV (e′) ⊆ h̄. Also, by rule (Evars) on the second premise,
EV (v) ⊆ h̄. So

EV
(
v[e′]

)
= EV (v) ∪ EV

(
e′
)
⊆ h̄

Case (RT-QIN): We have a derivation of the form

h̄ : ∆, h′ : δ | ΓR R̀T
e′ : ρ

h̄ : ∆ | ΓR R̀T
Λh′.e′ : δ ⇒ ρ

We want to show that EV (Λh′.e′) ⊆ h̄. By inductive hypothesis, we know that EV (e′) ⊆
h̄ ∪ {h′}. So

EV
(
Λh′.e′

)
= EV

(
e′
)
\ {h′} ⊆ h̄

92 APPENDIX B. PROOFS

Case (RT-QOUT): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : δ ⇒ ρ h̄ : ∆ `̀ v : δ

h̄ : ∆ | ΓR R̀T
e′((v)) : ρ

We need to prove that EV (e′((v))) ⊆ h̄. By inductive hypothesis on the first premise,
EV (e′) ⊆ h̄, and by rule (Evars) on the second premise, EV (v) ⊆ h̄. So

EV
(
e′((v))

)
= EV

(
e′
)
∪ EV (v) ⊆ h̄

Case (RT-GEN): We have a derivation of the form

(RT-GEN)
h̄ : ∆ | ΓR R̀T

e′ : σ

h̄ : ∆ | ΓR R̀T
e′ : ∀α.σ

�
α 6∈FV(∆)∪FV

�
Γ
R

��

We need to prove that EV (e′) ⊆ h̄, which holds directly from the inductive hypothesis.

Case (RT-INST): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : ∀α.σ

h̄ : ∆ | ΓR R̀T
e′ : S σ

(dom(S)=α)

We need to prove that EV (e′) ⊆ h̄, which holds directly from the inductive hypothesis.

Case (RT-DCONSTR): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : τ ′j

h̄ : ∆ `̀ IsSum τ ′ h̄ : ∆ `̀ vj : HasC τ ′ Kj τ ′j
h̄ : ∆ | ΓR R̀T

K
vj

j e′ : τ ′

We need to prove that EV
(
K

vj

j e′
)
⊆ h̄. Now by inductive hypothesis on the first

premise, EV (e′) ⊆ h̄, and by rule (Evars) on the third premise, EV (vj) ⊆ h̄. So

EV
(
K

vj

j e′
)

= EV (vj) ∪ EV
(
e′
)
⊆ h̄

Case (RT-DCASE): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : τ ′e

h̄ : ∆ `̀ vd : IsSum τ ′e h̄k : ∆k | ΓR R̀T
λx′k.e

′
k : τ ′k → τ ′

h̄ : ∆ `̀ v̄k : Kk ∈ τ ′e ? ∆k

h̄ : ∆ `̀ wk : Kk ∈ τ ′e ? HasC τ ′e Kk τ ′k

k∈B

h̄ : ∆ | ΓR R̀T
protocasev e′ with vd of

(K wk
k x′k → e′k[v̄k/h̄k])k∈B : τ ′

B.2. PROOF OF LEMMA 4.8, SECTION 4.3 93

We need to prove that

EV

(
protocasev e′ with vd of(

K wk
k x′k → e′k[v̄k/h̄k]

)
k∈B

)
⊆ h̄

Now by inductive hypothesis on the first and third premises

EV
(
e′
)
⊆ h̄ (B.3)

EV
(
e′k
)
⊆ h̄k ∀k ∈ B (B.4)

By rule (Evars) on the remaining premises

EV
(
vd
)
⊆ h̄ (B.5)

EV (v̄k) ⊆ h̄ ∀k ∈ B (B.6)
EV (wk) ⊆ h̄ ∀k ∈ B (B.7)

From B.4 we can conclude that EV
(
e′k[v̄k/h̄k]

)
= EV (v̄k) by substitution. So from B.6,

EV
(
e′k[v̄k/h̄k]

)
= EV (v̄k) ⊆ h̄ (B.8)

Finally, from B.3, B.5, B.7 and B.8 we can conclude

EV

(
protocasev e′ with vd of

(K wk
k x′k → e′k[v̄k/h̄k])k∈B

)
=

EV (e′) ∪ EV
(
vd
)
∪
⋃

k∈B

(
EV (wk) ∪ EV

(
e′k[v̄k/h̄k]

))
⊆ h̄

As we wanted to prove.

Case (RT-DCASE-2): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : τ ′e

h̄ : ∆ `̀ vd : IsSum τ ′e
h̄j : ∆j | ΓR R̀T

λx′j .e
′
j : τ ′j → τ ′′j

h̄ : ∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

h̄ : ∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
h̄ : ∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

h̄ : ∆ | ΓR R̀T
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

The proof that

EV

(
protocasev e′ with vd of(

K wk
k x′k → e′k[v̄k/h̄k]

)
k∈B

)
⊆ h̄

is completely analogous to the previous case.

94 APPENDIX B. PROOFS

Case (RT-POLYCONSTR): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : τ ′j

h̄ : ∆ `̀ IsPolySum τ ′ h̄ : ∆ `̀ vj : HasPolyC τ ′ Lj τ ′j
h̄ : ∆ | ΓR R̀T

L
vj

j e′ : τ ′

We need to prove that EV
(
L

vj

j e′
)
⊆ h̄, which can be done the same way as in case

(RT-DCONSTR).

Case (RT-POLYCASE): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : τ ′e

h̄ : ∆ `̀ vy : IsPolySum τ ′e h̄k : ∆k | ΓR R̀T
e′′k : σk

h̄ : ∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

h : ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

h : ∆ | ΓR R̀T
polycasev e′ with vy and

(wk)k∈B of (Lk → e′′k[v̄k/h̄k])k∈B : τ ′

We need to prove that

EV

(
polycasev e′ with vy and

(wk)k∈B of (Lk → e′′k[v̄k/h̄k])k∈B

)
⊆ h̄

Now by inductive hypothesis on the first and third premises

EV
(
e′
)
⊆ h̄ (B.9)

EV
(
e′k
)
⊆ h̄k ∀k ∈ B (B.10)

By rule (Evars) on the remaining premises

EV
(
vd
)
⊆ h̄ (B.11)

EV (v̄k) ⊆ h̄ ∀k ∈ B (B.12)
EV (wk) ⊆ h̄ ∀k ∈ B (B.13)

From B.10 we can conclude that EV
(
e′k[v̄k/h̄k]

)
= EV (v̄k) by substitution. Then,

from B.12,
EV

(
e′k[v̄k/h̄k]

)
= EV (v̄k) ⊆ h̄ (B.14)

Finally, from B.9, B.11, B.13 and B.14 we can conclude

EV

(
polycasev e′ with vy and

(wk)k∈B of (Lk → e′′k[v̄k/h̄k])k∈B

)
=

EV (e′) ∪ EV (vy) ∪
⋃

k∈B

(
EV (wk) ∪ EV

(
e′k[v̄k/h̄k]

))
⊆ h̄

As we wanted to prove.

B.3. PROOF OF PROPOSITION 4.9, SECTION 4.3 95

B.3 Proof of proposition 4.9, section 4.3

Proposition 4.9 If h̄ : ∆ | ΓR R̀T
e′ : σ and ∆′ `̀ v̄ : ∆

then ∆′ | ΓR R̀T
e′[v̄/h̄] : σ

Proof: By induction on the RT derivation.
Extending proofs of propositions by Mart́ınez López [2005, 6.11] and Russo [2004, 3.7].

Case (RT-DCASE-2): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : τ ′e

h̄ : ∆ `̀ vd : IsSum τ ′e
h̄j : ∆j | ΓR R̀T

λx′j .e
′
j : τ ′j → τ ′′j

h̄ : ∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

h̄ : ∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
h̄ : ∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

h̄ : ∆ | ΓR R̀T
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

We need to prove that

∆′ | ΓR R̀T

(
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B

)
[v̄/h̄] : τ ′

By the definition of substitution on a protocasev expression, this is the same as proving
that

∆′ | ΓR R̀T

(
protocasev e′[v̄/h̄] with vd[v̄/h̄] of

(K wj [v̄/h̄]
j x′j → e′j [v̄j/h̄j][v̄/h̄])j∈B

)
: τ ′

We can also assume (by alpha conversion) that h̄j and h̄ are disjoint for all j. Since

by lemma 4.8 on the third premise, EV
(
e′j

)
= EV

(
λx′j .e

′
j

)
⊆ h̄j , evidence h̄ do not

appear free in e′j and the judgement above is equivalent to

∆′ | ΓR R̀T

(
protocasev e′[v̄/h̄] with vd[v̄/h̄] of

(K wj [v̄/h̄]
j x′j → e′j [v̄j [v̄/h̄]/h̄j])j∈B

)
: τ ′

Now one of our hypothesis is ∆′ `̀ v̄ : ∆, so by rule (Trans) on premises 2, 4, 5 and 6:

∆′ `̀ vd[v̄/h̄] : IsSum τ ′e ∆′ `̀ v̄j [v̄/h̄] : Kj ∈ τ ′e ? ∆j

∆′ `̀ wj [v̄/h̄] : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
∆′ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

(B.15)

Also by inductive hypothesis on the first premise:

96 APPENDIX B. PROOFS

∆′ | ΓR R̀T
e′[v̄/h̄] : τ ′e (B.16)

Then, applying rule (RT-DCASE-2) to B.15, B.16 and premise 3, we can conclude that

∆′ | ΓR R̀T

(
protocasev e′[v̄/h̄] with vd[v̄/h̄] of

(K wj [v̄/h̄]
j x′j → e′j [v̄j [v̄/h̄]/h̄j])j∈B

)
: τ ′

as we wanted to show.

Case (RT-POLYCONSTR): We have a derivation of the form

h̄ : ∆ | ΓR R̀T
e′ : τ ′j

h̄ : ∆ `̀ IsPolySum τ ′ h̄ : ∆ `̀ vj : HasPolyC τ ′ Lj τ ′j
h̄ : ∆ | ΓR R̀T

L
vj

j e′ : τ ′

We need to prove that

∆′ | ΓR R̀T
(L vj

j e′)[v̄/h̄] : τ ′

By the definition of substitution on a tagged expression, this is the same as proving
that

∆′ | ΓR R̀T
(L vj [v̄/h̄]

j e′[v̄/h̄]) : τ ′

Now one of our hypothesis is ∆′ `̀ v̄ : ∆, so by rule (Trans) on the second and third
premises:

∆′ `̀ IsPolySum τ ′

∆′ `̀ vj [v̄/h̄] : HasPolyC τ ′ Lj τ ′j
(B.17)

Also by inductive hypothesis on the first premise:

∆′ | ΓR R̀T
e′[v̄/h̄] : τ ′j (B.18)

Applying rule (RT-POLYCONSTR) on B.17 and B.18, we can conclude

∆′ | ΓR R̀T
(L vj [v̄/h̄]

j e′[v̄/h̄]) : τ ′

as we wanted to show.

Case (RT-POLYCASE): We have a derivation of the form

B.3. PROOF OF PROPOSITION 4.9, SECTION 4.3 97

h̄ : ∆ | ΓR R̀T
e′ : τ ′e

h̄ : ∆ `̀ vy : IsPolySum τ ′e h̄k : ∆k | ΓR R̀T
e′′k : σk

h̄ : ∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

h : ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

h : ∆ | ΓR R̀T
polycasev e′ with vy and

(wk)k∈B of (Lk → e′′k[v̄k/h̄k])k∈B : τ ′

We need to prove that

∆′ | ΓR R̀T

(
polycasev e′ with vy and

(wk)k∈B of (Lk → e′′k[v̄k/h̄k])k∈B

)
[v̄/h̄] : τ ′

By the definition of substitution on a polycasev expression, this is the same as proving
that

∆′ | ΓR R̀T

(
polycasev e′[v̄/h̄] with vy[v̄/h̄] and(

wk[v̄/h̄]
)
k∈B

of (Lk → e′′k[v̄k/h̄k][v̄/h̄])k∈B

)
: τ ′

We can also assume (by alpha conversion) that h̄k and h̄ are disjoint for all k. Since by
lemma 4.8 on the third premise, EV (e′′k) ⊆ h̄k, evidence h̄ do not appear free in e′′k and
the judgment above is equivalent to

∆′ | ΓR R̀T

(
polycasev e′[v̄/h̄] with vy[v̄/h̄] and(

wk[v̄/h̄]
)
k∈B

of (Lk → e′′k[v̄k[v̄/h̄]/h̄k])k∈B

)
: τ ′

Now one of our hypothesis is ∆′ `̀ v̄ : ∆, so by rule (Trans) on premises 2, 4 and 5:

∆′ `̀ vy[v̄/h̄] : IsPolySum τ ′e(
∆′ `̀ v̄k[v̄/h̄] : Lk ∈ τ ′e ? ∆k

∆′ `̀ wk[v̄/h̄] : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

)
k∈B

(B.19)

Also by inductive hypothesis on the first premise:

∆′ | ΓR R̀T
e′[v̄/h̄] : τ ′e (B.20)

Then, applying rule (RT-POLYCASE) to B.19, B.20 and premise 3, we can conclude
that

∆′ | ΓR R̀T

(
polycasev e′[v̄/h̄] with vy[v̄/h̄] and(

wk[v̄/h̄]
)
k∈B

of (Lk → e′′k[v̄k[v̄/h̄]/h̄k])k∈B

)
: τ ′

as we wanted to show.

