
UNIVERSIDAD DE BUENOS AIRES
FACULTAD DE CIENCIAS EXACTAS Y NATURALES

DEPARTAMENTO DE COMPUTACIÓN

A combinatorial branch & bound algorithm for
the minimum sum coloring problem on

P4-sparse graphs

Tesis presentada para optar al tı́tulo de
Licenciado en Ciencias de la Computación

Francisco Julián Laborda

Director: Flavia Bonomo

Codirector: Javier Marenco

Buenos Aires, 2011

UN ALGORITMO BRANCH & BOUND COMBINATORIO PARA EL
PROBLEMA DE COLOREO DE SUMA MÍNIMA EN GRAFOS P4-SPARSE

El problema de Coloreo de Suma Mı́nima consiste en asignar números naturales a los vértices de
un grafo de modo tal que pares de vértices adyacentes obtengan diferentes números, y la suma
de los números asignados sea mı́nima. Un grafo es P4-sparse si todo conjunto de 5 vértices
contiene a lo sumo un P4 inducido. Además, los grafos P4-sparse tienen asociado un árbol de
descomposición modular con raı́z compuesto por operaciones básicas en los nodos y ciertos grafos
primitivos en las hojas.

Actualmente, no se conoce un algoritmo polinomial que resuelva el problema de coloreo de
suma mı́nima en grafos P4-sparse, pero sı́ existe un algoritmo 2-aproximado, que retorna una
solución cuya suma es a lo sumo el doble de la óptima.

En este trabajo, introducimos una familia de cotas inferiores para el problema y presenta-
mos un algoritmo del estilo Branch & Bound combinatorio, el cual encuentra la solución óptima
rápidamente para la mayorı́a de los casos.

Palabras claves: coloreo, coloreo de suma minima, grafos P4-sparse, algoritmo aproximado.

i

A COMBINATORIAL BRANCH & BOUND ALGORITHM FOR THE
MINIMUM SUM COLORING PROBLEM ON P4-SPARSE GRAPHS

In the Minimum Sum Coloring problem (MSC), we aim to assign natural numbers to vertices
of a graph so that adjacent vertices get different numbers, and the sum of the numbers assigned
to the vertices is minimum. A graph is P4-sparse if every set of five vertices contains at most
one induced P4. Moreover, P4-sparse graphs have an associated modular decomposition tree
consisting of basic operations as internal nodes, and certain primitive graphs as leaves.

Currently, there is no polynomial time algorithm to solve the minimum sum coloring prob-
lem on P4-sparse graphs, but there is a polynomial time 2-approximation algorithm, that yields
solutions with lower or equal sum than twice the optimal.

In this work, we introduce a family of lower bounds for the problem and present a combinato-
rial branch and bound implementation, which finds the optimal solution very quickly for most of
the cases.

Keywords: graph coloring, minimum sum coloring, P4-sparse graphs, approximation algorithm.

iii

AGRADECIMIENTOS

Agradezco a mis directores Javier y Flavia por toda su atención y trabajo. A mi viejo por haber
hecho posible todo esto con gigantezca paciencia. A todos los que colaboraron con este trabajo
(en orden cuasi cronológico): Arti, Manix, el Pocho, Facu, Ger, Diego DD, Mai, Mati y Colby. A
la Universidad de Buenos Aires y a la Universidad Nacional de General Sarmiento. Y por útimo,
agradezco a todos y a cada uno de mis amigos, y a mi familia por bancarme.

v

A mi viejo.

CONTENTS

1. Introduction . 1
1.1 The Minimum Sum Coloring Problem . 1
1.2 Maximal sequences and optimal solutions of the MSC problem 2
1.3 Maximal Sequences of P4-sparse graphs . 3
1.4 A 2-approximation algorithm for the MSC problem on P4-sparse graphs 4
1.5 About this work . 5

2. Lower bounds . 7
2.1 Our goal . 7
2.2 Alternatives to the 2-approximation algorithm 7
2.3 Interesting bounds . 8
2.4 Looking for a constant approximation factor . 9

3. A branch & bound algorithm . 11
3.1 Local search approach . 11
3.2 Overview . 12
3.3 Branching . 12
3.4 Finding feasible solutions and bounds . 12
3.5 Structures used . 13
3.6 Technical details . 13

4. Results . 15
4.1 Instance generation . 15
4.2 Execution time . 15

5. Conclusions and future work . 21
5.1 Conclusions . 21
5.2 Future work . 21

Appendices . 23

A. Proofs . 23

ix

1. INTRODUCTION

1.1 The Minimum Sum Coloring Problem

A vertex coloring of a graph G = (V,E) is an assignment of colors to the vertices in V such
that adjacent vertices receive different colors. We assume that the colors are positive integers. A
vertex k-coloring of a graph G is a coloring such that the color of each vertex in V is taken from
the set {1, 2, . . . , k}. Given a vertex coloring of a graph G, the sum of the coloring is the sum of
the colors assigned to the vertices. The chromatic sum Σ(G) of G is the smallest sum that can be
achieved by any proper coloring of G. In the Minimum Sum Coloring (MSC) problem we look
for a coloring of G with sum Σ(G). The minimum number of colors needed in a minimum sum
coloring ofG is called the strength ofG and is denoted by s(G). Clearly, for any graphG we have
s(G) ≥ χ(G), where χ(G) denotes the chromatic number of G.

The MSC problem was introduced by Kubicka [11]. The problem is motivated by applications
in scheduling [1, 2, 6] and VLSI design [13, 15]. The computational complexity of determining
the vertex chromatic sum of a simple graph has been extensively studied since then. In [12] it
is shown that the problem is NP-hard in general, but solvable in polynomial time for trees. The
dynamic programming algorithm for trees can be extended to partial k-trees and block graphs [10].
Furthermore, the MSC problem is NP-hard even when restricted to some classes of graphs for
which finding the chromatic number is easy, such as bipartite or interval graphs [2, 15]. A number
of approximability results for various classes of graphs were obtained in the last ten years [1, 5, 6,
4].

If G1 and G2 are two vertex disjoint graphs, then their union G1 ∪G2 is the graph with vertex
set V (G1 ∪G2) = V (G1)∪V (G2) and edge set E(G1 ∪G2) = E(G1)∪E(G2). Similarly, their
join G1 ∨ G2 is the graph with V (G1 ∨ G2) = V (G1) ∪ V (G2) and E(G1 ∨ G2) = E(G1) ∪
E(G2) ∪ {(x, y) : x ∈ V (G1), y ∈ V (G2)}.

A spider is a graph whose vertex set can be partitioned into S,C andR, where S = {s1, . . . , sk}
(k ≥ 2) is an independent set; C = {c1, . . . , ck} is a complete set; si is adjacent to cj if and only
if i = j (a thin spider), or si is adjacent to cj if and only if i 6= j (a thick spider); R is allowed
to be empty and if it is not, then all the vertices in R are adjacent to all the vertices in C and
non-adjacent to all the vertices in S. Clearly, the complement of a thin spider is a thick spider, and
vice-versa. The triple (S,C,R) is called the spider partition, and can be found in linear time [8].
The sets S, C and R are called the legs, body and head of the spider, respectively. The size of the
spider will be |C|. P4-sparse graphs have a nice decomposition theorem as follows.

Theorem 1. [7, 9] If G is a non-trivial P4-sparse graph, then either G or G is not connected, or
G is a spider.

To each P4-sparse graph G one can associate a corresponding decomposition rooted tree T in
the following way. Each non-leaf node in the tree is labeled with either “∪” (union-nodes), or “∨”
(join-nodes) or “SP” (spider-partition-nodes), and each leaf is labeled with a vertex of G. Each
non-leaf node has two or more children. Let Tx be the subtree of T rooted at node x and let Vx be
the set of vertices corresponding to the leaves in Tx. Then, each node x of the tree corresponds to
the graphGx = (Vx, Ex). A union-node (join-node) corresponds to the disjoint union (join) of the
P4-sparse graphs associated with its children. A spider-partition-node corresponds to the spider

1

2 1. Introduction

with spider-partition (S,C,R) where S, C, and R are its children. Finally, the P4-sparse graph
associated with the root of the tree is justG, the P4-sparse graph represented by this decomposition
tree. The decomposition tree associated to a P4-sparse graph can be computed in linear time [9].

1.2 Maximal sequences and optimal solutions of the MSC problem

The results in this section are an extract of previous work by F. Bonomo and M. Valencia-Pabon
on the MSC Problem on P4-sparse graphs [3].

