
Tesis de Licenciatura en Ciencias de la Computación 

 

Un Verificador de Escenarios Arquitectónicos en 

Tiempo de Ejecución usando Redes de Petri Coloreadas 

A Verifier of Runtime Architectural Scenarios using 

Colored Petri Nets 

 

 

Tesistas 

  Germán Aníbal Gómez             Marcelo Oks 

               ggomez@dc.uba.ar            moks@dc.uba.ar  

 

Directores 

Dr. Sebastián Uchitel     Dr.Victor Braberman 

              suchitel@dc.uba.ar             vbraber@dc.uba.ar  

 
 

 
 

Universidad de Buenos Aires 

Facultad de Ciencias Exactas y Naturales 
 

 
 

 

30 de mayo de 2012



 

2 / 71 

  



 

3 / 71 

Dedicatoria 
 
 

Dedico esta tesis de licenciatura a mi familia y a mis amigos 
 

Germán A. Gómez 
 
 
 
Dedico esta tesis de licenciatura a mis padres por apoyarme inclusive cuando están 
en desacuerdo, a mi esposa por su amor y por aguantarme hasta en mis peores días 
y a mi hija por sus sonrisas que me iluminan hasta en el día más oscuro. 
 

Marcelo Oks 



 

4 / 71 

Acknowledgements 
 

 
We would like to thank our thesis directors for giving us the necessary technical 
and emotional support to carry out this piece of work. We also thank them for their 
patient, their pragmatic approach, their availability to us and their encouragement 
to finish it 

 
Marcelo Oks and Germán A. Gómez 

 
 
 
 
 
First of all I want to express my gratitude to God for making it possible and for 
giving me the opportunity to access to high-quality universitary education, I really 
feel privileged for that. I want to thank Julian for his wise words and motivation to 
help me finish my thesis. To my mother who gave me a solid example of 
responsibility and fulfilment, and who also, with all her respect to me and patient, 
usually asked me for the date of my graduation. I want to thank my wife Carolina 
for her unconditionality and support.  
 
Many other people may deserve my thanks and gratitude and I apologize to those 
who I have not explicitly mentioned here due to my lack of memory. 

 
Germán A. Gómez 

 
 
 
 
 
Many people deserve my thanks and gratitude for making this work possible. I 
apologize in advance to those who I will not explicitly mention here due to my lack 
of memory. 
First, I would like to thank to my parents for their support, even when we disagree. 
To my wife Solana for her love and for bearing me even on my worst days. And to 
my daughter Camila who lights my day with every smile. 
 

Marcelo Oks 
 
 
 
 
 

 
 
 
 
 
 

 
 
 



 

5 / 71 

 
 
 
 
 
 
 
 

Resumen 
 

Esta tesis se basa en el proyecto DiscoTect desarrollado por David Garlan 
y su grupo de investigadores de la de la Universidad de Carnegie Mellon cuyo 
objetivo es descubrir la vista C&C (de componentes y conectores) de la 
arquitectura actual de un sistema en ejecución. Para ello definen reglas de mapeo 
en el lenguaje DiscoStep que convierten eventos de ejecución en eventos de 
arquitectura con los cuales se va construyendo la arquitectura del sistema. 
 

Dada una un vista C&C de la arquitectura de un sistema en ejecución, 
pueden plantearse diferentes escenarios en términos de los constructos de esta vista 
respecto de la configuración actual de la arquitectura. Un escenario podría 
especificar las cantidades de componentes y conectores, el número y tipo de 
conexiones entre componentes, la ejecución de una componente particular, etc. 
 

En nuestra tesis desarrollamos una técnica que permite saber si un 
determinado escenario arquitectónico en términos de componentes y conectores, 
se cumple en base a las reglas de mapeo definidas en DiscoStep para una 
arquitectura. Y en caso afirmativo, encontramos la traza mínima de eventos de 
ejecución que deben ocurrir en el sistema en ejecución para que así sea. 
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Abstract  
 

This thesis is based on the DiscoTect project developed by David Garlan 
and his group of researchers from the Carnegie Mellon University whose aim was 
to discover the C&C (components and connectors) view of the current architecture 
of a running system. To do that they define mapping rules in the DiscoStep 
language that transform runtime events into architecture events which are used to 
build the system architecture 
 

Given a C&C architectural view of the architecture of a running system, 
we could state different scenarios in terms of the constructs of this view respect to 
the current configuration of the architecture. A scenario may specify the amount of 
components and connectors, the number and type of connections between 
components, the execution of a component, etc.  

 
In our thesis we developed a technique to know if a given architecture 

scenario, in terms of components and connectors, is fulfilled based on the 
DiscoStep mapping rules of an architecture. And if this is the case, we find the 
minimum trace of runtime events that should happen in the running system to do 
so. 
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1. Introduction 
 

1.1. Motivation  
 

Given a component and connector software architecture we could imagine 
many relevant scenarios it should fulfil at architectural level. A scenario could 
specify, for example, characteristics of an architecture configuration such as the 
amount of components and connectors it should have, the connections between 
components carried out in runtime, the execution of a component, etc. It would be 
really useful and interesting to know what should happen at runtime level to fulfill 
the proposed scenario. In this way we could take advantage of it at the architecture 
design time or coding time during the development process or after it to evaluate 
the level of conformance between the developed system and the architecture.  So, 
we present a technique to find, if there exists, the minimum trace of runtime events 
that maps into a given architectural scenario specification. 
 
 

1.2. About this work 
 

Our research is mainly based in [4] which is about the discovery of a system 
architecture at runtime. To address it, the compiled implementation of a system is 
instrumented using aspects which emit runtime events (in the form of XML 
elements) when a specific part of the system is executed. These runtime events are 
captured and consumed by a runtime engine called DiscoTect which generates 
architectural events. To do that, DiscoTect also takes as input a file called 
DiscoSTEP Mapping Specification which contains rules written in DiscoSTEP 
language which specify how to map these runtime system-level events into 
architectural ones, and are formally defined with a Colored Petri Net. Architectural 
events are then fed to an Architecture Builder that incrementally creates a model 
of the system architecture. 
 

Our work is based on the DiscoSTEP Mapping Specification (or directly 
mapping rules from now on) mentioned in the above paragraph. These rules 
establish mappings between runtime events and architectural ones. In [4] a way of 
translating these mapping rules into a Colored Petri Net (CPN from now on) is 
provided. We extend this translation and show a generic way of specifying CPN 
constructs in Promela, the verification modeling language understood by the well-
known model checker, SPIN. In this way, the mapping rules can be model checked 
together with an architectural scenario specification returning, if there exists, the 
trace of runtime events that fulfills this scenario. While model checking, we may 
find a set of constraints related to each event instead of finding just one, and so 
there may be more than one possible configuration for the trace. To cope with it, 
we decided to use a symbolic execution approach, so we accumulate all these 
constraints and finally we verify them in order to know if there exists such trace of 
runtime events that maps with the proposed scenario. If such trace effectively 
exists, the presented technique finds the minimum one, considering the size of a 
trace as the amount of instructions included in it; so the minimum trace is the one 
with the least amount of instructions.   
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1.3. Thesis objective 
 
The aim of the research is to develop a technique to find, if exists, the 

minimum trace of runtime events that should be generated by a running system to 
fulfill a given architectural scenario specification regarding the system´s 
components and connectors, and based on their mapping rules written in 
DiscoSTEP. 
 

1.3.1. Contributions 
 
We identified in our work the following contributions: 
 

1. We present a general form of modeling mapping rules written DiscoSTEP 
as a Colored Petri Net. Note that in [4] Garlan presents a basic idea of this, 
we deepen and extend this. 

 
2. We present a general way of specifying the Colored Petri Net in Promela, 

the modeling language of the model checker SPIN. 
 

3. We create a stub that models an instrumented system and simulates 
random sequences of execution events. 

 
4. We support the verification of architectural scenarios in terms of type and 

quantity of components and connectors, and relationships between them. 
 

5. We developed an Assumption Verifier that checks all the conditions 
collected during SPIN verification as a consequence of the adoptions of 
the symbolic execution approach. Note that this Verifier is independent of 
the architecture characteristics. 

 
6. We developed a tool that, in case of effectively finding a minimum trace of 

runtime events that complies with the architecture scenario, it interprets the 
output trail thrown by SPIN during verification and generates a simple 
report that contains a human readable version of the this trace, the 
conditions evaluated and information analysis results. 
 

7. Finally, we present a technique that gathers all these above artifacts to 
provide a general way to cope with the verification of C&C architecture 
scenarios based on DiscoSTEP mapping rules specification. 

 

1.4. Related work 
 

This work is mainly based in [4], [5] and [6]. We take as starting point the 
mapping rules specified in DiscoSTEP for the components and connectors of a 
system architecture (C&C view).  
 

Additionally we decided to adopt a symbolic execution approach based on [11] 
and [12] so that when executing the CPN using SPIN verifier to find the minimum 
trace of runtime events that complies the architecture scenario, all the implied 
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conditions are accumulated to be evaluated later instead of being evaluated when 
found. 
 

The theoretical background about CPN constructs and modeling aspects were 
foundational for our work, and we based on [1], [2] and [3] for this. 
 

It was also very useful for us, some work about SPIN model checking taken 
from [7] to [10]. 
 
 

1.5. Thesis structure 
 
In Chapter 1 we give a general introduction to our work. 
In Chapter 2 we present some base knowledge needed to understand our work. 
In Chapter 3 we show the components of the Scenario Verifier. 
In Chapter 4 we describe the full technique that we developed as a part of this 
thesis. Here we explain the passages from DiscoStep mapping rules to its 
corresponding CPN and from it to its Promela specification. 
In Chapter 5 we show some potential applications of our work. 
In Chapter 6 we report our final conclusions and future work 
In Chapter 7 we present the work in which we based our thesis separated in themes. 
In Appendix A we show the DiscoStep mapping rules for a client-server 
architecture. 
In Appendix B Chapter 11we show the concrete syntax of DiscoStep Language. 
In Appendix C we enumerate and explain all the files used in the implementation 
of the scenario verifier, the Promela specification of the CPN for a client-server 
example including the architecture scenario. 
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2. Preliminaries 
 
 

In the following subsections the theoretical aspects involved in our work are 
explained. Then the outline of this document is presented. 
 

2.1. Colored Petri Nets 
 

A Colored Petri Net (also known as CP-net or CPN) is a graphical oriented 
modeling language for design, specification, simulation and verification of 
systems.  

 
The development of Colored Petri Nets has been driven by the desire to 

develop a modeling language – at the same time theoretically well-founded and 
versatile enough to be used in practice for systems of the size and complexity 
found in typical industrial projects. To achieve this, CPNs combine the strength of 
Petri nets with the strength of programming languages. Petri nets provide the 
primitives for describing synchronization of concurrent processes, while 
programming languages provide the primitives for definition of data types and 
manipulation of their data values. Colored Petri Nets are an extension to Petri nets 
with the added possibility of setting a value to a Token. Furthermore in PN the 
Tokens are indistinguishable. 
 