98 APPENDIX B. PROOFS

B.4 Proof of theorem 4.10, section 4.3

Theorem 4.10 If h̄ : ∆ | ΓR R̀T
e′ : σ, and C : (h̄ : ∆ | σ) ≥ (h̄′ : ∆′ | σ′)

then h̄′ : ∆′ | ΓR R̀T
C [e′] : σ′

Proof: The proof of this theorem, presented by Mart́ınez López [2005, 6.12], does not depend
on the structure of the RT derivation but on the definition of conversions, so the extensions
we have made to the system do not modify it.

B.5 Proof of proposition 4.11, section 4.4

Proposition 4.11 If ∆
S̀R

τ ↪→ σ

then S ∆
S̀R

τ ↪→ S σ

Proof: By induction on the SR relation.
Extending proofs of propositions by Mart́ınez López [2005, 6.13] and Russo [2004, 3.11].

Case (SR-POLYDATA): We have a derivation of the form

∆ `̀ IsPolySum τ ′ ∆k S̀R
Y (Lk) ↪→ σk

∆ `̀ Lk ∈ τ ′ ? ∆k

∆ `̀ Lk ∈ τ ′ ? HasMGC τ ′ Lk σk

Lk∈Y

∆
S̀R

Y D ↪→ τ ′

We need to prove that

S ∆
S̀R

Y D ↪→ S τ ′

By rule (Close) on all the premises involving entailment:

S ∆ `̀ S (IsPolySum τ ′) S ∆k `̀ S (IsMG σ′k σk)
S ∆ `̀ S (Lk ∈ τ ′ ? ∆k)
S ∆ `̀ S (Lk ∈ τ ′ ? HasMGC τ ′ Lk σk)

Lk∈Y

Which is equivalent to

S ∆ `̀ IsPolySum (S τ ′) S ∆k `̀ IsMG (S σ′k) (S σk)
S ∆ `̀ Lk ∈ (S τ ′) ? (S ∆k)
S ∆ `̀ Lk ∈ (S τ ′) ?HasMGC (S τ ′) Lk (S σk)

Lk∈Y

(B.21)

Also by inductive hypothesis on the SR premise:

(
S ∆k S̀R

Y (Lk) ↪→ S σ′k
)
Lk∈Y

(B.22)

B.6. PROOF OF PROPOSITION 4.12, SECTION 4.4 99

From B.21 and B.22 by rule (SR-POLYDATA) we can conclude

S ∆
S̀R

Y D ↪→ S τ ′

as we wanted to prove.

B.6 Proof of proposition 4.12, section 4.4

Proposition 4.12 If ∆
S̀R

τ ↪→ σ and ∆′ `̀ ∆
then ∆′

S̀R
τ ↪→ σ

Proof: By induction on the SR derivation.
Extending proofs of propositions by Mart́ınez López [2005, 6.14] and Russo [2004, 3.12].

Case (SR-POLYDATA): We have a derivation of the form

∆ `̀ IsPolySum τ ′ ∆k S̀R
Y (Lk) ↪→ σk

∆ `̀ Lk ∈ τ ′ ? ∆k

∆ `̀ Lk ∈ τ ′ ? HasMGC τ ′ Lk σk

Lk∈Y

∆
S̀R

Y D ↪→ τ ′

We need to show that

∆′
S̀R

Y D ↪→ τ ′

By hypothesis, ∆′ `̀ ∆, so by rule (Trans) on all the entailment premises involving ∆

∆′ `̀ IsPolySum τ ′(
∆′ `̀ Lk ∈ τ ′ ? ∆k

∆′ `̀ Lk ∈ τ ′ ? HasMGC τ ′ Lk σk

)
Lk∈Y

(B.23)

From B.23 and the remaining premises, we can conclude by rule (SR-POLYDATA)

∆′
S̀R

Y D ↪→ τ ′

As we wanted.

B.7 Proof of theorem 4.13, section 4.4

Theorem 4.13 If ∆
S̀R

τ ↪→ σ and C : (h̄ : ∆ | σ) ≥ (h̄′ : ∆′ | σ′)
then ∆′

S̀R
τ ↪→ σ′

Proof: The proof of this theorem, presented by Mart́ınez López [2005, 6.15], does not depend
on the structure of the SR derivation but on the definition of conversions, so the extensions
we have made to the system do not modify it.

100 APPENDIX B. PROOFS

B.8 Proof of lemma 4.14, section 4.4

Lemma 4.14 If ∆
S̀R

Y D ↪→ σ

then σ = ∀β̄.∆′ ⇒ τ and
∆,∆′ `̀ IsPolySum τ

Proof: By induction on the SR derivation.

Case (SR-POLYDATA): We have a derivation of the form

∆ `̀ IsPolySum τ ′ ∆k S̀R
Y (Lk) ↪→ σk

∆ `̀ Lk ∈ τ ′ ? ∆k

∆ `̀ Lk ∈ τ ′ ? HasMGC τ ′ Lk σk

Lk∈Y

∆
S̀R

Y D ↪→ τ ′

We need to show that τ ′ = ∀β̄.∆′ ⇒ τ such that ∆,∆′ `̀ IsPolySum τ . This holds
taking, β, ∆′ = ∅ and τ ′ = τ ; ∆ `̀ IsPolySum τ ′ holds by the first premise of the rule.

Case (SR-QIN): We have a derivation of the form

∆, δ
S̀R

τ ↪→ ρ

∆
S̀R

τ ↪→ δ ⇒ ρ

Taking β̄ = ∅, ρ = ∆′′ ⇒ τ , we have ∆′ = δ,∆′′. By inductive hypothesis,

∆, δ, ∆′′ `̀ IsPolySum τ

so ∆,∆′ `̀ IsPolySum τ follows trivially.

Case (SR-QOUT): We have a derivation of the form

∆
S̀R

τ ↪→ δ ⇒ ρ ∆ `̀ δ

∆
S̀R

τ ↪→ ρ

Let us take β̄ = ∅, ρ = ∆′ ⇒ τ . We need to show that ∆,∆′ `̀ IsPolySum τ . Now by
inductive hypothesis on the first premise, ∆, δ, ∆′ `̀ IsPolySum τ , and since ∆ `̀ δ, by
rule (Cut) we can conclude ∆,∆′ `̀ IsPolySum τ .

Case (SR-GEN): We have a derivation of the form

∆
S̀R

τ ↪→ σ

∆
S̀R

τ ↪→ ∀α.σ
(α 6∈FV(∆))

B.9. PROOF OF THEOREM 4.20, SECTION 4.4 101

We need to show that ∀α.σ = ∀β̄.∆′ ⇒ τ such that ∆,∆′ `̀ IsPolySum τ .

Let us take σ = ∀ᾱ′.∆′ ⇒ τ , that is β̄ = α, ᾱ′. ∆,∆′ `̀ IsPolySum τ follows directly
from the inductive hypothesis.

Case (SR-INST): We have a derivation of the form

∆
S̀R

τ ↪→ ∀α.σ

∆
S̀R

τ ↪→ S σ
(dom(S)=α)

We want to prove that S σ = ∀β̄.∆′ ⇒ τ such that ∆,∆′ `̀ IsPolySum τ .

Let us take ∀α.σ = ∀α, ᾱ′.∆′ ⇒ τ , so S σ = ∀ᾱ′.S ∆′ ⇒ S τ . Then we need to prove
that

∆, S ∆′ `̀ IsPolySum S τ

By inductive hypothesis,

∆,∆′ `̀ IsPolySum τ

Applying rule (Close),

S ∆, S ∆′ `̀ IsPolySum S τ

Now dom(S) = α, and by alpha-conversion we can assume α /∈ FV (∆), so S ∆ = ∆
and

∆, S ∆′ `̀ IsPolySum S τ

as we needed to show.

Given our hypothesis ∆
S̀R

Y D ↪→ σ, no other SR rules apply, so this completes our
proof.

B.9 Proof of theorem 4.20, section 4.4

Theorem 4.20 If ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then ∆ | Γ
(RT) R̀T

e′ : σ

where Γ
(RT)

= {x′i : τi | i = 1, . . . , n}
if Γ = {xi : τi ↪→ x′i : τi | i = 1, . . . , n}

Proof: By induction on the P derivation.
Extending proofs of theorems by Mart́ınez López [2005, 6.20] and Russo [2004, 3.15].

Case (DCASE-2): We have a derivation of the form

102 APPENDIX B. PROOFS

1) ∆ | Γ
P̀

e : DD ↪→ e′ : τ ′e
2) ∆ `̀ vd : IsSum τ ′e
3) ∆

S̀R
τ ↪→ τ ′

4) h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : τ ′j → τ ′′j

5) ∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

6) ∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
7) ∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

∆ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

We want to show that

∆ | Γ
(RT) R̀T

protocasev e′ with vd of (K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

By inductive hypothesis on premises 1 and 4

∆ | Γ
(RT) R̀T

e′ : τ ′e(
h̄j : ∆j | Γ(RT) R̀T

λx′j .e
′
j : τ ′j → τ ′′j

)
j∈B

(B.24)

From B.24 and premises 2, 5, 6 and 7 by (RT-DCASE-2)

∆ | Γ
(RT) R̀T

protocasev e′ with vd of (K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

As we needed to show.

Case (POLYCONSTR): We have a derivation of the form

1) ∆
S̀R

Y D ↪→ τ ′e
2) ∆ | Γ

P̀
e : Y (Lj) ↪→ e′ : τ ′j

3) ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j
∆ | Γ

P̀
L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

We want to show that
∆ | Γ

(RT) R̀T
L

vj

j e′ : τ ′e

Premise 1 says that ∆
S̀R

Y D ↪→ τ ′e, so by lemma 4.14 we can conclude

∆ `̀ IsPolySum τ ′e (B.25)

Also by inductive hypothesis on premise 1

∆ | Γ
(RT) R̀T

e′ : τ ′j (B.26)

From B.25, B.26 and premise 3 of the derivation rule, applying (RT-POLYCONSTR)

∆ | Γ
(RT) R̀T

L
vj

j e′ : τ ′e

As we needed to show.

B.10. PROOF OF THEOREM 4.21, SECTION 4.4 103

Case (POLYCASE): We have a derivation of the form

1) ∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e
2) ∆ `̀ vy : IsPolySum τ ′e
3) ∆

S̀R
τ ↪→ τ ′ 4) h̄k : ∆k | Γ P̀

λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk

5) ∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

6) ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

: τ ′

We want to show that

∆ | Γ
(RT) R̀T

polycasev e′ with vy and (wk)k∈B of (Lk → e′k[v̄k/h̄k])k∈B : τ ′

By inductive hypothesis on premises 1 and 4

∆ | Γ
(RT) R̀T

e′ : τ ′e(
h̄k : ∆k | Γ(RT) R̀T

e′k : σk

)
k∈B

(B.27)

From B.27 and premises 2, 5, 6 and 7 by (RT-POLYCASE)

∆ | Γ
(RT) R̀T

polycasev e′ with vy and (wk)k∈B of (Lk → e′k[v̄k/h̄k])k∈B : τ ′

As we needed to show.

B.10 Proof of theorem 4.21, section 4.4

Theorem 4.21 If ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then ∆
S̀R

τ ↪→ σ

Proof: By induction on the P derivation.
Extending proofs of theorems by Mart́ınez López [2005, 6.19] and Russo [2004, 3.14].

Case (RT-DCASE-2): We have a derivation of the form

∆ | Γ
P̀

e : DD ↪→ e′ : τ ′e
∆ `̀ vd : IsSum τ ′e
∆

S̀R
τ ↪→ τ ′

h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : τ ′j → τ ′′j

∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

∆ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

104 APPENDIX B. PROOFS

We want to prove that
∆

S̀R
τ ↪→ τ ′

which is trivial, since it is one of the premises of the rule.

Case (POLYCONSTR): We have a derivation of the form

∆
S̀R

Y D ↪→ τ ′e
∆ | Γ

P̀
e : Y (Lj) ↪→ e′ : τ ′j ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j

∆ | Γ
P̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

We want to prove that
∆

S̀R
Y D ↪→ τ ′e

which is trivial, since it is one of the premises of the rule.

Case (POLYCASE): We have a derivation of the form

∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e
∆ `̀ vy : IsPolySum τ ′e
∆

S̀R
τ ↪→ τ ′ h̄k : ∆k | Γ P̀

λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk

∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

: τ ′

We want to prove that
∆

S̀R
τ ↪→ τ ′

which is trivial, since it is one of the premises of the rule.

B.11 Proof of proposition 4.22, section 4.4

Proposition 4.22 ? If h̄ : ∆ | Γ
P̀

e : τ ↪→ e′ : σ′ and ∆′ `̀ v̄ : ∆
then ∆′ | Γ

P̀
e : τ ↪→ e′[v̄/h̄] : σ′

Proof: By induction on the P derivation.
Extending proofs of propositions by Mart́ınez López [2005, 6.21] and Russo [2004, 3.16].

