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REPARACIÓN AUTOMÁTICA DE SOFTWARE: CICLOS
INFINITOS

La reparación automática de software (ASR) es un tópico de investigación muy reciente.
Consiste en la implementación de herramientas que puedan automáticamente detectar bugs
y corregirlos. Se considera cualquier tipo de bug: un defecto en el código o una falla du-
rante la ejecución del código. En los últimos años, han surgido enfoques novedosos y con
resultados favorables para este campo.

En general, el proceso de desarrollo de software es costoso en términos de tiempo y
también económicos. En particular, la fase de mantenimiento de software suele ser con-
siderada como la más costosa. Un aspecto clave del mantenimiento es la reparación del
código fuente. Cuando la cantidad de reportes de bugs supera ampliamente la cantidad
de programadores, esta etapa de mantenimiento puede convertirse en un cuello de botella
dañino para la evolución de un proyecto de software. Aquí reside el objetivo principal de
ASR: reparar automáticamente el software para minimizar sus costos de mantenimiento.

Hay quienes creen, dentro del campo de ASR, que la mejor manera de reparar bugs
es de�niendo una taxonomía claramente de�nida sobre los distintos tipos de bugs y luego
implementar métodos de reparación especializados para cada tipo. Es decir, de�nir una
determinada �clase de defectos� y construir un programa que repare esa clase de defectos,
teniendo en cuenta las propiedades especí�cas de esa clase.

Una clase de defectos perteneciente a cualquier lenguaje de programación es la de ci-
clos in�nitos. Este bug es el culpable de que �se cuelgue un programa�. Se trata de un
ciclo que itera in�nitamente, de forma no delibarada, sin devolver un resultado o lanzar
una excepción. El objetivo de esta tesis es implementar un programa que intente reparar
automáticamente esta clase de defectos.

En esta tesis se consideran los ciclos del tipo �while (condition) { /* block */ }�,
y la estrategia para reparar ciclos in�nitos es en base a la búsqueda de una nueva condi-
ción del while. Se implementa un programa que intenta reparar automáticamente código
Java. Para ello, se desarrollan técnicas de análisis y síntesis automática de código, con el
propósito de encontrar automáticamente una condición booleana que prevenga el ciclado
in�nito.

Este trabajo fue principalmente desarrollado durante una pasantía de 6 meses en el
año 2014 en INRIA-Lille, bajo la supevisión de Martin Monperrus, miembro del equipo de
investigación INRIA SPIRALS (ver http://www.monperrus.net/martin/).

Palabras claves: Fallas, Reparación Automática de Código, Ciclos In�nitos, Análisis de
Código, Síntesis de Código.
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TOWARDS AUTOMATIC REPAIR OF INFINITE LOOPS

Automatic Software Repair is a recent Computer Science research area. It is concerned
with the development of tools which automatically detect and repair bugs. Any kind of
bug is considered: a defect in the source code or a fault in the execution of it. In recent
years, innovative ideas have emerged with favorable results.

Generally, software development processes are costly both in terms of time and money.
Particularly, software maintenance is often considered the most expensive one (the �legacy
crisis�: new software outpaces the ability to maintain it). A key task during the mainte-
nance phase is the source code correction. Unfortunately, for most projects, the number
of reported bugs is greater than the number of programmers. This way, the maintenance
phase can become a severe bottleneck for the evolution of a project. This is the essential
purpose of Automatic Software Repair: it aims to minimize the maintenance costs by au-
tomatically repairing software.

Within Automatic Software Repair community, there are some who believe that the
most appropriate way to automatically repair bugs is drawing a clear taxonomy of common
coding faults and then focusing in developing a speci�c repair method for each type. That
is, each bug is assigned to its corresponding defect class and, to repair it, a speci�c repair
method which exploits the defect class' intrinsic properties is used.

One defect class present in every programming language is the �in�nite loop� defect
class. In our experience, every programmer or user has, at least once, experienced this
type of bug. It is one of the coding faults responsible for hanging programs. It consists
of a loop which unintentionally iterates nonstop without returning an expected result or
throwing an exception. In this work, we aim to automatically repair this defect class.

Particularly, we focus our attention on while loops. The repair endeavor includes the
in�nite loop detection and the synthesis of a patch for the in�nite loop. We develop a tech-
nique to statically analyze source code but we also use a code synthesis technique based
on logic SMT problems.

This work was mainly executed during a 6-month internship in the summer of 2014
at INRIA-Lille under the supervision of Martin Monperrus (from INRIA SPIRALS team;
please refer to his website http://www.monperrus.net/martin/).

Keywords: Bugs, Automatic Software Repair, In�nite Loops, Code Analysis, Code Syn-
thesis.

ii

http://www.monperrus.net/martin/


Gracias a la educación pública, por permitir que complete estudios secundario y unversitario.

Y gracias a todos los maestros �con y sin guardapolvo� de los cuales aprendí

siquiera pequeñas lecciones.

iii



CONTENTS

1. Towards Automatic Repair of In�nite Loops . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 In�nite Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Loop Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Testing Framework for Looping Guards . . . . . . . . . . . . . . . . . . . . 8
2.3 Loop and Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Preliminary study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Study Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Project Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 General Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Tests per Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Loops per Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.4 Loop Executions per Test . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.5 Exit Nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.6 Iteration Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.7 Loop by Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.8 Iteration Records of 0 or 1 . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.9 Top record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.10 Idempotent Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Revisiting the Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Project Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 In�nite Loop Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Finding Thresholds in Hanging Tests . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Patch Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5.1 Synthesis as an SMT Problem . . . . . . . . . . . . . . . . . . . . . . 27
4.5.2 Synthesis of a New Looping Guard . . . . . . . . . . . . . . . . . . . 28
4.5.3 Runtime Value Collection . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.4 Synthesis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Metrics Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 RQ1 Competence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 RQ2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 RQ3 Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.4 RQ4 Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.5 RQ5 Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.6 RQ6 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.7 RQ7 Idempotence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Approach Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 46

7. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Appendix 54

A. Full Repair Example of an In�nite Loop . . . . . . . . . . . . . . . . . . . . . . . 1
A.1 Example Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A.2 In�nite Loop Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A.2.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A.2.2 In�nite Loop Detection . . . . . . . . . . . . . . . . . . . . . . . . . 5
A.2.3 Finding Thresholds in Hanging Tests . . . . . . . . . . . . . . . . . . 5
A.2.4 Patch Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

B. Component-based Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B.2 SMT Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B.2.1 Syntaxis Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B.2.2 Semantics Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B.2.3 Synthesis Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

B.3 Decoding an Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C. Implementation Essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C.1 Java Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C.2 Java Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.3 Runtime Data Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.3.1 Thread Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
C.3.2 Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.4 Class Loader Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C.4.2 Class Loader Terminology . . . . . . . . . . . . . . . . . . . . . . . . 19
C.4.3 Class Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.5 User-de�ned Class Loaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
C.5.1 Implementing a User-de�ned Class Loader with JVM 1.1 . . . . . . . 21
C.5.2 Impementing a User-de�ned Class Loader with JVM 1.2 . . . . . . . 22
C.5.3 Usage of User-de�ned Class Loaders . . . . . . . . . . . . . . . . . . 25

C.6 Source Code Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



1. Towards Automatic Repair of In�nite Loops

1.1 Introduction

Research on automatic software repair is concerned with the development of systems that
automatically detect and repair bugs. We consider as bug a behavior observed during
program execution that does not correspond to the expected one. Automatic software
repair is close to other research areas such as automatic debugging, software testing, pro-
gram synthesis and machine learning for software engineering. There have been a number
of results in this �eld [1], [6], [2], [12], since seminal work at the end of the 2000ies [1], [6], [3].

The ultimate goal of automatic software repair is to minimize the software maintenance
costs. Software maintenance is often considered the most expensive development phase;
a phenomenon called the �legacy crisis� [17], where new software outpaces the ability to
maintain it. A key task during maintenance is the correction of bugs (colloquially �bug
�xing�). The automatic repair of even a fraction of software bugs would translate to huge
savings in development time and costs.

Hamill and Goseva-Popstojanova [16] showed that one of the most common types of
software faults are coding faults. That is, faults directly associated with the source code,
independent of the requirements. For instance, incorrectly assigned values, uninitialized
values, missing or incorrect data validation, incorrect loop or conditional statements, and
so on. In accordance with this, within Automatic Software Repair community, there are
some who believe that the most appropriate way to automatically repair bugs is drawing a
clear taxonomy of common coding faults and then focusing in developing a speci�c repair
method for each type [7]. That is, each bug is assigned to its corresponding defect class

and, to repair it, a speci�c repair method which exploits the defect class' intrinsic proper-
ties is used.

One defect class present in every programming language is the �in�nite loop� defect
class. Every computer programmer or user has, at least once, experienced this type of bug.
It is so much part of the programming folklore that Apple Inc. has renamed the street
encircling its head quarters �In�nite Loop�. It is one of the coding faults responsible for
hanging processes. It consists of a loop which unintentionally iterates nonstop without re-
turning an expected result or throwing an exception. In this work, we aim to automatically
repair this defect class. To our knowledge, there is no published work on this topic.

1.2 In�nite Loops

The defect class we address is �in�nite loop�. An in�nite loop is the in�nite repetitive
execution of the block of statements conforming the loop body. An in�nite loop occurs
when the execution of the loop body does not change anymore the part of the execution
state that a�ects the truth value of the predicate used as the looping condition.

An in�nite loop is critical because: 1) the program is not responsive anymore; 2) the
in�nite loop consumes 100.00 % of the CPU time making no progress.

1



1. Towards Automatic Repair of In�nite Loops 2

We believe the in�nite loop defect class is fairly common. Take, for instance, one of the
historically most popular UNIX commands: grep. Anyone can search in its Git repository
[28] for commits �xing in�nite loops. One of them is shown in Demo 1.2.1. As indicated
by the the comment introduced in the commit, the changes of the commit are made to �x
an in�nite loop. In order to do so, the boolean condition of the loop is corrected and a
break statement is introduced.

- while ((match_offset = (*execute) (beg, lim - beg, &match_size, 1)) != (size_t) -1) {

+ while (lim-beg && (match_offset = (*execute) (beg, lim - beg, &match_size, 1)) != (size_t) -1) {

char const *b = beg + match_offset;

/* Avoid matching the empty line at the end of the buffer. */

if (b == lim)

break;

+ /* Avoid hanging on grep --color "" foo */

+ if (match_size == 0)

+ break;

fwrite (beg, sizeof (char), match_offset, stdout);

Demonstration 1.2.1. In�nite loop patch in grep.c.

Although the defect class de�nition is simple to understand, the automatic repair of an
in�nite loop is more troublesome. To begin with, let us consider the problem of detecting
an in�nite loop. That is, given the source code implementation of a loop, we have to
output whether it is in�nite or not. Suppose this problem was decidable, and we had the
implementation of the solving algorithm isInfinite. We now analyze what would happen
with an invocation to the method in Demo 1.2.2, when the argument is that same loop
on the rec method, recLoop. If recLoop is in�nite, then the guard of the if statement
evaluates to true, allowing the loop to terminate with the following break statement; then,
the loop is not in�nite. If recLoop is not in�nite, then the guard of the if statement
always evaluates to false; then, the loop could never terminate; then, the loop is in�nite.
Obviously, this is a contradiction.

vo i d r e c ( Loop loop ) {
wh i l e ( t r u e ) {

i f ( i s I n f i n i t e ( l oop ) )
b reak ;

}
}

Demonstration 1.2.2

As a result, the problem of detecting an in�nite loop is undecidable (this is the well-
known Halting problem). Therefore, there cannot exist an algorithm which decides whether
a loop is in�nite or not. If we cannot solve the problem of detecting an in�nite loop, let
alone automatically repairing it. To overcome this limitation, we delve into more details
about Automatic Software Repair.

A widely accepted problem de�nition [7] for Automatic Software Repair is the following:
�given a test suite with at least one failing test, generate a patch that makes all test cases
pass�. Typically, an automatic repair tool implementation would require the user to provide
input source code (single �le or complete project) and a test suite, and it would be able
to output a patch. In turn, when the patch is applied to the original source code, the
execution of the test suite would be successful. The steps of a repair tool generally are:
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1. Create a patch:

(a) Failure detection (unexpected behavior is observed).

(b) Bug diagnosis (reason about why it happened).

(c) Fault localization (�nd the possible root cause).

(d) Repair inference (logical representation of the patch).

(e) Code synthesis (compilable representation of the patch).

2. Apply the patch to the source code and run the test suite.

3. If the execution is successful, output the found patch.

4. Otherwise, start again from (1) �or terminate without a solution.

In the context of test-suite based software repair, repairing an in�nite loop means mod-
ifying the behavior of the in�nite loop so that every test case executing the in�nite loop
both halts and passes. In our case, the patch we aim to synthesize consists of a new
boolean expression for the loop condition of the in�nite loop. In other words, for the repair
to be successful, the new predicate must correct every in�nite execution happening in the
non-halting test cases.

Let us narrow our problem a little bit further. We begin by saying that the most pop-
ular loop constructs present in imperative languages are: for, while and do-while. For
sake of simplicity, we'll mainly focus on while loops. The ideal repair tool would repair
any in�nite while loop. But that is a gargantuan undertaking, and it is our concern to
implement a repair technique versatile enough to be practical. Then, we intend to com-
mence solving this problem with a more sensible and reasonable objective.

Historically, as programming languages evolved, researchers spent more and more time
deliberating about programming practices. We consider that, through history, con�ict-
ing viewpoints and discussions were eventually reconciled in a general consensus favoring
program modularity and orthodox source code organization. In [19] Dijkstra shares his
stance against the GOTO statement, for it makes the code incredibly hard to follow. In
[20], Guy Steele tries to debunk the myth about the alleged performance overhead inher-
ent to procedure calls �which conform a powerful means of expressiveness,� and argues
that �spaghetti code� could become much more clear if programmers adopted the usage
of procedure calls. Moreover, in [18] Presser succinctly de�nes structured programming
languages. For instance, he de�nes the loop construct as the: �transfer of control so as to
repeat an operation as long as some speci�ed condition, which may be placed anywhere in
the loop, is true; when the condition is no longer true control is transferred to next point
following the loop in program sequence.�

We therefore take a stance on how we think most while loops are implemented in prac-
tice. Based on our intuition, programming experience and trying to comply with generally
accepted best programming practices, our stance is that in most while loops the predi-
cate of the looping guard alone determines the �ow of the program (i.e., loops do not have
break or return statements) and that loop executions generally have low iteration records.

With this perspective in mind, we propose an approach to automatically repair in�nite
loops for those cases. The implementation of our repair tool is called Infinitel . It is based
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on the development of di�erent loop manipulation techniques to: dynamically analyze the
number of iterations of loops, decide to interrupt the loop execution, and dynamically
examine the state of the loop on a per-iteration basis. In order to synthesize a new loop
condition, we encode this set of program states as a code synthesis problem using a tech-
nique based on Satis�ability Modulo Theory (SMT).

We evaluate Infinitel on seven seeded-bugs and on seven real-bugs. Our technique is
able to repair all of them, within seconds up to one hour on a standard laptop con�guration.
We deeply discuss those cases to understand the strength and weaknesses of our automatic
repair technique.

1.3 Thesis Contributions

The contributions of this thesis are:

• The de�nition of the in�nite loop defect class.

• The de�nition of the automatic repair problem for in�nite loops.

• The introduction of a loop theory to describe loops beyond their syntactic structure.

• An empirical study on loops, based on three real-world projects, to understand how
loops are used in practice.

• Two techniques to dynamically analyze the behavior of loops. One is used in the
empirical loop study and the other in the implementation of our in�nite loop repair
method.

• A technique to statically analyze the scope of loops, which, in turn, enables a dynamic
analysis of the state of the loop in each iteration.

• A solution for the automatic repair problem for in�nite loops, based on the follow-
ing techniques: source code manipulation, runtime loop state analaysis and code
synthesis.

• The evaluation of the proposed solution with 7 seeded bugs and 7 real bugs.

1.4 Structure of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we de�ne a loop theory which is
referred to throughout this document. In Chapter 3 we present a preliminary case study of
while loops, which brings support for the assumptions we make in our approach. In this
section we develop a technique, based on source code manipulation, which lets us analyze
the usage of loops in real projects.

In Chapter 4 we describe our approach to automatically repair the looping guard of
while loops in detail. This endeavor includes a strategy fot in�nite loop detection and the
synthesis of a patch for the in�nite loop. We develop a technique to manipulate loops, also
based on source code manipulation. Speci�cally, the goal is to control how the loop decides
to iterate or break before every iteration. This technique lets us dynamically analyze the
number of iterations of the loop and decide to interrupt the loop execution, in the case
of an in�nite loop execution. This way, we do not hang our repair method when we run
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the non-halting test cases. We also develop another technique to let us statically analyze
the scope of the loop. This technique enables us to dynamically examine the state of the
loop on a per-iteration basis. Through the inspection of the loop state throughout di�erent
iterations, we are able to produce the patch, with a code synthesis technique based on logic
SMT problems.

In Chapter 5 we show the evaluation of our approach. We evaluate our implementation,
Infinitel , on seven seeded-bugs and on seven real-bugs. We show favorable results in both
cases, being able to �nd a patch for every bug, with a reasonable performance.

In Chapter 6 we review the repair method and discuss its limitations. In Chapter 7,
we compare our approach to other related work. In Chapter 8 we express our conclusions
and we describe new ideas, triggered by the research of this thesis, for future work.

Finally, we append three explanatory chapters to help the careful reader thoroughly
understand the work presented in this thesis. In Appendix A, we show how to repair an
in�nite loop with a full example. In Appendix B, we describe the code synthesis method-
ology in detail. In Appendix C, we discuss implementation details concerning the runtime
compilation of modi�ed source code.



2. LOOP THEORY

In this section we introduce loop-speci�c concepts which are referred to throughout the
thesis, we present a general testing framework for loops and we brie�y introduce two kinds
of in�nite loop bugs and give a hint on how to repair them.

2.1 Concepts

The syntactic de�nition of the loop is a code block which repeats itself as long as some
conditions hold. One could also envision the loop construct as a tool made to continuously
transform objects until they become �ready� to carry on with subsequent execution steps.
These de�nitions give place to di�erent concepts we embodied in a Loop Theory.

vo i d c l e a r ( i n t [ ] a r r a y ) {
i n t n = a r r a y . l e n g t h ;
f o r ( i n t i = 0 ; i < n ; i++) {

a r r a y [ i ] = 0 ;
}

}

(a)

Node r oo t (Node node ) {
wh i l e ( t r u e ) {

i f ( node . pa r en t == n u l l )
r e t u r n node ;

node = node . pa r en t ;
}

}

(b)

i n t i nd e x ( i n t [ ] s o r t ed , i n t e ) {
i n t low = 0 ;
i n t h igh = s o r t e d . l e n g t h − 1 ;
do {

i n t mid = ( low+h igh+1) /2 ;
i f ( s o r t e d [ mid ] <= e ) {

low = mid ;
} e l s e {

h igh = mid ;
}

} wh i l e ( s o r t e d [ low ] != e ) ;
r e t u r n low ;

}

(c)

i n t method ( i n t a ) {
i n t b = a ;
wh i l e ( b > 0) {

i f ( b == 18) {
r e t u r n a ;

}
i f ( b == 9) {

break ;
}
b −=1;

}
r e t u r n b ;

}

(d)

Demonstration 2.1.1. (a): for loop. (b): unbreakable while loop. (c) idempotent do-while

loop. (d) while loop with a break and return statements.

Loop: control �ow statement which permits to repeatedly execute a block of statements
until a boolean condition evaluates to false, or until an instruction to terminate the loop
is executed (see break and return statements).

Loop body: the block of statements inside the loop to be repeatedly executed. For instance,
in Demo 2.1.1(b), the loop body consists of an if statement followed by an assignment.

Break statement: instruction to break the loop from within the loop body (e.g., statement
of second if in Demo 2.1.1(d)).

Return statement: instruction to both break the loop and exit the method containing it,
from wihin the loop body (e.g., statement of �rst if in Demo 2.1.1(d)).

6
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Looping guard: boolean condition used in a loop as a way to determine termination. For
instance, the looping guard in Demo 2.1.1(a) is �i < n�. The role of the looping guard is
twofold and it changes at runtime. On the one hand, before executing the �rst iteration of
the loop, the looping guard acts as an entrance precondition. If the precondition is not met
(the �rst evaluation of the looping guard returns false), the �ow of the program continues
without entering the loop altogether. However, if the precondition is met, the �rst iteration
begins and, from then on, the looping guard will be acting as an exit condition. If any
subsequent evaluation of the looping guard evalutes to false, then the exit condition is met,
so the �ow can continue outsite of the loop. In do-while loops, as there is no precondition
role, the looping guard always acts as an exit condition.

Completion point : a speci�c state of the variables in scope of the loop which determine
the termination of the loop. We can think of the looping guard as a predicate Ψ(I) which
takes as input a set I of variables and outputs a boolean value �true to iterate or false to
exit the loop. The completion point is achieved when the predicate Ψ(I) evalutes to false.

In the previous paragraph, our reference to the completion point does not con�ict with the
twofold role of the looping guard. When the looping guard acts as the exit condition, the
association betwen the exit condition and the completion point is direct. When the looping
guard acts as a precondition, the precondition is describing the completion point because
it indicates whether the completion point has already been reached before the loop or not.

Loop execution: a loop execution starts the �rst time the looping guard is evaluated and
ends when the �ow of the program continues outisde the loop. That is, even if a loop
performs zero iterations, we count the single evaluation of the looping guard to false as one
loop execution.

Iteration record: number of times the looping guard is evaluated to true during the loop
execution.

In�nite execution: non-halting executions of a loop. Abusing language, we refer to �in�nite
loop� and �in�nite execution� interchangeably. E.g., in Demo 2.1.1(c), there is an in�nite
execution if the element e is not present in the input array sorted.

Unbreakable loop: a �while (true)� loop with return statements, inside a non-void method
where no ulterior instruction exists after the loop. The characteristics of such a loop make
it �unbreakable� because it does not support the insertion of a break statement. If we
wanted to insert a break statement, we would also have to add a return statement follow-
ing the loop. Otherwise, the method containing the loop would not compile, for it is a
non-void method and it must have a return statement in every branch of execution. An
example is shown in Demo 2.1.1(b). Note that to identify an unbreakable loop a syntactic
analysis is su�cient.

