
Tesis de Licenciatura en Ciencias de la Computación

Un Verificador de Escenarios Arquitectónicos en

Tiempo de Ejecución usando Redes de Petri Coloreadas

A Verifier of Runtime Architectural Scenarios using

Colored Petri Nets

Tesistas

 Germán Aníbal Gómez Marcelo Oks

 ggomez@dc.uba.ar moks@dc.uba.ar

Directores

Dr. Sebastián Uchitel Dr.Victor Braberman

 suchitel@dc.uba.ar vbraber@dc.uba.ar

Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

30 de mayo de 2012

2 / 71

3 / 71

Dedicatoria

Dedico esta tesis de licenciatura a mi familia y a mis amigos

Germán A. Gómez

Dedico esta tesis de licenciatura a mis padres por apoyarme inclusive cuando están
en desacuerdo, a mi esposa por su amor y por aguantarme hasta en mis peores días
y a mi hija por sus sonrisas que me iluminan hasta en el día más oscuro.

Marcelo Oks

4 / 71

Acknowledgements

We would like to thank our thesis directors for giving us the necessary technical
and emotional support to carry out this piece of work. We also thank them for their
patient, their pragmatic approach, their availability to us and their encouragement
to finish it

Marcelo Oks and Germán A. Gómez

First of all I want to express my gratitude to God for making it possible and for
giving me the opportunity to access to high-quality universitary education, I really
feel privileged for that. I want to thank Julian for his wise words and motivation to
help me finish my thesis. To my mother who gave me a solid example of
responsibility and fulfilment, and who also, with all her respect to me and patient,
usually asked me for the date of my graduation. I want to thank my wife Carolina
for her unconditionality and support.

Many other people may deserve my thanks and gratitude and I apologize to those
who I have not explicitly mentioned here due to my lack of memory.

Germán A. Gómez

Many people deserve my thanks and gratitude for making this work possible. I
apologize in advance to those who I will not explicitly mention here due to my lack
of memory.
First, I would like to thank to my parents for their support, even when we disagree.
To my wife Solana for her love and for bearing me even on my worst days. And to
my daughter Camila who lights my day with every smile.

Marcelo Oks

5 / 71

Resumen

Esta tesis se basa en el proyecto DiscoTect desarrollado por David Garlan
y su grupo de investigadores de la de la Universidad de Carnegie Mellon cuyo
objetivo es descubrir la vista C&C (de componentes y conectores) de la
arquitectura actual de un sistema en ejecución. Para ello definen reglas de mapeo
en el lenguaje DiscoStep que convierten eventos de ejecución en eventos de
arquitectura con los cuales se va construyendo la arquitectura del sistema.

Dada una un vista C&C de la arquitectura de un sistema en ejecución,
pueden plantearse diferentes escenarios en términos de los constructos de esta vista
respecto de la configuración actual de la arquitectura. Un escenario podría
especificar las cantidades de componentes y conectores, el número y tipo de
conexiones entre componentes, la ejecución de una componente particular, etc.

En nuestra tesis desarrollamos una técnica que permite saber si un
determinado escenario arquitectónico en términos de componentes y conectores,
se cumple en base a las reglas de mapeo definidas en DiscoStep para una
arquitectura. Y en caso afirmativo, encontramos la traza mínima de eventos de
ejecución que deben ocurrir en el sistema en ejecución para que así sea.

6 / 71

Abstract

This thesis is based on the DiscoTect project developed by David Garlan
and his group of researchers from the Carnegie Mellon University whose aim was
to discover the C&C (components and connectors) view of the current architecture
of a running system. To do that they define mapping rules in the DiscoStep
language that transform runtime events into architecture events which are used to
build the system architecture

Given a C&C architectural view of the architecture of a running system,
we could state different scenarios in terms of the constructs of this view respect to
the current configuration of the architecture. A scenario may specify the amount of
components and connectors, the number and type of connections between
components, the execution of a component, etc.

In our thesis we developed a technique to know if a given architecture

scenario, in terms of components and connectors, is fulfilled based on the
DiscoStep mapping rules of an architecture. And if this is the case, we find the
minimum trace of runtime events that should happen in the running system to do
so.

7 / 71

Contents

1. Introduction .. 10

1.1. Motivation ... 10
1.2. About this work ... 10

1.3. Thesis objective .. 11

1.3.1. Contributions ... 11

1.4. Related work ... 11

1.5. Thesis structure ... 12

2. Preliminaries .. 13
2.1. Colored Petri Nets ... 13

2.2. DiscoTect: Architecture Discovery ... 15

2.2.1. Instrumentation ... 16

2.2.2. Runtime events .. 16

2.2.3. DiscoSTEP Language ... 17

2.2.3.1. Declaration of input and output event types............................ 17
2.2.3.2. Architectural rules definition .. 18

2.2.3.3. Composition of two rules .. 19

2.3. Model Checking .. 20

2.3.1. The SPIN model checker .. 21

2.3.1.1. Promela language .. 22

2.4. Symbolic Execution .. 22

3. The Scenario Verifier ... 24
3.1. Architecture of the Scenario Verifier .. 26

4. The technique ... 27
4.1. Steps of the technique ... 27

4.2. Model a set of DiscoSTEP architectural mapping rules as a CPN.......... 28

4.2.1. Translation rules .. 28

4.2.2. Rules composition ... 33

4.3. Specify the CPN model in Promela and C code 38

4.3.1. Places .. 38

4.3.2. Tokens ... 39

4.3.3. Colorsets ... 41

4.3.4. Transitions, transition guards, code segments and arc inscriptions 42
4.3.4.1. Proctype declarations .. 43

4.3.4.2. Transition occurrence .. 43

4.3.4.3. Token consumptions from input places of the transition 44
4.3.4.4. Transition guard .. 45

4.3.4.5. Transition code segment ... 45

4.3.4.6. Token additions into output places of the transition 46
4.3.4.7. Double-oriented arcs ... 47

4.3.5. CPN to Promela Conversion Algorithm ... 48
4.3.5.1. Places .. 49

4.3.5.2. Tokens ... 49

4.3.5.3. Colorsets.. 49

4.3.5.4. Transitions ... 49

4.4. Specify an architectural scenario in Promela .. 52

4.5. Model check the Promela specification of the CPN 52

4.5.1. The init process ... 52

4.5.2. Stub ... 53

4.6. The Assumption Verifier .. 54

4.7. Summary of the key challenges raised when specifying and verifying the
CPN 56
4.8. Run the SPIN Output Analyzer ... 57

8 / 71

4.8.1. The report generator .. 57

5. Conclusions .. 60
5.1. Concluding remarks .. 60

5.2. Potencial applications ... 61

5.3. Future work ... 63
6. References .. 65
Appendix A ... 67

DiscoSTEP client-server mapping rules ... 67

Appendix B ... 69
Concrete syntax of DiscoSTEP Language .. 69

Appendix C ... 70
A client-server architecture example .. 70

The CPN specification ... 70
The architecture scenario specification .. 70

The Assumption Verifier .. 70

General files ... 71

9 / 71

List of Figures

Figure 1 .. 14
Figure 2 .. 14
Figure 3 .. 15
Figure 4 .. 21
Figure 5 .. 26
Figure 6 .. 30
Figure 7 .. 32
Figure 8 .. 33
Figure 9 .. 34
Figure 10 .. 35
Figure 11 .. 37
Figure 12 .. 42
Figure 13 .. 47
Figure 14 .. 64

Chapter: Introduction

10 / 71

1. Introduction

1.1. Motivation

Given a component and connector software architecture we could imagine
many relevant scenarios it should fulfil at architectural level. A scenario could
specify, for example, characteristics of an architecture configuration such as the
amount of components and connectors it should have, the connections between
components carried out in runtime, the execution of a component, etc. It would be
really useful and interesting to know what should happen at runtime level to fulfill
the proposed scenario. In this way we could take advantage of it at the architecture
design time or coding time during the development process or after it to evaluate
the level of conformance between the developed system and the architecture. So,
we present a technique to find, if there exists, the minimum trace of runtime events
that maps into a given architectural scenario specification.

1.2. About this work

Our research is mainly based in [4] which is about the discovery of a system
architecture at runtime. To address it, the compiled implementation of a system is
instrumented using aspects which emit runtime events (in the form of XML
elements) when a specific part of the system is executed. These runtime events are
captured and consumed by a runtime engine called DiscoTect which generates
architectural events. To do that, DiscoTect also takes as input a file called
DiscoSTEP Mapping Specification which contains rules written in DiscoSTEP
language which specify how to map these runtime system-level events into
architectural ones, and are formally defined with a Colored Petri Net. Architectural
events are then fed to an Architecture Builder that incrementally creates a model
of the system architecture.

Our work is based on the DiscoSTEP Mapping Specification (or directly
mapping rules from now on) mentioned in the above paragraph. These rules
establish mappings between runtime events and architectural ones. In [4] a way of
translating these mapping rules into a Colored Petri Net (CPN from now on) is
provided. We extend this translation and show a generic way of specifying CPN
constructs in Promela, the verification modeling language understood by the well-
known model checker, SPIN. In this way, the mapping rules can be model checked
together with an architectural scenario specification returning, if there exists, the
trace of runtime events that fulfills this scenario. While model checking, we may
find a set of constraints related to each event instead of finding just one, and so
there may be more than one possible configuration for the trace. To cope with it,
we decided to use a symbolic execution approach, so we accumulate all these
constraints and finally we verify them in order to know if there exists such trace of
runtime events that maps with the proposed scenario. If such trace effectively
exists, the presented technique finds the minimum one, considering the size of a
trace as the amount of instructions included in it; so the minimum trace is the one
with the least amount of instructions.

Chapter: Introduction

11 / 71

1.3. Thesis objective

The aim of the research is to develop a technique to find, if exists, the

minimum trace of runtime events that should be generated by a running system to
fulfill a given architectural scenario specification regarding the system´s
components and connectors, and based on their mapping rules written in
DiscoSTEP.

1.3.1. Contributions

We identified in our work the following contributions:

1. We present a general form of modeling mapping rules written DiscoSTEP
as a Colored Petri Net. Note that in [4] Garlan presents a basic idea of this,
we deepen and extend this.

2. We present a general way of specifying the Colored Petri Net in Promela,

the modeling language of the model checker SPIN.

3. We create a stub that models an instrumented system and simulates
random sequences of execution events.

4. We support the verification of architectural scenarios in terms of type and

quantity of components and connectors, and relationships between them.

5. We developed an Assumption Verifier that checks all the conditions
collected during SPIN verification as a consequence of the adoptions of
the symbolic execution approach. Note that this Verifier is independent of
the architecture characteristics.

6. We developed a tool that, in case of effectively finding a minimum trace of

runtime events that complies with the architecture scenario, it interprets the
output trail thrown by SPIN during verification and generates a simple
report that contains a human readable version of the this trace, the
conditions evaluated and information analysis results.

7. Finally, we present a technique that gathers all these above artifacts to
provide a general way to cope with the verification of C&C architecture
scenarios based on DiscoSTEP mapping rules specification.

1.4. Related work

This work is mainly based in [4], [5] and [6]. We take as starting point the
mapping rules specified in DiscoSTEP for the components and connectors of a
system architecture (C&C view).

Additionally we decided to adopt a symbolic execution approach based on [11]
and [12] so that when executing the CPN using SPIN verifier to find the minimum
trace of runtime events that complies the architecture scenario, all the implied

Chapter: Introduction

12 / 71

conditions are accumulated to be evaluated later instead of being evaluated when
found.

The theoretical background about CPN constructs and modeling aspects were
foundational for our work, and we based on [1], [2] and [3] for this.

It was also very useful for us, some work about SPIN model checking taken
from [7] to [10].

1.5. Thesis structure

In Chapter 1 we give a general introduction to our work.
In Chapter 2 we present some base knowledge needed to understand our work.
In Chapter 3 we show the components of the Scenario Verifier.
In Chapter 4 we describe the full technique that we developed as a part of this
thesis. Here we explain the passages from DiscoStep mapping rules to its
corresponding CPN and from it to its Promela specification.
In Chapter 5 we show some potential applications of our work.
In Chapter 6 we report our final conclusions and future work
In Chapter 7 we present the work in which we based our thesis separated in themes.
In Appendix A we show the DiscoStep mapping rules for a client-server
architecture.
In Appendix B Chapter 11we show the concrete syntax of DiscoStep Language.
In Appendix C we enumerate and explain all the files used in the implementation
of the scenario verifier, the Promela specification of the CPN for a client-server
example including the architecture scenario.