It is in particular well-suited for systems in which communication, 
synchronization and resource sharing are important. Typical examples of 
application areas are communication protocols, distributed systems, imbedded 
systems, automated production systems, workflow analysis and VLSI chips 

The ellipses and circles are called places. They describe the states of the 
system. The rectangles are called transitions. They describe the actions. The 
arrows are called arcs. The arc expressions describe how the state of the CPN 
changes when the transitions occur. Each place contains a set of markers called 
tokens. In contrast to low-level Petri nets (such as Place/Transition Nets), each of 
these tokens carries a data value, which belongs to a given type. Token values are 
referred as token colors and we also refer to data types as colour sets. Tokens of a 
CPN are distinguishable from each other and hence “colored” – in contrast to 
ordinary low-level Petri nets which have “black” indistinguishable tokens. A state 
of a CPN is called a marking . It consists of a number of tokens positioned on the 
individual places. Each token carries a value which belongs to the type of the place 
on which the token resides. By convention, initial marking is underlined, next to 
the place. When the specification of the initial marking is lengthy, we may omit the 
underlining. 
 

The pre-set of a transition t, pre-set(t), is the set of its input places and its post-
set, post-set(t), is the set of its output places. Analogously the pre-set, pre-set(s), of 
a place p is the set of its input transitions and its post-set, post-set(s), is the set of its 
output transitions. 
 
The weight in an incoming arc of a place indicates how many tokens are going to 
be added if the connected transition occurs. Analogously the weight in an outgoing 
arc of a place indicates how many tokens are going to be removed if the connected 
transition occurs. 



Chapter: Preliminaries 

14 / 71 

 
A Petri Net is said to be ordinary if the weight of all its arcs is 1. The absence of 
weight in an arc implies it has weight 1.  
 
A finite capacity Petri Net is that in which there is a maximum of tokens defined 
for each place. 
 

During the execution of a CPN each place will contain a varying number of 
tokens. Each of these tokens carries a data value that belongs to the type associated 
with the place.  

 
Let’s see some examples: 

 

 
Figure 1 

 

 
Figure 2 
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2.2. DiscoTect: Architecture Discovery 
 

A relatively unexplored, technique is to determine the architecture of a 
system by examining its runtime behaviour. The key idea is that a system’s 
execution can be monitored. Observations about its runtime behaviour can 
then, in principal, be used to infer its dynamic architecture. This approach 
has the advantage that it applies to any system that can be monitored, it 
gives an accurate image of what is actually going on in the real system, it 
can accommodate systems whose architecture changes dynamically, and it 
imposes no a priori restrictions on system implementation or architectural 
style. 

 
A technique to solve the problem of dynamic architectural discovery for 

a large class of systems was developed. The key idea is to provide a 
framework that allows one to map implementation styles to architecture 
styles. This mapping is defined conceptually as a Colored Petri Net [1] that 
is used at runtime to track the progress of the system and output 
architectural events when predefined runtime patterns are recognized. Thus 
the mapping provides a way to identify when a program performs 
“architecturally significant” actions that produce architectural structures. An 
important additional feature of the approach is the ability to reuse such 
mappings across systems. In particular, they exploit regularity in 
implementation and architectural styles so that a single mapping can serve 
as an architectural extractor for a large collection of similar systems, thereby 
reducing the cost of writing each abstraction mapping, while still providing 
flexibility. They implemented a tool called DiscoTect, and the DiscoSTEP 
language used for specifying mappings. Then they outline a formal 
semantics for DiscoSTEP that specifies its meaning in terms of Colored Petri 
Nets.  
 

 
 (This figure is taken from [4]) 

Figure 3 
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2.2.1. Instrumentation 
 

In DiscoTect, events such as method calls, CPU utilization, network bandwidth 
consumption, memory usage, etc. are captured. To generate them, the running 
system is probed, or instrumented; for which it is used resource monitoring tools, 
or code instrumentation tools such as AspectJ and AspectC++ that allow to inject 
code into the target system.  

 
These frameworks implement Aspect Oriented Programming in Java and C++. 

Using AOP to generate events is clean and less invasive than other methods. 
 

Commercial technologies are used to instrument a system to produce runtime 
events. For Java-based systems AspectJ was used to define instrumentation 
aspects that are weaved into the compiled bytecode of the programs. These aspects 
emit events when methods of interest are entered or exited, and when objects are 
constructed. Any implementation of AOP, like Spring AOP, could be used to 
generate the runtime events with the same results as with AspectJ. 
 
 

2.2.2. Runtime events 
 

In the case of instrumentation, the aspects mentioned in the section before can 
reflectively retrieve information about the runtime environment of, for example, a 
call, to ascertain the calling object, the instance of the object that was called, the 
argument values and types that were passed to the method, the method signature, 
etc. The aspects are written to emit XML elements that conform to a schema 
expected by DiscoTect.  
 

For example, to instrument the ChatServer  below, we could weave in aspects 
to emit events when methods were called and when objects were constructed. 
 
public class ChatServer { 
 

static class ClientThread extends Thread {...} 
 public void run() { 

… 
} 

} 
 
private static Vector clients = new Vector(); 
 
public ChatServer() { 

ServerSocket serverSocket = new ServerSocket(1111);  
while (true) { 

// Wait for clients to connect 
Socket socket = serverSocket.accept(); 
new ClientThread(socket, clients).start(); 

} 
} 
 
public static void main(String[] args)throws IOExce ption { 

new ChatServer(); 
} 

} 

 
After running this application, some of the runtime events generated would be: 
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<init constructor_name=”ServerSocket” instance_id=” 10”> 
 
<call method_name=”ServerSocket.accept” callee_id=” 10” 
return_id=”11” …/> 

 

The init event is generated when the following sentence is executed: 
 

ServerSocket serverSocket = new ServerSocket(1111);  

 
The call event was triggered by the execution of the following method call: 

 
Socket socket = serverSocket.accept(); 

 
As you can see, multiple ClientThreads  can run concurrently, so some of the 

runtime events will be generated in random order and hence interleaved with each 
other. 
 

The generated runtime events can be fed into DiscoTect either in real time or 
off-line, after the program has completed running. These events are then input into 
a DiscoSTEP specification which produces architectural events, generated as a 
result of processing the runtime events, which in turn are used to produce the 
software architecture. 
 

2.2.3. DiscoSTEP Language 
 

DiscoSTEP is a language to write architectural rules. Basically, a DiscoSTEP 
rule takes as input low-level events (generated by a system in runtime) or 
intermediate events (generated by rules to be fed into other rules) and generates as 
output architecture events or intermediate events. In the case of architecture events, 
they are fed to an Architecture Builder that incrementally builds the system 
architecture. A DiscoSTEP program has three parts: the declaration of input and 
output event types used in the rules, the definition of architectural rules and the 
declaration of rule compositions.  
 

2.2.3.1. Declaration of input and output event types  
 

In a DiscoSTEP program we must declare which event types are of input and 
which ones of output, we can do it following this structure: 
 

event { 
input{ input_event_type_names }  
output{ output_event_type_names }  

} 

 
Where input_event_type_names is a list of the input event type names and 

output_event_type_names is a list of the output event type names. Let’s see an 
example: 
 

 
event { 

input { 
     init; 
     call; 
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     string; 
} 
output { 

  string; 
create_component; 
create_client; 
create_connector; 

} 
} 

 
Every DiscoSTEP program must declare its input and output event types, this 

declaration is mandatory. 
 

2.2.3.2. Architectural rules definition 
 

A DiscoSTEP architectural rule has the following parts: 
 

rule rule_name {  
input { input_event_declarations }  
output { output_event_declarations }  
trigger {$ conditions $}  
action {$ assignments $}  

} 

 
Where  
• input_event_declarations are the declarations of the input events of a 

rule, each declaration is given by an input event type and the event name. 
 
• output_event_declarations are the declarations of the output events of a 

rule, each declaration is given by an output event type and the event 
name. Output events can be architecture events or events to be consumed 
by other rules because of rule composition. 

 
• conditions are a set of conditions on the input events of the rule. If all 

these conditions are true then the rule is applicable and its action block is 
fired. Predicates are written in XQuery language. If the trigger block is 
false then no input event is consumed.  

 
• assignments are assignments from new output events to each output event 

declared in the output block of the rule. Each assignment is preceded by 
the word let. Other assignments can be done, for example, for temporary 
usage inside the action block. The right member of every assignment is 
written in XQuery language. 

 
Note that conditions or assignments inside a trigger or an action block must be 

enclosed between the ‘{$’ and ‘$}’. Event names must be preceded with a ‘$’ 
symbol. 
 

Input events are of a type such as call, init, string, etc. Events, generated by the 
system in runtime or by another rule, are bound, if the type matches, to the event 
names declared in the input block of a rule. When all of these input event names 
have a binding then the trigger block is evaluated. If it is true, the rule is applicable 
and the action block is carried out generating new output events which can be 
architecture events or intermediate events to feed to other rules in rule 
compositions. Let’s see an example of DiscoSTEP rules used to create a server 
component, connect a client and connect it to the server: 
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rule CreateServer { 

input { init $e; } 
output { string $server_id; create_component $create_serv er; } 
trigger {? contains($e/@constructor_name, “ServerSocket”) ?} 

      action = {? 
let $server_id := $e/@instance_id; 
let $create_server := <create_component name=”{$server _id}” 
type=”ServerT”/>; 

?} 
} 

 
 
rule ConnectClient { 

input { call $e; string $server_id; } 
output {create_component $create_client; create_connector     
$create_cs_connection; 

string $client_id; 
} 
trigger {? contains($e/@method_name, “ServerSocket.accept”)   
              and $e/@callee_id = $server_id 
?} 
action = {? 

let $client_id := $e/@return_id; 
let $create_client := <create_client name=”{$client_id }” 
type=”ClientT” />; 
(:$concatedIds is an auxiliary variable, not an event . :) 
let $concatedIds := concat($client_id,”-“,$server_id) 
let $create_cs_connection :=  

<create_connector name= "{$concatedIds}" 
type=”CSConnectorT” end1=”{$server_id}” 
end2=”{$client_id}” />; 

?} 
} 

 
The CreateServer rule creates a server component. The rule declares in its input 

block that it takes as input a runtime event $e of type init. The output block 
declares that it generates an architecture event of type create_component called 
$create_server and an intermediate event of type string called $serve_id. The 
trigger block has only one condition which states that the constructor_name 
property of the input event $e contains the string “ServerSocket”. The action block 
has two assignments, first the intermediate event $server_id is assigned the 
instance_id property of the $e input event and second the architecture event used to 
create a component, a server in this case, is assigned to $create_server. 

 
The ConnectClient rule creates a client and connects it a server identified by 

$server_id. The rule can be understood in the same way as the CreateServer rule. 
Inside the action block a comment is written. Comments are enclosed between ‘(:’ 
and ‘:)’, if more than one line is written then a ‘:’ must be written at the beginning 
of the line. Below the comment the concatenation of two strings $client_id, a dash 
and $server_id is assigned to the $concatenatedIds variable. This variable is not 
declared in the output block of the rule, so it is not an event, it is just an auxiliary 
variable to be used inside the action block. 

  

2.2.3.3. Composition of two rules 
 

DiscoSTEP rules can be composed, that is to say, intermediate events 
generated by a rule can be taken as input events by another rule. For instance, the 
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CreateServer and the ConnectClient rules can be composed via the $server_id 
event in the way showed below: 
 

composition { 
CreateServer.$server_id -> ConnectClient.$server_id ; 

} 

 
The unidirectional binding denoted by -> states that the output event $server_id 

generated by the CreateServer rule can be consumed by the ConnectClient rule as 
an input event. 

 
The composition can also be bidirectional denoted by the bidirectional binding  

<->.  Let´s see an example: 
 
composition { 

CreateServer.$server_id <-> ConnectClient.$server_i d; 
} 

 
In the example above the bidirectional binding states that the rule that takes as 

input the $server_id event can make use of it without consuming it. In our case the 
ConnectClient rule uses the $server_id but it does not consume it so this event can 
be consumed or used by another rule. Note that both rules could take the $server_id 
event as input but in our example the CreateServer rule does not take this event as 
input. 
 