Case (DCASE-2): We have a derivation of the form

B.11. PROOF OF PROPOSITION 4.22, SECTION 4.4 105

1) h̄ : ∆ | Γ
P̀

e : DD ↪→ e′ : τ ′e
2) h̄ : ∆ `̀ vd : IsSum τ ′e
3) h̄ : ∆

S̀R
τ ↪→ τ ′

4) h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : τ ′j → τ ′′j

5) h̄ : ∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

6) h̄ : ∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
7) h̄ : ∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

h̄ : ∆ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

We need to prove that

∆′ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ ↪→(
protocasev e′ with vd of
(K wj

j x′j → e′j [v̄j/h̄j])j∈B

)
[v̄/h̄] : τ ′

Which, by definition of substitutions on a protocasev expression, is equivalent to prov-
ing

∆′ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ ↪→
protocasev e′[v̄/h̄] with vd[v̄/h̄] of

(K wj [v̄/h̄]
j x′j → e′j [v̄j/h̄j][v̄/h̄])j∈B

: τ ′

By alpha conversion we can assume h̄ and h̄j are disjoint. By lemma 4.24 on premise 4,

EV
(
e′j

)
= EV

(
λx′j .e

′
j

)
⊆ h̄j , so h̄ do not appear free in e′j . Therefore e′j [v̄j/h̄j][v̄/h̄] =

e′j [v̄j [v̄/h̄]/h̄j], so we finally need to prove that

∆′ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ ↪→
protocasev e′[v̄/h̄] with vd[v̄/h̄] of

(K wj [v̄/h̄]
j x′j → e′j [v̄j [v̄/h̄]/h̄j])j∈B

: τ ′

Now, as ∆′ `̀ v̄ : ∆, by rule (Trans) on premises 2, 5, 6 and 7

∆′ `̀ vd[v̄/h̄] : IsSum τ ′e ∆′ `̀ v̄j [v̄/h̄] : Kj ∈ τ ′e ? ∆j

∆′ `̀ wj [v̄/h̄] : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
∆′ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

(B.28)

Also by inductive hypothesis on premise 1

∆′ | Γ
P̀

e : DD ↪→ e′[v̄/h̄] : τ ′e (B.29)

Finally, by proposition 4.12 on premise 3

∆′
S̀R

τ ↪→ τ ′ (B.30)

106 APPENDIX B. PROOFS

From B.28, B.29, B.30 and premise 4, we can conclude by (DCASE-2)

∆′ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ ↪→
protocasev e′[v̄/h̄] with vd[v̄/h̄] of

(K wj [v̄/h̄]
j x′j → e′j [v̄j [v̄/h̄]/h̄j])j∈B

: τ ′

As we wanted to show.

Case (POLYCONSTR): We have a derivation of the form

1) h̄ : ∆ | Γ
P̀

e : Y (Lj) ↪→ e′ : τ ′j
2) h̄ : ∆

S̀R
Y D ↪→ τ ′e

3) h̄ : ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j
h̄ : ∆ | Γ

P̀
L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

We want to prove that

∆′ | Γ
P̀

L D

j e : Y D ↪→ (L vj

j e′)[v̄/h̄] : τ ′

which, by definition of substitution on tagged expressions is equivalent to

∆′ | Γ
P̀

L D

j e : Y D ↪→ L
vj [v̄/h̄]
j e′[v̄/h̄] : τ ′

Now by inductive hypothesis on premise 1

∆′ | Γ
P̀

e : Y (Lj) ↪→ e′[v̄/h̄] : τ ′j (B.31)

Also, as ∆′ `̀ v̄ : ∆, by proposition 4.12 on premise 2

∆′
S̀R

Y D ↪→ τ ′e (B.32)

Finally by (Trans) on premise 3

∆′ `̀ vj [v̄/h̄] : HasPolyC τ ′e Lj τ ′j (B.33)

From B.31, B.32 and B.33 by rule (POLYCONSTR)

∆′ | Γ
P̀

L D

j e : Y D ↪→ L
vj [v̄/h̄]
j e′[v̄/h̄] : τ ′

As we needed to prove.

Case (POLYCASE): We have a derivation of the form

1) h̄ : ∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e
2) h̄ : ∆ `̀ vy : IsPolySum τ ′e
3) h̄ : ∆

S̀R
τ ↪→ τ ′ 4) h̄k : ∆k | Γ P̀

λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk

5) h̄ : ∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

6) h̄ : ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

h̄ : ∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

: τ ′

B.12. PROOF OF PROPOSITION 4.23, SECTION 4.4 107

We need to prove that

∆′ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ ↪→(
polycasev e′ with vy and (wk)k∈B of(

Lk → e′k[v̄k/h̄k]
)
k∈B

)
[v̄/h̄] : τ ′

Which, by definition of substitutions on a polycasev expression, is equivalent to proving

∆′ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ ↪→
polycasev e′[v̄/h̄] with vy[v̄/h̄] and

(
wk[v̄/h̄]

)
k∈B

of(
Lk → e′k[v̄k/h̄k][v̄/h̄]

)
k∈B

: τ ′

By alpha conversion we can assume h̄ and h̄k are disjoint. By lemma 4.24 on premise 4,
EV (e′k) ⊆ h̄k, so h̄ do not appear free in e′k. Therefore e′k[v̄k/h̄k][v̄/h̄] = e′k[v̄k[v̄/h̄]/h̄k],
so we finally need to prove that

∆′ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ ↪→
polycasev e′[v̄/h̄] with vy[v̄/h̄] and

(
wk[v̄/h̄]

)
k∈B

of(
Lk → e′k[v̄k[v̄/h̄]/h̄k]

)
k∈B

: τ ′

Now, as ∆′ `̀ v̄ : ∆, by rule (Trans) on premises 2, 5 and 6

∆′ `̀ vy[v̄/h̄] : IsPolySum τ ′e(
∆′ `̀ v̄k[v̄/h̄] : Lk ∈ τ ′e ? ∆k

∆′ `̀ wk[v̄/h̄] : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

)
k∈B

(B.34)

Also by inductive hypothesis on premise 1

∆′ | Γ
P̀

e : Y D ↪→ e′[v̄/h̄] : τ ′e (B.35)

Finally, by proposition 4.12 on premise 3

∆′
S̀R

τ ↪→ τ ′ (B.36)

From B.34, B.35, B.36 and premise 4, we can conclude by (POLYCASE)

∆′ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ ↪→
polycasev e′[v̄/h̄] with vy[v̄/h̄] and

(
wk[v̄/h̄]

)
k∈B

of(
Lk → e′k[v̄k[v̄/h̄]/h̄k]

)
k∈B

: τ ′

As we wanted to show.

B.12 Proof of proposition 4.23, section 4.4

Proposition 4.23 ? If ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then S ∆ | S Γ
P̀

e : τ ↪→ e′ : S σ

Proof: By induction on the P derivation.
Extending proofs of propositions by Mart́ınez López [2005, 6.22] and Russo [2004, 3.17].

108 APPENDIX B. PROOFS

Case (DCASE-2): We have a derivation of the form

1) ∆ | Γ
P̀

e : DD ↪→ e′ : τ ′e
2) ∆ `̀ vd : IsSum τ ′e
3) ∆

S̀R
τ ↪→ τ ′

4) h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : τ ′j → τ ′′j

5) ∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

6) ∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
7) ∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

∆ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

We want to see that

S ∆ | S Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : (S τ ′)

By inductive hypothesis on premises 1 and 4

S ∆ | S Γ
P̀

e : DD ↪→ e′ : S τ ′e(
S ∆j | S Γ

P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : S (τ ′j → τ ′′j)

)
j∈B

and since S (τ ′j → τ ′′j) = S τ ′ → S τ ′′j ,

S ∆ | S Γ
P̀

e : Y D ↪→ e′ : S τ ′e(
S ∆j | S Γ

P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : S τ ′ → S τ ′′j

)
j∈B

(B.37)

Also by proposition 4.11 on premise 3

S ∆
S̀R

τ ↪→ S τ ′ (B.38)

Finally by rule (Close) on premises 2, 5, 6 and 7

S ∆′ `̀ vd : IsSum (S τ ′e) S ∆′ `̀ vj : Kj ∈ (S τ ′e) ? (S ∆j)
S ∆′ `̀ wj : Kj ∈ (S τ ′e) ?HasC (S τ ′e) Kj (S τ ′j)
S ∆′ `̀ Kj ∈ (S τ ′e) ?S τ ′′j ∼ S τ ′

j∈B

(B.39)

From B.37, B.38 and B.39 by rule (DCASE-2)

S ∆ | S Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [vj/hj])j∈B : (S τ ′)

As we wanted to show.

B.12. PROOF OF PROPOSITION 4.23, SECTION 4.4 109

Case (POLYCONSTR): We have a derivation of the form

1) ∆
S̀R

Y D ↪→ τ ′e
2) ∆ | Γ

P̀
e : Y (Lj) ↪→ e′ : τ ′j

3) ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j
∆ | Γ

P̀
L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

We want to prove that

S ∆ | S Γ
P̀

L D

j e : Y D ↪→ L
vj

j e′ : S τ ′e

By inductive hypothesis on premise 1

S ∆ | S Γ
P̀

e : Y (Lj) ↪→ e′ : S τ ′j (B.40)

By proposition 4.11 on premise 2

S ∆
S̀R

Y D ↪→ S τ ′e (B.41)

By rule (Close) on premise 3

S ∆ `̀ vj : S (HasPolyC τ ′e Lj τ ′j)

which, by definition of type substitution, is equivalent to

S ∆ `̀ vj : HasPolyC (S τ ′e) Lj (S τ ′j) (B.42)

From B.40, B.41 and B.42, by (POLYCONSTR)

S ∆ | S Γ
P̀

L D

j e : Y D ↪→ L
vj

j e′ : S τ ′e

As we wanted to show.

Case (POLYCASE): We have a derivation of the form

1) ∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e
2) ∆ `̀ vy : IsPolySum τ ′e
3) ∆

S̀R
τ ↪→ τ ′ 4) h̄k : ∆k | Γ P̀

λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk

5) ∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

6) ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

: τ ′

110 APPENDIX B. PROOFS

We want to see that

S ∆ | S Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B of(

Lk → e′k[v̄k/h̄k]
)
k∈B

: (S τ ′)

Now by inductive hypothesis on premises 1 and 4

S ∆ | S Γ
P̀

e : Y D ↪→ e′ : S τ ′e(
h̄k : S ∆k | S Γ

P̀
λDxk.ek : Y (Lk)→D τ ↪→ e′k : S σk

)
k∈B

(B.43)

By proposition 4.11 on premise 3

S ∆
S̀R

τ ↪→ S τ ′ (B.44)

Finally by rule (Close) on premises 2, 5 and 6

S ∆ `̀ vy : IsPolySum (S τ ′e)(
S ∆ `̀ vk : Lk ∈ (S τ ′e) ? (S ∆k)
S ∆ `̀ wk : Lk ∈ (S τ ′e) ?HasMGBr (S τ ′e) Lk (S σk) (S τ ′)

)
k∈B

(B.45)

From B.43, B.44 and B.45 by rule (POLYCASE)

S ∆ | S Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B of(

Lk → e′k[v̄k/h̄k]
)
k∈B

: (S τ ′)

as we wanted to show.

B.13 Proof of lemma 4.24, section 4.4

Lemma 4.24 If h̄ : ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then EV (e′) ⊆ h̄

Proof: By induction on the P derivation.
Extending proofs of lemmas by Mart́ınez López [2005, 6.23] and Russo [2004, 3.18].

Case (DCASE-2): We have a derivation of the form

1) h̄ : ∆ | Γ
P̀

e : DD ↪→ e′ : τ ′e
2) h̄ : ∆ `̀ vd : IsSum τ ′e
3) h̄ : ∆

S̀R
τ ↪→ τ ′

4) h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : τ ′j → τ ′′j

5) h̄ : ∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

6) h̄ : ∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
7) h̄ : ∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

h̄ : ∆ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

B.13. PROOF OF LEMMA 4.24, SECTION 4.4 111

Now by inductive hypothesis on premises 1 and 4

EV
(
e′
)
⊆ h̄ (B.46)

EV
(
e′j
)
⊆ h̄j ∀j ∈ B (B.47)

By rule (Evars) on premises 2, 5 and 6

EV
(
vd
)
⊆ h̄ (B.48)

EV (v̄j) ⊆ h̄ ∀j ∈ B (B.49)
EV (wj) ⊆ h̄ ∀j ∈ B (B.50)

From B.47 we can conclude that EV
(
e′j [v̄j/h̄j]

)
= EV (v̄j) by substitution. Then,

from B.49,
EV

(
e′j [v̄j/h̄j]

)
= EV (v̄j) ⊆ h̄ (B.51)

Finally, from B.46, B.48, B.50 and B.51 we can conclude

EV

(
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B

)
=

EV (e′) ∪ EV
(
vd
)
∪
⋃

j∈B

(
EV (wj) ∪ EV

(
e′j [v̄j/h̄j]

))
⊆ h̄

As we wanted to prove.

