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Abstract

Mental Poker (MP) protocols allow multiple parties to securely play a game remotely with a virtual deck of  
cards using cryptography.  A Mental Poker protocol can also be used to execute more complex protocols,  
such as a secure multi-party boolean circuit evaluation and e-voting. In this thesis we propose a new family 
of practical and secure mental poker protocols, which includes four competing protocols.  For comparison, 
we have implemented and tested one protocol based on the Pohlig-Hellman symmetric cipher and also we  
have  theoretically  evaluated  the  performance  of  an  elliptic-curve  based  implementation.  Both  resulting 
protocols are efficient enough to achieve real-time performance to play Texas Hold-em over the Internet, for  
up to ten players, using personal computers and keys of 1024 bits long (PH) and 160 bits long (ECC). To the  
best of our knowledge, this is the first protocol that achieves this milestone.
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1. Introduction
In this thesis we propose a new family of Mental Poker protocols. The motivation behind the development of 
such protocols can be explained with an example. Suppose a group of people around the world decide to 
play a poker game.  Each of the players has a computer connected to the Internet and all communications 
between computers  are  authenticated  and  encrypted.  Also  suppose  that  all  computers  are  secure  and 
tamper-proof. The problem is that they are not willing to trust an arbiter to deal the cards, because they don´t  
have any trustworthy person in common. How can they manage to securely play the game?

Mental  Poker  (MP)  protocols  solve  this  and  many  other  related  problems,  allowing  multiple  parties  to 
securely handle a deck of virtual cards over a secure peer-to-peer or broadcast medium. The protocol can be 
a card game such as poker, or a multi-party computation that relies on virtual cards, such as a secure e-
voting or secure circuit evaluation schemes.  Because of this diversity of applications, there is no uniform 
nomenclature  on  the  research  community.  For  example,  a  secure  voting  ballot  may  support  similar 
operations and so be homomorphic to a poker card. We'll use the card game nomenclature. We assume 
“card” and “information token” are synonymous, and  also the terms “party” and “player”. 
To execute a mental poker protocol, players are required to do computations. In order to achieve state of the  
art security, computations involve large numbers, are very hard to do by hand, and almost impossible to do  
mentally, so each player relies on a programmed computer device that compute on his behalf. This device 
not only does a player own computations, but validates the other players computations to detect cheating. 
We'll call each device an “agent” in the protocol.  Fig. 1 depicts the configuration.

Mental Poker protocols can be divided in two main groups: those that require a trusted third party (TTP) and 
protocols that do not (TTP-Free).  In the former there is a third party who draws and knows the cards in each  
player's hand, so it should be trusted and impartial. From the point of view of a poker player, an e-gaming  
site that uses an MP protocol with TTP poses no additional security than any a site secured by standard  
methods. In TTP-free protocols, only each player knows his hand, and not even the site operator is able to  
see players cards. In the context of a voting scheme, a protocol with TTP means that a central office or the  
collusion of government offices can recover enough information to trace each vote to its voter, and so only a  
TTP-free protocol can provide true anonymity to individual voters.

In this thesis we define MPF, a framework that allows the creation of practical and secure TTP-free mental  
poker protocols.  MPF defines classes and secure operations that rely on a user-provided commutative 
group cryptosystem.  The framework also provides four base protocols, and other user-selectable options for  
time/security  trade-offs.   We  also  describe  a  specific  protocol  of  the  family  over  the  Pohlig-Hellman 
symmetric cipher (PHMP). PHMP is efficient enough to archive real-time performance to play Texas Hold-em 
over the Internet, for up to ten players, using personal computers and keys of 1024 bits long. Compared with  
previously proposed protocols computation and communication bandwidth requirements of our proposal are 
far lower. 

Figure 1: Players and Agents



MPF – Sergio Demian Lerner 9/83

1.1. Background

Shamir,  Rivest  and  Adleman proposed  the  first  TTP-Free  protocol  [SRA81]  that  achieved  some of  the 
properties desired for card games, but forced the players to reveal their hands and their strategy at the end 
of the game. In [Cr86] a standard set of requirements for a MP protocol was establish. If a protocol satisfied  
these requirements, it would be as secure as a “real” card game.  [Cr86] also presents the first protocol that  
satisfies them. However the protocol is not practical, since an implementation is reported to take 8 hours to  
shuffle  a  poker  deck [E94].  Obviously  the requirement  that  the protocol  should  be real-time or  at  least 
practical, was not listed.

New protocols were later developed  [KKO90][BS03][CDRB03][CR05]. With the exception of [BS03], we've 
found  these  protocols  use  very  complex  cryptographic  constructions  such  as  ANDOS  (Anonymous 
Disclosure of Secrets) and they present many drawbacks. They are difficult to formally verify, to extend and 
to  implement.  The main reason is  that  the papers are mathematical  oriented and not  system engineer  
oriented. Protocol descriptions lack abstract layers, abstract data types, and a simple set of operations on  
cards. Too much is left to the implementor. This was also a motivation to create a coherent and simple  
protocol that can be studied both from the mathematical and the practical points of view. Recently, and in 
parallel with the development of MPF, a new protocol has been published [WW09] that is based on the same 
security assertions than MPF.  
 
In addition to the MP requirements defined in [Cr86], in [CDRB03] it is noted that these requirements are not 
enough for protocols to withstand real-world scenarios and define a new requirement: drop-out tolerance.  
Drop-out tolerance is, as we shall see, an unavoidable requirement for a successful on-line system. In this  
thesis, we define four additional requirements for a protocol to withstand real-world scenarios, two of them 
which are generally considered, but not always stated, and two additional requirements to allow playing more  
complex card games. 

1.2. Mental Protocol Requirements
We present three sets of requirements. A protocol that  satisfies the  basic requirements is theoretically 
sound. A protocol that satisfies the  extended requirements  can be used in practice with current home 
computer technology. A protocol that satisfies the unreal requirements allows players to play games which 
are practically or theoretically impossible to play with a real card deck without a TTP.

1.2.1. Basic Requirements
These are the requirements for a Mental Poker protocol defined in [Cr86] :

R1. Uniqueness of cards: no player alone can duplicate cards. Duplicates should be detected and the 
cheater identified.

R2. Uniform random distribution of cards: no player can predict or change the outcome of the card 
shuffle.

R3. Cheating detection with a very high probability: The protocol must detect any attempt to cheat. 
Cheating is usually detected in a protocol stage in which each player show the others a proof of the 
correctness  of  the  computations  he  has  done.   Each  player  must  prove  he  has  act  honestly  while 
performing computations. A player who cannot prove honesty is a cheater. Because honesty proofs are  
generally the most computational expensive operation in MP protocols, some protocols allow to set a 
certain threshold which determines the probability of a cheating party go undetected.

R4. Complete confidentiality of cards:  No information of the cards in the deck or the cards in player's 
hand should leak. In practice, we only require that the leakage is small enough to be practically infeasible  
to guess the opponent's cards or cards in the deck (obtaining statistically significant information must be  a 
computationally hard problem).

R5. Minimal effect of coalitions: Players should no be able to collude and work together to change the 
outcome of the shuffling, nor to exchange cards privately, nor cheat undetected or chat and put the blame 
on a third player. 
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R6. Complete  confidentiality  of  strategy:  Players  who  decide  to  show  their  hand  should  have 
guaranteed that no strategic information will leak, e.g. the time when each shown card was dealt.  Also, 
players who opt no to show their cards shouldn't be required to disclose any information.

R7. No requirement for a trusted third party: In real-life scenarios, card games are played for money, so 
players would probably not rely on a trusted third party who knows the cards during play. A third party 
could be bribed,  or his computer system could be hacked.

The two following requirements, were proposed in [CSD05], along with the first  abrupt drop-out  tolerant 
protocol.

R8. Polite Drop-out tolerance: If a player decides to quit the game politely, the remaining players should 
be able to keep playing. They should be able to return the to deck the cards that were in the hand of the  
player who dropped out, or  put them apart. 

R9. Abrupt Drop-out tolerance: If a player abruptly quits the game (e.g. by closing his connection) the 
remaining players should be able to keep playing.  Cards that were in the hand of the player having 
dropped out should be returned to the deck.

Perfect  abrupt  drop out  tolerance cannot  theoretically  be achieved without  a  third  party.  There are two 
theoretical limitations. The first limitation comes from collusion (Drop-Out-Collusion problem) and the second, 
because common knowledge cannot be gained in a distributed system with unreliable messages (Semi-open 
card problem). Drop-out collusion is the situation when a player quits the game to force the other players to 
put back his hand cards in the deck, and then transmit any private knowledge to a colluding player who is still  
on-line.  Semi-open cards  are cards that cannot be proven to have been opened and seen by a certain 
player nor have remained unseen in the deck. We show an example situation where both problem arises, 
during a card deal. Suppose that a group of players is playing a card game over the Internet. The players  
want to deal a card C to a player Marvin. Let's define a hypothetical protocol to do it: 

1. Each player, with the exception of Marvin,  publish a key share for the card C.
2. Then Marvin joins all the key shares, including her own private key share, and reconstructs the whole key  
K.
3. Marvin decrypts the card C wit the key K.

Suppose that Mallory is a player that colludes with Marvin, and instead of publishing his key share (step 1),  
he interrupts his Internet connection, and privately sends his key share to Marvin. Also he privately sends the 
values of his own cards. All the remaining players conclude that Mallory is not longer available and try to  
recover from a drop out. Because they do not trust Marvin more than Mallory, they have no way of knowing if  
Marvin has received the message from Mallory so they don't know if Marvin has been able to decrypt the 
card C or if he hasn't. In the former case, they should keep playing without dealing an additional card to  
Marvin. In the later, they should deal a new card to Marvin, which seem to be the wisest thing to do. Suppose  
they do decide to deal a new card D to Marvin, and card C is kept on the deck. Now, Marvin has some 
knowledge that no other player has: that the card C is in the deck (Semi-open card problem), along with the 
cards that Mallory had (Drop-out-collusion problem). 
If each card is dealt separately (and not in groups), then the Semi-open card problem can be limited to a 
single card. The drop-out-collusion problem cannot be theoretically solved without violating the property R5.  
A k-out-of-n threshold scheme can be used to exclude a quitting players cards from the deck, but then k 
players would be able to collude to see any player cards during the game. In most card games players are  
given  more  than  one  card,  so  the  drop-out-collusion  problem is  much worse  than  the  semi-open card  
problem, and the the later can be left unsolved.
The semi-open card problem is similar to the Two-General Problem, which is an example that shows that 
common knowledge cannot be gained in a distributed system with unreliable messages. Nevertheless, there 
is a solution to the semi-open card problem which involves a third party with minimum trust: each player,  
except Marvin, sends his key share to the TTP, and only after (n-1) key shares have been received, the TTP 
forwards the key shares to Marvin. The TTF can gain no information from the key shares, and the semi-open 
problem only arises if the TTP is colluding with Marvin.
 
Some authors have considered the possibility of a new player entering an on-going game. We state that, 
though it may be possible, it is insecure, because there is no way that a new player can be sure the dealt 
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cards  were  really  random (the  deck  is  not  marked).  For  these  reasons we will  not  consider  late-enter  
protocols.

We'll discuss some consequences of the requirement R7 (absence of trusted third party or TTP-free). When 
MP protocols are implemented and used on real networks, by real people, protocols become both part of and 
build on other protocols. Then there are always other third parties (TPs) which are required to take part,  
either on-line or off-line. For example, every remote accessible non-broadcast protocol needs a network 
connection provider (like ISPs) to forward and transmit messages. Every game that players interact with new 
opponents  requires  the  services  of  a  Certification  Authority  to  validate  identities.  Every  game that  has 
timeouts requires an external time-stamping service (to assure accurate times on messages). Every game 
whose outcome has some monetary significance must account for a logging service (to keep a log of all the  
game actions to allow ruling on a dispute), auditing entities (to rule on a dispute), on-line banks (to hold the 
bets and pay the pot), payment gateways (to transfer money from the player to the on-line bank), and so on.  
Any of these third parties can eventually act maliciously and make a player loose a game, or, in the context  
of a voting protocol,  impede an individual from voting. As examples, an ISP can simply close a players 
connection, and a time-stamping service can provide forged or delayed timestamps for a player and mislead 
the others to act as if that player had timed-out and so refuse to accept his actions. Although the fact that  
third  parties  powers  can  be  sometimes  lowered  by  more  clever  protocols  or  technical  solutions,  some 
cannot, due to theoretical limitations and the possibility of collusion between trusted parties, as we'll describe  
in the following sections. One may ask what is the benefit of TTP-free protocols if trusted parties are required  
anyway in other protocol layers.  Since in TTP-Free MP protocols no party knows other private cards, a  
malicious TP has a lot less information to decide when is should be wise to attack a player. He can't  attack a  
player when he is about to win because he's having a good hand. Still, a TP in collusion with a player can  
attack a surely winning player when his partner is about to loose because he has engaged in a high stake 
game having very bad cards.

Mental poker protocols do not generally provide authenticity and privacy for the messages exchanged. The 
protocols  must  be  run  over  a  secure  (authenticated)  communication  channel.  Also  the  communication 
channel must be reliable. 

1.2.2. Extended Requirements

Although a protocol which satisfies all the previously described requirements is theoretically correct, most of 
the previously known protocols cannot be used in real-time with current personal computer technology due to 
poor protocol performance. And because the MP concept is about secrecy, we can't expect people to hire  
CPU cycles from a remote facility to do the job, at least with current development on cryptographically secure 
remote computing (fully homomorphic encryption). Then all computations must be done locally.  

R10. Real-world  comparable  performance:  The protocol  must  allow real-time play,  satisfying  users 
expectation. This includes bandwidth usage, memory usage and CPU usage.

When we compare the performance of different MP protocols, an important characteristic is how are the CPU 
intensive calculations and data transfers distributed over the protocol lifespan. Most users may not tolerate  
high delays during the interactive part of the game, but would not bother to wait during shuffles or after  
showdowns. Other users, planning to play multiple games against the same players, would be glad if the  
CPU-intensive calculations of future games could be pre-processed in background during current play. A 
good protocol should allow both fast interactive play and shuffle pre-computation. Delayed verifications can 
help, but bring other new issues, such as the danger of suicide cheating, as we'll see in requirement R13.

To compare equally-capable protocols we'll need to rule out those which only allow two players to play. Multi-
player MP protocols are far more complex than two-player protocols and must be carefully designed to  
prevent coalitions. Also for some games that allow card transfers, the number of players can be higher than 
the number of available cards.

R11. Variable number of players: The protocol must admit an unlimited number of players.

Finally we'll introduce some new properties which are required to allow some other card games (rather than 
only Poker) to be played.

R12. Card transfer actions:  Return card to deck, Deck reshuffle, Face-down discarding,  Private card 
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transfer between players (with the other players consent)

Some of the protocols offer partial support for these operations. In some cases the protocol authors don't  
account for the procedures to do so, but the protocol itself can be easily extended. In other cases, some 
actions are impossible due to shortcomings in the protocols design. For example, [Cr86] does not allow a 
player to return a card to the deck or the deck to be re-shuffled. 

R13. Protection against suicide cheaters: Cheating, even if discovered,  cannot be used as a medium 
to reach other goals.

Suicide cheaters are malicious players willing to cheat even if they are sooner or later detected, in order to 
gain some information about other players way of playing (strategy) or generate a change in other players 
mood.

Possible suicide actions are:

a) Change you own cards or other players cards when dealing.
b) See other players cards when they should be private.

In some games, strategic information is of extreme importance. A protocol is fully protected against suicide  
cheating if it allows the players to detect cheating and the cheating parties without revealing private keys, 
private cards, nor any strategic information, including strategic information regarding how a player would 
react  to  an  event  that  would  not  occur  without  cheating.  This  implies  that  cheating  must  be  detected 
immediately after the moment cheating occurs. If  suicide cheating protection is not  required, verification 
operations can be delayed to gain performance and responsiveness.

R14. The deck can have indistinguishable duplicated cards

Some unusual applications and games require more than one copy of a card. For those applications decks 
must support indistinguishable copies of the same card value, without revealing that such a duplicate exists 
in the deck. There are Secure Multi-party Computation protocols for computing arbitrary boolean functions  
[dBo90, NR98] with a deck of cards that requires indistinguishable card duplicates. The AND protocol in  
[St01] requires them. Also some games like Pinoche or Bezique require duplicate cards. MPF support having 
duplicate cards as long as the cards are created at the beginning of the game (see special protocol), but  
duplicate cards cannot be transferred between players without leaving trace of which clone is being passed.  
This does not restricts the use of MPF for the AND protocol, but it does for some card games. Also, MPF 
does not support the creation of duplicated cards on-the-fly without leaving use traces. Protocol [BS03] fully  
complies with property R14.

It should be noted that in some games  players are required to perform a cyclic shuffle of the deck (also 
known as “cutting” or “splitting” the deck). Although in practice most games require that players “cut” the 
deck, this action is only used as a means of avoiding the cheating of the dealer. In practice, properties R1,  
R2 and  R3 assure that  no cheating can  occur  during dealing.  Nevertheless the AND protocol  requires 
precisely cyclic shuffles. Cyclic shuffles can always be obtained by the procedure described in [BS03] using 
normal shuffles and a cut-and-choose protocol, although a faster protocol could be desirable. 

1.2.3. Unreal Requirements
Some suggested requirements can be called “unreal”, because cannot be obtained with a real deck of cards 
(at least not without a trusted third party) but could be useful for some unusual applications.

R15. Players can jointly create duplicated cards on-the-fly, even if face down.

The AND protocol requires the duplication of face down cards when evaluating arbitrary boolean circuits,  
although it's shown that the duplication can also be obtained by using cyclic shuffles.

R16. Players can test if a card in the deck belongs to a certain set.

In some games is necessary that players follow suit, even if  the card is not immediately revealed. Then 
property R16 can be useful to check this before the game continues and avoid suicide cheating. Another 
simpler property is to allow players to prove that an owned card belongs to certain set. We can do it using  
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the basic properties. If a player wants to prove that a card x in his hand (the set X) also belongs to the set Y, 
he shuffle-masks the set X and then opens the card that is the result of the masking of x.

R17. Players can test if two cards belongs to the same set from a partition of the deck.

If the deck is partitioned in sets, then this property allows to verify that two cards belong to the same set,  
without knowing which is it. There are situations when we want to follow a set of rules over card relations. All  
players should be able to verify the rules are being correctly applied but only the player making the relation  
knows which rule in the set is being applied. This is very useful in e-cash protocols where, for example one 
rule may state a one hundred dollars digital bill can only be converted into another one with the same value,  
and another rule may state the same for ten dollars bills. In this case R17 allows to destroy trace information 
but preserve monetary value.

R18. Players can jointly test if a card is higher than some other card.

This property solves the Two-Millionaire problem, and is more difficult that just checking if a card value is  
higher than a certain value, which can be solved by choosing the set of higher card values and using the 
property R16.

R19. Players can jointly increment/decrement the value of a card.
 
We haven't found a situation this property is required, but still sounds nice to have. A game that makes use of 
this properties is yet to be invented.

1.3. Measuring Performance

A key property used for protocol comparison [CR05] is the computational and communications requirements 
for a given configuration of  players,  cards and security threshold.  No other resource,  such as computer 
memory, seems to be relevant to performance in MP protocols.  

1.4. Delayed Verifications

Because most the most CPU-demanding operation is the verification of the shuffle [CR05], we can achieve 
real-word comparable performance by almost any MP protocol, including [KKO97], [CDRB03] or [BS05] by 
delaying the cheating detection sub-protocols until the end of the game, once a week, or any other time in  
the future. We can also spread some computations and communications over the idle cycles of the CPU. But 
In low-trust/high-stakes scenarios, immediate cheating detection is required. The two main reasons are:

a. Protect the players against suicide cheating. 
b. Avoid blocking the money in the pot.

Money won must be blocked from further transactions until the verifications are over. If not, then money  
obtained by cheating in games that were not yet verified could be bet in following games, creating chains of  
games that would be required to be rolled-back when a cheater is detected, which would become a legal 
nightmare.

1.5. Non-interactive vs. Interactive Proofs

Each player must verify the correctness of other players private operations. In a game with n players, a  
player proof that an operation is correct generally requires (n-1) interactive proofs, one for each remaining 
player. Non-interactive proofs are generally longer, but the same proof can be reused and sent to each of the 
remaining players. As the number of players increase, non-interactive proofs become less expensive than 
interactive proofs both in CPU and bandwidth usage. The turning point depends on the protocol and security 
threshold, but generally it's around n=20 for most common card games.
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1.6. External on-line Auditing 

An external on-line auditing party is generally required when not only the result but all the events in the game 
itself are important. We'll show one example of such requirement. Suppose there is a tournament and n 
players playing will be playing a series of games together. Suppose that 2 points are given to the winner of 
each game, 1 to each player involved in a draw, and 0 points to a looser. Suppose also that 5 extra points  
are given to a winner of a game that has a poker of aces. Then a group of players may collude and gain 
some advantage over the remaining honest players by choosing fake cards for each game, letting each 
player win a game with poker of aces and providing fraudulent proofs to an off-line auditing authority.  Even 
without faking cards, players can just exchange private key information on an external channel, and decide 
which cards will be dealt to force a specific player get a poker of aces.  To avoid this situations, and auditor  
party may need to take part in the protocol as another card shuffler and take part in verification protocols as  
another verifier.