Chapter: Preliminaries

13 / 71

2. Preliminaries

In the following subsections the theoretical aspects involved in our work are
explained. Then the outline of this document is presented.

2.1. Colored Petri Nets

A Colored Petri Net (also known as CP-net or CPN) is a graphical oriented
modeling language for design, specification, simulation and verification of
systems.

The development of Colored Petri Nets has been driven by the desire to

develop a modeling language – at the same time theoretically well-founded and
versatile enough to be used in practice for systems of the size and complexity
found in typical industrial projects. To achieve this, CPNs combine the strength of
Petri nets with the strength of programming languages. Petri nets provide the
primitives for describing synchronization of concurrent processes, while
programming languages provide the primitives for definition of data types and
manipulation of their data values. Colored Petri Nets are an extension to Petri nets
with the added possibility of setting a value to a Token. Furthermore in PN the
Tokens are indistinguishable.

It is in particular well-suited for systems in which communication,
synchronization and resource sharing are important. Typical examples of
application areas are communication protocols, distributed systems, imbedded
systems, automated production systems, workflow analysis and VLSI chips

The ellipses and circles are called places. They describe the states of the
system. The rectangles are called transitions. They describe the actions. The
arrows are called arcs. The arc expressions describe how the state of the CPN
changes when the transitions occur. Each place contains a set of markers called
tokens. In contrast to low-level Petri nets (such as Place/Transition Nets), each of
these tokens carries a data value, which belongs to a given type. Token values are
referred as token colors and we also refer to data types as colour sets. Tokens of a
CPN are distinguishable from each other and hence “colored” – in contrast to
ordinary low-level Petri nets which have “black” indistinguishable tokens. A state
of a CPN is called a marking . It consists of a number of tokens positioned on the
individual places. Each token carries a value which belongs to the type of the place
on which the token resides. By convention, initial marking is underlined, next to
the place. When the specification of the initial marking is lengthy, we may omit the
underlining.

The pre-set of a transition t, pre-set(t), is the set of its input places and its post-
set, post-set(t), is the set of its output places. Analogously the pre-set, pre-set(s), of
a place p is the set of its input transitions and its post-set, post-set(s), is the set of its
output transitions.

The weight in an incoming arc of a place indicates how many tokens are going to
be added if the connected transition occurs. Analogously the weight in an outgoing
arc of a place indicates how many tokens are going to be removed if the connected
transition occurs.

Chapter: Preliminaries

14 / 71

A Petri Net is said to be ordinary if the weight of all its arcs is 1. The absence of
weight in an arc implies it has weight 1.

A finite capacity Petri Net is that in which there is a maximum of tokens defined
for each place.

During the execution of a CPN each place will contain a varying number of
tokens. Each of these tokens carries a data value that belongs to the type associated
with the place.

Let’s see some examples:

Figure 1

Figure 2

Chapter: Preliminaries

15 / 71

2.2. DiscoTect: Architecture Discovery

A relatively unexplored, technique is to determine the architecture of a
system by examining its runtime behaviour. The key idea is that a system’s
execution can be monitored. Observations about its runtime behaviour can
then, in principal, be used to infer its dynamic architecture. This approach
has the advantage that it applies to any system that can be monitored, it
gives an accurate image of what is actually going on in the real system, it
can accommodate systems whose architecture changes dynamically, and it
imposes no a priori restrictions on system implementation or architectural
style.

A technique to solve the problem of dynamic architectural discovery for

a large class of systems was developed. The key idea is to provide a
framework that allows one to map implementation styles to architecture
styles. This mapping is defined conceptually as a Colored Petri Net [1] that
is used at runtime to track the progress of the system and output
architectural events when predefined runtime patterns are recognized. Thus
the mapping provides a way to identify when a program performs
“architecturally significant” actions that produce architectural structures. An
important additional feature of the approach is the ability to reuse such
mappings across systems. In particular, they exploit regularity in
implementation and architectural styles so that a single mapping can serve
as an architectural extractor for a large collection of similar systems, thereby
reducing the cost of writing each abstraction mapping, while still providing
flexibility. They implemented a tool called DiscoTect, and the DiscoSTEP
language used for specifying mappings. Then they outline a formal
semantics for DiscoSTEP that specifies its meaning in terms of Colored Petri
Nets.

 (This figure is taken from [4])

Figure 3

Chapter: Preliminaries

16 / 71

2.2.1. Instrumentation

In DiscoTect, events such as method calls, CPU utilization, network bandwidth
consumption, memory usage, etc. are captured. To generate them, the running
system is probed, or instrumented; for which it is used resource monitoring tools,
or code instrumentation tools such as AspectJ and AspectC++ that allow to inject
code into the target system.

These frameworks implement Aspect Oriented Programming in Java and C++.

Using AOP to generate events is clean and less invasive than other methods.

Commercial technologies are used to instrument a system to produce runtime
events. For Java-based systems AspectJ was used to define instrumentation
aspects that are weaved into the compiled bytecode of the programs. These aspects
emit events when methods of interest are entered or exited, and when objects are
constructed. Any implementation of AOP, like Spring AOP, could be used to
generate the runtime events with the same results as with AspectJ.

2.2.2. Runtime events

In the case of instrumentation, the aspects mentioned in the section before can
reflectively retrieve information about the runtime environment of, for example, a
call, to ascertain the calling object, the instance of the object that was called, the
argument values and types that were passed to the method, the method signature,
etc. The aspects are written to emit XML elements that conform to a schema
expected by DiscoTect.

For example, to instrument the ChatServer below, we could weave in aspects
to emit events when methods were called and when objects were constructed.

public class ChatServer {

static class ClientThread extends Thread {...}
 public void run() {

…
}

}

private static Vector clients = new Vector();

public ChatServer() {

ServerSocket serverSocket = new ServerSocket(1111);
while (true) {

// Wait for clients to connect
Socket socket = serverSocket.accept();
new ClientThread(socket, clients).start();

}
}

public static void main(String[] args)throws IOExce ption {

new ChatServer();
}

}

After running this application, some of the runtime events generated would be:

Chapter: Preliminaries

17 / 71

<init constructor_name=”ServerSocket” instance_id=” 10”>

<call method_name=”ServerSocket.accept” callee_id=” 10”
return_id=”11” …/>

The init event is generated when the following sentence is executed:

ServerSocket serverSocket = new ServerSocket(1111);

The call event was triggered by the execution of the following method call:

Socket socket = serverSocket.accept();

As you can see, multiple ClientThreads can run concurrently, so some of the

runtime events will be generated in random order and hence interleaved with each
other.

The generated runtime events can be fed into DiscoTect either in real time or
off-line, after the program has completed running. These events are then input into
a DiscoSTEP specification which produces architectural events, generated as a
result of processing the runtime events, which in turn are used to produce the
software architecture.

2.2.3. DiscoSTEP Language

DiscoSTEP is a language to write architectural rules. Basically, a DiscoSTEP
rule takes as input low-level events (generated by a system in runtime) or
intermediate events (generated by rules to be fed into other rules) and generates as
output architecture events or intermediate events. In the case of architecture events,
they are fed to an Architecture Builder that incrementally builds the system
architecture. A DiscoSTEP program has three parts: the declaration of input and
output event types used in the rules, the definition of architectural rules and the
declaration of rule compositions.

2.2.3.1. Declaration of input and output event types

In a DiscoSTEP program we must declare which event types are of input and
which ones of output, we can do it following this structure:

event {
input{ input_event_type_names }
output{ output_event_type_names }

}

Where input_event_type_names is a list of the input event type names and

output_event_type_names is a list of the output event type names. Let’s see an
example:

event {

input {
 init;
 call;

Chapter: Preliminaries

18 / 71

 string;
}
output {

 string;
create_component;
create_client;
create_connector;

}
}

Every DiscoSTEP program must declare its input and output event types, this

declaration is mandatory.

2.2.3.2. Architectural rules definition

A DiscoSTEP architectural rule has the following parts:

rule rule_name {
input { input_event_declarations }
output { output_event_declarations }
trigger {$ conditions $}
action {$ assignments $}

}

Where
• input_event_declarations are the declarations of the input events of a

rule, each declaration is given by an input event type and the event name.

• output_event_declarations are the declarations of the output events of a

rule, each declaration is given by an output event type and the event
name. Output events can be architecture events or events to be consumed
by other rules because of rule composition.

• conditions are a set of conditions on the input events of the rule. If all

these conditions are true then the rule is applicable and its action block is
fired. Predicates are written in XQuery language. If the trigger block is
false then no input event is consumed.

• assignments are assignments from new output events to each output event

declared in the output block of the rule. Each assignment is preceded by
the word let. Other assignments can be done, for example, for temporary
usage inside the action block. The right member of every assignment is
written in XQuery language.

Note that conditions or assignments inside a trigger or an action block must be

enclosed between the ‘{$’ and ‘$}’. Event names must be preceded with a ‘$’
symbol.

Input events are of a type such as call, init, string, etc. Events, generated by the
system in runtime or by another rule, are bound, if the type matches, to the event
names declared in the input block of a rule. When all of these input event names
have a binding then the trigger block is evaluated. If it is true, the rule is applicable
and the action block is carried out generating new output events which can be
architecture events or intermediate events to feed to other rules in rule
compositions. Let’s see an example of DiscoSTEP rules used to create a server
component, connect a client and connect it to the server:

Chapter: Preliminaries

19 / 71

rule CreateServer {

input { init $e; }
output { string $server_id; create_component $create_serv er; }
trigger {? contains($e/@constructor_name, “ServerSocket”) ?}

 action = {?
let $server_id := $e/@instance_id;
let $create_server := <create_component name=”{$server _id}”
type=”ServerT”/>;

?}
}

rule ConnectClient {

input { call $e; string $server_id; }
output {create_component $create_client; create_connector
$create_cs_connection;

string $client_id;
}
trigger {? contains($e/@method_name, “ServerSocket.accept”)
 and $e/@callee_id = $server_id
?}
action = {?

let $client_id := $e/@return_id;
let $create_client := <create_client name=”{$client_id }”
type=”ClientT” />;
(:$concatedIds is an auxiliary variable, not an event . :)
let $concatedIds := concat($client_id,”-“,$server_id)
let $create_cs_connection :=

<create_connector name= "{$concatedIds}"
type=”CSConnectorT” end1=”{$server_id}”
end2=”{$client_id}” />;

?}
}

The CreateServer rule creates a server component. The rule declares in its input

block that it takes as input a runtime event $e of type init. The output block
declares that it generates an architecture event of type create_component called
$create_server and an intermediate event of type string called $serve_id. The
trigger block has only one condition which states that the constructor_name
property of the input event $e contains the string “ServerSocket”. The action block
has two assignments, first the intermediate event $server_id is assigned the
instance_id property of the $e input event and second the architecture event used to
create a component, a server in this case, is assigned to $create_server.

The ConnectClient rule creates a client and connects it a server identified by

$server_id. The rule can be understood in the same way as the CreateServer rule.
Inside the action block a comment is written. Comments are enclosed between ‘(:’
and ‘:)’, if more than one line is written then a ‘:’ must be written at the beginning
of the line. Below the comment the concatenation of two strings $client_id, a dash
and $server_id is assigned to the $concatenatedIds variable. This variable is not
declared in the output block of the rule, so it is not an event, it is just an auxiliary
variable to be used inside the action block.

2.2.3.3. Composition of two rules

DiscoSTEP rules can be composed, that is to say, intermediate events
generated by a rule can be taken as input events by another rule. For instance, the

Chapter: Preliminaries

20 / 71

CreateServer and the ConnectClient rules can be composed via the $server_id
event in the way showed below:

composition {
CreateServer.$server_id -> ConnectClient.$server_id ;

}

The unidirectional binding denoted by -> states that the output event $server_id

generated by the CreateServer rule can be consumed by the ConnectClient rule as
an input event.