A k-coloring of a graph G = (V,E) can be regarded as a partition of the vertex set V into k
independent sets S1, . . . , Sk, where each vertex in Si is colored with color i, for 1 ≤ i ≤ k. So, for
any such k-partition of V into independent sets, we can associate a non-negative sequence p such
that p[i] = |Si| for i = 1, . . . , k and p[i] = 0 for i > k. In the sequel, we deal with finite-support
non-negative integer sequences only. Let |p| = max{i : p[i] > 0}.

Definition 1. Let p and q be two integer sequences. We say that p dominates q, denoted by p � q,
if for all t ≥ 1 it holds that

∑
1≤i≤t p[i] ≥

∑
1≤i≤t q[i].

Definition 2. Let p be a sequence. We denote by p̃ the sequence that results from p when we order
it in a non-decreasing way.

The following two lemmas are direct consequences of Definition 1.

Lemma 1. The dominance relation � is a partial order.

Lemma 2. Let p be a sequence. Then, p̃ � p.

The following lemma will be very useful in order to study the MSC problem on graphs.

Lemma 3. Let p and q be two sequences and let n = max{|p|, |q|}. If p � q and
∑

1≤i≤n p[i] =∑
1≤i≤n q[i], then it holds that

∑
1≤i≤n i · p[i] ≤

∑
1≤i≤n i · q[i].

Proof. Let N =
∑

1≤i≤n p[i] =
∑

1≤i≤n q[i]. Let P and Q be two sequences obtained from
p and q such that |P | = |Q| = N , and defined by P [j] = min{k :

∑
1≤i≤k p[i] ≥ j} (resp.

Q[j] = min{k :
∑

1≤i≤k q[i] ≥ j}) for j = 1, . . . , N . By hypothesis, p � q, and so, P [j] ≤ Q[j]
for all 1 ≤ j ≤ N . Therefore,

∑
1≤i≤n i·p[i] =

∑
1≤j≤N P [j] ≤

∑
1≤j≤N Q[j] =

∑
1≤i≤n i·q[i].

Notice that if the sequences represent partitions of the vertex set of a graph into independent
sets, where the value of the i-th element of the sequence represents the size of the i-th independent
set in the partition, then for the sum-coloring problem on graphs we can restrict us to study max-
imal sequences w.r.t. the partial order �. Notice also that maximal sequences are non-increasing
sequences. We will call maximal partition to a partition of the vertex set of a graph into indepen-
dent sets associated to a maximal sequence. In the following, we define some operations between
sequences.

Definition 3. Let p and q be two sequences. The join of p and q, denoted by p ? q, is the sequence
that results by sorting the concatenation of the sequences p and q in non-increasing order.

Definition 4. Let p and q be two sequences. The sum of p and q, denoted by p+ q, is the sequence
whose i-th value is equal to p[i] + q[i], for i ≥ 1. Notice that |p+ q| = max{|p|, |q|}.

1.3. Maximal Sequences of P4-sparse graphs 3

Definition 5. Let p and q be two sequences. We say that p and q are non-comparable, denoted by
p||q, if p 6� q and q 6� p.

The following two lemmas will be useful in order to study the MSC problem on P4-sparse
graphs.

Lemma 4. Let p, p′ and q be sequences. If p̃ � p̃′ then p ? q � p′ ? q.

Proof. Consider the sequence p′ ? q. By definition of join, p̃′ is a subsequence of p′ ? q. Let s
be the sequence that results from p′ ? q by replacing each element p̃′[i] by p̃[i]. As by hypothesis,
p̃ � p̃′, then we have that s � p′ ? q. But now, note that p? q = s̃ and thus, p? q � s � p′ ? q.

Lemma 5. Let p, p′, and q be sequences. Then, p||p′ if and only if p+ q||p′ + q.

Proof. Note that p||p′ if and only if there exist two different positive integers j1 and j2 such that∑j1
i=1 p[i] >

∑j1
i=1 p

′[i] and
∑j2

i=1 p[i] <
∑j1

i=1 p
′[i]. This happens if and only if

∑j1
i=1(p[i] +

q[i]) >
∑j1

i=1(p′[i] + q[i]) and
∑j2

i=1(p[i] + q[i]) <
∑j1

i=1(p′[i] + q[i]), which is equivalent to
p+ q||p′ + q.

The following result can be proved similarly.

Lemma 6. Let p, p′, and q be sequences. Then, p � p′ if and only if p+ q � p′ + q.

1.3 Maximal Sequences of P4-sparse graphs

We include in this section results regarding maximal sequences and P4-sparse graphs. All of these
results were taken from previous work in [3] and they are not part of this work. All the proofs in
this section have been omitted for the sake of clarity and are included in Appendix A.

In the sequel, sequences of a graph will represent partitions of its vertex set into independent
sets. The following two lemmas show that if we are looking for maximal sequences of a graph that
is either the union or the join of two vertex disjoint graphs G1, G2, then it is sufficient to consider
maximal sequences of the graphs G1 and G2.

Lemma 7. Let G1, G2 be two vertex disjoint graphs, and let G = G1 ∪G2. Then, every maximal
sequence p of G can be expressed as p = p1 + p2, where p1 (resp. p2) is a maximal sequence of
G1 (resp. G2).

Lemma 8. Let G1, G2 be two vertex disjoint graphs, and let G = G1 ∨G2. Then, every maximal
sequence p of G can be expressed as p = p1 ? p2, where p1 (resp. p2) is a maximal sequence of
G1 (resp. G2).

A similar result holds in general for homogeneous sets. Let G be a graph. A set H ⊆ V (G)
of vertices is called homogeneous if, for each vertex w ∈ V (G) \ H , either w is adjacent to all
the vertices in H or to none of them. For any subset of vertices X ⊆ V (G), denote by G[X] the
subgraph of G induced by X .

Lemma 9. Let G be a graph and H an homogeneous set of G. Let S1, . . . , Sk be a maximal
partition of G, and let Si1 , . . . , Sit be the sets in the partition having nonempty intersection with
H . Then, Si1 ∩H, . . . , Sit ∩H is a maximal partition of G[H].

We describe next the maximal sequences of spiders.

4 1. Introduction

Lemma 10. Let G = (S,C,R) be a spider such that R 6= ∅, and let p be a maximal sequence for
G. Then there exists a partition S1, . . . , S|p| associated with p in which there are only three kinds
of sets: sets entirely contained in R, sets entirely contained in C, and sets intersecting both R and
S; moreover, sets entirely contained in C are the last |C| sets, and only S1 intersects both R and
S, with S ⊆ S1.

Lemma 11. Let G = (S,C,R) be a spider such that R 6= ∅. Then, the number of maximal
sequences ofG is equal to the number of maximal sequences ofG[R]. Moreover, for each maximal
sequence q ofG[R] there exists only one maximal sequence q′ ofG with |q′| = |q|+ |C| and where
q′[1] = q[1]+ |C|, q′[i] = q[i] for 2 ≤ i ≤ |q| (if |q| ≥ 2), and q′[i] = 1 for |q|+1 ≤ i ≤ |q|+ |C|.

Lemma 12. Let G = (S,C,R) be a thin spider such that R = ∅. Then, G has only one maximal
sequence p, with |p| = |C|, where p[1] = |C|, p[2] = 2, and p[i] = 1 for 3 ≤ i ≤ |C|.

Lemma 13. Let G = (S,C,R) be a thick spider such that |C| ≥ 3 and R = ∅. Then, G has
only two maximal sequences p1 and p2, with |p1| = |C| and |p2| = |C| + 1, where p1[i] = 2 for
1 ≤ i ≤ |C|, and p2[1] = |C| and p2[i] = 1 for 2 ≤ i ≤ |C|+ 1.

Notice also that the trivial graph has only one maximal sequence p, with |p| = 1, where
p[1] = 1. Therefore, we have the following theorems.

Theorem 2. LetG be a P4-sparse graph such that in its modular decomposition there are no thick
spiders (S,C,R) with |C| ≥ 3 and R = ∅. Then,

1. s(G) = χ(G), G has a unique maximal sequence, and Σ(G) and an optimal coloring of G
can be computed from its modular decomposition in polynomial time.

2. In such an optimal coloring, each set Si is a maximum independent set of G \
⋃

1≤j<i Sj
which verifies χ(G \

⋃
1≤j≤i Sj) = χ(G \

⋃
1≤j<i Sj)− 1.

Theorem 3. Let G be a P4-sparse graph on n vertices. Let t be the number of thick spiders
(S,C,R) with |C| ≥ 3 and R = ∅ in the modular decomposition of G. Then, s(G) ≤ χ(G) + t,
the number of maximal sequences ofG is at most 2t, and an optimal coloring ofG can be computed
in 2tP (n) time, where P (n) is a polynomial in n.