When the input block of a rule declares runtime input events and the rule is 
applicable then these runtime events are consumed by the rule. But when the input 
block of a rule declares non-runtime input events and the rule is applicable then 
these events can be consumed or just used by the rule without consuming them, it 
depends on the type of composition. 

 
The concrete syntax can be found at Appendix B.  

 

2.3. Model Checking 
  

Model checking is a widely used formal method for the verification of 
concurrent programs. The problem with concurrent programs is that the number of 
possible computations is astronomical, so it seems that exhaustive checking is 
impractical as a method of gaining confidence in the correctness of the program. In 
the 1980s, Clarke, Emerson and Sifakis showed that it can be feasible to check all 
possible computations of a concurrent program. Their key insight was to note that 
both a concurrent program and its correctness property can be transformed into 
nondeterministic finite automata (NDFA) and “run” simultaneously. Given the 
NDFA corresponding to the program and the NDFA corresponding to the negation 
of the correctness property (expressed in temporal logic), a model checker searches 
for an “input string” accepted by both automata. If it finds one, the input represents 
a computation of the program that breaks the correctness claim; therefore, the 
program is not correct and the computation can be reported as a counterexample to 
the correctness claim. 

 
Model checking is a model-based, automatic method that, given a finite-state 

model M of a system and a property p, checks the validity of P in M, ie, M|=p.  
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Figure 4 

 
Typically it involves three steps: 

 
1. Create a finite state model of the system design in a formal language. 
2. Specify a system property in a formal language.  
3. Model-check the model and the property together to verify if the model 

satisfies the property. 
 

Some of the properties that can be verified with model checking are: 
deadlocks, race conditions, assertion violations, safety properties (system is never 
in a “bad” state), liveness properties (system eventually arrives in a “good” state), 
livelock, starvation, under-specification, over-specification, violations of 
constraints, etc. 
 

An important ingredient of model checking is an expressive language that can 
be used for model description. Such a language must have a precise semantics, yet 
it must also be suitable for its application domain and easy to use. 

 

2.3.1. The SPIN model checker 
 

SPIN (Simple Promela In terpreter) is a powerful widely used and proved 
automata-based model checker particularly for analysing the logical consistency of 
concurrent systems. SPIN is nowadays one of the foremost model checkers.  

 
It was written by Gerard J. Holzmann who in 2001 received the ACM Software 

Systems Award for SPIN. It was originally designed for verifying communications 
protocols and has evolved since then for more than twenty years. It has become one 
of the most widely used verification tools. SPIN is particularly suited for 
modelling concurrent and distributed systems that are based upon interleaving of 
atomic instructions. 

 
SPIN can be used as a full LTL model checking system, supporting all 

correctness requirements expressible in linear time temporal logic, but it can also 
be used as an efficient on-the-fly verifier for more basic safety and liveness 
properties. Correctness properties can be specified as system or process invariants 
using assertions, as LTL requirements, or in other ways.  

 
SPIN is commonly used in simulation and verification modes. In simulation 

mode just one choice in the state-space is made non-deterministically. It allows 
rapid prototyping with random, guided, or interactive simulations. In the 
verification mode, full exhaustive validation is carried out using partial order 
reduction theory to optimize the search, and based on either depth-first or breadth-
first search in the state-space. 
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Given a model and a property specified in Promela, the language understood 

by SPIN, both are model-checked together. Once the model checker finds a trace 
that complies with the specified property, it generates a file containing the trail 
with the information of all the non-deterministic choices made by the model 
checker. This information could also be read later by the model checker to make 
simulations over the model. 
 

For our work we also used iSpin, a graphical user interface for SPIN, from 
which we can check syntax correctness of Promela specifications, run simulations 
and verifications and other useful things. 
 

2.3.1.1. Promela language  
 

As stated before, SPIN supports a high level modeling language called 
Promela (Process Meta Language) which allow us to specify system models and 
properties. Promela also has the ability to embed C code blocks or include C code 
files in specifications. 

 
Promela models mainly consist of 3 types of objects: processes, message 

channels, and variables. Processes are global objects. Message channels and 
variables can be declared either globally or locally within a process. Processes 
specify behavior, channels and global variables define the environment in which 
the processes run. Processes send and receive messages through channels and 
channels can store messages in different ways depending on its type, by default in 
FIFO order. 

 
Process communication via message channels can be defined to be 

synchronous (rendezvous), or asynchronous (buffered); mixed specifications are 
supported. Processes can also communicate via shared memory. 

 
More about Promela, including the complete language reference, can be found 

at [10]. 
 

 

2.4. Symbolic Execution 
 

The idea of symbolic execution is born from the Symbolic Mathematics. These 
relate to the use of computers to manipulate mathematical equations and 
expressions in symbolic form, as opposed to manipulating the approximations of 
specific numerical quantities represented by those symbols. Such a system might 
be used for symbolic integration or differentiation, substitution of one expression 
into another, simplification of an expression, etc. It has uses in software testing 
under the title of symbolic execution where it can be used to analyse if and when 
errors in the code may occur. It can be used to predict what code statements do to 
specified inputs and outputs. It is also important for considering path traversal. 
Thus Model Checking techniques have used symbolic execution for more than 15 
years. 

 
Nowadays symbolic execution techniques are used in several fields. The 

techniques have evolved so much that there are model checkers like Zing which 
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allow specifying a program using Object Oriented Programming combined with 
symbolic execution. 

 
We based our work in a more primitive idea of symbolic execution. An easy 

way to understand it is with the following pseudocode example. 
 
Function IsMinor (age as Integer) 

If age < 21 Then 
 Return True 
Else 
 Return False 
End If 

End Function 

 
In this function we do not need to know the exact value of the age parameter. 

We just need to know in which of the intervals it is located. The intervals would be 
[0..20] and [21..∞]. 

 
If  we now have the following piece of a program: 

 
If IsMinor(KidAge) Then 
 If KidAge > 21 Then 
  testValue = True 
 Else 
  testValue = False 
 End If 
Else 
 testValue = False 
End If 

 
Using symbolic execution we can know that testValue is always going to be 

equal to False.  
 

We used this idea to create a model where each time there is a branch or an 
assignment an assumption is created with the condition stated. After a trace 
execution is finished the assumptions are evaluated to see if the set is satisfiable 
comparing all the assumptions made.  
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3. The Scenario Verifier  
 

First we explain how DiscoTect [4] works in order to provide the base for 
understanding the technique defined in this work. DiscoTect takes as input a file 
containing mapping specification rules written in DiscoSTEP language. DiscoTect 
constructs a Colored Petri Net from these rules which consume runtime events and 
generate architectural ones as outputs. Architectural events are fed to an 
Architecture Builder that incrementally creates a model of the system architecture 

 
In [4] a way of translating the mentioned mapping specification rules into a 

CPN is provided. We extend this translation and show a generic way of specifying 
CPN constructs in a language accepted by a model checker. We start by modeling 
these rules as a CPN model and then we specify it in Promela language. Given that 
our aim is to find a trace of runtime events, we need something to generate them, 
so we specify a stub in Promela which is able to produce all possible runtime 
events. An initial marking  of a CPN sets a configuration of tokens in it 
determining the number of tokens to be positioned in every place. The stub is 
responsible for generating all the different initial markings. An initial marking of 
the CPN models a determined sequence of runtime system events. Furthermore the 
stub establishes these initial markings in the modeled CPN for a fixed amount of 
tokens. For a same amount of tokens, different random initial markings are tried 
simulating different instrumentations, and consequent runtime events, that could be 
generated by any program. The desired trace must map to an architectural 
scenario which specifies a determined situation at high level. This scenario is also 
written in Promela language.  
 

The three mentioned elements: the CPN model, the stub and the architectural 
scenario are all of them model checked by the model checker SPIN [10]. During 
the model checking stage the stub first sets a random initial marking  and then the 
CPN execution starts consuming and generating tokens from and into places. 
Tokens are consumed when mapping rules apply and this happens when certain 
conditions on runtime events, which means on tokens, are true. While the CPN 
“executes” these conditions are not evaluated, they are just supposed to be true and 
are accumulated to be evaluated later. This approach is partly taken from symbolic 
execution [12].  

 
Given an initial marking of a CPN for a fixed amount of tokens, a CPN 

execution finishes when either all the architectural scenario properties are gathered 
or when all tokens are consumed before reaching the scenario.  

 
In the latter case, the initial marking is discarded and the model checker 

continues trying with others initial markings (for the same fixed amount of tokens) 
and different sequences of token consumptions. But if this situation happens for all 
these different initial markings, then the model checking finishes without having 
found a trace of runtime events for the architectural scenario. So a new higher 
amount of tokens must be fixed for the stub and the model checking is restarted, 
repeating the whole process again and again till either a trace is finally found or all 
possible traces are inspected and none of them maps into the specified scenario. 

 
Otherwise, in the first case, when the scenario is reached, the set of all the 

accumulated assumptions (those constraints collected when consuming tokens 
while executing the CPN) is verified by an Assumption Verifier which determines 
the satisfiability of this set. If it is satisfiable then a valid trace of runtime events 
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that maps into the architectural scenario has effectively been found. The 
Assumption Verifier is also model checked together with the CPN model, the stub 
and the architectural scenario. 

 
The approach used to find the minimum trace is based on the fact that if a 

possible trace exists the model checker will find it. The size of the trace, when 
found, is the same as the amount of tokens of the last initial marking used by the 
stub. A token consumption models a runtime event execution. So we start with one 
initial token and we apply model checking to find the trace. If a trace is found then 
it is minimal because it will have one event, if not we model check again but using 
one more token and so on. If, for example, a trace is found using five tokens (and 
so the trace will have five events) we know it is minimal because a trace with four 
tokens was not found. If the user has a good understanding of the CPN model and 
of the architectural scenario he may predict a more approximated amount of the 
minimum of necessary tokens. Then he may try with that amount of tokens and if a 
trace is found he can then start trying with fewer tokens as a way to discover the 
minimum trace. 

 
As an example, we decided to model and implement the client-server 

architectural rules shown in Appendix A of [4]. These rules were modeled as a 
CPN and translated into Promela code in order to be able to model check this 
model with SPIN [10]. The architectural scenario was written as a constraint in 
Promela which must be verified during the whole model-checking. The stub is a 
Promela process which establishes the initial marking in the CPN 

 
When modelchecking, the CPN is executed until all the tokens are consumed 

(so a blocking state is reached) or the architectural scenario properties are gathered. 
When the model checker finds an error, in the model, the searched trace is found. If 
the modelchecking process finishes without any error then no trace has been found 
for the initial marking of the CPN. The consumptions of tokens determine certain 
constraints over their properties which can be verified at that moment or later. As 
we mentioned before, we have adopted a symbolic execution approach based on 
[12] in which, while finding the desired trace, implied constraints (assumptions 
from now on) are accumulated instead of being verified at the moment of being 
found. We work with two kinds of assumptions: 

 
- Value Assumption: it constraints a token property to a constant value. 
- Equality Assumption: it establishes an equality relation between two 

properties of two different tokens, properties which may not be necessarily 
the same. 