Idempotent loop: a loop whose looping guard could be evaluated arbitrarily more times
than needed and the result of the algorithm would not change. That is, in this type of
loops, for the loop to be correct, only a lower bound on the number of iterations exists; it
does not exist an upper bound. The loop in Demo 2.1.1(c) illustrates this concept. The
algorithm �nds the index of an element �present in a sorted array� with binary search.
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The looping guard makes the algorithm have O(log n) complexity (where n is the length
of the input array). However, we can make this algorithm run in O(n) with the following
looping guard conversion (leaving the loop body unmodi�ed):

- while (sorted[low] != e)

+ for (int iterations = 0; iterations <= sorted.length; iterations += 1)

The result of the algorithm in both cases returns the correct index, but the second imple-
mentation would allow the loop to iterate more times than needed.

Door-door execution: a loop execution which ends because the evaluation of the loop-
ing guard returns false. The term is coined from the analogy of entering and exiting a
room through a door, usually the single conventional entrance to a room. For instance, in
Demo 2.1.1(a), the loop will always have door-door executions, because there is not any
other kind of way it can terminate. Because the termination of a door-door execution is
determined by the evaluation of the boolean condition of the looping guard, we say that
door-door executions have �conditional exits�.

Door-window execution: a loop execution which does not end like a door-door execution:
instead of ending after the evaluation of the looping guard, it ends after executing a state-
ment from within the loop body. Following the same analogy, the sudden exit from inside
the loop body parallels an unanticipated evacuation from a room throughout a window.
In this case, the termination of the loop can have three causes: the execution of a break
statement, the execution of a return statement, or the raise of an uncaught exception. Ac-
cording to its cause, we subclass the termination type in three kinds: �break exit�, �return
exit� or �throw exit�. For instance, in Demo 2.1.1(b), whenever the loop is executed, it can
only have door-window executions with return exits.

Exit nature: the way a loop execution ends: conditional, break, return or throw exit.
Leaving throw exits aside, sometimes the exit nature can be inferred statically: if there
are no break or return statements (such as in Demo 2.1.1(a) and Demo 2.1.1(c)) it will
always be a conditional exit; in the case of unbreakable loops (such as in Demo 2.1.1(b)),
it will always be a return exit. On other loops with break and/or return statement(s)
(Demo 2.1.1(d)), the exit nature can only be determined during runtime.

2.2 Testing Framework for Looping Guards

For completion of this loop theory, in this subsection we present one standard way to de-
scribe the behavior of looping guards using test cases. As said in Section 2.1, a looping
guard has two roles: entrance precondition and exit condition. The idea is to have enough
test cases as to evaluate to true and false in each role. It would require 3 tests to specify
for and while loops, and 2 for do-while loops.

Let us use the loop of Demo 2.1.1(a) as an example for the explanation. Each row of
Table 2.2.1 represents a test case for the method of that loop, the �rst column of each row
being the test input for that method.
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Method Input Precondition First Exit Condition Last Exit Condition Iteration Record

[] false - - 0
[7] true false - 1

[7, 0, 1] true true false 3

Table 2.2.1. Tests for loop in Demo 2.1.1(a).

The �rst test case evaluates the looping guard to false the �rst time it is evaluated.
That is, the test case performs a loop execution of 0 iterations. This can be achieved with
an empty array as input in the example. The idea is to evaluate the precondition role of
the looping guard to false.

The second test case evaluates the looping guard to false the second time it is evaluated.
That is, the test case performs a loop execution of 1 iteration. Any array of size 1 would
be useful in the example. The idea is to evaluate the precondition role of the looping guard
to true and the exit condition role to false.

The third test evaluates the looping guard to false only after it has already been eval-
uated to true twice before. That is, the test case performs a loop execution of more than
1 iteration. Any array of size greater than 1 would be useful in the example. The idea is
to evaluate the exit condition role to true at least once.

In the case of a do-while loop, 2 test cases su�ce because the looping guard always
acts as an exit condition. Therefore, only the test cases of 1 and more-than-1 iterations
are required.

2.3 Loop and Bugs

In this section we introduce the kind of bugs related to the in�nite loop problem. Based on
the two aforementioned roles of a loop condition (see Section 2.1), we can �nd two kinds
of in�nite loop bugs: wrong precondition bug or wrong exit condition bug. In the �rst
case, the bug occurs because the program does not skip the loop when it should. In the
second case, the bug occurs because the loop does not terminate at the appropriate moment.

To �x a wrong precondition bug, there are two possible repairs. First, one can wrap the
loop within an if/then statement encoding the precondition. Second, one can modify the
loop condition so that the precondition becomes correct while the exit predicate is still valid.

For a wrong exit condition bug, there are four possible repairs: 1) changing the loop
condition; 2) adding a window exit such as �if(X) break� or �if(X) return�; 3) changing
the loop body such that the body correctly modi�es the execution state that is analyzed
in the loop condition; 4) a combination of the previous alternatives. The automatic repair
technique we present in this thesis targets a change in the loop condition, which is able to
both �x incorrect preconditions and incorrect exit predicates.



3. PRELIMINARY STUDY

In this section, we present an empirical study on the usage of loops. We focus �here, and
in the rest of the thesis� on while loops only, leaving the other two (for and do-while)
for future work.

3.1 Hypothesis

In Section 1.2 we stated our stance on how we think while loops are generally implemented
in practice. What follows is an empirical study in order to contrast our stance with real
life projects. We do not intend to achieve large scale statistical validity of the results
presented. Instead, we want to test our stance in correlation with reality taking a few
arbitrary real life projects. The evidence provided on this preliminary case study could
allow us to imagine how a prototypical loop would be implemented, and to contrast our
stance with this prototypical loop.

3.2 Study Protocol

3.2.1 Dataset

Three projects were selected for the study (Table 3.2.1). These projects were selected
because they are well-known among Java programmers, and because they are large projects
(number of �les and lines of code shown in the table were calculated by CLOC [25]). In
addition, another good reason to select these projects is that they represent three libraries
with di�erent domains, which is good for the generalizability of our results.

Project Name Git Commit Java Files (src/test) LOC (src/test)

Apache Commons Lang dc27be2 132 / 143 23 504 / 40 481
Apache Commons Collections b5�daf 300 / 190 25 335 / 29 746
Apache Commons Math 32ef444 893 / 554 91 878 / 96 046

Table 3.2.1. Description of the three projects used for the preliminary study.

3.2.2 Analysis

To carry out this study we have the source code of each project (they are open source)
and their corresponding test suite. The idea is to run each test suite, record information
of every loop execution and analyze the recorded execution data according to di�erent
criteria. For each test case we collect the following information: number of executions of
each loop and, for each execution, the iteration record and exit nature. To collect those
numbers, a source code instrumentation is carried out on each loop (Subsection 3.2.3).

We perform two types of analysis: static and dynamic. Static analysis tells how many
loops a project contains, how many loops with break or return statements there are,
whether a given loop is unbreakable, etc. Dynamic analysis is only possible with loop
executions, obtained from running the test suites. It tells the iteration records observed in
practice, the exit nature of the loop in each execution, etc.

10
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3.2.3 Project Instrumentation

Automatic Instrumentation and Recompilation

We want to run each project's test suite and collect information of every loop execution.
One way to do this is by rewriting the source code (appending, for instance, procedure
calls to a static method to register the desired information,) recompiling it and running
the test suite on the modi�ed code. We refer to this technique as project instrumentation.1

The methodology is sketched in Fig. 3.2.1. Suppose we originally have the source code of
one loop implementation (step 1 in the �gure). We proceed by modifying (and recompiling)
the source code, �implanting� a monitor to the loop which will generate callbacks to our
program, so we can keep track of the behavior of the loop (step 2). Then, during the test
suite execution, we make sure the modi�ed source code is loaded (step 3). This way, when
that loop is executed in a thread running the test suite, the attached loop monitor can
generate callbacks to another thread collecting loop information.

Figure 3.2.1. Diagram of source code instrumentation to implant a loop monitor.

Project Instrumentation for the Preliminary Study

We now explain the speci�c instrumentation used in this case. The whole process is com-
pletely automatic and this particular instrumentation completely preserves the semantics
of the original source code, so the impact on the test executions is none. The instrumen-
tation is carried out on every loop of each project before running the test suite.

To better follow the detail of the instrumentation, we show in Demo 3.2.1 the modi�-
cations performed on the loop shown in Demo 2.1.1(d) according to this instrumentation.
Firstly, we fetch the loop monitor. Assuming that we assign the id 83 to this loop, we
obtain the loop monitor from a global static list (line 3). Secondly, we declare a local
variable (line 4), to tally the number of iterations of each loop execution, and increment
its value (line 6). Finally, we write where the callbacks should be realized by the loop
monitor. To acknowledge return exits, we insert a callback before the return statement
(line 9). Similarly, we insert a callback before the break statement for break exits (line
13). To acknowledge throw exits, we wrap the original loop body in a try-catch (lines 7
and 17-20). In the case an exception is thrown, we catch it in the appended catch block
(line 17), we write the callback (line 18), and then we throw the exception (line 19), to
preserve the semantics of the loop. In each of these three callbacks, the loop monitor can
both determine the iteration record of the loop execution and the exit nature. To handle
conditional exits, we simply introduce a callback to the loop monitor after the loop body
(line 22). In turn, the loop monitor discerns a conditional exit from a break exit because,
in the latter case, this callback would be preceded by a previous callback handling the
break exit.

1 We use Spoon [5] to implement source code instrumentation.
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1 int method(int a) {

2 int b = a;

3 + LoopMonitor LM_83 = Global.getMonitor(83);

4 + int ITERS_83 = 0;

5 while (b > 0) {

6 + ITERS_83 ++;

7 + try {

8 if (b == 18) {

9 + LM_83.returnExit(ITERS_83);

10 return a;

11 }

12 if (b == 9) {

13 + LM_83.breakExit(ITERS_83);

14 break;

15 }

16 b -=1;

17 + } catch (Throwable THW_83) {

18 + LM_83.throwExit(ITERS_83);

19 + throw THW_83;

20 + }

21 }

22 + LM_83.end(ITERS_83);

23 return b;

24 }

Demonstration 3.2.1. Instrumentation on loop from Demo 2.1.1(d)

3.3 Empirical Analysis

Here, we present the empirical analysis on the information collected from the execution
of the test suite for the selected projects: Lang, Collections and Math. We divide the
analysis in di�erent sections.2

3.3.1 General Outline

In table Table 3.3.1 we summarize useful properties for the three projects to be analyzed:
Lang, Collections and Math. These are values which will be referred to further in the
following sections.

The �rst part of the table shows properties obtained by statically analyzing the source code
of each project, whereas the second part of the table �as well as the following sections�
shows results derived from dynamic analysis (information gathered from test executions.)

Property Lang Collection Math

Loops 90 155 278
Loops with break statement 11 8 23
Loops with return statement 5 54 62
Loops with break and return 0 1 3
Unbreakable loops 0 4 40

Tests 2 556 14 792 6 077
Tests executing at least one loop 525 3 850 2 620
Tests executing at least one loop (%) 20.54 % 26.03 % 43.11 %

Table 3.3.1. Properties of the projects to analyze.

2 Boxplots shown below have whiskers for 10% and 90% percentiles. The bottom and top of each box
are always the �rst and third quartiles (Q1 and Q3), and the band inside each box is always the second
quartile (the median.)
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3.3.2 Tests per Loop

Figure 3.3.1. Tests per loop across projects.

Concern: the �rst thing we would like to know is whether the test suite is a good resource
to analyze loops. Considering what was said in Section 2.2, we would need at least 3 tests
per loop to specify every looping guard.

Results: from �gures exhibited above, a direct calculation would give us that Lang has
5.83 (525/90) tests per loop, Collections has 24.84 (3 850/155) andMath, 9.42 (2 620/278).
However, let us be more analytical and provide more evidence about the number of tests
per loop.

In Fig. 3.3.1 the plot shows, for each project, the boxplot of the number of tests per loop.
The median for Lang is 4, which means that 50.00 % of loops have at least 4 tests. The
median for Collections is 6, and for Math is 5. In Lang 61.11 % (55/90) of loops have at
least 3 tests, in Collections 67.10 % (104/155) and in Math 66.91 % (186/278).

Insight: in the worst case (Lang), 61.11 % of loops have at least 3 tests. Being 3 the bare
minimum, this suggests that we can indeed exploit the test suite to study loops.

3.3.3 Loops per Test

Figure 3.3.2. Loops per test across projects.
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Concern: if we are trying to �x a failing test of a project, but we do not know which
is the failing loop, we would like to know how many di�erent loops each test executes to
predict how many loops should be analyzed during the fault localization phase.

Results: in Fig. 3.3.2 the plot shows, for each project, the boxplot of the number of
di�erent loops executed per test. The highest Q3 value is 5 for Collections. This means
that 75.00 % of tests execute 5 or less loops. The Q3 is 3 for Math, and 2 for Lang.

Insight: when repairing a failing test, in the worst case, we would have to analyze at most
5 loops to �nd the failing loop.

3.3.4 Loop Executions per Test

Figure 3.3.3. Loop executions per test (logarithmic scale).

Concern: we have analyzed the relation between number of tests and number of loops.
We can further study this relation with a �ner-grained study by counting the number of
loop executions in each test.

Results: in Fig. 3.3.3 the plot shows the boxplot of the number of loop executions in
the test cases of each project (with logarithmic scale in vertical axis.) The median for
Lang is 3, which means that 50.00 % of the test cases in the project have at most 3 loop
executions. The median for Collections is 19 and for Math is 23. However, there is a high
standard deviation and the Q3 values are 8 for Lang, 68 for Collections and 804 forMath.

It should be said that counting the number of loop executions involves dealing with rather
large �gures. The total number of loop executions is 3.08× 106 in Lang, it is 5.62× 106 in
Collections and it is 1.37× 109 in Math.

Insight: the number of loop executions in each test largely varies among and within
projects. A reason that could possibly explain this is that loop constructs are more critical
in Math (it is both the project with most loops and highest proportion of tests executing
loops �with 278 and 43.11 %, respectively), then in Collections (those magnitudes are 155
and 26.03 %) and �nally in Lang (90 and 20.54 %).
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3.3.5 Exit Nature

Figure 3.3.4. Exit nature in Lang (ordered by decreasing conditional exit ratio).

Figure 3.3.5. Exit nature in Collections (ordered by decreasing conditional exit ratio).

Figure 3.3.6. Exit nature in Math (ordered by decreasing conditional exit ratio).

Concern: in Section 1.2 we said that we expect most loops to have door-door executions
and conditional exits. Then, we need to analyze the exit nature of the loops in real projects.
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Results: we �rst analyze the loops statically. In Lang 74/90 loops (82.22 %) do not have
break or return statements. In Collections, 94/155 (60.65 %). In Math, the number is
196/278 (70.50 %). On the other hand, Lang has 0 unbreakable loops, Collections has
4/155 (2.58 %) and Math, 40/278 (14.39 %).

We now analyze the exit nature dynamically. In Fig. 3.3.4, Fig. 3.3.5 and Fig. 3.3.6 the
plots show, for each loop in the project, the proportion of each observed exit nature (i.e.,
out of 100 loop executions, how many executions exited through a conditional, break, re-
turn or throw exit).

It is interesting to look what happens with loops which have break or return statements.
As we can see in the �gures, there are loops which exhibit both door-door and door-window
executions. Excluding unbreakable loops (because they could never have door-door exe-
cutions), this happens in 13/16 (81.25 %) in Lang, 51/57 (89.47 %) in Collections and
20/42 (47.62 %) in Math.

Finally, we can add that 99.77 % of all executions in Lang are door-door executions. That
value is 85.21 % for Collections. It is 85.35 % for Math.

Insight: the static analysis exposes an absence of break and return statements in the
majority of the loops, so most loops are constructed only with door-door executions in
mind. The dynamic analysis con�rms this bias for door-door executions, showing that,
in all projects, most loop executions end with conditional exits. Even when the loop
has door-window executions, most loops with door-window executions have a mixed exit
nature.

3.3.6 Iteration Record

Concern: if we want a �x for a door-door execution, we would have to correct the looping
guard of the loop. To verify that the �xing looping guard is correct, we would have to eval-
uate it throughout all iterations of each passing test. The complexity of this veri�cation
phase would depend on the iteration record of each execution, so we would like to know
what to expect in this regard for the prototypical loop.

Results: in Fig. 3.3.7, Fig. 3.3.8 and Fig. 3.3.9 the plots show, for each exit nature, the
boxplot of the iteration record of each loop execution. For conditional exits, the median
is 0 in all projects. This means that 50.00 % of loop executions ending with a conditional
exit perform 0 loop iterations in all projects.

Regarding other exit natures, the median for break exits is 2 for Lang, 4 for Collections
and 1 for Math. The median for return exits is 2 for Lang, 1 for Collections and 1 for
Math. Finally, the median values for throw exits are 1 in Lang and Collections and 26 in
Math.

Insight: the door-door execution is the fastest one to �nish. Return exits are slightly
faster than break exits. In any case, the expected iteration record for the prototypical loop
is fairly low.



3. Preliminary study 17

Figure 3.3.7. Exit nature record comparison in Lang.

Figure 3.3.8. Exit nature record comparison in Collections.

Figure 3.3.9. Exit nature record comparison in Math.
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3.3.7 Loop by Loop

Figure 3.3.10. Record whisker boxplots of each loop in Lang (with outliers).

Figure 3.3.11. Record whisker boxplots of each loop in Collections (with outliers).

Figure 3.3.12. Record whisker boxplots of each loop in Math (cropped, with outliers).

Concern: our previous analysis only takes into consideration aggregated �gures, so fur-
ther analysis is desirable to verify that the expected iteration record of a loop execution is
fairly low.

Results: in Fig. 3.3.10, Fig. 3.3.11 and Fig. 3.3.12, the plots show the boxplots of itera-
tion records individually for each loop (with outliers). A shadowed area is shown from the
median value of each boxplot to the horizontal axis. Loops are ordered descendingly by
the value of the median record.
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First, we can see that in all projects there is a long-tailed distribution of median values,
where higher median values are present only in the minority of the loops (the left side
of each �gure). Second, we can see that the IQR (interquartile range) of the boxplots is
generally low in the tail of the diagram, where most loops reside. This means that most
iteration records of a loop are close to the median. These two remarks suggest that most
loops have a similar median value and a narrow IQR.

To illustrate the previous remark with numbers, we can say that in Lang nearly 92.00 %
of the loops have a median iteration record equal or lower than 8; nearly 93.00 % of loops
in Collections have a median iteration record equal or lower than 18; and, nearly 90.00 %
of loops in Math have a median iteration record equal or lower than 49.

In the left side of Fig. 3.3.11 and Fig. 3.3.12 we can spot boxplots where the median over-
laps the Q3 value. This means that the median is close to the top record of each loop.
Then, although the median is higher than in most other loops, the worst iteration record
would not go much higher than the median.

Finally, if we compare the plots of the projects, we see that there are more outliers inMath,
and then in Collections. This is because in those projects the number of loop executions
is higher, so it is more likely to �nd outliers.

Insight: as a long-tail distribution suggests, most loops throughout a project exhibit
similar iteration records. In the worst case (Math) nearly 90.00 % of loops have a median
iteration record equal or lower than 49. This means that most loop executions have an
iteration record lower than 50.

3.3.8 Iteration Records of 0 or 1

Concern: the previous analysis suggest that that the number of iterations in each loop ex-
ecution is fairly low. So far, we are overlooking border cases. We now analyze one extreme
case by observing iteration records of 0 or 1. We refer to �n-executions� to loop executions
with an iteration record of exactly n iterations. Then, here we analyze 0- and 1-executions.

Results: in Fig. 3.3.13, Fig. 3.3.14, Fig. 3.3.15 the plots show, for each loop in the
project, the proportion of 0-executions, 1-executions and n-executions for n > 1. We can
see that some loops have the ideal loop speci�cation explained in Section 2.2. Namely,
20/90 (22.22 %) in Lang, 66/155 (42.58 %) in Collections and 68/278 (24.46 %) in Math.
We can also see, in all projects, as said in Section 2.1, that the looping guard is e�ectively
taking the role of a precondition in many executions.

In Lang, 59.97 % of all executions are 0-executions, in Collections 49.12 % and 72.21 %
in Math. On the other hand, 17.61 % of all executions are 1-executions in Lang, 32.39 %
in Collections and 22.46 % in Math. This means that 77.58 % of all executions have less
than 2 iterations in Lang, 81.51 % in Collections and 94.67 % in Math.

Insight: around 50.00 % of the overall loop executions of a project are 0-executions, and
around 80.00 % of the overall loop executions of a project perform less than 2 iterations.
This supports the fact that the prototypical loops would have low iteration records.
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Figure 3.3.13. 0-1 Executions in Lang.

Figure 3.3.14. 0-1 Executions in Collections.

Figure 3.3.15. 0-1 Executions in Math.
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3.3.9 Top record

Figure 3.3.16. Top records across projects.

Concern: we now shift our attention to another extreme case: what happens when we
look at the top record (maximum iteration record observed throughout all executions) of
each loop.

Results: in Fig. 3.3.16 the plot shows, for each project, the boxplot of the top record for
each loop. The highest top records observed for each project are 5 279 in Lang, 10 000 in
Collections and 5 000 000 in Math. These values are all outliers. The median top record
is 3 for Lang, 4 for Collections and 10 for Math; and the Q3 values are 8, 15 and 50,
respectively.

Taking 50 as reference, in Lang 83/90 (92.22 %) of loops have a lower top record, 148/155
(95.48 %) in Collections and 207/278 (74.46 %) in Math.

Insight: considering the worst case only (Math), around 75.00 % of loops have a top
record lower than 50. This supports the fact that most loop executions have an iteration
record lower than 50.

3.3.10 Idempotent Loops

Concern: we introduced in Section 2.1, the concept of idempotent loop. This kind of
loop is interesting to analyze because it only has a lower bound for iteration records. This
feature could be exploited, when �xing a failing loop, to generate a new looping guard. For
this reason, we also analyze the amount of idempotent loops in the selected projects.