The algorithm described in Theorem 3 allows us to find also the minimum sum that can be
attained by a coloring of G with at most r colors, for some given value r ≥ χ(G), and the
corresponding coloring.

1.4 A 2-approximation algorithm for the MSC problem on P4-sparse graphs

The algorithm presented here is based on the study of maximal sequences of P4-sparse graphs and
was proposed by F. Bonomo and M. Valencia-Pabon in [3].

Let G be a P4-sparse graph on n vertices. Let σ1, σ2, . . . , σt be the thick spiders in the de-
composition tree of G, such that σj = (Sj , Cj , ∅) and |Cj | ≥ 3, for j = 1, . . . , t. We assume that
t is of order Ω(n), otherwise, by Theorem 3 (see Appendix A), an optimal solution for the MSC
problem on G can be computed in polynomial time.

Consider the following algorithm to color G: first, for each thick spider σj , we choose as
its maximal sequence pj the sequence p1 of Lemma 13 (see Appendix A), that is, pj [i] = 2 for
1 ≤ i ≤ |Cj |, and its corresponding maximal partition Sj1, . . . , S

j
|Cj |, where Sji = {sji , c

j
i}, being

1.5. About this work 5

sji and cji non-adjacent vertices in Sj and Cj , respectively, for i = 1, . . . , |Cj |. Next, we apply the
algorithm in the proof of item (1) of Theorem 2 (see Appendix A) in order to compute in O(n2)
time a partition into independent sets for G. Let φ be the coloring of the vertices of G obtained by
the previous algorithm.

Algorithm 1 shows a pseudocode of this algorithm. Given a decomposition tree T of graph G,
it finds the associated sequence to coloring φ.

Algorithm 1 φ(T) : DecompositionTree→ Sequence < Integer >:
(∗ stands for sequence concatenation, power operation stands for sequence repetition.)

1: φ(join(L,R)) ≡ φ(L) ? φ(R) {Lemma 7}
2: φ(union(L,R)) ≡ φ(L) + φ(R) {Lemma 8}
3: φ(thinSpider(S,C,R)) ≡ R 6= ∅ ? [|C|+ first(φ(R))] ∗ tail(φ(R)) ∗ [1]|C| {Lemma 11}

: [|C|, 2] ∗ [1]|C|−2 {Lemma 12}
4: φ(thickSpider(S,C,R)) ≡ R 6= ∅ ? [|C|+ first(φ(R))] ∗ tail(φ(R)) ∗ [1]|C|{Lemma 11}

: [2]|C|{Lemma 13}
5: φ(individualV ertex) ≡ [1]

Clearly, φ uses χ(G) colors. Let Σφ(G) be the sum of the colors of the vertices of G induced
by the coloring φ. We claim the following.

Lemma 14. Σφ(G) ≤ 2Σ(G).

Proof. Let Φ be an optimal coloring for G with sum Σ(G). Let H be the induced subgraph of G
obtained by removing from G all the vertices of each independent set Sj of the thick spider σj ,
for 1 ≤ j ≤ t. Let Σ̃(H) be the sum of the colors of the vertices in H under the coloring Φ. On
one hand, we have that Σ̃(H) ≥ Σ(H). Moreover,

Σ(G) ≥ Σ̃(H) ≥ Σ(H) (∗)

On the other hand, let Φ′ be an optimal coloring of H with sum Σ(H). We extend the coloring
Φ′ of H to a coloring Φ′′ of G, where each vertex sji ∈ Sj is assigned the color Φ′(cji) of vertex
cji ∈ Cj , for 1 ≤ i ≤ |Cj |, being (Sj , Cj , ∅) the thick spider σj , for 1 ≤ j ≤ t. Let ΣΦ′′(G) be
the sum induced by the coloring Φ′′ on G. Clearly, Σφ(G) ≤ ΣΦ′′(G), and ΣΦ′′(G) ≤ 2Σ(H).
Therefore, by (∗), we have that Σφ(G) ≤ 2Σ(G).

Therefore, we have the following result.

Theorem 4. Algorithm 1 is a 2-approximation algorithm for the MSC problem on P4-sparse
graphs.

1.5 About this work

With the 2-approximation algorithm from the previous section as the starting point, this work was
developed as an attempt to find a better way to solve the MSC problem for the entire family of
P4-sparse graphs.

We began our work with the idea of implementing a combinatorial branch and bound algorithm
for the MSC problem on P4-sparse graphs by resorting to the 2-approximation algorithm as the
bounding heuristic, instead of linear programming techniques.

6 1. Introduction

We also believed that the factor 2 of the algorithm was not tight. In the first approach to this
idea, we could not find an instance for which any of the candidate solutions (maximal sequences)
would be greater than twice the optimal. That gave us the idea that a branch and bound algorithm
with this kind of loose bounding would not be able to discard any branches. That is why we turned
all our focus to the search of new lower bounds for the problem.

As we found new lower bounds and considered an alternative to Algorithm 1 for the upper
bounds, we were ready to implement a combinatorial branch & bound algorithm for the the family
of P4-sparse graphs. So we did it and we also analyzed its performance.

The rest of this work is organized as follows: in Chapter 2 we show how we can use lower
bounds to find a better k-approximation algorithm, we present a way of generalizing the 2-
approximation algorithm (Algorithm 1) which introduces a family of lower bounds to the problem
and we briefly discuss each of them. In Chapter 3 we present an exact combinatorial branch &
bound algorithm for the MSC problem on P4-sparse graphs, we explain its idea and implementa-
tion, and discuss its performance in Chapter 4. Finally, in Chapter 5 we comment our conclusions
and ideas for future work, and we propose a conjecture regarding the approximation factor of a
new algorithm for the MSC problem on P4-sparse graphs.

2. LOWER BOUNDS

The main obstacle in the way to prove an algorithm is actually a k-approximation algorithm for a
certain value of k is that we need to compare the approximate solution with the optimal solution,
which is usually unknown. Typically, the way to get around this obstacle is finding lower bounds.
In this chapter, we present a way of generalizing the 2-approximation algorithm shown in Sec-
tion 1.4 and we introduce a family of lower bounds for the MSC problem on P4-sparse graphs.

This chapter is organized as follows: in Section 2.1 we present a proof scheme for an approxi-
mation algorithm for the MSC problem on P4-sparse graphs by using lower bounds, in Section 2.2
we present a possible generalization to the 2-approximation algorithm shown in 1.4 together with
some particular instances of it and we discuss them, the actual lower bounds we found are shown
in Section 2.3 and candidate upper bounds to those lower bounds are presented in Section 2.4.

2.1 Our goal

Let G be a P4-sparse graph. Let Φ be an optimal coloring for G with sum Σ(G). Let φ be the
coloring obtained from an approximation algorithm with sum Σφ(G) and let LB(G) be a lower
bound to the problem, that is

LB(G) ≤ Σ(G)

multiplying by Σφ(G)
LB(G) on both sides we get

Σφ(G)

LB(G)
LB(G) ≤

Σφ(G)

LB(G)
Σ(G)

Σφ(G) ≤
Σφ(G)

LB(G)
Σ(G)

If we could prove that Σφ(G)
LB(G) ≤ k, then we would have proved that the approximation algo-

rithm that calculated coloring φ is a k-approximation algorithm.

2.2 Alternatives to the 2-approximation algorithm

The 2-approximation algorithm in Section 1.4 chooses one out of two possible maximal sequences
for each thick empty headed spider. It is possible to generalize this algorithm by making it para-
metric to the sequence used to color each thick empty headed spider. Following this idea, we can
then consider each particular case of this possible generalization as an individual algorithm.

In the sequel, we will refer to these algorithms (and the coloring they calculate) as φseq, where
seq represents the sequence they use for that kind of spider when their size is 3 (for bigger ones,
they will follow the seq pattern.) For instance, using this notation, the 2-approximation algorithm
from the previous section would be noted φ222, and the 222 subindex comes from the sequence it
chooses for every thick empty headed spider of size 3, which is a sequence of 2’s of length equal
to the size of the spider. This can bee seen in Algorithm 1 in the last part of Line 4.

7

8 2. Lower bounds

For example, letG = (S,C,R) be a thick spider such that |C| ≥ 3 andR = ∅: algorithm φ3111

would yield the sequence p with |p| = |C|+ 1 and p2[1] = |C| and p2[i] = 1 for 2 ≤ i ≤ |C|+ 1.
In particular, if |C| = 3, it yields the sequence [3, 1, 1, 1].