1.7. Hash Chains
A cryptographic hash function is a deterministic procedure that takes an arbitrary block of data and returns 
a fixed-size bit string, the (cryptographic) hash value, such that an accidental or intentional change to the 
data will change the hash value. The data to be encoded is often called the "message", and the hash value is  
sometimes called the message digest or simply digest [B96].

A Hash Chain is a sequence of messages where each message includes a message digest of the previous 
message on the chain.

If a broadcast medium is used for communication Messages protocol messages can be linked in a hash 
chain, where each message includes the digest of the previous message sent. In this way, the last messages 
serves as an authentication code for the whole protocol transcript.   An example of  a hash chain is the 
Distributed Notarization Chain (DNC) [CR03].

If peer-to-peer connections are allowed, then a Hash DAG (Direct Acyclic Graph) can be used. In a hash 
DAG, each message sent by a player may reference more than one previous message. Each message 
carries the hash digests of all previous messages received or sent by that player that are terminal nodes of  
the DAG that is constructed by the message reference relation, as known by the sender. 

1.8. Theoretical Security in Mental Poker Protocols
SRA proved that  for a shuffle to be correct and fair, you cannot get perfect security. The best one can have 
is computational security.  MPF attempts to provide a coherent and user selectable level of computational 
security.

1.9. Kinds of Proofs
Informally, a Zero-knowledge Proof (ZNP) is a protocol that allows a party (the prover) to convince another  
party (the verifier) that he can perform some secret actions or that he has some secret information, without 
giving any clue of what these actions are or this information is. A Perfect Zero-knowledge Proof  (PZNP) is 
a protocol in which the verifier cannot theoretically recover any information regarding the secret from the  
protocol  transcript.  A  Computational  Zero-knowledge Proof (CZNP)  is  a protocol  in  which the verifier 
cannot computationally recover any information regarding the secret from the protocol transcript. A Zero-
knowledge Argument (ZNA) is a protocol where the prover can only cheat the verifier by performing an 
intractable computation. A Computational Zero-knowledge Argument (CZNA) is a protocol that is secure 
only if both parties are computationally bounded. Although perfect zero knowledge proofs provide perfect 
secrecy, there is no point that the verification protocols provide grater security than other operations in the 
protocol, like encryptions.  An attacker generally tries to crack the weakest link of the chain. If  the other 
operations, like encryptions, are secure under computational assertions, then the verifications can also be 
computational  zero-knowledge arguments,  without  decreasing the overall  security.  Because perfect  ZNP 
protocols are generally expensive in communication and computation requirements, MPF offers, in addition 
to  perfect  zero-knowledge  protocols,  computational  zero-knowledge  arguments  that  rely  on  the  same 
security assumptions as the ciphers used along the protocol. In most games parties take symmetric roles  
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(both  proving  and  verifying  operations),  so  there  is  no  point  in  having  a  verification  protocol  that  can 
withstand a computationally unbounded prover and a computationally bounded adversary or vice-versa. As 
stated before, MPF relies only on computational security.

Verification  protocols  in  [KKO97],  [BS03]  and  [CDR03]  rely  on  cut-and-choose  perfect-zero-knowledge 
protocols, which are slow because of the need of iterated rounds to achieve a certain threshold of certainty.  
To gain performance MPF also provides fixed round proof protocols. PHMP uses an iterated protocol, but 
with with fewer rounds. For example, to verify a shuffle of a complete deck of poker cards,  the classical  
interactive  cut-and-choose  protocol  requires  20  iterations  to  achieve  2-20 cheating  probability,  while  the 
proposed PHMP verification protocol requires only 4 iterations.
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2. MPF base concepts 

MPF is a framework which defines abstract classes, operations and protocols that allow generation of new 
MP  protocols  satisfying  some  or  all  the  required  properties.  Like  SRA,  MPF  is  defined  for  an  ideal  
Commutative Group Cipher (CGC). A CGC is a commutative cipher which also provides group operation on 
keys. Examples of commutative ciphers that are not CGC can be found in [BM07]. 

Formally, a cipher F is a tuple (E,D) where 
E is a function KxM -> C,  noted Ek(m) and 
D is a function KxC -> M,  noted Dk(c)

Where:
K is the Key space
M is the plaintext space 
C is the ciphertext space

And for any m ∈ M, Dk(Ek(m)) = m.

To be a CGC, a cipher F must have these other properties:

1. C=M
2. There exists an operator “*” for which G=< K, * >  is a commutative group.
3. For all x ∈ Μ, and any k ∈ K, Ek(Eq(x)) = E(k*q)(x)
4. For all x ∈ Μ, and any k ∈ K, Dk(x) = Ej(x)  for j=k-1

5. For all x ∈ Μ, E1(x) = x
6. For each valid pair of keys k,r  ∈ K, obtaining k from (k*r) must be computationally infeasible or 

theoretically impossible.

A a ciphertext-only attack (COA) or known ciphertext attack is an attack model for cryptanalysis where 
the attacker is assumed to have access only to a set of ciphertexts. The attack is completely successful if the 
corresponding plaintexts can be deduced, or even better, the key. The ability to obtain any information at all  
about the underlying plaintext is still considered a success. A known-plaintext attack (KPA) is an  attack 
model  for  cryptanalysis  where the attacker  has samples of  both the plaintext  and its encrypted version 
(ciphertext), or the attacker has a set of ciphertexts, has knowledge of the plaintext statistical distribution and 
can guess with high probability plaintext/ciphertext  pairs.  A  chosen-plaintext attack (CPA) is  an attack 
model for cryptanalysis which presumes that the attacker has the capability to choose arbitrary plaintexts to  
be encrypted  and  obtain  the corresponding ciphertexts.  The goal  of  the attack is  to  gain  some further 
information which reduces the security of the encryption scheme or, in the worst case, to reveal the secret  
key [B96] . 

MPF  can  be  proven  secure  in  the  random  oracle  model  (ROM)  relying  on  these  external  security 
assumptions on  the CGC: 

1. The underlying CGC is secure against ciphertext-only attack (COA) where the ability to obtain any 
information about the underlying plaintext is considered a successful attack.

2. The underlying CGC is secure against known plaintext attacks (KPA).
3. The underlying CGC is secure against chosen plaintext attacks (CPA) (see note)
4. The  underlying  CGC  is  non-malleable,  for  any  suitable  definition  a  malleability  that  excludes 

malleability imposed by commutativity. 
5. The CGC is deterministic [K97].
6. The CGC provides historical security [W06]  if card transfers between players are required and there 

is a need to hide the card transfer history.

Standard  formal  security  definitions,  such  as  semantic  security  or  non-malleability  do  not  fully  capture 
adversarial  abilities  when using  a  commutative  cryptosystem.  Definitions  such  as  cascadable  semantic  
security [W06] cannot be applied, since we rely on a symmetric deterministic cipher. The concept of historical 
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security can be easily adapted, and we'll require so if card transfers are required.

Assumption 3 is only required for the VSM-L-OL base protocol (see section “2.1. MPF base protocols”) or if  
the verification protocols will be executed in parallel. It is required in VSM-L-OL because VSM-L-OL has a 
round without verification. It is required when doing parallel verifications because the output from a player 
calculation could be sent as input to another player before the verification protocol finished, which opens a  
window of time for a CPA attack.

Assumption 4 can be removed if the verification protocols are modified to withstand malleability. We'll show 
that this is possible imposing only a slight penalty in performance.

To proof the security of MPF, two additional assumptions are required (COUC and CUI).  Nevertheless, these  
are not external  assumptions. The protocols in MPF guarantee these properties hold on start and keep 
holding as postconditions of the protocols.

Computational Uniqueness of Open Cards (CUOC)

Given a set of cards X, a conversion key is a key that can encrypt a card in the set X into a different card in 
the set X. A set of cards X is computationally unique (CU) if no proper subset of the players can compute a 
conversion key.  Finding such a conversion key should be as hard as breaking the CGC.  The deck, before 
being shuffled, consist of open cards. The CUOC property states that the initial deck is CU. This property is 
less  stringent  that  the  one  stated  in  [WW09],  where  the  requirement  is  that  the  card  values  are 
indistinguishable from independent uniform random variable, as a means to avoid conversion keys. 

Computational Uniqueness Invariant (CUI)

MPF sub-protocols processes lists of cards (inputs) and generates new lists of cards (outputs). There are 
two  kinds  of  protocols:  action  protocols  and  verification  protocols.  Action protocols  can be verified and  
unverified. Verification protocols verify action protocols. Every action protocol has the precondition that each 
input list of cards is CU. Every verified action protocol guarantees that the output list of cards remain CU.  
Every action protocol satisfies this Computational Uniqueness Invariant (CUI). The CUI can be achieved if 
all players can track the source and destination of each card value that undergoes encryption. And this is 
done by the verification protocols executed as sub-protocols. 

Because each card list used as input of a protocol is a subset of a list that was the output of another protocol  
(with the exception of the first protocol which creates the deck), a verified action protocol that receives an  
input set of cards that has been proven to be CU will produce a new set of cards that is proven CU. The CU  
condition spreads from the CUOC up to every card list used through verified action protocols. Verification 
protocols  may require  some input  card lists  to  be CU and can guarantee that  another input  list  is  CU, 
expanding the number of CU card lists. Verification protocols are the bridge that provides action protocols 
CU guarantees for their outputs. MPF allows the parallelization of sub-protocols. In a situation where a card 
list whose verification for CU is still pending on an unfinished protocol, and the card list is supplied as input  
as another protocol, then the failure of the former implies nullity of the later.

One way to assure the CUOC is by choosing open cards values at random, however the card values chosen 
must be valid plaintexts for the CGC. Computing a conversion key would be as hard as a KPA on the CGC.  
We give two computational protocols for creating open card values that assure CUOC.

We must note that the CUOC requires that the number of open cards to be orders of magnitude smaller than 
the key space, to keep the probability of finding a conversion key low. 

Types of Protocols

This thesis defines and uses different kinds of protocols, which are detailed below, and summarized as 
follows:

MPF framework: MPF is a framework which defines four base protocols. Each base protocol is an abstract  
Mental Poker Protocol, and each represents a different way to accomplish a similar objective, with slight 
security and performance variations. Note that without specifying the CGC, an MPF base protocol is not by 
itself a complete Mental Poker protocol: the implementor must still choose a CGC from the ones provided or  
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choose a new CGC and replacements of the verification protocols if the CGC is malleable.

Base protocols: As stated, each base protocol, plus a CGC,  is a complete Mental Poker protocol.

Card protocols: Card protocols operate on cards. For example dealing, opening, showing or transferring a 
card.

Verification protocols: MPF require players to privately operate on cards, and these operations need to be 
publicly verified to avoid cheating.  Verification protocols provide a guarantee that  private operations are 
indeed correct.

PHMP: PHMP is a concrete and fully specified Mental Poker protocol for the Pohlig-Hellman cipher.

ECMP: ECMP is a concrete and fully specified Mental Poker protocol for an elliptic curve cipher.

2.1. MPF base protocols 

MPF offers four base protocols: VSM-L-OL, VSM-VL, VSM-VPUM and VSM-VL-VUM. The names refer to 
the different rounds that each base protocol applies to cards. An explanation of the meaning of each letter in 
the protocol name is provided in Table 1.

Letters Meaning
V Verified

L Locking round

O Open

SM Shuffle-Masking round

P Partial

UM Unmasking round

Table 1: Meaning of Letters in Protocol Names

Each  one  of  them  implements  the  standard  properties  described  and  some  of  them  the  extended 
requirements.

2.2. MPF instantiation

To create a specific MP protocol in MPF, the following steps are carried out:

1. Choose an appropriate CGC
2. Choose one of the MPF base protocol
3. Choose  the  verification  protocols  from the  ones  offered  by  MPF (see  section  “2.3.  Verification 

Protocols”)
4. If desired, create ad-hoc verification protocols targeted to the specific CGC.

2.3. Verification Protocols

MPF defines seven kinds of verification protocols: 

Locking Verification Protocol (LVP)

LVP is  a  protocol  that  allows a party  (the prover)  to  prove  to  other  parties (the verifiers)  that  a  list  of  
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ciphertexts is the encryption of a lists of plaintexts (without any permutation), without revealing the keys.  
Each plaintext can be encrypted with a different key. 

Shuffle-Masking Verification Protocol (SMVP) 

SMVP  is a protocol that  allows a party (the prover) to prove to other parties (the verifiers) that a list  of 
ciphertexts is the result of the encryption of a list of possibly permuted plaintexts with a single key, without  
revealing  the  key  nor  the  permutation  function.   The  protocol  can  also  generate  a  representative.  A 
representative is a pair plaintext/ciphertext which is produced and broadcast at a certain point in a protocol  
and is referenced afterwards to verify a similar operation or an inverse operation. 

Undo Verification Protocol (UVP) 

UVP  is  a protocol that  allows a party (the prover)  to prove to other  parties (the verifiers)  that  a list  of  
plaintexts is the result  of  the decryption of  a corresponding list  of  ciphertexts with a single key,  without  
revealing the key. Also the protocol can prove that the key is equal to a previously used key or a product of  
previously used keys. To reference a previously used key the protocol requires a representative previously  
generated.   To  execute  a  UVP for  product  keys,  multiple  representatives  (one  for  each  key)  must  be  
transformed into a new single product representative using the sub-protocol Build-Representative. The full  
UVP protocol is not required in MPF. Nevertheless representatives are required to enable some advanced 
protocols such as   Return-Cards-To-Deck or  Card-Key-Verification (which is used to protect the protocol 
against suicide cheaters).

Re-Locking Verification Protocol (RLVP)

RLVP is a locking verification protocol of a single encryption with a single representative. This verification 
protocol is used in the card protocol Build-Representative to achieve protection against suicide cheaters for  
the  base  protocols  for  VSM-VL and  VSM-L-OL.  The  base  protocol  VSM-VPUM  does  not  require  this 
verification protocol.

Re-Shuffle-Masking Verification Protocol (RSMVP) 

RSMVP is a protocol that  allows a party (the prover) to prove to other parties (the verifiers) that a list of  
ciphertexts is the result of the encryption of a list of possibly permuted plaintexts with a single key, without  
revealing the key nor the permutation function. The key used must be equal to a masking key used before,  
referenced using a representative. This is actually a UVP with a representative, but using an encryption  
function  operation  instead  of  a  decryption  operation.   It  is  only  used  in  the  card  protocol  Verified-
ShuffleRemasking-Round, which is a sub-protocol of Return-Cards-To-Deck.

Shuffle-Locking Verification Protocol (SLVP)

SLVP is a protocol that  allows a party (the prover) to prove to other parties (the verifiers) that  a list  of  
ciphertexts is the result of the encryption of a list of possibly permuted plaintexts, without revealing the keys 
(each encryption can be done using a  different  key).  Shuffle-Locking verification protocols  are  used by 
players to shuffle their own hand cards to protect strategic information, such as the transfer history of the 
cards, and avoid card tracking (card protocol Shuffle-Hand(2)). Also this protocol is used in the card protocol 
Show-Cards(2), which is an alternate protocol for showing cards.

Unmasking Verification Protocol (UMVP)

UMVP  is  an  UVP  which  verifies  encryptions  with  a  single  key,  and  no  permutation,  using  only  one 
representative (generally taken from a single shuffle-masking round).  This verification protocol is used in the 
card protocol Verified-Unmasking-Round which is a sub-protocol of Multiple-Cards-Deal,  used to deal cards  
for the base protocol VSM-VPUM only. Table 2 illustrates certain differences between verification protocols.
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Encryption type Permuted Not Permuted
Same key SMVP  [can  generate  a 

representative]
RSMVP  [requires a representative]

UVP
UMVP   [requires a representative]
RLVP [requires a representative] (*)

Different Keys SLVP LVP [generates many representatives]  (**)

Table 2: Differences between verification Protocols

(*) Because RLVP verifies a single encryption, the distinction between Permuted/Not permuted does not  
apply. 
(**) Each LVP plaintext/ciphertext pair is itself a representative 

The foregoing protocols share certain features; accordingly,  MPF implements these protocols as calls to a 
more general protocol, the Unified Verification Protocol or UniVP. Nevertheless, the implementor can replace 
an  specific  verification  protocol  with  an  alternate  version,  based  upon  performance  or  security 
considerations. For example, PHMP perform certain replacements.

2.4. Unified Verification protocol (UniVP)

The Unified Verification Protocol (UniVP) is the core sub-protocol for all verification protocols.  Following are 
the signature definitions, and in Table 3 description of UniVP protocol arguments.  See section 3.7 (“Card 
Protocols”) and Table 4, for a detailed description of the notation used for protocol arguments.  

Signature: UniVP (
private in L :Key-List, 
private in T :Permutation,
public  in X :Card-List, 
public  in Y :Card-List, 
public  in p :Player, 
public  in Permuted :Boolean,  
public  in SameKey  :Boolean,  
public  in RX :Card-List , 
public  in RY : Card-List)
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L L is a list of keys. Each key has been used to encrypt the element in 
the list X with the same index.
If L has only one element, then the same keys is used for all elements 
in X.

T The permutation applied to X before encryption into Y.

X X is the list of plaintexts. If Permuted = true, the X must be CU.

Y Y is the list of possibly permuted ciphertexts

p p is the player who proves to operation is correct

Permuted if true, allows the cards on the set Y to be permuted, and verifies the 
correctness of the permutation.

SameKey If true, then the verifier must prove all encryptions are done using the 
same key.

RX RX is a list of plaintexts used as input or output representatives
If RX is empty, then no representatives are being used.
If  (SameKey=false) then RX must be empty.

RY The ciphertexts corresponding to each element in RX.

Table 3: UniVP Arguments

Note  that  RX  is  the  list  of  required  (input)  representatives  and  also  the  list  of  produced  (output)  
representatives, because no protocol can have both input and output representatives.

All the verification protocols can be constructed as macro calls to the UniVP:

Locking Verification Protocol (LVP)

The protocol signature is :

LVP(Key-List L, Card-List X, Card-List Y, Player p)

Definition:

 LVP(L,X,Y,p) = UniVP(L , Identity, X,Y,p,false,false, [ ], [ ])

Shuffle-Masking Verification Protocol (SMVP) 

The protocol signature is :

SMVP (Key m, Permutation T, Card-List X, Card-List Y,  Player p, Card-List RX, Card-List RY)

Definition:

 SMVP (m,T, X,Y,p,RX,RY) = UniVP([ m ], T, X,Y,p, true, true, RX, RY)

Unmasking Verification Protocol (UMVP) 

The protocol signature is :

UMVP (Key m, Card-List X, Card-List Y,  Player p, Card rx, Card ry )

Definition:
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 UMVP(m,X,Y,p,RX,RY ) = UniVP([ m ], Identity, X,Y,p,false, true, [ ry ],[ rx ])

Re-shuffle-masking Verification Protocol (RSMVP) 

The protocol signature is :

RSMVP (Key m, Permutation T, Card-List X, Card-List Y,  Player p, Card rx, Card ry )

Definition:

 RSMVP(m,T, X,Y,p,rx, ry ) = UniVP([ m ], T, X,Y,p, true, true,[ rx ],[ ry ])

Re-Locking Verification Protocol (RLVP)

The protocol signature is :

RLVP(Key l, Card x, Card y, Player p, Card rx, Card ry)

Definition:

 RLVP(l,x,y,p,rx,ry) = UniVP([ l ] , Identity, [x],[y],p,false,false, [ rx ], [ ry  ])

Shuffle-Locking Verification Protocol (SLVP)

The protocol signature is :

SLVP (Key-List L, Permutation T, Card-List X, Card-List Y,  Player p)

Definition:

 SLVP(L,T, X,Y,p ) = UniVP(M, T, X,Y,p,  true,false, [ ],[ ])

LPV, UMVP and SLVP preserve the CU condition of the cards lists. If X is CU then a successful execution of 
the protocol guarantees that Y is CU, but does not impose that X must be CU as a precondition.  SMVP 
requires X to be CU as a precondition, and a  successful execution of the protocol guarantees that Y is CU. 

MPF defines three UniVPs:

• An interactive cut-and-choose UniVP that provides a Perfect-Zero-Knowledge Proof (I-UniVP).
• A non-interactive  UniVP that  provides  a  computational  zero  knowledge  argument  (NI-UniVP).  This 

protocol is obtained from I-UniVP, applying Fiat-Shamir transformation [FLS90].
• A fast interactive UniVP, which provides a computational-zero-knowledge argument (FI-UniVP). 