Results: �nding idempotent loops requires an individual analysis of each loop, so, for
practicality, we look for a weaker characterization of loops: loops that behave like idempo-
tent loops.

To �nd these loops, we do the following. We manipulate each loop and force them to per-
form 1 000 extra iterations every time they are executed. That is, when the looping guard
evaluates to false for the �rst time, we override the looping guard, and perform another
1 000 iterations. If, with these changes, all tests using these loops still pass, and if, in every
extra iteration, the looping guard keeps evaluating to false, then the altered loop behaves
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like an idempotent loop. For simplicity, loops with break or return statements are ignored.

Altering each loop with the above methodology, and rerunning all its tests, we obtain that
3/90 loops in Lang behave like idempotent loops, 5/155 in Collections and 18/278 inMath.

Insight: most loops are not idempotent.

3.4 Revisiting the Hypothesis

Based on the discussions above, in this particular preliminary study a prototypical loop
has the following characteristics:

• It is not idempotent.

• There are at least 3 test cases executing the loop.

• It only has door-door executions with conditional exits.

• The number of iterations in each execution is generally lower than 50.

Notwithstanding the exact number of tests and iterations, nor the universal validity of
these claims, these results are consistent with the stance we mentioned in Section 1.2. We
can now fully introduce our repair technique based on this stance.



4. PROPOSED APPROACH

In this section we present our approach to �xing in�nite loops, called Infinitel . We focus on
while loops where the bug lies in the loop condition. According to the lexicon presented in
Chapter 2, our approach repairs wrong exit condition bugs of door-door loop executions.
Our technique is based on test cases, the in�nite door-door executions to be �xed are those
manifested while running the test suite.

In this context, �repairing� the in�nite loop means �nding a looping guard for the in�nite
loop such that each test case using that loop both halts and passes all the assertions. We
�rst introduce the overview of our repair approach, and then we proceed by describing each
step individually.

4.1 Overview

Algorithm 4.1.1. Top level algorithm to repair an in�nite loop.

1: procedure infiniteLoopRepair(src, tests)
2: src2← instrumentLoops(src)
3: loop← detectInfiniteLoop(src2, tests)
4: thresholds← findThresholds(loop, src2, tests)
5: patch← findPatch(loop, src2, tests, thresholds)
6: return patch
7: end procedure

In Algorithm 4.1.1 we illustrate the top level algorithm of our repair method. The
input for our algorithm is the source code containing an in�nite loop (parameter src) and
the test suite of the source code (parameter tests). The test suite should be composed of
passing tests and at least one hanging test, the one that triggers the in�nite loop.

The �rst step is to instrument the source code of the input project src. The instru-
mentation enables us to remotely control loop executions (for instance, to stop tests from
hanging). Once the instrumentation is performed, the second step is to �nd an in�nite
loop during the execution of the test suite. Actually, because in�nite loop detection is not
decidable, we implement a straightforward strategy to �nd the in�nite loop. We do this
by running the test suite and detecting hanging tests.

In the third step, the goal is to �nd the exact number of iterations needed by the
detected in�nite loop to pass the assertions of each hanging test. We call this number a
�threshold� for that loop in that test. When breaking the in�nite loop right after it has
performed a number of loop iterations equal to the threshold, the test case passes.

In the last step, a new looping guard is synthesised, this is the �nal patch. The detailed
explanation of each step is given in the following sections (Subsections 4.2, 4.3, 4.4 and
4.5).

23
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4.2 Project Instrumentation

1 int method(int a) {

2 int b = a;

3 + LoopMonitor LM_83 = Global.getMonitor(83);

4 + int ITERS_83 = 0;

5 - while (b > 0) {

6 + while (true) {

7 + boolean stay = LM_83.decide(b > 0, ITERS_83);

8 + LM_83.collect(stay, b, a, ...);

9 + if (stay) {

10 + ITERS_83 ++;

11 if (b == 18) {

12 return a;

13 }

14 if (b == 9) {

15 break;

16 }

17 b -=1;

18 + } else break;

19 }

20 return b;

21 }

Demonstration 4.2.1. Illustration of our loop instrumentation on Demo 2.1.1(d). The code
pre�xed by �+�, in green, is automatically injected with source code transformation.

We show here how to modify the implementation of a loop in order to control its exe-
cutions remotely. With this instrumentation, we can implant a loop monitor (a technique
also shown in Subsection 3.2.3). By doing so, we implant a hook between the thread
running test cases and the main thread of our repair program. The loop monitor can
perform callbacks to the main thread, so we can control loop executions in the thread
running test cases from the thread of our repair program. Speci�cally, we want to control
the looping guard and preserve the behavior of the loop body intact. The loop monitor
is a rei�cation of the looping guard: it decides to iterate or break the loop in each iteration.

We illustrate the source code instrumentation in Demo 4.2.1. Firstly, we fetch the loop
monitor who controls the looping guard of the loop (line 3). Secondly, a local variable is
created to store the iteration record of each loop execution (line 4). Then, we disassemble
the original loop. To do this, we wrap the original loop body (lines 11-17) within an if
statement (lines 9-18). The original looping guard is deleted (line 5), and we postpone
the decision to iterate for later, so we force the �ow of the program to enter the loop
with a trivial looping condition (line 6). The decision to proceed with a new iteration or
break the loop is delegated to the loop monitor (continuing with the door analogy, the
loop monitor is the new doorkeeper). How the loop monitor takes a decision is explained
in Section 4.3. The decision of whether to stay in the loop or break it is stored in another
local variable (line 7). Then, according to this decision, either a new iteration is carried
out (then branch of the new wrapping if) or the loop breaks (else branch). In the former
case, the local variable is incremented (line 10). Finally, we add one more statement on
this instrumentation to have the loop monitor collect information of each iteration (line
8). The meaning of this statement is explained in Section 4.5.
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4.3 In�nite Loop Detection

Our strategy to detect in�nite loops is straightforward. We keep track of the number of
iterations throughout a loop execution and, if a maximum number of iterations is exceeded,
we assume it is an in�nite loop. We implement this detection strategy with the non-trivial
instrumentation explained in Section 4.2.

During the loop execution, the loop monitor is responsible for deciding whether to it-
erate or break before starting a new iteration. To do this, it receives the evaluation of
the original looping guard and the number of already completed iterations. If this number
exceeds a maximum number of iterations, the loop monitor labels the loop as �in�nite�
and breaks it. Otherwise, the loop monitor simply returns the evaluation of the original
looping guard. That is, this decision mechanism resembles that of a conventional looping
guard, with the addition of a restriction on the iteration record. This threshold is fully
parameterizable, and we use a reasonable value of 1 million.

The in�nite loop detection is detailed in Algorithm 4.3.1. At this stage, the parameter
src is the instrumented source code and the parameter tests is the test suite. We simply
run the whole test suite on src. Every loop execution is monitored by a loop monitor.
In the event of an in�nite execution of a hanging test, the loop monitor will detect the
in�nite execution and it will break the loop when the threshold is exceeded. Also, because
this in�nite loop is detected during the in�nite execution, the loop monitor stores the
execution rank of the in�nite execution (for instance, �the fourth loop execution of hanging
test testABC�). The output of this algorithm is a speci�c data structure that contains the
list of hanging tests, the in�nite loop where each one hangs, and the execution rank of the
in�nite execution in each case.

Algorithm 4.3.1. Detecting in�nite loops after instrumentation.

1: procedure detectInfiniteLoops(src, tests)
2: hangingTests← {}
3: monitors← implantedMonitors()
4: setLimitInAll(monitors, 1 000 000)
5: for test ∈ tests do
6: run(src, test)
7: for monitor ∈ monitors do
8: if monitor.hasInfiniteExecution() then
9: loop← monitor.getLoop()
10: rank ← monitor.getInfiniteExecutionRank()
11: hangingTests.put(test, loop, rank)
12: end if

13: monitor.reset()
14: end for

15: end for

16: return hangingTests
17: end procedure

4.4 Finding Thresholds in Hanging Tests

A hanging test, when executed, gets trapped in an in�nite loop execution because the
looping guard never evaluates to false. That is, the looping guard does not break the loop
when it should. To rectify this, we have to amend the looping guard so that it breaks
the loop during the in�nite execution at the appropriate moment. Hence, we �rst have to
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determine the appropriate moment to break the loop in each in�nite execution.

We estimate the appropriate moment to break the loop in an in�nite execution by con-
trolling the iteration record of the in�nite loop in that execution. As seen in Section 4.3,
we can use the loop monitor to break any loop by simply setting a maximum value of per-
mitted iterations. If we set the maximum value equal to χ during the in�nite execution of
an in�nite loop, and we observe that the hanging test both halts and passes, then we have
found this appropriate moment, it is when χ iterations have been executed. We refer to
the target χ value as an �angelic record�. We use this terminology based on the literature
terminology [13], [11].

Our method to �nd the angelic record of a hanging test is the following: we explore
values from 0 to the prede�ned threshold in order, run the hanging test each time and
assess whether it passes. If it does, the probed value is the angelic record χ. This strategy
is attractive for us because of its simplicity, but also because across our experiments with
real projects we have often found that the number of loop iterations is likely a low value
(less than 50).

It is necessary to clarify that we look for the angelic record only during the in�nite
execution. For instance, if test testABC hangs on the fourth execution of the in�nite loop,
we look for an angelic record only in the fourth execution, assuming that the loop will not
hang in any subsequent execution.

The angelic record search is detailed in Algorithm 4.4.1. We receive a detected in�nite
loop (parameter loop), the instrumented source code (parameter src) and the test suite of
the project (parameter test). From the previous step (Section 4.3), we already know the
hanging tests of an in�nite loop. Then, for each hanging test, we probe di�erent values
until we �nd the angelic record. We do this for all hanging tests. We store this information
in an associative array where the key is an in�nite loop under repair.

Algorithm 4.4.1. Detail of threshold search phase.

1: procedure findThresholds(loop, src, tests)
2: thresholds← {}
3: monitor ← loop.getMonitor()
4: hangingTests← hangingTestsOf(loop)
5: for test ∈ hangingTests do
6: for (i = 0; i ≤ 1 000 000; i++) do
7: monitor.setLimit(i)
8: result← run(src, test)
9: if result.isSuccesful() then
10: thresholds.put(test, i)
11: break

12: end if

13: end for

14: end for

15: return thresholds
16: end procedure
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4.5 Patch Synthesis

To synthesize a new looping guard, we use a program synthesis technique. The idea is to
synthesize a new looping guard that would make all tests pass. In particular, we use a
similar approach as [4], [14] and [11]. The idea is to formulate the synthesis problem as a
logical SMT problem. To do this, we encode runtime information into a �rst-order logic
formula. Then, we use the logical solver Z3 [22] to �nd a solution. If a solution for the
problem is found, we translate the solution into a boolean expression �the new looping
guard.

To describe this phase of our repair method, we brie�y introduce the general code
synthesis based on SMT problems (we present the full explanation in Appendix B) and,
then, we explain how it is used particularly in our repair method.

4.5.1 Synthesis as an SMT Problem

Introduction

The goal of code synthesis is to synthesise a program Ψ which satis�es the following condi-
tion: for any acceptable input Ĩ, the synthesised program Ψ should output an acceptable
output Õ. To synthesise Ψ, the code synthesis algorithm receives a program speci�cation as
parameter, in the form of an �input-output� pair set V. Then, for any given pair (I,O) ∈ V,
whenever I is the argument of Ψ, then the program should output the value O.

One technique in code synthesis, the one used in our method, is the component-based

synthesis [14]. In this case, the code synthesis algorithm receives a set of �base compo-
nents� C, in addition to the set V. The speci�cation of the to-be synthesised algorithm is
the following: for any given pair (I,O) ∈ V, whenever I is the argument of Ψ, then the
program has to return the value O; and, in order to compute this value, it can only use
components from the C set.

In component-based synthesis, the synthesis algorithm can be viewed as a higher-
order function. It receives functions as arguments (the component set C includes di�erent
functions �unary, binary and ternary operators), and it returns another function (target
program Ψ). In our case, we use comparison operators (C>, C≥, C=, C 6=), logic oper-
ators (Cnot, Cor, Cand), linear arithmetic operators (C+, C−), multiplication (C×) and
if-then-else (Cite).

Example

We now illustrate component-based synthesis with an example. Suppose we want to build
and algorithm to answer whether the sum of two values p and q equals a number n. Sup-
pose we select the component and input-output pair sets as in Demo 4.5.1(a).

One valid solution is presented in Demo 4.5.1(b). There are three inputs: p, q and n.
And there are 3 components: C+, C= and C×. Then, the target algorithm can compute up
to 6 di�erent values (one for each input, and one value for the result of operating with each
component). However, the return statement can only return one of these values; and it
should return that value which enables the algorithm to comply with the speci�cation. In
the presented solution, o6 is the returned value. Note that this statement is equivalent to



4. Proposed Approach 28

C = {C+, C=, C×}

V = {

({p=1,q=2,n=3}, true),

({p=2,q=-1,n=1}, true),

({p=11,q=2,n=3}, false)

}

(a)

Ψ(I):

o1 := I.p

o2 := I.q

o3 := I.n

o4 := o2 + o1

o5 := o3 × o4

o6 := o4 == o3

return o6

(b)

Demonstration 4.5.1. (a) Components and speci�cation. (b) Valid code synthesis solution.

�o4 == o3�, in turn equal to �(o2 + o1) == o3�, equal to �(q + p)==n�. To be valid, the
program in Demo 4.5.1(b) should comply with the three (I,O) pairs of V. We verify this
for the �rst (I,O) pair. The output of this program for input I = {p = 1, q = 2, n = 3}
is �(2+1)==3� ≡ true, which is equal to the speci�ed output. Finally, note that o5 is not
used to compute the returned value. However, we allow this case because the algorithm is
semantically equivalent with our without it, so it is not a concern for code synthesis.

Reference

One way to solve the code synthesis problem is to encode the description of the target pro-
gram Ψ with �rst-order logic constraints. The constraints describe both the syntax of the
algorithm (such as number of lines, declaration of local variables, etc) and the semantics
(to make the program compliant with the speci�cation). Then, an SMT solver is used to
decide whether there exists a solution satisfying every constraint. If there is, the solution
is decoded back and translated into an algorithm.

The technique using the SMT-solver originates in [4] under the name component-based

synthesis. It is re�ned in [14] with the use of input-output pairs as the algorithm spec-
i�cation, and, �nally, it is also used in [11] with an explicit aim towards object-oriented
programming. Also in [11], code synthesis is used to generate a predicate, derived from the
synthesised algorithm with backwards traversal of it. That is, we can condense the algo-
rithm into an expression; and, because the output of the algorithm is a boolean value, the
condensed expression is a predicate. For instance, the generated predicate of Demo 4.5.1
would be: �(q + p)==n�. In this thesis we also use this technique.

We postpone the last part of the explanation of the component-based synthesis until
Appendix B, so we can continue with the main task of this thesis: in�nite loop repair.

4.5.2 Synthesis of a New Looping Guard

We now use the synthesis method described in Subsection 4.5.1 to generate a new looping
guard for the in�nite loop. The speci�cation of the new looping guard can be informally
expressed as follows: the looping guard predicate should allow every test executing the
in�nite loop to both halt and pass. To synthesize the new looping guard, we need two
arguments: the component set and the input-output pair set.
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Component Set

The selection of components is done accumulatively. We start o� with an empty set of
components. In this case, there is only one possibility to �nd a new looping guard: an
input i ∈ I of the speci�cation has to be equal to the corresponding output for every (I,O)
pair of V. If this is the case, then the new looping guard would simply be �while (i)�.
If not, we formulate a new SMT problem with the same speci�cation V and a new non-
empty component set. We try to �nd a new looping guard. If we succeed, the synthesis
phase is �nished. If not, we keep adding components until either a new looping guard is
found, or until we exhaust all of the available components and �nish the synthesis phase
unsuccessfully.

In our implementation, the component set is �xed and the �rst components we add
are comparison operators (C>, C≥, C=, C 6=), then logic operators (Cnot, Cor, Cand), then
linear arithmetic operators (C+, C−), then if-then-else (Cite), and, �nally, multiplication
(C×). We choose this order based on previous experience with code synthesis in [11].

Input-Output Pair Set

Whereas we directly pick the components to formulate an SMT problem, yielding the
input-output pair set is a whole di�erent story. This set represents the speci�cation of
the new looping guard. Normally, it is the programmer who gets to write the looping
guard. In doing so, she usually writes the looping guard already knowing which variables
are involved in the predicate, predicting the predicate will evaluate to false accordingly.
She can do this beacuse of her human comprehension of the overall loop's speci�c purpose.
However, this methodology is not appropriate when we plan to generate a looping guard
automatically. So we do the opposite. Based on the evaluations of the looping guard (which
take place when running test cases), we register how the looping guard should evaluate in
each iteration. Then, through code synthesis, we generate a looping guard that evaluates
exactly to those same values.

The input-output speci�cation V is assembled as follows. The collection of input-output
pairs is done by the loop monitor. At each iteration it creates an (I,O) pair associating
the decision of the loop monitor to O and the context information �whose collection is
described in Subsection 4.5.3� to I.

4.5.3 Runtime Value Collection

The context information is collected by the loop monitor within the callback in line 8 of
Demo 4.2.1. The context information re�ects the local state of the program at each itera-
tion. It is composed of variables collected with a source code analysis technique which we
refer to as �runtime value collection�. It allows to collect values in �ve di�erent ways:

Reachable variables: we scan the scope of the loop to gather every reachable variable. A
reachable variable is a variable with two qualities: it is accessible from the loop scope (it is
declared within the lexical scope of the loop) and it is initialized (to prevent compilation
errors). It could either be a local variable, method parameters or instance �elds.

Visible �eld access: for each reachable variable of a user-de�ned type, we also gather its
visible �elds. That is, if the class (owner of the method containing the loop being in-
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strumented) has visibility of some of the variable's �elds, we use them. We only refer to
user-de�ned types, so �anArray.length� would not be a visible �eld access.

Getters: for a reachable variable of a user-de�ned type, we also include, when possible,
procedure calls to �getter methods�. To do this, we must review the source code declaration
of the variable class in search of such methods. We consider that a method is a getter if
it has the following characteristics: it has no parameters, it is implemented in one line,
the line is a return statement, and the returned element is an instance �eld. If we �nd a
getter, and the class has visibility access to it, then we use it.

Recycling of the original looping guard: although the original looping guard is not used as
the real looping guard after the loop instrumentation, it is highly likely that it still provides
precise information about the iteration context. For this reason, we also include the value
of its evaluation.

Subvalues of the original looping guard: whenever possible, we also inspect the values of
subcomponents of the original looping guard. For instance, if the original looping guard is
a conjunction, we also include the evaluation of each subpredicate of the conjunction.

We have now shown di�erent alternatives to gather context information within the lex-
ical scope of the loop. However, SMT solvers only support boolean or numeric values. This
means we have to extract information of the supported types from the amassed variables:

Extraction by value: for a variable of primitive type (boolean, char, int, double, etc.) we
are able to copy by value.

Extraction by queries: for each gathered variable of a non-primitive type, we perform
di�erent queries. First, we check nullness; and, if the variable is not null, we may also
extract information by using a hardcoded list of typical queries (such as the length of a
String, or the size of a List). We can see the hardcoded queries in Table 4.5.1. The
way to interpret the table is: if the variable's class subclasses a given superclass, then we
perform the corresponding queries on the variable.

Superclass Queries

Object variable != null

Array variable.length

Iterator variable.hasNext()

Enumeration variable.hasMoreElements()

Collection
variable.size()

variable.isEmpty()

CharSequence
variable.length()

variable.length()==0

Dictionary
variable.size()

variable.isEmpty()

Map
variable.size()

variable.isEmpty()

Table 4.5.1. Queries for each type.

Finally, there is one last re�nement phase of the input-output pair set. Firstly, we want
each set I of every pair (I,O) ∈ V to have the same elements. That is, ∀(I1, O1), (I2, O2) ∈
V we have that x ∈ I1 ⇔ x ∈ I2. Secondly, we enrich each set I of every (I,O) pair with
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three constants {−1, 0, 1}. These are values commonly used in predicates, so we make sure
they are available for code synthesis. In third place, we remove redundant information.
Note that, as the de�nition of set implies, there cannot be two di�erent pairs (I1, O1),
(I2, O2) ∈ V such that (I1 = I2 ∧O1 = O2). To go further, we remove input elements with
the same value in every (I,O) pair if that value is one of the constants we used to enrich
set V. That is, if x ∈ I1 (where (I1, O1) ∈ V) and I1.x = c with c ∈ {−1, 0, 1}, and there
isn't a set I2 where I2.x 6= c, we remove x from every Ii set.

4.5.4 Synthesis algorithm

The algorithm of the new looping guard synthesis can be seen in Algorithm 4.5.2. The
�rst step is to collect the input-output pair set (detailed in Algorithm 4.5.1). To do this
we execute every test using the loop and fetch the collected input-output pairs of every
test run. Once we obtain this speci�cation, we start the search of a new looping guard.
We begin with an empty component set. We formulate an SMT problem and use a solver
to �nd a solution. If we succeed, we transform the SMT solution back into a boolean code
expression, the patch. If not, we add operators to the component set and formulate a new
SMT problem. We do this until we exhaust all of the components or a correct looping
guard has been synthesized.

Algorithm 4.5.1. Obtaining the input-output pair set.

1: procedure specification(loop, thresholds, src)
2: V ← {}
3: monitor ← loop.getMonitor()
4: tests← testsOf(loop)
5: for test ∈ tests do
6: if isHangingTestOf(loop, test) then
7: threshold← thresholds.keyFor(test)
8: monitor.setLimit(threshold)
9: end if

10: run(src, test)
11: pairs← monitor.getPairs()
12: V.addAll(pairs)
13: end for

14: return V
15: end procedure

Algorithm 4.5.2. Patch synthesis.

1: procedure findPatch(loop, thresholds, src, tests)
2: spec← specification(src, loop, thresholds)
3: components← {}
4: while not exhaustedAll(components) do
5: smtProblem← encodeToSMT(spec, components)
6: if smtProblem.isFeasible() then
7: solution← smtProblem.solution()
8: patch← decodeToPatch(solution)
9: return patch
10: end if

11: operators← nextOperatorBundle()
12: components.addAll(operators)
13: end while

14: end procedure

This concludes the explanation of our method. To explain the details of this synthesis
technique, it requires a large amount of space. We encourage the attentive reader to
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refer to Appendix B for an in-detail explanation of the component-based synthesis and to
Appendix A for a full end-to-end example of the repair process.