The composition can also be bidirectional denoted by the bidirectional binding

<->. Let´s see an example:

composition {

CreateServer.$server_id <-> ConnectClient.$server_i d;
}

In the example above the bidirectional binding states that the rule that takes as

input the $server_id event can make use of it without consuming it. In our case the
ConnectClient rule uses the $server_id but it does not consume it so this event can
be consumed or used by another rule. Note that both rules could take the $server_id
event as input but in our example the CreateServer rule does not take this event as
input.

When the input block of a rule declares runtime input events and the rule is
applicable then these runtime events are consumed by the rule. But when the input
block of a rule declares non-runtime input events and the rule is applicable then
these events can be consumed or just used by the rule without consuming them, it
depends on the type of composition.

The concrete syntax can be found at Appendix B.

2.3. Model Checking

Model checking is a widely used formal method for the verification of
concurrent programs. The problem with concurrent programs is that the number of
possible computations is astronomical, so it seems that exhaustive checking is
impractical as a method of gaining confidence in the correctness of the program. In
the 1980s, Clarke, Emerson and Sifakis showed that it can be feasible to check all
possible computations of a concurrent program. Their key insight was to note that
both a concurrent program and its correctness property can be transformed into
nondeterministic finite automata (NDFA) and “run” simultaneously. Given the
NDFA corresponding to the program and the NDFA corresponding to the negation
of the correctness property (expressed in temporal logic), a model checker searches
for an “input string” accepted by both automata. If it finds one, the input represents
a computation of the program that breaks the correctness claim; therefore, the
program is not correct and the computation can be reported as a counterexample to
the correctness claim.

Model checking is a model-based, automatic method that, given a finite-state

model M of a system and a property p, checks the validity of P in M, ie, M|=p.

Chapter: Preliminaries

21 / 71

Figure 4

Typically it involves three steps:

1. Create a finite state model of the system design in a formal language.
2. Specify a system property in a formal language.
3. Model-check the model and the property together to verify if the model

satisfies the property.

Some of the properties that can be verified with model checking are:
deadlocks, race conditions, assertion violations, safety properties (system is never
in a “bad” state), liveness properties (system eventually arrives in a “good” state),
livelock, starvation, under-specification, over-specification, violations of
constraints, etc.

An important ingredient of model checking is an expressive language that can
be used for model description. Such a language must have a precise semantics, yet
it must also be suitable for its application domain and easy to use.

2.3.1. The SPIN model checker

SPIN (Simple Promela In terpreter) is a powerful widely used and proved
automata-based model checker particularly for analysing the logical consistency of
concurrent systems. SPIN is nowadays one of the foremost model checkers.

It was written by Gerard J. Holzmann who in 2001 received the ACM Software

Systems Award for SPIN. It was originally designed for verifying communications
protocols and has evolved since then for more than twenty years. It has become one
of the most widely used verification tools. SPIN is particularly suited for
modelling concurrent and distributed systems that are based upon interleaving of
atomic instructions.

SPIN can be used as a full LTL model checking system, supporting all

correctness requirements expressible in linear time temporal logic, but it can also
be used as an efficient on-the-fly verifier for more basic safety and liveness
properties. Correctness properties can be specified as system or process invariants
using assertions, as LTL requirements, or in other ways.

SPIN is commonly used in simulation and verification modes. In simulation

mode just one choice in the state-space is made non-deterministically. It allows
rapid prototyping with random, guided, or interactive simulations. In the
verification mode, full exhaustive validation is carried out using partial order
reduction theory to optimize the search, and based on either depth-first or breadth-
first search in the state-space.

Chapter: Preliminaries

22 / 71

Given a model and a property specified in Promela, the language understood

by SPIN, both are model-checked together. Once the model checker finds a trace
that complies with the specified property, it generates a file containing the trail
with the information of all the non-deterministic choices made by the model
checker. This information could also be read later by the model checker to make
simulations over the model.

For our work we also used iSpin, a graphical user interface for SPIN, from
which we can check syntax correctness of Promela specifications, run simulations
and verifications and other useful things.

2.3.1.1. Promela language

As stated before, SPIN supports a high level modeling language called
Promela (Process Meta Language) which allow us to specify system models and
properties. Promela also has the ability to embed C code blocks or include C code
files in specifications.

Promela models mainly consist of 3 types of objects: processes, message

channels, and variables. Processes are global objects. Message channels and
variables can be declared either globally or locally within a process. Processes
specify behavior, channels and global variables define the environment in which
the processes run. Processes send and receive messages through channels and
channels can store messages in different ways depending on its type, by default in
FIFO order.

Process communication via message channels can be defined to be

synchronous (rendezvous), or asynchronous (buffered); mixed specifications are
supported. Processes can also communicate via shared memory.

More about Promela, including the complete language reference, can be found

at [10].

2.4. Symbolic Execution

The idea of symbolic execution is born from the Symbolic Mathematics. These
relate to the use of computers to manipulate mathematical equations and
expressions in symbolic form, as opposed to manipulating the approximations of
specific numerical quantities represented by those symbols. Such a system might
be used for symbolic integration or differentiation, substitution of one expression
into another, simplification of an expression, etc. It has uses in software testing
under the title of symbolic execution where it can be used to analyse if and when
errors in the code may occur. It can be used to predict what code statements do to
specified inputs and outputs. It is also important for considering path traversal.
Thus Model Checking techniques have used symbolic execution for more than 15
years.

Nowadays symbolic execution techniques are used in several fields. The

techniques have evolved so much that there are model checkers like Zing which

Chapter: Preliminaries

23 / 71

allow specifying a program using Object Oriented Programming combined with
symbolic execution.

We based our work in a more primitive idea of symbolic execution. An easy

way to understand it is with the following pseudocode example.

Function IsMinor (age as Integer)

If age < 21 Then
 Return True
Else
 Return False
End If

End Function

In this function we do not need to know the exact value of the age parameter.

We just need to know in which of the intervals it is located. The intervals would be
[0..20] and [21..∞].

If we now have the following piece of a program:

If IsMinor(KidAge) Then
 If KidAge > 21 Then
 testValue = True
 Else
 testValue = False
 End If
Else
 testValue = False
End If

Using symbolic execution we can know that testValue is always going to be

equal to False.

We used this idea to create a model where each time there is a branch or an
assignment an assumption is created with the condition stated. After a trace
execution is finished the assumptions are evaluated to see if the set is satisfiable
comparing all the assumptions made.

Chapter: The Scenario Verifier

24 / 71

3. The Scenario Verifier

First we explain how DiscoTect [4] works in order to provide the base for
understanding the technique defined in this work. DiscoTect takes as input a file
containing mapping specification rules written in DiscoSTEP language. DiscoTect
constructs a Colored Petri Net from these rules which consume runtime events and
generate architectural ones as outputs. Architectural events are fed to an
Architecture Builder that incrementally creates a model of the system architecture

In [4] a way of translating the mentioned mapping specification rules into a

CPN is provided. We extend this translation and show a generic way of specifying
CPN constructs in a language accepted by a model checker. We start by modeling
these rules as a CPN model and then we specify it in Promela language. Given that
our aim is to find a trace of runtime events, we need something to generate them,
so we specify a stub in Promela which is able to produce all possible runtime
events. An initial marking of a CPN sets a configuration of tokens in it
determining the number of tokens to be positioned in every place. The stub is
responsible for generating all the different initial markings. An initial marking of
the CPN models a determined sequence of runtime system events. Furthermore the
stub establishes these initial markings in the modeled CPN for a fixed amount of
tokens. For a same amount of tokens, different random initial markings are tried
simulating different instrumentations, and consequent runtime events, that could be
generated by any program. The desired trace must map to an architectural
scenario which specifies a determined situation at high level. This scenario is also
written in Promela language.

The three mentioned elements: the CPN model, the stub and the architectural
scenario are all of them model checked by the model checker SPIN [10]. During
the model checking stage the stub first sets a random initial marking and then the
CPN execution starts consuming and generating tokens from and into places.
Tokens are consumed when mapping rules apply and this happens when certain
conditions on runtime events, which means on tokens, are true. While the CPN
“executes” these conditions are not evaluated, they are just supposed to be true and
are accumulated to be evaluated later. This approach is partly taken from symbolic
execution [12].

Given an initial marking of a CPN for a fixed amount of tokens, a CPN

execution finishes when either all the architectural scenario properties are gathered
or when all tokens are consumed before reaching the scenario.

In the latter case, the initial marking is discarded and the model checker

continues trying with others initial markings (for the same fixed amount of tokens)
and different sequences of token consumptions. But if this situation happens for all
these different initial markings, then the model checking finishes without having
found a trace of runtime events for the architectural scenario. So a new higher
amount of tokens must be fixed for the stub and the model checking is restarted,
repeating the whole process again and again till either a trace is finally found or all
possible traces are inspected and none of them maps into the specified scenario.

Otherwise, in the first case, when the scenario is reached, the set of all the

accumulated assumptions (those constraints collected when consuming tokens
while executing the CPN) is verified by an Assumption Verifier which determines
the satisfiability of this set. If it is satisfiable then a valid trace of runtime events

Chapter: The Scenario Verifier

25 / 71

that maps into the architectural scenario has effectively been found. The
Assumption Verifier is also model checked together with the CPN model, the stub
and the architectural scenario.

The approach used to find the minimum trace is based on the fact that if a

possible trace exists the model checker will find it. The size of the trace, when
found, is the same as the amount of tokens of the last initial marking used by the
stub. A token consumption models a runtime event execution. So we start with one
initial token and we apply model checking to find the trace. If a trace is found then
it is minimal because it will have one event, if not we model check again but using
one more token and so on. If, for example, a trace is found using five tokens (and
so the trace will have five events) we know it is minimal because a trace with four
tokens was not found. If the user has a good understanding of the CPN model and
of the architectural scenario he may predict a more approximated amount of the
minimum of necessary tokens. Then he may try with that amount of tokens and if a
trace is found he can then start trying with fewer tokens as a way to discover the
minimum trace.

As an example, we decided to model and implement the client-server

architectural rules shown in Appendix A of [4]. These rules were modeled as a
CPN and translated into Promela code in order to be able to model check this
model with SPIN [10]. The architectural scenario was written as a constraint in
Promela which must be verified during the whole model-checking. The stub is a
Promela process which establishes the initial marking in the CPN

When modelchecking, the CPN is executed until all the tokens are consumed

(so a blocking state is reached) or the architectural scenario properties are gathered.
When the model checker finds an error, in the model, the searched trace is found. If
the modelchecking process finishes without any error then no trace has been found
for the initial marking of the CPN. The consumptions of tokens determine certain
constraints over their properties which can be verified at that moment or later. As
we mentioned before, we have adopted a symbolic execution approach based on
[12] in which, while finding the desired trace, implied constraints (assumptions
from now on) are accumulated instead of being verified at the moment of being
found. We work with two kinds of assumptions:

- Value Assumption: it constraints a token property to a constant value.
- Equality Assumption: it establishes an equality relation between two

properties of two different tokens, properties which may not be necessarily
the same.

While modelchecking the CPN, value and equality assumptions are

accumulated in two structures, one for each type. As we explained before, once the
desired trace is found then all the accumulated assumptions are verified by an
Assumption Verifier that determines the satisfiability of the assumptions set. If the
set is satisfiable then a trace of runtime events, that satisfies the architectural
scenario for the specified architectural rules, has effectively been found. Otherwise
the model checker tries to find another trace and the whole verification process is
repeated.

Chapter: The Scenario Verifier

26 / 71

3.1. Architecture of the Scenario Verifier

Below a sketch of the C&C view of the architecture is shown:

Figure 5

One input is the Promela and C specification of the architectural rules in

DiscoSTEP and the other is the architectural scenario specified in Promela.

The output is a report that includes the trace of runtime events that fulfil the
scenario and other results of the analysis.

Chapter: The technique

27 / 71

4. The technique

In this section we will explain the full technique which is the base of our
work. It combines manual and semi-automatic steps.

4.1. Steps of the technique

1. Select or create the set of DiscoSTEP architectural mapping rules

corresponding to the architecture you wish to use.
2. Model the previous architectural mapping rules as a CPN.
3. Specify the CPN model in Promela and C code.