Case (POLYCONSTR): We have a derivation of the form

h̄ : ∆
S̀R

Y D ↪→ τ ′e
h̄ : ∆ | Γ

P̀
e : Y (Lj) ↪→ e′ : τ ′j h̄ : ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j

h̄ : ∆ | Γ
P̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

By inductive hypothesis on the first premise EV (e′) ⊆ h̄, and by rule (Evars) on the
third premise EV (vj) ⊆ h̄. Therefore,

EV
(
L

vj

j e
)

= EV (vj) ∪ EV
(
e′
)
∪ h̄

As we wanted to show.

Case (POLYCASE): We have a derivation of the form

1) h̄ : ∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e
2) h̄ : ∆ `̀ vy : IsPolySum τ ′e
3) h̄ : ∆

S̀R
τ ↪→ τ ′ 4) h̄k : ∆k | Γ P̀

λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk

5) h̄ : ∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

6) h̄ : ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

h̄ : ∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

: τ ′

112 APPENDIX B. PROOFS

Now by inductive hypothesis on premises 1 and 4

EV
(
e′
)

⊆ h̄ (B.52)
EV

(
e′k
)

⊆ h̄k ∀k ∈ B (B.53)

By rule (Evars) on premises 2, 5 and 6

EV (vy) ⊆ h̄ (B.54)
EV (v̄k) ⊆ h̄ ∀k ∈ B (B.55)
EV (wk) ⊆ h̄ ∀k ∈ B (B.56)

From B.53 we can conclude that EV
(
e′k[v̄k/h̄k]

)
= EV (v̄k) by substitution. Then,

from B.55,
EV

(
e′k[v̄k/h̄k]

)
= EV (v̄k) ⊆ h̄ (B.57)

Finally, from B.52, B.54, B.56 and B.57 we can conclude

EV

(
polycasev e′ with vy and (wk)k∈B of(

Lk → e′k[v̄k/h̄k]
)
k∈B

)
=

EV (e′) ∪ EV (vy) ∪
⋃

k∈B

(
EV (wk) ∪ EV

(
e′k[v̄k/h̄k]

))
⊆ h̄

as we wanted to prove.

B.14 Proof of lemma 4.25, section 4.4

Lemma 4.25 If h̄ : ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then there exist β̄, ∆σ and τ ′′ such that σ = ∀β̄.∆σ ⇒ τ ′′

Proof: By induction on the P derivation.
Extending proofs of lemmas by Mart́ınez López [2005, 6.24] and Russo [2004, 3.19].

Case (DCASE-2): We have a derivation of the form

∆ | Γ
P̀

e : DD ↪→ e′ : τ ′e
∆ `̀ vd : IsSum τ ′e
∆

S̀R
τ ↪→ τ ′

h̄j : ∆j | Γ P̀
λDxj .ej : DD (Kj)→D τ ↪→ λx′j .e

′
j : τ ′j → τ ′′j

∆ `̀ v̄j : Kj ∈ τ ′e ? ∆j

∆ `̀ wj : Kj ∈ τ ′e ? HasC τ ′e Kj τ ′j
∆ `̀ Kj ∈ τ ′e ? τ ′′j ∼ τ ′

j∈B

∆ | Γ
P̀

caseD e of (K D

j xj → ej)j∈B : τ

↪→
protocasev e′ with vd of

(K wj

j x′j → e′j [v̄j/h̄j])j∈B : τ ′

B.15. PROOF OF PROPOSITION 5.1, SECTION 5.1 113

To show β̄, ∆σ and τ ′′ such that

τ ′ = ∀β̄.∆σ ⇒ τ ′′

it suffices to take β̄ = ∅, ∆σ = ∅ and τ ′′ = τ ′.

Case (POLYCONSTR): We have a derivation of the form

∆
S̀R

Y D ↪→ τ ′e
∆ | Γ

P̀
e : Y (Lj) ↪→ e′ : τ ′j ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j

∆ | Γ
P̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

To show β̄, ∆σ and τ ′′ such that

τ ′e = ∀β̄.∆σ ⇒ τ ′′

it suffices to take β̄ = ∅, ∆σ = ∅ and τ ′′ = τ ′e.

Case (POLYCASE): We have a derivation of the form

∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e
∆ `̀ vy : IsPolySum τ ′e
∆

S̀R
τ ↪→ τ ′ h̄k : ∆k | Γ P̀

λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk

∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

: τ ′

To show β̄, ∆σ and τ ′′ such that

τ ′ = ∀β̄.∆σ ⇒ τ ′′

it suffices to take β̄ = ∅, ∆σ = ∅ and τ ′′ = τ ′.

B.15 Proof of proposition 5.1, section 5.1

Proposition 5.1 If h : ∆ | Γ
S̀

e : τ ↪→ e′ : τ ′ then h : S ∆ | S Γ
S̀

e : τ ↪→ e′ : S τ ′

Proof: By induction on the S derivation.
Extending proofs of propositions by Mart́ınez López [2005, 7.7] and Russo [2004, 4.3].

Case (S-POLYCONSTR): The proof is analogous to that of proposition 4.23 for case
(POLYCONSTR).

114 APPENDIX B. PROOFS

Case (S-POLYCASE): We have a derivation of the form

∆ | Γ
S̀

e : Y D ↪→ e′ : τ ′e
∆ `̀ vy : IsPolySum τ ′e
∆

S̀R
τ ↪→ τ ′ h̄k : ∆k | Γ S̀

λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k
σk = GenΓ(∆k ⇒ τ ′k), e′k = Λh̄k.e

′′
k

∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

We want to see that

S ∆ | S Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : S τ ′

By inductive hypothesis on the first premise

S ∆ | S Γ
S̀

e : Y D ↪→ e′ : S τ ′e (B.58)

By proposition 4.11 on the third premise

S ∆
S̀R

τ ↪→ S τ ′ (B.59)

By rule (Close) on the second and last premises

S ∆ `̀ vy : IsPolySum (S τ ′e) (B.60)(
S ∆ `̀ wk : Lk ∈ (S τ ′e) ?HasMGBr (S τ ′e) Lk (S σk) (S τ ′)

)
k∈B

where σk = GenΓ(∆k ⇒ τ ′k)

Now for each k, by proposition 2.16-3, there is a substitution Tk such that Tk Γ = S Γ and
GenS Γ(Tk ∆k ⇒ Tk τ ′k) = S GenΓ(∆k ⇒ τ ′k). So if we call σ′k = GenTk Γ(Tk ∆k ⇒ Tk τ ′k),
we have σ′k = S σk and

(
S ∆ `̀ wk : Lk ∈ (S τ ′e) ?HasMGBr (S τ ′e) Lk σ′k (S τ ′)

)
k∈B

(B.61)

Finally, by inductive hypothesis on each k, and knowing Tk Γ = S Γ

hk : Tk ∆k | S Γ
S̀

λDxk.ek : Y (Lk)→D τ ↪→ e′′k : Tk τ ′k (B.62)

B.16. PROOF OF PROPOSITION 5.2, SECTION 5.1 115

By rule (S-POLYCASE) on B.58, B.60, B.59, B.62, and B.61 we can conclude

S ∆ | S Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : S τ ′

as we wanted to show.

B.16 Proof of proposition 5.2, section 5.1

Proposition 5.2 If h : ∆ | Γ
S̀

e : τ ↪→ e′ : τ ′ and
∆′ `̀ v : ∆

then ∆′ | Γ
S̀

e : τ ↪→ e′[h/v] : τ ′

Proof: By induction on the P derivation.
Extending proofs of propositions by Mart́ınez López [2005, 7.8] and Russo [2004, 4.4].

Case (S-POLYCONSTR): The proof is analogous to that of proposition 4.22 for case
(POLYCONSTR).

Case (S-POLYCASE): We have a derivation of the form

h̄ : ∆ | Γ
S̀

e : Y D ↪→ e′ : τ ′e
h̄ : ∆ `̀ vy : IsPolySum τ ′e
h̄ : ∆

S̀R
τ ↪→ τ ′ h̄k : ∆k | Γ S̀

λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k
σk = GenΓ(∆k ⇒ τ ′k), e′k = Λh̄k.e

′′
k

h̄ : ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

h̄ : ∆ | Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

We want to prove that

∆′ | Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→(
polycasev e′ with vy and (wk)k∈B of (Lk → e′k)k∈B

)
[v̄/h̄] : τ ′

which, by evidence substitution, is equivalent to proving

∆′ | Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′[v̄/h̄] with vy[v̄/h̄] and

(
wk[v̄/h̄]

)
k∈B

of
(
Lk → e′k[v̄/h̄]

)
k∈B

: τ ′

116 APPENDIX B. PROOFS

By alpha conversion we can assume h̄ and h̄k are disjoint. Moreover, by lemma 4.24,
EV (e′′k) ⊆ h̄k, so h̄ do neither appear free in e′′k nor in e′k. Therefore e′k[v̄/h̄] = e′k, and
we finally need to prove that

∆′ | Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′[v̄/h̄] with vy[v̄/h̄] and

(
wk[v̄/h̄]

)
k∈B

of (Lk → e′k)k∈B : τ ′

Now, as ∆′ `̀ v̄ : ∆, by rule (Trans) on the second and last premises

∆′ `̀ vy[v̄/h̄] : IsPolySum τ ′e(
∆′ `̀ wk[v̄/h̄] : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

)
k∈B

(B.63)

Also by inductive hypothesis on the first premise

∆′ | Γ
S̀

e : Y D ↪→ e′[v̄/h̄] : τ ′e (B.64)

Finally, by proposition 4.12 on the third premise

∆′
S̀R

τ ↪→ τ ′ (B.65)

Applying rule (S-POLYCASE), from B.64, B.63, B.65 and the fourth premise we can
conclude

∆′ | Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′[v̄/h̄] with vy[v̄/h̄] and

(
wk[v̄/h̄]

)
k∈B

of (Lk → e′k)k∈B : τ ′

as we needed to prove.

B.17 Proof of theorem 5.3, section 5.1

Theorem 5.3 ? If ∆ | Γ
S̀

e : τ ↪→ e′ : τ ′ then ∆ | Γ
P̀

e : τ ↪→ e′ : τ ′

Proof: By induction on the S derivation.
Extending proofs of propositions by Mart́ınez López [2005, 7.9] and Russo [2004, 4.5].

Case (S-POLYCONSTR): We have a derivation of the form

∆
S̀R

Y D ↪→ τ ′e
∆ | Γ

S̀
e : Y (Lj) ↪→ e′ : τ ′j ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j

∆ | Γ
S̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

B.17. PROOF OF THEOREM 5.3, SECTION 5.1 117

We need to prove that

∆ | Γ
P̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

By inductive hypothesis on the third premise

∆ | Γ
P̀

e : Y (Lj) ↪→ e′ : τ ′j (B.66)

The result follows from applying rule (POLYCONSTR) on the first and third premises,
and B.66.

Case (S-POLYCASE): We have a derivation of the form

∆ | Γ
S̀

e : Y D ↪→ e′ : τ ′e
∆ `̀ vy : IsPolySum τ ′e
∆

S̀R
τ ↪→ τ ′ h̄k : ∆k | Γ S̀

λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k
σk = GenΓ(∆k ⇒ τ ′k), e′k = Λh̄k.e

′′
k

∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

∆ | Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

We want to see that

∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

By inductive hypothesis on the first premise

∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e (B.67)

Now for each branch k, also by inductive hypothesis

h̄k : ∆k | Γ P̀
λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k

Applying rule (QIN) as many times as necessary

∅ | Γ
P̀

λDxk.ek : Y (Lk)→D τ ↪→ Λh̄k.e
′′
k : ∆k ⇒ τ ′k

Applying rule (GEN) as many times as necessary

∅ | Γ
P̀

λDxk.ek : Y (Lk)→D τ ↪→ Λh̄k.e
′′
k : GenΓ(∆k ⇒ τ ′k)

that is
∅ | Γ

P̀
λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk (B.68)

118 APPENDIX B. PROOFS

By B.67, B.68 and the remaining premises, we can apply rule (POLYCASE) to conclude

∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

as we wanted to show.

B.18 Proof of theorem 5.4, section 5.1

Theorem 5.4 ? If h̄ : ∆ | Γ
P̀

e : τ ↪→ e′ : σ

then there exist h̄′s, ∆′
s, e′s, τ ′s and C ′

s such that
h̄′s : ∆′

s | Γ S̀
e : τ ↪→ e′s : τ ′s,

C ′
s : GenΓ(∆′

s ⇒ τ ′s) ≥ (h̄ : ∆ | σ),
C ′

s[Λh′s.e
′
s] = e′

Proof: By induction on the P derivation.
Extending proofs of propositions by Mart́ınez López [2005, 7.10] and Russo [2004, 4.6].