5. EVALUATION

In this section we present the evaluation on our implementation, Infinitel . Our evaluation
is based on the repair of 7 seeded bugs and 7 real bugs. We aim to answer the following
research questions:

RQ1 Competence: does Infinitel solve the bugs? How does it compare with a human-
written one?

RQ2 Performance: does Infinitel solve the bugs in a reasonable amount of time? What is
the bottleneck of the repair method?

RQ3 Adequacy: how hard is the code synthesis of each patch? Does the synthesis based
on SMT problems scale?

RQ4 Limit: does the 1 million iteration limit (Section 4.3) have type I errors (false posi-
tives)? Does it a�ect the performance of Infinitel?

RQ5 Technique: how does our Runtime Value Collection technique (Subsection 4.5.3)
impact on each patch? Is it su�cient to describe the loop state in each bug?

RQ6 Records: what are the angelic record values (Section 4.4) for the real bugs? Is our
strategy �probing values� appropriate for this step?

RQ7 Idempotence: is there any idempotent loop among the real bugs? Would a repair
method taking advantage of this improve performance?

5.1 Evaluation Setup

5.1.1 Environment

Infinitel is implemented on Java, running on a JRE version 7, with a maximum heap
of 2 GB. The SMT solver used is Z3 [22] version 4.3.2. The operating system where the
evaluation is performed is OS X Mavericks. The full speci�cations are shown in Table 5.1.1.

Operating System OS X 10.9

RAM 4GB RAM 1.067MHz DDR3

CPU 2.8 GHz Intel Core 2 Duo

Heap Size 2048 MB
SMT Solver Z3-SMTLib v.4.3.2

Java Platform Java SE Runtime Environment build 1.7.0_55-b13

Table 5.1.1. Running environment of the evaluation.

5.1.2 Methodology

Our evaluation is based on the repair of 7 seeded bugs and 7 real bugs. In both cases, each
bug consists of one in�nite loop with at least one hanging test. We now describe each type
of bug.

33
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Seeded Bugs

A seeded bug is a project deliberately �infected� with a manually created in�nite loop. We
create four projects which only have one class, one test class and one in�nite loop. We
also have three projects for large scale evaluation. These three projects are real projects
which are manually infected with an in�nite loop. To achieve this, we select a loop in the
project and we perform two small transformations on it. Firstly, we substitute the looping
guard for �while (true)�1. Secondly, the loop body is wrapped with a try/catch with
an empty catch block. This is done to prevent an exception from breaking the in�nite loop.

For the large scale evaluation of seeded bugs we use Collections and Math projects
(same commits as shown in Table 3.2.1). The �rst two bugs come from two di�erent infected
loops on Collections (AbstractMapBag.java on line 590 and AbstractDualBidiMap.java

on line 352), whereas the third one comes from an infected loop on Math (FastMath.java
line 3 120).

Real Bugs

Name Repository Commit Subproject Test

csv git://git.apache.org/commons-csv.git 4dfc8ed � Y

fop git://git.apache.org/fop.git 13984cc � N

pdfbox A git://git.apache.org/pdfbox.git b10cf48 � N

pdfbox B git://git.apache.org/pdfbox.git a2ab77f fontbox N

pig git://git.apache.org/pig.git 5abfbd0 piggybank Y

tika git://git.apache.org/tika.git 1b694e7 tika-parser N

uima git://git.apache.org/uima-uimaj.git 155596a jVinci N

Table 5.1.2. Real bugs.

The seven real bugs come from existing projects of the Apache Git repositories [27]. To
�nd real bugs, we individually analyze some projects looking for commits reporting and
�xing an in�nite loop bug. Speci�cally, we perform a keyword2 based search on the Git
[26] log of each project repository.

We depict each real bug in Table 5.1.23. In the case of csv and pig the commit includes
both code changes to �x the in�nite loop and a test case validating those changes. For the
rest of the commits, the commit does not include a validating test case. Then, because our
method requires the manifestation of the in�nite loop in at least one test case, manually
created tests were added for the 5 remaining commits. The policy followed to manually
create tests is the following: a) at least one of these tests has an in�nite execution of
the loop attempted to be �xed by the commit changes; b) the added hanging tests halt
without the changes introduced in the commit and pass with them; and, c) the added and
not hanging tests, if any, pass.

1 Actually, changing to �while (true)� would raise compilation errors for unreachable code. We use an
equivalent form: �while ("".isEmpty())�.

2 Used keywords: in�nite, loop, iteration, hang, endless, ending, terminating.
3 The pdfbox B bug is detected and incorrectly reported as �xed in commit e41cbd1, but it is only �xed

in later commit a2ab77f. We use the buggy loop in the �rst commit and use the second commit to compare
the �x.

git://git.apache.org/commons-csv.git
git://git.apache.org/fop.git
git://git.apache.org/pdfbox.git
git://git.apache.org/pdfbox.git
git://git.apache.org/pig.git
git://git.apache.org/tika.git
git://git.apache.org/uima-uimaj.git
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To evaluate Infinitel on these bugs we revert the committed human �x (preserving
validating tests, in csv and pig). This way, we can compare the found patch against the
human �x.

5.1.3 Metrics

We present here the di�erent aspects to be measured from the repair of each bug. We group
them in two categories: �basic metrics� and �time metrics�. Basic metrics are concerned
with the description of the bug. Time metrics are concerned with execution time of di�erent
actions. Unless indicated otherwise, each time metric is rounded to units, which is seconds.
Time metrics are used to answer RQ2 .

Basic Metrics

Tests: the total number of tests in the test suite of the project.

Added Tests (only in real bugs): the number of tests added to reproduce the in�nite loop
bug.

Added LOC (only in real bugs): the total number of lines of the added tests.

Loop Tests: the number of tests executing the detected in�nite loop. Recall that not every
test is a hanging test; the in�nite loop can be executed �with �nite executions� in passing
test cases as well. The number of tests executing the in�nite loop is related to RQ3 and
RQ5 , because we extract loop state information from the execution of each test (Algo-
rithm 4.5.1).

Hanging Tests: the number of tests which do not halt due to the in�nite loop. This
number is related to RQ6 , because for each hanging test we must �nd an angelic record
(Section 4.4).

Idempotence (only in real bugs): whether the hanging tests pass or not when they are run
for the �rst time (Algorithm 4.3.1), forcing the in�nite loop to break during the in�nite
execution. If they do, we can say that the in�nite loop behaves like an idempotent loop.
That is, during the interrupted in�nite execution, the loop completed more iterations than
needed, but this did not ultimately a�ect the result of the test. Cleary, this metric is
related to RQ7 .

Angelic Record (only in real bugs): the value of the highest angelic record for the in�nite
loop out of all hanging tests. For each hanging test we search for an angelic record (Sec-
tion 4.4), and we use the highest value to analyze if probing values is a good strategy for
this step (RQ6 ).

Total Traces: the size of the input-output pair set described in Subsection 4.5.2. This
number impacts on the number of constraints of the SMT problems created during code
synthesis.

Context Size: the size of each trace. That is, the number of inputs inside each input-output
pair, plus 1 (for the output value). This number is related to RQ5 , because it represents
the number of extracted values (Subsection 4.5.3) being used to describe the state of each
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loop iteration.

SMT Formulations: the number of total SMT problems needed to synthesise a patch.
As indicated in Algorithm 4.5.2, we successively create SMT problems until the synthesis
suceeds. The number of SMT problems needed to �nd a solution is a good metric to classify
the di�culty of the found patch (RQ3 ).

SMT Components: the number of total components used in the synthesised patch (Sub-
section 4.5.1).

SMT Component Types: the number of di�erent component types used in the synthesised
patch (there are 5 di�erent types: comparison, logic, linear arithmetic, multiplication and
if-then-else).

Application Classes: the total number of declared classes in the project source code, ex-
cluding test classes. This metric is also equal to the total number of classes which are
instrumented and recompiled during the project instrumentation (Section 4.2).

LOC: lines of code in the project source code, excluding test code. Figures are obtained
with CLOC [25].

Time Metrics

Instrumentation: time to implant the loop monitors in every while of the project source
code (Section 4.2).

Compilation: time to compile the instrumented source code.

Test Suite: time to run the test suite of the project (Algorithm 4.3.1). This metric includes
the time of running �and inducing loop termination of� hanging tests.

Hanging Tests: time to run �and induce loop termination of� the hanging tests of the
in�nite loop. Every in�nite execution is interrupted after a maximum iteration number is
reached (Section 4.3).

Angelic Value Mining: time to �nd the angelic records of each hanging test (Section 4.4).

Value Collection: time to collect contexts for tests executing the in�nite loop (Algo-
rithm 4.5.1).

SMT Solving: overall time solving SMT problems until a solution is found.

Total Time: the sum of the previous 7 metrics, which accounts for approximately the total
execution time to �x the bug.

Total Time (timestamp): the human readable equivalent of Total Time with the format of
hours, minutes and seconds.
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5.2 Results

5.2.1 Metrics Results

We present here the values of the di�erent evaluation metrics for the seeded bugs (Ta-
ble 5.2.1) and real bugs (Table 5.2.2).

Seeded Bugs

Collections
A B Math Ex.1 Ex.2 Ex.3 Ex.4

Basic Metrics

Tests 14 792 14 792 6 077 5 2 3 3
Loop Tests 11 57 1 5 2 3 3
Hanging Tests 11 57 1 1 1 1 1
Total Traces 3 3 53 15 4 3 61
Context Size 15 9 67 4 8 4 9
SMT Formulations 1 1 2 4 1 2 2
SMT Components 0 0 1 9 0 1 1
SMT Component Types 0 0 1 3 0 1 1
Application Classes 463 463 1 188 1 1 1 1
LOC 25 338 25 338 91 878 11 10 15 43

Time Metrics (in seconds)

Instrumentation 18 17 34 2 1 1 1
Compilation 13 12 17 1 1 1 1
Test Suite 245 795 589 0 0 0 0
Hanging Tests 47 407 0 0 0 0 0
Angelic Value Mining 14 2 0 0 0 0 0
Value Collection 1 1 0 0 0 0 0
SMT Solving 11 6 6 6 0 0 1

Total Time 302 833 646 9 2 2 3
Total Time (timestamp) 0:05:02 0:13:53 0:10:46 0:00:09 0:00:02 0:00:02 0:00:03

Table 5.2.1. Evaluation of Infinitel on 7 seeded bugs.
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Real Bugs

pdfbox
csv fop A B pig tika uima

Basic Metrics

Tests 83 2 693 24 11 243 476 2
Added Tests 0 3 1 4 0 1 2
Added LOC 0 36 25 32 0 22 11
Loop Tests 33 19 4 4 22 6 2
Hanging Tests 1 3 2 1 1 1 1
Idempotence Y Y Y Y Y N N

Angelic Record 1 45 0 0 3 0 10
Total Traces 6 631 209 1 474 6 23 703 12
Context Size 41 15 15 11 14 37 13
SMT Formulations 2 4 2 3 3 3 2
SMT Components 1 4 1 2 2 4 1
SMT Component Types 1 3 1 2 2 2 1
Application Classes 11 2 340 429 93 211 263 83
LOC 1 218 157 445 39 551 9 339 11 380 19 767 7 135

Time Metrics (in seconds)

Instrumentation 2 45 11 5 8 14 6
Compilation 1 33 7 3 7 13 4
Test Suite 2 330 57 0 442 102 2 898
Hanging Tests 1 0 1 0 69 1 2 897
Angelic Value Mining 0 1 0 0 0 0 0
Value Collection 11 5 27 0 61 11 0
SMT Solving 1 781 3 205 21 1 7 369 3

Total Time 1 797 3 619 123 9 525 509 2 911
Total Time (timestamp) 0:29:57 1:00:19 0:02:03 0:00:09 0:08:45 0:08:29 0:48:31

Table 5.2.2. Evaluation of Infinitel on 7 real bugs.
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5.2.2 Patches

We present here the comparison between the found patch and human-written code. In
Table 5.2.3 we compare the original looping guard �before the manual �infection�� against
the found patch (the faulty looping condition is the infected one). In Table 5.2.4 we compare
the faulty looping condition against the committed human �x and the found patch.

Seeded Bugs

Collections A

faulty "".isEmpty()

original it.hasNext()

in�nitel buf.length()==0

Collections B

faulty "".isEmpty()

original it.hasNext()

in�nitel it.hasNext()

Math

faulty "".isEmpty()

original (mantissa >>> 52) != 1

in�nitel (mantissa)<(FastMath.TWO_POWER_52)

Ex. 1

faulty b != a

in�nitel !((((a)+(-1))<(b))&&((((1)-((a)+(-1)))<=(-1))||((a)==(b))))

Ex. 2

faulty oneIteration || ! oneIteration && a == 0

in�nitel (a == 0)

Ex. 3

faulty true

in�nitel (-1)<(aCopy)

Ex. 4

faulty canKeepConsuming(index, word)

in�nitel (this.consumer.getSize())!=(this.consumer.getConsumed())

Table 5.2.3. Patches for seeded bugs.



5. Evaluation 40

Real Bugs

csv

faulty !tkn.isReady

manual !tkn.isReady && tkn.type != TT_EOF

in�nitel (tkn.type)<(0)

pig

faulty (!((fileStatusArr = fs.listStatus(path)) == null || fs.isFile(path)))

manual
(!((fileStatusArr = fs.listStatus(path)) == null || fs.isFile(path) ||

fileStatusArr.length == 0))

in�nitel
(!(((fileStatusArr = fs.listStatus(path)) == null) || (fs.isFile(path))))

&&((0)<(fileStatusArr.length))

tika

faulty getContentLength() < getBlockLength()

manual
adding variable continueLoop:

continueLoop && getContentLength() < getBlockLength()

in�nitel
((getContentLength()) < (getBlockLength()))

&&((!((this.chmSection.getData().length)==(this.state.getWindowSize())))

||(this.state.getMainTreeTable()!=null))

fop

faulty
(scale < 1 && nextStepFontSize > baseFontSize ||

scale > 1 && nextStepFontSize < baseFontSize)

manual adding a break statement

in�nitel

(((scale < 1) && (nextStepFontSize > baseFontSize)) ||

((scale > 1) && (nextStepFontSize < baseFontSize)))

&&(((FontSizePropertyMaker.FONT_SIZE_GROWTH_FACTOR)+

((FontSizePropertyMaker.FONT_SIZE_GROWTH_FACTOR)-(nextStepFontSize)))<(-1))

pdfbox A

faulty (amountRead = rawData.read(buffer, 0, Math.min(mayRead,BUFFER_SIZE))) != -1

manual adding wrapping if

in�nitel
((amountRead =

rawData.read(buffer, 0, Math.min(mayRead,BUFFER_SIZE))) != -1)

&&(filterIndex)<(amountRead))

pdfbox B

faulty
(amountRead =

read(data, totalAmountRead, numberOfBytes-totalAmountRead)) != -1

&& totalAmountRead < numberOfBytes

manual modifying read() method

in�nitel

((amountRead =

read(data, totalAmountRead, (numberOfBytes - totalAmountRead))) != (-1))

&&(totalAmountRead < numberOfBytes))

&&((amountRead)==((numberOfBytes - totalAmountRead)))

uima

faulty offset > 0

manual modifying loop body

in�nitel (indent.length())!=(offset)

Table 5.2.4. Patches for real bugs.
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5.3 Discussion

Here, we answer the research questions presented at the beginning of Chapter 5.

5.3.1 RQ1 Competence

Seeded Bugs

We can compare the patch found for each bug with the original looping guard of bugs
Collections A, Collections B and Math, shown in Table 5.2.3. For Collections A,
the found patch is di�erent from the original looping guard. However, for Collections

B the original looping guard was restored. And, for Math, the original looping guard is
restored semantically, but not syntactically: whereas the original looping guard checks
that mantissa is lower than 252 using bitwise right shift operator, the found looping guard
does so by comparing with the value of constant TWO_POWER_52. For the rest of the seeded
bugs, there is no reference to compare the found patch with.

Real Bugs

- while (condition) {

+ while (newCondition) {

(a)

+ boolean flag = true;

- while (...) {

+ while (flag && ...) {

...

+ flag = ...;

}

(b)

while (...) {

...

+ if (...) {

+ break;

+ }

}

(c)

+ if (...) {

while (...) {

...

}

+ }

(d)

Demonstration 5.3.1. Human �xes of: (a) csv and pig; (b) tika; (c) fop; (d) pdfbox A

Here we compare the patch found for each bug with the committed human �x. Now,
bare in mind that the only possible �x we consider is replacing the looping guard of the
in�nite loop by another looping guard. In practice, we �nd that the real bugs manifest
di�erent repair strategies.

Let us �rst consider csv and pig bugs. The human �x for these bugs is similar to
Demo 5.3.1(a), which is the same repair strategy as our repair method. We can compare
the found patch with the human �x, shown in Table 5.2.4. For csv, despite that the
�xes are di�erent, both the human �x and the found patch base the looping guard on the
value of tkn.type. In the case of pig, the human �x and the found patch are equivalent
(fileStatusArr is an array, so the length is either 0 or positive).

We now consider tika bug. Whereas our found patch simply restricts the original loop-
ing guard with a conjunction operation (Table 5.2.4), the human �x is more complex. In
this case, it is similar to Demo 5.3.1(b): a boolean variable continueLoop is introduced in
the �x, the variable is updated at the end of every iteration, and the value of this variable
is used in the new looping guard.

If we analyze fop bug, we will again �nd di�erent repair strategies. This time, the hu-
man �x is similar to Demo 5.3.1(c): a break statement is added at the end of the loop body.
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The same happens when we compare the found patch and the human �x in pdfbox A

bug. The human �x has a repair strategy similar to Demo 5.3.1(d): the introduction of
a wrapping if around the while. This repair strategy is the same as the one mentioned
in Section 2.3 for wrong precondition bugs. That is, the in�nite loop is due to a wrong
precondition to enter the loop. Correspondingly, we �nd that the Angelic Record for the
hanging tests in pdfbox A (Table 5.2.2) is 0: this indicates that the precondition to enter
the loop should evaluate to false.

Finally, another two repair strategies are used in pdfbox B (human �x modi�es a
method invoked in the looping guard) and uima (human �x adds a statement to the loop
body).

In the light of the previous paragraphs, we observe a great versatility of our repair
method. On the examples of our evaluation, repairing the looping guard of the in�nite lop
is equivalent to other repair strategies exposed by the human �xes. This versatility makes
our repair method reasonably competent for repairing in�nite loops.

5.3.2 RQ2 Performance

Seeded Bugs

Looking at the time metrics in Table 5.2.1, we notice that the total execution time for
the Apache projects (almost 10 minutes on average) is signi�cantly higher than the other
seeded bugs (4 seconds on average).

In all three cases, the bottleneck is the running time of the Test Suite, and this is
independent of the running time of Hanging Tests in the case of Collections A and Math.
In the case of Collections B, the Hanging Tests account for approximately 50.00 % of the
time of running the Test Suite. Moreover, Collections B has the highest Hanging Tests
(57).

Regarding the other 4 seeded loops, Ex.1 takes the longest to �x, essentially due to
the SMT Solving. This seems logical if we look at the value of SMT Formulations (4) for
Ex.1, compared to the other projects (all lower than 4).

Real Bugs

Looking at the time metrics in Table 5.2.2, we can see that fop has the longest repair time
with approximately 1 hour. It follows uima with almost 49 minutes and csv with roughly
30 minutes. For the other 4 real bugs, 10 minutes is enough to repair them. On the whole,
based on our evaluation, the longest it can take to repair an in�nite loop on a real project
is 1 hour. We now analyze the bottleneck of each bug indivudally.

In csv the clear bottleneck is the time of SMT Solving: 99.00 % of the total repair time
is focalized in that task. Something similar happens in fop, with 88.00 %. This may be
due to the size of the SMT problems in csv (where each of the 6 631 Total Traces accounts
for a constraint in the SMT problem) and due to the complexity of the found patch in fop

(with the highest SMT Formulations of 4).
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In uima, running the Hanging Tests is the evident bottlneck. This is due to a perfor-
mance overhead caused by the string concatenation operation. The in�nite loop in uima

only has one statement which is a concatenation of strings with the sum operator; then,
in an in�nite execution of this loop, one million (the maximum iteration number) di�erent
strings are created and copied.

In pdfbox A and pig, the bottleneck seems again to be related to the test cases. In
pdfbox A almost 70.00 % of the time to repair the in�nite loop (84 seconds) is directed
at executing the Test Suite (57 seconds) or executing Loop Tests for Value Collection (27
seconds). This �gure escaltes to 95.00 % of the time (503 seconds) in pig (442 seconds
running the Test Suite and 61 seconds for Vale Collection).

In tika the time for the Test Suite and the SMT Solving combined amounts to more
than 90.00 % of the total repair time. Finally, in pdfbox B the repair is largely delayed
by the project instrumentation (the Instrumentation and Compilation amount almost to
90.00 % of the total repair time). However, this is a clear outlier (the total repair time is
only 9 seconds).

In sum, on this evaluation, Infinitel is practicable in terms of performance. Generally,
the bottleneck is located on running test cases or solving SMT problems.

5.3.3 RQ3 Adequacy

Seeded Bugs

We now analyze the code synthesis method for seeded bugs. Here, the SMT Solving time
is not crucial even for large projects (Collections A, Collections B and Math).

The SMT Formulations of Collections A, Collections B and Ex.2 is 1 (Table 5.2.1).
That is, no components were necessary to produce the patch (Subsection 4.5.2). Then, we
have Math, Ex.3 and Ex.4 with an SMT Formulations of 2. In table Table 5.2.3, we can
see that they use just one component: Math and Ex.4 use distinct (!=), whereas Ex.3 uses
lower than (<). Finally, Ex.1 has an SMT Formulations of 4. That is, four di�erent SMT
problems (each one with more components than the previous one) are solved to �nd the
patch (Algorithm 4.5.2). Particularly, 9 operators are used: sum (+, twice); substraction
(-); lower or equal than (<=); lower than (<); equality (==); distinct (!=); disyunction (||);
and, conjunction (&&).