3.1. Determine some CPN-related constants.
4. Specify an architectural scenario in Promela.

4.1. Determine some scenario-related constants.
5. Model check the Promela specification.

5.1. Determine verification parameters of the SPIN model checker.
5.2. Start verification.
5.3. Analyze results:

5.3.1. If memory was insufficient then determine new values for the
verification parameters of the SPIN model checker and restart model
checking. Go to step 5.2.

5.3.2. If the model checking process finishes without assertions then (if a
trace exists) the initial amount of tokens is not enough so it is
necessary to increment it in one:

5.3.2.1. If this new initial amount of tokens is higher than the sum of
all quantities chosen in the architectural scenario for the
architectural events then it is not possible to find a trace of
runtime events that maps the architectural scenario proposed in
4. Go to step 7.

5.3.2.2. Otherwise go to 5.2 to restart model checking.
5.3.3. If an assertion (which is not the last assert(false)) is risen then

determine new values for the corresponding scenario-related
constants. The assertion raised will provide clues to discover which
constant has to be modified. Go to step 5.2.

5.3.4. If the final assertion is raised then a trace has been found and it is
minimal.

6. If a trace has been found, run the SPIN Ouput Analyzer to interpret the SPIN
output trail and generate a human readable trace.

7. End.

In the following sections we explain the main steps involved in the technique.
Some of the explanations are based on a set of DiscoSTEP mapping rules for
client-server architecture, see appendix A.

Chapter: The technique

28 / 71

4.2. Model a set of DiscoSTEP architectural
mapping rules as a CPN

In this section we explain how a set of architectural DiscoSTEP mapping rules

is modelled as a CPN. In [4] a way of translating these mapping rules into a CPN is
provided; in this section we extend that explanation adding a detail process for
doing this.

4.2.1. Translation rules

(tr1). Each DiscoSTEP rule is modeled as a CPN transition.

(tr2). Each event declared in the input block of a rule, eventType eventName,
is modelled as a CPN place called eventName with an associated
colorset derived from the event type eventType. The place is then
connected to the transition that models the rule with a directed arc from
the place to the transition. Finally a declarative variable name is placed
as an arc inscription and we declare that its colorset is the same as the
colorset associated to the place.

(tr3). Each event declared in the output block of a rule, eventType

eventName, is modelled as a CPN place called eventName with an
associated colorset derived from the event type eventType. The place is
then connected to the transition that models the rule with a directed arc
from the transition to the place. Finally a declarative variable name is
placed as an arc inscription and we declare that its colorset is the same
as the colorset associated to the place.

(tr4). The declaration of colorsets (those associated to places) for the CPN

depends on the different DiscoSTEP event types. An event type can be
simple, if it does not have any property, or compound if it has
properties of possibly different colorsets or types. A colorset derived
from a compound event type is declared as a record with as many fields
as properties the event type has. The record field (or property) names
remain the same as the properties of the event type and their colorsets
or types are derived from the types of the properties of the event type.

(tr5). Each event e generated by the system (runtime event) or by another rule

is modelled as a CPN token positioned in the CPN place that models
the declared event (in an input or output block of a rule) to which the
event e is bound. Note that the fact of binding the event e to one event
declared, in the input or output parts of a rule, is modelled as the fact of
binding a token to the corresponding arc inscription.

(tr6). Each DiscoSTEP trigger block is modelled as a CPN transition guard

written in CPN ML1.

1 CPN ML is an acronym for Coloured Petri Net Meta Language.

Chapter: The technique

29 / 71

(tr7). Each DiscoSTEP action block is modelled as a transition code segment
written in CPN ML.

(tr8). The composition of rule output R1.O1 with rule input R2.I2, denoted as

R1.O1 -> R2.I2, generates a merging of the place P1 that represent O1
and I2. If the rules are well defined the colorset of O1 and I2 must be
the same.

(tr9). The dual composition of rule output R1.O1 with rule input R2.I2,

denoted as R1.O1 <-> R2.I2, generates a merging of the place P1 that
represent O1 and I2. If the rules are well defined the colorset of O1 and
I2 must be the same. Then a transition is added from R2 to the new
place. This implies that each time R2 is executed a token is consumed
from P1 and after R2 execution a new token is inserted in P1. This new
token has the same color that the token previously consumed.

(tr10). A rule application is modeled as the occurrence of its corresponding

CPN transition.

Runtime events are always input events, their declarations appear only in the
input block of a rule so they are always modelled as input places. Instead
architecture events are always output events, their declarations appear only in the
output block of a rule so they are always modelled as output places. Respect to
intermediate events, they are generated by architecture rules to be fed to other
rules. Their declarations always appear in the output and input blocks of composed
rules so they are always modelled as intermediate places, that is to say, input and
output places.

Now let’s take, as an example, the CreateServer DiscoSTEP mapping rule:

event {

input {
 init;

}
output {

 string;
 create_component;

}
}

rule CreateServer {

input { init $e; }
output { string $server_id; create_component
$create_server; }
trigger {? contains($e/@constructor_name, “ServerSocket”)
?}

 action = {?
let $server_id := $e/@instance_id;
let $create_server := <create_component
name=”{$server_id}” type=”ServerT”/>;

?}
}

Let’s apply the translation rules to this example and let’s see how it is
modelled with CPN constructs.

Chapter: The technique

30 / 71

(tr1) The rule CreateServer is modeled as a transition called CreateServer.

(tr2) The input block of the rule has only one event declaration: init $e, so the
transition has an only input place named $e with the associated colorset Init
derived from the event type init . The variable name init_event is written as arc
inscription surrounding the arc that goes from the place $e to the transition
CreateServer. We must also state that the colorset of init_event variable is Init and
we do it via this declaration:

var init_event :Init ;

(tr3) The output block of the rule has two event declarations: string $server_id and
create_component $create_server and so the transition has two output places
called $server_id and $create_server with associated colorsets String and
CreateComponent respectively. The variable names server_id and
create_component are written as arc inscriptions surrounding the arcs that go from
the CreateServer transition to the places $server_id and $create_component
respectively. We now declare the colorsets of these variables with these
declarations:

var server_id: String;
var create_server :CreateComponent;

By now, the CPN looks like this:

Figure 6

var init_event: Init;
var server_id : String;
var create_server: CreateComponent;

Note that we haven´t still declared the colorsets Init , String and

CreateComponent, it will be done in the following translation rule.

(tr4) The event type string does not have any properties so its derived colorset
String is simple.

color String = string;

Note that we are just renaming the ML type string.

Chapter: The technique

31 / 71

Events of type init are runtime events. The XML schema of this type is the
following:

<element name="init">
<complexType>

<attribute name=”constructor_name” type=”string” />
<attribute name=”instance_id” type=”string” />

</complexType>
</element>

The colorset Init derived from the event type init is compound. So it is

declared as a record with two fields, constructor_name and instance_id, whose
colorsets are String. Let’s see the declaration:

color Init = record constructor_name :String * instance_id
:String;

Events of type create_component are architecture events. The XML schema of
this event type is the following.

<element name="create_component">
<complexType>

<attribute name=”name” type=”string” />
<attribute name=”type” type=”string” />

</complexType>
</element>

So the derived colorset CreateComponent is declared as a record with two

fields, name and type with colorsets String. Let’s see the declaration:

color CreateComponent = record name :String * type :String;

Let’s see all the declarations of the CPN together:

color String = String;
color Init = record constructor_name: String *
instance_id: String;
color CreateComponent = record name: String * type
:String;

var init_event: Init;
var server_id: String;
var create_server: CreateComponent;

Let’s continue translating.

(tr6) The trigger block of the rule:

trigger {? contains($e/@constructor_name, “ServerSocket”) ?}

has a condition that states that the property constructor_name of the $e event
contains the value of “ServerSocket”. Without any loss of generality, this condition
is modeled as an equality expression between the constructor_name property of the
token and the string value “ServerSocket”. The expression is enclosed between
brackets and positioned next to the transition. In this rule we make a simplification

Chapter: The technique

32 / 71

in our implementation, supporting a small amount of operations instead of the full
XPath stack. This is only due to simplify our work for this thesis and more
operations could be added in future work.

(tr7) The action block of the rule:

 action = {?

let $server_id := $e/@instance_id;
let $create_server := <create_component
name=”{$server_id}” type=”ServerT”/>;

 ?}

carry out the following assignments:

- The instance_id property of the $e event is assigned to the output event

$server_id.

- The output event $create_server is set as a compound element of type

create_component with two properties: name and type. The name
property is set as the $server_id which is in fact instance_id property of
the $e event and the type property is set as the string value “ServerT”.

These assignments are modeled inside the transition code segment as bindings

between the values retuned by the action clause and the variables listed in the
output clause.

Below the resulting CPN is shown.

Figure 7

color String = string;
color Init = record constructor_name :String *
instance_id :String;
color CreateComponent = record name :String * type
:String;

var init_event :Init;
var server_id: String;
var create_server :CreateComponent;

Chapter: The technique

33 / 71

4.2.2. Rules composition

Now we explain how to compose two rules. We take as example the
CreateServer and ConnectClient rules. The CreateServer DiscoSTEP rule and its
CPN model were already shown. Let’s see the ConnectClient DiscoSTEP rule.

rule ConnectClient {

input { call $e; string $server_id; }
output {create_component $create_client; create_connector
$create_cs_connection; string $client_id;}
trigger {? contains($e/@method_name,
“ServerSocket.accept”) and $e/@callee_id = $server_id
?}
action = {?

let $client_id := $e/@return_id;
let $create_client := <create_client
name=”{$client_id}” type=”ClientT” />;
let $create_cs_connection :=

<create_connector name= concat($client_id,”-
“,$server_id)

type=”CSConnectorT” end1=”{$server_id}”
end2=”{$client_id}” />;

?}
}

Note that the string event type should also be included in the input block of the
declarations of input and output event types for the DiscoSTEP program.

Below the CPN model of the ConnectClient rule is shown.

Figure 8

Chapter: The technique

34 / 71

color String = string;
color Call = record method_name :String * callee :String
* return_id :String;
color CreateClient = record name :String * type :String;
color CreateConnector = record name :String * type
:String * end1 :String *

 end2 :String;

var call_event :Call;
var server_id, client_id: String;
var create_connector :CreateConnector;
var create_client :CreateClient;

The following piece of DiscoSTEP code states that the CreateServer and
ConnectClient rules are composed via the $server_id event. The unidirectional
binding denoted by -> states that the output event $server_id of the CreateServer
rule can be consumed by the ConnectClient rule as an input event.

composition {
 CreateServer.$server_id -> ConnectClient.$serve r_id;
}

Now we model this composition by applying the translation rule 8 (tr8) . The
place $server_id is common to both transitions: CreateServer on the left in the
diagram and ConnectClient on the right. Note that we together the declarations of
both CPNs. Below we show the resulting CPN.

Figure 9

color String = string;
color Init = record constructor_name :String * instance_id
:String;
color Call = record method_name :String * callee :String *
return_id :String;
color CreateComponent = record name :String * type :String;
color CreateClient = record name :String * type :String;
color CreateConnector = record name :String * type :String *
end1 :String * end2 :String;

Chapter: The technique

35 / 71

var init_event :Init;
var call_event :Call;
var server_id, client_id: String;
var create_server :CreateComponent;
var create_connector :CreateConnector;
var create_client :CreateClient;

The composition can also be bidirectional denoted by the bidirectional binding
<->. It states that the rule that takes as input the $server_id event can make use of it
without consuming it.

 composition {

CreateServer.$server_id <->ConnectClient.$server_id ;
 }

This bidirectional binding is modeled as bidirectional arcs between the
$server_id place and the CreateServer and ConnectClient transitions. But, if we
look at the input block of the CreateServer rule we see that it does not consume a
$server_id event so the only bidirectional arc is the one between the $server_id
place and the ConnectClient transition. Note that bidirectional bindings and arcs
are shorthand for two bindings and arcs respectively with opposite directions.
Below the resulting CPN is shown.

Figure 10

CPN declarations remain the same.