Notice that, regarding all the possible algorithm alternatives,

• not all of them yield a proper coloring. (They could assign the color 0 to a vertex or assign
the same color to adjacent vertices),

• even if they might be invalid coloring partitions, each φseq yields the minimum sum partition
among those that use the seq pattern to color thick empty headed spiders,

• all of them run in polynomial time, as φ222 does (as long as seq is in non decreasing order),
and they are calculated exactly as φ222 is, as shown in Algorithm 1, except for line 4, where
every empty headed thick spider must be assigned the sequence that corresponds to the seq

pattern.

• in fact, φ111 is the coloring used in the proof of Lemma 14 as Φ′ (the optimal coloring of H
with sum Σ(H))1,

• alternatively to φ222, φ3111 is the one that chooses the alternate maximal sequence for every
thick empty headed spider. Thus, φ3111 does achieve a proper coloring for a given P4-
sparse graph, and we will discuss it later as an heuristic and as a candidate k-approximation
algorithm.

2.3 Interesting bounds

In Section 2.2, we presented the φseq family of algorithms, each of which yields a coloring (or
pseudo-coloring, if invalid). We will now present some interesting lower bounds. These bounds
(in particular, the best one we found) make possible the implementation of the exact branch &
bound algorithm shown in the following chapter.

φ321 is the algorithm alternative that colors each thick spider (S,C,R) where R = ∅ with the
sequence p, with |p| = |C|, where p[1] = |C|, p[2] = 2, and p[i] = 1 for 3 ≤ i ≤ |C|. Let p222

and p3111 be the maximal sequences for thick empty headed spiders, we can see that p dominates
both of them, therefore, its sum has to be a lower bound. In fact, p is equivalent to the coloring of
a thin empty headed spider, which we already know has a unique maximal sequence, equal to the
one just shown.

φ411 is the algorithm alternative that colors each thick spider (S,C,R) where R = ∅ with the
sequence p, with |p| = |C|, where p[1] = |C + 1| and p[i] = 1 for 2 ≤ i ≤ |C|. We can see that
p dominates both maximal sequences for this kind of spider, just like φ321 does, thus, φ411’s sum
has to be a lower bound.

φ311’s sum is also a lower bound, since φ311 is the same coloring as φ321, except for one vertex
in every thick empty headed spider, for which its color is changed to 0. Therefore, Σφ311(G) ≤
Σφ321(G) for every P4-sparse graph G and we can ensure φ311’s sum is a lower bound as well.

φ312 is the coloring that assigns the second highest color twice for adjacent vertices in every
empty headed thick spider. It is a special case, for it is not in non decreasing order. Because of
this reason, we cannot work with it as we do with maximal sequences and we cannot ensure its
sum is a lower bound. However, we believe it is worth mentioning because we could not find a
counterexample for which it has a greater sum than the optimal solution.

1 If φ211 was used instead, we can ensure Σφ(G) < 2Σ(G)

2.4. Looking for a constant approximation factor 9

2.4 Looking for a constant approximation factor

As we said in Section 2.1, we would like to prove Σφ(G)
LB(G) ≤ k for every P4-sparse graph G. A way

of proving this would be to find what graph (or family of graphs) achieve the maximum value of
Σφ(G)
LB(G) for some approximation algorithm φ and some lower bound LB.

For φ = φ222, every lower bound found falls into the following situation. Let G be a thick
empty headed spider of size n. φ222 would assign the sequence p to G with |p| = n and pi = 2
for 1 ≤ i ≤ n. Suppose we pick φ311 as the lower bound (same thing happens with the rest of the
lower bounds), then its sequence will be q with |q| = n, q1 = n and qi = 1 for 2 ≤ i ≤ n. Then,

∑
φ222

(G)∑
φ311

(G)
=

2
n∑
i=1

i

n− 1 +
n∑
i=1

i

=
2n(n+ 1)

n− 1 + n(n+ 1)
=

2n2 + 2n

n2 + 3n− 2
→ 2

So we can see that φ222 will not yield an approximation factor lower than 2 if we compare it to the
bounds we have.

For φ = φ3111, the problem is that none of the lower bounds we found seem to be easily
comparable. So we decided to take an experimental approach to understand better what was going
on with the other lower bounds compared to φ3111. This approach was an attempt to have an
estimate of an approximation factor (better than 2) that could be used for the lower bounds of a
branch & bound implementation, which we present in the next chapter.

We calculated the value of the quotient
Σφ3111 (G)

LB(G) together with several lower bounds for an
exhaustive set of P4-sparse graphs. Based on a binary tree generator (which generates all the pos-
sible binary trees of size n) we generated instances with internal nodes as join or union operations
and leaves as individual vertices and thick empty headed spiders. We tried all possible combina-
tions up to trees of size 10 and spiders of size 5. For larger sizes of trees and spiders, for which
the execution would take too long, we interrupted it, but we still kept on searching among larger
decomposition trees by setting the instance generation parameters manually. Highest values seem
to be found around trees with all its leaves as thick empty headed spiders of size 3 and mostly join
operations.

Figure 2.1 shows the highest value found for the quotient for each lower bound. Blue circles
represent join nodes and red ones represent union nodes. All leaves (not shown in the figure) are
thick empty headed spiders.

On the bright side, the lower bounds seem to be upper bounded and φ3111 seems to always yield
a good quality solution. As we explore larger graphs, the value of the quotient seems to converge,
and the values we are dealing with are lower than 2, which is the current best approximation factor.

On the other side, even if there seems to be a very clear graph pattern, the worst-case graphs
found did not lead us to prove what kind of graph (or graph pattern) achieves the actual absolute
maximum for the quotient. Moreover, if we keep on searching, we might find (slightly) higher
values for larger decomposition trees that might not follow the observed pattern.

Finally, the best of the lower bounds found seems to be strong enough to be used in a branch
& bound implementation, which we present in the following chapter.

10 2. Lower bounds

(a) φ311:1.65097 (b) φ411:1.50876 (c) φ321:1.32383

Fig. 2.1: Decomposition trees achieving the max value of Σφ3111
(G)

LB(G) attained in our experiments for different
lower bounds.

3. A BRANCH & BOUND ALGORITHM

In this chapter we present an exact branch & bound algorithm that finds the optimal solution for
the MSC problem on P4-sparse graphs.

A branch & bound algorithm consists of a systematic enumeration of all candidate solutions,
where large subsets of non optimal solutions are discarded all together by using upper and lower
bounds of the quantity being optimized.

The key idea of any branch & bound algorithm is: if the lower bound for some tree node of the
search tree (set of candidates) A is greater than the upper bound for some other node B, then A
may be safely discarded from the search. This step is called pruning, and is usually implemented
by maintaining a global variable m (shared among all nodes of the tree) that records the minimum
upper bound seen among all subregions examined so far. Any node whose lower bound is greater
than m can be discarded.

Our algorithm was developed from scratch, using the scheme of a regular branch & bound im-
plementation, in which all the possible solutions are considered or discarded using some bounding
criterion and relatively good solutions are found by the use of heuristics. Usually, bounds and
feasible solutions are found using linear programming techniques, however, this algorithm does
not use any of those techniques, but is based upon the bounds and approximation results shown in
the previous sections instead.

The chapter is organized as follows: first, in Section 3.1 we show an example for which a
local search approach does not yield the optimal solution. Then we briefly describe the branch &
bound algorithm in Section 3.2, we focus on the branching scheme in Section 3.3 and we discuss
the heuristics used for finding solutions and bounding in Section 3.4. Section 3.5 explains the
structures used and finally some technical considerations are presented in Section 3.6.

3.1 Local search approach

Before we go on any further, let us present an example where a local search approach does not
work to find the optimal solution. This is just a simplistic example, out of many others, that we
found when considering a local search approach to the MSC problem on P4-sparse graphs.

Consider a local search heuristic that uses φ3111 as the initial candidate solution and a neigh-
borhood relation defined as all the solutions only differing in the way of coloring one of the thick
empty headed spiders. Let T = (((S1 ∪ S2) ∪ S3) ∨ (S4 ∪ S5)) be the decomposition tree of a
P4-sparse graph, where Si is a thick empty headed spider of size 3 for 1 ≤ i ≤ 5. Let φi3111 be
the ith neighbor coloring of φ3111 in which the spider i is colored using the maximal sequence
[2, 2, 2], instead of [3, 1, 1, 1]. So, this would be the results for the first neighborhood exploration:

• φ3111 : [9, 6, 3, 3, 3, 2, 2, 2] = 99

• φ1
3111 : [8, 6, 4, 4, 2, 2, 2, 2] = 100

φ2
3111 : [8, 6, 4, 4, 2, 2, 2, 2] = 100

φ3
3111 : [8, 6, 4, 4, 2, 2, 2, 2] = 100

• φ4
3111 : [9, 5, 3, 3, 3, 3, 3, 1] = 102

φ5
3111 : [9, 5, 3, 3, 3, 3, 3, 1] = 102

11

12 3. A branch & bound algorithm

Due to the local symmetry in T , some of the colorings are equivalent to each other, that is why
they are grouped together in the list.