The implementor is free to choose the UniVP that suits his needs.

2.5. Ad-hoc Verification protocols and malleability

An encryption algorithm has the property of malleability (or it is malleable) if it is possible for an adversary 
to transform a ciphertext  into another ciphertext  which decrypts to a related plaintext.  That is,  given an 
encryption of a plaintext m, it is possible to generate another ciphertext which decrypts to f(m), for a known 
function f, without necessarily knowing or learning m.  An Homomorphic cipher is a malleable cipher that 
translates an operation on the plaintext and to another (possibly different) operation on the ciphertext. Let E 
be the homomorphic cipher encryption function, then given two plaintexts x1,x2, E(x1) * E(x2) = E( x1 ° x2 ), for 
two (possible different) operators * and °. 

A user selected CGC for MPF may be homomorphic or malleable in some other way. These are undesired 
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properties, and reduce the security of MPF.  Standard MPF (without replacements) is only secure under a 
non-malleable CGC. Nevertheless all protocols with the exception of some verification protocols withstand 
malleability present in the CGC.  Verifications protocols such as the ones derived from I-UniVP and NI-UniVP 
withstand an homomorphic CGC. They also withstand dishonest verifiers. We´ll show a variation of FI-UniVP 
that is immune to homomorphic properties of the CGC. For other kinds of malleability,  the security may have 
to be re-proven. If  this proof fails, malleability in the CGC may render the UniVP completely insecure or  
insecure under a CPA. MPF may still be used if the provided UniVPs are replaced with ad-hoc protocols,  
specially targeted for the specified CGC to withstand malleability attacks. Also, there are other reasons to 
choose  specific  verification  protocols,  such  as  to  increase  the  performance  or  to  rely  on  other  widely 
analyzed protocols, whose security has been pre-established.

2.6. MPF compared to SRA
MPF includes at least four MP protocols, depending on the base protocol. Four variants include VSM-L-OL, 
VSM-VL, VSM-VPUM and VSM-VL-VUM.  Each one of them represents a different balance of performance 
and security. We believe VSM-VL-VUM and VSM-VL are the most secure, although we were unable to break 
any of the protocols. The core of MPF can be viewed as a generalization and optimization of the repaired  
SRA protocol.  
The are at least three differences between MPF and SRA protocol:

 1. In MPF each player encrypts each card with a different key, where SRA protocol uses the same key 
for all cards

 2. In MPF, each codified card is guaranteed to be computationally unique, where the SRA protocol 
does not pose any restriction in the codification of the cards, nor a padding scheme.

 3. MPF  cannot  suffer  from  information  leakage  problems  (e.g.  quadratic  residuosity)  of  the  card 
codifications because it poses restrictions on the quality of the CGC by definition.

2.7. MPF compared to Barnett-Smart
The main differences between Barnett-Smart protocol [BS03] and MPF are:

1. MPF uses a deterministic cipher. On the contrary, Barnett-Smart uses a probabilistic cipher (either 
ElGamal or Paillier’s system).  

2. Possibly because of 1, Barnett-Smart  does not have a Abrupt Drop-out recovery protocol.  
3. Barnett-Smart  uses an iterated cut-and-choose protocol  to verify encryptions.  MPF uses a fixed 

round protocol. PHMP uses a variable-round protocol,  but requires less iterations.

2.8. Keys Lifetime

All  encryption  keys  are  chosen  for  each  game,  and  are  disposed  afterwards.  This  ensures  that  the 
information leakage due to the computational nature of MPF security is kept to a minimum. Other cipher 
internal parameters (such as a common modulus) can be either fixed for long periods or generated for each  
game, depending on the computational cost of creating a new set of parameters. If some parameters are 
fixed, then they must be standardized and publicly scrutinized for trap-doors.

2.9. Open Cards Lifetime

Before shuffling, real cards values are specially encoded in bit-strings known as open cards or O-Cards.  
Open cards are chosen such that no O-Card is an encryption of another O-Card with a known key (CUOC 
condition). Also, all card values used during a game are rooted  in one of the open cards, meaning that each 
card value can be traced back to an open card with a series of encryptions with player secret keys. (although  
this doesn't mean that this trace is publicly available)
No player can bring his own deck of O-cards to play, because there is no easy way he can prove he doesn't 
know the conversion keys. Nevertheless a player could bring a deck created by a publicly verifiable method 
(such as taking digits of π as card values). Also, he could forward a deck created by a trusted authority (a 
TTP). This last scheme allows a marked deck to be used so a central authority (such as a game operator) 
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can track collusion of players by looking at the game transcript, but without interfering with the protocol on-
line.

For maximum protection, and to protect the players from information leakage, we recommend that the deck 
is created by the players for each new game. If this represents a performance problem, the deck could be 
reused in multiple games, as long as the players are the same. Also, if  a new player joins a game, the  
previous deck can be re-randomized (along with a proof of correctness) by that new player only.

2.10. Encoding of Open-Cards

A pseudo-random number generator (PRNG), is an algorithm for generating a sequence of numbers that 
approximates the properties of random numbers.  A cryptographically secure pseudo-random number 
generator (CSPRNG) is a pseudo-random number generator (PRNG) with properties that make it suitable 
for  use in  cryptography.  One of  the properties is  that  with  the only  knowledge of  the numbers already  
generated, the numbers to be generated next should still be computationally indistinguishable from random.

To obtain a deck with CUOC property, open card values will be obtained by a protocol P that satisfy these 
requirements:

• The output of P is a list of open card values.
• Each party must take part in P (either by doing some computations or by providing a seed-share to 

some function)
• No proper subset of the parties should be able to repeatedly and privately evaluate the output of P in 

any intermediate stage of the protocol and use that information to modify their own computations or  
their seed-shares that contribute to the output of P.

• The output of P should be pseudo-random as long as one of the parties is honest and chooses 
random values when required.

We'll call such protocol a Collaborative Pseudo-Random Number Generator Protocol (CO-PRNGP).  
A CO-PRNGP  be realized by using at least one of this three computational methods: 

1. Verifiable  pseudo-Random  functions  (VRFs),  Distributed  Pseudo-Random  functions  (DPRFs)  or 
Distributed Verifiable Random Functions (DVRFs) [MRV99][Lys02]. 

2. A Hash-based approach: guarantees that no proper subset of the players can force the output values 
to be biased or chosen, under the random oracle model. 

3. A locking round (see section “2.11. MPF Rounds”) which guarantees all open cards are rooted back to 
a single initial card but assures the conversion key is shared among the players in such a way that no  
proper subset of the players can recover the key. 

2.10.1. VRF-based CO-PRNGP

To  build  a  VRF based  CO-PRNGP each  player  i  creates  a  personal  VRF  fi  and publishes  the  public 
parameters. A public variable d is used to count the number of decks created. Each time a new deck is 
required, each player publishes xi=fi(d) along with a proof that verifies the correctness of the computation.  All 
outputs xi are xor-ed to create a seed for a public CSPRNG, whose output is used to build the o-card values.

2.10.2. Hash-based CO-PRNGP

A commitment scheme allows one party to commit to a value while keeping it hidden, with the ability to 
reveal the committed value later. Commitments are used to bind a party to a value so that it cannot change it 
afterwards.
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To build  a  hash-based CO-PRNGP,  we split  the  protocol  into  two stages.  In  the first  stage each  party 
commits to an input, and then all inputs are revealed. In a second stage a special cryptographically secure 
pseudo-random number generator (CSPRNG) is used to compute pseudo-random sequence required. This 
generator takes a variable number of inputs as seeds. Each party should take care that the input seed 
provided  is  unpredictable  by  the  other  players.  It's  recommended  to  use  true  physical  random bits.  If 
unavailable, then a suitable replacement, such as a CSPRNG  with a large pool should be used (as in  
Yarrow  or  Fortuna)  to  compute  the  seeds.  Better  PRNGs can  be  constructed  from one-way  functions 
[GGM86, HILL99] and by well studied number-theoretic assumption (such as the Blum Blum Shub PRNG). A 
popular such construction is due to Naor and Reingold [NR97] and is based upon the Decisional Diffie-
Hellman (DDH) assumption. To approximate a CSPRNG with a variable number of seeds, we concatenate all 
the seeds in a fixed order to form a message and then hash the message, using a cryptographically secure  
hash function. The resulting hash is used as the CSPRNG seed. 

With reference to Fig. 2, the hash-based method is diagrammed. 

Figure 2: Hash-based CO-PRNGP
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2.11. MPF Rounds
In MPF most of the steps are done in rounds. A round can be of at one of three kinds: Shuffle-Masking (SM), 
Locking (L),  and Undo (U).   Also,  rounds can be verified (by MVP, LVP or UVP) or unverified.  Shuffle-
Masking rounds always precedes locking and undo rounds, with the exception of a locking round performed 
to create cards encodings. Masking rounds are always verified. Rounds can be complete (all players publish 
their output) or partial (the last player to compute does not reveal the result). Masking rounds are always 
complete rounds.  For simplicity, MPF does not directly use the undo round but defines two other rounds:  
UnLocking (UL) and Unmasking (UM).  Unlocking is an undo round of a single locking round. Unmasking is 
an undo round of a single shuffle-masking round.  

Rounds Description

• Shuffle-Masking Round:
In a Shuffle-Masking round (SM), shown in Fig. 3, each player encrypts (with a single key) and 
permutes all the input cards. The output of a masking round are a set of masked cards or M-Cards. 
Masking rounds are always verified.  

• Locking Round:
In a locking round (L), shown in fig. 4, each player encrypts each input M-card with a different private 
key.  Masked and locked cards are called ML-Cards (no matter how many locking/rounds have 
undergo). 

Figure 3: Shuffle-Masking round 
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• In a undo round (U), shown in fig. 5, each player undoes the encryptions previously done to each 
input card in a set of rounds S. The protocol specifies the set S. The implementation must track  
which keys apply to which cards, to undo locking rounds.

Undo rounds can be complete (all players publish their output) or partial (the player receiving the card undo 
last, and the output of the last player computation is not revealed). 

In VSM-L-OL, there are 3 rounds (VSM, L1, OL2) The last round is a “Open” round. An open round is a round 
which is verified, but only at the end of the game. In VSM-VL, there are only two rounds (VSM, VL) . In VSM-
VPUM, 2 rounds (VSM, VPUM), where VPUM is a verified partial unmasking round. In VSM-VL-VUM, 3 
rounds (VSM, VL, VUM).

2.12. Free Cards
When a card is dealt, an encrypted card is taken from the deck. This is called a a Free Card or F-Card. Each  
player takes note of who is the holder of each F-Card, and this information is kept in a table within each 
players computer memory (the Card-Holder table). To allow card exchanges, some times F-Card bit strings  

Figure 4: Locking round
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are disposed and new ones generated. Therefore each player must keep a dynamic mapping for F-Card 
holders. 
Any player can shuffle his own hand cards to erase any trace between the F-Cards that were given to him 
and a new set of F-Cards. During the shuffle, each other player disposes the old F-Cards in the Card-Holder 
table and adds the new F-Cards. There are two types of hand shuffles:

a. Single key shuffle (using a protocol similar to a single player shuffle-masking operation)
b. Multi-key shuffle (using a protocol similar to a single player locking operation).

A single key shuffle is verified by an SMVP. A multi key shuffle is verified by an SLVP.
The reason to have two different protocols is that an SLVP can be considerably faster than SMVP, depending 
on the number of players, the number of cards to shuffle and the UniVP selected.

2.13. Card Keys
The key that results from the product of a masking key and all locking keys applied to a single player to a 
certain card is called the Card Key. When a card is dealt, the card ends up encrypted with each players card  
key. Generally, the player receiving a card keeps his card key secret, while all the others must publish them.  
Multiple encryptions allow players to publish a card key without revealing the masking key. Because each 
card key can be decomposed as a key pairs or triplets in as many or more ways as keys in the key-space,  
the masking key remains secure even of the card key is published. 

2.14. Card Dealing 

There are two methods to deal a card to a player:

a) Key share disclosure method 

The diagram of  Fig.  6  illustrates  how agents  interact  to  deal  a  card  to  player  x  under  the  Key Share 
Disclosure method. To open an L-card/ML-Card, all the players except the one receiving the card publish the  
Card Key, which is is the product (in G) of all locking and masking keys which hasn't been undone. The 
player receiving the card computes a master key which is the product of the published card keys with his 
secret card key (calculated in the same way). The original L-card or ML-card becomes a new F-card for that 
player, and the card is taken out from the deck. The F-card is privately decrypted by the player to get an 
open card. 

Figure 6: Key share disclosure method to deal a  
card
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b) Partial undo method

The diagram of  Fig.  7 illustrates how agents interact to deal a card to player  x under the Partial  Undo 
method. Players do a partial undo round for the set of rounds that remain to be undone for the cards to be  
dealt. The player receiving the card must be the last in the round. The input cards to the last player in the  
round are new hand cards for that player. (new F-cards). All undo operations must be verified.

2.15. Master Card Keys
The set of all card keys for a given F-Card are again multiplied by the player receiving the card, creating a 
Master Card Key for that card. Only the player who is receiving the card can compute the master key,  
because he is keeping his own card key secret. When a showdown takes place, he can show the master  
card key to proof its authenticity. Because the underlying cipher is resistant to chosen plaintext attack, a 
player has no way to compute a valid master key that decrypts a fully encrypted card to an O-Card without  
going through the dealing protocol. 

2.16. Unverified Computations 
In  VSM-VL,  VSM-VPUM and  VSM-VL-VUM,  all  rounds  are  verified  so  cheating  can  not  occur  due  to 
adulterated computations. VSM-L-OL verifies the shuffle-masking round immediately, as in the other protocol 
verified rounds, but does not immediately verify the following locking rounds. The locking rounds are verified 
at the end of the game. Adulterated computations can occur during the locking rounds, so suicide cheating is  
possible. Nevertheless this fact does not decrease its core security and its ability to identify the cheater.

2.17. Card Transfers
If a player wants to give a card to another player, he publicly sends the F-Card and privately sends the 
master key. All players must log who is the new holder of the F-Card, because only the holder of an F-Card  
can lately show its associated open card.

2.18. Suicide Cheaters
Because of the partial  unmasking round in VSM-VPUM, this protocol trivially provides protection against 

Figure 7: Partial undo method to deal a card
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suicide cheaters: every operation can be immediately verified.  

On the contrary, in VSM-L-OL, VSM-VL-VUM and VSM-VL, card keys are published during deal.  These card 
keys cannot be directly verified.  The card holder can detect  cheating if  the master key obtained cannot 
correctly decrypt the free card into an open card. If the card holder suspects cheating, then a Card-Key-
Verification protocol must be executed. The Card-Key-Verification protocol is just an UVP for the shuffle-
masking  and  locking  rounds  (with  product  keys).  The  card  key  verification  protocol  can  detect  who  is 
cheating without asking for a full private keys disclosure.

The protocol VSM-L-OL does not resist a suicide cheater willing to change his own cards, in the general 
case.

2.19. VSM-VPUM trick

In VSM-VPUM there is no locking round during shuffling phase. Shuffling phase consist of only a shuffle-
masking round. A partial unmasking round is done when a card need to be dealt, and all players except the  
card holder sequentially unmask the card until they compute the free card which is the last published output  
of the round.  The holding player masking key for that card becomes the free card decryption key (Master  
key). Because masking keys cannot be published without disclosing all private information, these free cards 
should be tagged by the holder as “private key”. To show a “private key”  free card, the card holder can do  
one of two things:

1. Use an LVP from the O-Card to the F-Card or
2. Re-encrypt the F-Card into a new F-Card and publish the new F-Card. This operation must be verified by 
a LVP.  Then the new free card master key can be published.

Also note that after a hand shuffle, “private key” cards are disposed and new “non-private key” cards are  
created, so a hand shuffle before showing cards may suffice.
The only drawback in VSM-VPUM is that the unmasking round cannot be pre-computed, while in VSM-VL-
VUM it can.

2.20. VSM-L-OL, The Fastest Dealing Protocol

VSM-L-OL is a protocol specifically optimized for static games.

A static game is a game where:

a. There are no card transfers
b. There no need to hide the dealing order of a card when it's shown.
c. The game ends with a showdown of some of the player's hand cards.

An example of a static game is Texas hold'em.

We'll say that a player outputs an adulterated card value x, if x cannot be obtained by the normal execution 
of the steps in the protocol in the MPF security model. In VSM-L-OL, the locking rounds are not immediately 
verified. Any player can provide an adulterated value as if it were a result of his computations during the 
locking rounds. Any adulterated card value will be detected during the game when a player tries to decrypt  
the card and it decrypts to an invalid O-Card. A player receiving an invalid card must request all players to  
execute a card key verification protocol and then the cheater will be inevitably detected (or the player having 
raised a false alarm). A cheater may go undetected in the game if:

1. The adulterated card was never dealt 
2. The adulterated card was dealt to the same player having cheated or a colluding player, and that  

player kept the adulterated card in his hand or transferred it to a colluding player, but the card was 
not shown during the game.

In either case, the adulteration cannot give the malicious players any advantage (on the contrary) and the 
adulteration cannot have any measurable consequence for the rest of the players.
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Assuming  the  verification  operations  are  the  most  time  consuming,  VSM-L-OL can  achieve  the  lowest 
possible latency from the start of the game to the showdown on a static game: only one verified encryption  
per card. 
And as in VSM-VL and VSM-VL-VUM, shuffling can be pre-processed so that each dealt card requires only 
that players publish the card key, with no computing taking place. 
The VSM-L-OL base protocol  is protected against  suicide cheaters for static games. For  other kinds of  
games, the protocol is not protected from suicide cheaters willing to change their own cards and possibly 
transfer the cards to other players. The cheating will be detected at the end of the game.

2.21. Card Deal Preparation Phase 
In VSM-L-OL, VSM-VL and VSM-VL-VUM, dealing can be pre-processed so that each card dealt requires 
only that a subset of the players publish their keys, with only one decryption taking place.  Theses protocols  
include a “Card Deal Preparation Phase”.  Each card to be dealt requires a preparation phase. All cards or a  
subset of cards can be prepared just after a shuffle and some others can be delayed until new cards needed  
to be drawn.

There are situations where this can be a great advantage:

a. If a certain set of cards in the deck will always be dealt, then those cards can be prepared along the  
shuffling protocol. This can improve the network bandwidth use because the preparation of the cards can be 
done simultaneously for each player, reducing the number of packets transferred. Afterwards dealing is a 
constant time operation for the prepared set of cards.

b. if players know in advance they are playing multiple games together, multiple shuffles (including shuffle-
masking and locking rounds) can be precomputed. 

2.22. Card showdowns
To show a card is to reveal the open-card value associated, and to prove that the card was legally dealt. A 
player can show a card by two methods:

a) Publishing the master key used to decrypt the F-card to an open card (but only if the key is not also a  
masking key). 

b) Using an LVP or UVP to prove that an F-card can be decrypted to an specific open card, without revealing 
the key.

2.23. Advanced Card Operations
VSM-L-OL, VSM-VL and VSM-VL-VUM provide advanced card operations, such as to put a card back into 
the deck and re-shuffle the deck.  A set of free cards can be put back in the deck by a a sequence of  
operations. First the deck is re-masked. Then the master-key for cards to return to the deck is changed to the 
new masking  key  (all  cards  share  a  single  key  again).  Afterwards  those  cards  are  re-masked  by  the 
remaining players, with the last masking key. Then the cards are appended to the deck. Finally, the deck is 
re-shuffled to destroy any trace of the transferred cards.  An alternative is to use a variation of the abrupt-
drop-out protocol, with no player leaving the game, but without claiming ownership of the cards to return to  
the deck.

2.24. Abrupt Drop-out tolerance
VSM-VL and VSM-VL-VUM provide abrupt drop-out tolerance. To recover from a drop-out, players execute a 
recovery protocol. The recovery protocol works as follows: players shuffle-mask the original deck in a round 
with the a new mask key and creates a new deck. Each player also creates a personal recovery set, which is  
a shuffle-masked version of the deck, with the same mask key used for the new deck. Then each player  
vetoes the cards that are in his hand from the new deck. This is done by proving how each hand card can be 
encrypted to a card in the personal recovery set. The set of vetoed cards in the personal recovery is the 
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personal veto set. Each personal veto set is then shuffle-masked by the remaining players, with the same 
masking key used to create the new deck. A global shuffle-masked veto set is constructed by appending all  
the shuffle-masked veto sets. The global veto set is then excluded from the new deck. This leaves in the  
deck only the cards that were never dealt and those which were in the quitting player's hand. The protocol  
time complexity is O((d+c)*n) (for non-interactive verifications) where d is the number of cards dealt, c is the  
number of cards in the deck and n is the number of players. The protocol requires the calculation of recovery  
sets. Recovery sets can be precomputed after shuffling, but after a player drops-out, a new recovery set 
must be calculated.
The computations of the protocol can be reordered in a binary tree structure to provide a slight performance 
gain when the number of cards are distributed in a non-uniform way between the players.
Note that when using multiple dealing decks, an abrupt recovery protocol does not reestablish the same 
distributions of cards into those decks. Cards must be split into those decks again, so any information a 
player may have gained regarding cards that where present in certain decks is lost.