The complete translation of the Client-Server example to a CPN would be:

color String = string;
color Init = record constructor_name :String * instance_id
:String;
color Call = record method_name :String * callee :String *
return_id :String;
color CreateComponent = record name :String * type :String;
color CreateClient = record name :String * type :String;
color CreateConnector = record name :String * type :String *
end1 :String * end2 :String;

Chapter: The technique

36 / 71

color UpdateComponent = record name :String * property:String
* value :String;
color UpdateConnector = record name :String * property:String
* value :String;

var init_event :Init;
var call_event :Call;
var server_id, client_id, io_id, activity_type : Strin g;
var create_server :CreateComponent;
var create_client :CreateClient;
var create_connector :CreateConnector;
var update_component :UpdateComponent;
var update_connector :UpdateConnector;

Chapter: The technique

37 / 71

Figure 11

Chapter: The technique

38 / 71

4.3. Specify the CPN model in Promela and C
code

In this section it is explained how to specify a CPN, that models a set of

architectural DiscoSTEP mapping rules, into a Promela specification. As a
teaching example, we show how to specify the parts of the CPN shown in the
previous section which models a set of architectural DiscoSTEP mapping rules for
a Client-Server architecture.

The whole specification is written in Promela, including the stub; nevertheless,
there are some embedded pieces of C code to manipulate accumulations of value
and equality assumptions because of the adopted symbolic execution approach.

In the following subsections it is explained how CPN constructs are specified
in Promela language.

The specification was modularized in different files grouped by the CPN
specification, the architecture scenario, the Assumption Verifier and general files
such as the main one and support files. A detailed explanation of the contents of
each file may be found in Appendix C.

4.3.1. Places

Places are modeled as Promela channels. Channels are used to transfer
messages between active Promela processes. Channel declarations are preceded by
the reserved word chan followed by channel names. By default, channels store
messages in FIFO order. Messages can have many fields of different types. Below
we show all channel declarations and definitions done for the Client-Server
architecture:

Let’s take as an example the first Promela sentence in the above piece of code;

it declares a channel called CS_ePlace, defined with a maximum channel capacity
of maximumAmountOfTokensPerPlace messages which only have one field of

Chapter: The technique

39 / 71

type tokenIdInPlace. This sentence models a place that can contain at most
maximumAmountOfTokensPerPlace tokens of type tokenIdInPlace.

In some parts of our Promela specification channels are identified by numbers
denoted by a constants. Below we show these constants:

Note that constant names have the channel name as prefix and the word “Id” as
suffix.

4.3.2. Tokens

A token may carry one or many property values depending on whether its
colorset is simple or compound. Due to our symbolic execution approach it is not
necessary for a token to carry values in its properties when the CPN is being
executed. Instead we do need to identify each token because conditions on token
properties (assumptions) are collected when executing the CPN

Tokens identifiers are of type tokenIdInPlace which is a compound type as we
can see below:

The locTId property represents a local token identifier, and the pId property is
the place identifier. When a new token is created in a place, it is identified using
the place identifier and a local consecutive number for the token in the place. In
this way a token is univocally identified in a place. So we defined a macro that
does it whenever a token is created, as we can see below:

Chapter: The technique

40 / 71

Where nextTokenIdForPlace[newPlaceId] stores, as its names says, the

identifier for the next token to be created in the place newPlaceId which is used as
index for the array.

We decided to use this identification structure with two numbers (instead of

using only one identifying number for each token) as a way to optimize the model
checking process. Model checkers detect the state space, and its changes, of the
specification while it is being analyzed. The state space contains the information
which identifies the status of the model. This means that the order in which tokens
are created affects the state space because for the model checker the number used
as an identifier has a meaning. For example if we have a state space where there
are two tokens in a place which the model checker identifies with the numbers 1
and 2,then there is another state space which also has two tokens in the same place
but which are identified 2 and 1. Logically the equivalence of these two state
spaces will depend on the properties of the tokens. For the model checker the state
spaces will not be equivalent because the identifiers are different. The comparison
made by the model checker between the two state spaces will see the channels
(places) as queues, and will compare the messages in the order they have been
inserted into the channel. For us the only meaning for the numbers is the ability to
identify each token, but not the number itself. We decided to identify each token in
this way due to how the chosen model checker SPIN works. This option allows
SPIN to make a better identification of two equivalent state spaces. This is easily
seen in an example where there are two places, each with one token. If only one
number is used, and this number is created with consequent numbers in order to be
sure that the numbers will not be repeated, two possible state spaces may arise
depending which token is inserted first. Instead, using the chosen structure the
order will not make any difference and only one state space is going to be created
for this example.

If we look at channel declarations in the previous section, we see that token

identifiers are specified as Promela messages for all channels. Since now on we
will talk about tokens instead of token identifiers. This is because despite of
dealing with token identifiers for our particular specification, we are in fact
specifying tokens of a CPN.

Tokens can be removed or added from and into places, in the same way,

Promela messages can be removed or added from and into Promela channels. For
instance, when a token identifier message is consumed from a channel, we are
specifying that a token is consumed from a place.

Chapter: The technique

41 / 71

4.3.3. Colorsets

As explained in the previous section, in our Promela specification we deal with
tokens identifiers, instead of tokens. All tokens identifiers are of type
tokenIdInPlace. The question is then ¿How do we store the property values of
tokens of different colorsets then? Well in a way we do not. We store assumptions
of the possible values of these properties. For this we use a constant number to
denote a token property and use this number as an index in an array where the
property value is stored.

Below we can see the constant numbers for every token property of every

colorset:

Note that constant names are the same as the fields (or properties) of records in
the declaration of the CPN colorsets:

color String = string;
color Init = record constructor_name :String *
instance_id :String;
color Call = record method_name :String * callee :String
* return_id :String;
color CreateComponent = record name :String * type
:String;
color CreateClient = record name :String * type :String;
color CreateConnector = record name :String * type
:String * end1 :String * end2 :String;
color UpdateComponent = record name :String *
property:String * value :String;
color UpdateConnector = record name :String *
property:String * value :String;

 The String colorset is simple so it just has one value which is indexed with the
self constant.

Chapter: The technique

42 / 71

4.3.4. Transitions, transition guards, code segments
and arc inscriptions

Each CPN transition is specified as a Promela proctype with some embedded

pieces of C code to manipulate accumulations of assumptions. In our Promela
specification we create a proctype for every transition in the CPN. These are:
createServer(), connectClient(), clientIO, clientRead(), clientWrite() and
updateServer(). The execution of each of these proctypes models the occurrences
of a CPN transitions

.
We will explain how a CPN transition is specified in Promela language. To

ease its understanding we will base our explanation in the CreateServer transition
which will be used as example. Let’s remember the transition:

Figure 12

And let’s see its Promela specification.

Chapter: The technique

43 / 71

Now we explain how this CPN transition is specified in Promela showing the
mappings between parts of the CPN transition and parts of the proctype.

4.3.4.1. Proctype declarations

The incoming arc from the $e place into the CreateServer transition indicates
it removes tokens from this place while the outgoing arcs to the $create_server
and $server_id places indicate that the transition adds tokens to these places. For
every token consumed from $e, a token is added into the $create_server and
$server_id places. These three tokens are declared at the beginning of the
proctype.

In fact inside the proctype we deal with token identifiers but we will refer to
them as tokens. Then a variable called isValidAss is declared and initialized:

This variable is used to know the result of some later validations.

The CreateServer transition is the only one to consume tokens from the $e
place and to add tokens into the $create_server place and it is specified with two
assertions:

The first assertion states that the createServer proctype is the only process in
the system that can consume messages from the CS_ePlace channel. While the
second assertion states that the createServer proctype is the only one allowed to
send messages to the CS_createServer channel.

4.3.4.2. Transition occurrence

All the actions involved in a transition occurrence happen all together
instantaneously without interleaving with any other execution of the CPN. Inside
the createServer proctype a loop is implemented with a label named start and a
goto statement at the end of the proctype. A loop iteration specifies an occurrence
of the CPN transition. The body of the loop is a Promela atomic block which
allows executing the enveloped code indivisibly. Note that the loop does not have
any guard, it’s because the transition occurs whenever possible. To complete a
transition occurrence, it is required that all the input places have at least one token.
If this is not the case, the transition gets blocked until all the input tokens can be
consumed. A blocking breaks the atomicity of the execution. This may seem as a
problem because it may generate a scenario where a deadlock may appear when
two or more proctypes have consumed at least one token and they need to
consume more tokens which have been consumed by the others waiting proctypes.
Fortunately, given that we decided to use a model checker, we do not have to

Chapter: The technique

44 / 71

worry about this issue, the model checker will discard all the blocked scenarios
until it finds the right order of consumption where no proctype gets blocked.

Note that there are two constructs in PROMELA for specifying that a sequence
of statements must be executed atomically: d_step and atomic. We decided to use
atomic because d_step has the limitations that except for the first statement in the
sequence (the guard), statements cannot block, and as we see before it may happen.

All the constraints found in the CPN execution are stored as assumptions
because of the symbolic execution approach adopted by us. Each assumption is
validated twice, first when it is created and secondly when a trace that complies
with the chosen scenario is found. The first validation helps the model checker to
discard invalid solutions faster.

In the following subsections we explain in detail the inside of the atomic block.

4.3.4.3. Token consumptions from input places of the
transition

When a transition occurs it first consumes tokens from its incoming places so

inside the atomic block the token init_eventTokenId is first removed from the
$CS_ePlace place. In Promela it is specified like this:

In this sentence a message is consumed from the $CS_ePlace channel and
copied into the init_eventTokenId variable. The ?? operator determines that the
election of the message to be consumed is carried out randomly.

If there is no message to be consumed from the channel then the statement is
blocked and in consequence the execution of the proctype is blocked at this point.
As explained before when this happen the model checker continues executing the
other proctypes. The blocked sentence can be passed when the SPIN process
scheduler chooses this proctype to execute again and the sentence can effectively
be executed, it means, there is a message in the channel to be consumed.

A c_code block is used to write C code in it allowing, for example, calls to C
functions defined in other files. The C function runTimeEventCallDetector is
called inside a c_code block:

This function keeps count of the number of consumptions of tokens (that
model runtime events) that have been consumed by every transition in the CPN. In
this case runtime events are of type Call or Init . It also registers the order in which
each input token has been consumed. This is necessary to know, once a trace has
been found, which runtime events must be executed, and in what order, to have the
desired scenario. We register the global order number of consumption to be able to
recognize token consumptions backtracked by SPIN so that they are not taken into
account in the final analysis.

Chapter: The technique

45 / 71

4.3.4.4. Transition guard

If we look at the guard of the CPN transition, we see it has a condition on the
constructor_name property of the init_event CPN variable which states its value
to be the string “ServerSocket”. In our Promela specification this condition is not
evaluated at the time of the occurrence of the transition, instead, it is assumed to be
true and accumulated to be verified later. The accumulation of this value
assumption is carried out inside the second c_code block in the atomic block:

Inside the c_block the C function addValueAssumption is called with three

arguments. The first one is the token init_eventTokenId, the second one is the
name of the property constructor_name and the third argument is the value
cServerSocket to which the constructor_name property is constrained to be
bound. Note that it was decided to precede constant names with a lowercase letter
c. In our example the addValueAssumption function accumulates a value
assumption that states that the property constructor_name of the token
init_eventTokenId has the value cSeverSocket. Before accumulating this
assumption, the function evaluates if the token property has already been set and if
its current value is different from the new one to be set. If this is the case then a
contradiction is found and a false answer is returned, otherwise the function returns
true. This answer is assigned to the isValidAss variable of the createServer
proctype. Note that inside a c_block a proctype name must be preceded with an
uppercase letter P, for example, PcreateServer, in order to access the objects
defined in the proctype scope. An arrow is also used after the proctype name to
refer to its local variable isValidAss. This variable is then evaluated by the model
checker via this sentence.

This evaluation is always done after calling the addValueAssumption C
function. If the value is false (represented by 0) then SPIN blocks this execution
thread. With this blocking SPIN will not finish this transition which will eliminate
any chance of finding the desired trace. Then the model checker engine is going to
backtrack in order to try to find another trace which is not blocked.