Real Bugs

We now analyze the code synthesis method for real bugs. The SMT Solving time varies
from seconds, to minutes, to almost an hour. The longest SMT Solving time (almost one
hour) is for fop bug, which also has the highest SMT Formulations. It is followed by csv

bug (almost half hour), which has the highest Total Traces (each of them is later translated
to one constraint for each SMT problem). In third place we have tika (almost 6 minutes),
which has 3 SMT Formulations and a high number of Total Traces as well. We can cor-
relate the complexity to �nd a patch with the complexity of the patch. That is, the more
constraints (Total Traces) and the more components the patch has, the �more expensive�
the synthesis is (the longer it takes to �nd the patch).
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The SMT Formulations of fop is 4 (it uses 4 components); for tika (4 components),
pig (2 components) and pdfbox B (2 components) is 3; and, for csv (1 component), pdfbox
A (1 component) and uima (1 component) is 2. In all cases at least a component is re-
quired to �nd the patch. This means that to be able to describe the completion point
(Section 2.1) we must operate with more than one loop state extracted value (Subsec-
tion 4.5.3); there is not a value which can be used to describe the completion point alone
(such as �iter.hasNext()�). This fact supports the adequacy of a component based code
synthesis.

On the whole, the ability to combine and compose components on SMT problems gives
the code synthesis a high versatility to generate predicates. In terms of e�ciency, we
exhibit reasons to favour that this strategy does scale; after all, the evaluation on real bugs
is based on large projects.

5.3.4 RQ4 Limit

Seeded Bugs

Regarding the one million iteration restriction, we mention that in the case of Math, there
was a false positive. There is a non-in�nite loop that needs over one million iterations in
one test so it can pass (as said on Subsection 3.3.9). For this reason, we use 5 million as
the new limit. However, this did not a�ect the performance in this particular case: the
time to run the hanging test in Math is less than one second.

Real Bugs

Among the real bugs, there was no false positives (loops uncorrectly detected as in�nite).

In sum, although there will be exceptions (as said in Section 4.3, 1 of 523 loops, counting
loops of the projects used in Chapter 3), the one million iteration limit is a safe threshold
to detect in�nite loops.

5.3.5 RQ5 Technique

Seeded Bugs

We now analyze the impact of our runtime value collection technique (Subsection 4.5.3)
on seeded bugs. We highlight di�erent ways of gathering context information by look-
ing at the found patches in Table 5.2.3. We use extraction by queries in Collections

A (�buf.length()==0�) and Collections B (�it.hasNext()�). We use extraction by
value from reachable variables in Math (the local variable mantissa and the static �eld
TWO_POWER_52) and Ex.1 (the values of local variables a and b). We use subvalues of the
original looping guard in Ex.2 (�a == 0� comes from the subclause of the original looping
guard, and not from the equality components �as evidenced by an SMT Formulations of 1
for Ex.2). Finally, we use getters in Ex.4 (for instance, �this.consumer.getSize()�).

Real Bugs

We now analyze the impact of our runtime value collection technique on real bugs. We
highlight our strategies by looking at the found patches in Table 5.2.4. We use visi-
ble �eld access in csv (�tkn.type�). We use recycling of the original looping guard
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in pig, tika, fop and pdfbox B (coloured in blue in the table). We use extraction
by queries in pig (�fileStatusArr.length�). We use subvalues of the original loop-
ing guard in pdfbox B (�numberOfBytes-totalAmountRead� in the right hand side of
the equality component). We use extraction by value of reachable variables (such as
the static �eld FONT_SIZE_GROWTH_FACTOR in fop). We also use getters in tika (e.g.,
�this.state.getWindowSize()�).

In sum, our runtime value collection technique is able to gather context information in
di�erent ways. All of them seem to be useful, given that they are all present in the found
patches.

5.3.6 RQ6 Records

Real Bugs

We now discuss the angelic records for real bugs. As shown in Table 5.2.2, the highest
angelic record is 45 for fop, then 10 for uima, 3 for pig, 1 for csv and 0 for the rest
(pdfbox A, pdfbox B and tika). This is consistent to what was said in Section 3.4: the
iteration record of each execution of a prototypical loop is lower than 50. Besides, in every
real bug, the time of Angelic Value Mining is meaningless next to the Total Time. Then,
our strategy proves to tackle the challenge.

5.3.7 RQ7 Idempotence

Real Bugs

To conclude, we remark that the in�nite loops of csv, fop, pdfbox A, pdfbox B and pig all
behave like idempotent loops: when we run the corresponding hanging tests of these loops
and force them to stop after the maximum number of iterations is reached, all hanging tests
still pass. This aspect could be exploited during the code synthesis phase: it may occur
that the completion point (Section 2.1) becomes �easier� to describe if more iterations are
performed in each loop execution. If this was the case, the easiness would be re�ected on
a lower SMT Formulations value for these bugs (which are 2, 4, 2, 3 and 3, respectively).
In turn, this would improve the SMT Solving time, which is particularly high for csv and
fop. However, we do not focus on idempotent loops on this thesis (see Section 3.4), so we
leave this question for future work.



6. APPROACH DISCUSSION AND LIMITATIONS

Our approach focuses only on while loops, but we believe it is extensible to other con-
structs (for, do-while) because no assumptions are made on this regard.

We also mention that our approach lets us �nd a �x in an object-oriented fashion. This
is expressly visible during runtime value collection. We �rst support the usage of getters.
We also use re�ection to know what queries can be handled by a variable (Table 4.5.1).
And then, we associate each value to a code snippet, so that the new looping guard can
be translated to a readymade predicate.

In other respects, our approach does require three assumptions.

The �rst one is that in each test case there is at most one in�nite execution. That is, if
the in�nite execution is interrupted, any subsequent execution �during the same test run�
will be �nite. Consider the run of a hanging test case. There can only be one loop iterating
endlessly. We assume that this loop is executed zero or more times with �nite executions,
but at most once with an in�nite execution. We use this assumption in Algorithm 4.4.1
because we only probe the angelic record for that single in�nite execution.

The second one is that the hanging tests have a deterministic execution. If during the
execution of a hanging test the nth execution of an in�nite loop is an in�nite execution of
the loop, then the nth execution of that loop is the in�nite execution every time that test
is run. We use this assumption in Algorithm 4.4.1, because we probe the angelic record in
a speci�c execution number.

The third one is that all tests are run in a single thread. Concurrency is not supported
with our loop instrumentation.

At the same time, we identify four limitations of our approach:

Intermittent failure: non-determinism in passing tests may also impact on the patching
guard, if one is found. We only run each test once to collect runtime values; and the
patching guard guarantees to be correct only for the given input-output pair set. How-
ever, there may be an unfortunate case for our synthesis method. Suppose a passing test
produces two di�erent set of input-output pairs during the nth loop execution of two dif-
ferent runs. Namely, (Ia, O) and (Ib, O). That is, the original looping guard evaluates to
the same boolean value, in spite of having di�erent input sets. Because we synthesise the
patch using only one of these inputs, say Ia, there are no guarantees that the new looping
guard would also evalute to O for input Ib. Hence, the patch could make the once passing
tests fail intermittently. One way to eliminate this problem is to assume that every test has
a deterministic execution, although this restriction is unnecessary for our synthesis method.

Hampering missing values: another threat to our approach is present in the runtime value
collection method. It may occur that the collected values are not comprehensive enough to
describe the completion point (Section 2.1); that is, the completion point could only be de-
scribed by the value of an undetected variable, or by the return value of a method which is
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not a getter. Under these circumstances, the synthesis will fail to produce a patching guard.

One way to mitigate this problem is to use more method calls when amassing variables for
runtime value collection (see Section 8.1). Another way is to improve our runtime value
collection technique. For instance, when it comes down to analyzing a loop in a method of
an anonymous class (in Java), we don't include instance �elds, if any. The same measure is
taken if the analyzed loop is located inside a constructor. Also, in our implementation, we
only use getters on instance �elds, and we only access visible �elds of method parameters.
Then, we could include local variables' visible �elds/getters, or even static visible �elds.

Theory over practice: in two particular steps of our approach we �nd theory hindering
implementation. Firstly, in Section 4.3, where we describe a straightforward strategy for
in�nite loop detection. The theoretical demarcation of the Halting problem clearly re-
strains the implementation of this step. Secondly, in Subsection 4.5.3, when we formulate
the code synthesis problem as an SMT problem. Current SMT solver implementations ei-
ther only support primitive types or have di�culties in working with user-de�ned types, not
to mention exponential time complexity of their algorithms. For this reason we perform the
already mentioned �extraction by queries� phase in order to extract primitive-typed data.
Nonetheless, we still believe there is still more work to be done to improve our approach
in both cases.

Global looping guards: the fourth limitation of our approach is related to looping guard
representability. There is a high coupling between our code synthesis phase and the local
state of a program. That is, we expect a new looping guard to be inferred based on the
state of the program in each iteration. However, a looping guard could as well be de�ned
in terms of a global theoretical boundary instead of the program state itself. Such is
the case for �xed-point iteration algorithms like the Newton-Raphson method, where the
convergence of the method �under some assumptions� should be mathematically proved.
It is unclear what the notion of state comparison may be in those cases, and whether code
synthesis based on execution traces is applicable for such algorithms.



7. RELATED WORK

One of the most successful approaches on Automatic Software Repairs is GenProg [6],
based on genetic programming (GP). GP uses computational analogs of biological muta-
tion and crossover to generate new program variations, called �variants�. A user-de�ned
�tness-function evaluates each variant, and variants with high �tness are selected for con-
tinued evolution. Therefore, the goal is to search for a program variant that retains required
functionality and passes all test cases. To reduce the search space, program modi�cations
are favoured in source statements executed during failing test cases. Drawing a comparison,
our repair method addresses a speci�c defect class (in�nite loops), whereas in GenProg,
in principle, any kind of bug is �xable. However, GenProg can only �nd a patch if the
repair code already exists in the program, whereas we are able to genuinely synthesise a
new expression. Moreover, we do not know how GenProg would handle the case of intinite
loops and hanging test cases, because it works with failing test cases. It expects the test
to either pass or fail, but it does not expect the test not to halt.

Another reacent approach is SemFix [12]. The methodology consists of �nding a faulty
statement, and then executing the test cases with symbolic execution on that statement.
Symbolic execution is useful to gather constraints on the input-output pairs of the faulty
statement. Next, the constraints are encoded into a formulation of a SMT problem, which
is fed to an SMT-solver. If a solution exists, it is decoded back to a logical formulation
which can eventually be written in the correct language syntax. Drawing a comparision,
SemFix handles many kind of bugs and, using SMT code synthesis, it does not depend
on the repair code to exist already in the program. Our repair method uses a similar
code synthesis technique. However, whereas SemFix uses symbolic execution to gather
input-output pairs, our method uses a runtime value collection technique with focus on
�nding a patch in an object-oriened fashion. Similar to GenProg, we do not know how
SemFix would handle hanging test cases, because they expect the test to halt and retrieve
information from failures.

NoPol [11] is another approach on Automatic Software Repair. The main novelty is the
combination of angelic execution (instead of symbolic execution) along with the constraint
based synthesis. In angelic execution, a selected statement in the program is interpreted
as a query to an angel, who yields a value that would make the current test execution to
pass. Therefore, if an angelic value is found for all tests, the constraint based synthesis
phase would produce a patch.

As in our repair method, NoPol also addresses a speci�c defect class: wrong condi-
tionals or missing preconditions. As M. Monperrus stated in [7], although there is not a
consensus in the Automatic Software Repair community, narrowing the search space for
repair to speci�c defect classes could be the next direction for research. It would enable
the community to answer the questions: what are the automatically �repairable� defect
classes, why is a speci�c defect class easy or hard to repair, and what are the techniques
to repair each one of them? Nevertheless, a standard list of defect classes has not been
de�ned yet.

This thesis follows a similar approach to the one used in NoPol, with two di�erences.
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Firstly, whereas NoPol uses a suspicion-ordering criteria for fault localization, we face a
di�erent problem: detecting an in�nite loop. Secondly, whereas NoPol needs to �nd one
boolean angelic value (for each failing test case, the angelic value tells whether some con-
dition must evaluate to true or false), in this thesis we search for an integer angelic record
(test threshold) which accounts for the number of iterations a hanging test case needs to
complete to halt and pass.

Regarding one of our aforementioned loop properties, the phenomenon of �idempotent
loops�, has also been observed in [15]: �a speci�c instance of the loop can iterate for fewer
or greater number of iterations without a�ecting program output�. However, their goal
is to characterize outcome-tolerant branch instances to discover new ways to enhance the
processor's performance. Performance can be limited by the ability to predict branches,
but they claim that this prediction does not need to be correct all the time.

We can �nd an approach for in�nite loop detection in Jolt [9]. Jolt attaches to an
application to audit its progress. It records the program state at the start of each loop
iteration. If two consecutive loop iterations produce the same state, Jolt reports that the
application is looping endlessly. Contrastingly, our approach to detect the in�nite loop is
simply based on a maximum iteration restriction (within a loop execution), supported by
our preliminary study on loops (Section 3.3). On the one hand, the criteria used in Jolt
may detect an in�nite loop sooner (because it does not wait until the maximum iteration
number is exceeded); and, it would not have false positives (if state Γ makes a transition
�an iteration� to state Γ, then this state is going to be repeated inde�nitely). On the other
hand, our criteria could detect the in�nite loop when the same state is repeated within
3 or more iterations, or even when the state is never repeated. Hence, our criteria has a
greater recall and lower precision.

Finally, it is also worth mentioning the case found in Lisp 1 .5 manual [10]. Being
recursion one of the fundamental features of LISP language, John McCarthy describes a
strategy to detect in�nite recursion, which is very similar to our in�nite loop detection
strategy. Whereas we implant loop monitors and count loop iterations, he counts the
number of invocations to the function cons: �The cons counter is a useful device for
breaking out of program loops. It automatically causes a trap when a certain number of
conses have been performed. The counter is turned on by executing count[n], where n is
an integer. If n conses are performed before the counter is turned o�, a trap will occur and
an error diagnostic will be given.�



8. CONCLUSIONS

In this thesis, we de�ne the in�nite loop defect class and narrow down the problem to
propose a practical method to automatically repair in�nite loops. Particularly, we focus
on the repair of in�nite while loops with a wrong looping condition. For this goal, we de-
velop both static and dynamic source code analysis techniques, along with a code synthesis
technique based on SMT problems.

Although the problem of repairing an in�nite loop is related to the undecidable Halting
Problem, in the context of test-driven repair the problem becomes manageable. The reason
for this is that correctness is de�ned in relation to the project's test suite, and in�nite loop
detection is implemented in terms of a maximum iteration threshold.

8.1 Future Work

In future work, we plan to extend our method to support �xing in�nite loops with more
than one in�nite execution during the same test case, and to improve the runtime value
collection with other method calls (besides getters). We also think that our method could
be applied to �x a more general defect class: wrong loop conditions, contrary to wrong
conditions which result in in�nite loops. In this case, the only di�erence with the cur-
rent approach is the detection of the faulty loop, which in this case would not necessarily
have in�nite executions. In addition, we plan to extend the scope of our method to repair
other forms of loops: do-while, for and recursion. Also, in this work we have focused on
door-door executions. In the future, we should aim at �xing door-window executions as
well. Finally, among the ones who favor the research of speci�c defect classes, it remains
for future work to combine di�erent tools, each of them specialized in a particular defect
class, into a more complex general automatic bug �xer.

To conclude, we now address a �nal task for the future of Automatic Software Repair.
Through the experience of searching real bugs for the evaluation of our method, we stress
the importance of having a universal bug dataset. It is important to rely on a bug dataset
for two reasons. Firstly, because �nding real bugs is time consuming and hard to achieve:
we search for a target commit which �xes a speci�c defect class, but in practice committers
do not follow a standard procedure to commit changes and/or to write log messages. This
way, to complete a successful commit search, it is inevitable for the researcher to manually
check a bundle of commits until the desired commit is found. Secondly, because Automatic
Software Repair research should focus on real problems. And what would be more real
than inspecting real bugs and �xes from a universal bug dataset? With a universal bug
dataset already at hand, the researcher could inspect, theorize and learn from actual �xes,
and, with the knowledge obtained, aim to build more sophisticated repair tools.

50



9. REFERENCES

[1] A. Arcuri and X. Yao. �A novel co-evolutionary approach to automatic software bug
�xing.� In Proceedings of the IEEE Congress on Evolutionary Computation (CEC),
2008

[2] D. Kim, J. Nam, J. Song, and S. Kim. �Automatic patch generation learned from
human-written patches.� In Proceedings of the 2013 International Conference on
Software Engineering, pages 802-811, 2013.

[3] V. Dallmeier, A. Zeller, and B. Meyer. �Generating �xes from object behavior anoma-
lies.� In Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 550-554. IEEE Computer Society, 2009.

[4] Gulwani, Sumit, et al. �Synthesis of loop-free programs.� ACM SIGPLAN Notices.
Vol. 46. No. 6. ACM, 2011.

[5] Pawlak, Renaud, et al. �Spoon: Java Source Code Analysis and Transformation for
the Masses.�

[6] Le Goues, Claire, et al. �GenProg: A generic method for automatic software repair.�
Software Engineering, IEEE Transactions on 38.1 (2012): 54-72.

[7] Monperrus, Martin. �A critical review of `automatic patch generation learned from
human-written patches': essay on the problem statement and the evaluation of au-
tomatic software repair.� ICSE. 2014.

[8] Kim, Dongsun, et al. �Automatic patch generation learned from human-written
patches.� Proceedings of the 2013 International Conference on Software Engineering.
IEEE Press, 2013.

[9] Carbin, Michael, et al. �Detecting and escaping in�nite loops with Jolt.� ECOOP
2011�Object-Oriented Programming. Springer Berlin Heidelberg, 2011. 609-633.

[10] McCarthy, John.�LISP 1.5 programmer's manual�. MIT press, 1965.

[11] F. Demarco, J. Xuan, D. L. Berre, and M. Monperrus. �Automatic repair of buggy
if conditions and missing preconditions with SMT.� In Proceedings of the 6th Inter-
national Workshop on Constraints in Software Testing, Veri�cation, and Analysis,
pages 30-39. ACM, 2014.

[12] Nguyen, Hoang Duong Thien, et al. �SemFix: Program repair via semantic analysis.�
Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 2013.

[13] Chandra, Satish, et al. �Angelic debugging.� Software Engineering (ICSE), 2011
33rd International Conference on. IEEE, 2011.

[14] Jha, Susmit, et al. �Oracle-guided component-based program synthesis.� Software
Engineering, 2010 ACM/IEEE 32nd International Conference on. Vol. 1. IEEE,
2010.

51



9. References 52

[15] Wang, Nicholas, Michael Fertig, and Sanjay Patel. �Y-branches: When you come
to a fork in the road, take it.� Parallel Architectures and Compilation Techniques,
2003. PACT 2003. Proceedings. 12th International Conference on. IEEE, 2003.

[16] Hamill, Margaret, and Katerina Goseva-Popstojanova. �Common trends in software
fault and failure data.� Software Engineering, IEEE Transactions on 35.4 (2009):
484-496.

[17] Seacord, Robert C., Daniel Plakosh, and Grace A. Lewis. �Modernizing legacy sys-
tems: software technologies, engineering processes, and business practices.� Addison-
Wesley Professional, 2003.

[18] Presser, L. �Structured Languages.� In Proceedings of the May 19-22 1975 National
Computer Conference and Exposition. ACM, 1975.

[19] Dijkstra, E. �A Case Against the GOTO Statement.� In Communications of the
ACM 11, 1968.

[20] Steele Jr, G. �Lambda: The Ultimate GOTO.� Vol. 443, AI Lab Memo, 1977.

[21] SMT-LIB: The Satis�ability Modulo Theories Library. http://smt-lib.org/

[22] Z3 Theorem Prover. http://z3.codeplex.com/

[23] CVC4 Theorem Prover. http://cvc4.cs.nyu.edu/web/

[24] Java Language and Virtual Machine Speci�cations. http://docs.oracle.com/javase/
specs/

[25] Count Lines of Code. http://cloc.sourceforge.net/

[26] Git. http://git-scm.com/

[27] Apache Git Repositories. http://git.apache.org/

[28] Grep Git Repository. http://git.savannah.gnu.org/cgit/grep.git/

References for Appendix C:

[29] The Java Virtual Machine Speci�cation, by Tim Lindholm and Frank Yellin.

[30] Lesson: Packages.
http://docs.oracle.com/javase/tutorial/java/package/index.html

[31] Java Virtual Machine's Internal Architecture.
http://www.artima.com/insidejvm/ed2/jvm.html

[32] Understanding Network Class Loaders (Oracle Tutorial)

http://www.oracle.com/technetwork/articles/javase/classloaders-140370.html

[33] Classloader : Java Glossary

http://www.mindprod.com/jgloss/classloader.html

[34] Threads and Class loading

http://book.javanb.com/java-threads-3rd/jthreads3-CHP-13-SECT-4.html

http://smt-lib.org/
http://z3.codeplex.com/
http://cvc4.cs.nyu.edu/web/
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/specs/
http://cloc.sourceforge.net/
http://git-scm.com/
http://git.apache.org/
http://git.savannah.gnu.org/cgit/grep.git/
http://docs.oracle.com/javase/tutorial/java/package/index.html
http://www.artima.com/insidejvm/ed2/jvm.html
http://www.mindprod.com/jgloss/classloader.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-13-SECT-4.html


9. References 53

[35] Object request broker
http://en.wikipedia.org/wiki/Object_request_broker

[36] Understanding the Java Classloading Mechanism

www2.sys-con.com/itsg/virtualcd/java/archives/0808/chaudhri/index.html

[37] The Lifetime of a Type

http://www.artima.com/insidejvm/ed2/lifetype.html

[38] The Linking model

http://www.artima.com/insidejvm/ed2/linkmod.html

[39] Compiling from Memory

http://www.java2s.com/Code/Java/JDK-6/CompilingfromMemory.htm

[40] Using built-in JavaCompiler

http://atamur.blogspot.fr/2009/10/using-built-in-javacompiler-with-custom.

html

[41] Create Dynamic Applications with javax.tools

http://www.ibm.com/developerworks/java/library/j-jcomp/index.html

[42] Java File Manager

http://docs.oracle.com/javase/6/docs/api/javax/tools/JavaFileManager.html

[43] Dynamic in-memory Compilation

http://www.javablogging.com/dynamic-in-memory-compilation/

http://en.wikipedia.org/wiki/Object_request_broker
www2.sys-con.com/itsg/virtualcd/java/archives/0808/chaudhri/index.html
http://www.artima.com/insidejvm/ed2/lifetype.html
http://www.artima.com/insidejvm/ed2/linkmod.html
http://www.java2s.com/Code/Java/JDK-6/CompilingfromMemory.htm
http://atamur.blogspot.fr/2009/10/using-built-in-javacompiler-with-custom.html
http://atamur.blogspot.fr/2009/10/using-built-in-javacompiler-with-custom.html
http://www.ibm.com/developerworks/java/library/j-jcomp/index.html
http://docs.oracle.com/javase/6/docs/api/javax/tools/JavaFileManager.html
http://www.javablogging.com/dynamic-in-memory-compilation/


APPENDIX



A. FULL REPAIR EXAMPLE OF AN INFINITE LOOP

A.1 Example Description

In this section we illustrate the procedure of repairing an in�nite loop with a full example.
We have three Java classes: Partitioner, SumList and PartitionerTest.