Case (POLYCONSTR): We have a derivation of the form

h̄ : ∆
S̀R

Y D ↪→ τ ′e
h̄ : ∆ | Γ

P̀
e : Y (Lj) ↪→ e′ : τ ′j h̄ : ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j

h̄ : ∆ | Γ
P̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

By inductive hypothesis on the second premise, we know there exist h̄e
s, ∆e

s, ee
s, τ e

s and
C e

s such that

h̄e
s : ∆e

s | Γ S̀
e : Y (Lj) ↪→ ee

s : τ e
s (B.69)

C e
s : GenΓ(∆e

s ⇒ τ e
s) ≥ (h̄ : ∆ | τ ′j) (B.70)

C e
s[Λh̄e

s.e
e
s] = e′ (B.71)

By definition 2.5 on B.70, there must be a substitution Se (whose variables do not
appear free in Γ) and evidence v̄e such that

τ ′j = Se τ e
s (B.72)

h̄ : ∆ `̀ v̄e : Se ∆e
s (B.73)

C e
s = letv x = [] in x((v̄e)) (B.74)

Let us take h̄′s = h̄, ∆′
s = ∆, e′s = L

vj

j ee
s[v̄e/h̄e

s], τ ′s = τ ′e and C ′
s = []((h̄)). It suffices to

verify the following properties

1. h̄′s : ∆′
s | Γ S̀

L D

j e : Y D ↪→ e′s : τ ′s
From B.69, by proposition 5.1, and considering Se Γ = Γ since the variables in Se

do not appear in Γ

h̄e
s : Se ∆e

s | Γ S̀
e : Y (Lj) ↪→ ee

s : Se τ e
s

B.18. PROOF OF THEOREM 5.4, SECTION 5.1 119

From B.72 and B.73, by proposition 5.2

h̄ : ∆ | Γ
S̀

e : Y (Lj) ↪→ ee
s[v̄

e/h̄e
s] : τ ′j

Taking this last statement and the two remaining premises in the derivation, we
can conclude by rule (S-POLYCONSTR)

h̄ : ∆ | Γ
S̀

L D

j e : Y D ↪→ L
vj

j ee
s[v̄

e/h̄e
s] : τ ′e

And by definition of each construct,

h̄′s : ∆′
s | Γ S̀

L D

j e : Y D ↪→ e′s : τ ′s

2. C ′
s : GenΓ(∆′

s ⇒ τ ′s) ≥ (∆ | τ ′e)
Follows directly from rule (Id) and proposition 2.16-1, since C ′

s = []((h̄)), ∆′
s = ∆

and τ ′s = τ ′e.
3. C ′

s[Λh̄′s.e
′
s] = L

vj

j e′

From B.71, B.74 and equivalence of residual terms by reduction

ee
s[v̄

e/h̄e
s] = (Λh̄e

s.e
e
s)((v̄

e)) = C e
s[Λh̄e

s.e
e
s] = e′

So
C ′

s[Λh̄′s.e
′
s] = (Λh̄.L

vj

j ee
s[v̄

e/h̄e
s])((h̄)) = L

vj

j ee
s[v̄

e/h̄e
s] = L

vj

j e′ = e′s

This completes the proof.

Case (POLYCASE): We have a derivation of the form

1) h̄ : ∆ | Γ
P̀

e : Y D ↪→ e′ : τ ′e
2) h̄ : ∆ `̀ vy : IsPolySum τ ′e
3) h̄ : ∆

S̀R
τ ↪→ τ ′ 4) h̄k : ∆k | Γ P̀

λDxk.ek : Y (Lk)→D τ ↪→ e′k : σk

5) h̄ : ∆ `̀ v̄k : Lk ∈ τ ′e ? ∆k

6) h̄ : ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

h̄ : ∆ | Γ
P̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

: τ ′

Step 1 Let us prove that, for all k ∈ B, σk is equal to ∀β̄jk
.∆σk

⇒ τσk
such that

h̄k : ∆k, h̄σk
: ∆σk

| Γ
S̀

λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τσk

h̄ : ∆ `̀ w′
k : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σ′k τ ′

where
w′

k = ifv Lk ∈ vy then wk � (ifv Lk ∈ vy then C ′
k else •) else •

C ′
k = Λh̄σk

.[]((v̄k, h̄σk
))

σ′k = GenΓ(∆k,∆σk
⇒ τσk

)
e′k = Λh̄σk

.e′′k

120 APPENDIX B. PROOFS

By inductive hypothesis on premise 4, there exist h̄S
k , ∆S

k , eS
k , τS

k and C S
k such that

h̄S
k : ∆S

k | Γ
S̀

λDxk.ek : Y (Lk)→D τ ↪→ eS
k : τS

k (B.75)

C S
k : GenΓ(∆S

k ⇒ τS
k) ≥ (∆k | σk) (B.76)

C S
k [Λh̄S

k .eS
k] = e′k (B.77)

By lemma 4.25 on premise 4, we know that

σk = ∀β̄jk
.∆σk

⇒ τσk
(B.78)

where β̄jk
do not appear free in Γ nor in ∆k.

By definition 2.5 on B.76 and B.78, there exist a substitution Sk (such that dom(Sk) ∩
FV (Γ) = ∅) and evidence v̄σk

such that

τσk
= Sk τS

k (B.79)
h̄k : ∆k, h̄σk

: ∆σk
`̀ v̄σk

: Sk ∆S
k (B.80)

C S
k = Λh̄σk

.[]((v̄σk
)) (B.81)

By proposition 5.1 applied to B.75

h̄S
k : Sk ∆S

k | Sk Γ
S̀

λDxk.ek : Y (Lk)→D τ ↪→ eS
k : Sk τS

k

Now by proposition 5.2 applied to the statement above, using B.79, B.80 and Sk Γ = Γ

h̄k : ∆k, h̄σk
: ∆σk

| Γ
S̀

λDxk.ek : Y (Lk)→D τ ↪→ eS
k [v̄σk

/h̄S
k] : τσk

(B.82)

Replacing B.81 in B.77

e′k = Λh̄σk
.(Λh̄S

k .eS
k)((v̄σk

)) = Λh̄σk
.eS

k [v̄σk
/h̄S

k] (B.83)

Let us call σ′k = GenΓ(∆k,∆σk
⇒ τσk

). Since β̄jk
do not appear free in ∆k, every free

variable in ∆k must appear free in σk (see B.78). By definition 2.5

C k : (∆k | σ′k) ≥ (∆k | σk)

with C k = Λh̄σk
.[]((h̄k, h̄σk

)). So by entailment rule (IsMG)

h̄k : ∆k `̀ C k : IsMG σ′k σk

By lemma 4.6 on premises 1) and 5) and the statement above

h̄ : ∆ `̀ ifv Lk ∈ vy then C k[v̄k/h̄k] else • : Lk ∈ τ ′e ? IsMG σ′k σ

so calling C ′
k = C k[v̄k/h̄k] = Λh̄σk

.[]((v̄k, h̄σk
)), we have

h̄ : ∆ `̀ ifv Lk ∈ vy then C ′
k else • : Lk ∈ τ ′e ? IsMG σ′k σ (B.84)

Let us call ∆aux = {IsMG σ′k σk,HasMGBr τ ′e Lk σk τ ′k}. By B.84 and premise 6)

h̄ : ∆ `̀ ifv Lk ∈ vy then C ′
k else •, wk : Lk ∈ τ ′e ? ∆aux

B.18. PROOF OF THEOREM 5.4, SECTION 5.1 121

Additionally, by rule (Comp-MGBr),

h1
aux, h2

aux : ∆aux `̀ h2
aux � h1

aux : HasMGBr τ ′e Lk σ′k τ ′

So by lemma 4.6 on premise 4 and the two statements above

h̄ : ∆ `̀ ifv Lk ∈ vy

then wk � (ifv Lk ∈ vy then C ′
k else •)

else •
: Lk ∈ τ ′e ? HasMGBr τ ′e Lk σ′k τ ′

(B.85)

Calling e′′k = eS
k [v̄σk

/h̄S
k], the proof of step 1 follows from B.78, B.82, B.85 and B.83.

Step 2 Let us now complete the main proof. By inductive hypothesis on premise 1),
there exist h̄S , ∆S , eS , τS and C S such that

h̄S : ∆S | Γ
S̀

e : Y D ↪→ eS : τS (B.86)

C S : GenΓ(∆S ⇒ τS) ≥ (∆ | τ ′e) (B.87)
C S [Λh̄S .eS] = e′ (B.88)

By definition 2.5 on B.87, there exist a substitution S (such that dom(S)∩FV (Γ) = ∅)
and evidence v̄S such that

τ ′e = S τS (B.89)
h̄ : ∆ `̀ v̄S : S ∆S (B.90)
C S = []((v̄S)) (B.91)

By proposition 5.1 applied to B.86

h̄S : S ∆S | S Γ
S̀

e : Y D ↪→ eS : S τS

Now by proposition 5.2 applied to the statement above, using B.89, B.90 and S Γ = Γ

h̄ : ∆ | Γ
S̀

e : Y D ↪→ eS [v̄S/h̄S] : τ ′e

Replacing B.91 in B.88 we have e′ = (Λh̄S .eS)((v̄S)) = eS [v̄S/h̄S], so replacing in the
statement above

h̄ : ∆ | Γ
S̀

e : Y D ↪→ e′ : τ ′e (B.92)

Let us take

h̄′s = h̄
∆′

s = ∆
e′s = polycasev e′ with vy and (w′

k)k∈B of
(
Lk → Λh̄k.e

′
k

)
k∈B

τ ′s = τ ′

C ′
s = []((h̄))

It suffices to verify the following properties

122 APPENDIX B. PROOFS

1. h̄′s : ∆′
s | Γ S̀

caseD e of
(
L D

k xk → ek

)
k∈B

: τ ↪→ e′s : τ ′s
Follows from rule (S-POLYCASE) applied to B.92, premises 2) and 3) and step 1.

2. C ′
s : GenΓ(∆′

s ⇒ τ ′s) ≥ (∆ | τ ′)
Follows directly from rule (Id) and proposition 2.16-1.

3. C ′
s[Λh̄′s.e

′
s] = polycasev e′ with vy and (wk)k∈B of

(
Lk → e′k[v̄k/h̄k]

)
k∈B

By definition of C ′
s, C ′

s[Λh̄′s.e
′
s] = C ′

s[Λh̄.e′s] = (Λh̄.e′s)((h̄)) = e′s. So we must
prove

polycasev e′ with vy and (wk)k∈B of
(
Lk → e′k[v̄k/h̄k]

)
k∈B

=
polycasev e′ with vy and (w′

k)k∈B of
(
Lk → Λh̄k.e

′
k

)
k∈B

Without loss of generality by definition of equivalence on a polycasev expression
(see section A.6), we can assume vy and wk are not variables. In particular, vy is
of the form {Lk,i}k∈I,i∈I′k

and wk is of the form
〈
n, (vi)i∈I′k

〉
for all k ∈ I.

Let us take any k ∈ I, wk =
〈
n, (vi)i∈I′k

〉
. By definition of w′

k

w′
k = ifv Lk ∈ vy then wk � (ifv Lk ∈ vy then C ′

k else •) else •

and since Lk ∈ vy is true,

w′
k = wk � C ′

k =
〈
n,
(
vi ◦ C ′

k

)
i∈I′k

〉
By the reduction rule for polycasev expressions, it suffices to see that

vi[e′k[v̄k/h̄k]] = (vi ◦ C ′
k)[Λh̄k.e

′
k]

for all k ∈ I, i ∈ I ′k (k /∈ I are ignored). Indeed,

C ′
k[Λh̄k.e

′
k] = C ′

k[Λh̄k, h̄σk
.e′′k] = Λh̄σk

.(Λh̄k, h̄σk
.e′′k)((v̄k, h̄σk

)) =

Λh̄σk
.e′′k[v̄k/h̄k] =

(
Λh̄σk

.e′′k
)
[v̄k/h̄k] = e′k[v̄k/h̄k]

so
(vi ◦ C ′

k)[Λh̄k.e
′
k] = vi[C ′

k[Λh̄k.e
′
k]] = vi[e′k[v̄k/h̄k]]

This completes our proof.

B.19 Proof of proposition 5.5, section 5.2

Proposition 5.5 If σ ∼U σ′ then U σ = U σ′

Proof: By induction on the unification structure.
Extending proofs of propositions by Mart́ınez López [2005, 7.11] and Russo [2004, 4.7].

The result follows trivially from inductive hypothesis and the definition of substitution
(see A.5).

B.20. PROOF OF PROPOSITION 5.6, SECTION 5.2 123

B.20 Proof of proposition 5.6, section 5.2

Proposition 5.6 If S σ = S σ′

then σ ∼U σ′ and there exists a substitution T such that S = TU

Proof: The proof of this proposition, presented by Mart́ınez López [2005, 7.12], does not
depend on the structure of the unification derivation but only on the free variables in σ and
σ′, so the extensions we have made to the system do not modify it.

B.21 Proof of proposition 5.8, section 5.2

Proposition 5.8 If ∆
Ẁ-SR

τ ↪→ τ ′ then ∆
S̀R

τ ↪→ τ ′

Proof: By induction on the W-SR derivation.
Extending proofs of propositions by Mart́ınez López [2005, 7.14] and Russo [2004, 4.10].

Case (WSR-POLYDATA): We have a derivation of the form(
∆k Ẁ-SR

Y (Lk) ↪→ τ ′k
σk = Gen∅,∅(∆k ⇒ τ ′k)

)
Lk∈Y

IsPolySum t,
(Lk ∈ t ? HasMGC t Lk σk)Lk∈Y

Ẁ-SR
Y D ↪→ t

(t fresh)

Let us call ∆ = IsPolySum t, (Lk ∈ t ? HasMGC t Lk σk)Lk∈Y . We need to prove that
∆

S̀R
Y D ↪→ t.