 
While modelchecking the CPN, value and equality assumptions are 

accumulated in two structures, one for each type. As we explained before, once the 
desired trace is found then all the accumulated assumptions are verified by an 
Assumption Verifier that determines the satisfiability of the assumptions set. If the 
set is satisfiable then a trace of runtime events, that satisfies the architectural 
scenario for the specified architectural rules, has effectively been found. Otherwise 
the model checker tries to find another trace and the whole verification process is 
repeated.  
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3.1. Architecture of the Scenario Verifier 
 
 

Below a sketch of the C&C view of the architecture is shown: 
 

 
Figure 5 

 
One input is the Promela and C specification of the architectural rules in 

DiscoSTEP and the other is the architectural scenario specified in Promela. 
 
The output is a report that includes the trace of runtime events that fulfil the 
scenario and other results of the analysis. 
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4. The technique  
 

In this section we will explain the full technique which is the base of our 
work. It combines manual and semi-automatic steps. 

4.1. Steps of the technique 
  
1. Select or create the set of DiscoSTEP architectural mapping rules 

corresponding to the architecture you wish to use. 
2. Model the previous architectural mapping rules as a CPN. 
3. Specify the CPN model in Promela and C code. 

3.1. Determine some CPN-related constants. 
4. Specify an architectural scenario in Promela. 

4.1. Determine some scenario-related constants. 
5. Model check the Promela specification. 

5.1. Determine verification parameters of the SPIN model checker. 
5.2. Start verification. 
5.3. Analyze results: 

5.3.1. If memory was insufficient then determine new values for the 
verification parameters of the SPIN model checker and restart model 
checking. Go to step 5.2. 

5.3.2. If the model checking process finishes without assertions then (if a 
trace exists) the initial amount of tokens is not enough so it is 
necessary to increment it in one: 

5.3.2.1. If this new initial amount of tokens is higher than the sum of 
all quantities chosen in the architectural scenario for the 
architectural events then it is not possible to find a trace of 
runtime events that maps the architectural scenario proposed in 
4. Go to step 7. 

5.3.2.2. Otherwise go to 5.2 to restart model checking. 
5.3.3. If an assertion (which is not the last assert(false)) is risen then 

determine new values for the corresponding scenario-related 
constants. The assertion raised will provide clues to discover which 
constant has to be modified. Go to step 5.2.  

5.3.4. If the final assertion is raised then a trace has been found and it is 
minimal. 

6. If a trace has been found, run the SPIN Ouput Analyzer to interpret the SPIN 
output trail and generate a human readable trace.   

7. End. 
 

In the following sections we explain the main steps involved in the technique. 
Some of the explanations are based on a set of DiscoSTEP mapping rules for 
client-server architecture, see appendix A. 
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4.2. Model a set of DiscoSTEP architectural 
mapping rules as a CPN 

 
In this section we explain how a set of architectural DiscoSTEP mapping rules 

is modelled as a CPN. In [4] a way of translating these mapping rules into a CPN is 
provided; in this section we extend that explanation adding a detail process for 
doing this. 
 

4.2.1. Translation rules 
 

(tr1). Each DiscoSTEP rule is modeled as a CPN transition. 
 

(tr2). Each event declared in the input block of a rule, eventType eventName, 
is modelled as a CPN place called eventName with an associated 
colorset derived from the event type eventType. The place is then 
connected to the transition that models the rule with a directed arc from 
the place to the transition. Finally a declarative variable name is placed 
as an arc inscription and we declare that its colorset is the same as the 
colorset associated to the place. 

 
(tr3). Each event declared in the output block of a rule, eventType 

eventName, is modelled as a CPN place called eventName with an 
associated colorset derived from the event type eventType. The place is 
then connected to the transition that models the rule with a directed arc 
from the transition to the place. Finally a declarative variable name is 
placed as an arc inscription and we declare that its colorset is the same 
as the colorset associated to the place. 

 
(tr4). The declaration of colorsets (those associated to places) for the CPN 

depends on the different DiscoSTEP event types. An event type can be 
simple, if it does not have any property, or compound if it has 
properties of possibly different colorsets or types. A colorset derived 
from a compound event type is declared as a record with as many fields 
as properties the event type has. The record field (or property) names 
remain the same as the properties of the event type and their colorsets 
or types are derived from the types of the properties of the event type.  

 
(tr5). Each event e generated by the system (runtime event) or by another rule 

is modelled as a CPN token positioned in the CPN place that models 
the declared event (in an input or output block of a rule) to which the 
event e is bound. Note that the fact of binding the event e to one event 
declared, in the input or output parts of a rule, is modelled as the fact of 
binding a token to the corresponding arc inscription. 

 
(tr6). Each DiscoSTEP trigger block is modelled as a CPN transition guard 

written in CPN ML1. 
 

                                                 
1 CPN ML is an acronym for Coloured Petri Net Meta Language. 
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(tr7). Each DiscoSTEP action block is modelled as a transition code segment 
written in CPN ML. 

 
(tr8). The composition of rule output R1.O1 with rule input R2.I2, denoted as 

R1.O1 -> R2.I2, generates a merging of the place P1 that represent O1 
and I2. If the rules are well defined the colorset of O1 and I2 must be 
the same. 

 
(tr9). The dual composition of rule output R1.O1 with rule input R2.I2, 

denoted as R1.O1 <-> R2.I2, generates a merging of the place P1 that 
represent O1 and I2. If the rules are well defined the colorset of O1 and 
I2 must be the same. Then a transition is added from R2 to the new 
place. This implies that each time R2 is executed a token is consumed 
from P1 and after R2 execution a new token is inserted in P1. This new 
token has the same color that the token previously consumed. 

 
(tr10). A rule application is modeled as the occurrence of its corresponding 

CPN transition. 
 
 

Runtime events are always input events, their declarations appear only in the 
input block of a rule so they are always modelled as input places. Instead 
architecture events are always output events, their declarations appear only in the 
output block of a rule so they are always modelled as output places. Respect to 
intermediate events, they are generated by architecture rules to be fed to other 
rules. Their declarations always appear in the output and input blocks of composed 
rules so they are always modelled as intermediate places, that is to say, input and 
output places. 
 

Now let’s take, as an example, the CreateServer DiscoSTEP mapping rule: 
 
event { 

input { 
     init; 

} 
output { 

     string; 
     create_component; 

} 
} 

 
rule CreateServer { 

input { init $e; } 
output { string $server_id; create_component 
$create_server; } 
trigger {? contains($e/@constructor_name, “ServerSocket”) 
?} 

      action = {? 
let $server_id := $e/@instance_id; 
let $create_server := <create_component 
name=”{$server_id}” type=”ServerT”/>; 

?} 
} 
 

Let’s apply the translation rules to this example and let’s see how it is 
modelled with CPN constructs.  
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(tr1)  The rule CreateServer is modeled as a transition called CreateServer. 
 
(tr2)  The input block of the rule has only one event declaration: init $e, so the 
transition has an only input place named $e with the associated colorset Init  
derived from the event type init . The variable name init_event is written as arc 
inscription surrounding the arc that goes from the place $e to the transition 
CreateServer. We must also state that the colorset of init_event variable is Init  and 
we do it via this declaration:  
 
var init_event :Init ; 
 
(tr3)  The output block of the rule has two event declarations: string $server_id and 
create_component $create_server and so the transition has two output places 
called $server_id and $create_server with associated colorsets String and 
CreateComponent respectively. The variable names server_id and 
create_component are written as arc inscriptions surrounding the arcs that go from 
the CreateServer transition to the places $server_id and $create_component 
respectively. We now declare the colorsets of these variables with these 
declarations: 
 
var server_id: String; 
var create_server :CreateComponent; 
 

By now, the CPN looks like this: 
 

 
Figure 6 

 
 
var init_event: Init; 
var server_id : String; 
var create_server: CreateComponent; 
 

 
Note that we haven´t still declared the colorsets Init , String and 

CreateComponent, it will be done in the following translation rule.  
 
 
(tr4)   The event type string does not have any properties so its derived colorset 
String is simple.  
 
color String = string; 
 

Note that we are just renaming the ML type string. 
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Events of type init are runtime events. The XML schema of this type is the 
following: 
 

<element name="init"> 
<complexType> 

<attribute name=”constructor_name” type=”string” />  
<attribute name=”instance_id” type=”string” /> 

</complexType> 
</element> 

  
The colorset Init  derived from the event type init is compound. So it is 

declared as a record with two fields, constructor_name and instance_id, whose 
colorsets are String. Let’s see the declaration: 
 
color Init = record constructor_name :String * instance_id 
:String; 
 

Events of type create_component are architecture events. The XML schema of 
this event type is the following. 
 

<element name="create_component"> 
<complexType> 

<attribute name=”name” type=”string” /> 
<attribute name=”type” type=”string” /> 

</complexType> 
</element>  

 
So the derived colorset CreateComponent is declared as a record with two 

fields, name and type with colorsets String. Let’s see the declaration: 
 

color CreateComponent = record name :String * type :String; 
 

Let’s see all the declarations of the CPN together: 
 

 
color String = String; 
color Init = record constructor_name: String * 
instance_id: String; 
color CreateComponent = record name: String * type 
:String; 
 
var init_event: Init; 
var server_id: String; 
var create_server: CreateComponent; 

 
 

Let’s continue translating. 
 
(tr6)  The trigger block of the rule: 
 

trigger {? contains($e/@constructor_name, “ServerSocket”) ?} 
 
has a condition that states that the property constructor_name of the $e event 
contains the value of “ServerSocket”. Without any loss of generality, this condition 
is modeled as an equality expression between the constructor_name property of the 
token and the string value “ServerSocket”. The expression is enclosed between 
brackets and positioned next to the transition. In this rule we make a simplification 
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in our implementation, supporting a small amount of operations instead of the full 
XPath stack. This is only due to simplify our work for this thesis and more 
operations could be added in future work. 
 
(tr7)  The action block of the rule: 
      
      action = {? 

let $server_id := $e/@instance_id; 
let $create_server := <create_component 
name=”{$server_id}” type=”ServerT”/>; 

      ?}  
  
carry out the following assignments: 

 
- The instance_id property of the $e event is assigned to the output event 

$server_id. 
  
- The output event $create_server is set as a compound element of type 

create_component with two properties: name and type. The name 
property is set as the $server_id which is in fact instance_id property of 
the $e event and the type property is set as the string value “ServerT”.   

 
These assignments are modeled inside the transition code segment as bindings 

between the values retuned by the action clause and the variables listed in the 
output clause. 

 
Below the resulting CPN is shown. 
 

 
 

 
Figure 7 

 
 

color String = string; 
color Init = record constructor_name :String * 
instance_id :String; 
color CreateComponent = record name :String * type 
:String; 
 
var init_event :Init; 
var server_id: String; 
var create_server :CreateComponent; 
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4.2.2. Rules composition 
 

Now we explain how to compose two rules. We take as example the 
CreateServer and ConnectClient rules. The CreateServer DiscoSTEP rule and its 
CPN model were already shown. Let’s see the ConnectClient DiscoSTEP rule. 
 
rule ConnectClient { 

input { call $e; string $server_id; } 
output {create_component $create_client; create_connector 
$create_cs_connection; string $client_id;} 
trigger {? contains($e/@method_name,  
“ServerSocket.accept”) and $e/@callee_id = $server_id 
?} 
action = {? 

let $client_id := $e/@return_id; 
let $create_client := <create_client 
name=”{$client_id}” type=”ClientT” />; 
let $create_cs_connection :=  

<create_connector name= concat($client_id,”-
“,$server_id) 

type=”CSConnectorT” end1=”{$server_id}” 
end2=”{$client_id}” />; 

?} 
} 
 

Note that the string event type should also be included in the input block of the 
declarations of input and output event types for the DiscoSTEP program.  

 
Below the CPN model of the ConnectClient rule is shown. 
 