With reference to Fig. 8, a sample execution of Abrupt Drop-out-recovery protocol is illustrated, where two 
players, through their respective agents, act to recover from an abrupt drop out of a third player, where  
player 1 has two cards in his hand, player 2 has only one card in his hand, player 3 had 1 card in his hand 
before dropping out, and there is a single card left in deck. After drop-out recovery, deck contains two cards  
(a card that was in the deck before and card that was in player 3’s hand).
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2.25. Duplicated Cards
 To use duplicated cards,  players follow this protocol:

Figure 8: Sample execution of Abrupt Drop-out-recovery protocol
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- At the beginning of the game, for each card value v which has duplicates, players create a deck Dk v of 
distinct cards which represented the same value (v).

- To prove ownership of a duplicated card c without revealing any trace, a player creates a set R by a 
verified-shuffle-masking  of  the  deck  Dkv   with  a  new private  masking  key.  Then  proves  that  c  can  be 
encrypted to the card in R whose open-card matches c.

Note that duplicate cards cannot be transferred to another player without revealing the exact open-card that  
the clone matches, thus leaving a trace of its use.

2.26. Some known CGCs 

There are many choices to select a CGC:

• Pohlig-Hellman symmetric cipher over:
• The subgroup of  kth residues modulo a prime  p,  where (p − 1) /  k is also a large prime (a 

Schnorr  group).  For  the case of  k = 2,  this  corresponds to the group of  quadratic  residues 
modulo a safe prime. 

• The set of quadratic nonresidues modulo a safe prime.
• Exponentiation over any Galois field where DDH assumption holds.
• Elliptic curve Pohlig-Hellman.
• RSA or other factoring based cryptosystems. Exponentiation over the cyclic group of order (p − 1)(q 

− 1), where p and q are safe primes.

Note that the listed cryptosystems are malleable, so modified protocols, as shown in section 7, must be 
used.
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3. MPF formal definition
We'll define abstract classes and operations a MP protocol based on MPF should implement.  

3.1. Definitions

● N: The number of players
● C: The number of cards in the deck.
● H(x): a binary string that is a cryptographic hash of the message x.
● CSPRNG: A cryptographically secure pseudo random number generator. 
● Ek(x): The symmetric encryption of plain-text x with key k.
● Dk(y): The symmetric decryption of cipher-text y with key k.

3.2. Types

● Block: A binary value suitable for encryption/decryption with the CGC.
● Plain-text: a Block that is provided for encryption.
● Cipher-text: a Block that is the result of an encryption.
● Key: a binary value suitable to use as a key for the CGC.
● Card: A card is a Block which represents a real card either encrypted or by a known mapping.
● Open Card or O-Card: An open card is an public bit string which uniquely maps to a real card of a 

deck.  Each open card must be distinct.
● Group Encrypted Card:  A group encrypted card is a card encrypted by a key shared between 

some players, but each player has only a fragment of the group key. The decryption process requires 
the  same  players  to  participate.   Because  the  underlying  cryptosystem  is  commutative,  group 
encrypted cards are obtained by sequentially encrypting the card by each player with each players 
secret key. A card encrypted by only one player is already a group-encrypted card.

● Masked Card or M-Card: A masked card is a group encrypted card that was obtained sequentially 
encrypting with each player masking key. Each player has one masking key used for all encrypted 
cards.  

● Locked Card or L-Card: A locked Card is a group encrypted card, encrypted sequentially with the 
locking keys.  Each player must pick a locking key for each card of the deck. 

● ML-Card: A Locked and Masked card. 
● Complete M/L/ML Card:  A complete M/L/ML card is a M/L/ML-card where all  the players in the 

game have taken part on the encryption process.
● Free Card or F-Card: An card which has been dealt to a player.
● Master key: A key that decrypts a free card into an open card.
● Card Key: The product of all locking keys and masking keys used to encrypt a card specific card. A 

card key represents the share of the master key for a specific card that a player has.
● A deck: a list of Cards, either Open, Masked or Locked.
● A hand: a set of locked/masked/ML cards received by a player, whose values are public (F-cards) 

and whose associated open cards are known to the player holding the cards.
● Representative:   A pair  (p,  c)  for  which  p  is  any  value  and  c  is  p  encrypted  with  the  key  k.  

Representatives are used for the verification of decryption rounds and ML keys. 
○ Definition: Representative = record { p,c : Card } , where Ek(p)=c

● Player: An integer value that uniquely identifies each player.
● Round Number:  An integer value that uniquely identifies each round.

3.3. Private Data Structures
 

● Card-Holder: a data structure that maps every F-Card to a player or the main deck (if the card is not  
mapped).
○ Definition: Card-Holder : (Map[F-Card]  → Player)

● Card-Trace: a data structure that maps a round number and a round output card to the index of the 
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card in the round input output/list. It's only used in VSM-L-OL at the end of game.
○ Definition: Card-Trace: (Map[Round number, F-Card]  → Index)

● Master-Key: a data structure that maps encrypted cards to the key which is able to decrypt them to  
open cards. Normally, maps ML-cards to the unlocking and unmasking composite key. 
○ Definition: Master-Key : (Map[F-Card]  → Key)

● Mask-Key: a variable which holds the last used masking key.
○ Definition: Mask-Key :Key

● Recovery-Set-Key: a variable  which holds the last recovery-set masking key.
○ Definition: Recovery-Set-Key :Key

● Recovery-Set: a structure which identifies each players recovery set.
○ Definition: Recovery-Set : (Map[Player] → Card-List)

● Lock-Key: a data structure which maps a protocol round number and a card index to locking keys.
○ Definition: Lock-Key : (Map[Round number,Integer]  → key)

● Card-Key: a data structure which maps ML-Cards to card keys (product of all masking and locking 
keys previously used to encrypt this card for a single player)
○ Definition: Card-Key : (Map[ML-Card]  → key)

● Main-Deck: A Variable which holds the main deck of cards.

● Mask-Representative: a data structure which holds the representative of the last shuffle-masking 
round for each player.
○ Definition: Mask-Representative : (Map[Player] → Representative)

● Recovery-Mask-Representative: a data structure which holds the representative of the recovery 
shuffle-masking round for each player.
○ Definition: Recovery-Mask-Representative : (Map[Player] → Representative)

● Lock-Representative:  a  data  structure  which  holds  the  representative  of  the  a  locking   round 
number, for a certain index, for each player
○ Definition: Lock-Representative : (Map[Round number, Player, Integer] → Representative)

● Open-Deck: a list of cards which contain all the open-cards generated.

3.4. Miscellaneous Operations

● RandomNumber(x :Integer) →  bit string
○ Returns a random bitstring of bit-length x.

● RandomPermutation(n :Integer) → Permutation
○ Returns a permutation of the integers from 1 to n.

● RandomCardValue() →  Card
○ Returns a random bitstring suitable as a plaintext for the underlying CGC.

● RandomKey() →  Key
○ Returns a random bitstring suitable as a key for the underlying CGC.

● CreateCard(binary string x) → Card 
○ Creates a valid card that contains the binary string x or a cryptographic hash of x, if x is too 

long to fit into the card.
● Product(collection: expression :Key) → Key: Multiply all key values that result from evaluating each 

expression from the collection given.
● Union(collection: expression :Card) → Card-List: Returns a list which is the union of the lists that 

result from the evaluation of each expression from the collection given.
● (exclusion operator) X : Card-List – Y  :Card-List →  Card-List : Returns a card list of all the 

elements in X that are not included in the list Y.
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3.5. Operations on Cards

The card operations transform one bit string representing a card (either Open, Masked or Locked) into other 
bit string representing other type of card.  Card operations are private and involve one participant. 

● LockCard(c :Card, k : Key ) → Locked-Card
○ Lock a card with the player key k. 
○ LockCard(c,k) = Ek(c)

● EncryptCards(X:Card-List, k: Key ) → Masked Card-list
○ Encrypts with the key k each card of X.
○ for each x = X[s] , EncryptCards(X,k)[s]  = Ek(x) 

● DecryptCards(X :Card-List , k :Key ) → Card-list
○ Decrypts with the key k each card of X.
○ for each x = X[s] , DecryptCards(X,k)[s]  = Dk(x) 

● PermuteCards(X :Card-List ,  F :Permutation ) →  Card-list
○ Permutes the cards in X with the permutation function F.
○ for each s, PermuteCards(X,F)[s]  = X[F(s)]

● ShuffleMaskCards(X :Card-List , k :Key , F :Permutation ) → Masked Card-list
○ Encrypts with the key k each card of X, and then applies permutation F on the resulting list.
○ for each s, ShuffleMaskCards(X,k,F)[s]  = Ek(X[F(s)])) 

● UnLockCard(c :L-Card , k :Key ) → Card
○ Unlocks a card c with the key k.
○ UnLockCard(c,k) = Dk(c) 

● UnMaskCard(c :M-Card , k :key ) → Card
○ Unmask a card with the key k.
○ UnMaskCard(c,k) = Dk(c) 

● OpenCard(c :F-Card, k :Key) → Card
○ Decrypt a card with the key master key k.
○ OpenCard(c,k) = Dk(c) 

Note  that  UnLockCard,  UnMaskCard  and  OpenCard  implement  the  same  operation,  and  are  defined 
separately as a mean to guarantee a precondition on the classes of  cards accepted as input  (Masked,  
Locked or Free).

3.6. Introduction to MPF base protocols

We'll first show the four MPF base protocol graphically, along with the pros and cons for each protocol. Base  
protocols specify the way cards are shuffled, dealt and opened. 

A MPF game has up to 5 main stages:

1. Shuffle: All cards are shuffled.
2. Deal Card Preparation: A subset of the cards can be prepared to be dealt very quickly. This stage can be  
executed along the shuffle stage, delayed until a card needs to be dealt or a mixture of both.
3. Deal Card: A card is dealt to a specific known player.
4. Prove Ownership: A card is opened and the player who was holding the card proves it is legitimate.
5. End of Game: Some additional verifications takes place to assure an honest game has taken place.

Stages 2-4 can be repeated or interleaved with other card operations, such as card transfers.
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3.6.1. VSM-L-OL
Fig. 9 illustrates the VSM-L-OL protocol, discussed below.

Pros:
● 1 verification round required
● Fastest variant for static games
● Provides advanced card operations
● All free cards are equally treated.
● Protected against suicide cheating for static games.

Cons: 
● For non-static games, the protocol is not protected against suicide cheating.
● Is not abrupt drop-out tolerant.

Security Proof (simplified)

Any player can provide adulterated values as results for his calculations on Lock1 or Lock2 rounds without 
being immediately detected. Because Lock2 keys are revealed at the end of the game, cheating during 
Lock2 round is a suicide cheat. The only way to cheat is to do it during the Lock1 round or during a card 
deal.
Let's suppose there is a cheating group (which is a proper subset of all the players) consisting of at least the  
player Mallory and possibly Marvin. Suppose no one tries to cheat at Lock2 round but player Mallory tries to  
cheat during a Lock1 round providing a chosen card value c as output, instead of the re-encryption of the 
value x being received. Finally, after all re-encryptions of Lock1 and Lock2, the value c is going to be dealt, 
and converted into a free card y.

First suppose the card is dealt to a player Marvin taking part on the cheat. He won't complain on any invalid  
value obtained during the calculation of the master key. He will always accept the card. Later the player will  
try to successfully show the card. To do it, the player must posses a valid master key.
To obtain a master key k, Marvin must solve the equation:

Dk(y) = x
y = Ew(c)

Knowing:
q = Product(for all i: qi), where qi  is the card key of player i.
w = Product(for a subset of the players  i: wi), where wi is the lock2 key for player i.

So Dk*(w
-1

)(c) = x

Because of CUOC, the only way to obtain a valid open card x  is that c is itself an encryption/decryption of 
the same open card x. Let  c = Es(x) for some s. The value  s must be fixed before the Lock2 keys have been 

Figure 9: VSM-L-OL protocol
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used.

So Dk*(w
-1

)*(s
-1

)(x) = x

The only way to solve the equation is taking k = w*s. But L cannot be derived from q, because q values  
contain Lock2 values multiplied by the unknown keys for the Lock1 and shuffle-masking rounds. The only  
way to solve the equation is to do a KPA on the CGC, which is computationally infeasible under the MPF 
model.

Mallory cannot tamper with the dealing protocol, because the protocol security relies on the unknown Lock2  
keys used to encrypt the card to be dealt. Any attempt to cheat during the dealing protocol will result in an  
invalid open card received, and the cheater will be caught.

3.6.2. VSM-VL
Fig. 10 illustrates the VSM-VL protocol, as further described below:

Pros:
● Provides advanced card operations
● All free cards are equally treated
● Protected against suicide cheating.
● Abrupt drop-out tolerant.

Security Proof (simplified)

1. All computations are verified.
2. It's  infeasible to compute the key m or l from a key q such as q=m*l  and a known message encrypted 
with m and later with l, under the MPF model.

Fig. 11 illustrates a VSM-VL shuffle between agents.

Figure 10: VSM-VL protocol
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3.6.3. VSM-VPUM
Fig. 12 illustrates the VSM-VPUM protocol, as further described below.

Pros:
● Protected against suicide cheating.

Cons:
● 2 verification rounds required
● Initial free cards must be carefully treated in a special way (because they are encrypted with a 

“private key”)
● The unmasking round cannot be pre-calculated.
● Does not provide advanced card operations

Security  Proof (simplified)

1. All computations are verified.
2. If a card is locked afterwards, it's  infeasible to an opponent to compute the key m or l from a key q such 
as q=m*l  and a known message encrypted with m and later with l, under the MPF model.
3. If a card is opened by proving knowledge of m using a LVP, it's infeasible to an opponent to compute m.

Figure 11: VSM-VL shuffle between agents

Agent 1 Agent 2 Agent n
Open cards

ML-cards

Shuffle-Mask round

Lock round

(ready to deal)

Figure 12: VSM-VPUM protocol
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3.6.4. VSM-VL-VUM

Fig. 13 illustrates the VSM-VL-VUM protocol, as further described below.

Pros:
● All free cards are equally treated
● Provides advanced card operations
● Protected against suicide cheating
● Abrupt drop-out tolerant.

Cons:
● 3 verification rounds required

Security  Proof (simplified)

1. All computations are verified.
2. it's  infeasible to an opponent to compute the key l from a known message encrypted with l (a KPA attack), 
under the MPF model.

Fig. 14 illustrates the execution of all the rounds between agents under the VSM-VL-VUM protocol.

Figure 13: VSM-VL-VUM protocol

Figure 14: Execution of all the rounds under the VSM-VL-VUM 
protocol

Agent 1 Agent 2 Agent n
Open cards

L-cards

Shuffle-Mask round

Lock round

(ready to deal)

Undo round (for the masking round)
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3.7. Card Protocols 
Protocols  involve more than one participant.  We'll  define some basic sub-protocols  which constitute the 
building blocks of the base protocols. We'll say that a player “posses”, “has” or “holds” an open card x (or a 
free card y) if the player has a mapping (y → k) in his Master-Key table and Dk(y)=x. 
For  simplicity  of  the  definitions,  we'll  treat  card  lists  as  sets  when  needed,  allowing  set  operations  
(membership test, inclusion and exclusion) on lists, taking into account that no card list can have duplicates 
due to the CUOC assumption. Because the deck has very few cards compared to the encryptor plaintext 
size, and the number of computations is bounded on the number of cards, players and card transfers, the 
probability  that  duplicates appear spontaneously during computations is  negligible.  Anyway,  players can 
check the lists after each shuffle to ensure no duplicates exists and redo the step, changing any random 
value used,  if a duplicate is found. 
Protocols have arguments, which are described in the protocol signature. Arguments can be in (input) or out 
(output). Also, arguments are public (meaning the argument is known by all players) or private (meaning the  
argument  is  only known to  a  certain  player,  and unless broadcast,  remain private  during the protocol).  
Arguments can also be multi-private, meaning that each player receives a private copy of the argument. To  
specify which copy is referred in the protocol steps, a subscript with the player number is used.  Public 
arguments values are checked by all players and they cannot differ. Every player must supply exactly the 
same argument. Public arguments are meta-arguments and do not need to be really transferred, but can be 
broadcast to assert all players are willing to do the same operation. 
Sub-protocol executions are requested and expected unconditionally by all players, with the exception of the  
Card-Key-Verification protocol, which is conditional.
Values can be transferred privately from one player to another or broadcast to all the remaining players. 
Values transmitted always are referred with  an underscored variable name.   Underscored variables are 
meta-variables created for the only purpose of tracking values as they are transferred through the network. 
Meta-variables can change their value after they have been broadcast, and is assumed that all players can 
perform the same change at the same time. Because of this notation, protocols described do not make use 
of “receive x” commands. Public values are automatically received by other players in meta-variables with 
the same name as the ones sent. The input and output arguments of sub-protocols can be meta-variables, 
so are passed as reference, which means that the actual values are not directly stored but refer to some  
values previously broadcast or calculated by all players. Private variables can also be passed to output multi-
private  arguments.  In  such a case each player  stores the result  privately  in  his  own local  variable.  An  
explanation of the meaning of each letter argument modifier is provided in table 4. A quick reference of all  
card protocols is shown in table 5.

public Argument is know to all players

private Argument is know only to a single player

multi-private Every player gets or sets a private copy of the argument.

in The argument is an input to the protocol

out The argument is an output from the protocol

Table 4: Argument modifiers reference 
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Deck creation

3.7.1. Create-Deck (CO-PRNGP)
3.7.2. Create-Deck (Locking)

Deck shuffle and preparation

3.7.3. Shuffle-Deck
3.7.4. Prepare-Cards-To-Deal (for VSM-L-OL)
3.7.5. Prepare-Cards-To-Deal (for VSM-VL)
3.7.6. Prepare-Cards-To-Deal (for  VSM-VPUM)
3.7.7. Prepare-Cards-To-Deal (for VSM-VL-VUM)
3.7.8. Verified-Unmasking-Round
3.7.9. Verified-ShuffleMasking-Round
3.7.10. Locking-Round

Card deal

3.7.13. Multiple-Cards-Deal (for VSM-VPUM)
3.7.14. Single-Card-Deal (for VSM-L-OL,  VSM-VL and VSM-VL-VUM)

Shuffle hand cards 

3.7.11. Shuffle-Hand(1)
3.7.12. Shuffle-Hand(2)

Protect against suicide cheaters

3.7.15. Card-Key-Verification (for VSM-VL-VUM)
3.7.16. Card-Key-Verification (for VSM-VL and VSM-L-OL)
3.7.17. Build-Representative

Show cards

3.7.18. Show-Cards(1)
3.7.19. Show-Cards(2)

Deck reshuffle

3.7.20. Reshuffle-Deck (for VSM-L-OL, VSM-VL and VSM-VL-VUM)
3.7.21. Change-Hand-Cards-Key

Card transfers

3.7.22. Return-Cards-To-Deck  (for VSM-L-OL, VSM-VL and VSM-VL-VUM)
3.7.23. Private-Cards-Transfer
3.7.26. Put-Card-On-Table
3.7.27. Verified-ShuffleRemasking-Round

Abrupt-Drop-out resistance

3.7.24. Abrupt-Drop-out-Recovery (for VSM-VL and VSM-VL-VUM)
3.7.25. Create-Recovery-Sets

Game finalization

3.7.28. End-Of-Game (only for  VSM-L-OL)

Table 5: Card Protocols Quick Reference

3.7.1. Create-Deck (CO-PRNGP)
Create a fresh deck of unique cards by a CO-PRNGP. 

Signature: Create-Deck

1) Each player i :
1.1) Chooses a random number ri  := RandomNumber(csprng-seed-bit-length)
1.2) Computes cri := H(ri)
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1.3) Broadcasts cri (a commitment to  ri )
2) Each player i:

2.1) Broadcasts ri

2.2) For each j, verifies that cri := H(ri)
2.3) Computes S = H(r1;r2;..;rn)
2.4) Uses S as seed for a common CSPRNG.
2.5) Use CSPRNG to generate the symmetric algorithm (CGC) common parameters.
2.6) Uses the CSPRNG to generate c distinct suitable encodings of the real cards in a deck to be 
used as open cards.  The generated cards are saved in the  Open-Deck list.
2.7) Computes dhi := H(Open-Deck). 

3) The first player broadcasts dh1.
4) Everybody verifies having computed dhi equal to dh1. If a player detects a mismatch, the protocol aborts.