Partitioner.java

package uba ;

impor t s t a t i c j a v a . l ang . Math . abs ;
impor t j a v a . u t i l . I t e r a t o r ;

p u b l i c c l a s s P a r t i t i o n e r {

p u b l i c P a r t i t i o n e r ( i n t [ ] a r r a y ) {
partA = new SumList ( a r r a y ) ;
partB = new SumList ( ) ;

}

p u b l i c i n t p a r t i t i o n ( i n t t o l e r a n c e ) {
I n t e g e r a = 0 ;
I n t e g e r b = 0 ;
I n t e g e r ga i n = 0 ;
I t e r a t o r <I n t e g e r > i t e r A = n u l l ;
I t e r a t o r <I n t e g e r > i t e r B = n u l l ;
i n t d i f f = I n t e g e r .MAX_VALUE;
wh i l e ( abs ( d i f f ) > t o l e r a n c e ) {

d i f f = getPartA ( ) . getSum ( ) − getPartB ( ) . getSum ( ) ;
f o r ( a = 0 , i t e r A = getPartA ( ) . i t e r a t o r ( ) ; ; a = i t e r A . nex t ( ) ) {

f o r ( b = 0 , i t e r B = getPartB ( ) . i t e r a t o r ( ) ; ; b = i t e r B . nex t ( ) ) {
ga i n = abs ( d i f f ) − abs ( d i f f − 2∗a + 2∗b ) ;
i f ( ga i n > 0 | | ! i t e r B . hasNext ( ) )

b reak ;
}
i f ( ga i n > 0 | | ! i t e r A . hasNext ( ) )

b reak ;
}
i f ( ga i n > 0) {

getPartA ( ) . migrateTo ( getPartB ( ) , a ) ;
getPartB ( ) . migrateTo ( getPartA ( ) , b ) ;

}
}
r e t u r n abs ( d i f f ) ;

}

p u b l i c SumList getPartA ( ) {
r e t u r n partA ;

}

p u b l i c SumList getPartB ( ) {
r e t u r n partB ;

}

p r i v a t e SumList partA ;
p r i v a t e SumList partB ;

}

1
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SumList.java

package uba ;

impor t j a v a . u t i l . I t e r a t o r ;
impor t j a v a . u t i l . L i n k e d L i s t ;
impor t j a v a . u t i l . L i s t ;

p u b l i c c l a s s SumList {

p u b l i c SumList ( ) {
sum = 0 ;
l i s t = new L i n k edL i s t <I n t e g e r >() ;

}

p u b l i c SumList ( i n t [ ] a r r a y ) {
t h i s ( ) ;
addA l l ( a r r a y ) ;

}

p u b l i c vo i d add ( I n t e g e r e ) {
i f ( e != 0) {

sum += e ;
g e t L i s t ( ) . add ( e ) ;

}
}

p u b l i c vo i d addA l l ( i n t [ ] a r r a y ) {
f o r ( i n t e : a r r a y ) {

add ( e ) ;
}

}

p u b l i c vo i d migrateTo ( SumList sumList , I n t e g e r e ) {
i f ( g e t L i s t ( ) . remove ( e ) ) {

sum −= e ;
sumLi s t . add ( e ) ;

}
}

p u b l i c I n t e g e r getSum ( ) {
r e t u r n sum ;

}

p u b l i c L i s t <I n t e g e r > g e t L i s t ( ) {
r e t u r n l i s t ;

}

p u b l i c I t e r a t o r <I n t e g e r > i t e r a t o r ( ) {
r e t u r n g e t L i s t ( ) . i t e r a t o r ( ) ;

}

@Over r ide
p u b l i c S t r i n g t o S t r i n g ( ) {

r e t u r n g e t L i s t ( ) . t o S t r i n g ( ) + " : " + getSum ( ) ;
}

p r i v a t e I n t e g e r sum ;
p r i v a t e L i s t <I n t e g e r > l i s t ;

}
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PartitionerTest.java

package uba ;

impor t s t a t i c org . j u n i t . A s s e r t . a s s e r t E q u a l s ;
impor t org . j u n i t . Test ;

p u b l i c c l a s s P a r t i t i o n e r T e s t {

@Test
p u b l i c vo i d to l e ranceOverSumSimp le ( ) {

i n t [ ] a r r a y = new i n t [ ] {1 , 3} ;
P a r t i t i o n e r p = new P a r t i t i o n e r ( a r r a y ) ;
a s s e r t E q u a l s (2 , p . p a r t i t i o n (2 ) ) ;
a s s e r t E q u a l s ( " [ 3 ] : 3" , p . getPartA ( ) . t o S t r i n g ( ) ) ;
a s s e r t E q u a l s ( " [ 1 ] : 1" , p . getPartB ( ) . t o S t r i n g ( ) ) ;

}

@Test
p u b l i c vo i d e q u a l P a r i t i t o n S imp l e ( ) {

i n t [ ] a r r a y = new i n t [ ] {1 , 1} ;
P a r t i t i o n e r p = new P a r t i t i o n e r ( a r r a y ) ;
a s s e r t E q u a l s (0 , p . p a r t i t i o n (0 ) ) ;
a s s e r t E q u a l s ( " [ 1 ] : 1" , p . getPartA ( ) . t o S t r i n g ( ) ) ;
a s s e r t E q u a l s ( " [ 1 ] : 1" , p . getPartB ( ) . t o S t r i n g ( ) ) ;

}

@Test
p u b l i c vo i d equa lPa r i t i t o nComp l e x ( ) {

i n t [ ] a r r a y = new i n t [ ] {2 , 10 , 3 , 8 , 5 , 7 , 9 , 5 , 3 , 2} ;
P a r t i t i o n e r p = new P a r t i t i o n e r ( a r r a y ) ;
a s s e r t E q u a l s (0 , p . p a r t i t i o n (0 ) ) ;
a s s e r t E q u a l s ( " [ 9 , 5 , 3 , 2 , 8 ] : 27" , p . getPartA ( ) . t o S t r i n g ( ) ) ;
a s s e r t E q u a l s ( " [ 2 , 10 , 3 , 5 , 7 ] : 27" , p . getPartB ( ) . t o S t r i n g ( ) ) ;

}

@Test
p u b l i c vo i d to leranceOverSumComplex ( ) {

i n t [ ] a r r a y = new i n t [ ] {5 , 8 , 13 ,27 ,14} ;
P a r t i t i o n e r p = new P a r t i t i o n e r ( a r r a y ) ;
a s s e r t E q u a l s (3 , p . p a r t i t i o n (3 ) ) ;
a s s e r t E q u a l s ( " [ 14 , 13 , 5 ] : 32" , p . getPartA ( ) . t o S t r i n g ( ) ) ;
a s s e r t E q u a l s ( " [ 8 , 2 7 ] : 35" , p . getPartB ( ) . t o S t r i n g ( ) ) ;

}

@Test
p u b l i c vo i d un r e a chab l eTo l e r an c eS imp l e ( ) {

i n t [ ] a r r a y = new i n t [ ] {10 ,20} ;
P a r t i t i o n e r p = new P a r t i t i o n e r ( a r r a y ) ;
a s s e r t E q u a l s (10 , p . p a r t i t i o n (5 ) ) ;
a s s e r t E q u a l s ( " [ 2 0 ] : 20" , p . getPartA ( ) . t o S t r i n g ( ) ) ;
a s s e r t E q u a l s ( " [ 1 0 ] : 10" , p . getPartB ( ) . t o S t r i n g ( ) ) ;

}

@Test
p u b l i c vo i d un reachab l eTo l e ranceComp lex ( ) {

i n t [ ] a r r a y = new i n t [ ] {30 ,50 ,10 ,20 ,60 ,80 ,60 ,90 ,40 ,20 ,70 ,50 ,80 ,90} ;
P a r t i t i o n e r p = new P a r t i t i o n e r ( a r r a y ) ;
a s s e r t E q u a l s (10 , p . p a r t i t i o n (0 ) ) ;
a s s e r t E q u a l s ( " [ 40 , 20 , 70 , 50 , 80 , 90 , 3 0 ] : 380" , p . getPartA ( ) . t o S t r i n g ( ) ) ;
a s s e r t E q u a l s ( " [ 50 , 10 , 20 , 60 , 80 , 60 , 9 0 ] : 370" , p . getPartB ( ) . t o S t r i n g ( ) ) ;

}
}
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This example is based on the Balanced Partition Problem: given an array of n
integers, �nd a partition into two subsets which minimizes |S1 − S2| (where S1 and S2

denote the sums of the elements in each subset). In the given implementation, a SumList

represents an object which holds an integer list, it provides an interface to add and remove
numbers and it also keeps track of the current sum of the list. A Partitioner holds an
integer array and provides an interface to partition the array into two subsets (partA and
partB). Lastly, the class PartitionerTest contains 6 tests specifying the Partitioner

class.

The algorithm used to partition the array is an iterative method. It starts o� from
a trivial con�guration: partA holds all the numbers and partB is empty. Then, in each
iteration, the partition is improved in one of three ways: i) moving one number from partA
to partB; ii) moving one number from partB to partA; iii) swapping a number of partA
with a number of partB. Such exchange only takes place if, by doing so, the value of
|S1 − S2| decreases.

This algorithm is implemented in Partitioner.partition() method. The method re-
ceives one integer parameter (tolerance). This number is used in the termination condition
of the loop: as long as |S1−S2| is bigger than tolerance, the algorithm tries to improve the
current partition. However, with this termination condition, the algorithm will enter into
an in�nite loop if the tolerance is unfeasible (e.g., the optimal partition of array [1, 1, 3] is
[1, 1] and [3]; then, a tolerance of 0 will cause the algorithm to loop inde�nitely).

In PartitionerTest we present 6 tests on Partitioner class:

• PartitionerTest.toleranceOverSumSimple():
Array: [1,3]. The optimal di�erence is 2, partitioning into: [3] and [1]. The
tolerance is 2, so the loop in Partitioner.partition() will halt.

• PartitionerTest.equalParititonSimple():
Array: [1,1]. The optimal di�erence is 0, partitioning into: [1] and [1]. The
tolerance is 0, so the loop in Partitioner.partition() will halt.

• PartitionerTest.equalParititonComplex():
Array: [2,10,3,8,5,7,9,5,3,2]. The optimal di�erence is 0, partitioning into: [9,
5, 3, 2, 8] and [2, 10, 3, 5, 7]. The tolerance is 0, so the loop will halt.

• PartitionerTest.toleranceOverSumComplex():
Array: [5,8,13,27,14]. The optimal di�erence is 3, partitioning into: [14, 13,

5] and [8, 27]. The tolerance is 3, so the loop will halt.

• PartitionerTest.unreachableToleranceSimple():
Array: [10,20]. The optimal di�erence is 10, partitioning into: [20] and [10]. The
tolerance is 5, so the loop in Partitioner.partition() will not halt.

• PartitionerTest.unreachableToleranceComplex():
Array: [30,50,10,20,60,80,60,90,40,20,70,50,80,90]. The optimal di�erence
is 10, partitioning into: [40, 20, 70, 50, 80, 90, 30] and [50, 10, 20, 60,

80, 60, 90]. The tolerance is 0, so the loop in Partitioner.partition() will not
halt.
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A.2 In�nite Loop Repair

Now that the example has been presented, we can proceed with the repair of the loop in
Partitioner.partition() method.

A.2.1 Instrumentation

The �rst thing to get done is the project instrumentation of every while loop (Section 4.2).
In the running example, the source code of Partitioner.partition() is modi�ed �and
recompiled� into this one:

p u b l i c i n t p a r t i t i o n ( i n t t o l e r a n c e ) {
I n t e g e r a = 0 ;
I n t e g e r b = 0 ;
I n t e g e r ga i n = 0 ;
I t e r a t o r <I n t e g e r > i t e r A = n u l l ;
I t e r a t o r <I n t e g e r > i t e r B = n u l l ;
i n t d i f f = I n t e g e r .MAX_VALUE;
LoopMonitor LM_0 = Globa l . ge tMon i to r (0 ) ;
i n t ITERS_0 = 0 ;
wh i l e ( t r u e ) {

boo l ean s t a y = LM_0. d e c i d e ( abs ( d i f f ) > t o l e r a n c e , ITERS_0) ;
i f ( s t a y ) {

ITERS_0 += 1 ;
d i f f = getPartA ( ) . getSum ( ) − getPartB ( ) . getSum ( ) ;
f o r ( a = 0 , i t e r A = getPartA ( ) . i t e r a t o r ( ) ; ; a = i t e r A . nex t ( ) ) {

f o r ( b = 0 , i t e r B = getPartB ( ) . i t e r a t o r ( ) ; ; b = i t e r B . nex t ( ) ) {
ga i n = abs ( d i f f ) − abs ( d i f f − 2∗a + 2∗b ) ;
i f ( ga i n > 0 | | ! i t e r B . hasNext ( ) )

b reak ;
}
i f ( ga i n > 0 | | ! i t e r A . hasNext ( ) )

b reak ;
}
i f ( ga i n > 0) {

getPartA ( ) . migrateTo ( getPartB ( ) , a ) ;
getPartB ( ) . migrateTo ( getPartA ( ) , b ) ;

}
} e l s e b reak ;

}
r e t u r n abs ( d i f f ) ;

}

A.2.2 In�nite Loop Detection

After instrumenting the source code, the tests on PartitionerTest are executed (Sec-
tion 4.3). Two tests are detected as hanging tests: unreachableToleranceSimple and
unreachableToleranceComplex.

A.2.3 Finding Thresholds in Hanging Tests

The next task is to �nd the angelic threshold for each hanging test (Section 4.4). In this
step, the repair method �nds that the test unreachableToleranceSimple passes if the loop
in Partitioner.partition() iterates twice. The test unreachableToleranceComplex

passes if the same loop performs only 10 iterations.

A.2.4 Patch Synthesis

At this point, we can run the 6 tests in PartitionerTest and make them pass. The non-
hanging tests are already successful; the hanging tests pass with guidance from the loop
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monitor (it breaks the loop after the required number of iterations are completed). The
next task is to trace runtime values from the test executions (Subsection 4.5.3) in order to
infer a new looping guard for the loop in Partitioner.partition(). To enable runtime
value collection, another loop instrumentation is carried out:

p u b l i c i n t p a r t i t i o n ( i n t t o l e r a n c e ) {
I n t e g e r a = 0 ;
I n t e g e r b = 0 ;
I n t e g e r ga i n = 0 ;
I t e r a t o r <I n t e g e r > i t e r A = n u l l ;
I t e r a t o r <I n t e g e r > i t e r B = n u l l ;
i n t d i f f = I n t e g e r .MAX_VALUE;
LoopMonitor LM_0 = Globa l . ge tMon i to r (0 ) ;
i n t ITERS_0 = 0 ;
wh i l e ( t r u e ) {

boo l ean s t a y = LM_0. d e c i d e ( abs ( d i f f ) > t o l e r a n c e , ITERS_0) ;
LM_0. c o l l e c t I n p u t ( " abs ( d i f f ) > t o l e r a n c e " , abs ( d i f f ) > t o l e r a n c e ) ;
LM_0. c o l l e c t I n p u t ( "a" , a ) ;
LM_0. c o l l e c t I n p u t ( "b" , b ) ;
LM_0. c o l l e c t I n p u t ( " d i f f " , d i f f ) ;
LM_0. c o l l e c t I n p u t ( " ga i n " , ga i n ) ;
LM_0. c o l l e c t I n p u t ( " i t e r A " , i t e r A ) ;
LM_0. c o l l e c t I n p u t ( " i t e r B " , i t e r B ) ;
LM_0. c o l l e c t I n p u t ( " t o l e r a n c e " , t o l e r a n c e ) ;
LM_0. c o l l e c t I n p u t ( " t h i s . partA " , t h i s . partA ) ;
LM_0. c o l l e c t I n p u t ( " t h i s . partB " , t h i s . partB ) ;
i f ( t h i s . partB != n u l l ) {

LM_0. c o l l e c t I n p u t ( " t h i s . partB . g e t L i s t ( ) " , t h i s . partB . g e t L i s t ( ) ) ;
LM_0. c o l l e c t I n p u t ( " t h i s . partB . getSum ( ) " , t h i s . partB . getSum ( ) ) ;

}
i f ( t h i s . partA != n u l l ) {

LM_0. c o l l e c t I n p u t ( " t h i s . partA . g e t L i s t ( ) " , t h i s . partA . g e t L i s t ( ) ) ;
LM_0. c o l l e c t I n p u t ( " t h i s . partA . getSum ( ) " , t h i s . partA . getSum ( ) ) ;

}
LM_0. c o l l e c tOu t p u t ( s t a y ) ;
i f ( s t a y ) {

ITERS_0 += 1 ;
d i f f = getPartA ( ) . getSum ( ) − getPartB ( ) . getSum ( ) ;
f o r ( a = 0 , i t e r A = getPartA ( ) . i t e r a t o r ( ) ; ; a = i t e r A . nex t ( ) ) {

f o r ( b = 0 , i t e r B = getPartB ( ) . i t e r a t o r ( ) ; ; b = i t e r B . nex t ( ) ) {
ga i n = abs ( d i f f ) − abs ( d i f f − 2∗a + 2∗b ) ;
i f ( ga i n > 0 | | ! i t e r B . hasNext ( ) )

b reak ;
}
i f ( ga i n > 0 | | ! i t e r A . hasNext ( ) )

b reak ;
}
i f ( ga i n > 0) {

getPartA ( ) . migrateTo ( getPartB ( ) , a ) ;
getPartB ( ) . migrateTo ( getPartA ( ) , b ) ;

}
} e l s e b reak ;

}
r e t u r n abs ( d i f f ) ;

}

We can observe that di�erent type of variables are being collected: local variables
(a, b, diff, gain, iterA and iterB), method parameters (tolerance), instance �elds
(this.partA, this.partB), non-visible �elds from getters (getList() and getSum() for
this.partA and this.partB), and the evaluation of the original looping guard (the value
of the predicate �abs(diff) > tolerance�). For every collected variable, we provide a
String representation. This representation is used during code synthesis, to associate nu-
merical or boolean values to code snippets. The decision of whether to iterate or break the
loop is also collected (method call to collectOutput() with the added local variable stay).
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With this new instrumentation, we can rerun the tests in PartitionerTest and trace
runtime values. Here, we show 3 di�erent traces (35 were collected in total). The input
elements are extracted values from the collected variables, and the output value is the same
as the previous stay variable:

output : t r u e
i npu t : {" abs ( d i f f ) > t o l e r a n c e "=true ,

"a"=7, "b"=8, " ga i n "=2, " d i f f "=−2, " t o l e r a n c e "=0,
" i t e r A != n u l l "=true ,
" i t e r B != n u l l "=true ,
" i t e r A . hasNext ( ) "=true ,
" i t e r B . hasNext ( ) "=true ,
" t h i s . partA != n u l l "=true ,
" t h i s . partB != n u l l "=true ,
" t h i s . partA . getSum ( ) "=27,
" t h i s . partB . getSum ( ) "=27,
" t h i s . partA . g e t L i s t ( ) . s i z e ( ) "=5,
" t h i s . partB . g e t L i s t ( ) . s i z e ( ) "=5,
" t h i s . partA . g e t L i s t ( ) != n u l l "=true ,
" t h i s . partB . g e t L i s t ( ) != n u l l "=true ,
" t h i s . partA . g e t L i s t ( ) . i sEmpty ( ) "=f a l s e ,
" t h i s . partB . g e t L i s t ( ) . i sEmpty ( ) "=f a l s e } .

output : f a l s e
i n pu t : {" abs ( d i f f ) > t o l e r a n c e "=f a l s e ,

"a"=3, "b"=1, " ga i n "=0, " d i f f "=2, " t o l e r a n c e "=2,
" i t e r A != n u l l "=true ,
" i t e r B != n u l l "=true ,
" i t e r A . hasNext ( ) "=f a l s e ,
" i t e r B . hasNext ( ) "=f a l s e ,
" t h i s . partA != n u l l "=true ,
" t h i s . partB != n u l l "=true ,
" t h i s . partA . getSum ( ) "=3,
" t h i s . partB . getSum ( ) "=1,
" t h i s . partA . g e t L i s t ( ) . s i z e ( ) "=1,
" t h i s . partB . g e t L i s t ( ) . s i z e ( ) "=1,
" t h i s . partA . g e t L i s t ( ) != n u l l "=true ,
" t h i s . partB . g e t L i s t ( ) != n u l l "=true ,
" t h i s . partA . g e t L i s t ( ) . i sEmpty ( ) "=f a l s e ,
" t h i s . partB . g e t L i s t ( ) . i sEmpty ( ) "=f a l s e } .

output : f a l s e
i n pu t : {" abs ( d i f f ) > t o l e r a n c e "=f a l s e ,

"a"=1, "b"=1, " ga i n "=0, " d i f f "=0, " t o l e r a n c e "=0,
" i t e r A != n u l l "=true ,
" i t e r B != n u l l "=true ,
" i t e r A . hasNext ( ) "=f a l s e ,
" i t e r B . hasNext ( ) "=f a l s e ,
" t h i s . partA != n u l l "=true ,
" t h i s . partB != n u l l "=true ,
" t h i s . partA . getSum ( ) "=1,
" t h i s . partB . getSum ( ) "=1,
" t h i s . partA . g e t L i s t ( ) . s i z e ( ) "=1,
" t h i s . partB . g e t L i s t ( ) . s i z e ( ) "=1,
" t h i s . partA . g e t L i s t ( ) != n u l l "=true ,
" t h i s . partB . g e t L i s t ( ) != n u l l "=true ,
" t h i s . partA . g e t L i s t ( ) . i sEmpty ( ) "=f a l s e ,
" t h i s . partB . g e t L i s t ( ) . i sEmpty ( ) "=f a l s e } .