 
Figure 8 
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color String = string; 
color Call = record method_name :String * callee :String 
* return_id :String; 
color CreateClient = record name :String * type :String; 
color CreateConnector = record name :String * type 
:String * end1 :String * 

   end2 :String; 
 
var call_event :Call; 
var server_id, client_id: String; 
var create_connector :CreateConnector; 
var create_client :CreateClient; 

 
 

The following piece of DiscoSTEP code states that the CreateServer and 
ConnectClient rules are composed via the $server_id event. The unidirectional 
binding denoted by -> states that the output event $server_id of the CreateServer 
rule can be consumed by the ConnectClient rule as an input event. 
 
composition { 
    CreateServer.$server_id -> ConnectClient.$serve r_id; 
} 
 

Now we model this composition by applying the translation rule 8 (tr8) . The 
place $server_id is common to both transitions: CreateServer on the left in the 
diagram and ConnectClient on the right. Note that we together the declarations of 
both CPNs. Below we show the resulting CPN. 

 

 
Figure 9 

 
 

color String = string; 
color Init = record constructor_name :String * instance_id 
:String; 
color Call = record method_name :String * callee :String * 
return_id :String; 
color CreateComponent = record name :String * type :String; 
color CreateClient = record name :String * type :String; 
color CreateConnector = record name :String * type :String * 
end1 :String * end2 :String; 
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var init_event :Init; 
var call_event :Call; 
var server_id, client_id: String; 
var create_server :CreateComponent; 
var create_connector :CreateConnector; 
var create_client :CreateClient; 

 
 

The composition can also be bidirectional denoted by the bidirectional binding 
<->. It states that the rule that takes as input the $server_id event can make use of it 
without consuming it. 

 
  composition { 

CreateServer.$server_id <->ConnectClient.$server_id ; 
  }  
 

This bidirectional binding is modeled as bidirectional arcs between the 
$server_id place and the CreateServer and ConnectClient transitions. But, if we 
look at the input block of the CreateServer rule we see that it does not consume a 
$server_id event so the only bidirectional arc is the one between the $server_id 
place and the ConnectClient transition. Note that bidirectional bindings and arcs 
are shorthand for two bindings and arcs respectively with opposite directions. 
Below the resulting CPN is shown.  
 

 
Figure 10 

 
CPN declarations remain the same. 

 
The complete translation of the Client-Server example to a CPN would be: 

 
 
color String = string; 
color Init = record constructor_name :String * instance_id 
:String; 
color Call = record method_name :String * callee :String * 
return_id :String; 
color CreateComponent = record name :String * type :String; 
color CreateClient = record name :String * type :String; 
color CreateConnector = record name :String * type :String * 
end1 :String * end2 :String; 
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color UpdateComponent = record name :String * property:String 
* value :String; 
color UpdateConnector = record name :String * property:String 
* value :String; 
 
var init_event :Init; 
var call_event :Call; 
var server_id, client_id, io_id, activity_type : Strin g; 
var create_server :CreateComponent; 
var create_client :CreateClient; 
var create_connector :CreateConnector; 
var update_component :UpdateComponent; 
var update_connector :UpdateConnector;  
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Figure 11 
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4.3. Specify the CPN model in Promela and C 
code 

 
In this section it is explained how to specify a CPN, that models a set of 

architectural DiscoSTEP mapping rules, into a Promela specification. As a 
teaching example, we show how to specify the parts of the CPN shown in the 
previous section which models a set of architectural DiscoSTEP mapping rules for 
a Client-Server architecture. 
 

The whole specification is written in Promela, including the stub; nevertheless, 
there are some embedded pieces of C code to manipulate accumulations of value 
and equality assumptions because of the adopted symbolic execution approach. 
 

In the following subsections it is explained how CPN constructs are specified 
in Promela language. 
 

The specification was modularized in different files grouped by the CPN 
specification, the architecture scenario, the Assumption Verifier and general files 
such as the main one and support files. A detailed explanation of the contents of 
each file may be found in Appendix C. 

4.3.1. Places  
 

Places are modeled as Promela channels. Channels are used to transfer 
messages between active Promela processes. Channel declarations are preceded by 
the reserved word chan followed by channel names. By default, channels store 
messages in FIFO order. Messages can have many fields of different types. Below 
we show all channel declarations and definitions done for the Client-Server 
architecture: 
 

 
 
Let’s take as an example the first Promela sentence in the above piece of code; 

it declares a channel called CS_ePlace, defined with a maximum channel capacity 
of maximumAmountOfTokensPerPlace messages which only have one field of 
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type tokenIdInPlace. This sentence models a place that can contain at most 
maximumAmountOfTokensPerPlace tokens of type tokenIdInPlace.  
 

In some parts of our Promela specification channels are identified by numbers 
denoted by a constants. Below we show these constants:  
 

 
 

Note that constant names have the channel name as prefix and the word “Id” as 
suffix. 
 

4.3.2. Tokens 
 

A token may carry one or many property values depending on whether its 
colorset is simple or compound. Due to our symbolic execution approach it is not 
necessary for a token to carry values in its properties when the CPN is being 
executed. Instead we do need to identify each token because conditions on token 
properties (assumptions) are collected when executing the CPN 

Tokens identifiers are of type tokenIdInPlace which is a compound type as we 
can see below: 
 

 
 

The locTId  property represents a local token identifier, and the pId property is 
the place identifier. When a new token is created in a place, it is identified using 
the place identifier and a local consecutive number for the token in the place. In 
this way a token is univocally identified in a place. So we defined a macro that 
does it whenever a token is created, as we can see below: 
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Where nextTokenIdForPlace[newPlaceId] stores, as its names says, the 

identifier for the next token to be created in the place newPlaceId which is used as 
index for the array.  

 
We decided to use this identification structure with two numbers (instead of 

using only one identifying number for each token) as a way to optimize the model 
checking process. Model checkers detect the state space, and its changes, of the 
specification while it is being analyzed. The state space contains the information 
which identifies the status of the model. This means that the order in which tokens 
are created affects the state space because for the model checker the number used 
as an identifier has a meaning. For example if we have a state space where there 
are two tokens in a place which the model checker identifies with the numbers 1 
and 2,then there is another state space which also has two tokens in the same place 
but which are identified 2 and 1. Logically the equivalence of these two state 
spaces will depend on the properties of the tokens. For the model checker the state 
spaces will not be equivalent because the identifiers are different. The comparison 
made by the model checker between the two state spaces will see the channels 
(places) as queues, and will compare the messages in the order they have been 
inserted into the channel. For us the only meaning for the numbers is the ability to 
identify each token, but not the number itself. We decided to identify each token in 
this way due to how the chosen model checker SPIN works. This option allows 
SPIN to make a better identification of two equivalent state spaces. This is easily 
seen in an example where there are two places, each with one token. If only one 
number is used, and this number is created with consequent numbers in order to be 
sure that the numbers will not be repeated, two possible state spaces may arise 
depending which token is inserted first. Instead, using the chosen structure the 
order will not make any difference and only one state space is going to be created 
for this example. 

 
If we look at channel declarations in the previous section, we see that token 

identifiers are specified as Promela messages for all channels. Since now on we 
will talk about tokens instead of token identifiers. This is because despite of 
dealing with token identifiers for our particular specification, we are in fact 
specifying tokens of a CPN.  

 
Tokens can be removed or added from and into places, in the same way, 

Promela messages can be removed or added from and into Promela channels. For 
instance, when a token identifier message is consumed from a channel, we are 
specifying that a token is consumed from a place. 
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4.3.3. Colorsets 
  

As explained in the previous section, in our Promela specification we deal with 
tokens identifiers, instead of tokens. All tokens identifiers are of type 
tokenIdInPlace. The question is then ¿How do we store the property values of 
tokens of different colorsets then? Well in a way we do not. We store assumptions 
of the possible values of these properties. For this we use a constant number to 
denote a token property and use this number as an index in an array where the 
property value is stored.  

 
Below we can see the constant numbers for every token property of every 

colorset: 
 

 
 

Note that constant names are the same as the fields (or properties) of records in 
the declaration of the CPN colorsets: 
 
 
 

color String = string; 
color Init = record constructor_name :String * 
instance_id :String; 
color Call = record method_name :String * callee :String 
* return_id :String; 
color CreateComponent = record name :String * type 
:String; 
color CreateClient = record name :String * type :String; 
color CreateConnector = record name :String * type 
:String * end1 :String * end2 :String; 
color UpdateComponent = record name :String * 
property:String * value :String; 
color UpdateConnector = record name :String * 
property:String * value :String; 

 
 

 The String colorset is simple so it just has one value which is indexed with the 
self constant.   
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4.3.4. Transitions, transition guards, code segments 
and arc inscriptions 

 
Each CPN transition is specified as a Promela proctype with some embedded 

pieces of C code to manipulate accumulations of assumptions. In our Promela 
specification we create a proctype for every transition in the CPN. These are: 
createServer(), connectClient(), clientIO, clientRead(), clientWrite() and 
updateServer(). The execution of each of these proctypes models the occurrences 
of a CPN transitions 

. 
We will explain how a CPN transition is specified in Promela language. To 

ease its understanding we will base our explanation in the CreateServer transition 
which will be used as example. Let’s remember the transition:  

 

 
Figure 12 

 
And let’s see its Promela specification. 
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Now we explain how this CPN transition is specified in Promela showing the 
mappings between parts of the CPN transition and parts of the proctype. 
 

4.3.4.1. Proctype declarations 
 

The incoming arc from the $e place into the CreateServer transition indicates 
it removes tokens from this place while the outgoing arcs to the $create_server 
and $server_id places indicate that the transition adds tokens to these places. For 
every token consumed from $e, a token is added into the $create_server and 
$server_id places. These three tokens are declared at the beginning of the 
proctype.  
 

 
 

In fact inside the proctype we deal with token identifiers but we will refer to 
them as tokens. Then a variable called isValidAss is declared and initialized:  

 

 
 

This variable is used to know the result of some later validations.  
 

The CreateServer transition is the only one to consume tokens from the $e 
place and to add tokens into the $create_server place and it is specified with two 
assertions:  

 

 
 

The first assertion states that the createServer proctype is the only process in 
the system that can consume messages from the CS_ePlace channel. While the 
second assertion states that the createServer proctype is the only one allowed to 
send messages to the CS_createServer channel. 
 

4.3.4.2. Transition occurrence 
 

All the actions involved in a transition occurrence happen all together 
instantaneously without interleaving with any other execution of the CPN. Inside 
the createServer proctype a loop is implemented with a label named start and a 
goto statement at the end of the proctype. A loop iteration specifies an occurrence 
of the CPN transition. The body of the loop is a Promela atomic block which 
allows executing the enveloped code indivisibly. Note that the loop does not have 
any guard, it’s because the transition occurs whenever possible. To complete a 
transition occurrence, it is required that all the input places have at least one token. 
If this is not the case, the transition gets blocked until all the input tokens can be 
consumed. A blocking breaks the atomicity of the execution. This may seem as a 
problem because it may generate a scenario where a deadlock may appear when 
two or more proctypes have consumed at least one token and they need to 
consume more tokens which have been consumed by the others waiting proctypes. 
Fortunately, given that we decided to use a model checker, we do not have to 



Chapter: The technique 

44 / 71 

worry about this issue, the model checker will discard all the blocked scenarios 
until it finds the right order of consumption where no proctype gets blocked.  