● After: 
○ Open-Deck is a set of O-Cards.

3.7.2. Create-Deck (Locking)
Create a fresh deck of unique cards with a locking round.

Signature:  Create-Deck

1) Players constructs the card list X containing C copies of a single fixed card value g.
2) Players execute the protocol Locking-Round (X, Y ,1, true)
3) Each player i:

3.1) Sets Main-Deck  :=Y
4) Every player:

4.1) Empties the Lock-Key.
4.2) Empties the Lock-Representative table

● After: 
○ Open-Deck is a set of O-Cards.

3.7.3. Shuffle-Deck
A deck of cards is mixed by all the players so that anyone is assured nobody can predict the position of an  
input card on the output deck. 

Signature: Shuffle-Deck

● Before:
○ Open-Deck is a list of O-Cards.
○ Each player's Main-Deck list is empty.

1) Players execute the protocol Verified-ShuffleMasking-Round (Open-Deck, Y).
2) Each player i:

2.1) Sets Main-Deck  :=Y

● After: 
○ The Main-Deck is ready for a card preparation for dealing.

3.7.4. Prepare-Cards-To-Deal (for VSM-L-OL)
Some cards are prepared be be dealt.  This protocol tag cards from Main-Deck.

Signature:  Prepare-Cards-To-Deal (public in v :Integer)

● Before:
○ Open-Deck is a list of O-Cards.
○ The meta-variable v is the number of cards to prepare.
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1) Let Z := Copy (Main-Deck, v )
2) Players execute the protocol Locking-Round (Z, L  ,1, false)
3) Players execute the protocol Locking-Round (L , Y , 2, false)
4) Each player i:

4.1) For j from 1 to v : 
4.1.1) Let k := Mask-Key*Lock-Key[1,j]*Lock-Key[2,j]
4.1.2) Inserts the mapping (  Y[j] → k  ) in Card-Key.
4.1.3) Prepare-Card[ Main-Deck[j] ] := Y[j]

● After: 
○ The Main-Deck is ready for a card dealing protocol.

3.7.5. Prepare-Cards-To-Deal (for VSM-VL)
Some cards are prepared be dealt.  This protocol just moves cards from Main-Deck to Prepared-Main-Deck.

Signature:  Prepare-Cards-To-Deal (public in v :Integer)

● Before:
○ Main-Deck contains at least v cards.

1) Let Z := Copy (Main-Deck, v )
2) Players execute the protocol Locking-Round (Z, Y , 1)
3) Each player i:

3.1) For j from 1 to v : 
3.1.1) Let k := Mask-Key*Lock-Key[1,j]
3.1.2) Inserts the mapping ( Y[j] →   k ) in Card-Key.
3.1.3) Prepare-Card[ Z[j] ] := Y[j]

● After: 
○ The first v cards of the Main-Deck are prepared for dealing.

3.7.6. Prepare-Cards-To-Deal (for  VSM-VPUM)
Some cards are prepared be dealt.  This protocol just moves cards from Main-Deck to Prepared-Main-Deck.

Signature:  Prepare-Cards-To-Deal (public in v :Integer)

● Before:
○ Main-Deck contains at least v cards.

1) Let Z := Copy (Main-Deck, v )
2) Each player i:

2.1) For each z in Z:
2.1.1) Inserts the mapping ( z →  Mask-Key ) in Card-Key.
2.1.2) Prepare-Card[ Z[j] ] :=Z[j]

● After: 
○ The Prepared-Main-Deck is ready for a card dealing protocol.

3.7.7. Prepare-Cards-To-Deal (for VSM-VL-VUM)
Some cards are prepared be dealt. 

Signature: Prepare-Cards-To-Deal (in v :Integer)

● Before:
○ Main-Deck contains at least v cards.
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1) Let Z := Copy (Main-Deck, v )
2) Players execute the protocol Locking-Round(Z, L, 1 , true).
3) Players execute the protocol Verified-Unmasking-Round( L, Y , -1)
4) Each player i:

4.1) For each j from 1 to v : 
4.1.1) Inserts the mapping ( Y[j] →  Lock-Key[1, j] ) in Card-Key.
4.1.2) Prepare-Card[ Z[j] ] := Y[j]

● After: 
○ The Main-Deck is ready for a card dealing protocol.

3.7.8. Verified-Unmasking-Round 
This parametrized protocol implements a verified unmasking round.

Signature: Verified-Unmasking-Round( 
public in L : ML-Card-List,
public out Z : L-Card-List,
public in skip-player :Integer)

● Before: 
○ L is a list of ML-Cards.

1) For each player i
1.1) If i =0 then X0 =L else Xi =Yi-1

1.2) Constructs a card list Yi := UnmaskCards( Xi, Mask-Key ) 

1.3) Broadcast Yi.
1.4) Let r := Mask-Representative[i].
1.5) Players execute  UMVP(  Mask-Key , Xi   , Yi  , i ,   r.p , r.c ) 

2) Z  = Yp (where p is last player in the round ).

● After: 
○ Z a list of L-Cards. 
○ Z is public.

Note that the UMVP protocols in step 4 can be executed in parallel to increase the performance for multi-
threading or multi-core CPUs.

3.7.9. Verified-ShuffleMasking-Round
This protocol implements a verified shuffle-masking round.

Signature: Verified-ShuffleMasking-Round( 
public in  D: O-Card-List,
public out Z: M-Card-List)

● Before: 
○ D is a list of O-Cards.
○ R is a representative

1) For each player i, in increasing order:
1.1) If i=0 then Xi =D else Xi =Yi-1 
1.2) Set F :=RandomPermutation(#D).
1.3) Set m :=RandomKey()..

1.4) Constructs a card list Yi := ShuffleMaskCards( Xi, m , F ) 

1.5) Broadcast Yi.
1.6) R.p :=RandomCardValue()
1.7) R.c :=MaskCard(R.p, m);
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1.8) Broadcasts R
1.9) Players execute SMVP (  m , Xi, Yi  , i ,R  ) 
1.10) Sets Mask-Key := m.

1.11) All players set Mask-Representative[i] :=R
2) Z  = Yp (where p is the last player in the round )

● After: 
○ Z a list of M-Cards. 
○ Z is public.
○ Z is a permutation of the cards in X, after masking.
○ The permutation cannot be computed by any proper subset of players.
○ Each player has his masking key saved.

3.7.10. Locking-Round
This parametrized protocol implements a verified shuffle-masking round.

Signature: Locking-Round ( 
public in L : ML-Card-List, 
public out Z: L-Card-List,
public in lock-round :integer,
public in verified :boolean)

● Before: 
○ L is a list of Cards.

1) For each player i, in increasing order:
1.1) If i=0then Xi =L else Xi =Yi-1

1.2) Chooses a random or pseudo-random key-List K: For j from 1 to #L, set K[j] :=RandomKey()
1.3) Constructs a card list Yi := LockCards( X, K ) 

1.4) Broadcast Yi.
1.5) If verified then players execute LVP(  K , Xi, Yi  , i  ) 
1.6) If lock-round>0 then for j from 1 to #K: 

1.6.1) set Lock-Key[lock-round , j] := K[j]
1.7) All players:
1.7.1) For j from 1 to  # Xi:

1.7.1.1) If lock-round>0 then 
1.7.1.1.1) Lock-Representative[lock-round ,i,j] := { p: Xi[j], c: Yi[j] }

3) Z  = Yp , where p is the last player in the round (Z is the round output). 
4) All players:

4.1) For j from 1 to  # Xi:
4.1.1) Card-Trace[lock-round, Z[j] ] := j

● After: 
○ Z a public list of L-Cards. 
○ Each player has his locking keys saved.

3.7.11. Shuffle-Hand(1)
This is a single key hand shuffling verified by a SMVP that allows a player to mix a subset of the free cards  
he is holding.  The mapping between the newly generated free cards and the previous free cards remains 
secret. 

Signature: Shuffle-Hand( private in X :Card-List, public in i :Integer) 

● Before: 
○ X is card list of F-Cards 
○ X is public.



MPF – Sergio Demian Lerner 48/83

○ Player i will mix his hand cards.

1) Player i:
1.1) Broadcast X and i.

2) Each player checks,  for each x in X, if Card-Holder[x] = i. If not, then player i is attempting to prove 
ownership for cards not given to him (cheat) and the protocol aborts.
3) Player i:

3.1) Creates a new temporary key w (w should not be the identity): Set w :=RandomKey()
3.2) Set F :=RandomPermutation(#X).
3.3) Computes Y := ShuffleMaskCards(X, w ,F)
3.4) Broadcasts Y. 

4) Players execute SMVP (W, X,Y, i , [ ], [ ]) .

5) Now, player i will change his master keys for the set Y.  Player i Inserts, for each j  the mapping ( Y[j] → 
w*Master-key[X[F-1(j)]] ) in Master-key, 
6) Player i removes mappings of the set X from his Master-key map.
7) All the players remove the mappings for the set X from their Card-Holder map.
8) All players insert, for each y in Y, the mappings ( y → i )  in their Card-Holder map.

● After: 
○ Y is a set of ML-Cards
○ Y is public
○ Y is a permutation of the locked and masked cards in X.
○ The player shuffling the cards obtains a new set of locking keys for the newly created set Y.
○ Each player has updated his Card-Holder map.

3.7.12. Shuffle-Hand(2)
This is a multi-key hand shuffling verified by a SLVP that allows a player to mix a subset of the free cards he 
is holding.  The mapping between the newly generated free cards and the previous free cards remains  
secret. 

Signature: Shuffle-Hand( private in X :Card-List, public in i :Integer) 

● Before: 
○ X is card list of F-Cards 
○ X is public.

1) Player i:
1.1) Broadcast X and i

2) Each player checks if Card-Holder[x] =  i, for each x in X. If not, then player i is attempting to prove 
ownership for cards not given to him (cheat) and the protocol aborts.
3) Player i:

3.1) Creates a list of random keys W, where W[j] ,is the key the will be used to re-encrypt the card 
X[j] (W[j] should not be the identity). For j from 1 to #X, set W[j] :=RandomKey()
3.2) Set  F :=RandomPermutation(#X).
3.3) Computes Y := PermuteCards(LockCards(X, W) , F)
3.4) Broadcasts Y. 

4) Players execute SLVP (W, X,Y, i ) .

5) Player i (changes his master keys for the set Y): 
Inserts, for each j,  the mapping ( Y[j] → W[j]*Master-key[X[F-1(j)]] ) in Master-key, 
6) Player i removes mappings for the set X from his Master-key map.
7) All players remove the mappings for the set X from their Card-Holder map.
8) All players insert, for each y in Y, the mappings ( y →   i  ) in their Card-Holder map.

● After: 
○ Y is a set of ML-Cards
○ Y is public
○ Y is a permutation of the locked and masked cards in X.
○ The player shuffling the cards obtains a new set of locking keys for the newly created set Y.
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○ Each player has updated his Card-Holder map.

3.7.13. Multiple-Cards-Deal (for VSM-VPUM)
A player is given a set of n free cards, and the corresponding open cards.
This protocol is defined for multiple cards to take advantage of performance gain calling Verified-Unmasking-
Round for multiple cards at once.

Signature: Multiple-Cards-Deal(
public in v :Integer,
public in i :Integer)

● Before: 
○ The prepared deck has at least n cards available.
○ The player i wants to get n cards from the deck.

1) Player i broadcasts v and i.
2) All players:

2.1) Set Q := Copy(Main-Deck, v).
2.2) Set X := []
2.3) For each q in Q, append Prepared-Card[q] to X.

3) Players execute Verified-Unmasking-Round(X , Z, i). 
4) Player i:

4.1) Computes Y := DecryptCards(Z, Mask-Key)
4.2) Checks that each card in Y is a valid open card. if not then aborts this protocol. 
4.3) For each card y in Y, inserts the mapping ( y  →   Mask-Key ) in his Master-key map (y is a 
“private key” card).

5) Every player:
5.1) For each card z in Z, sets Card-Holder[z] := i. (Z is the set of free cards obtained)
5.2) For each card x in X, deletes the card x from the Main-Deck.

● After: 
○ The player i receives a list of O-Cards Y (private to that player)

3.7.14. Single-Card-Deal (for VSM-L-OL,  VSM-VL and VSM-VL-VUM)
A player receives a free card, where the related open card is revealed only to him. 

Signature: Single-Card-Deal( public in i :Integer)
● Before: 

○ The prepared main deck has at least one card available.
○ The player i wants to get a card from the prepared main deck.

1) Player i broadcasts i.
2) All players:

2.1) Set x := Prepared-Card [ Main-Deck[1] ].
3) For each player t, such as t <> i, in increasing order:

3.1) Sets qt := Card-Key[x]
3.2) Broadcasts  qt 

4) Player i:
4.1) Computes w :=  q1* .. * qn. (the q values broadcast by the players)
4.2) Computes y := OpenCard(x,w) = Dw(x)
4.3) Checks that y is a valid open card, if not then aborts this protocol, proclaims a cheating attempt  
and do the following steps:

4.3.1) Let Q = [q1,   ..  ,  qn ] and qi is undefined.
4.3.2) Execute Card-Key-Verification(i,1, Q) protocol.

5) Insert the mapping ( x  → w ) in his Master-key map.
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6) Every player:
6.1) Sets Card-Holder[x] :=  i.
6.2) Deletes the card x (at index 1) from the Main-Deck.

● After: 
○ A player gets an open card z (private to that player).

3.7.15. Card-Key-Verification (for VSM-VL-VUM)
This protocol lets a player i who has received invalid card key values to check who is cheating when dealing 
a card with the index j of the main deck.

Signature: Card-Key-Verification(

public in i :Integer,

public in j :Integer,

public in Key-List Q)

1) For each player p, such as p <> i do

1.1) Set R :=Lock-Representative[1,p, j]

1.2) Every other player checks that EQ[j] (R.p) = R.c. If not, then player p is cheating.

3.7.16. Card-Key-Verification (for VSM-VL and VSM-L-OL)
This protocol lets a player i who has received invalid card key values to check who is cheating when dealing 
a card with the index j of the main deck.

Signature: Card-Key-Verification(

public in i :Integer,

public in j :Integer,

public in Key-List Q)

1) For each player p, such as p <> i do

1.1) Set R :=Mask-Representative[p]

1.2) Execute Build-Representative(p, R, R, Lock-Representative[1, p, j], Lock-Key[1,j])

1.3) (Only for VSM-L-OL) Execute Build-Representative(p, R, R, Lock-Representative[2,p, j] , Lock-
Key[2, j])

1.4) Every other player checks that EQ[j] (R.p) = R.c. If not, then player p is cheating.

3.7.17. Build-Representative
Create a new representative for the union of representatives A and B, for player i.

Signature: Build-Representative(

public in  i :Integer,

public out R :Representative;

public in  A :Representative;
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public in  B :Representative;

private in  k : Key)

1) All players:

1.1) Compute x := LockCard(A.c,k)

1.2) Execute RLVP(  k  ,  A.c ,  x  ,i , B.p , B.c )  

1.3) Set R.p :=A.p

1.4) Set R.c :=x

3.7.18. Show-Cards(1)
Allows a player to put a set of open cards on the table, and proof the legitimate possession of the cards.  
Legitimate possession means the card was previously drawn to a player by a deal protocol, and after any 
number of card transfers, the cards is now in the prover hand. This protocol only publishes master keys so  
it's very fast. 
The protocol is generally preceded by a Shuffle-Hand protocol for all the cards in the player's hand to avoid 
leaving any trace that points to cards dealt or previously transferred .

Signature: Show-Cards(
public in i :Integer,
private in Y :Card-List)

● Before: 
○ Player i wants to open a list of free cards Y and he has the corresponding master keys.

1) Player i:
1.1) Broadcasts i.
1.2) For each j , from 1 to #Y:
1.3) Broadcasts a tuple (Y[j], kj) where kj =Master-key[Y[j]].

2) Each player j, such as  j <>i:
2.2) For each j , from 1 to #Y:

2.2.1) Check that Card-holder[Y[j]] = i. If the check fails, then player i is trying to cheat.
2.2.2) Computes c := OpenCard(Y[j], kj)
2.2.3) Checks that c is a valid O-Card. If the check fails, then player i is trying to cheat.

● After:
○ The open cards associated with Y are published.
○ The player i proof legitimate possession of each shown card.

3.7.19. Show-Cards(2)
This protocol allows a player to put a set of open cards on the table, and proof the legitimate possession of  
the cards. Legitimate possession means the card was previously drawn to a player by the Card Drawing 
Protocol,  and after any number of card transfers, the cards is now in the prover hand. This is a slower 
protocol that relies on proving the knowledge of the master keys, without publishing them. 

This protocol is only faster than Show-Cards(1) protocol if:

a) All the cards in the player's hand will be shown
b) The cards are not released and will be kept in the player's hand
c) Some of the cards will be privately transferred later. 

This saves a further Shuffle-Hand protocol execution before the private transfer. 
This protocol is generally preceded by a Shuffle-Hand protocol for all the cards in the player's hand to avoid  
leaving any trace that points to cards dealt or previously transferred.
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Signature: Show-Cards(
public in i :Integer,
private in Y :Card-List)

● Before: 
○ Player i wants to open a list of free cards Y and he has the corresponding master keys.

1) Player i broadcasts i and Y.
2) Each player j, such as j <> i do:

2.1) Check that, for each y in Y, Card-holder[y] =  i. If the check fails, then player i is trying to cheat.
3) Player i:

3.1) Construct the key list K.  For each index j from 1 to #Y, K[j] := Master-key[Y[j]]
3.2) Construct the card list X. For each index j from 1 to #Y, X[j] := OpenCard(Y[j], K[j])
3.3) Broadcast X

4) Players execute SLVP(K, X,Y, i)

● After:
○ The open cards X (associated with Y) are published.
○ The player i proof legitimate possession of each shown card.

3.7.20. Reshuffle-Deck (for VSM-L-OL, VSM-VL and VSM-VL-VUM)
This protocol allows the players to reshuffle the deck, keeping the permutation function unknown to any 
proper subset of the players.  This protocol is available only for VSM-L-OL, VSM-VL and VSM-VL-VUM.

Signature: Reshuffle-Deck

1) Players execute the protocol Verified-ShuffleMasking-Round (Main-Deck, Y).
2) Each player i:

2.1) Sets Main-Deck  :=Y

● After: 
○ A deck Y of ML-cards (public)
○ New set of card keys for all cards.

3.7.21. Change-Hand-Cards-Key
This is a protocol that allows a player to simultaneously change the key of a set of hand cards to match the 
last Mask-Key. This  protocol must be used after a Deck-reshuffle by the player willing to put cards back in  
the deck.

Signature: Change-Hand-Cards-Key(
public in Card-List X,
public out Card-List Y,
public in i : Integer)

● Before: 
○ X is card list of F-Cards 
○ X is public.

1) Each player checks, for each x in X,  if Card-Holder[x] =  i. If not, then player i is attempting to prove 
ownership for cards not given to him (cheat) and the protocol aborts.
2) Player i:

2.1) Creates a list of keys W: for each 1 <= j <=#X: set W[j] := Master-Key[X[j]]-1 * Mask-Key.
2.2) Computes Y := LockCards(X, W) 
2.3) Broadcasts Y. 

3) Players execute LVP (W, X,Y, i ) .
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4) Player i (changes his master keys for the set Y): Inserts, for each j,  the mapping ( Y[j] → Mask-Key ) in 
Master-key, 
5) Player i removes mappings for the set X from his Master-key map.
6) All players remove the mappings for the set X from their Card-Holder map.
7) All players insert, for each y in Y, the mappings ( y →  i  ) in their Card-Holder map.

● After: 
○ Y is a set of ML-Cards
○ Y is public
○ The player shuffling the cards obtains a new set of locking keys for the newly created set Y.
○ Each player has updated his Card-Holder map.

3.7.22. Return-Cards-To-Deck  (for VSM-L-OL, VSM-VL and VSM-VL-VUM)
A player i take some cards from their hands and put them back on the deck. To remove any track of cards  
the appended to the deck, a Reshuffle-Deck protocol may be required.
This protocol is available only for VSM-L-OL, VSM-VL and VSM-VL-VUM.

Signature: Return-Cards-To-Deck(
private in Card-List X,
private in i :Integer)

● Before: 
○ Player i wants to return list of cards X to the deck
○ X is a list of F-cards

1) Player i broadcasts X and i.
2) Execute Reshuffle-Deck (creates a new Mask-Key for every player)
3) Execute Change-Hand-Keys(X,Y) (force the key of the cards to put back on the deck to be the new Mask-
Key).
4) Player i, for each y in Y, removes all the mappings from y in Master-Key.
5) Each player j, such as j <> i:

5.1) For each y in Y,  verify that Card-Holder[y] =  i. If not, then abort the protocol.
5.2) For each y in Y,  remove the all mappings from y in Card-Holder.