We can see that the local minimum for this instance is φ3111 with a sum of 99, but an opti-
mal coloring for T is achieved by coloring every Si with sequence [2, 2, 2], achieving coloring
[6, 6, 6, 4, 4, 4] with sum 96.

In this way we discarded a local search approach and we decided to face the branch & bound
approach.

3.2 Overview

The algorithm’s input is the decomposition tree of a P4-sparse graph G. Its output is a partition
into independent sets that represents the minimum sum coloring of G.

The algorithm explores the whole decision tree, calculating, on every node, a feasible solution
and a lower bound for that branch. It globally stores the best solution found at each moment, and
if the lower bound for a branch happens to be greater than or equal to the best solution, it discards
the whole branch.

The branching is focused on thick empty headed spiders, as they hold the most “uncertainty”
regarding the minimum sum coloring, the heuristic used is φ3111 (Section 2.2) and the bounding
is achieved by φ321 (Section 2.2 as well).

3.3 Branching

Since the main uncertainty we currently have towards this problem lies on determining what se-
quence to use on each thick empty headed spider, we decided that branching should be based on
whether each of them should be colored using either one of the maximal sequences for that case.
So the algorithm fixes the first of these spiders to one of the options, it calls recursively, then it
fixes it to the other possible option and calls recursively again to explore the other half of the
solution space.

In other words, each node of the decision tree represents one thick empty headed spider being
fixed to one out of two options. Thus, every branching is binary and each complete branch (from
the root to a leaf) represents each of the valid solutions to the problem.

3.4 Finding feasible solutions and bounds

We used φ3111 as a heuristic to find feasible solutions. That is, the initial “best” solution is found
efficiently with φ3111, and then, as we go fixing thick empty headed spiders to certain options, we
use φ3111 again to rapidly color the unfixed ones.

We decided to use the φ3111 heuristic because it achieves good quality solutions in practice, as
shown in Figure 2.1, and also because it runs in polynomial time (See Section 2.2).

Regarding the bounds, the best lower bound we found is φ321. It is the best because it
yields the greatest sum among the bounds we have considered, and thus, it would work bet-
ter as it bounds more tightly. Moreover, considering the dominance relation, we can see that
Σφ311(G) ≤ Σφ411(G) ≤ Σφ321(G) for any P4-sparse graph G. Of course, it can also be com-
puted in polynomial time.

For all of the above, we opted for φ321 as the only heuristic to find lower bounds in our branch
& bound implementation.

3.5. Structures used 13

It is important to note that the lower bound used in the algorithm has been proved to be an
actual bound but has not been proved to be bounded itself. That means we cannot guarantee a
certain quality of the bound, and it could possibly fail to be strong enough to discard a considerable
amount of branches. We will present in the next section some graph instances for which the
algorithm is forced to explore the entire solution space.

3.5 Structures used

We decided to focus on binary trees only, since they are easier to work with and still able to
represent decomposition trees. So, on our decomposition trees representation, the only possible
leaves are empty headed thick spiders and individual vertices, and the only possible internal nodes
are join or union operations.

There is no loss in generality since, regarding the coloring sequences, all other types of spiders
found on P4-sparse graphs’ decomposition trees can be “simulated” by other kind of elemental
graphs appropriately set up together.

This “simulation” is possible because, regarding the decomposition trees, we can ignore the
graphs they actually represent, but only care about the sequences that represent the colorings for
those graphs. So if the sequences we are looking for are equal, then it does not matter what precise
kind of graph we are actually going to use it for. This list describes how to “simulate” all kinds of
spiders (except thick ones with empty heads):

• spider(S,C,R) with R 6= ∅ can be thought of as join(C, union(S,R)) and their sequence
is [|C|+ first(φ(R))] ∗ tail(φ(R)) ∗ [1]|C|, where φ(R) is the sequence corresponding to
R,

• thinSpider(S,C,R) withR = ∅ can be thought of as join(S, union(C−K1,K1)), where
K1 is an individual vertex, and their sequence is [|C|, 2] ∗ [1]|C|−2.

3.6 Technical details

To compare the results, we also implemented a brute force algorithm, which given a decomposition
tree of a P4-sparse graph with t thick empty headed spiders, lists all 2t possible solutions and finds
the best one.

Both the brute force and the branch and bound algorithms were implemented from scratch
using Python v3.2 and all the scripts were ran on PyScripter over a Aspire Timeline X machine
with an Intel Core i3 processor on Windows 7 and 4 GB of system memory.

We represented decomposition trees of P4-sparse graphs using binary trees. In the brute force
implementation, we recursively listed all the 2t maximal sequences, for a tree of t thick empty
headed spiders, and then found one that achieved the minimum sum.

The calculation of the lower bounds and the feasible solutions is done recursively over the tree
structure combining sequences of the subtrees. Since finding both the feasible solutions and the
bounds led to a large amount of recalculation, we implemented caching of partial solutions on each
node of the decomposition tree. In this way, we tried to mitigate the algorithms’ overhead. Caching
would also be an advantage in a context where we have to make minor changes to the input graphs,
preserving most of its structure, since it is possible to dynamically alter the decomposition tree of
P4-sparse graphs to reflect these changes in linear time[14]. In this context, the implemented cache
would sensitively reduce the execution time of subsequent calls.

14 3. A branch & bound algorithm

In the branch and bound implementation, we followed a typical recursive backtracking scheme.
We codified solutions and partial solutions using strings in a similar way to bitsets. Each character
in the string represents how a certain thick empty headed spider would be colored, where ‘1’
means the option φ222 would pick, and ‘0’ means the option φ3111 would. The character ‘-’
is used for spiders that have not been fixed by the algorithm on any particular sequence yet. The
order of the characters matches the order of appearance of the thick empty headed spiders in the
tree from left to right.

Only partial solutions contain ‘-’ characters. Partial solutions are used in two ways: first, to
yield feasible solutions and second, to compute the lower bounds. In the former, ‘-’ characters
(which represent unfixed spiders) are colored using φ3111 style of sequences, since φ3111 is the
chosen heuristic for this purpose. In the latter, this type of characters are colored using the φ321

option.
For example, if we get the partial solution ‘01--’, and we want a feasible solution, we will

interpret each ‘-’ as a ‘0’ and we will color it as ‘0100’. That means every thick empty
headed spider will be colored using the φ3111 sequence, except for the second one, which is set to
‘1’ and will be colored with the φ222 sequence. On the other hand, if we want a lower bound for
this partial solution, the first two characters will be colored in the same way, but the ‘-’ characters
will be colored using φ321.

In this way, starting with an all ‘-’ solution code, we are able to explore the solution space
by fixing the characters in the solution from left to right and calculating the feasible solutions and
the bounds.

Every evaluation of a solution code implied a computation over the entire decomposition tree.
Each internal node stores the amount of thick empty headed spiders in its subtree, in this way,
when a solution code is evaluated, we break it into two codes by splitting it in half, and call
recursively on each subtree with the corresponding subcode.

As many of the evaluations of subcodes were calculated more than once, we decided to include
a dictionary in every internal node of the tree to work as a cache memory for previously computed
solution codes. We decided to use strings to represent these codes because, as an immutable data
type, they can be used as keys in Python’s dictionaries.

4. RESULTS

In this chapter we discuss the performance of the branch & bound algorithm for randomly gener-
ated decomposition trees.

4.1 Instance generation

Trying to cover most of the decomposition tree instance variety, we decided to work with trees
consisting of thick empty headed spiders only and trees with individual nodes as well. The spider
sizes used were 3, 6, 9 and random between 3 and 9. As said in Section 3.5, we did not focus on
all the other different types of spiders since they can be “simulated” with individual vertices.

We named 5 groups of instances, 3s, 6s, 9s and rs for trees consisting of thick empty headed
spiders only of size 3, 6, 9 and random between 3 and 9 respectively, and rs-300 for trees consisting
of thick empty headed spiders and 300 individual vertices.

Instances were generated by random binary tree generation, using the following procedure for
trees of n individual vertices, t thick empty headed spiders, and with 1− p density of join nodes:

• if n+m = 1 (base case), then place an individual node or a thick spider node.

• else, pick randomly (with probability p) an internal node between join and union and ran-
domly split amounts n and t to build recursively left and right subtrees of smaller size.

For every generated instance, the parameter p that determines the density of join nodes in the
tree was picked randomly. In the charts, instances have been sorted by the amount of join nodes
to help the visualization. Apparently, instances with higher density of this kind of nodes take
proportionally longer computation time. This is reasonable because more colors are needed and
thus, solutions and partial solutions are represented using longer sequences.