Note that there are two constructs in PROMELA for specifying that a sequence 
of statements must be executed atomically: d_step and atomic. We decided to use 
atomic because d_step has the limitations that except for the first statement in the 
sequence (the guard), statements cannot block, and as we see before it may happen. 

All the constraints found in the CPN execution are stored as assumptions 
because of the symbolic execution approach adopted by us. Each assumption is 
validated twice, first when it is created and secondly when a trace that complies 
with the chosen scenario is found. The first validation helps the model checker to 
discard invalid solutions faster. 

In the following subsections we explain in detail the inside of the atomic block. 
 

4.3.4.3. Token consumptions from input places of the 
transition 

 
When a transition occurs it first consumes tokens from its incoming places so 

inside the atomic block the token init_eventTokenId is first removed from the 
$CS_ePlace place.  In Promela it is specified like this:  

  

 
 

In this sentence a message is consumed from the $CS_ePlace channel and 
copied into the init_eventTokenId variable. The ?? operator determines that the 
election of the message to be consumed is carried out randomly.  
 

If there is no message to be consumed from the channel then the statement is 
blocked and in consequence the execution of the proctype is blocked at this point. 
As explained before when this happen the model checker continues executing the 
other proctypes. The blocked sentence can be passed when the SPIN process 
scheduler chooses this proctype to execute again and the sentence can effectively 
be executed, it means, there is a message in the channel to be consumed. 
  

A c_code block is used to write C code in it allowing, for example, calls to C 
functions defined in other files. The C function runTimeEventCallDetector is 
called inside a c_code block: 
 

 
 

This function keeps count of the number of consumptions of tokens (that 
model runtime events) that have been consumed by every transition in the CPN. In 
this case runtime events are of type Call or Init . It also registers the order in which 
each input token has been consumed. This is necessary to know, once a trace has 
been found, which runtime events must be executed, and in what order, to have the 
desired scenario. We register the global order number of consumption to be able to 
recognize token consumptions backtracked by SPIN so that they are not taken into 
account in the final analysis. 
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4.3.4.4. Transition guard 
 

If we look at the guard of the CPN transition, we see it has a condition on the 
constructor_name property of the init_event CPN variable which states its value 
to be the string “ServerSocket”. In our Promela specification this condition is not 
evaluated at the time of the occurrence of the transition, instead, it is assumed to be 
true and accumulated to be verified later. The accumulation of this value 
assumption is carried out inside the second c_code block in the atomic block:  

 
Inside the c_block the C function addValueAssumption is called with three 

arguments. The first one is the token init_eventTokenId, the second one is the 
name of the property constructor_name and the third argument is the value 
cServerSocket to which the constructor_name property is constrained to be 
bound. Note that it was decided to precede constant names with a lowercase letter 
c. In our example the addValueAssumption function accumulates a value 
assumption that states that the property constructor_name of the token 
init_eventTokenId has the value cSeverSocket. Before accumulating this 
assumption, the function evaluates if the token property has already been set and if 
its current value is different from the new one to be set. If this is the case then a 
contradiction is found and a false answer is returned, otherwise the function returns 
true. This answer is assigned to the isValidAss variable of the createServer 
proctype. Note that inside a c_block a proctype name must be preceded with an 
uppercase letter P, for example, PcreateServer, in order to access the objects 
defined in the proctype scope.  An arrow is also used after the proctype name to 
refer to its local variable isValidAss. This variable is then evaluated by the model 
checker via this sentence.  

 

 
 

This evaluation is always done after calling the addValueAssumption C 
function. If the value is false (represented by 0) then SPIN blocks this execution 
thread. With this blocking SPIN will not finish this transition which will eliminate 
any chance of finding the desired trace. Then the model checker engine is going to 
backtrack in order to try to find another trace which is not blocked. 
 

4.3.4.5. Transition code segment 
 

The code segment of the CreateServer transition takes as input the 
init_event CPN variable (which is used as arc inscription for the incoming arc of 
the transition) and returns as output the variables server_id and the create_server 
CPN variables (which are used as arc inscriptions for the outgoing arcs form the 
transition). By the time the CPN transition occurs, the init_event variable has 
already been bound to a token from the $e place so we refer to this variable as the 
token itself. Inside the action clause of the code segment the server_id variable is 
bound to the instance_id property of the init_event token. After this binding or 
assignment both, the variable and the property, are equal. In our Promela 
specification this equality is stored as an equality assumption.  
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Note that first the server_idTokenId token is initialized by calling the inline 

definition newTokenIdInPlace. The first parameter is the token itself and the 
second is the identifier of the place server_idPlace where this token will be added. 
Then the equality assumption is effectively added by calling the 
addEqualityAssumption C function inside a c_block. It accumulates an 
assumption that states that the instance_id property of the init_eventTokenId 
token is equal to the server_idTokenId.  

  
Inside the action clause the CPN variable create_server is also bound to a 

record of the same colorset. In the record its name property is bound to the 
instance_id property of the init_event token and its type property is bound to the 
string value “ServerT.” These bindings apply for the properties of the 
create_server variable given that the record is bound to it. We refer to 
create_server variable as a token. In our Promela specification these two bindings 
are specified as the accumulation of two assumptions:   

  

 
 
First the create_serverdTokenId token is initialized by calling the inline 

definition newTokenIdInPlace having as arguments the token itself and the 
identifier of the place create_serverIdPlace where this token will be added. Then 
the assumptions are stored. First the value assumption is added by calling the C 
function addValueAssumption inside a c_block. It accumulates an assumption 
which states that the value of the type property of the create_serverTokenId token 
is cServeT. Then the equality assumption is accumulated by calling the 
addEqualityAssumption C function inside another c_block. It accumulates an 
assumption that states that the name property of the create_serverTokenId token 
is the same as the instance_id property of the init_event token.  

 
Note that we first accumulate all value assumptions and then equality ones 

because we want we want to avoid unnecessary accumulations of any equality 
assumption. If after the accumulation of a value assumption the isValidAss 
statement evaluates to false (a contradiction was found) then the model checker 
will backtrack and no unnecessary equality assumption accumulation will be 
carried out. 
 

4.3.4.6. Token additions into output places of the transition 
 

Finally the CPN tokens server_id and create_server are added into the places 
$server_id ans $create_server respectively. Remember that by this time the CPN 
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variables server_id and create_server have already been bound after the execution 
of the code segment, so we refer to them as tokens. In our Promela specification 
these additions are specified like this:  

 

 
 

In these sentences the messages create_serverTokenId and 
server_idTokenId are sent to the channels create_serverPlace and 
server_idPlace respectively. 
 

We have finished explaining the CreateServer transition and all its related CPN 
constructs.  
 

4.3.4.7. Double-oriented arcs 
 

In this subsection we explain how double-oriented CPN arcs are specified in 
Promela. We take as base example the ConnectClient transition:  

 
 

 
Figure 13 

 
Remember that a double-oriented arc is shorthand for two arcs with the same 

arc inscriptions but opposite directions. 
 

The Promela specification for this transition would be: 
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Note that a message is received from the server_idPlace channel and copied, 
not consumed, into the server_idTokenId variable. This is because of the double-
oriented arc; instead of having the token first consumed and then immediately sent 
to the same channel we decided to have it copied directly to a local variable, which 
is semantically the same, in order to have a small performance improvement when 
model checking. We specify it in Promela in this way: 

 

 
 

Note that the variable name is enclosed between angle brackets. This implies 
that the message will be copied and not consumed. If instead of using a variable we 
would have use a constant the angle bracket operator would have found a message 
using pattern matching. 
 

4.3.5. CPN to Promela Conversion Algorithm 
 

Below we present an algorithm to build a Promela specification from a CPN 
that models a set of architectural rules. The specifications shown in the previous 
sections are used. 
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4.3.5.1. Places 
 
1. For every CPN place: 
 

1.1.  Create a channel with a capacity of  
maximumAmountOfTokensPerPlace messages which only have 
one field of type tokenIdInPlace. 

 
1.2. Define a constant number to identify the place. The constant name is 

the name of the channel that specifies the place with the suffix “Id ”. 
Each place must have a different constant number. The numbers must 
be consecutives starting from 0. 

 

4.3.5.2. Tokens 
 
2. Tokens are identified as specified before. All token identifiers are of type 

tokenIdInPlace. A token is identified via a local id and the id of the place 
where it will be added:  

 

 
This token identifier specification is the same in all the Promela specifications 
of any CPN model. 

 
 

4.3.5.3. Colorsets 
 
3. For every CPN colorset declared: 
 

3.1. If the colorset is simple, define a constant called self with value 0. Use 
the same constant for all declarations of simple colorsets. 

 
3.2. If the colorset is compound, a record in our case, then define constants 

named as the record property (or field) names and with different 
values in order to be able to uniquely identify a property of the record. 
Note that when different CPN colorsets have properties with the same 
names their corresponding constants could be reused. 

  

4.3.5.4. Transitions 
 
4. For every CPN transition: 
 

4.1. Create a proctype and inside it write an infinite loop with an atomic 
block as body. 

 
Arc inscription variables of incoming arcs 
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4.2. For every CPN arc inscription of an incoming arc of the transition 
declare a variable of type tokenIdInPlace named as the name of the 
arc inscription variable with the suffix “TokenId”.  

 
These declarations are written at the beginning of the proctype and outside 
the loop. Inside the proctype these variables are treated as if they specified 
tokens. 

 
Input and output places of the transition 
 
4.3. For each input and output place of the transition:  

 
4.3.1. If the transition is the only one to consume tokens from an 

input place then assert that this proctpype is the only one to 
receive messages from the corresponding channel.  

 
4.3.2. If the transition is the only one to add tokens into an output 

place then assert that this proctpype is the only one to send 
messages to the corresponding channel. 

 
Assertions are written at the beginning of the proctype and outside 
the loop. 

 
 
      Transition occurrence 
 

Token consumption from input places of the transition 
 

4.4. For every input place of the transition: 
 

4.4.1. If it is only an input place of the transition then consume a 
message from the channel that specifies the place.  

 
Double oriented arcs 
 
4.4.2. If there is a double-oriented arc between the place and the 

transition, that is to say, the place is also an output place of the 
transition then receive a message from the channel that 
specifies the place but do not consume it.  

 
In both cases the message must be received in an already declared 
variable (in 4.2) derived from the CPN arc inscription variable that 
surrounds the arc between the input place and the transition. 
Message receptions are carried out at the beginning of the atomic 
block of the loop. 

 
Transition guard 
 
4.5. For every condition in the transition guard accumulate a value or 

equality assumption. Write all accumulations of value assumptions 
first and then all the accumulations of equality assumptions. For every 
value assumption call the addValueAssumption C function inside a 
separate c_block and after every block evaluate the value returned by 
the function using a blocking statement. Reuse the isValidAss 
variable declared at the beginning of the proctype. The function 
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receives three parameters, the desired token, the constant which 
represent the property of the token to be bind and the binding value. 
For every equality assumption call the addEqualityAssumption C 
function. The function receives four parameters, the first token, the 
constant that represent the property of the first token to bind, the 
second token and the constant that represent the property of the 
second token to bind. Write all these calls inside the same c_block. 

 
Arc inscription variables of outgoing arcs 
 
4.6. For every CPN arc inscription variable of an outgoing arc of the 

transition: 
 

4.6.1. Initialize the Promela variable declared in 4.2 for this arc 
inscription variable. This initialization consists in stating that 
this variable specifies the token to be added into the output 
place of the transition which is pointed by the arc that is 
surrounded by the arc inscription in matter. The initialization is 
carried out by calling the inline definition newTokenIdInPlace 
whose arguments are the mentioned Promela variable and the 
identifier of the mentioned output place of the transition. 