6) Execute Verified-ShuffleRemasking-Round(Y,Z,i) 
7) All players:

7.1) Remove all mappings from the Prepared-Card.
7.2) Append the set Z to the Main-Deck.

● After:
○ The main deck is appended a new list of cards Z.
○ The player i cannot claim he is holding the cards anymore.

3.7.23. Private-Cards-Transfer 
A player i gives some cards to a player j privately, but with the approval of the rest of the players.

Signature: Private-Card-Transfer(
private in Card-List X, 
private in i :Integer,
private in j :Integer)

● Before
○ X is the list of F-cards cards in player's i hand to give to player j.

1) Player i:
1.1) Publishes X , i and j.
1.2) Constructs a key list Q such as, for each t from 1 to #X : Q[t] :=  Master-Key[X[t]]
1.3) Sends privately the list Q to player j.



MPF – Sergio Demian Lerner 54/83

1.4) For each x in X, removes the mappings from x in Master-Key.
2) Player j:

2.1) Verifies that, for t from 1 to #X : OpenCard(X[t],Q[t]) is a valid open card. If not, then aborts the 
protocol and broadcasts Q[t] to prove player i is cheating.

3) For each t from 1 to #X : sets Master-Key[X[t]] := Q[t]
4) All players:

4.1) For each x in X,  verifies that Card-Holder[x] := i. If not, then abort the protocol.
4.2) For each x in X,  sets Card-Holder[x] := j.

● After:
○ The cad list X has been transferred from player i to player j.

3.7.24. Abrupt-Drop-out-Recovery (for VSM-VL and VSM-VL-VUM)

This protocol allows some players to recover from the drop-out of a player i.

Signature: Abrupt-Drop-Out-Recovery( public in i :Integer)

● Before:
○ Player i quits the game

1) Private tables are rebuilt:
1.1) Every active player excludes player i from the game.
1.2) All private table records that refer to player i are discarded.
1.3) Players are renamed so player numbers are continuous and leave no gaps.
1.4) All private table records are changed according to the new player numbers.

2) If not executed before, players execute Create-Recovery-Sets.
3) Each player j:

3.1) Set Mask-Key :=Recovery-Set-Key 
3.2) Set Mask-Representative :=  Recovery-Mask-Representative
3.3) Set X = []
3.4) For each mapping ( z → j ) in Card-Holder do:

3.4.1) Let s be the index such as EMask-Key (Dmaster-Key[z](z))=Recovery-Set[j][s] 
3.4.2) Broadcast  (z, s)
3.4.3) All players compute q := Recovery-Set[j][s]
3.4.4) Players execute LVP( { z } , {q } , j )
3.4.5) All players append q to X.

3.5) Players Execute Verified-Re-ShuffleMasking-Round(X,Y, j)
3.6) All players:

3.6.1) Set Hand-Cards[j] := Y
3.6.2) Check that #Y = number of cards mapped to player j in Card-Holder.

4) All players:
4.1) Compute Z := Union ( For each player j, Hand-Cards[j] )
4.2) Check that #Z = number of cards dealt minus the number of cards that were in the hand of the 
quitting player.

5) Let T  be the set of cards that are open and shown in the table. 
6) Let R = Open-Deck – T
7) Players execute Verified-ShuffleRemasking-Round(R,Q,-1)
This will execute a complete shuffle-masking round, validating that the previous masking keys are used 
again.
8) All players:

8.1) Set Main-Deck := Q – Z

3.7.25. Create-Recovery-Sets
Every player create a set of masked cards from the open cards.

Signature: Create-Recovery-Sets
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1) Each player i, in increasing order:
1.1) Set F :=RandomPermutation(#Open-Deck).
1.2) Set Recovery-Set-Key :=RandomKey(). (creates a new masking key for future use)
1.3) Constructs a card list Yi := ShuffleMaskCards( Open-Deck, Recovery-Set-Key, F ) 

1.4) Broadcast Yi

1.5) Creates a representative R for the new masking key ,R.p :=RandomCardValue()
1.6) R.c :=MaskCard(R.p, Recovery-Set-Key);
1.7) Broadcasts R
1.8) Players execute RSMVP (  Recovery-Set-Key, F, Open-Deck , Yi  , i , [R.p] , [R.c] ) 
1.9) Every player j :

1.9.1) Set Recovery-Set[i] := Yi

1.9.2) Set Recovery-Mask-Representative[i] :=R

3.7.26. Put-Card-On-Table
This protocol allows a player to put a card on the table. The card put can be face up (if the card was opened 
before) or face down (if the card was not opened)

Signature: Put-Card-On-Table(private in Card x, private in i :Integer)

● Before:
○ Player i wants to put the card x on the table

1) Player i broadcasts x and i
2) Every player:

2.1) Checks that Card-Holder[x] = i. If not, abort.
2.2) Sets  Card-Holder[x] = 0. (0 is a special value meaning “on the table”)

● After:
○ Player i no longer has the card x in his hand.

3.7.27. Verified-ShuffleRemasking-Round

This protocol implements a verified re-shuffle-masking round, skipping a certain player, who has already 
masked the cards. The masking key is checked to be the one previously used. This protocol is a sub-
protocol of Return-Cards-To-Deck. If p is not a valid player number, then no player is skipped.

Signature: Verified-ShuffleRemasking-Round( 
public in  D: O-Card-List,
public out Z: M-Card-List,
public in p :Integer )

● Before: 
○ D is a list of O-Cards.

1) Each player i, such as i<>p, in increasing order:
1.1) If i=0 then X =D else Xi =Yi-1 
1.2) Set F :=RandomPermutation(Xi).
1.3) Constructs a card list Yi := ShuffleMaskCards( Xi, Mask-Key , F ) 

1.4) Broadcast Yi.
1.5) Players execute RSMVP (  Mask-Key , F , Xi, Yi , i , Mask-Representative[i].p, Mask-
Representative[i].c) 

2) Z  = Yp , where p is the last player in the round (Z is the round output).
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● After: 
○ Z a list of M-Cards. 
○ Z is public.
○ Z is a permutation of the cards in D, after masking.
○ The permutation cannot be computed by any proper subset of players.

3.7.28. End-Of-Game (only for  VSM-L-OL)
This protocol ensures the correctness of the second locking round 

Signature: End-Of-Game 

1) Each player i:
1.1) For each card c such as (c,i) is in Card-Holder table.

1.1.1) Set card_index :=Card-Trace[ 2, c]
1.1.2) Let k :=Lock-Key[2,card_index] 
1.1.3) Broadcast c and k

1.2) Each other player j:
1.2.1) Check that (c,i) is in Card-Holder table. If not, then player i is cheating.
1.2.2) Checks that (2,c) is in Card-Trace. If not, then the Card-Trace table is corrupt.
1.2.3) Set card_index :=Card-Trace[ 2, c].
1.2.4) Let R := Lock-Representative[2, i, card_index]
1.2.5) Check that LockCard(R.p, k) = R.c. If not, then player i is cheating.
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4. Sample VSM-VL Run for Texas Hold'em
Suppose two players want to play Texas Hold'em. This is a log of all protocols executed if there is no attempt 
to cheat and both players arrive to the showdown. Player 1 plays the game and also act as a dealer.

1. Create-Deck

2. Shuffle-Deck

3. Prepare-Cards-To-Deal (8) (prepared cards for fast deal)

4. [ Pre-flop betting round ]

5. Single-Card-Deal(1) (1st card to player 1)

6. Single-Card-Deal(1) (2nd card to player 1)

7. Single-Card-Deal(2) (1st card to player 2)

8. Single-Card-Deal(2) (2nd card to player 2)

9. Single-Card-Deal(1) (flop 1 card given to player 1 (the dealer))

10.Single-Card-Deal(1) (flop 2 card given to player 1)

11. Single-Card-Deal(1) (flop 3 card given to player 1)

12.Show-Cards(1, { the 3 flop cards } ) (flop cards are shown on table)

13. [ Betting round ]

14.Single-Card-Deal(1) (the turn card given to player 1)

15.Show-Cards(1, { the turn card } ) (turn card is shown on table)

16. [ Betting round ]

17.Single-Card-Deal(1) (the river card given to player 1)

18.Show-Cards(1, { the river card } ) (turn river is shown on table)

19.Betting round

20. [ Showdown ] 

21.Show-Cards(1, { all cards player 1 holds } )

22.Show-Cards(2, { all cards player 2 holds } )
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5. Pre-defined UniVPls

This section describes 3 protocols that implement a UniVP. Protocols are secure in the MPF security model. 
The I-UniVPl protocol provides a Perfect Zero-Knowledge proof (PZNP). The rest provide Computational-
Zero-Knowledge arguments of encryption and permutation of a computationally unique set of cards. The last 
protocol CO-VP is not strictly an UniVP, but can be used in cases where all players execute a locking or 
masking round and want to verify all others players operations.  Table 6 summarizes external functions, for 
reference.

Function Name Description

H H is a function that models a random oracle
To  implement the protocol, a secure one-way 
cryptographic hash function is used instead. 

EncryptCards(X:Card-List, L :Key-List ) Returns a card list for which each element is an 
encryption of the element in X and the key in M 
with the same index. If L has only one element, 
then the same keys is used for all elements in X.

#X Returns the number of elements in the list X.

X[i] Returns the i-th element of the list X.

X + Y Returns the concatenation of the list X with the list 
Y.

RandomPermutation(n :Integer) Returns a random or pseudo-random permutation 
of the integers from 1 to n. 

Random(A :Set) Returns a random or pseudo-random integer in the 
set A.

RandomKey() Returns a random bitstring suitable as a key for the 
underlying CGC.

Com(X) A non-interactive commitment to X

Check(X,R,C) A Check that the commitment c to X is valid, using 
the additionally revealed information R.

Permute(C,P) Permutes the card-list C using the permutation P. 
We extend the function so that if P is a special 
symbol SORT, then C is lexicographically sorted.

Table 6: External Functions

External Constants

● s: the security threshold for interactive proofs (cheating probability).
● sns: the security threshold for non-interactive proofs (cheating probability).
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5.1. Protocol FI-UniVP

With reference to Fig. 15, the FI-UniVP protocol is 
illustrated, corresponding to a Challenge-Response 
protocol which uses the commutativity property of the 
CGC.  The verifier challenges the prover to re-do the 
encryption he is trying to prove on a different card-list. 
The challenge consist of a re-encryption and a 
permutation of X using a single key. The basic scheme 
is the following: 

• P boxes are permutations. 
• E boxes are encryptions.
• H boxes are hash functions. 
• A is a card-list append operation.
• C is a message commitment.
• Depending on the arguments of the protocol, 

the U , L and P permutations are used or not. 
• Dotted lines represent transmitted information.
• Time flows from top to bottom.
• If a check fails, the protocol aborts and no 

additional information is sent.
• Check 1: Checks that the challenge valid 

before opening the commitment on the result of 
the encryption. This stage prevents CPA 
attacks.

• Check 2: Checks that the committed response 
sent by the prover is correct. This check 
prevents the prover from changing the 
response after he knows the challenge.

• Check 3: The verifier checks that the response 
to the challenge is correct.

Commitments can be implemented in a number of  ways  [HIRLL99] [N91] [CS04].  We will  use a simple 
scheme based on a cryptographic one-way hash function. The function must not only be one-way but must  
hide any information regarding the pre-image of a message digest. 

Because we only use the commutativity property, this protocol cannot withstand malleability of the CGC. For 
a interactive protocol that withstand CGC malleability, see the protocol HMVP.

Figure 15: Protocol FI-UniVP
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The permutations L, U and S vary  depending on the protocol arguments, the three possibilities are a sort, 
the repetition of the permutation T, or the identity, as shown in Table 7.

Permuted Not Permuted
Samekey, no representatives SMVP (*) Not required

U = RandomPermutation
S = Sort
R = Sort

U = RandomPermutation
S = U
R = T

Samekey, with representatives SMVP and  RSMVP UVP, UMVP and RLVP

U = RandomPermutation
S = Sort
R = Sort

U = RandomPermutation
S = Sort
R = Sort
T = Identity

Not samekey SLVP (*) LVP

U = Identity
S = Sort
R = Sort

U = Identity
S = Identity
R = Identity 
T = IdentityU = Identity

S = Identity
R = T

(*) For  this cases there are two possibilities. 

Table 7: Operations in U, S, R and T boxes

Proof Watermarking

If parallel runs of these protocols will be used during a game, then an additional security measure must be  
applied.  The identity of the prover must be embedded in the proof in a process similar to a cryptographic  
watermark.  This prevents the proof to be forwarded.

Verifier Nonce Watermarking

An alternate way to avoid parallel runs is that random keys chosen by the verifier are watermarked. The 
prover must verify the identity embedded in the key before giving away the proof.

Here is the protocol to obtain a random watermarked key r:

1. Choose a random value v.
2. Construct the message m = H( <verifier identity> | v  ).
3. Choose a valid key r which includes in an unambiguous representation of m. If necessary, pad with extra 
random bytes.

If decryption keys are not unique, then the step 3 of this method can open a security hole to attacks. A better  
way would be to supply m as the seed for a CSPRNG, and use the generator to produce the random key r.

Protocol FI-UniVP

Signature: FI-UniVP ( private in L :Key-List, private in T :Permutation, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player, public  in Permuted :Boolean,  
public  in SameKey  :Boolean, public  in RX :Card-List , public  in RY : Card-List)
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1) For each player v in increasing order, such as v <> p do
1.1) Execute FI-UniVP-TP (M, X +RX, Y + RY , p,  v, Permuted, SameKey )

Protocol FI-UniVP-TP

Signature: FI-UniVP-TP ( private in L :Key-List, private in T :Permutation, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player, public  in v :Player, 
public  in Permuted :Boolean,  public  in SameKey  :Boolean)

1) If (SameKey) then
1.1) Set  f := 1
1.2) Repeat until (f< s)

1.2.1) Set f :=f*(1 / #X)
1.2.2) Execute FI-UniVP-Core (L, X, Y, p, v, Permuted, SameKey)

2) else
2.1) Execute FI-UniVP-Core (L, X, Y, p,  v, Permuted, SameKey )

Protocol FI-UniVP-Core

Signature: FI-UniVP-Core (
private in L :Key-List,  private in T :Permutation,
public  in X :Card-List, public  in Y :Card-List, public  in p :Player, public  in v :Player, 
public  in Permuted :Boolean, public  in SameKey  :Boolean)

■ L = Length(X) = Length(Y)

1) Player v:
1.1) r  := RandomKey()
1.2) Computes Z'  :=EncryptCards(X,r) 
1.3) If SameKey then

1.3.1) Set U :=RandomPermutation(  #X )
1.4) else

1.4.1) Set U :=Identity
1.5) If Permuted then

1.5.1) S := SORT
1.6) else

1.6.1) S :=U
1.7) Set Z := Permute(Z', U)
1.8) Broadcast Z.
1.9) Computes W' := EncryptCards(Y ,r)
1.10) Set W := Permute(W',S)
1.11) Computes hw  := H(<prover identity> | W )

2) Player p:
2.1) Computes Q'  := EncryptCards(Z, L).
2.2) If (Permuted) then

2.2.1) Set R :=SORT
2.3) else

2.3.1) Set R := Identity  
2.4) Set  Q  := Permute(Q' , R)
2.5) Computes hq := H(<prover identity> | Q ) 
2.6) Chooses a random fixed length string d.
2.7) Computes hs := H( hq | d) 
2.8) Broadcasts hs  (a commitment)

3) Player v:
3.1) Broadcasts r.

4) Player p:
4.1) If r is watermarked, verifies the identity of the sender. If a mismatch is found, aborts.
4.2) Let G := EncryptCards(X,r). 
4.3) If not SameKey then 
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4.3.1) Checks that Z = G.
4.4) else

4.4.1) Checks that Z is a permutation of G 
4.4.2) If not, then player v is cheating, trying to do a chosen plaintext attack.

4.5) Broadcasts  hq and d.

5) Player v:
5.1) Verifies that  hw =  hq  and that hs = H( hq | d). 
If they are not equal, then player p is cheating.

5.2. Protocol FIG-UniVP
This protocol is similar to FI-UniVP but uses the CGC encryptor to make the verifier commitments. To to it, 
we'll use the group property of the CGC and not only commutativity.

Protocol FIG-UniVP

Signature: FIG-UniVP ( private in L :Key-List, private in T :Permutation, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player, public  in Permuted :Boolean,  
public  in SameKey  :Boolean, public  in RX :Card-List , public  in RY : Card-List)

1) For each player v in increasing order, such as v <> p do
1.1) Execute FIG-UniVP-TP (M, X +RX, Y + RY , p,  v, Permuted, SameKey )

Protocol FIG-UniVP-TP

Signature: TFI-UniVP-TP ( private in L :Key-List, private in T :Permutation, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player, public  in v :Player, 
public  in Permuted :Boolean,  public  in SameKey  :Boolean)

1) If (SameKey) then
1.1) Set  f := 1
1.2) Repeat until (f< s)

1.2.1) Set f :=f*(1 / #X)
1.2.2) Execute FIG-UniVP-Core (L, X, Y, p, v, Permuted, SameKey)

2) else
2.1) Execute FIG-UniVP-Core (L, X, Y, p,  v, Permuted, SameKey )

Protocol FI-UniVP-Core

Signature: FI-UniVP-Core (
private in L :Key-List,  private in T :Permutation,
public  in X :Card-List, public  in Y :Card-List, public  in p :Player, public  in v :Player, 
public  in Permuted :Boolean, public  in SameKey  :Boolean)

■ L = Length(X) = Length(Y)

1) Player v:
1.1) r  := RandomKey()
1.2) Computes Z'  :=EncryptCards(X,r) 
1.3) If SameKey then

1.3.1) Set U :=RandomPermutation(  #X )
1.4) else

1.4.1) Set U :=Identity
1.5) If Permuted then

1.5.1) S := SORT
1.6) else
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1.6.1) S :=U
1.7) Set Z := Permute(Z', U)
1.8) Broadcast Z.

2) Player p:
2.1) Chooses a random key g. Let  g :=RandomKey()
2.2) Computes L' as, for each 1 <= i <= #L,  L'[i] := L[i] * g
2.3) Computes Q'  := EncryptCards(Z, L').
2.4) If (Permuted) then

2.4.1) Set R :=SORT
2.5) else

2.5.1) Set R := Identity  
2.6) Set  Q  := Permute(Q' , R)
2.7) Computes hs := H(<prover identity> | Q ) 
2.8) Broadcasts hs  (a commitment)

3) Player v:
3.1) Broadcasts r.

4) Player p:
4.1) If r is watermarked, verifies the identity of the sender. If a mismatch is found, aborts.
4.2) Let G := EncryptCards(X,r). 
4.3) If (not SameKey) then 

4.3.1) Checks that Z = G.
4.4) else

4.4.1) Checks that Z is a permutation of G. If not, then player v is cheating, trying to do a 
chosen plaintext attack.

4.5) Broadcasts  g.

5)Player v:
5.1) Computes Y' as , for each 1 <= i <= #Y, Y'[i] := Y[i] * g
5.2) Computes W' := EncryptCards(Y' ,r)
5.3) Set W := Permute(W',S) 
5.4) Computes hw  := H(<prover identity> | W )
5.5) Verifies that  hw =  hs . If they are not equal, then player p is cheating.

5.3. Protocol I-UniVPl
This is a multi-round cut-and-choose protocol. In each round verifier does the following operations: X → E L 

→ PT → Y → Er → PU → W. E is encryption (with single or multiple keys), P is and optional permutation. R is 
a random key. W is transmitted to the verifier. Afterwards the verifier chooses to be sent the keys that encrypt 
X into W or the keys that encrypt Y into W (but not both). 