4.2 Execution time

Every chart shows execution time for 250 instances, both for the brute force (BF) and the branch
& bound (B&B) implementations.

The size of the graphs represented by the decomposition tree instances is 2tk + i, where t is
the amount of thick empty headed spiders, k is their size (assuming all of them have equal size)
and i is the amount of individual vertices. Therefore, the graphs represented by the decomposition
trees in this chapter span between 90 and over 540 vertices.

We also tried to experiment with an integer programming model for the regular coloring prob-
lem on these kind of graphs for comparison purposes, but the graphs we were dealing with were
too large to be handled.

Trees consisting of thick empty headed spiders of size 3 only seem to be the hardest case for
the B&B implementation, specially for trees of few or many join nodes. We can see in Figure 4.1
how the B&B implementation runs slower for these cases, since it is forced to explore almost the
entire decision tree without being able to discard any solutions. For the rest of the cases, the battle
is more even, with B&B running faster in Figure 4.1b, having however some isolated cases where
the brute force implementation wins.

15

16 4. Results

(a) 15 leaves

(b) 20 leaves

Fig. 4.1: Decomposition trees consisting of thick empty headed spiders of size 3 only.

As we increment the spider size, we can see that the trend changes a bit and the B&B imple-
mentation only has trouble with instances of many join nodes. However, now B&B is the clear
overall winner. We can see this in Figures 4.2 and 4.3.

For all the cases, the performance of the B&B implementation is relatively better for larger
trees. Something interesting to point out is that the B&B’s performance is absolutely better for
trees with larger empty headed spiders, which represent larger graphs. That means, the bigger the
spiders (and the graphs), the faster the algorithm runs.

Randomness in the spider size seems to be well handled by the B&B implementation, as we
can see in Figure 4.4.

Regarding instances with individual vertices other than only thick empty headed spiders (Fig-
ure 4.5), the behavior seems to be more noisy, still showing an advantage in the B&B implementa-
tion’s favor. Note that, for some of the instances, the brute force implementation could not yield a
solution due to program memory shortage, while our algorithm did not have that kind of problem.

Table 4.1 is a summary of all the experiments we ran. It includes average percentage of visited
nodes in the decision tree as well as average execution time grouped by instances with similar
amount of join nodes. Columns in the left correspond to trees of 15 spiders and columns in the
right, to trees of 20 spiders. The table is divided in 5 sections, according to the instance groups
shown in Figures 4.1, 4.2 4.3, 4.4 and 4.5.

Looking at Table 4.1, we can see how the amount of visited nodes in the decision tree remains
very low for all instances, except for the 3s group. For this group, consisting of empty headed
spiders of size 3 only, the algorithm is forced to visit more nodes, specially for instances with few
or many join operations. This pattern is very similar to the one observed in the execution time
charts, which is natural. In particular, for an instance consisting of empty headed spiders of size

4.2. Execution time 17

(a) 15 leaves

(b) 20 leaves

Fig. 4.2: Decomposition trees consisting of thick empty headed spiders of size 6 only.

(a) 15 leaves

(b) 20 leaves

Fig. 4.3: Decomposition trees consisting of thick empty headed spiders of size 9 only.

18 4. Results

(a) 15 leaves

(b) 20 leaves

Fig. 4.4: Decomposition trees consisting of thick empty headed spiders of random size.

(a) 15 thick empty headed spiders and 300 individual vertices

(b) 20 thick empty headed spiders and 300 individual vertices

Fig. 4.5: Decomposition trees consisting of empty headed thick spiders and individual vertices.

4.2. Execution time 19

Tab. 4.1: Summary of average execution time and visited nodes for different instances.

Size: 15 B&B BF Size: 20 B&B BF
Group Join density Nodes Time Time Join density Nodes Time Time
3s 0.08 51.77% 0.68 0.26 0.08 43.68% 18.14 8.61

0.29 15.17% 0.24 0.31 0.29 5.45% 2.97 11.74
0.50 12.10% 0.23 0.39 0.51 10.72% 6.86 15.38
0.71 23.29% 0.51 0.53 0.69 9.81% 8.60 22.23
0.93 62.80% 1.63 0.70 0.92 52.70% 54.85 31.23

6s 0.07 2.32% 0.05 0.32 0.08 0.51% 0.34 11.18
0.30 4.84% 0.10 0.43 0.32 2.08% 1.70 18.53
0.50 6.69% 0.18 0.64 0.53 3.29% 3.65 28.58
0.72 11.16% 0.36 0.86 0.72 6.43% 8.67 37.41
0.93 25.17% 1.03 1.18 0.92 15.95% 26.83 51.63

9s 0.07 0.59% 0.01 0.39 0.07 0.11% 0.09 13.33
0.28 1.08% 0.03 0.60 0.28 0.22% 0.24 21.79
0.50 2.04% 0.08 0.89 0.49 0.58% 0.82 34.53
0.71 4.12% 0.20 1.31 0.71 1.29% 2.60 51.92
0.94 10.18% 0.58 1.60 0.92 3.97% 8.94 66.20

rs 0.07 2.56% 0.05 0.33 0.09 1.08% 0.67 12.53
0.28 3.90% 0.09 0.47 0.28 1.84% 1.39 17.61
0.51 6.35% 0.17 0.67 0.49 2.16% 2.12 24.62
0.72 8.12% 0.27 0.86 0.71 2.85% 3.73 35.97
0.92 9.17% 0.38 1.15 0.93 3.18% 5.88 50.90

rs-300 0.10 2.50% 0.06 0.39 0.09 0.82% 0.53 12.92
0.29 4.32% 0.15 0.73 0.31 1.62% 1.49 24.53
0.50 8.12% 0.45 1.45 0.50 2.55% 3.61 42.21
0.70 10.99% 0.80 2.26 0.70 3.47% 8.43 78.94
0.91 14.81% 1.79 3.66 0.90 7.27% 27.42 106.47

3 only with no join operations the algorithm has to explore the entire decision tree. For the other
groups, there is a slight increment in the amount of visited nodes as the join nodes density grows.

20 4. Results

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

We have analyzed the current best approximation algorithm for the MSC problem over P4-sparse
graphs and, in the search for a better algorithm or a better approximation factor, we introduced
new lower bounds to this problem.

These lower bounds open up a new way in the quest to prove that the proposed alternative to
the current algorithm (φ3111) is actually a k-approximation algorithm for some k < 2.

We performed exhaustive search looking for a graph or graph pattern that achieves the highest
possible approximation factor for any of the bounds we have. This search led us to decompo-
sition trees with similar structure, similarity that could be the reason for the high value of the
approximability factor they achieve.

Even though the proof was not found, we successfully implemented a branch and bound al-
gorithm for the problem that finds the optimal solution very quickly for relatively large graphs
compared to the brute force implementation that we developed for comparison.

We have analyzed the execution time for the branch and bound implementation for different
types and sizes of decomposition trees. We observed that for the vast majority of the instances
the algorithm has a very good response and we also identified instances for which it is forced to
explore almost the whole solution space.

We implemented caching of partial solutions inside the representation structure of the de-
composition trees in order to avoid recalculation, since it was a major reason for the algorithms’
overhead. The cached solutions remain in the structure after running, which means that they could
be used for further queries, for example, in a context in which minor changes have to be made to
the input graph, that can be dynamically reflected in the decomposition tree in linear time.

Moreover, it could be possible to easily alter the implementation to allow interruptions at any
point of the execution and make it return a feasible solution together with a quality factor, in terms
of the optimal solution. The quality factor could be theoretically lower than 2, by using the current
approximation algorithm as a heuristic, and significantly lower than 2 in practice.

5.2 Future work

In the future, it would be interesting to continue this work in several directions:

• look for new bounds following the idea of considering invalid colorings. That is, for ex-
ample, colorings that use same numbers for adjacent vertices or colorings that use color
numbers other than positive integers,

• study the pattern seen in the decomposition trees that achieve the highest approximability
factor found and try to characterize it in order to decide whether any of the lower bounds
could yield a constant approximation factor.

• look for ways to detect and “break” symmetries in the decomposition trees in order to avoid
this source of repeated calculations,

21

22 5. Conclusions and future work

• look for different branching schemes, for example, try to identify thick spiders with empty
head that are more relevant to the structure of the optimal solution, or more “penalizing” in
order to explore those branches first,

• check if there might exist a link between the structure of the decomposition tree and the way
it should be colored. For example, by trying to identify a way of estimating the “likeliness”
of a certain thick spider with empty head to be colored in a certain way in the optimal
solution,

• explore differences and similarities of different optimal solutions for the same instance
graphs.