 
Transition code segment 
 
4.6.2. For every binding for the CPN arc variable or for every record 

property of it done in the action clause of the transition code 
segment accumulate a value or equality assumption. Write all 
accumulations of value assumptions first and then all the 
accumulations of equality assumptions. For every value 
assumption call the addValueAssumption C function inside a 
separate c_block and after every block evaluate the value 
returned by the function using a blocking statement. Reuse the 
isValidAss variable declared at the beginning of the proctype. 
The function receives three parameters, the desired token, the 
constant which represent the property of the token to be bind 
and the binding value. For every equality assumption call the 
addEqualityAssumption C function. The function receives 
four parameters, the first token, the constant that represent the 
property of the first token to bind, the second token and the 
constant that represent the property of the second token to bind. 
Write all these calls inside the same c_block. 

 
Token additions into output places of the transition 

 
4.7. For every output place of the transition send a message into the 

channel that specifies the place. This message must be sent from the 
variable derived from the CPN arc inscription variable that surrounds 
the arc between the output place and the transition. Messages are sent 
at the end of the atomic block of the loop.  

 



Chapter: The technique 

52 / 71 

4.4. Specify an architectural scenario in 
Promela 

 
Scenarios are specified in Promela.  In scenarios we can state facts such as the 

number of component creations, connector creations and connections between 
components including the number of occurrences of certain activities in 
components, ie, component executions. Below, a sample scenario is shown. 

 
It specifies that one server and two clients were created and they were 

connected with each other. 
 
 

4.5. Model check the Promela specification of 
the CPN 

 
This section explains general behavior of the Promela specification and C code 

and how to write the stub which depends on the architecture. 
 

4.5.1. The init process 
 

The init proctype is is the main process and is the first to be executed. Let´s 
see its specification:  
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The isSatisfiable variable is used to know if the trace found is valid. The structure 
that stores the assumptions to be accumulated when executing the CPN, is 
initialized. Then the stub is run to generate an initial marking in the CPN. Then a 
file which contains all the transitions of the CPN is included. They were specified 
as proctypes and they may occur non-deterministically. After executing the CPN 
we want to know if the architecture scenario is fulfilled. If this is the case then the 
Assumption Verifier is executed to evaluate all the assumptions accumulated when 
executing the CPN. In case they are valid then the trace of runtime events that 
made the scenario to be fulfilled, are printed exactly in the order they happened. 
This print is followed by the value and equality assumptions verified about the 
found trace. 
 

4.5.2. Stub 
 

Our aim is to find a trace of runtime events and we need something to generate 
them, so we specify a stub in Promela which is able to produce all possible traces 
of runtime events. An initial marking  of a CPN sets a configuration of tokens in it, 
determining the tokens inside each place. A determined sequence of runtime events 
is conceptually equivalent to an initial marking in the CPN model derived from the 
mapping rules. This initial marking only configures the amount of tokens in the 
input places of the CPN because those are the tokens that represent the runtime 
events. Due to our symbolic execution approach we do not need to define any 
property of the tokens placed in the initial marking. Furthermore the stub 
establishes this initial marking in the modeled CPN for a bounded amount of 
tokens. For a same amount of tokens, different random initial markings are tried 
simulating different instrumentations, and consequent runtime events, that could be 
generated by any program. 
 

The stub is specified by the a proctype called stub() which executes before all 
the processes that represent the actions. Let’s see its specification for the Client-
Server example: 

 

 
 
Inside the atomic block we see a loop; it iterates while the number of 

positioned tokens is lower than the chosen initial amount of tokens denoted by the 
constant initialTokenAmount . In every iteration only one token is initialized and 
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added into a place that models a runtime event, that is to say, a place that does not 
have incoming arcs. This place is chosen non-deterministically using an if  
construct where the decision between the inner statements is taken by the model 
checker. These statements must be modified depending on the model to be 
analyzed. There must be one line for each input place. It’s important to note that an 
input place represents a type of runtime event. 
 
 

4.6. The Assumption Verifier 
 
 

In this section we are going to explain an overview of how the assumption 
verifier works. As we mentioned in previous sections, the Assumption Verifier 
verifies that all the accumulated value and equality assumptions has been satisfied.  
 

The accumulated assumptions are collected in two structures called 
EqualityAssumptions and ValueAssumptions as we can see bellow. 
 

 

 
 

Both structures are inside a c_decl block, which means that they are written in 
C and that they declare C types. 
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We choose these structures in order to optimize the verification algorithm. The 

chosen structures provide a complexity order O(1) to insertion operations, O(1) to 
value assumption access operation and O(N) to equality assumption access 
operation; where N equals the maximum amount of equality assumptions per 
property constant which is configure by the user for each model. The complexity 
O(1) is given by using C direct access in arrays. The complexity O(N) is given by 
having to search inside the EqualityAssumptionMember array. These structures 
have the disadvantage of requiring much more memory space than the straight 
approach where you use a list to store the assumptions.  

The algorithm is implemented completely in C. Let’s see it: 
 
 

 
 

The algorithm verifies the absence of contradictions by calculating a transitive 
closure of the assumptions set. Let’s see an example of a contradiction:  

 
token1.property1=1 
token1.property1= token3.property4 
token3.property4= token2.property3 
token2.property3= 5 

 
As we can see, by transitivity, 1 = 5 which is a contradiction. 

 
The algorithm navigates all the value assumptions and for each one checks if 

there is a contradiction. This is done by navigating the equality assumption tree, 
expanding the tree each time an equality assumption is found. Each node would 
represent a token property and the node value would be a value assumption. If no 
value assumption exist the node value is null. Once the whole tree has been 
navigated all the node values should have been null or the initial value. If not a 
contradiction has been found. 
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4.7. Summary of the key challenges raised 
when specifying and verifying the CPN   

 
As we could see from sections 4.3 to 4.6 we had to cope with different types of 

challenges related to how to specify some CPN constructs and its operational 
aspects in Promela and how it affects the verification carried out by SPIN. The 
explanations of the solution to these challenges show the correction of the 
specification and the assertiveness of the taken decision. Below we sum up some of 
these challenges: 
 

We found an appropriate and comfortable way to specify places as channels, 
transitions as processes declared as proctypes and tokens as messages. Channels 
may hold messages as places may hold tokens, and messages may carry data values 
as tokens do. Proctypes may access channels to allow communication between 
processes and they are shared, as a place may access transitions. In proctypes 
messages can be removed, added or just only accessed from and into channels; as 
transitions may remove and add tokens from and into places. 
 

We needed to find an appropriate way to identify tokens as explained in 4.3.2. 
We found a way that make an optimization to the state space and consequently 
avoid unnecessary possibilities. 
 

Having specified transitions as proctypes allowed us to simulate the 
nondeterministic occurrence of CPN transitions given that processes are run non-
deterministically by SPIN. 
 

Transitions occurrence is indivisible so execution of its corresponding 
proctype should be too. So we embraced its body in an atomic block. A transition 
is enabled only when all its incoming input places have tokens, otherwise it is not. 
We simulate it by blocking the process execution when a message is attempted to 
be received from a channel that specifies an incoming place. Fortunately the 
management of blocking and unblocking is carried out by SPIN when the 
conditions are given. Note that there are two constructs in PROMELA for 
specifying that a sequence of statements must be executed atomically: d_step and 
atomic. We decided to use atomic because d_step has the limitations that except 
for the first statement in the sequence (the guard), statements cannot block, and as 
we see before it may happen.  
 

When executing the CPN and accumulating assumptions we did not want 
to accumulate unnecessary assumptions. So when detecting an invalid assumption 
the model checker cut that execution, backtracks and continues with other and we 
would not accumulate this assumption. Furthermore, in the case of value 
assumptions, we could immediately evaluate them whenever found. 
 

After having found a way to specify a CPN, we wondered how we would 
manage its transition occurrences when SPIN verifies the CPN. As we explained in 
previous sections, while model checking, we may find a set of constraints related to 
all the transitions occurrences involved in a trace and so there may be more than 
one possible configuration for the trace. To cope with it, we decided to use a 
symbolic execution approach, so we accumulate all these constraints. We used this 
idea to create a model where each time there is a condition, or an assignment, an 
assumption is created with the condition stated. After a trace execution is finished 
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the assumptions are evaluated to see if the set is satisfiable comparing all the 
assumptions made. 
 

Finally we had to put it all together. We had the CPN, the Stub, the 
Assumption Verifier and architecture scenario. We decided that the CPN execution 
would be carried out non-deterministically. The decision of using a symbolic 
approach obliged us to have at least an algorithm of two big steps: first execute the 
CPN and then evaluate the assumptions accumulated.  It was clear that Stub should 
run at the beginning of the algorithm. But when should we verify the scenario? The 
scenario predicates on output places given that they model the architectural events 
generated by the DiscoSTEP mapping rules. So before evaluating all the conditions 
accumulated in the trace that leads to a CPN marking we first want to know if that 
marking is the desired one, that is to say, if the scenario is fulfilled. So we evaluate 
the architecture scenario after executing the CPN. 
 

 

4.8. Run the SPIN Output Analyzer  
 

We developed a tool that interprets the output trail generated by SPIN into a 
human readable trace, in this section we explain how we do this translation. 

 
 
Analyzer to interpret the SPIN output trail and generate a human readable 

trace.   
 
Translate the SPIN trace into a human readable trace of runtime events 

4.8.1. The report generator 
 

Once the model checker finds a trace that complies with the scenario specified 
a file is generated by SPIN. This file contains the information of all the non-
deterministic choices made by the model checker. This information may be read by 
the model checker to make simulations over the model, but is not easy to be read 
by an external program or by the human. Another file is generated with information 
of the model checking process itself. We decided to add information of the trace 
found to this file. So when a trace is found a C method is called which prints all the 
important information related with the trace found. This information will look 
similar to the following example: 

 
RUN TIME EVENTS CALL ORDER - START 

0 0 1 

3 0 7 

3 1 8 

3 2 9 

4 0 4 

4 1 5 

4 2 6 

RUN TIME EVENTS CALL ORDER - END 

VALUE ASSUMPTIONS - START 

0 0 0 1 

0 1 0 1 

0 2 0 1 

1 0 0 3 

1 1 0 3 

1 2 0 3 
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2 0 0 6 

2 1 0 6 

2 2 0 6 

3 0 0 8 

3 1 0 8 

3 2 0 8 

VALUE ASSUMPTIONS - END 

EQUALITY ASSUMPTIONS - START 

0 0 1 6 0 0 

0 0 1 5 0 0 

0 1 1 6 1 0 

0 1 1 5 1 0 

0 2 1 6 2 0 

0 2 1 5 2 0 

1 0 1 6 0 0 

1 0 1 8 0 1 

1 0 2 9 0 0 

1 0 2 7 0 0 

1 0 2 8 0 0 

1 1 1 6 1 0 

1 1 1 8 1 1 

1 1 2 9 1 0 

1 1 2 7 1 0 

1 1 2 8 1 0 

1 2 1 6 1 0 

1 2 1 8 2 1 

1 2 2 9 2 0 

1 2 2 7 2 0 

1 2 2 8 2 0 

2 0 1 9 0 0 

2 0 2 10 0 0 

2 1 1 9 0 0 

2 1 2 10 1 0 

2 2 1 9 0 0 

2 2 2 10 2 0 

3 0 1 10 0 0 

3 1 1 10 0 0 

3 2 1 10 0 0 

4 0 1 10 0 0 

4 1 1 10 0 0 

4 2 1 10 0 0 

EQUALITY ASSUMPTIONS - END 

 
 Is easy to see that the information is divided in three sections: 

1. Run Time Events Call Order: This section contains information 
regarding the events that were executed for the trace found and the 
order in which they were executed. Each line represents an event. Each 
event is represented by 3 numbers, the first is the place id, the second 
is the local token id and the third is the order number. 