Protocol I-UniVP

Signature: FI-UniVP ( private in L :Key-List, private in T :Permutation, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player, public  in Permuted :Boolean,  
public  in SameKey  :Boolean, public  in RX :Card-List , public  in RY : Card-List)

1) For each player v in increasing order, such as v <> p do
1.1) Execute TI-UniVP (M, X + RX, Y + RY , p,  v, Permuted, SameKey )

Protocol TI-UniVP

Signature: TI-UniVP ( private in L :Key-List, private in T :Permutation, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player, public  in v :Player, 
public  in Permuted :Boolean,  public  in SameKey  :Boolean)

1) Set  f := 1
2) Repeat until (f<s)

2.1) Set f :=f*(1 / 2)
2.2) Execute CI-UniVP (L, T, X, Y, p, v, Permuted, SameKey)

Protocol CI-UniVP
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Signature: CI-UniVP ( private in L :Key-List,  private in T :Permutation,
public  in X :Card-List, public  in Y :Card-List, public  in p :Player, public  in v :Player, 
public  in Permuted :Boolean, public  in SameKey  :Boolean)

1) Player p:
1.1) Set r :=RandomKey()
1.2) Set W' :=EncryptCards(Y,r)
1.3) If Permuted then

1.3.1) Set U :=RandomPermutation(#X)
1.4) else

1.4.1) Set U :=Identity
1.5) Set W :=Permute(W' , U)
1.6) Broadcasts W

2) Player v:
2.1) Set c :=Random( { 0,1 } ) (A random integer value similar to a coin flip)
2.2) Broadcasts c 

3) Player p:
3.1) If (c = 0) then

3.1.1) If SameKey then
3.1.1.1) Set g :=r*L[1]
3.1.1.2) Broadcasts g

3.1.2) else
3.1.2.1) Set G :=r*L (scalar product of vector L)
3.1.2.2) Broadcasts G

3.2) else
3.2.1) Set g :=r
3.2.2) Broadcasts g

4) Player v:
4.1) If (c=0) then

4.1.1) If SameKey then
4.1.1.1) Computes Q := EncryptCards(X, g)

4.1.2) else
4.1.2.1) Computes Q := EncryptCards(X, G)

4.2) else
4.2.1) Computes Q := EncryptCards(Y, g)

4.3) If Permuted then 
4.3.1) Check that Q is a permutation of W. If not, then player v is cheating,

4.4) else
4.4.1) Check that Q = W.  If not, then player v is cheating,

5.4. Protocol NI-UniVPl
This protocol is obtained by modifying the I-UniVP protocol using the Fiat-Shamir transformation.

1) Player p:

1.1) Let F be a binary stream. 

1.2) Save the prover identity into the stream F.

1.3) Repeat sni times

1.3.1)  Execute Step 1 of  protocol  I-UniVP locally  (witting the broadcast  outputs  into  the 
stream F)

1.4) Compute hf := H (F)

1.5) For i from 1 to sni do

1.5.1) Let c be the i-th bit of hf (the message digest hf  must be long enough)

1.5.2) Execute Step 3 of protocol I-UniVP locally (writing the broadcast outputs into a stream 
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T)

1.6) Construct the message (F , T) (the non-interactive proof).

1.7) Broadcasts (F , T )

2) All other players:

2.1) Compute u :=H (F)

2.2) Read the prover identity from the stream F and check it. If not equal, abort.

2.3) For i from 1 to sni do

2.3.1) Let c be the i-th bit of u.

2.3.2) Read the values G or g (depending on the protocol arguments) from the stream F. If 
the stored value is of an invalid type (e.g: reads G expecting g) abort.

2.3.3) Execute Step 4 of protocol I-UniVP.

5.5. Protocol CO-VP
This is a cut-and-choose protocol to verify a round that can be a either a locking round or shuffle-masking  
round. All the players act as provers and verifiers. 

1) Players execute a unverified round (Locking or ShuffleMasking) that  transforms the card-list  X into  Y 
where Ki is the list of key used by player i. Every player has taken part and want to verify the round. This can 
be either a normal round or a CO-SMVP round.

2) Repeat a number of times until a security threshold has been achieved:

2.1) Each player i chooses a new single key or list of keys Ri   (depending on the kind of round)

2.2) Players re-execute the (still unverified) round with card-list Y as input and creates Z as output. 
This can be either a normal round or a CO-SMVP round.

2.3) Each player commits to a value 0 or 1, similar to a coin-flip.

2.4) All players open the commitments and calculate a value c as the exclusive-or of all committed 
values.

2.5) If (c=0) then every player i:

2.5.1) Publishes Ri 

2.5.2) Check that the operations done by each other player in the last round are correct.

2.6) If (c=1) then every player i:

2.6.1) Calculates Si as the item-by-item product of Ki and Ri , 

2.6.2) Commits to Si

2.6.3) Waits until all commitments have been done.

2.6.4) Opens the commitment and publishes Si

2.6.5) After all commitments have been opened, computes S as the product of all S i  values.

2.6.6) Checks that X can be transformed into Z by encrypting with S. The transformation may 
require a permutation if the round to verify is a Shuffle-Masking round.
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6. Security of MPF

The security of protocols that are based on algebraic properties of its building blocks are difficult to prove 
formally  [VSP06].  We won´t  attempt  such a formalization in  this  thesis.  Nevertheless  we´ll  analyze  the 
protocol against the most common attacks:

1. Communication channel: Eavesdropping, Impersonation, Message Injection, Man-In-The-Middle, 
etc.

2. Algebraic properties of the CGC
3. Card Protocols Design
4. Verification Protocols Design

Attacks on the Communication channel

MPF, like other MP protocols, does not provide authenticity and privacy for the messages exchanged. MPF 
must be run over on secure communication channels, such as SSL. Secret keys used for the secrecy of the 
communication channel  or for authentication should never be reused in MPF, as this can decrease the  
overall security.

Attacks on the algebraic properties of the CGC

In this thesis UniVPs are not proven secure. Nevertheless, there exists proofs for soundness, completeness 
and and zero knowledge. 

In VSM-VL, VSM-VPUM and VSM-VL-VUM protocols, attacks on the algebraic properties of the CGC are  
impossible due to the fact that all private computations are verified by executions to UniVP. Chosen plaintext  
attacks are also avoided by UniVPs.

In VSM-L-OL, the Lock1 round is not explicitly verified. Nevertheless, Lock1 is a round in which every player 
encrypts each card with a distinct random key, so no information can leak. MPF security assume CPA for  
VSM-L-OL. so the Lock1 key cannot be recovered by an active attacker.

Attacks on the card protocols design

The most common attack on a protocol design is the replay attack [PS04]. Replay attacks often require 
interleaved runs of the protocol. MPF prevents replay attacks in two ways:

a. Private keys for each game are randomly chosen out of each player CS-PRNG.
b. All steps in the MPF, with the exception of UniVPs, are defined to be executed sequentially. 

UniVPs  can  be  securely  parallelizable,  because  they  withstand  dishonest  verifiers.  The  result  of  all 
operations performed by the prover are passed through a one-way hash function and prover never performs  
decryptions. Also the prover does not provide any additional computationally distinguishable information to 
the verifier (computational zero knowledge property), so parallel runs of the UniVPs can never be used to 
obtain any secret information. Also, parallel runs cannot be used to impersonate a prover and provide a valid  
proof  of  knowledge for  a  unknown fact,  as in  a  man-in-the-middle  attack.  This  is  prevented by design  
because free card values are attached to a certain player in the Card-Holder table. Also we use of  two 
additional protective techniques: prover watermarking and verifier Nonce watermarking. The former binds a 
proof to the prover identity, so it  cannot be reused. The later binds all nonces sent by the verifier to its 
identity, and  nonces source is verified by the prover before any information is given.
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6.1. Example Attacks
During the design stage of MPF we identified a number of possible attacks. MPF has countermeasures for 
these attacks. Nevertheless, the leakage of even some bits information through an external channel or in 
conjunction with additional attacks can make these attacks feasible. The following sections contain some 
possible attacks against MPF in general and against MPF implemented on a homomorphic cipher.

6.1.1. Tracking attack
The masking key should never be used twice to encrypt a list of cards: there should a single masking round 
for a masking key. Suppose is Alice's turn to shuffle-mask a card list X and output a card list Y. Suppose that  
Mallory is the previous player on the masking round order. If Mallory knows a pair (x,y) such as Em(x)=y such 
as x belongs to X, and m is Alice's private masking key, then he can track the position of y in Y, revealing 
some information regarding the secret permutation.

6.1.2. Sandwich tracking attack against CO-VP
If the CGC is homomorphic, Mallory can improve the tracking attack during a CO-VP protocol. He needs to  
collude with  the player Oscar following Alice order  in the round. Suppose Mallory  knows a list  of  pairs  
(a[i],b[i]) Em(a[i])=b[i] (1<=i<=n/2) (although he may know what actual card values map to). Suppose Mallory's 
input card-list is W. For simplicity, let's assume that Mallory's private key and permutation are the identity. Let  
P be Alice's permutation function. When is Mallory's turn, he chooses a set of cards w[i+k] from W (1<=i<=k)  
that he knows the card values that they map to, and he wants to track them. He outputs a card list X such as:

X= < a[1]*w[k+1], .., a[2]*w[k+2]  , a[k]*w[2*k] , w[k+1], ..., w[n] > 

Then, after Alice encrypts and permutes the list X, she outputs the set:

Y= { Em(a[1]*w[k+1]), .., Em(a[2]*w[k+2]) ,Em(a[k]*w[2*k]) , Em(w[k+1]),.., Em(w[n]) } =

Y= { Em(a[1])*Em(w[k+1]),..,Em(a[2])*Em(w[k+2]) ,Em(a[k])*Em(w[2*k]),Em(w[k+1]),..,Em(w[n]) } =

Y= { b[1]*Em(w[k+1]),..., b[2]*Em(w[k+1]), b[k]*Em(w[2*k]) , Em(w[k+1]), ... Em(w[n]) } =

Now Oscar can detect Alice's permutation function for the values w[k+1],..,w[2*k]. For example, to recover  
P[k+t] (output index of the element w[k+t]) Oscar searches for two indexes i,j such as y[i] * y[j] -1 = b[t]. Then 
P[k+t] = j. He can reconstruct a valid Y' to transfer to the following player in the round by replacing the terms  
b[t]*Em(w[k+t]) with the known b[t]. 
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7. Detailed Comparison of Mental Poker Protocols

Here is a review of the most complete MP protocols [CR05] and the properties satisfied. [SRA81] is added 
for comparison. Table 8, compares properties of various protocols, including those of MPF.

Key for Table 8:
R1. Uniqueness of card
R2. Uniform random distribution of cards
R3. Cheating detection with a very high probability
R4. Complete confidentiality of cards
R5. Minimal effect of coalitions
R6. Complete confidentiality of strategy
R7. Absence of trusted third party

R8. Polite Drop-out tolerance
R9. Abrupt Drop-out tolerance
R10. Real-world comparable performance
R11. Variable number of players
R12. Card transfers
R13. Protection against suicide cheaters

Protocol R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

VSM-VL-VUM √ √ √ √ √ √ √ √ √ √ √ √ √ √

VSM-VL √ √ √ √ √ √ √ √ √ √ √ √ √ √

VSM-VPUM √ √ √ √ √ √ √ √ √ √ √ √

VSM-L-OL √ √ √ √ √ √ √ √ √ √ √

KKOT90 √ √ √ √ √ √ √ √ √

BS03 √ √ √ √ √ √ √ √ √ √ √ √

CSD05 √ √ √ √ √ √ √ √ √ √ √

SRA81 √ √ √ √ √ √

Table 8: Comparison of Mental Poker Protocols
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8. PHMP (MPF VSM-VL with Pohlig-Hellman as CGC)

In  this  section we present PHMP, an implementation of  PHMP that  uses the Pohlig-Hellman symmetric  
cipher [PH78] as the underlying CGC for the MPF with the VSM-VL base protocol. 
As stated before, to create a MPF protocol we must specify a CGC and ad-hoc protocols, if desired. 
We will create: 

• The CGC function (E)
• A protocol to create the cipher parameters from a stream of random bytes
• A protocol to create the a cipher key from a stream of random bytes
• A protocol to create a single card (Create-Deck by Locking). 
• A protocol to create random card values from a stream of random bytes (Create-Deck by CO-

PRNGP) 
• Ad-hoc protocols.

Note that PH is a malleable cipher, and because of this the protocol FI-UniVP becomes completely insecure,  
because  plaintext  products  commute  with  the  encryption  required  to  build  the challenge  card-list.  We'll  
describe a modified protocol to fix this problems, keeping the number of modular exponentiations low.
To be used as CGC, the external assumptions described in section 2 must hold.  If we were to encrypt a 
single  plaintext/ciphertext  pair,  Pohlig-Hellman  security  against  COA,  KPA and  CPA is  assured  by  the 
difficulty of the Discrete Logarithm Problem. But MPF reuses keys and any statistical information regarding 
the distributions of ciphertexts gained after a shuffle can be considered a successful attack, so PH security in  
MPF is guaranteed by the difficulty of the Decisional Diffie-Helman in the polynomial samples setting, which 
is shown in  [BDH02]  to be equivalent to  DDH. The  Decisional Diffie–Hellman (DDH) assumption is a 
computational hardness assumption. Let G be a multiplicative cyclic group of order q, with a generator g. The 
DDH assumption states that, given ga and gb for randomly-chosen a,b ∈Zp, the value gab  is computationally 
indistinguishable  from  a  random  element  in  G.  Note  that  DDH  is  an  assumption  of  many  common 
cryptographic schemes. For example, ElGamal cryptosystem has semantic security only if DDH holds.

8.1. Definition of E
Encryption: Ek(m) = mk (mod p) 
Commutation: Ek( Eq(m) )  = mqk (mod p)  = mkq (mod p) = Eq( Ek(m) )
Composition: Ek( Eq(m) )  = mqk (mod p)  = Ek*q(m)
Inversion: k-1  is such that k * k-1 = 1 (mod p-1)

Where 1 < m  < p, and m ∈ Z.

8.2. Cipher Parameters Creation
Pohlig-Hellman cipher requires a strong prime or pseudo-prime p. We'll use a strong prime in the format p = 
2*q+1, where q is a big prime number.  To create p from a PRNG we use the process described in the 
standard [FIPS186].  

An integer y is called a quadratic residue or  QR modulo p if it is congruent to a perfect square (mod p). 
Otherwise, y is called a quadratic nonresidue or QNR. Formally y is QR if there exists an integer x such 
that: x2 = y (mod p). 

There are two possibilities for the plaintext space, either use a Schnorr group, the subgroup of quadratic 
residues (where DDH assumption has been studied more) or use the set of quadratic non-residues. If the 
later  is  used, then keys must be odd. If  the QR subgroup is used,  then each even key e < q has an  
equivalent odd key e'=q+e (mod p), and every even key d > q has an equivalent odd key d'=d-q (mod p).  
This equivalence allows any key k < p to be used. Will present both schemes.
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8.3. Finding fixed generators

Because p=2*q+1, then p≡3 (mod 4) and then −1 is a nonresidue (mod p). This implies that the negative of a 
residue (mod p) is a nonresidue and the negative of a nonresidue is a residue. Also the only generator of the 
subgroup of order 2 is (p-1). For any p>5, then 4 is a quadratic residue because 4=22  (mod p) and so 4 is 
generator of the QR subgroup. Then (p-4) is always a generator of (Z/pZ)*.

These generators can be used to create the deck with the procedure “Create-Deck by Locking”.

8.4. Card Creation
To create the cards, we have two choices:

a) Execute repeatedly the procedure for finding random generators. The random number source stream  is 
generated with the CO-PRNG protocol “Create-Deck by CO-PRNGP“.

b) Generate a single fixed generator of the group and then create the rest of the cards by executing the 
protocol “Create-Deck by Locking”.

8.5. Using quadratic residue cards

8.5.1. Finding a random generator of the QR subgroup
We describe a procedure that can be used to create a random generator g of order q of the QR subgroup. 

To generate g: 

Step 1. Set g := a random integer, where 1 < g < p - 1 and g differs from any value previously tried. 

Step 2. If (g<=1) or (g=p-1) then Set g := g + 1 (p-1) and go to step 2.

Step 3. Set v := gq (mod p). 

Step 4. If v <> 1 then Set g := g + 1 (p-1) and go to step 2.

Note that as p grows large the factor of generators g approximates  ½.

8.5.2. Key Creation

To create a valid key k, find an integer value k in the range 1 < k < p such as gcd(k,q) = 1.

8.6. Using quadratic non-residue cards

8.6.1. Finding a generator of (Z/pZ)*
We describe a procedure that can be used to create a random generator g of order 2*q. 

To generate g: 

Step 1. Set g := a random integer, where 1 < g < p - 1 and g differs from any value previously tried. 

Step 2. If (g<=1) or (g=p-1) then Set g := g + 1 (p-1) and go to step 2.

Step 3. Set v := gq (mod p). 
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Step 4. If v = 1 then Set g := g + 1 (p-1) and go to step 2.

8.6.2. Key Creation
To create a valid key k, find an integer value k in the range 1 < k < p such as gcd(k,2*q) = 1. Note that all  
valid keys are odd.

8.7. Additional checks
We'll say that the k is an identity key if for any input card x, y=E k(x) = x. It is possible, although unlikely, that 
an identity card key is created by composing non identity keys. If an identity key is obtained either privately  
or jointly, then the last protocol must be redone to create a new non-identity key. The same check can be 
applied for other  sets  of  weak keys,  like  small  keys or keys having too many zeros.  Nevertheless,  the  
probability of creating a weak key is negligible. 

If a player violates the key creation protocol and chooses a key k=0 or a key k that divides q, then the 
following protocols will fail. Therefore, card-values equal to 1 or 0 should not be accepted by players. When 
using the QR subgroup, it's impossible that a QNR card will appear. Using QNR cards, the even keys and 
the key q will turn cards into quadratic residues. Each player should check that the input card values are all  
quadratic residues or all non-residues (depending on the group used). Also players can check that the input  
card-list  have  no  duplicates.  This  is  not  strictly  necessary,  because  the  protocol  design  guarantees  it. 
Nevertheless, these checks can prevent a failure in the protocol itself to expose players private information.

8.8. Ad-hoc verification protocols
Some UniVPs that come with MPF can withstand the malleability of PH cipher, so, in principle, there is no  
need to provide an ad-doc protocol.  Nevertheless, there are more efficient alternatives to standard non-
malleable UniVPs, so PHMP uses a new protocol called  HMVP, and Chaum-Pedersen and  Schnorr’s Id 
Protocol when possible. HMVP is a hybrid protocol which uses both FI-UniVP and Chaum-Pedersen Protocol 
to achieve its goal.
Some of the alternatives for the UniVPs depending on the kind of verification are provided in Table 9.

With permutation Without permutation

Same key For SMVP and RSMVP:

Neff protocol adaption to PH [N04]

Groth protocol adaption to PH 
[G05]

FI-UniVP (for a single card only)

NI-UniVP

HMVP

CO-VP

For UVP, UMVP, and RLVP:
CP-UMVP (Chaum-Pedersen 
protocol)
FI-UniVP (for a single card only)
NI-UniVP

Different keys For SLVP:

FI-UniVP

NI-UniVP

For LVP:
S-LVP (one execution of the 
Schnorr’s Id Protocol for each 
card)
FI-UniVP
NI-UniVP 

Table 9: Alternatives for predefined UniVPs Depending on the Type of Verification

We've found that the protocol CO-VP can be disrupted in sandwich attacks. Suppose there is a masking  
round with players Mallory,  Alice and Oscar in that  exact  order.  Mallory can,  instead of  doing a normal 
shuffle-mask operation, output a card-list using a function of type T to the cards (see below for the definition).  
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In a function of type T, each card is encrypted as usual, but also multiplied by the encryption of the remaining 
cards. Oscar can recover a well-formed card list, where each output card is the encryption of a single input 
card,  applying another function of type T. We haven't found a way to take advantage of this problem in the  
protocol, but we recommend using any other UniVP instead of CO-VP for homomorphic ciphers or use the 
protocol CO-SMVP for the steps 1 and 2.2 of of then CO-VP protocol.

Function T(X : Card-List; k,s :Key; P :Permutation) -> Y : Card-List , such that for each 1 <= i <= #X, 
Y[i] =Product(1<=j<=#X: X[j])k 

* (X[P[i]])s 

where P is a permutation of the set [1..#X], and v and k are integers (0<=s,k<p)

We show how Oscar can reconstruct a valid list of ciphertexts with another function of type T:

Suppose X is the card list that Mallory has to shuffle-Mask, and Y is the supposed corresponding output. Y is  
the input of Alice Shuffle-Mask and Z is Alice's output. Z is the input of Oscar supposed Shuffle-Mask and W 
is Oscar's output. The performed steps are:

1. Mallory performs Y := T(X,k,s,Fm)

2.  Alice  performs  Z  :=ShuffleMaskCards(Y,m,Fa),  where  m  is  the  masking  key  and  Fa is  a  random 
permutation. 

3. Oscar performs W :=T(Z,k',s',Fo)

Mallory and Oscar can compute a set of values {k,s,k',s'} to recover a valid ciphertext list.

Let P = Product(1<=j<=#X: X[j]).

For each 1<=i<=#X: Y[i] = Pk 
* (X[Fm[i]])s

For each 1<=i<=#X: Z[i] =  Y[Fa[i]]m = Pkm 
* X[Fm[ Fa[i]]]sm 

For each 1<=i<=#X: W[i] = Pnkmk'+smk'+kms' * X[Fm[ Fa[Fo[i]]]]sm s' = P m(nkk'+sk'+ks') * X[Fm[ Fa[Fo[i]]]]sm s'

Let  r = nkk'+sk'+ks', and q = Fm[ Fa[Fo[i]]], then

For each 1<=i<=#X: W[i] = Pmr 
* X[q]sms'

To obtain valid W card values, the term that involves P must be canceled. This can be achieved by Mallory  
and Oscar by choosing the values k,s,k',s' so that  r = 0 (mod p), which is easy.