These data is used to infer a new looping guard for the loop in method partition()

of class Partitioner. The new looping guard must equal, when evaluated on each of the
35 input sets, the corresponding collected output. To do so, a patch synthesis problem is
formulated (Subsection 4.5.2). Once solved, the following looping guard is found:

( ( 0 )<(ga i n ) ) | | ( t h i s . partB . g e t L i s t ( ) . i sEmpty ( ) )



B. COMPONENT-BASED SYNTHESIS

In this section, we explain how the component-based synthesis (introduced in Subsec-
tion 4.5.1) encodes the synthesis problem into an SMT problem, and how it decodes the
solution of the SMT problem into an algorithm.

B.1 Overview

The way in which component-based synthesis generates an algorithm is by composing base
components. That is, given a set of base components C and the target algorithm speci�ca-
tion V, we generate equations ψ(I) which are a composition of zero or more components
from C. We refer to a generated equation ψ(I) as a �component composition�. The main
di�culty of component-based synthesis resides on �nding a component composition suit-
able for the target algorithm.

Let us revisit Demo 4.5.1. The base components are C+, C× and C=. In addition, we
have three inputs: p, q and n. These values are going to be the parameters of the target
algorithm. Then, the goal of component-based synthesis is to generate an algorithm using
six ingredients: C+, C×, C=, p, q and n. How we compose these ingredients into a function
ψ(p, q, n) determine the return value of the target algorithm. The return value can simply
be �ψ(p, q, n) = q�, or the result of the sum �ψ(p, q, n) = p+q�, or the result of the equation
�ψ(p, q, n) = (p×n) + q�, and so on. To determine which of these component compositions
are corect for the target algorithm, we use the speci�cation of the target algorithm: the
input-ouput pair set V. The equation ψ(I) is correct if and only if ψ(I) = O for every
(I,O) ∈ V.

One way to �nd the target algorithm is to use naive exponential search: generate all
possible component compositions and discard those that violate the speci�cation. The
problem of this approach is that the number of component compositions that can be con-
structed using a given set of components is exponential in the number of components.

A more sophisticated search can be attained by delegating exponential reasoning to
Satis�ability (SAT) and Satis�ability Modulo Theory (SMT) solvers. We can encode the
target algorithm as an SMT problem and try to solve the latter. If a solution exists, the
solution can be decoded back to an equivalent algorithm.

B.2 SMT Encoding

The encoding of the target algorithm consists of describing the algorithm with a series of
�rst-order logic constraints. Some of the constraints describe the syntaxis of the algorithm,
and the rest describe the semantics.

B.2.1 Syntaxis Encoding

Here, we focus on the syntaxis of the algorithm. The main concern is to have a well-formed
algorithm which respects the syntactic rules of imperative programming. We explain how

8
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to do this with the running example of Subsection 4.5.1.

Ψ(I):

o1 := I.p

o2 := I.q

o3 := I.n

o4 := ?

o5 := ?

o6 := ?

return out

(a)

Ψ(I):

o1 := I.p

o2 := I.q

o3 := I.n

o4 := o1 × o3

o5 := o1 == o3

o6 := o4 + o2

return o2

(b)

Ψ(I):

o1 := I.p

o2 := I.q

o3 := I.n

o4 := o2 + o1

o5 := o3 × o4

o6 := o4 == o3

return o6

(c)

Demonstration B.2.1

We can sketch the skeleton of the target algorithm as shown in Demo B.2.1(a). In
Demo B.2.1(b) and Demo B.2.1(c) we can see two possible algorithms following the same
outline. The �rst one represents the component composition �ψ(p, q, n) = q� and the sec-
ond one, �ψ(p, q, n) = (q + p) == n�. From the skecth, we note that the length of the
algorithm is |I| + |C| + 1 lines of code. In the �rst |I| lines we declare local variables for
reading the input variables. In the following |C| lines we declare local variables to store the
result of operating with each component. The last statement is the return value out.

From the shown examples we see that there are three things missing in the sketch: a)
the correspondence between each component and the line where it is used (for instance,
C+ is used in line 6 in Demo B.2.1(b), but it is used in line 4 in Demo B.2.1(c)); b) the
correspondence between the operands of each component and the line where it is declared
(for instance, the left component of C+ is declared in line 4 in Demo B.2.1(b), but it is
declared in line 2 in Demo B.2.1(c)); c) the correspondence between the returned value
and where it is declared (it is declared in line 2 in Demo B.2.1(b), but it is declared in line
6 in Demo B.2.1(c)). These missing correspondences are exactly what we want the SMT
problem to �nd.

We now present the constraints to describe the syntaxis of the algorithm. Let the
following de�nitions hold:

• I: inputs for the target algorithm. For the running example: I = {p, q, n}.

• C: base components used in the target algorithm. For the running exmaple: C =
{C+, C×, C=}.

• A: operands of each component in C. For the running example we include the
operands of C+ (s1, s2), of C× (m1, m2) and C= (e1, e2): A = {s1, s2,m1,m2, e1, e2}.

• out: the output of the target algorithm.

• E : union of inputs and components. E = I ∪ C.

• l(x) : (E ∪ A ∪ {out}) → {1, 2, . . . , |E|}. Function which resolves the missing cor-
respondences. The value of l(x) for x ∈ I gives the line number where input x is
read and stored in a local variable ol(x). The value of l(x) for x ∈ C gives the line
number where component x is used, and where the result of the operation is stored
in a local variable ol(x). The value of l(x) for x ∈ A gives the line number where
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the local variable ol(x) (which serves as operand x) is declared. Finally, l(out) gives
the line number where the local variable ol(x) (which serves as the return value of
the target algorithm) is declared. For instance, based on Demo B.2.1(b), we have
l(q) = 2, l(C+) = 6, l(s1) = 4 (the left operand of C+), and l(out) = 2.

Here are the syntaxis constraints:

• First of all, we make sure that l(x) is de�ned in a consistent way. There cannot be
two mappings of l(x) to the same line number for the inputs and the components:

Φcons(E) = ∀e1, e2 ∈ E : e1 6= e2 ⇒ l(e1) 6= l(e2)

• As said before, the �rst |I| lines of the algorithm are intended to read the inputs:

Φinput(I) = ∀i ∈ I : 1 ≤ l(i) ≤ |I|

• Next, the following lines are intended to operate with the components:

Φcomponents(C) = ∀c ∈ C : |I|+ 1 ≤ l(c) ≤ |E|

• We ignore what is the correspondence of the operands of each component and out,
so we have:

Φbound(A, out) = ∀e ∈ (A ∪ {out}) : 1 ≤ l(a) ≤ |E|

• What we do know about the operands is that they can only refer to already de-
clared local variables in the target algorithm. This can be expressed in the following
acyclicity constraint :

Φacyc(C,A) = ∀c ∈ C, ∀a ∈ A : (a ∈ operandsOf(c))⇒ l(a) < l(c)

• There is also another restriction for the operands: type checking. For example, if we
are using a logic component Cand and an arithmetic component C+, we cannot assign
s1 to the result returned by Cand because C+ expects s1 to be a number. Then, the
idea is to make the operands reference only variables of the same type:

Φtypes(C,A) : ∀c ∈ C, ∀a ∈ A : typeOf(c) 6= typeOf(a)⇒ l(c) 6= l(a)

Here, the function typeOf will answer: for a component, its return type; for an input,
operand or out, its own type.

Then, the complete syntaxis encoding can be represented in a single well-formed con-

straint :

Φwell−formed(I, C,A, out) = ∃l : Φcons(I ∪ C) ∧ Φinput(I)∧

Φcomponents(C) ∧ Φbound(A, out) ∧ Φacyc(C,A) ∧ Φtypes(C,A)
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B.2.2 Semantics Encoding

Here, we focus on the semantics of the algorithm. The main concern is to have an algorithm
compliant with the speci�cation. That is, for every (I,O) ∈ V, the output of the target
algorithm when it is evaluated with input I should be equal to O.

Let the following de�nition hold:

• eval(x) : (E ∪ A) → V alue: function which permits to evaluate inputs, components
and operands. For instance, in Demo B.2.1(c), if the input-output pair is ({p = 1, q =
2, n = 3}, true) we have: eval(q) = 2, eval(s1) = eval(q) = 2 (left operand of C+),
eval(s2) = eval(p) = 1 (right operand of C+) and eval(C+) = eval(s1)+eval(s2) = 3.

Here are the semantics constrains:

• How to obtain the value of each input I of an (I,O) pair is straightforward:

Φvalues(I) = ∀i ∈ I : eval(i) = i

• For each component, the constraint di�ers according to its expected behavior. In the
running example we have one constraint for C+, another one for C× and another one
for C=:

Φlib({C+, C×, C=}) = (eval(C+) = eval(s1) + eval(s2))∧

(eval(C×) = eval(m1)× eval(m2)) ∧ (eval(C=) = eval(e1) == eval(e2))

• We want to be able to compose di�erent components, so that the result of one
component operation can be �tunneled out� as an operand of another component.
For instance, in Demo B.2.1(c), we have e1 (the left operand of C=) linked to the
local variable o4 (that is, l(e1) = 4). In turn, l(C+) = 4 because C+ is used in line
number 4. As a consequence, the operand e1 is really taking the value of the result
of the C+ operation. We express this relation in a connectivity constraint :

Φconn(C,A) = ∀c ∈ C, ∀a ∈ A : l(a) = l(c)⇒ eval(a) = eval(c)

• Finally, we make sure that the value referenced by out is equal to O of an (I,O) pair:

Φtarget(O, out) = (eval(out) = O)

Then, the complete semantics encoding can be represented in a single speci�cation

constraint :

Φspeficiation(V, C, out) = ∀(I,O) ∈ V : ∃eval :

Φvalues(I) ∧ Φlib(C) ∧ Φconn(C,A) ∧ Φtarget(O, out)
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B.2.3 Synthesis Constraint

Putting it all together, the complete SMT encoding can be formulated in a single synthesis
constraint :

Φsynth(V, I, C,A, out) = Φwell−formed(I, C,A, out) ∧ Φspeficiation(V, C, out)

The synthesis constraint says that there exists a function l(x) that lets us build a well-
formed algorithm which receives the parameters in I and operates with the components in
C to output a value out; and, for every input-output pair (I,O) ∈ V the evaluation of out
for input I is equal to O.

B.3 Decoding an Algorithm

The solution of the SMT problem gives the assignments of l(x) for each input, component,
component operands and output. With these values, the procedure to decode the solution
of the SMT problem into an algorithm is straightforward. As shown in Demo B.2.1(a), in
the �rst |I| lines we read input, and in the following |C| lines we operate with the compo-
nents. The order of every element is dictated by l(x).

We illustrate the procedure to build the algorithm with the running example of Subsec-
tion 4.5.1. Let us suppose the SMT solution is the one shown in Table B.3.1, which yields
the same algorithm shown in Demo B.2.1(c). The table shows the l(x) assignments as well
as its corresponding local variables. Also, in the last row, we show a string representation
of inputs and components. The string representation of each element lets us ultimately
translate the line assignment with a source code snippet.

l(p) l(q) l(n) l(C+) l(s1) l(s2) l(C×) l(m1) l(m2) l(C=) l(e1) l(e2) l(out)

1 2 3 4 2 1 5 3 4 6 4 3 6
o1 o2 o3 o4 o2 o1 o5 o3 o4 o6 o4 o3 o6

I.p I.q I.n o2+o1 o3×o4 o4==o3

Table B.3.1. Assignments for l(x) to arrange the algorithm of Demo B.2.1(c).

Ψ(I):

o1 := _

o2 := _

o3 := _

o4 := _

o5 := _

o6 := _

return out

(a)

Ψ(I):

o1 := I.p

o2 := I.q

o3 := I.n

o4 := _

o5 := _

o6 := _

return out

(b)

Ψ(I):

o1 := I.p

o2 := I.q

o3 := I.n

o4 := o2 + o1

o5 := o3 × o4

o6 := o4 == o3

return out

(c)

Ψ(I):

o1 := I.p

o2 := I.q

o3 := I.n

o4 := o2 + o1

o5 := o3 × o4

o6 := o4 == o3

return o6

(d)

Demonstration B.3.1

We begin by writing the outline of the algorithm (Demo B.3.1(a)). We have three
inputs (p, q and n) and three components (C+, C× and C=). Therefore, we leave 6 lines,
plus another one for the return statement.
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Next, we �ll the lines for reading the input variables (Demo B.3.1(b)). For each input
we look in the table its line assignment. For input p, the assignment l(p) is 1. Then, we
should read input p in the �rst line and assign it to o1. We do the same for the rest of the
input variables.

Next, we �ll the lines for operating with the components (Demo B.3.1(c)). For each
component we look in the table its own line assignment, as well as those for its operands.
For component C+ the assignment l(C+) is 4. Then, we use this component in line 4,
storing its value in o4. The operation is done between s1 and s2. The line assignment l(s1)
is 2. This means that the local variable declared in line 2 (o2) acts as the left operand.
The right operand (s2) is o1, because the assignment l(s2) is 1. Then, the sum operation is
performed with o2 and o1. We do the same for the rest of the components and its operands.

Finally, we assign the corresponding local variable for the return vale (Demo B.3.1(d)).
The table shows the assignment l(out) is 6. Then, we write the return statement with o6.

This way, we are able to decode the solution of the SMT problem into an algorithm.
Note that with component-based synthesis, the synthesised algorithm has the important
characteristic of being correct by construction, because it derives from a solution of a logic
problem.

Lastly, we mention that from the same solution of the SMT problem we can synthesise
an expression instead of an algorithm of imperative programming fashion. We do it by
backwards traversal of the returned value until every intermediate local variable is replaced
with a component or an input.

o6 (o4 == o3) ((o2 + o1) == o3) ((I.q + o1) == o3) 

((I.q + I.p) == o3) ((I.q + I.p) == I.n)



C. IMPLEMENTATION ESSENTIALS

Throughout this thesis, we exhibit how Automatic Software Repair employs source code
analysis and modi�cation. When modifying source code automatically, avoiding compila-
tion errors is a must because we want the modi�ed code to be executable. Once compiled,
we have to make sure we execute the modi�ed source code instead of the original. All these
tasks require dealing with program logic complexity, language syntaxis and the program-
ming language metamodel. In this section, we brie�y introduce the Java Virtual Machine's
(JVM) architecture and we explain how to perform the �source code replacement� to run
the modi�ed code in the implementation of the present work.

C.1 Java Terminology

We �rst introduce some Java speci�c terminology taken from [30].

Package

It is a grouping of related types providing access protection and name space management.
Programmers bundle classes and interfaces in a package for several reasons: a) to easily
determine that types of same package are related; b) to create a new namespace to avoid
con�icts with the type names of other packages; c) to allow types within the package to
have unrestricted access to one another yet still restrict access for types outside the package.

Package Member

The types that comprise a package. To use a public package member from outside its
package, one can do one of the following: a) refer to the member by its fully quali�ed
name; b) import the package member; c) import the member's entire package.

Quali�ed Name

The quali�ed name of a class includes the package name. That is, the quali�ed name of
the Rectangle class in the graphics package is graphics.Rectangle, and the quali�ed
name of the Rectangle class in the java.awt package is java.awt.Rectangle.

Many implementations of the Java platform rely on hierarchical �le systems to manage
source and class �les, although the Java language speci�cation does not require this. The
quali�ed name of the package member and the path to the �le are parallel. If the quali�ed
name is java.awt.Rectangle, then the path to the source �le of the class should be
sourcepath/java/awt/Rectangle.java. Here, sourcepath is a placeholder for the path
of the root folder which contains all the .java �les of the project.

Class�le

When a source �le is compiled, the compiler creates a di�erent output �le for each type
de�ned in it. The base name of the output �le is the name of the type, and the extension
.class (hence, the class�le). The compiled �le for java.awt.Rectangle will be located in

14
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classpath/java/awt/Rectangle.class. Here, classpath is a placeholder for the path of
the root folder which contains all the .class �les of the project.

Classpath

Like the .java source �les, the compiled .class �les should be in a series of directories
that also re�ect the package name. However, paths to .class �les do not have to be the
same as the .java source �les. As a convention, most programmers arrange the .java and
.class root directories in two di�erent locations:

sourcepath/java/awt/Rectangle.java classpath/java/awt/Rectangle.class

By doing this, one can give the classpath directory to other programmers without
revealing the sources. Another reason for maintaining a directory structure is because
it helps the compiler and the JVM �nd all the types a program uses. For example, if
/usr/home/app/bin/ is the classpath, to load the Rectangle class, the compiler and JVM
look for .class �les recursively from the classpath following the package name java.awt.
That is, they expect to �nd the Rectangle class�le in:

/usr/home/app/bin/java/awt/Rectangle.class

Optionally, a class path may include several paths (separated by a colon in Linux):

/usr/home/app/bin:/usr/home/dependency/bin

It can also include a .jar �le (from where the retrieval of a class �le or resource is done
in a hierarchical way as well):

/usr/home/app/bin:/usr/home/app/external/ext.jar

Finally, it is important to note that if a class path includes the same package more than
once, only the �rst location of the path is used by the JVM. This could be troublesome
if you have the same package referenced twice in the class path with di�erent versions in
each reference and the application keeps executing the wrong version because it appears
before the desired one in the class path. Moreoever, this could introduce runtime errors as
NoSuchMethodError (when the target class is found but not the referenced member). In
these cases, special attention must be paid to the class path con�guration.

C.2 Java Virtual Machine

To understand the JVM one should �rst be aware that the term �Java Virtual Machine�
can reference three di�erent things: the abstract speci�cation, a concrete implementation,
or a runtime instance. The abstract speci�cation is a concept, described in detail in [29].
Concrete implementations, which exist on many platforms and come from many vendors,
are either all software or a combination of hardware and software. A runtime instance
hosts a single running Java application.

A runtime instance of the JVM has a clear mission in life: to run one Java applica-
tion. When a Java application starts, a runtime instance is born. When the application
completes, the instance dies. If we start two Java applications at the same time, on the
same computer, using the same concrete implementation, we would get two JVM instances.
Each Java application runs inside its own JVM.
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JVM Lifespan

Inside the JVM, threads appear in two �avors: daemon and non-daemon. A daemon thread
is ordinarily a thread used by the virtual machine itself, such as a thread that performs
garbage collection. The application, however, can mark any threads it creates as daemon
threads. The initial thread of an application �the one that begins at main()� is a non-
daemon thread.

A Java application continues to execute (�the virtual machine instance continues to
live�) as long as any non-daemon thread keeps running. When all non-daemon threads of
a Java application terminate, the virtual machine instance exits. Alternatively, if allowed
by the security manager, the application can explicitly cause its own demise by invoking
the exit() method of class Runtime or System.

When a new thread is created it inherits the daemon status of its parent. The method
setDaemon() can be used to change the Thread daemon properties, but only before the
start of the thread.

C.3 Runtime Data Areas

When a JVM runs a program, it needs memory to store many things, including bytecodes
and other information it extracts from loaded class �les, objects the program instantiates,
parameters to methods, return values, local variables, and intermediate results of computa-
tions. The JVM organizes the memory it needs to execute a program into several runtime
data areas. In other words, the runtime data areas are a mechanism to organize memory
managed by the JVM.

C.3.1 Thread Memory

As each new thread comes into existence, it gets its own pc register (program counter) and
Java stack. If the thread is executing a Java method (not a native method), the value of
the pc register indicates the next instruction to execute. A thread's Java stack stores the
state of Java (not native) method invocations for the thread. The state of a Java method
invocation includes its local variables, the parameters with which it was invoked, its return
value (if any), and intermediate calculations. The state of native method invocations is
stored in an implementation-dependent way in native method stacks, as well as possibly
in registers or other implementation-dependent memory areas.

C.3.2 Shared Memory

Each instance of the JVM has one method area and one heap. These areas are shared by
all threads running inside the virtual machine.

• Method Area: when the virtual machine loads a class �le, it parses information
about a type from the binary data contained in the class �le. It places this type
information into the method area. All threads share the same method area, so access
to the method area's data structures must be designed to be thread-safe. If two
threads are attempting to �nd a class named Lava, for example, and Lava has not
yet been loaded, only one thread should be allowed to load it while the other one
waits.
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• Heap: as the program runs, the virtual machine places all objects the program instan-
tiates onto the heap. The virtual machine itself is responsible for deciding whether
and when to free memory occupied by objects that are no longer referenced by the
running application. Usually, a JVM implementation uses a garbage collector to
manage the heap.

When the JVM loads a type, it uses a class loader to locate the appropriate class �le.
The class loader reads in the class �le �a linear stream of binary data� and passes it to the
virtual machine. The virtual machine extracts information about the type from the binary
data and stores the information in the method area. Memory for class (static) variables
declared in the class is also taken from the method area. For each type it loads, the JVM
must store the following information in the method area:

• The fully quali�ed name of the type.

• The fully quali�ed name of the type's direct superclass (unless the type is an interface
or class java.lang.Object, neither of which have a superclass).

• Whether or not the type is a class or an interface.

• The type's modi�ers (some subset of public, abstract, final).

• An ordered list of the fully quali�ed names of any direct superinterfaces.

• The constant pool for the type (a constant pool is an ordered set of constants used
by the type).

• Field information (for each �eld the following information is stored: name, type
and modi�er �subset of public, private, protected, static, final, volatile,
transient).