By definition of ∆, we know that

∆ `̀ IsPolySum t (B.93)

Now let us take any Lk ∈ Y . By inductive hypothesis,

∆k S̀R
Y (Lk) ↪→ τ ′k

Applying rule (SR-QIN) as many times as necessary we can conclude

∅
S̀R

Y (Lk) ↪→ ∆k ⇒ τ ′k

and by (SR-GEN) as many times as necessary,

∅
S̀R

Y (Lk) ↪→ Gen∅,∅(∆k ⇒ τ ′k)

that is
∅

S̀R
Y (Lk) ↪→ σk (B.94)

Trivially by rule (Term),
∆ `̀ Lk ∈ τ ′ ? ∅ (B.95)

Finally, by definition of ∆,

∆ `̀ Lk ∈ τ ′ ? HasMGC τ ′ Lk σk (B.96)

From B.93, and for all Lk ∈ Y , B.94, B.95 and B.96, applying rule (SR-POLYDATA)
we can conclude

∆
S̀R

Y D ↪→ t

As we wanted to show.

124 APPENDIX B. PROOFS

B.22 Proof of proposition 5.9, section 5.2

Proposition 5.9 If ∆
S̀R

τ ↪→ σ

then there exist ∆′
w, τ ′w and C ′

w such that
∆′

w Ẁ-SR
τ ↪→ τ ′w with all the residual variables

fresh and C ′
w : Gen∅,∅(∆′

w ⇒ τ ′w) ≥ (∆ | σ)

Proof: By induction on the SR derivation.
Extending proofs of propositions by Mart́ınez López [2005, 7.15] and Russo [2004, 4.11].

Case (SR-POLYDATA): We have a derivation of the form

h̄ : ∆ `̀ vy : IsPolySum τ ′ ∆k S̀R
Y (Lk) ↪→ σk

h̄ : ∆ `̀ v̄∆
k : Lk ∈ τ ′ ? ∆k

h̄ : ∆ `̀ v̄mgc
k : Lk ∈ τ ′ ? HasMGC τ ′ Lk σk

Lk∈Y

∆
S̀R

Y D ↪→ τ ′

We need to show ∆′
w, τ ′w with all the type variables fresh such that

∆′
w Ẁ-SR

Y D ↪→ τ ′w (B.97)

We also need to construct C ′
w such that C ′

w : Gen∅,∅(∆′
w ⇒ τ ′w) ≥ (∆ | σ). So it suffices

to construct a substitution S′ and evidence v̄′ such that:

τ ′ = S′ τ ′w (B.98)
h̄ : ∆ `̀ v̄′ : S′ ∆′

w (B.99)

and take C ′
w = []((v′)).

By inductive hypothesis on the second premise, for all Lk ∈ Y , we have ∆′
wk

, τ ′wk
and

C ′
wk

such that

∆′
wk Ẁ-SR

Y (Lk) ↪→ τ ′wk

C ′
wk

: Gen∅,∅(∆
′
wk

⇒ τ ′wk
) ≥ (∆k | σk) (B.100)

Let us call σ′wk
= Gen∅,∅(∆′

wk
⇒ τ ′wk

), take τ ′w = t a fresh type variable and ∆′
w =

IsPolySum t,
(
Lk ∈ t ? HasMGC t Lk σ′wk

)
Lk∈Y

.

By rule (WSR-POLYDATA), we have

∆′
w Ẁ-SR

Y D ↪→ τ ′w

where all the free variables (namely t) are fresh. So B.97 is verified.

Now let us define S′ such that dom(S′) = {t} and S′ t = τ ′. This verifies B.98 trivially;
now only B.99 remains to be proved, where

B.23. PROOF OF LEMMA 5.10, SECTION 5.2 125

S′ ∆′
w = IsPolySum τ ′,(

Lk ∈ τ ′ ? HasMGC τ ′ Lk σ′wk

)
Lk∈Y

We define v̄′ = vy, (v′k)Lk∈Y , where each v′k will be constructed conveniently as shown
below. We have that h̄ : ∆ `̀ vy : IsPolySum τ ′ by the first premise of the SR derivation.
We are going to show that, for each Lk ∈ Y , evidence v′k can be constructed to prove

h̄ : ∆ `̀ v′k : Lk ∈ τ ′ ? HasMGC τ ′ Lk σ′wk

which is all we need to complete our proof.

Firstly, let us recall that, by our premises in the SR derivation,

h̄ : ∆ `̀ vy : IsPolySum τ ′ (B.101)
h̄ : ∆ `̀ v̄∆

k : Lk ∈ τ ′ ? ∆k (B.102)
h̄ : ∆ `̀ vmgc

k : Lk ∈ τ ′ ? HasMGC τ ′ Lk σk (B.103)

Now let us prove we can construct evidence for ∆ `̀ Lk ∈ τ ′ ? IsMG σ′wk
σk.

As we stated in B.100, we know that C ′
wk

: (∅ | σ′wk
) ≥ (∆k | σk). Since ∆′

k `̀ ∆′
k (rule

(Id)), by properties 2.7.2 and 2.8.3, we can construct C ′′
wk

such that

C ′′
wk

: (∆k | σ′wk
) ≥ (∆k | σk)

Then by rule (IsMG)
∆k `̀ C ′′

wk
: IsMG σ′wk

σk (B.104)

By lemma 4.6 on B.101, B.102 and B.104, evidence can be constructed for

∆ `̀ Lk ∈ τ ′ ? IsMG σ′wk
σk (B.105)

In addition, by rule (Comp-MGC), we know that(
HasMGC τ ′ Lk σk

IsMG σ′wk
σk

)
`̀ HasMGC τ ′ Lk σ′wk

(B.106)

By B.103 and B.105,

∆ `̀ Lk ∈ τ ′ ?
(

HasMGC τ ′ Lk σk

IsMG σ′wk
σk

)
(B.107)

So again by lemma 4.6 on B.101, B.106 and B.107 we can construct evidence v′k to
finally conclude

h̄ : ∆ `̀ v′k : Lk ∈ τ ′ ? HasMGC τ ′ Lk σ′wk

Which completes our proof.

B.23 Proof of lemma 5.10, section 5.2

Lemma 5.10 If h̄ : ∆ | S Γ
Ẁ

e : τ ↪→ e′ : τ ′ then EV (e′) ⊆ h̄

Proof: By induction on the W derivation.
Extending proofs of theorems by Mart́ınez López [2005, 7.16] and Russo [2004, 4.12].

It holds trivially.

126 APPENDIX B. PROOFS

B.24 Proof of theorem 5.11, section 5.2

Theorem 5.11 ? If ∆ | S Γ
Ẁ

e : τ ↪→ e′ : τ ′

then ∆ | S Γ
S̀

e : τ ↪→ e′ : τ ′

Proof: By induction on the W derivation.
Extending proofs of propositions by Mart́ınez López [2005, 7.17] and Russo [2004, 4.13].

Case (W-POLYCONSTR): We have a derivation of the form

∆
Ẁ-SR

Y D ↪→ τ ′e
∆′ | S Γ

Ẁ
e : Y (Lj) ↪→ e′ : τ ′j

∆′′ | ∆,∆′ `̀ W vj : HasPolyC τ ′e Lj τ ′j
∆,∆′,∆′′ | S Γ

Ẁ
L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

We need to prove that

∆,∆′,∆′′ | S Γ
S̀

L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

By proposition 5.8 on the first premise in combination with (Fst) and proposition 4.12

∆,∆′,∆′′
S̀R

Y D ↪→ τ ′e (B.108)

By inductive hypothesis on the second premise and proposition 5.2 (evidence substitu-
tion is trivial)

∆,∆′,∆′′ | S Γ
S̀

e : Y (Lj) ↪→ e′ : τ ′j (B.109)

By proposition 5.7 on the third premise

∆,∆′,∆′′ `̀ HasPolyC τ ′e Lj τ ′j (B.110)

The result follows fom rule (S-POLYCONSTR) applied to B.108, B.109 and B.110.

Case (W-POLYCASE): We have a derivation of the form

∆e | Se Γ
Ẁ

e : Y D ↪→ e′ : τ ′e

∆p | ∆e `̀ W vy : IsPolySum τ ′e

∆SR Ẁ-SR
τ ↪→ τ ′(

hk : ∆k | Sk S∗
k−1 Γ

Ẁ
λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k

)
k∈B(

σk = GenS∗
n Γ(Sn

k+1 (∆k ⇒ τ ′k)), e′k = Λhk.e
′′
k

)
k∈B(

∆′
k | ∆′

k−1, . . . ,∆
′
1,∆

∗
e,∆

∗
p,∆SR `̀ W

wk : Lk ∈ (Sn
1 τ ′e) ?HasMGBr (Sn

1 τ ′e) Lk σk τ ′

)
k∈B

∆′
n, . . . ,∆′

1,∆
∗
e,∆

∗
p,∆SR | S∗

n Γ
Ẁ

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

B.24. PROOF OF THEOREM 5.11, SECTION 5.2 127

Let us call ∆∗ = ∆′
n, . . . ,∆′

1,∆
∗
e,∆

∗
p,∆SR. We need to prove that

∆∗ | S∗
n Γ

S̀
caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B of (Lk → e′k)k∈B : τ ′

By inductive hypothesis on the first premise

∆e | Se Γ
S̀

e : Y D ↪→ e′ : τ ′e

By proposition 5.1 on the statement above, since ∆∗
e = Sn

1 ∆e and S∗
n = Sn

1 Se

∆∗
e | S∗

n Γ
S̀

e : Y D ↪→ e′ : Sn
1 τ ′e

By proposition 5.2, since ∆′
n, . . . ,∆′

1, h̄e : ∆∗
e,∆

∗
p,∆SR `̀ h̄e : ∆∗

e

∆∗ | S∗
n Γ

S̀
e : Y D ↪→ e′ : Sn

1 τ ′e (B.111)

By proposition 5.7 on the second premise

∆p,∆e `̀ vy : IsPolySum τ ′e

By rules (Close) — applying Sn
1 — and (Trans) — since ∆∗ `̀ Sn

1 (∆p,∆e) — on the
statement above

∆∗ `̀ vy : IsPolySum (Sn
1 τ ′e) (B.112)

By proposition 5.8 on the third premise

∆SR S̀R
τ ↪→ τ ′

By proposition 4.12 on the statement above, since ∆∗ `̀ ∆SR

∆∗
S̀R

τ ↪→ τ ′ (B.113)

Now let us take k between 1 and n. By inductive hypothesis on the fourth premise,

hk : ∆k | Sk S∗
k−1 Γ

S̀
λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k

By proposition 5.1, applying Sn
k+1 to the statement above

hk : Sn
k+1 ∆k | S∗

n Γ
S̀

λDxk.ek : Y (Lk)→D τ ↪→ e′′k : Sn
k+1 τ ′k (B.114)

By proposition 5.7 on the last premise

∆′
k, . . . ,∆

′
1,∆

∗
e,∆

∗
p,∆SR `̀ wk : Lk ∈ (Sn

1 τ ′e) ?HasMGBr (Sn
1 τ ′e) Lk σk τ ′

By rule (Trans), since ∆∗ `̀ ∆′
k, . . . ,∆SR

∆∗ `̀ wk : Lk ∈ (Sn
1 τ ′e) ?HasMGBr (Sn

1 τ ′e) Lk σk τ ′ (B.115)

The result follows from applying rule (S-POLYCASE) to B.111, B.112, B.113, and for
each k, to B.114 and B.115.

128 APPENDIX B. PROOFS

B.25 Proof of theorem 5.12, section 5.2

Theorem 5.12 ? If h̄ : ∆ | S Γ
S̀

e : τ ↪→ e′ : τ ′

then h̄′w : ∆′
w | T ′

w Γ
Ẁ

e : τ ↪→ e′w : τ ′w
and there exist a substitution R and evidence v̄′w such that
S ≈ RT ′

w

τ ′ = R τ ′w
h̄ : ∆ `̀ v̄′w : R ∆′

w

e′ = e′w[v̄′w/h̄′w]

Proof: By induction on the S derivation.
Extending proofs of propositions by Mart́ınez López [2005, 7.18] and Russo [2004, 4.14].