8.8.1. HMVP
The Homomorphic ShuffleMasking Verification Protocol  (HMVP) provides a computational zero knowledge 
argument for the mix and re-encryption of a set of plaintexts (shuffle-masking), preventing the use of the 
homomorphic property of the cipher.

Protocol HMVP

Signature: HMVP (private in m :Key, private in T :Permutation, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player, 
public  in RX :Card-List , public  in RY : Card-List)

1) The verifier:
1.1) Chooses a random number s
1.2) Sends s to the prover

2) The prover:
2.1) Computes R.p = CreateCard(H(s))
2.2) Computes R.c = Em(R.p) (R is a representative of m)
2.3) Publishes R

3) The verifier checks that R.p and R.c are valid blocks (not marked)
4) Execute S-LVP ([m],[R.p],[R.c],p);
5) Execute FI-SMVP(m ,T, X,Y,p, RX + [R.p], RY + [R.c])
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8.8.2. Schnorr’s Id Protocol based LVP (S-LVP)
Here is a protocol for the verification of locking rounds based on Schnorr's Id protocol:

Let p=2*q+1 be the Poling-Hellman cipher parameters.

Protocol S-LVP

Signature: S-LVP (private in L :Key-List, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player)

1) For each player v in increasing order, such as v <> p do
1.1) For each i ,  1 <= i <= #X do 

1.1.1) Execute T-S-LVP (L[i], X[i], Y[i], p,  v )

Signature: T-S-LVP (public in s :Key,  public in  a :Card, public in b :Card,  
public in prv :Player, public in v :Player)

1) Player prv: 
1.1) Picks a random number r ( r <= q) and computes x  := ar (mod p)
1.2) Broadcast r
1.3) Player v: 

1.3.1) Chooses a random value e ( e < p)
1.3.2) Broadcast e

1.4) Player prv:
1.4.1) Computes y := r + s*e (mod p)
1.4.2) Broadcasts y

1.5) Player v:
1.5.1) Verifies that  x = ay * b-e (mod p)

8.8.3. Chaum-Pedersen based UMVP (CP-UMVP)
We can  use  Chaum-Pedersen  protocol  to  obtain  an  alternative  UMVP.  The  protocol  verifies  that  the 
encryptions have been done using the same key. The protocol requires 3 encryptions per card, similar to FI-
UniVP. The number of transferred bytes is also equivalent. Here is the protocol:

Protocol CP-UMVP

Signature: CP-UMVP (private in m :Key, public  in X :Card-List, 
public  in Y :Card-List, public  in p :Player, 
public  in RX :Card-List , public  in RY : Card-List)

1) For each player v in increasing order, such as v <> p do
1.1) Execute T-CP-UMVP (m, X +RX, Y + RY , p,  v )

Protocol T-CP-UMVP

Let p=2*q+1 be the Poling-Hellman cipher parameters.

Signature: T-CP-UMVP (public in m :Key,  public in  X :Card-List, public in Y :Card-List,  
public in prv :Player, public in v :Player)

1) Player prv: 
1.1) Picks a random number s ( s < q).
1.2) For each 1 <= i <= #X, computes Q[i] := X[i]s (mod p)
1.3) Broadcast Q

2) Player v: 
2.1) Chooses a random value c ( c < p)
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2.2) Broadcast c
3) Player prv:

3.1) Computes r := s + c*m
3.2) Broadcasts r

4) Player v:
4.1) For each 1 <= i <=#X, verifies that  X[i]r = Q[i] * Y[i]c

8.8.4. CO-SMVP
This protocol can be used in step 1 and step 2.2 of the CO-VP protocol to implement a Shuffle Masking 
round that is resistant against sandwich attacks. The protocol is only required for homomorphic ciphers.  

Before starting the protocol, all players agree on a neutral card value u, such as the set of all open cards plus 
u is CU. This can achieved using the protocol CO-PRNG.

CO-VP step 1: 

CO-SMVP( X, Y , u , Mask-Key, true)

CO-VP step 2.2:

CO-SMVP( Y, Z , u , Ri  ,false)

Signature: CO-SMVP( 
public in  X: Card-List,
public out Y: Card-List,
public  u :Card,
multi-private out Round-Key :Key,
public in saveRepresentatives :boolean )

1) Let N be the number of players
2) Set f := 1
3) Set Z0 := X
4) Set i :=0
5) Repeat until (f< s)

5.1) Set f :=f*(1 / #Zi)
5.2) Execute Augmented-ShuffleMasking-Round(L, Zi, Wi,i)
5.3) For each player p in increasing order :

5.3.1) Reveal the value sp,p that satisfies sp,p  = E(Temp-Keyp[i],u).
5.3.2) Let R.p := u and let R.c := sp,p  
5.3.3) if (saveRepresentatives) then 

5.3.3.1)  All players set Mask-Representative[p] := R
5.3.4) Execute LVP([ Temp-Keyp[i] ] , [ u ] ,[sp,p ], p) 
5.3.5) For each player k in increasing order (for k > p )

5.3.5.1) Reveal the value sp,k  that satisfies  sp,k = E(Temp-Keyk[i], sp,k-1) 
5.3.5.2) Execute LVP([ Temp-Keyk[i] ] , [ sp,k-1 ] ,[sp,k ], p) 

5.4) All players calculate Zi+1 as Wi  excluding  the values  sp,N  for every player p. Note that afterwards 
#Zi+1 = #Zi = #X.
5.5) Let i :=i +1 

6) Let Y =  Zi

7) Each player p:
7.1) Sets Round-Keyp :=Product(1 <= j <= i : Temp-Keyp[j] )

Signature: Augmented-ShuffleMasking-Round( 
public in  X: Card-List,
public out Y: Card-List, 
public in r :Integer)

● Before: 
○ i is a local variable
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1) For each player i, in increasing order:
1.1) If i=0 then Xi =X else Xi =Yi-1

1.2) Set F :=RandomPermutation(#Xi).
1.3) Set m :=RandomKey()..

1.4) Constructs a card list Yi := ShuffleMaskCards( Xi + [ u ], m , F ) 

1.5) Broadcast Yi.
1.6) Sets Temp-Keyi[r] := m.

2) Y  = Yp , where p is the last player in the round (Z is the round output).

8.9. Numeric Example
This is an example of the PHMP protocol, using the base protocol VM-VL protocol. We assume there are 3  
players  and  4  cards  in  the  deck.  Cards  are  quadratic  residues.  Keys  are  even,  although  this  is  not 
necessarily for QR cards.

Cipher parameters: 

q = 509 

p = 2q+1 = 1019 (p is a safe prime)

The fixed generator for the QR subgroup is g = 3. Note that the size of p chosen is too small to provide any 
real security. Generally, p is at least 1024  binary digits long or around 350 decimal digits. For simplicity, we 
show the only action protocols, and we skip the verification sub-protocols.

First  all  players  execute  the  protocol  “Create-Deck  (Locking)”  (section  3.7.2),  so  the  following  has  the 
structure of a locking round.

Player 1: 
1. Construct X  := [ g, g, g, g ] = [ 3, 3 , 3, 3 ] (a vector with four copies of g, one for each card)
2. Chooses a random or pseudo-random key-List K (each key is constructed using the protocol “Key 

Creation”. 
Let K := [ 7, 123 , 441, 9 ]

3. Computes 
Y1 :=LockCards(X,K) 
Y1 := [ gk[1] 

 (mod p) , gk[2] 
 (mod p) , gk[3] 

 (mod p) , gk[4] 
 (mod p) ]

Y1 :=[ 37  (mod 1019) ,  3123
 (mod 1019) , 3441  

 (mod 1019) , 39 
 (mod 1019) ]

Y1 := [ 149, 778, 256, 322 ]
4. Broadcasts Y1

Player 2:
5. Chooses a random or pseudo-random key-List K (each key is constructed using the protocol “Key 

Creation” (section 7.3). 
Let K := [ 21, 99 , 73, 901 ]

6. Computes 
Y2 :=LockCards(Y1,K) 
Y2:= [ Y1[1]k[1] 

 (mod p) , Y1[2]k[2] 
 (mod p) , Y1[3]k[3] 

 (mod p) , Y1[4]k[4] 
 (mod p) ]

Y2 := [ 958 ,42 ,626 ,345  ]
7. Broadcasts Y2

Player 3:
8. Chooses a random or pseudo-random key-List K (each key is constructed using the protocol “Key 

Creation” (section 7.3). 
Let K := [ 701, 373, 13 , 629 ]

9. Now computes 
Y3 :=LockCards(Y1,K) 
Y3:= [ Y2[1]k[1] 

 (mod p) , Y2[2]k[2] 
 (mod p) , Y2[3]k[3] 

 (mod p) , Y2[4]k[4] 
 (mod p) ]

Y3 := [  1011 ,731 ,118 ,380 ]
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10.Broadcasts Y3

Let Open-Deck := Y3 . Now we assign a meaning to each open-card value in the deck.

Open-Deck[1] = 1011 is the ace of diamonds.
Open-Deck[2] = 731 is the two of spades
Open-Deck[3]  = 118 is the three of hearts
Open-Deck[4]  = 380 is the four of clubs.

Because we will only shuffle four cards, no additional card is required. Now we shuffle the deck with the 
protocol “Shuffle-Deck” (section 3.7.3). Previous Yi values are disposed.

Player 1:
1. Set F :=RandomPermutation(4)

F := [ 2, 3 , 1 , 4]
2. Set  m := RandomKey()

m := 445
3. Compute  

Tmp := PermuteCards(Open-Deck ,F)
Tmp := [ 731 ,118  , 1011 , 380 ]

4. Now Y1 := MaskCards( Open-Deck, m , F )= 
[ Tmp[1]445 (mod p), Tmp[2]445 (mod p), Tmp[2]445 (mod p), Tmp[2]445 (mod p)]
Y1 := [ 731445 (mod 1019), 118445 (mod 1019), 1011445 (mod 1019), 380445 (mod 1019)]
Y1 := [ 229 ,825 ,358 ,687 ]

Player 2:
5. Set F :=RandomPermutation(4)

F := [ 3, 4 , 1 , 2]
6. Set  m := RandomKey()

m := 299
7. Compute 

Tmp := PermuteCards(Y1,F)
Tmp := [ 358, 687, 229, 825]

8. Now Y2 := MaskCards( Y1, m , F ) = 
[ Tmp[1]299 (mod p), Tmp[2]299 (mod p), Tmp[2]299 (mod p), Tmp[2]299 (mod p)]
Y2 := [ 668 ,685 ,395 ,42  ]

Player 3:
9. Set F :=RandomPermutation(4)

F := [ 4, 3 , 2 , 1]
10.Set  m := RandomKey()

m := 101
11. Compute 

Tmp := PermuteCards(Y2,F)
Tmp := [ 42, 395, 685, 668 ]

12.Now Y3 := MaskCards( Y2, m , F ) =
[ Tmp[1]101 (mod p), Tmp[2]101 (mod p), Tmp[2]101 (mod p), Tmp[2]101 (mod p)]
Y3 := [ 545 ,283 ,196 ,193  ]

Now, Main-Deck := Y3 = [ 545 ,283 ,196 ,193  ].

We now execute the protocol Prepare-Cards-To-Deal (for VM-VL) (section 3.7.5).  Because we prepare all 
the cards in the deck, we won't use the Prepare-Card table, but just modify the Main-Deck as we prepare the 
cards.  We dispose previous Yi values and K values, and execute a locking round.

Player 1: 
1. Chooses a random or pseudo-random key-List K (each key is constructed using the protocol “Key 

Creation”. 
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Let K := [ 99, 183, 875, 571 ]
2. Computes 

Y1 :=LockCards(X,K) 
Y1 :=[Main-Deck k[1] 

 (mod p) , Main-Deck k[2] 
 (mod p) , Main-Deck k[3] 

 (mod p) , Main-Deck k[4] 
 (mod p) ]

Y1 :=[ 54599  (mod 1019) ,  283183
 (mod 1019) , 196875  

 (mod 1019) , 193571 
 (mod 1019) ]

Y1 := [ 768 ,45 ,239 ,917  ]
3. Broadcasts Y1

Player 2:
4. Chooses a random or pseudo-random key-List K (each key is constructed using the protocol “Key 

Creation”. 
Let K := [ 601, 47, 867, 29 ]

5. Computes 
Y2 :=LockCards(Y1,K) 
Y2:= [ Y1[1]k[1] 

 (mod p) , Y1[2]k[2] 
 (mod p) , Y1[3]k[3] 

 (mod p) , Y1[4]k[4] 
 (mod p) ]

Y2 := [ 168 ,530 ,55 ,755 ]
6. Broadcasts Y2

Player 3:
7. Chooses a random or pseudo-random key-List K (each key is constructed using the protocol “Key 

Creation”. 
Let K := [ 107, 95 , 925, 461 ]

8. Computes 
Y3 :=LockCards(Y1,K) 
Y3:= [ Y2[1]k[1] 

 (mod p) , Y2[2]k[2] 
 (mod p) , Y2[3]k[3] 

 (mod p) , Y2[4]k[4] 
 (mod p) ]

Y3 := [  142 ,76 ,100 ,462 ]
9. Broadcasts Y3

Now we set Main-Deck := Y3 = [  142 ,76 ,100 ,462 ]. All cards have been masked and locked. Now we deal 
the first card in the Main-Deck to to player 3. We'll execute the protocol “Single-Card-Deal (for VM-L-OL, 
VM-VL and VM-VL-VUM)” (section 3.7.14).

Let x := Main-Deck[1] = 142 .

Player 1: 
1. Set q1 := 99 * 445  (mod 1018) = 281 and broadcast q1. (q1  is the card key : the product of the key 

used for the first card in the locking round and the masking key)

Player 2:  
1. Set q2 := 601 * 299 (mod 1018) = 531 and broadcast q2.

Player 3: 
1. Set q3 := 107 * 101 (mod 1018) = 627 and keeps q3 secret.
2. Computes w :=  q1* .. * qn. (the q values broadcast by the players)

w := 281 * 531 * 627 (mod 1018 ) = 79
3. Computes y := OpenCard(x,w) = Dw(x). First we compute the v, the key inverse of w.

v := w-1 = 79-1  (mod 1018)
v := 567
y := xv 

y := 142567 = 118
4. Now we can see that 118 = Open-Deck[3]  so the card dealt to player 3 is the “three of hearts”. No 

other player knows this card, because q3 was kept secret.

If we compose the three permutations we see that this is correct. These are the movements the third card (3) 
has done while being shuffled:

Open-Deck[3] = 118 (the first third place in the open deck)
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F1
-1[3]  = 2 (the second place after player 1 shuffles)

F2
-1[2] =  4 (then the fourth place after player 2 shuffles)

F3
-1[4] =  1 (then the first place of the Main-Deck, after player 3 shuffles)

And we dealt the first card (1) of the Main-Deck, so the dealt card is the correct one.
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9. Performance
The  main  disadvantage  of  existing  protocols  is  their  poor  performance  for  current  home  PCs.  MPF 
overcomes this problem. We've analyzed an implementation of MPF and simulated other implementations 
and compared them against theoretical performance of other protocols as described in [CR05].

Our aim has been to compare the protocols on a realistic environment, which should take into account that: 

- The protocol is run over the Internet, and users are spread all over the world.

- User computers are home PCs.

- There is no hardware acceleration.

- Users will play several games together.

- CPU usage for the GUI during game play is 10%.

Instead of actually running the protocol on the Internet (which makes results very difficult to repeat), we used  
a LAN but forced restrictions on the latency of packets (simulating high round-trip time) and  throughput  
(simulating low bandwidth). Because users send each other data,  the limiting factor in bandwidth is up-
stream direction and not down-stream bandwidth, which is considerably higher for an average ISP. We've 
tried to be conservative in numbers not to over-estimate performance. We simulate a simple poker-like game 
where cards are dealt and afterwards there is a showdown. During game play we use the free CPU time to  
pre-compute  the  following  shuffles.  Processors  are  never  left  idle,  either  they  are  computing  or 
sending/receiving data, and never both at the same time. Verification protocols are run in parallel, so as to 
maximize CPU use. Amortized game time represents the time users must wait for a new game to begin, after  
the first game has been completed, which takes into account pre-calculation.  Parameters are presented in 
Table 10.

Property Value

Computer type 1.8 Mhz CPU, single core.

Number of users 10

Number of cards in the deck 52

Number of games to play 10

Average game time (not including 
protocol computation time)

40 seconds (*)

Time of 1024-bit modular 
exponentiation 

1,5 ms (using GMP)

Time of 1024-bit modular 
multiplication

87 uS

Security threshold for interactive 
protocols

2-20

Security threshold for non-interactive 
proofs

2-80

Cards dealt to each player 5

Internet round-trip time 150 ms

Up-stream bandwidth 20 Kb/sec

Multiplication time on an Elliptic 
Curve over the Z/pZ finite field with a 
160-bit prime. 

1,5 ms

(*) This is an average online poker game time, according to Wikipedia.

Table 10: Simulation Scenario
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For  classical  cryptography  we  use  a  1024  modulus,  which  provides  adequate  security  for  current  
communications as stated [NIST800-57].  For Elliptic Curve Cryptography (ECC) we use a 160-bit modulus 
and assume multiplication performance comparable to Z/pZ modular exponentiation.  This is a matter  of  
discussion which method is faster for 1024 bit finite fields (ECC Diffie-Hellman vs. Diffie-Hellman). It is widely 
agreed that ECC performance is superior when p becomes larger, such as 2048 bits, but here we limit our 
analysis to 1024 bit modulus. It should be noted that we assume the figures given in [CR05] also take into  
account full CPU utilization due to parallelization.  Also all protocols assume computers have access to a 
broadcast medium or there is central server with unlimited input and output bandwidth which broadcasts  
received messages to all the remaining players, but bandwidth will still be limited by senders and receivers.  
We also assume the broadcasting server can also send private messages, without consuming the remaining 
players bandwidth. We have not taken into account Internet round-trip time and the performance penalty  
(overhead) in sending and receiving a message due to the difficulty of calculating how the other protocols 
can benefit from parallelization. For example, [Cr86] protocol sends large amounts of tiny messages and so  
its protocol time  may be grater than the value shown by the fact that message overhead is not accounted. 

Table 11 summarizes the results of the comparison.

Operation MPF 
over ECC 
base 
VSM-VL 
using 
CO-VP

MPF 
over ECC 
base 
VSM-VL 
using HMVP

MPF
over PH
base  
VSM-VL
using 
CO-VP

MPF
over PH
base  
VSM-VL
using 
HMVP

KKOT90 BS03 Cr86 CSD04b

Shuffle Time 14.61 s 27.31 s 36.26 s 57.97 s 333.80 s 273.39 s 415.54 s 102.29 s

All cards draw time    (5 
cards for each player)

0.17 s 0.17 s 0.43 s 0.43 s 21.00 s 35.94 s 17.28 s 46.29 s

All cards show time
(showdown)

0.12 s 0.12 s 0.39 s 0.39 s 0.78 s 46.30 s 0.08 s 46.30 s

Total processing time for 
first game

14.90 s 27.60 s 37.08 s 58.79 s 355.58 s 355.63 s 432.89 s 194.88 s

Amortized processing 
time per game

1.60 s 2.87 s 4.06 s 22.79 s 319.58 s 319.63 s 396.89 s 158.88 s

Table 11: Comparison of Protocol Times
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10. Open Questions & Conclusions
Mental Poker protocol inspired Goldwasser and Micali to invent probabilistic encryption, in order to provide a 
provable framework to secure mental poker games. This fact has deviated the development of mental poker  
protocols to those that rely on probabilistic encryption. Nevertheless commutative ciphers bring performance 
benefits and can be as strong as some standardized cryptographic assumptions, such as the Decisional  
Diffie-Hellman (DDH)  assumption.  We conjecture  that  probabilistic  encryption  prevents  the  existence  of 
abrupt drop-out recovery protocols resistant against collusion, which excludes protocols based on threshold 
schemes for secret sharing. Abrupt drop-out recovery protocols are required for any real life usage affecting 
money or reputation scores. If the conjecture is true, then Mental Poker protocol development would need to 
shift back to deterministic ciphers. 

In this thesis we have proposed a new framework to create secure mental  poker protocols (MPF).  The 
framework addresses theoretical and practical issues, such as security, performance, drop-out tolerance and 
modular design.  We've also built PHMP and ECMP protocols derived from MPF. The performance of PHMP 
and ECMP was analyzed theoretically and PHMP was then implemented and tested successfully. As far as 
our knowledge of state of the art in mental poker protocols, PHMP/ECMP are the first to provide acceptable  
performance for common card games over the Internet. In the design of MPF, at least six novel ideas have  
contributed: the use of the CUOC property, the use double encryptions per player (masking/locking), the CO-
VP and FI-UniVP protocols, and the abrupt drop out recovery protocol.
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