• Method information (for each method the following information is stored: name, re-
turn type, number and type of parameters and modi�ers �subset of public, private,
protected, static, final, synchronized, native, abstract). When the method is
not abstract nor native, these are also stored: method's byte codes, size of operands,
stack and exception table.

• All class (static) variables declared in the type, except constants. A constant is a
class variable with final modi�er.

• A reference to the type's ClassLoader. For each type it loads, a JVM must keep
track of whether or not the type was loaded via the bootstrap class loader or a
user-de�ned class loader. For those types loaded via a user-de�ned class loader, the
virtual machine must store a reference to the user-de�ned class loader that loaded
the type. This information is stored as part of the type's data in the method area.
The virtual machine uses this information during dynamic linking. When one type
refers to another type, the virtual machine requests the referenced type from the
same class loader that loaded the referencing type. Most implementations of the
JVM don't wait until all classes used by the application are loaded before it begins
executing main(); they load classes only as they are needed.

• A reference to an instance of class Class. An instance of class java.lang.Class

is created by the JVM for every type it loads. The virtual machine must in some
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way associate a reference to the Class instance for a type with the type's data in
the method area. The static method forName() in class Class, allows access to the
Class instance for any loaded class.

C.4 Class Loader Subsystem

Three main components constitute the JVM: runtime data areas, the execution engine
(responsible for executing the instructions contained in the methods of loaded classes) and
a class loader subsystem. The class loader subsystem is a mechanism for loading types
(classes and interfaces) given fully quali�ed names. We now proceed by explaining this
component in detail.

C.4.1 Introduction

Applications written in statically compiled programming languages, such as C and C++,
are compiled into native, machine-speci�c instructions and saved as an executable �le. The
process of combining the code into an executable native code is called linking : the merging
of separately compiled code with shared library code to create an executable application.
This is di�erent in dynamically compiled programming languages such as Java. In Java,
the .class �les generated by the Java compiler remain as-is until loaded into the JVM.
In other words, the linking process is performed by the JVM at runtime. Class loaders are
responsible for loading the classes into the JVM.

The smallest unit of execution that gets loaded by a class loader is the Java .class

�le. A class �le contains the binary representation of a Java class, which has the exe-
cutable bytecodes and references to other classes used by that class, including references
to classes in the Java API. Stated simply, a ClassLoader locates the bytecodes for a Java
class that needs to be loaded, reads the bytecodes, and creates an instance of the class
java.lang.Class. This makes the class available to the JVM for execution.

Initially, when a JVM starts up, nothing is loaded into it. The �rst class to run, the
entry point into the application, is the one with the static main() method. Next, other
classes and interfaces are loaded as they get referenced in the bytecode being executed.
The JVM thus exhibits lazy loading, loading classes only when required. This way, at
start-up, the JVM does not need to know the classes that would get loaded during run-
time. Lazy loading plays a key role in providing dynamic extensibility to the Java platform.

The class loader subsystem is responsible for more than just locating and importing
the binary data for classes. It must also verify the correctness of imported classes, allocate
and initialize memory for class variables, and assist in the resolution of symbolic references.
These activities are performed in a strict order:

1. Loading: �nding and importing the binary data for a type.

2. Linking: performing veri�cation, preparation, and (optionally) resolution.

(a) Veri�cation: ensuring the correctness of the imported type.

(b) Preparation: allocating memory for class variables and initializing the memory
to default values.



C. Implementation Essentials 19

int long short char byte boolean float double reference

0 0L (short) 0 `\u0000' (byte) 0 false 0.0f 0.0d null

Table C.4.1. Default values for each type.

(c) Resolution: transforming symbolic references from the type into direct refer-
ences.

3. Initialization: invoking Java code that initializes class variables to their proper start-
ing values.

Every JVM implementation has a bootstrap class loader, which knows how to load
trusted classes, including the classes of the Java API. The JVM speci�cation does not
de�ne how the bootstrap loader should locate classes. That is another decision the speci�-
cation leaves to implementation designers. Given a fully quali�ed type name, the bootstrap
class loader must in some way attempt to produce the data that de�nes the type.

Although user-de�ned class loaders themselves are part of the Java application, four of
the methods in class java.lang.ClassLoader are gateways into the JVM:

p r o t e c t e d f i n a l v o i d r e s o l v e C l a s s ( C l a s s c ) ;
p r o t e c t e d f i n a l C l a s s f i n dSy s t emC l a s s ( S t r i n g name) ;
p r o t e c t e d f i n a l C l a s s d e f i n e C l a s s ( S t r i n g name , byte [ ] data , i n t o f f s e t , i n t l e n g t h ) ;
p r o t e c t e d f i n a l C l a s s d e f i n e C l a s s ( S t r i n g name , byte [ ] data , i n t o f f s e t , i n t l eng th ,

Protect ionDomain pro tec t i onDoma in ) ;

Any JVM implementation must take care to connect these methods of class ClassLoader
to the internal class loader subsystem.

C.4.2 Class Loader Terminology

Class loaders in Java terminology can be classi�ed in two kinds. A class loader L may
create class C by de�ning it directly or by delegating to another class loader:

• If L creates C directly, we say that L de�nes C or, equivalently, that L is the de�ning
loader of C.

• When one class loader delegates to another class loader, the loader that initiates the
loading is not necessarily the same loader that completes the loading and de�nes the
class. If L creates C, either by de�ning it directly or by delegation, we say that L

initiates loading of C or, equivalently, that L is an initiating loader of C.

C.4.3 Class Creation

Class or interface creation of class C is triggered when another class or interface D references
C through its runtime constant pool. The JVM uses one of three procedures to create class
or interface C:

• If the name of class C denotes an array class, the class is created directly by the JVM,
not by a class loader. However, the de�ning class loader of D is used in the process
of creating C.

• Otherwise, if D was de�ned by the bootstrap class loader, then the bootstrap class
loader initiates loading of C.
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• Otherwise, if D was de�ned by a user-de�ned class loader, then that same user-de�ned
class loader initiates loading of C.

A given ClassLoader can load a given class only once. There is no need to unload a
class. When the objects using it are no longer referenced, the class object itself, along with
the code, are garbage collected.

We now illustrate how a class is created with an example. Suppose a new instance of
class Purchase is created inside a method of class Client. The JVM looks up in Client's
constant pool for the Purchase entry. That entry is a symbolic reference to Purchase.
With that symbolic reference, the JVM looks up in the method area if Purchase was
loaded. As it discovers that the class was not loaded, it proceeds to �nd and read in �le
Purchase.class, extracting the de�nition of the class and importing the binary data into
the method area.

To do this, the virtual machine uses the de�ning class loader of the referencing type to
load the referenced type. Let us assume Client was de�ned by a user-de�ned class loader.
When the virtual machine resolves the reference to Purchase, it checks to see if Purchase
has been loaded into the namespace to which Client belongs. That is, it checks to see if
the class loader that de�ned Client has previously loaded a type named Purchase. If not,
the virtual machine requests Purchase from the same class loader that de�ned Client.
This is true even if a class named Purchase had previously been loaded into a di�erent
namespace. This is because, at run time, a class or interface is determined not by its name
alone, but by a pair: its quali�ed name and its de�ning class loader. Each such class or
interface belongs to a single runtime package. The runtime package of a class or interface
is determined both by the package name and de�ning class loader of the class or interface.
As a consequence, from the JVM's point of view, the same classes, loaded by di�erent class
loaders, are considered distinct classes.

Once the class is loaded, the JVM replaces the symbolic reference in Client's con-
stant pool with a pointer to the class data for Purchase. If the JVM ever needs to use
Purchase's constant pool entry once again, it won't have to reload Purchase. This pro-
cess of replacing symbolic references with direct references is called constant pool resolution.

Finally, the virtual machine is ready to actually allocate memory for a new Purchase

object. Once again, the virtual machine consults the information stored in the method
area. It uses the pointer (which was just put into Client's constant pool entry) to the
Purchase data (which was just imported into the method area) to �nd out how much heap
space is required by a Purchase object.

(Note: in the previous explanation, the quali�ed name some.package.Purchase is
actually used, instead of the simple name Purchase).

C.5 User-de�ned Class Loaders

The Java runtime can be customized by implementing a custom ClassLoader in a pro-
gram. Developing class loaders is an inherently dangerous undertaking as this can cause
no end of security troubles. For this reason, the Java 2 platform has added useful classes
to the core APIs in order to make developing and using class loaders. For example, the
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java.security.SecureClassLoader class extends the ClassLoader with additional sup-
port for de�ning classes with an associated code source and permissions which are retrieved
by the system policy by default.

The java.net.URLClassLoader class, which is a subclass of SecureClassloader, can
be used to load classes and resources from a search path of URLs referring to directories
and JAR �les. The URLs will be searched in the order speci�ed for classes and resources
after �rst searching in the parent class loader.

The URLClassLoader can be used to develop an application capable of loading classes
and resources from remote servers. The �rst step is to de�ne the URLs where the loader
will search for class �les. Any URL that ends with a slash (`/') is assumed to refer to a
directory, otherwise the URL is assumed to refer to a JAR �le which will be opened as
needed. Once an instance of the URLClassLoader is constructed, the loadClass() method
of the ClassLoader class is used to load the class with the speci�ed quali�ed name.

C.5.1 Implementing a User-de�ned Class Loader with JVM 1.1

Prior to JVM 1.2, the loadClass() method of java.lang.ClassLoader was abstract.
To create a user-de�ned class loader, one way was to subclass ClassLoader and override
loadClass(). A typical implementation is shown in Demo C.5.1.

p u b l i c s y n ch r on i z e d C l a s s l o a dC l a s s ( S t r i n g className , boo l ean r e s o l v e )
throws C las sNotFoundExcept ion {

C l a s s r e s u l t ;
by te c l a s sDa t a [ ] ;
r e s u l t = f i n dLoad edC l a s s ( c lassName ) ;
i f ( r e s u l t != n u l l ) {

r e t u r n r e s u l t ;
}
t r y {

r e s u l t = supe r . f i n dSy s t emC l a s s ( c lassName ) ;
r e t u r n r e s u l t ;

}
ca tch ( C las sNotFoundExcept ion e ) {}
i f ( c lassName . s t a r t sW i t h ( " j a v a . " ) ) {

throw new Clas sNotFoundExcept ion ( ) ;
}
c l a s sDa t a = getTypeFromClassPath ( c lassName ) ;
i f ( c l a s sDa t a == n u l l ) {

throw new Clas sNotFoundExcept ion ( ) ;
}
r e s u l t = d e f i n e C l a s s ( className , c l a s sData , 0 , c l a s sDa t a . l e n g t h ) ;
i f ( r e s u l t == n u l l ) {

throw new C la s sFo rmatE r r o r ( ) ;
}
i f ( r e s o l v e ) {

r e s o l v e C l a s s ( r e s u l t ) ;
}
r e t u r n r e s u l t ;

}

Demonstration C.5.1

The loadClass() method begins by checking to see if the requested type has already
been loaded by this class loader. It does this by invoking findLoadedClass(), an instance
method in ClassLoader, passing in the fully quali�ed name of the requested type as a
parameter. If this class loader has already been marked as an initiating class loader of
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a type with the requested fully quali�ed name, findLoadedClass() will return the Class
instance representing the type.

If the requested type has not been loaded into its name space, it next passes the name
of the requested type to findSystemClass(). In 1.1, when this method is invoked, the
primordial class loader attempts to load the type. In 1.2, the system class loader attempts
to load the type. If the load is successful, findSystemClass() returns the Class instance
representing the type, and loadClass() returns that same Class instance. Otherwise, a
ClassNotFoundException is thrown.

The loadClass() method next checks to make sure the requested class is not part of
the java package. This check prevents members of the standard java packages (java.lang,
java.io, etc.) from being loaded by anything but the bootstrap class loader. Without
this check, any type that declared itself to be part of the Java API (or any other restricted
packages) could be granted access to other package-visible members. In JVM 1.2, to pre-
vent this, the notion of runtime package is introduced. This way, only classes from the Java
API de�ned by the boostrap class loader are granted access to package-visible members.

If the type name does not begin with �java.�, the loadClass()method next invokes the
method getTypeFromClassPath(), which attempts to import the binary data in a custom
way de�ned by the user-de�ned ClassLoader. Typically, the method looks for a �le with
the type name plus a .class extension in the class path directory passed to this custom
ClassLoader. If the getTypeFromClassPath() method is unable to �nd the �le, it returns
a null result and the loadClass() method ends by throwing a ClassNotFoundException.
Otherwise, loadClass() invokes defineClass(), passing the byte array returned by method
getTypeFromClassPath().

The defineClass() method completes the loading process. It parses the binary data
into internal data structures and creates a Class instance. It also makes sure all the type's
supertypes are loaded. It does this by invoking loadClass() on this user-de�ned class
loader for each direct superclass and superinterface, and recursively applies the resolution
process on all supertypes in the hierarchy.

If defineClass() is successful, the loadClass() method checks to see if resolve is
set to true. If so, it invokes resolveClass(), passing the Class instance returned by
defineClass(). The resolveClass() method links the class and, �nally, loadClass()
returns the newly created Class instance.

C.5.2 Impementing a User-de�ned Class Loader with JVM 1.2

In JVM 1.2, a bootstrap class loader that is built into the JVM is responsible for loading
the classes of the Java runtime. This class loader only loads classes that are found in the
boot classpath (rt.jar, trusted classes of the Java runtime), and since these are trusted
classes, the validation process is not performed as for untrusted classes.

Each ClassLoader except the bootstrap ClassLoader has a parent ClassLoader, con-
ceptually forming a treelike structure of ClassLoaders (Fig. C.5.1). Since there is more
than one class loader, they are represented in a tree whose root is the bootstrap class
loader. Each class loader has a reference to its parent class loader. When a class loader is
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asked to load a class, it consults its parent class loader before attempting to load it itself.
The parent in turn consults its parent, and so on. It is only after all the ancestor class
loaders cannot �nd the class that the current class loader gets involved. In other words, a
delegation model is used.

Figure C.5.1. Class loaders treelike structure in JVM 1.2.

The immediate child of the bootstrap ClassLoader is the extension ClassLoader re-
sponsible for loading classes from standard extension APIs. Then, it follows the application
ClassLoader, which loads classes from the classpath. From that point, the class loading
tree can become arbitrarily complicated, depending on the class loading hierarchy when
the application has started many di�erent class loaders.

The java.lang.ClassLoader is an abstract class that can be subclassed by applications
that need to extend the way in which the JVM dynamically loads classes. Constructors in
java.lang.ClassLoader (and its subclasses) allow to specify a parent when instantiating
a new class loader. If no parent class loader is specifed, the virtual machine's system class
loader is assigned as the default parent. This way, every instance of ClassLoader has an
associated parent class loader. This is done to preserve the delegation model to search for
classes and resources.

The concrete implementation of loadClass() included in 1.2 supports the delegation
model and makes it easier and less error prone to create a user-de�ned class loader. To
create a user-de�ned class loader, rather than overriding loadClass(), the findClass()

method should be overriden �a method with a much simpler contract than loadClass().

The loadClass() method described in Demo C.5.1, which was originally designed
for JVM 1.1, would still work in 1.2. Although a concrete default implementation of
loadClass() was added to java.lang.ClassLoader in 1.2, this concrete method can still
be overridden in subclasses. Because the contract of loadClass() did not change from
1.1 to 1.2, legacy user-de�ned class loaders that override loadClass() should still work as
expected in 1.2.

Contract of loadClass()

Given the fully quali�ed name of the type to �nd, the loadClass() method should in
some way attempt to locate or produce an array of bytes, purportedly in the Java class �le
format, that de�ne the type. If loadClass() is unable to locate or produce the bytes, it
should throw ClassNotFoundException. Otherwise, loadClass() should pass the array
of bytes to one of the defineClass() methods declared in class ClassLoader. By passing
the byte array to defineClass(), loadClass() asks the virtual machine to import the type
represented by the passed byte array into the namespace of this user-de�ned ClassLoader.
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When loadClass() calls defineClass() in 1.2, it can also specify a protection domain
with which the type data should be associated. When the loadClass() method of a class
loader successfully loads a type, it returns a java.lang.Class object to represent the
newly loaded type.

The concrete implementation of loadClass() from class java.lang.ClassLoader full-
�lls the contract using four steps:

1. Invoke findLoadedClass() to see if the requested type has already been loaded into
this class loader's namespace. If so, return the Class instance for that already-loaded
type.

2. Otherwise, delegate to the parent loader. If the parent returns a Class instance,
return that same Class instance.

3. Otherwise, invoke findClass(), which should attempt to locate or produce an array
of bytes, purportedly in the Java class �le format, that de�ne the desired type.
If successful, findClass() should pass those bytes to defineClass(), which will
attempt to import the type and return a Class instance. If findClass() returns a
Class instance, loadClass() returns that same Class instance.

4. Otherwise, findClass() ends abruptly with some exception, and loadClass() ends
abruptly with the same exception.

Contract of findClass()

The method findClass() accepts the fully quali�ed name of a desired type as its only
parameter. First, it attempts to locate or produce an array of bytes, purportedly in the
Java class �le format, that de�ne the type of the requested name. If findClass() is unable
to locate or produce the array of bytes, it ends abruptly with ClassNotFoundException.
Otherwise, findClass() invokes defineClass(), passing in the requested name, the ar-
ray of bytes and, optionally, a ProtectionDomain object with which the type should be
associated. If defineClass() returns a Class instance for the type, findClass() simply
returns that same Class instance to its caller. Otherwise, defineClass() ends abruptly
with some exception, and findClass() ends abruptly with the same exception.

The same implementation as the one shown in Demo C.5.1 can be achieved with the con-
crete implementation of loadClass() by overriding findClass() as shown in Demo C.5.2.
Here again, to �nd the class de�nitions, the method getTypeFromClassPath() consults
the directories and jar �les in the classpath in search of the requested class.

p r o t e c t e d C l a s s f i n d C l a s s ( S t r i n g c lassName ) throws C las sNotFoundExcept ion {
byte [ ] c l a s sDa t a = getTypeFromClassPath ( c lassName ) ;
i f ( c l a s sDa t a == n u l l ) {

throw new Clas sNotFoundExcept ion ( ) ;
}
r e t u r n d e f i n e C l a s s ( className , c l a s sData , 0 , c l a s sDa t a . l e n g t h ) ;

}

Demonstration C.5.2
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C.5.3 Usage of User-de�ned Class Loaders

There are many reasons why it is desirable to create customized class loaders. They let
us deal with byte code served from a database, local or remote. They let us create a
sandbox to control exactly what classes are loadable. They let us dynamically change the
classpath. They let us upgrade software (upgrade Java classes) in a running application
without restarting it, a feature known as hot deployment. This feature is exploited in most
Java-based application servers. A ClassLoader cannot reload a class that it has already
loaded, but using a new instance of a ClassLoader will reload a class into a running pro-
gram.

The way to use a speci�c ClassLoader to load classes is by using threads. Threads
interact with the ClassLoader in one particular case. Each thread is assigned a spe-
ci�c ClassLoader known as the context class loader. This class loader is retrieved with
the getContextClassLoader() method and set (before starting the thread) with the
setContextClassLoader() method.

The context class loader is not used to load things in a general case, it is only used when
it is explicitly called via the getContextClassLoader() method. The reason a context
ClassLoader is needed is to be able to add classes to the application which are outside the
application classpath (so they are unknown by the application class loader). If we set a
custom ClassLoader, which knows how to �nd classes outside the application classpath, as
the context ClassLoader, then we would have a way to load external classes in the thread.
That is, the context ClassLoader is a hook to de�ne certain classes outside the application
classpath. This hook is unrelated to threading issues: the context ClassLoader can be
set and reset at will in the application. The Thread class simply provides a convenient
location to put this hook.

C.6 Source Code Replacement

Now that the inner modus operandi of the JVM is explained, we can explain how we man-
age to replace the original source code with the modi�ed source code in our in�nite loop
repair program.

The typical framework strategy of Automatic Software Repair of a project is the fol-
lowing. First, we run the test suite. If all tests pass, no repair is needed. If some tests
fail (or, in our case, hang), we modify the project source code (but not the test suite code,
because it is the repair contract). To know whether the modi�cations represent a possible
repair, we run the test suite again (the test suite should be able to run the modi�ed source
code). If all tests now pass, the repair was found. If not, the cycle starts over again until
a repair is found.

The way to implement this in Java is as follows. The input of the repair tool is the
classpath of the test suite, and the source path of the project source code, excluding the test
suite source code. Whenever we modify some class' source code, we need to compile it and
store the bytecodes in a class�le �during runtime. We can achieve this with an API provided
by java in javax.tools package [39], [41]. Basically, the javax.tools.JavaCompiler class
lets us create a CompilationTask which reads a java.lang.CharSequence (the string of the
modi�ed code) and which deposits its compiled bytecodes in an java.io.OutputStream.
When the CompilationTask is �nished, we can directly associate the quali�ed name of the
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modi�ed class with the bytecodes generated by the CompilationTask.

Once the runtime compilation of the modi�ed source code ends, we create a cus-
tom ClassLoader which uses a java.util.Map of String key type (quali�ed name of
a class) and byte[] value type (the bytecodes of the compiled source code). Whenever
the method findClass() is called upon this custom ClassLoader, it can look on the Map
to see whether it has the requested quali�ed name bytecodes. If it does, it can directly
call defineClass() with those bytecodes. If not, it calls its inherited implementation of
the method (�super.findClass()�). In our implementation, this custom ClassLoader is
called the BytecodeClassLoader.

Now, there is one last step needed for the source code replacement to actually work:
being able to execute the modi�ed code when running test suite. To do so, we create
a Thread which, when started, instances a org.junit.runner.JUnitCore object. This
object receives the collection of test classes and, when the Thread starts, it executes the
test cases in each of them. The trick here is to set the BytecodeClassLoader as the
Thread's context class loader. The provided BytecodeClassLoader contains the bytecodes
of the modi�ed source code and also the classpath of the test suite. Then, if we explicity
use this class loader to load the test classes (to be executed by the JUnitCore instance),
the BytecodeClassLoader will be marked as the de�ning class loader of the test classes.
Consequently, whenever a class of the project is referenced by a test class, this will be
the class loader used to �nd that class. Because the BytecodeClassLoader only contains
the bytecodes of the modi�ed source code, the modi�ed class will be de�ned in the thread
when running the test suite.
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