Case (S-POLYCONSTR): We have a derivation of the form

h̄ : ∆
S̀R

Y D ↪→ τ ′e
h̄ : ∆ | S Γ

S̀
e : Y (Lj) ↪→ e′ : τ ′j h̄ : ∆ `̀ vj : HasPolyC τ ′e Lj τ ′j
h̄ : ∆ | S Γ

S̀
L D

j e : Y D ↪→ L
vj

j e′ : τ ′e

By proposition 5.9 on the first premise, there exist h̄′w1 : ∆′
w1, τ ′w1 and C ′

w1 such that

h̄′w1 : ∆′
w1 Ẁ-SR

Y D ↪→ τ ′w1 (B.116)

with all the variables fresh and such that C ′
w1 : Gen∅,∅(∆′

w1 ⇒ τ ′w1) ≥ (∆ | τ ′e), that is
there is a substitution R1 and evidence v̄′w1 such that

τ ′e = R1 τ ′w1 (B.117)
h̄ : ∆ `̀ v̄′w1 : R1 ∆′

w1 (B.118)
C ′

w1 = []((v̄′w1))

By inductive hypothesis on the second premise,

h̄′w2 : ∆′
w2 | T ′

w Γ
Ẁ

e : Y (Lj) ↪→ e′w2 : τ ′w2 (B.119)

and there exist R2, v̄′w2 such that

S ≈ R2 T ′
w (B.120)

τ ′j = R2 τ ′w2 (B.121)
h̄ : ∆ `̀ v̄′w2 : R2 ∆′

w2 (B.122)
e′ = e′w2[v̄

′
w2/h̄′w2] (B.123)

Let us take h̄′w : ∆′
w = h̄′w1 : ∆′

w1, h̄
′
w2 : ∆′

w2, h
′
w3 : HasPolyC τ ′w1 Lj τ ′w2. So trivially,

from B.116 and B.119 by (W-POLYCONSTR)

h̄′w : ∆′
w | T ′

w Γ
Ẁ

L D

j e : Y D ↪→ L
h′w3
j e′w2 : τ ′w1

Let us define R such that R t = R1 t if t ∈ dom(R1) and otherwise R t = R2 t. Let us
also take v̄′w = v̄′w1, v̄

′
w2, vj . It suffices to verify

B.25. PROOF OF THEOREM 5.12, SECTION 5.2 129

1. S ≈ R T ′
w

It follows by B.120 and the fact that R2 ≈ R by definition of R.

2. τ ′e = R τ ′w1

It follows from B.117, since by definition of R, R τ ′w1 = R1 τ ′w1.

3. h̄ : ∆ `̀ v̄′w : R ∆′
w

• h̄ : ∆ `̀ v̄′w1 : R ∆′
w1

follows from B.118, since by definition of R, R ∆′
w1 =

R1 ∆′
w1.

• h̄ : ∆ `̀ v̄′w2 : R ∆′
w2

follows from B.122, since by definition of R, R ∆′
w2 =

R2 ∆′
w2.

• h̄ : ∆ `̀ vj : R (HasPolyC τ ′w1 Lj τ ′w2) follows from the third premise, B.117,
B.121 and the definition of R.

R (HasPolyC τ ′w1 Lj τ ′w2) = HasPolyC (R τ ′w1) Lj (R τ ′w2) =
HasPolyC (R1 τ ′w1) Lj (R2 τ ′w2) = HasPolyC τ ′e Lj τ ′j

4. L
vj

j e′ =
(
L

h′w3
j e′w2

)
[v̄′w/h̄′w]

From B.119 by lemma 5.10, we know that EV (e′w2) ⊆ h̄′w2, so by B.123,

e′w2[v̄
′
w/h̄′w] = e′w2[v̄

′
w2/h̄′w2] = e′

Similarly, assuming h̄′w1, h̄′w2 and h′w3 are disjoint,

h′w3[v̄
′
w/h̄′w] = h′w3[vj/h′w3] = vj

So (
L

h′w3
j e′w2

)
[v̄′w/h̄′w] = L

h′w3[v̄′w/h̄′w]
j e′w2[v̄

′
w/h̄′w] = L

vj

j e′

This completes the proof.

Case (S-POLYCASE): We have a derivation of the form

h̄ : ∆ | S Γ
S̀

e : Y D ↪→ e′ : τ ′e
h̄ : ∆ `̀ vy : IsPolySum τ ′e
h̄ : ∆

S̀R
τ ↪→ τ ′ h̄k : ∆k | S Γ

S̀
λDxk.ek : Y (Lk)→D τ ↪→ e′′k : τ ′k

σk = GenS Γ(∆k ⇒ τ ′k), e′k = Λh̄k.e
′′
k

h̄ : ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk σk τ ′

k∈B

h̄ : ∆ | S Γ
S̀

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′ with vy and (wk)k∈B

of (Lk → e′k)k∈B : τ ′

130 APPENDIX B. PROOFS

We will use the notation as defined in figure 5.4.

By inductive hypothesis on the first premise, there are Re and v̄′we
such that

h̄′we
: ∆we | Te Γ

Ẁ
e : Y D ↪→ e′w : τ ′we

(B.124)
S ≈ Re Te (B.125)
τ ′e = Re τ ′we

(B.126)
h̄ : ∆ `̀ v̄′we

: Re ∆we (B.127)
e′ = e′w[v̄′we

/h̄′we
] (B.128)

By proposition 5.9 on the third premise

h̄SR : ∆SR Ẁ-SR
τ ↪→ τ ′w (B.129)

with all the variables in ∆SR and τ ′w fresh and such that C ′
SR : Gen∅,∅(∆SR ⇒ τ ′w) ≥

(∆ | τ ′), that is there exist RSR and v̄′SR such that

τ ′ = RSR τ ′w (B.130)
h̄ : ∆ `̀ v̄′SR : RSR ∆SR (B.131)
C ′

SR = []((v̄′SR))

Now let us prove that for all k = 1, . . . , n, there exist h̄′wk
: ∆′

wk
, Tk, e′′wk

: τ ′wk
, Rk and

v̄wk
such that

h̄′wk
: ∆′

wk
| Tk Γ

Ẁ
λDxk.ek : Y (Lk)→D τ ↪→ e′′wk

: τ ′wk
(B.132)

S ≈ Rk T ∗
k (B.133)

τ ′k = Rk τ ′wk
(B.134)

h̄k : ∆k `̀ v̄′wk
: Rk ∆′

wk
(B.135)

e′′k = e′wk
[v̄′wk

/h̄′wk
] (B.136)

We proceed by induction on k. For k = 1, from B.125, we can rewrite the
fourth premise as

h̄1 : ∆1 | Re (Te Γ)
S̀

λDx1.e1 : Y (L1)→D τ ↪→ e′′1 : τ ′1

So by inductive hypothesis, there exist h̄′w1
: ∆′

w1
, T1, e′′w1

: τ ′w1
, R1 and v̄w1

such that

h̄′w1
: ∆′

w1
| T1 (Te Γ)

Ẁ
λDx1.e1 : Y (Lk)→D τ ↪→ e′′w1

: τ ′w1

Re ≈ R1 T1

τ ′1 = R1 τ ′w1

h̄1 : ∆1 `̀ v̄′w1
: R1 ∆′

w1

e′′1 = e′w1
[v̄′w1

/h̄′w1
]

The fact that S ≈ R1 T ∗
1 follows from S ≈ Re Te ≈ R1 T1 Te.

Similarly we can prove the statement above for k + 1, assuming it holds for
k. Since S ≈ Rk T ∗

k , we can rewrite the fourth premise as

h̄k+1 : ∆k+1 | Rk (T ∗
k Γ)

S̀
λDxk+1.ek+1 : Y (Lk+1)→D τ ↪→ e′′k+1 : τ ′k+1

B.25. PROOF OF THEOREM 5.12, SECTION 5.2 131

So by inductive hypothesis, there exist h̄′wk+1
: ∆′

wk+1
, Tk+1, e′′wk+1

: τ ′wk+1
,

Rk+1 and v̄wk+1
such that

h̄′wk+1
: ∆′

wk+1
| Tk+1 (T ∗

k Γ)
Ẁ

λDxk+1.ek+1 : Y (Lk+1)→D τ ↪→ e′′wk+1
: τ ′wk+1

Rk ≈ Rk+1 Tk+1

τ ′k+1 = Rk+1 τ ′wk+1

h̄k+1 : ∆k+1 `̀ v̄′wk+1
: Rk+1 ∆′

wk+1

e′′k+1 = e′wk+1
[v̄′wk+1

/h̄′wk+1
]

The fact that S ≈ Rk+1 T ∗
k+1 follows from S ≈ Rk T ∗

k ≈ Rk+1 Tk+1 T ∗
k .

From the proof above it also follows that

Re ≈ R1 T1 ≈ R2 T2 T1 ≈ . . . ≈ Rn Tn . . . T1 = Rn Tn
1 (B.137)

Rk ≈ Rk+1 Tk+1 ≈ . . . ≈ Rn Tn . . . Tk+1 = Rn Tn
k+1 (B.138)

Now by definition 2.5,

Λh̄k.[]((v̄′wk
)) : GenS Γ(Rk (∆′

wk
⇒ τ ′wk

)) ≥ GenS Γ(∆′
k ⇒ τ ′k)

and since S ≈ Rn T ∗
n (from B.133) and Rk ≈ Rn Tn

k+1 (from B.138)

Λh̄k.[]((v̄′wk
)) : GenRn T ∗

n Γ(Rn Tn
k+1 (∆′

wk
⇒ τ ′wk

)) ≥ GenS Γ(∆′
k ⇒ τ ′k) (B.139)

By proposition 2.16-3,

[] : Rn GenT ∗
n Γ(Tn

k+1 (∆′
wk

⇒ τ ′wk
)) ≥ GenRn T ∗

n Γ(Rn Tn
k+1 (∆′

wk
⇒ τ ′wk

)) (B.140)

Let us define σ′wk
= GenT ∗

n Γ(Tn
k+1 (∆′

wk
⇒ τ ′wk

)), and e′wk
= Λh̄′wk

.e′′wk
. So by proposi-

tion 2.7-2 on B.139 and B.140, and rule IsMG

∅ `̀ Λh̄k.[]((v̄′wk
)) : IsMG (Rn σ′wk

) σk (B.141)

Now let us take

h̄′w : ∆′
w = h̄′we

: Tn
1 ∆′

we
,

hy
w : IsPolySum (Tn

1 τ ′we
),

h̄′SR : ∆′
SR,(

h′′k : Lk ∈ (Tn
1 τ ′we

) ?HasMGBr (Tn
1 τ ′we

) Lk σ′wk
τ ′w
)
k∈B

By rule (W-POLYCASE) on B.124, B.129, B.132, and definition of ∆′
w,

h̄′w : ∆′
w | T ∗

n Γ
Ẁ

caseD e of (L D

k xk → ek)k∈B : τ
↪→
polycasev e′w with hy

w and (h′′k)k∈B

of
(
Lk → e′wk

)
k∈B

: τ ′

From B.129, all the variables in ∆SR and τ ′w are fresh, so we can assume dom(RSR) ∩
dom(S′) = ∅ for every other substitution S′ involved in this proof. We define R such
that R t = RSR t if t ∈ dom(RSR), and otherwise R t = Rn t. We also define

v′w = v′we
, vy, v′SR,

(
w′

k

)
k∈B

w′
k = ifv Lk ∈ vy then wk � (ifv Lk ∈ vy then Λh̄k.[]((v̄′wk

)) else •) else •

It suffices to prove

132 APPENDIX B. PROOFS

1. S ≈ R T ∗
n

It follows from B.133 for k = n, since R T ∗
n = Rn T ∗

n .

2. τ ′ = R τ ′w
It follows from B.130, since R τ ′w = RSR τ ′w.

3. h̄ : ∆ `̀ v̄′w : R ∆′
w

• h̄ : ∆ `̀ v′we
: R Tn

1 ∆we holds from B.127 and B.137.
• h̄ : ∆ `̀ vy : IsPolySum (R Tn

1 τ ′we
) holds from the second premise, B.126 and

B.137.
• h̄ : ∆ `̀ v′SR : R ∆′

SR holds from B.131 and the fact that R ∆′
SR = RSR ∆′

SR.
• h̄ : ∆ `̀ w′

k : Lk ∈ (R Tn
1 τ ′we

) ?HasMGBr (R Tn
1 τ ′we

) Lk (R σ′wk
) (R τ ′w)

From B.126 and B.137 we have τ ′e = Rn Tn
1 τ ′we

= R Tn
1 τ ′we

. Also from B.130
we have τ ′ = RSR τ ′w = R τ ′w. So we must see that

h̄ : ∆ `̀ wk : Lk ∈ τ ′e ? HasMGBr τ ′e Lk (R σ′wk
) τ ′

From B.141 and the second premise, by lemma 4.6

h̄ : ∆ `̀ ifv Lk ∈ vy then Λh̄k.[]((v̄′wk
)) else • : Lk ∈ τ ′e ? IsMG (R σ′wk

) σk

Let us call

vaux = ifv Lk ∈ vy then Λh̄k.[]((v̄′wk
)) else •

∆aux = IsMG (R σ′wk
) σk,HasMGBr τ ′e Lk σ′k τ ′

By the statement above and the last premise, we have

h̄ : ∆ `̀ vaux, wk : Lk ∈ τ ′e ? ∆aux

Also by rule (Comp-MGBr)

haux
1 , haux

2 : ∆aux `̀ haux
2 � haux

1 : HasMGBr τ ′e Lk (R σ′wk
) τ ′

so again by lemma 4.6

h̄ : ∆ `̀ ifv Lk ∈ vy then wk � vaux else •
: Lk ∈ τ ′e ? HasMGBr τ ′e Lk (R σ′wk

) τ ′

By definition of vaux, this is what we wanted to show.