4.3.4.5. Transition code segment

The code segment of the CreateServer transition takes as input the
init_event CPN variable (which is used as arc inscription for the incoming arc of
the transition) and returns as output the variables server_id and the create_server
CPN variables (which are used as arc inscriptions for the outgoing arcs form the
transition). By the time the CPN transition occurs, the init_event variable has
already been bound to a token from the $e place so we refer to this variable as the
token itself. Inside the action clause of the code segment the server_id variable is
bound to the instance_id property of the init_event token. After this binding or
assignment both, the variable and the property, are equal. In our Promela
specification this equality is stored as an equality assumption.

Chapter: The technique

46 / 71

Note that first the server_idTokenId token is initialized by calling the inline

definition newTokenIdInPlace. The first parameter is the token itself and the
second is the identifier of the place server_idPlace where this token will be added.
Then the equality assumption is effectively added by calling the
addEqualityAssumption C function inside a c_block. It accumulates an
assumption that states that the instance_id property of the init_eventTokenId
token is equal to the server_idTokenId.

Inside the action clause the CPN variable create_server is also bound to a

record of the same colorset. In the record its name property is bound to the
instance_id property of the init_event token and its type property is bound to the
string value “ServerT.” These bindings apply for the properties of the
create_server variable given that the record is bound to it. We refer to
create_server variable as a token. In our Promela specification these two bindings
are specified as the accumulation of two assumptions:

First the create_serverdTokenId token is initialized by calling the inline

definition newTokenIdInPlace having as arguments the token itself and the
identifier of the place create_serverIdPlace where this token will be added. Then
the assumptions are stored. First the value assumption is added by calling the C
function addValueAssumption inside a c_block. It accumulates an assumption
which states that the value of the type property of the create_serverTokenId token
is cServeT. Then the equality assumption is accumulated by calling the
addEqualityAssumption C function inside another c_block. It accumulates an
assumption that states that the name property of the create_serverTokenId token
is the same as the instance_id property of the init_event token.

Note that we first accumulate all value assumptions and then equality ones

because we want we want to avoid unnecessary accumulations of any equality
assumption. If after the accumulation of a value assumption the isValidAss
statement evaluates to false (a contradiction was found) then the model checker
will backtrack and no unnecessary equality assumption accumulation will be
carried out.

4.3.4.6. Token additions into output places of the transition

Finally the CPN tokens server_id and create_server are added into the places
$server_id ans $create_server respectively. Remember that by this time the CPN

Chapter: The technique

47 / 71

variables server_id and create_server have already been bound after the execution
of the code segment, so we refer to them as tokens. In our Promela specification
these additions are specified like this:

In these sentences the messages create_serverTokenId and
server_idTokenId are sent to the channels create_serverPlace and
server_idPlace respectively.

We have finished explaining the CreateServer transition and all its related CPN
constructs.

4.3.4.7. Double-oriented arcs

In this subsection we explain how double-oriented CPN arcs are specified in
Promela. We take as base example the ConnectClient transition:

Figure 13

Remember that a double-oriented arc is shorthand for two arcs with the same

arc inscriptions but opposite directions.

The Promela specification for this transition would be:

Chapter: The technique

48 / 71

Note that a message is received from the server_idPlace channel and copied,
not consumed, into the server_idTokenId variable. This is because of the double-
oriented arc; instead of having the token first consumed and then immediately sent
to the same channel we decided to have it copied directly to a local variable, which
is semantically the same, in order to have a small performance improvement when
model checking. We specify it in Promela in this way:

Note that the variable name is enclosed between angle brackets. This implies
that the message will be copied and not consumed. If instead of using a variable we
would have use a constant the angle bracket operator would have found a message
using pattern matching.

4.3.5. CPN to Promela Conversion Algorithm

Below we present an algorithm to build a Promela specification from a CPN
that models a set of architectural rules. The specifications shown in the previous
sections are used.

Chapter: The technique

49 / 71

4.3.5.1. Places

1. For every CPN place:

1.1. Create a channel with a capacity of
maximumAmountOfTokensPerPlace messages which only have
one field of type tokenIdInPlace.

1.2. Define a constant number to identify the place. The constant name is

the name of the channel that specifies the place with the suffix “Id ”.
Each place must have a different constant number. The numbers must
be consecutives starting from 0.

4.3.5.2. Tokens

2. Tokens are identified as specified before. All token identifiers are of type

tokenIdInPlace. A token is identified via a local id and the id of the place
where it will be added:

This token identifier specification is the same in all the Promela specifications
of any CPN model.

4.3.5.3. Colorsets

3. For every CPN colorset declared:

3.1. If the colorset is simple, define a constant called self with value 0. Use
the same constant for all declarations of simple colorsets.

3.2. If the colorset is compound, a record in our case, then define constants

named as the record property (or field) names and with different
values in order to be able to uniquely identify a property of the record.
Note that when different CPN colorsets have properties with the same
names their corresponding constants could be reused.

4.3.5.4. Transitions

4. For every CPN transition:

4.1. Create a proctype and inside it write an infinite loop with an atomic
block as body.

Arc inscription variables of incoming arcs

Chapter: The technique

50 / 71

4.2. For every CPN arc inscription of an incoming arc of the transition
declare a variable of type tokenIdInPlace named as the name of the
arc inscription variable with the suffix “TokenId”.

These declarations are written at the beginning of the proctype and outside
the loop. Inside the proctype these variables are treated as if they specified
tokens.

Input and output places of the transition

4.3. For each input and output place of the transition:

4.3.1. If the transition is the only one to consume tokens from an

input place then assert that this proctpype is the only one to
receive messages from the corresponding channel.

4.3.2. If the transition is the only one to add tokens into an output

place then assert that this proctpype is the only one to send
messages to the corresponding channel.

Assertions are written at the beginning of the proctype and outside
the loop.

 Transition occurrence

Token consumption from input places of the transition

4.4. For every input place of the transition:

4.4.1. If it is only an input place of the transition then consume a
message from the channel that specifies the place.

Double oriented arcs

4.4.2. If there is a double-oriented arc between the place and the

transition, that is to say, the place is also an output place of the
transition then receive a message from the channel that
specifies the place but do not consume it.

In both cases the message must be received in an already declared
variable (in 4.2) derived from the CPN arc inscription variable that
surrounds the arc between the input place and the transition.
Message receptions are carried out at the beginning of the atomic
block of the loop.

Transition guard

4.5. For every condition in the transition guard accumulate a value or

equality assumption. Write all accumulations of value assumptions
first and then all the accumulations of equality assumptions. For every
value assumption call the addValueAssumption C function inside a
separate c_block and after every block evaluate the value returned by
the function using a blocking statement. Reuse the isValidAss
variable declared at the beginning of the proctype. The function

Chapter: The technique

51 / 71

receives three parameters, the desired token, the constant which
represent the property of the token to be bind and the binding value.
For every equality assumption call the addEqualityAssumption C
function. The function receives four parameters, the first token, the
constant that represent the property of the first token to bind, the
second token and the constant that represent the property of the
second token to bind. Write all these calls inside the same c_block.

Arc inscription variables of outgoing arcs

4.6. For every CPN arc inscription variable of an outgoing arc of the

transition:

4.6.1. Initialize the Promela variable declared in 4.2 for this arc
inscription variable. This initialization consists in stating that
this variable specifies the token to be added into the output
place of the transition which is pointed by the arc that is
surrounded by the arc inscription in matter. The initialization is
carried out by calling the inline definition newTokenIdInPlace
whose arguments are the mentioned Promela variable and the
identifier of the mentioned output place of the transition.

Transition code segment

4.6.2. For every binding for the CPN arc variable or for every record

property of it done in the action clause of the transition code
segment accumulate a value or equality assumption. Write all
accumulations of value assumptions first and then all the
accumulations of equality assumptions. For every value
assumption call the addValueAssumption C function inside a
separate c_block and after every block evaluate the value
returned by the function using a blocking statement. Reuse the
isValidAss variable declared at the beginning of the proctype.
The function receives three parameters, the desired token, the
constant which represent the property of the token to be bind
and the binding value. For every equality assumption call the
addEqualityAssumption C function. The function receives
four parameters, the first token, the constant that represent the
property of the first token to bind, the second token and the
constant that represent the property of the second token to bind.
Write all these calls inside the same c_block.

Token additions into output places of the transition

4.7. For every output place of the transition send a message into the

channel that specifies the place. This message must be sent from the
variable derived from the CPN arc inscription variable that surrounds
the arc between the output place and the transition. Messages are sent
at the end of the atomic block of the loop.

Chapter: The technique

52 / 71

4.4. Specify an architectural scenario in
Promela

Scenarios are specified in Promela. In scenarios we can state facts such as the

number of component creations, connector creations and connections between
components including the number of occurrences of certain activities in
components, ie, component executions. Below, a sample scenario is shown.

It specifies that one server and two clients were created and they were

connected with each other.

4.5. Model check the Promela specification of
the CPN

This section explains general behavior of the Promela specification and C code

and how to write the stub which depends on the architecture.

4.5.1. The init process

The init proctype is is the main process and is the first to be executed. Let´s
see its specification:

Chapter: The technique

53 / 71

The isSatisfiable variable is used to know if the trace found is valid. The structure
that stores the assumptions to be accumulated when executing the CPN, is
initialized. Then the stub is run to generate an initial marking in the CPN. Then a
file which contains all the transitions of the CPN is included. They were specified
as proctypes and they may occur non-deterministically. After executing the CPN
we want to know if the architecture scenario is fulfilled. If this is the case then the
Assumption Verifier is executed to evaluate all the assumptions accumulated when
executing the CPN. In case they are valid then the trace of runtime events that
made the scenario to be fulfilled, are printed exactly in the order they happened.
This print is followed by the value and equality assumptions verified about the
found trace.

4.5.2. Stub

Our aim is to find a trace of runtime events and we need something to generate
them, so we specify a stub in Promela which is able to produce all possible traces
of runtime events. An initial marking of a CPN sets a configuration of tokens in it,
determining the tokens inside each place. A determined sequence of runtime events
is conceptually equivalent to an initial marking in the CPN model derived from the
mapping rules. This initial marking only configures the amount of tokens in the
input places of the CPN because those are the tokens that represent the runtime
events. Due to our symbolic execution approach we do not need to define any
property of the tokens placed in the initial marking. Furthermore the stub
establishes this initial marking in the modeled CPN for a bounded amount of
tokens. For a same amount of tokens, different random initial markings are tried
simulating different instrumentations, and consequent runtime events, that could be
generated by any program.

The stub is specified by the a proctype called stub() which executes before all
the processes that represent the actions. Let’s see its specification for the Client-
Server example:

Inside the atomic block we see a loop; it iterates while the number of

positioned tokens is lower than the chosen initial amount of tokens denoted by the
constant initialTokenAmount . In every iteration only one token is initialized and

Chapter: The technique

54 / 71

added into a place that models a runtime event, that is to say, a place that does not
have incoming arcs. This place is chosen non-deterministically using an if
construct where the decision between the inner statements is taken by the model
checker. These statements must be modified depending on the model to be
analyzed. There must be one line for each input place. It’s important to note that an
input place represents a type of runtime event.

4.6. The Assumption Verifier

In this section we are going to explain an overview of how the assumption
verifier works. As we mentioned in previous sections, the Assumption Verifier
verifies that all the accumulated value and equality assumptions has been satisfied.

The accumulated assumptions are collected in two structures called
EqualityAssumptions and ValueAssumptions as we can see bellow.

Both structures are inside a c_decl block, which means that they are written in
C and that they declare C types.

Chapter: The technique

55 / 71

We choose these structures in order to optimize the verification algorithm. The

chosen structures provide a complexity order O(1) to insertion operations, O(1) to
value assumption access operation and O(N) to equality assumption access
operation; where N equals the maximum amount of equality assumptions per
property constant which is configure by the user for each model. The complexity
O(1) is given by using C direct access in arrays. The complexity O(N) is given by
having to search inside the EqualityAssumptionMember array. These structures
have the disadvantage of requiring much more memory space than the straight
approach where you use a list to store the assumptions.

The algorithm is implemented completely in C. Let’s see it:

The algorithm verifies the absence of contradictions by calculating a transitive
closure of the assumptions set. Let’s see an example of a contradiction:

token1.property1=1
token1.property1= token3.property4
token3.property4= token2.property3
token2.property3= 5

As we can see, by transitivity, 1 = 5 which is a contradiction.