Finally, we propose the following conjecture: φ3111 is a 1.33-approximation algorithm.

Appendix A

PROOFS

We include now the proofs of the lemmas and theorems that have been omitted in Section 1.3. All
of these proofs are part of previous work by F. Bonomo and M. Valencia-Pabon [3].

Proof. (Lemma 7) Let p be a maximal sequence of G and let S1, . . . , Sk be a partition associated
with p. Let Si1 , . . . , Sit be the sets in the partition having nonempty intersection with V (G1). We
claim that {i1, . . . , it} = {1, . . . , t}. Otherwise, there is some value i such that Si ∩ V (G1) =
∅ and Si+1 ∩ V (G1) 6= ∅. Since no vertex of G1 is adjacent to a vertex of G2, vertices in
Si+1 ∩ V (G1) can migrate to Si, obtaining a sequence that strictly dominates p, a contradiction.
The same happens for G2, so p can be expressed as p = p1 +p2, where p1 and p2 are sequences of
G1 and G2, respectively. By Lemma 6, they must be maximal for the corresponding graphs.

Proof. (Lemma 8) Let p be a maximal sequence of G and let S1, . . . , Sk be a partition associated
with p. Since every vertex of G1 is adjacent to all the vertices of G2 in G, each Si, 1 ≤ i ≤ k,
is entirely contained either in G1 or in G2. Besides, as p is maximal, it is non-increasing. So p
can be expressed as p = p1 ? p2, where p1 and p2 are sequences of G1 and G2, respectively. By
Lemma 4, they must be maximal for the corresponding graphs.

Proof. (Lemma 9) Let p be the sequence of G associated to S1, . . . , Sk, that is, p[i] = |Si| for
i = 1, . . . , k, p[i] = 0 for i > k. Let q be the sequence ofG[H] associated to Si1∩H, . . . , Sit∩H ,
that is, q[j] = |Sij ∩ H| for j = 1, . . . , t, q[j] = 0 for j > t. Let q′ be a maximal sequence for

G[H] such that q′ � q. Since
∑|q′|

j=1 q
′[j] =

∑|q|
j=1 q[j] = |H|, we have |q′| ≤ |q| = t. Let

S′1, . . . , S
′
t be a partition of H associated with q′, where maybe some of the sets are empty. Notice

that every vertex in (Si1 ∪ . . . ∪ Sit) \ H has at least a non-neighbor in H , since Si1 , . . . , Sit
are the sets having nonempty intersection with H and they are independent sets. Since H is an
homogeneous set of G, every vertex in (Si1 ∪ . . . ∪ Sit) \ H has no neighbors in H . So we can
consider the partition of V (G) obtained from S1, . . . , Sk by replacing Sij by (Sij \H) ∪ S′j , for
j = 1, . . . , t, that is a partition of V (G) into independent sets. Let p′ be the sequence associated
to this new partition. Then p′[i] = p[i] for i 6∈ {i1, . . . , it}, while p′[ij] = p[ij] − q[j] + q′[j] for
j = 1, . . . , t. It is easy to see that p′ � p because q′ � q, and that the domination is strict for p′

and p if it is strict for q′ and q. Since p is maximal for G, it follows that q′ = q and q is maximal
for G[H].

Proof. (Lemma 10) Let S1, . . . , S|p| be a partition associated with p. It is clear that no set of the
partition can contain both vertices from C and R, since all the vertices in C are adjacent to all the
vertices in R. If there is a set Si containing vertices of S and no vertex of R, then either Si ⊆ S
or Si contains exactly one vertex of C, because C is a complete set. Since R 6= ∅, there is some
set Sj containing vertices from R, thus Sj ⊆ R ∪ S. Then the vertices in Si ∩ S can migrate to
Sj , possibly swapping Si and Sj if i < j, thus obtaining a partition associated with a sequence
p′ such that p′ � p. Since p is maximal, p′ = p. Therefore, there exists a partition associated
with p in which every set is either entirely contained in R, or entirely contained in C, or intersects
both R and S. Sets entirely contained in C have only one element, and since p is maximal, thus

23

24 Appendix A. Proofs

non-increasing, we may assume that these are the last |C| sets. From now on, we will assume that
S1, . . . , S|p| is such a partition. In particular, S1 ⊆ S ∪ R. Suppose that there is a set Si, i > 1,
containing vertices of S. Then the vertices in Si ∩ S can migrate to S1, obtaining a sequence that
strictly dominates p, a contradiction.

Proof. (Lemma 11) Let p be a maximal sequence of G, and S1, . . . , S|p| a maximal partition
associated with p. Since R 6= ∅, by Lemma 10, we may assume that S1, . . . , S|p| is such that sets
S|p|−|C|+1, . . . , S|p| are entirely contained in C, S1 intersects both R and S and S2, . . . , S|p|−|C|
(when 2 ≤ |p| − |C|) are entirely contained in R. By Lemma 9, p[1]− |C|, p[2], . . . , p[|p| − |C|]
(or simply p[1]− |C| when |p| = |C|+ 1) is a maximal sequence for G[R]. Conversely, for each
maximal sequence q of G[R] associated with partition T1, . . . , T|q|, define sequence q′ of G with
|q′| = |q|+ |C| and where q′[1] = q[1] + |C|, q′[i] = q[i] for 2 ≤ i ≤ |q| (if |q| ≥ 2), and q′[i] = 1
for |q|+1 ≤ i ≤ |q|+ |C|, associated with the partition T1∪S, . . . , T|q|, {c1}, . . . , {ck} if |q| ≥ 2,
T1 ∪ S, {c1}, . . . , {ck} otherwise. Let q1 and q2 be maximal sequences of G[R], and let q′1 and q′2
be their respective maximal sequences of G constructed as below. It is easy to see that if q1||q2

then q′1||q′2, so the lemma holds.

Proof. (Lemma 12) Let S = {s1, . . . , sk} and C = {c1, . . . , ck}, with k ≥ 2. Let S1, . . . , St
be a partition of the vertex set of G into independent sets, with t ≥ 1, such that its associated
sequence p is maximal. By hypothesis, we have that R = ∅. Note first that each vertex ci ∈ C
must belong to a different independent set Sj and so, t ≥ k. Now, by definition of a thin spider,
each vertex si is adjacent to vertex cj if and only if i = j. We claim that there is Si such that
Si = S or there are Si and Sj , with i 6= j, such that Si = (S \ {sn}) ∪ {cn} and Sj = {sn, cm},
for some n,m ∈ {1, . . . , k}, with m 6= n. Assume that it is not true. Suppose first that there
are three sets Si, Sj , Sl, with i < j < l, such that each one of them contains at least one vertex
of S. Let sq ∈ S be a vertex in Sl. Then vertex cq ∈ C belongs to at most one of Si or Sj but
not to both. Thus, vertex sq must migrate to one of Si or Sj that contains no vertex cq, which
gives a sequence that strictly dominates p, a contradiction. Therefore, vertices in S belong either
to only one set Si or to two different sets Si and Sj , with i < j. If Si contains no vertex of C,
all the vertices in S ∩ Sj must migrate to Si, which gives a sequence that strictly dominates p, a
contradiction. Else, Si contains exactly one vertex cn of C. In that case, by similar arguments,
only vertex sn could be in Sj . Since p is maximal, Sj contains also a vertex in C. (Otherwise
we can merge two sets, obtaining a sequence that strictly dominates p, a contradiction.) As p is
maximal, then p is such that: (i) p[1] = k and p[i] = 1 for 2 ≤ i ≤ k + 1, that is, S1 = S and
Sj = {cj−1} for 2 ≤ j ≤ k + 1; or (ii) p[1] = k, p[2] = 2, and p[i] = 1 for 3 ≤ i ≤ k, that is,
sequence p is associated with the partition S1 = (S \ {s1}) ∪ {c1}, S2 = {s1, c2}, and Sl = {cl}
for 3 ≤ l ≤ k. Clearly, the sequence of Case (ii) dominates the one of Case (i), and it is the only
maximal sequence for G.

Proof. (Lemma 13) Let S = {s1, . . . , sk} and C = {c1, . . . , ck}, with k ≥ 3. By hypothesis, we
have that R = ∅. By definition of a thick spider, each vertex si is adjacent to vertex cj if and only
if i 6= j.