4.
polycasev e′ with vy

and (wk)k∈B

of (Lk → e′k)k∈B

=

 polycasev e′w with hy
w

and (h′′k)k∈B

of
(
Lk → e′wk

)
k∈B

 [v̄′w/h̄′w]

By lemma 5.10 on B.124 we have EV (e′w) ⊆ h̄′we
. Similarly for all k, from B.132 we

know EV
(
e′′wk

)
⊆ h̄′wk

, so e′wk
= Λh̄′wk

.e′′wk
has no free evidence variables. Assuming

by alpha conversion that h̄′we
, hy

w and h′′k are disjoint, we have polycasev e′w with hy
w

and (h′′k)k∈B

of
(
Lk → e′wk

)
k∈B

 [v̄′w/h̄′w] =
polycasev e′w[v̄′we

/h̄′we
] with

hy
w[vy/hy

w] and (h′′k[w
′
k/h′′k])k∈B

of
(
Lk → e′wk

)
k∈B

B.25. PROOF OF THEOREM 5.12, SECTION 5.2 133

so, by B.128 and definition of substitution, we need to prove that

polycasev e′ with vy

and (wk)k∈B

of (Lk → e′k)k∈B

=
polycasev e′ with vy

and (w′
k)k∈B

of
(
Lk → e′wk

)
k∈B

Without loss of generality by definition of equivalence on a polycasev expression
(see section A.6), we can assume vy and wk are not variables. In particular, vy is
of the form {Lk,i}k∈I,i∈I′k

and wk is of the form
〈
n, (vi)i∈I′k

〉
for all k ∈ I.

Let us take any k ∈ I, wk =
〈
n, (vi)i∈I′k

〉
. By definition of w′

k

w′
k = ifv Lk ∈ vy then wk � (ifv Lk ∈ vy then Λh̄k.[]((v̄′wk

)) else •) else •

and since Lk ∈ vy is true,

w′
k = wk � Λh̄k.[]((v̄′wk

)) =
〈
n,
(
vi ◦ Λh̄k.[]((v̄′wk

))
)
i∈I′k

〉
By the reduction rule for polycasev expressions, it suffices to see that

vi[e′k] = (vi ◦ Λh̄k.[]((v̄′wk
)))[e′wk

]

for all k ∈ I, i ∈ I ′k (k /∈ I are ignored). Indeed, by definition of e′wk
, evidence

β-reduction, B.136, and definition of e′k

(vi ◦ Λh̄k.[]((v̄′wk
)))[e′wk

] = vi[Λh̄k.e
′
wk

((v̄′wk
))] = vi[Λh̄k.Λh̄′wk

.e′′wk
((v̄′wk

))] =
vi[Λh̄k.e

′′
wk

[v̄′wk
/h̄′wk

]] = vi[Λh̄k.e
′′
k] = vi[e′k]

as we needed.

This completes the proof.

Bibliography

[Aiken, 1999] Alexander Aiken. Introduction to set constraint-based program analysis. In
Science of Computer Programming, volume 35, pages 79–111, 1999.

[Au et al., 1991] Wing-Yee Au, Daniel Weise, and Scott Seligman. Automatic generation of
compiled simulations through program specialization. In Proceedings of the 28th Design
Automation Conference, pages 205–210, San Francisco, California, USA, June 1991. IEEE
Computer Society Press.

[Augustsson, 1993] Lennart Augustsson. Implementing Haskell overloading. In FPCA ’93:
Proceedings of the conference on Functional programming languages and computer archi-
tecture, pages 65–73, New York, NY, USA, 1993. ACM Press.

[Augustsson, 1997] Lennart Augustsson. Partial evaluation in aircraft crew planning. In
Gallagher [1997], pages 127–136.

[Beshers and Feiner, 1997] Clifford Beshers and Steven Feiner. Generating efficient virtual
worlds for visualization using partial evaluation and dynamic compilation. In Gallagher
[1997], pages 107–115.

[Clément et al., 1986] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and
Gilles Kahn. A simple applicative language: Mini-ML. In Proceedings of the 1986 ACM
Conference on LISP and Functional Programming, pages 13–27, Cambridge, Massachus-
sets, USA, August 1986. ACM Press.

[Consel and Danvy, 1993] Charles Consel and Olivier Danvy. Tutorial notes on partial eval-
uation. In Susan L. Graham, editor, Proceedings of 20th ACM SIGPLAN-SIGACT An-
nual Symposium on Principles of Programming Languages (POPL ’93), pages 493–501,
Charleston, South Carolina, USA, January 1993. ACM Press.

[Curry and Feys, 1958] Haskell B. Curry and Robert Feys. Combinatory Logic. North Hol-
land, Amsterdam, 1958.

[Damas and Milner, 1982] Luis Damas and Robin Milner. Principal type-schemes for func-
tional languages. In Proceedings of the Ninth Annual ACM Symposium on Principles of
Programming Languages, pages 207–212, Albuquerque, New Mexico, January 1982.

[Dussart et al., 1995] Dirk Dussart, Eddy Bevers, and Karel De Vlaminck. Polyvariant con-
structor specialisation. In PEPM ’95: Proceedings of the 1995 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, pages 54–65, New York,
NY, USA, 1995. ACM Press.

134

BIBLIOGRAPHY 135

[Dussart et al., 1997] Dirk Dussart, John Hughes, and Peter Thiemann. Type specialisation
for imperative languages. SIGPLAN Not., 32(8):204–216, 1997.

[Futamura, 1971] Yoshihiko Futamura. Partial evaluation of computation process - An ap-
proach to a compiler-compiler. Computer, Systems, Controls, 2(5):45–50, 1971.

[Gallagher, 1997] John Gallagher, editor. Proceedings of the ACM SIGPLAN Symposium on
Partial Evaluation and Semantics Based Program Manipulation (PEPM ’97), Amsterdam,
The Netherlands, June 1997. ACM.

[Glück, 2002] Robert Glück. Jones optimality, binding-time improvements, and the strength
of program specializers. In ASIA-PEPM ’02: Proceedings of the ASIAN symposium on
Partial evaluation and semantics-based program manipulation, pages 9–19, New York, NY,
USA, 2002. ACM Press.

[Gomard and Jones, 1991] Carster K. Gomard and Neil D. Jones. A partial evaluator for the
untyped lambda-calculus. In Journal of Functional Programming, volume 1 of 1, pages
21–70, January 1991.

[Hannan and Miller, 1992] John Hannan and Dale Miller. From operational semantics to
abstract machines. Mathematical Structures in Computer Science, 2(4):415–459, 1992.

[Hindley, 1969] J. Roger Hindley. The principal type-scheme of an object in combinatory
logic. Transactions of the American Mathematical Society, 146:29–60, December 1969.

[Hogg, 1996] Jonathan A. H. Hogg. Dynamic hardware generation mechanism based on par-
tial evaluation. In Proceedings of 3rd Workshop on Designing Correct Circuits (DCC ’96),
Electronic Workshops in Computing, B̊astad, Sweden, September 1996. Springer-Verlag.

[Hughes, 1996a] John Hughes. An introduction to program specialisation by type inference.
In Functional Programming. Glasgow University, July 1996. Published electronically.

[Hughes, 1996b] John Hughes. Type specialisation for the λ-calculus; or, a new paradigm
for partial evaluation based on type inference. In Olivier Danvy, Robert Glück, and Pe-
ter Thiemann, editors, Selected papers of the International Seminar “Partial Evaluation”,
volume 1110 of Lecture Notes in Computer Science, pages 183–215, Dagstuhl, Germany,
February 1996. Springer-Verlag, Heidelberg, Germany.

[Hughes, 1998] John Hughes. Type specialization. In ACM Computing Surveys, volume 30.
ACM Press, September 1998. Article 14. Special issue: electronic supplement to the
September 1998 issue.

[Jones et al., 1985] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. An experiment
in partial evaluation: The generation of a compiler generator. In Jean-Pierre Jouannaud,
editor, Proceedings of the 1st International Conference on Rewriting Techniques and Appli-
cations, volume 202 of Lecture Notes in Computer Science (LNCS), pages 124–140, Dijon,
France, May 1985. Springer-Verlag.

[Jones et al., 1989] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation. Lisp and Symbolic
Computation, 2(1):9–50, February 1989.

136 BIBLIOGRAPHY

[Jones et al., 1993] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International Series in Computer Sci-
ence, 1993.
Available online at URL: http://www.dina.dk/~sestoft/pebook/pebook.html.

[Jones, 1988] Neil D. Jones. Challenging problems in partial evaluation and mixed computa-
tion. New Generation Comput., 6(2-3):291–302, 1988.

[Jones, 1993] Mark P. Jones. Coherence for qualified types. Technical Report Research Report
YALEU/DCS/RR-989, Yale University, September 1993.

[Jones, 1994] Mark P. Jones. Qualified Types: Theory and Practice. Distinguished Disserta-
tions in Computer Science. Cambridge University Press, 1994.

[Jones, 1995] Mark P. Jones. Simplifying and improving qualified types. In Functional Pro-
gramming Languages and Computer Architecture, pages 160–169, 1995.

[Launchbury, 1991] John Launchbury. Projection factorisations in partial evaluation. Cam-
bridge University Press, New York, NY, USA, 1991.

[Lawall, 1998] Julia Lawall. Faster Fourier Transforms via automatic program specialization.
In John Hatcliff, Torben Æ. Mogensen, and Peter Thiemann, editors, Partial Evaluation
– Practice and Theory; Proceedings of the 1998 DIKU Summer School, volume 1706 of
Lecture Notes in Computer Science (LNCS), pages 338–355, Copenhagen, Denmark, June
1998. Springer-Verlag.

[Marlet et al., 1999] Renaud Marlet, Scott Thibault, and Charles Consel. Efficient implemen-
tations of software architectures via partial evaluation. Automated Software Engineering:
An International Journal, 6(4):411–440, October 1999.

[Mart́ınez López and Badenes, 2003] Pablo E. Mart́ınez López and Hernán Badenes. Simpli-
fying and solving qualified types for principal type specialisation. In Proceedings of 7th
Workshop Argentino de Informática Teórica (WAIT 2003), September 2003.

[Mart́ınez López and Hughes, 2002] Pablo E. Mart́ınez López and John Hughes. Princi-
pal type specialisation. In Wei-Ngan Chin, editor, Proceedings of the 2002 ACM SIG-
PLAN Asian Symposium on Partial Evaluation and Semantics-Based Program Manipula-
tion, pages 94–105. ACM Press, September 2002.

[Mart́ınez López, 2005] Pablo E. Mart́ınez López. The Notion of Principality in Type Spe-
cialisation. PhD thesis, University of Buenos Aires, November 2005.

[Milner, 1978] Robin Milner. A theory of type polymorphism in programming. In Journal of
Computer and System Sciences, volume 17 of 3, 1978.

[Mogensen, 1993] Torben Æ. Mogensen. Constructor specialization. In PEPM ’93: Proceed-
ings of the 1993 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 22–32, New York, NY, USA, 1993. ACM Press.

[Muller et al., 1998] Gilles Muller, Renaud Marlet, Eugen N. Volanschi, Charles Consel, Cal-
ton Pu, and Ashvin Goel. Fast, optimized Sun RPC using automatic program specialization.

BIBLIOGRAPHY 137

In Proceedings of 19th IEEE International Conference on Distributed Computing Systems
(ICDCS ’98), pages 240–249, Amsterdam, The Netherlands, May 1998. IEEE Computer
Society Press.

[Peterson and Jones, 1993] John Peterson and Mark Jones. Implementing type classes. In
PLDI ’93: Proceedings of the ACM SIGPLAN 1993 conference on Programming language
design and implementation, pages 227–236, New York, NY, USA, 1993. ACM Press.

[Russo, 2004] Alejandro Russo. Principal type specialization of dynamic sum-types. Work
for Graduation, University of Rosario, Argentina, August 2004.

[Taha et al., 2001] Walid Taha, Henning Makholm, and John Hughes. Tag elimination and
Jones-optimality. In Olivier Danvy and Andrzej Filinski, editors, PADO ’01: Proceedings
of the Second Symposium on Programs as Data Objects, volume 2053 of Lecture Notes in
Computer Science (LNCS), pages 257–275, London, UK, May 2001. Springer-Verlag.

[Thibault et al., 1998] Scott Thibault, Charles Consel, and Gilles Muller. Safe and efficient
active network programming. In Proceedings of the 17th IEEE Symposium on Reliable
Distributed Systems, pages 135–143, West Lafayette, Indiana, USA, October 1998.

[Thiemann, 1999] Peter Thiemann. Interpreting specialization in type theory. In Olivier
Danvy, editor, Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM ’99), pages 30–43, San Antonio, Texas,
USA, January 1999.

[Thiemann, 2000] Peter Thiemann. First-class polyvariant functions and co-arity raising,
November 2000. Unpublished manuscript. Available from URL:
http://www.informatik.uni-freiburg.de/~thiemann/papers/fcpcr.ps.gz.

[Wadler and Blott, 1989] Philip Wadler and Stephen Blott. How to make ad-hoc polymor-
phism less ad hoc. In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 60–76, New York, NY, USA, 1989.
ACM Press.

[Wand, 1982] Mitchell Wand. Deriving target code as a representation of continuation se-
mantics. ACM Transactions on Programming Languages and Systems, 4(3):496–517, July
1982.