The algorithm navigates all the value assumptions and for each one checks if

there is a contradiction. This is done by navigating the equality assumption tree,
expanding the tree each time an equality assumption is found. Each node would
represent a token property and the node value would be a value assumption. If no
value assumption exist the node value is null. Once the whole tree has been
navigated all the node values should have been null or the initial value. If not a
contradiction has been found.

Chapter: The technique

56 / 71

4.7. Summary of the key challenges raised
when specifying and verifying the CPN

As we could see from sections 4.3 to 4.6 we had to cope with different types of

challenges related to how to specify some CPN constructs and its operational
aspects in Promela and how it affects the verification carried out by SPIN. The
explanations of the solution to these challenges show the correction of the
specification and the assertiveness of the taken decision. Below we sum up some of
these challenges:

We found an appropriate and comfortable way to specify places as channels,
transitions as processes declared as proctypes and tokens as messages. Channels
may hold messages as places may hold tokens, and messages may carry data values
as tokens do. Proctypes may access channels to allow communication between
processes and they are shared, as a place may access transitions. In proctypes
messages can be removed, added or just only accessed from and into channels; as
transitions may remove and add tokens from and into places.

We needed to find an appropriate way to identify tokens as explained in 4.3.2.
We found a way that make an optimization to the state space and consequently
avoid unnecessary possibilities.

Having specified transitions as proctypes allowed us to simulate the
nondeterministic occurrence of CPN transitions given that processes are run non-
deterministically by SPIN.

Transitions occurrence is indivisible so execution of its corresponding
proctype should be too. So we embraced its body in an atomic block. A transition
is enabled only when all its incoming input places have tokens, otherwise it is not.
We simulate it by blocking the process execution when a message is attempted to
be received from a channel that specifies an incoming place. Fortunately the
management of blocking and unblocking is carried out by SPIN when the
conditions are given. Note that there are two constructs in PROMELA for
specifying that a sequence of statements must be executed atomically: d_step and
atomic. We decided to use atomic because d_step has the limitations that except
for the first statement in the sequence (the guard), statements cannot block, and as
we see before it may happen.

When executing the CPN and accumulating assumptions we did not want
to accumulate unnecessary assumptions. So when detecting an invalid assumption
the model checker cut that execution, backtracks and continues with other and we
would not accumulate this assumption. Furthermore, in the case of value
assumptions, we could immediately evaluate them whenever found.

After having found a way to specify a CPN, we wondered how we would
manage its transition occurrences when SPIN verifies the CPN. As we explained in
previous sections, while model checking, we may find a set of constraints related to
all the transitions occurrences involved in a trace and so there may be more than
one possible configuration for the trace. To cope with it, we decided to use a
symbolic execution approach, so we accumulate all these constraints. We used this
idea to create a model where each time there is a condition, or an assignment, an
assumption is created with the condition stated. After a trace execution is finished

Chapter: The technique

57 / 71

the assumptions are evaluated to see if the set is satisfiable comparing all the
assumptions made.

Finally we had to put it all together. We had the CPN, the Stub, the
Assumption Verifier and architecture scenario. We decided that the CPN execution
would be carried out non-deterministically. The decision of using a symbolic
approach obliged us to have at least an algorithm of two big steps: first execute the
CPN and then evaluate the assumptions accumulated. It was clear that Stub should
run at the beginning of the algorithm. But when should we verify the scenario? The
scenario predicates on output places given that they model the architectural events
generated by the DiscoSTEP mapping rules. So before evaluating all the conditions
accumulated in the trace that leads to a CPN marking we first want to know if that
marking is the desired one, that is to say, if the scenario is fulfilled. So we evaluate
the architecture scenario after executing the CPN.

4.8. Run the SPIN Output Analyzer

We developed a tool that interprets the output trail generated by SPIN into a
human readable trace, in this section we explain how we do this translation.

Analyzer to interpret the SPIN output trail and generate a human readable

trace.

Translate the SPIN trace into a human readable trace of runtime events

4.8.1. The report generator

Once the model checker finds a trace that complies with the scenario specified
a file is generated by SPIN. This file contains the information of all the non-
deterministic choices made by the model checker. This information may be read by
the model checker to make simulations over the model, but is not easy to be read
by an external program or by the human. Another file is generated with information
of the model checking process itself. We decided to add information of the trace
found to this file. So when a trace is found a C method is called which prints all the
important information related with the trace found. This information will look
similar to the following example:

RUN TIME EVENTS CALL ORDER - START

0 0 1

3 0 7

3 1 8

3 2 9

4 0 4

4 1 5

4 2 6

RUN TIME EVENTS CALL ORDER - END

VALUE ASSUMPTIONS - START

0 0 0 1

0 1 0 1

0 2 0 1

1 0 0 3

1 1 0 3

1 2 0 3

Chapter: The technique

58 / 71

2 0 0 6

2 1 0 6

2 2 0 6

3 0 0 8

3 1 0 8

3 2 0 8

VALUE ASSUMPTIONS - END

EQUALITY ASSUMPTIONS - START

0 0 1 6 0 0

0 0 1 5 0 0

0 1 1 6 1 0

0 1 1 5 1 0

0 2 1 6 2 0

0 2 1 5 2 0

1 0 1 6 0 0

1 0 1 8 0 1

1 0 2 9 0 0

1 0 2 7 0 0

1 0 2 8 0 0

1 1 1 6 1 0

1 1 1 8 1 1

1 1 2 9 1 0

1 1 2 7 1 0

1 1 2 8 1 0

1 2 1 6 1 0

1 2 1 8 2 1

1 2 2 9 2 0

1 2 2 7 2 0

1 2 2 8 2 0

2 0 1 9 0 0

2 0 2 10 0 0

2 1 1 9 0 0

2 1 2 10 1 0

2 2 1 9 0 0

2 2 2 10 2 0

3 0 1 10 0 0

3 1 1 10 0 0

3 2 1 10 0 0

4 0 1 10 0 0

4 1 1 10 0 0

4 2 1 10 0 0

EQUALITY ASSUMPTIONS - END

 Is easy to see that the information is divided in three sections:

1. Run Time Events Call Order: This section contains information
regarding the events that were executed for the trace found and the
order in which they were executed. Each line represents an event. Each
event is represented by 3 numbers, the first is the place id, the second
is the local token id and the third is the order number.

2. Value Assumptions: This section contains information regarding the
values that the parameters of the events must have in order to have a
complying trace. Each line represents the binding of a variable to a
value. Each binding is represented by 4 numbers, the first is the place,
the second is the local token id, the third is the property index and the
fourth is the constant id.

3. Equality Assumptions: This section contains information regarding
an equality relation between some of the events parameters. Each line
represents a binding between two properties. Each binding is
represented by 6 numbers, the first three numbers represent one
property and the rest the other one. Each property is represented by
three numbers, the first is the place, the second is the local token id and
the third is the property index.

Chapter: The technique

59 / 71

For a human it is very difficult and time consuming to analyze all these
numbers. So we created a tool to automatically analyze this information. The input
of this tool is the information explained earlier plus two sets of XML files. The first
set has a XML file for each constant used in the model. Each XML contains the id
and the name of a constant. The second set has a XML file for each place used in
the model. Each XML contains the place id, the place name, if the consumption of
a token represent a run time event or not, and the data type of the events. The data
type has a name and the name of each property defined for the type. For simple or
primitive data types as for example “String” a property named “value” is added for
consistency with more complex types. This XML files have to be specified
according to the model and scenario specified in Promela.

After executing the tool a report is generated with the information presented in

a way easily understandable for humans. The following is an example of such a
report:

CreateServer.e (constructor_name 'ServerSocket', instace_id A)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C)

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id D)

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-0)

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-1)

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-2)

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-0)

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-1)

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-2)

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-1)

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-2)

CreateServer.e (constructor_name 'ServerSocket', instace_id B)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-1)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-2)

CreateServer.e (constructor_name 'ServerSocket', instace_id-0-2)

A = {instace_id-0-0, calee_id-1-0}

B = {instace_id-0-1, calee_id-1-1, calee_id-1-2}

C = {return_id-1-0, calee_id-2-0, calee_id-2-1, calee_id-2-2}

D = {return_id-2-0, calee_id-3-0, calee_id-3-1, calee_id-3-2, calee_id-4-0,

calee_id-4-1, calee_id-4-2}

The report has two different sections. The first is the resulting trace of the

whole process. All the events appear in the order in which they should be executed.
For each event you can see its name and the parameters for that specific execution.
For each parameter you can either see its type name and value, type name and
equality class or type name with unique instance identification. The second section
shows the definition for each equality class. Each class is composed by two or
more instances.

Chapter: Conclusions

60 / 71

5. Conclusions

5.1. Concluding remarks

Having chosen the symbolic execution approach was an asserted key decision

given that otherwise we would not have been able to inspect the whole state-space
when model-checking.

Working with SPIN conducted us to write the specification in Promela which
turned out to be a very intuitive language to specify a CPN. Furthermore SPIN has
the flexibility that allowed us to easily add custom C code, and it was fast enough
to model check big scenarios.

As we could see we had to cope with some issues when specifying the CPN in

Promela, mainly related to the semantic and operational aspects of the CPN.
Fortunately we could find neat and clear ways to do it with Promela and Spin, and
the theoretical background of SPIN help us to verify the correctness of some key
parts of this work. In our opinion, SPIN is great model checker and Promela is a
very comfortable language to specify concurrency and synchronization.

We first started our work with the idea of just providing a way to verify if
some important architecture scenarios were still valid in an already implemented
system at runtime. Fortunately we noted that our technique approach was flexible
enough to be used at an early stage of a system development, during its
codification and testing, and even after finishing the development. It took us to
conclude that our work could be useful during the whole development process and
that it seems to be worth extending our technique and developing tools to automate
steps of it, tasks that are left as future work.

When we modeled the DiscoSTEP mapping rules as a CPN, we detected some
errors in these rules. So we discovered that our technique could also be used as a
way for healing the mapping rules, especially if the modeling is carried out
automatically.

Nowadays distributed architectures are more common than ever thanks to the
new Cloud services, with its natural elasticity that helps to scale horizontally in
ways that were never thought before. What´s more new and complex architectures
like CQRS ES or EDA are being commonly used in the industry. Even though the
advantages are clear, the architecture complexity gets bigger every day, even in the
most basic web applications. The importance of our work grows alongside this
complexity making the possibility of leaving the academic sphere to enter the
industry a reality.

Chapter: Conclusions

61 / 71

5.2. Potencial applications

Below we list some of the possible uses of this:

System architecture testing

It could be used to test that an already developed system complies with the key
architecture scenarios in terms of components, connectors and their relationships.

Software development guidance

This technique can be used to help take some decisions when coding and at
design time being able to test how the system may behavior under certain
architectural scenarios. It provides a tool to minimize the risk of developing an
application that does not comply with an already defined architecture. It provides a
guide on how to realize a given specified architectural scenario.

Code generation

The presented technique may also be used as a tool to generate source code of
the system skeleton so that when correctly used by an application, it would assure
that the architecture is being complied. In this way we could effectively state that
the generated system complies with the architecture scenario.

Let´s see an example based on the client-server DiscoStep mapping rules
sample of this thesis and let´s suppose we want to generate Java code.

DiscoStep mapping rules could be specified without having written any piece
of code, just knowing the programming language syntax and considering some
design aspects given that we have to choose class names, method names, object
relations, etc. which impact directly in the code to be generated as a consequence
of the application of a mapping rule.