The sequence p1 with |p1| = k, and such that p1[i] = 2 for 1 ≤ i ≤ k, can be obtained
by defining Si = {ci, si} for 1 ≤ i ≤ k. The sequence p2 with |p2| = k + 1, and such that
p2[1] = k and p2[i] = 1 for 2 ≤ i ≤ k + 1, can be obtained by defining S1 = S and Si = {ci−1}
for 2 ≤ i ≤ k + 1. Moreover, we have that p1||p2. In fact, let j1 = 1 and j2 = k. Then,
p1[1] = 2 < k = p2[1] and

∑j2
i=1 p1[i] = 2k > 2k − 1 =

∑j2
i=1 p2[i].

25

We will show now that these are the only two maximal sequences for G. Let S1, . . . , St be a
partition of the vertex set of G into independent sets, with t ≥ 1, such that its associated sequence
p is maximal. First notice that there is at most one set entirely contained in S, because two such
sets could be merged obtaining a sequence that strictly dominates p, a contradiction.

Suppose first that there is some set Si containing more than one vertex of S. Since no two
vertices of S have a common non-neighbor in C, then Si ⊆ S and it is the only set entirely
contained in S. Every other set is either contained in C or has one vertex of C and one of S. Since
p is non-increasing, we may assume i = 1. If some set Si with i > 1 contains a vertex of S, it
can migrate to S1, leading to a sequence that strictly dominates p, a contradiction. So S1 = S and
p = p2.

Suppose now that no set contains more than one vertex of S. Then each set is either composed
by one vertex of C, or by one vertex of S, or by a vertex si ∈ S and its only non-adjacent vertex
ci ∈ C. Clearly, p1 dominates every such a sequence, so p = p1.

Proof. (Theorem 2) Let G be a P4-sparse graph such that in its modular decomposition there are
no thick spiders (S,C,R) with |C| ≥ 3 and R = ∅.

1. We will prove by induction that G admits a unique maximal sequence p and that |p| =
χ(G). This implies s(G) = χ(G). By Theorem 1, G is either trivial, or the union or
join of two smaller P4-sparse graphs G1 and G2, or G is a spider (S,C,R) and G[R] is
P4-sparse. If G is trivial, the property holds. Suppose G is the union or join of G1 and
G2. By inductive hypothesis, for i = 1, 2, Gi has a unique maximal sequence pi, and
|pi| = χ(Gi). If G = G1 ∪ G2 then, by Lemma 7, G has a unique maximal sequence
p = p1 + p2. Therefore, |p| = max{|p1|, |p2|} = max{χ(G1), χ(G2)} = χ(G). If
G = G1∨G2 then, by Lemma 8, G has a unique maximal sequence p = p1 ?p2. Therefore,
|p| = |p1| + |p2| = χ(G1) + χ(G2) = χ(G). Finally, if G is a spider (S,C,R), then
either G is a thin spider with R = ∅ or R 6= ∅. In the first case the property follows
by Lemma 12. In the second case, by inductive hypothesis, G[R] has a unique maximal
sequence q, and |q| = χ(G[R]). By Lemma 11, there exists only one maximal sequence p
of G, and |p| = |q|+ |C| = χ(G[R]) + |C| = χ(G).

Now, let n be the number of vertices inG. Let T be the decomposition rooted tree associated
with G. It is well known that T can be computed in linear time [9]. We will show that the
unique maximal sequence p of G and a partition associated with p can be computed from
T in polynomial time. In order to compute an optimal coloring with s(G) colors and sum
Σ(G) for this case, we proceed from the leaves to the root in T as follows. If x is a leaf
in T then its associated partition is S1 = {x} having as maximal sequence p, with |p| = 1
and p[1] = 1. If node x ∈ T is a union-node (resp. join-node) then, by Lemma 7 (resp.
Lemma 8), the unique maximal sequence and its corresponding optimal partition of the
vertex set ofGx into independent sets can be computed from the unique maximal sequences
and their corresponding optimal partitions of the children of x. If node x ∈ T is a spider-
partition node representing the spider σ = (S,C,R) then, the unique maximal sequence
and its corresponding optimal partition of the vertex set of Gx into independent sets can
be computed either as in Lemma 12 (if σ is a thin spider with R = ∅) or from the unique
maximal sequence and their corresponding optimal partitions of the child Gx[R] of x as
shown in Lemma 11, if R 6= ∅. Finally, notice that each node x ∈ T needs O(n) time to
compute its optimal partition. As there are at most 2n− 1 nodes in T , then the complexity
time of the algorithm is bounded by O(n2).

26 Appendix A. Proofs

2. It follows by induction from Theorem 1, and using Lemma 7 (resp.
Lemma 8) if G is a disjoint union (resp. join) of P4-sparse graphs, and Lemma 12 (resp.
Lemma 11) if G is a thin spider (S,C,R) with R = ∅ (resp. G is a spider (S,C,R) with
R 6= ∅).

Proof. (Theorem 3) The statement holds for t = 0 by Theorem 2. Suppose t ≥ 1, and let
σ1, . . . , σt be the thick spiders in the decomposition tree T of G such that σj = (Sj , Cj , ∅) and
|Cj | ≥ 3, for j = 1, . . . , t. By Lemma 13, each σj has exactly two maximal sequences. Clearly,
there are 2t ways of choosing maximal sequences (and their corresponding partitions) for the t
thick spiders σj . Now, given a fixed choice for the thick spiders σj and by using the algorithm in
the proof of item (1) of Theorem 2, we can compute in O(n2) time a maximal sequence and its
corresponding partition into independent sets for G. This shows that G has at most 2t maximal
sequences and that an optimal coloring with s(G) colors and sum Σ(G) can be computed in
O(2tn2) time. Finally, note that for each thick spider σj , one of its maximal sequences has length
χ(σj) + 1 and thus, by induction, it can be proved that the number of colors used in an optimal
solution for G is upper bounded by χ(G) + t.

BIBLIOGRAPHY

[1] A. BAR-NOY, M. BELLARE, M. M. HALLDÓRSSON, H. SHACHNAI, AND T. TAMIR,
On chromatic sums and distributed resource allocation, Information and Computation, 140
(1998), pp. 183–202.

[2] A. BAR-NOY AND G. KORTSARZ, Minimum color sum of bipartite graphs, Journal of Al-
gorithms, 28 (1998), pp. 339–365.

[3] F. BONOMO AND M. VALENCIA-PABON, Minimum sum coloring of P4-sparse graphs,
in Proc. V Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS),
vol. 35 of Electronic Notes in Discrete Mathematics, Elsevier, 2009, pp. 293–298.

[4] U. FEIGE, L. LOVÁSZ, AND P. TETALI, Approximating min sum set cover, Algorithmica,
40 (2004), pp. 219–234.

[5] K. GIARO, R. JANCZEWSKI, M. KUBALE, AND M. MALAFIEJSKI, A 27/26-approximation
algorithm for the chromatic sum coloring of bipartite graphs, in Proc. 5th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX),
vol. 2462 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 135–145.

[6] M. M. HALLDÓRSSON, G. KORTSARZ, , AND H. SHACHNAI, Sum coloring interval and
k-claw free graphs with application to scheduling dependent jobs, Algorithmica, 37 (2003),
pp. 187–209.

[7] C. T. HOÀNG, Perfect graphs, PhD thesis, School of Computer Science, McGill University,
1985.

[8] B. JAMISON AND S. OLARIU, Recognizing P4-sparse graphs in linear time, SIAM Journal
on Computing, 21 (1992), pp. 381–406.

[9] B. JAMISON AND S. OLARIU, A tree representation for P4-sparse graphs, Discrete Applied
Mathematics, 35 (1992), pp. 115–129.

[10] K. JANSEN, Complexity results for the optimum cost chromatic partition problem, in
Proc. 24th International Colloquium on Automata, Languages and Programming (ICALP),
vol. 1256 of Lecture Notes in Computer Science, Springer-Verlag, 1997, pp. 727–737.

[11] E. KUBICKA, The Chromatic Sum of a Graph, PhD thesis, Western Michigan University,
1989.

[12] E. KUBICKA AND A. J. SCHWENK, An introduction to chromatic sums, in Proc. 17th ACM
Annual Computer Science Conference, 1989, pp. 39–45.

[13] S. NICOLOSO, M. SARRAFZADEH, AND X. SONG, On the sum coloring problem on inter-
val graphs, Algorithmica, 23 (1999), pp. 109–126.

[14] S. NIKOLOPOULOS, L. PALIOS, AND C. PAPADOPOULOS, A Fully Dynamic Algorithm
for the Recognition of P4-Sparse Graphs, Graph-Theoretic Concepts in Computer Science,
Department of Computer Science, University of Ioannina, 2000.

27

28 Bibliography

[15] T. SZKALICZKI, Routing with minimum wire length in the dogleg-free Manhattan model is
NP-complete, SIAM Journal on Computing, 29 (1999), pp. 274–287.