Let´s suppose that after verifying an architecture scenario our SPIN Output
Analyzer outputs this trace:

CreateServer.e (constructor_name 'ServerSocket', instace_id A)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C)

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id D)

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-0)

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-1)

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-2)

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-0)

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-1)

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-2)

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-1)

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-2)

CreateServer.e (constructor_name 'ServerSocket', instace_id B)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-1)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-2)

CreateServer.e (constructor_name 'ServerSocket', instace_id-0-2)

A = {instace_id-0-0, calee_id-1-0}

Chapter: Conclusions

62 / 71

B = {instace_id-0-1, calee_id-1-1, calee_id-1-2}

C = {return_id-1-0, calee_id-2-0, calee_id-2-1, calee_id-2-2}

D = {return_id-2-0, calee_id-3-0, calee_id-3-1, calee_id-3-2, calee_id-4-0,

calee_id-4-1, calee_id-4-2}

And if we look, for instance, at the definition of the first involved rule, the

CreateServer one:

rule CreateServer {

input { init $e; }
output { string $server_id; create_component $create_s erver;
}
trigger {? contains($e/@constructor_name, “ServerSocket”) ?}

 action = {?
let $server_id := $e/@instance_id;
let $create_server := <create_component name=”{$server _id}”
type=”ServerT”/>;
?}

}

we could immediately infer that we there must be a class called ServerT .

Then if we look at the second rule, ConnectClient,:

rule ConnectClient {

input { call $e; string $server_id; }
output {create_component $create_client; create_connector
$create_cs_connection;

 string $client_id;}
trigger {? contains($e/@method_name, “ServerSocket.accept”) and

$e/@callee_id = $server_id ?}
action = {?

let $client_id := $e/@return_id;
let $create_client := <create_client name=”{$client_id }”
type=”ClientT” />;
let $create_cs_connection :=

<create_connector name= concat($client_id,”-
“,$server_id)
type=”CSConnectorT” end1=”{$server_id}”
end2=”{$client_id}” />;

?}
}

We could infer that there must be a class called ClientT . If we observe the let

part we see that there is a create_connector high level event which represents
that there exist a static relationship between the server and the client. The server is
identified because its id is received as a parameter in the input part and both rule
applications:

CreateServer.e (constructor_name 'ServerSocket', instace_id A)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C)

are related because of the A argument. Finally we know that the server references or
contains the client as a consequence of the rules composition:

composition System {

CreateServer.$server_id <-> ConnectClient.$server_id;
…

}

At first sight we can see that some types and some static relationships can be
inferred with just a simple observation. A more deep analysis may show other
useful characteristics.

Chapter: Conclusions

63 / 71

DiscoSTEP mapping rules healing

Given that the way of modeling the mapping rules as a CPN is clearly defined
it is a good opportunity to verify the correctness of them. When we were modeling
the CPN for the set of DiscoSTEP mapping rules of a client-server architecture, we
detected some bugs and errors in these rules as a consequence of following the
translations rules (from mapping rules to CPN) exposed in this thesis. So we
discovered that our technique could also be used as a way for healing the mapping
rules, especially if the modeling is carried out automatically.

5.3. Future work

Below we list some tentative improvements or extensions for our work:

1. In this thesis we presented the detailed steps to model whatever set of

DiscoSTEP mapping rules as a CPN and how to specify this CPN in Promela.
It would be useful to automate these two steps so that the DiscoSTEP mapping
rules are taken as input and the Promela specification of its corresponding CPN
is returned as output.

2. We specify an architecture scenario as a Promela assertion about the places of

the CPN that models the DiscoSTEP mapping rules of the components and
connectors of the architectures. We think that developing a visual SDL
(Scenario Description Language) and a tool to specify a scenario directly in
terms of these last elements (and then translated into a Promela assertion about
the corresponding CPN) would facilitate the task of writing scenarios.

3. The source code generator mentioned in a section before could be developed to

generate the skeleton of the system from a set of DiscoSTEP mapping rules.

The three above items could extend the current architecture of our work as
shown below.

Chapter: Conclusions

64 / 71

Figure 14

Note that the responsibility of the new added components were clearly

described above.

4. We support architecture scenarios about the number of component creations,

connector creations and connections between components including the
number of occurrences of certain activities in components, ie, component
executions. Scenarios could be extended to support, for example, the
specification of order between the creations, connections and activities.

5. In our implementation we simplify the translation of XPath statements defined
in [4] into simple equality statements between two variables or a variable and a
constant. We could extend our work to support the full power of XPath
statements.

6. A way of making our work more accessible and more popular could be to
develop an Eclipse plugin to carry out all the steps involved in our technique
including all the extensions improvements and mentioned above. The plugin
could allow us, for example, to visualize the resulting CPN, to execute it, to ran
Spin verifications, visualize traces and reports.

7. We only implemented completely the Client-Server architecture rules defined
by Garlan. We tried some small variants but in the future it would be good to
implement more architectures.

Chapter: References

65 / 71

6. References

About colored Petri nets

[1] Kurt Jensen; An Introduction to the Theoretical Aspects of Coloured
Petri Nets. PB-476.

[2] Kurt Jensen; A Brief Introduction to Coloured Petri Nets.

[3] Kurt Jensen; An Introduction to the Practical use of Coloured Petri
Nets.

About architecture discovery

[4] David Garlan, Bradley Schmerl, Jonathan Aldrich, Rick Kazman, Hong
Yan; DiscoTect, A System for Discovering the Architectures of Running
Programs Using Colored Petri Nets. Marzo del 2006. CMU-CS-06-109.

[5] David Garlan, Bradley Schmerl, Jonathan Aldrich, Rick Kazman, Hong
Yan; DiscoTect: A System for Discovering Architectures from Running
Systems.

[6] David Garlan, Bradley Schmerl, Hong Yan; Dynamically Discovering
Architectures with DiscoTect.

[7] David Garlan, Bradley Schmerl, Jonathan Aldrich, Rick Kazman, Hong
Yan; Discovering Architectures from Running Systems, Lessons
Learned.

About model checking

[8] Gerald C. Cannon and Sunil Gupta; An Automated Tool for Analyzing
Petri Nets Using SPIN.

[9] C. Pajault y J.-F. Pradat-Peyre; Static Reductions for Promela
Specifications. CEDRIC 1005.

[10] Gerard J. Holzman; SPIN Model Checker, The Primer and Reference
Manual. Septiembre del 2003. Editorial Addison Wesley

[11] Gerarld C. Gannod y Sunil Gupta; An automated tool for analyzing
Petri Nets using SPIN. Noviembre del 2001. 16th International Conference
on Automated Software Engineering, pp 404 – 407, IEEE.

About symbolic execution

[12] Stephen F. Siegel, Anastasia Mironova, George S. Avrunin y Lori A.
Clarke; Using Model Checking with Symbolic Execution to Verify
Parallel Numerical Programs. 2005. UM-CS-2005-15.

[13] Michael Baldamus and Jochen Schr¨oder–Babo; p2b: A Translation
Utility for Linking Promela and Symbolic Model Checking (Tool
Paper).

Chapter: References

66 / 71

Others

[14] Victor Braberman, Nicolas Kicillof, and Alfredo Olivero; A Scenario-
Matching Approach to the Description and Model Checking of Real-
Time Properties.

[15] Wolfgang Grieskamp and Nicolas Kicillof; A Schema Language for
Coordinating Construction and Composition of Partial Behavior
Descriptions.

[16] Wolfgang Grieskamp, Nicolas Kicillof and Nikolai Tillmann; Action
Machines, a Framework for Encoding and Composing Partial
Behaviors.

Chapter: Appendix A

67 / 71

Appendix A

DiscoSTEP client-server mapping rules

Below a DiscoSTEP program for mapping runtime events into a client-server
architecture is shown. It was taken from [4] but some details were corrected.

event {

input {
 init;
 call;
 string;

}
output {

 string;
 create_component;
 create_client;
 create_connector;
 update_component
 update_connector

}
}

rule CreateServer {

input { init $e; }
output { string $server_id; create_component $create_serv er; }
trigger {? contains($e/@constructor_name, “ServerSocket”) ?}

 action = {?
let $server_id := $e/@instance_id;
let $create_server := <create_component name=”{$server _id}”
type=”ServerT”/>;

?}
}

rule ConnectClient {

input { call $e; string $server_id; }
output {create_component $create_client; create_connector

$create_cs_connection;
 string $client_id;}

trigger {? contains($e/@method_name, “ServerSocket.accept”) and
$e/@callee_id = $server_id ?}

action = {?
let $client_id := $e/@return_id;
let $create_client := <create_client name=”{$client_id }”
type=”ClientT” />;
let $create_cs_connection :=

<create_connector name= concat($client_id,”-
“,$server_id)
type=”CSConnectorT” end1=”{$server_id}”
end2=”{$client_id}” />;

?}
}

rule ClientIO {

input { call $e; string $client_id; }
output { string $io_id; }
trigger {? (contains($e/@method_name, “Socket.getInputStre am”)
or contains($e/@method_name, “Socket.getOutputStream”)) and

$e/@callee_id = $client_id ?}
action {? let $client_id := $e/@return_id; ?}

}

Chapter: Appendix A

68 / 71

rule ClientRead {
input { $e : call; $io_id : string; $client_id : string; }
output { $update_client : update_component; $activity_type :
string;}
trigger {? (contains($e/@method_name, “InputStream.read”) and
$e/@callee_id = $io_id ?}
action = {?

let $update_client := <update_component name=$clien t_id
property=”Read”

value=”true” />;
let $activity_type := “Read”;

?}
}

rule ClientWrite {

input { $e : call; $io_id : string; $client_id : string; }
output { $update_client : update_component; $activity_type :
string; }
trigger {? (contains($e/@method_name, “OutputStream.write”) and

$e/@callee_id = $io_id ?}
action = {?

let $update_client := <update_component name=$clien t_id
property=”Write”

value=”true” />;
let $activity_type := “Write”;

?}
}

rule UpdateServer {

input { string $server_id; string $activity_type; }
output { update_component $update_server; }
trigger {? ($activity_type = “Read”) or ($activity_type =
“Write”) ?}
action = {?

let $ update_server := < update_componnet name=$ser ver_id
property=”Activity”

value=$activity_type />;
?}

}

composition System {

CreateServer.$server_id <-> ConnectClient.$server_id;
ConnectClient.$client_id -> ClientIO.$client_id;
ConnectClient.$client_id <-> ClientRead.$client_id;
ClientIO.$io_id <-> ClientRead.$io_id;
ConnectClient.$client_id <-> ClientWrite.$client_id;
ClientIO.$io_id <-> ClientWrite.$io_id;
ClientWrite.$activity_id -> UpdateServer.$activity_id;
CreateServer.$server_id <-> UpdateServer.$server_id;

}

Chapter: Appendix B

69 / 71

Appendix B

Concrete syntax of DiscoSTEP Language

We present the concrete syntax of DiscoSTEP 2.

Note that the productions XPRED and XQUERY in the language refer to XQuery
Predicates and XQuery FLWOR expressions, respectively. The grammar for these
is defined in http://www.w3.org/TR/xquery/

2 The concrete syntax was taken from the Appendix A of the paper: “DiscoTect: A System
for Discovering the Architectures of Running Programs using Colored Petri Nets”

70 / 71

Appendix C

A client-server architecture example

The CPN specification

The table below lists the files used for the Promela specification of the CPN
model of the DiscoSTEP mapping rules for the client-server architecture.

File name Description
client-server
architectural rules
CPN.decl

This file specifies the declaration and definition of the places
of the CPN, its colorsets, the token representation, the
structure that stores the tokens in the places and some CPN
constants.

client-server
architectural rules
CPN.pml

This file specifies all the CPN transition occurrences and a
stub for this architecture which determines a random initial
marking for the input places of the CPN

client-server CPN
transitions to
occur.pml

In this file the CPN transitions are executed.

The architecture scenario specification

The specification is divided into these files:

File name Description
a client-server
scenario.pml

This file contains a Promela assertion about the CPN places

constants related
to a client-server
scenario.decl

This file contains related constants to the scenario.

The Assumption Verifier

The implementation is divided into these files:

File name Description
assumption
verifier.decl

This file contains the declaration and definition the structures
that contain value and equality assumptions (conditions).

assumption
verifier.c

This file contains functions and procedures to initialize the
structures that contain the assumptions, to populate this
structure with value an equality assumptions and to evaluate
these assumptions.

71 / 71

General files

File name Description
support.decl This file contains support structures and variables.
support.c This file contains support procedures to accumulate and

print out the runtime events and to print out the value and
equality assumptions.

client-
server_Main.pml

This file contains the entry point for the Spin verification.
This file includes all the other files. I also contains a macro
that adds a token in a place. Although the file is generic for
whatever architecture, it must include the files related to the
specific architecture and scenario.