2. Value Assumptions: This section contains information regarding the 
values that the parameters of the events must have in order to have a 
complying trace. Each line represents the binding of a variable to a 
value. Each binding is represented by 4 numbers, the first is the place, 
the second is the local token id, the third is the property index and the 
fourth is the constant id. 

3. Equality Assumptions: This section contains information regarding 
an equality relation between some of the events parameters. Each line 
represents a binding between two properties. Each binding is 
represented by 6 numbers, the first three numbers represent one 
property and the rest the other one. Each property is represented by 
three numbers, the first is the place, the second is the local token id and 
the third is the property index. 
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For a human it is very difficult and time consuming to analyze all these 
numbers. So we created a tool to automatically analyze this information. The input 
of this tool is the information explained earlier plus two sets of XML files. The first 
set has a XML file for each constant used in the model. Each XML contains the id 
and the name of a constant. The second set has a XML file for each place used in 
the model. Each XML contains the place id, the place name, if the consumption of 
a token represent a run time event or not, and the data type of the events. The data 
type has a name and the name of each property defined for the type. For simple or 
primitive data types as for example “String” a property named “value” is added for 
consistency with more complex types. This XML files have to be specified 
according to the model and scenario specified in Promela. 

 
After executing the tool a report is generated with the information presented in 

a way easily understandable for humans. The following is an example of such a 
report: 
 

CreateServer.e (constructor_name 'ServerSocket', instace_id A) 

ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C) 

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id D) 

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-0) 

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-1) 

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-2) 

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-0) 

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-1) 

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-2) 

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-1) 

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-2) 

CreateServer.e (constructor_name 'ServerSocket', instace_id B) 

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-1) 

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-2) 

CreateServer.e (constructor_name 'ServerSocket', instace_id-0-2) 

A = {instace_id-0-0, calee_id-1-0} 

B = {instace_id-0-1, calee_id-1-1, calee_id-1-2} 

C = {return_id-1-0, calee_id-2-0, calee_id-2-1, calee_id-2-2} 

D = {return_id-2-0, calee_id-3-0, calee_id-3-1, calee_id-3-2, calee_id-4-0, 

calee_id-4-1, calee_id-4-2} 

 
The report has two different sections. The first is the resulting trace of the 

whole process. All the events appear in the order in which they should be executed. 
For each event you can see its name and the parameters for that specific execution. 
For each parameter you can either see its type name and value, type name and 
equality class or type name with unique instance identification. The second section 
shows the definition for each equality class. Each class is composed by two or 
more instances. 
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5. Conclusions 
 

5.1. Concluding remarks 
 
Having chosen the symbolic execution approach was an asserted key decision 

given that otherwise we would not have been able to inspect the whole state-space 
when model-checking.  
 

Working with SPIN conducted us to write the specification in Promela which 
turned out to be a very intuitive language to specify a CPN. Furthermore SPIN has 
the flexibility that allowed us to easily add custom C code, and it was fast enough 
to model check big scenarios. 

 
As we could see we had to cope with some issues when specifying the CPN in 

Promela, mainly related to the semantic and operational aspects of the CPN. 
Fortunately we could find neat and clear ways to do it with Promela and Spin, and 
the theoretical background of SPIN help us to verify the correctness of some key 
parts of this work. In our opinion, SPIN is great model checker and Promela is a 
very comfortable language to specify concurrency and synchronization.  
 

We first started our work with the idea of just providing a way to verify if 
some important architecture scenarios were still valid in an already implemented 
system at runtime. Fortunately we noted that our technique approach was flexible 
enough to be used at an early stage of a system development, during its 
codification and testing, and even after finishing the development. It took us to 
conclude that our work could be useful during the whole development process and 
that it seems to be worth extending our technique and developing tools to automate 
steps of it, tasks that are left as future work. 
 

When we modeled the DiscoSTEP mapping rules as a CPN, we detected some 
errors in these rules. So we discovered that our technique could also be used as a 
way for healing the mapping rules, especially if the modeling is carried out 
automatically. 
 

Nowadays distributed architectures are more common than ever thanks to the 
new Cloud services, with its natural elasticity that helps to scale horizontally in 
ways that were never thought before. What´s more new and complex architectures 
like CQRS ES or EDA are being commonly used in the industry. Even though the 
advantages are clear, the architecture complexity gets bigger every day, even in the 
most basic web applications. The importance of our work grows alongside this 
complexity making the possibility of leaving the academic sphere to enter the 
industry a reality. 
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5.2. Potencial applications 
 

Below we list some of the possible uses of this: 
 
 
 
 
System architecture testing 
 

It could be used to test that an already developed system complies with the key 
architecture scenarios in terms of components, connectors and their relationships. 
 
 
Software development guidance 
 

This technique can be used to help take some decisions when coding and at 
design time being able to test how the system may behavior under certain 
architectural scenarios. It provides a tool to minimize the risk of developing an 
application that does not comply with an already defined architecture. It provides a 
guide on how to realize a given specified architectural scenario. 
 
 
Code generation 
 

The presented technique may also be used as a tool to generate source code of 
the system skeleton so that when correctly used by an application, it would assure 
that the architecture is being complied. In this way we could effectively state that 
the generated system complies with the architecture scenario. 
 

Let´s see an example based on the client-server DiscoStep mapping rules 
sample of this thesis and let´s suppose we want to generate Java code.  
 

DiscoStep mapping rules could be specified without having written any piece 
of code, just knowing the programming language syntax and considering some 
design aspects given that we have to choose class names, method names, object 
relations, etc. which impact directly in the code to be generated as a consequence 
of the application of a mapping rule.  
 

Let´s suppose that after verifying an architecture scenario our SPIN Output 
Analyzer outputs this trace: 
 

CreateServer.e (constructor_name 'ServerSocket', instace_id A) 

ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C) 

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id D) 

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-0) 

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-1) 

ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-2) 

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-0) 

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-1) 

ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-2) 

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-1) 

ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-2) 

CreateServer.e (constructor_name 'ServerSocket', instace_id B) 

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-1) 

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-2) 

CreateServer.e (constructor_name 'ServerSocket', instace_id-0-2) 

A = {instace_id-0-0, calee_id-1-0} 
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B = {instace_id-0-1, calee_id-1-1, calee_id-1-2} 

C = {return_id-1-0, calee_id-2-0, calee_id-2-1, calee_id-2-2} 

D = {return_id-2-0, calee_id-3-0, calee_id-3-1, calee_id-3-2, calee_id-4-0, 

calee_id-4-1, calee_id-4-2} 

 
And if we look, for instance, at the definition of the first involved rule, the 

CreateServer one: 
 
rule CreateServer { 

input { init $e; } 
output { string $server_id; create_component    $create_s erver; 
} 
trigger {? contains($e/@constructor_name, “ServerSocket”) ?} 

      action = {? 
let $server_id := $e/@instance_id; 
let $create_server := <create_component name=”{$server _id}” 
type=”ServerT”/>; 
?} 

} 

 
we could immediately infer that we there must be a class called ServerT .  

Then if we look at the second rule, ConnectClient,: 
 
rule ConnectClient { 

input { call $e; string $server_id; } 
output {create_component $create_client; create_connector 
$create_cs_connection; 

 string $client_id;} 
trigger {? contains($e/@method_name, “ServerSocket.accept”)  and  

$e/@callee_id = $server_id ?} 
action = {? 

let $client_id := $e/@return_id; 
let $create_client := <create_client name=”{$client_id }” 
type=”ClientT” />; 
let $create_cs_connection :=  

<create_connector name= concat($client_id,”-
“,$server_id) 
type=”CSConnectorT” end1=”{$server_id}” 
end2=”{$client_id}” />; 

?} 
} 

 
We could infer that there must be a class called ClientT . If we observe the let 

part we see that there is a create_connector  high level event which represents 
that there exist a static relationship between the server and the client. The server is 
identified because its id is received as a parameter in the input part and both rule 
applications: 
  

CreateServer.e (constructor_name 'ServerSocket', instace_id A) 

ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C) 

 
are related because of the A argument. Finally we know that the server references or 
contains the client as a consequence of the rules composition:  
 
composition System { 

CreateServer.$server_id <-> ConnectClient.$server_id; 
… 

} 

At first sight we can see that some types and some static relationships can be 
inferred with just a simple observation. A more deep analysis may show other 
useful characteristics. 
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DiscoSTEP mapping rules healing 
 

Given that the way of modeling the mapping rules as a CPN is clearly defined 
it is a good opportunity to verify the correctness of them. When we were modeling 
the CPN for the set of DiscoSTEP mapping rules of a client-server architecture, we 
detected some bugs and errors in these rules as a consequence of following the 
translations rules (from mapping rules to CPN) exposed in this thesis. So we 
discovered that our technique could also be used as a way for healing the mapping 
rules, especially if the modeling is carried out automatically. 

 

5.3. Future work 
 

Below we list some tentative improvements or extensions for our work: 
 
1. In this thesis we presented the detailed steps to model whatever set of 

DiscoSTEP mapping rules as a CPN and how to specify this CPN in Promela. 
It would be useful to automate these two steps so that the DiscoSTEP mapping 
rules are taken as input and the Promela specification of its corresponding CPN 
is returned as output. 

 
2. We specify an architecture scenario as a Promela assertion about the places of 

the CPN that models the DiscoSTEP mapping rules of the components and 
connectors of the architectures. We think that developing a visual SDL 
(Scenario Description Language) and a tool to specify a scenario directly in 
terms of these last elements (and then translated into a Promela assertion about 
the corresponding CPN) would facilitate the task of writing scenarios. 

 
3. The source code generator mentioned in a section before could be developed to 

generate the skeleton of the system from a set of DiscoSTEP mapping rules. 
 

The three above items could extend the current architecture of our work as 
shown below.  
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Figure 14 

 
Note that the responsibility of the new added components were clearly 

described above. 
 
4. We support architecture scenarios about the number of component creations, 

connector creations and connections between components including the 
number of occurrences of certain activities in components, ie, component 
executions. Scenarios could be extended to support, for example, the 
specification of order between the creations, connections and activities. 
 

5. In our implementation we simplify the translation of XPath statements defined 
in [4] into simple equality statements between two variables or a variable and a 
constant. We could extend our work to support the full power of XPath 
statements. 
 

6. A way of making our work more accessible and more popular could be to 
develop an Eclipse plugin to carry out all the steps involved in our technique 
including all the extensions improvements and mentioned above. The plugin 
could allow us, for example, to visualize the resulting CPN, to execute it, to ran 
Spin verifications, visualize traces and reports.  
 

7. We only implemented completely the Client-Server architecture rules defined 
by Garlan. We tried some small variants but in the future it would be good to 
implement more architectures. 
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Appendix A 

DiscoSTEP client-server mapping rules 
 

Below a DiscoSTEP program for mapping runtime events into a client-server 
architecture is shown. It was taken from [4] but some details were corrected.  
 
event { 

input { 
     init; 
     call; 
     string; 

} 
output { 

     string; 
     create_component; 
     create_client; 
   create_connector; 
     update_component 
     update_connector 

} 
} 
 
rule CreateServer { 

input { init $e; } 
output { string $server_id; create_component $create_serv er; } 
trigger {? contains($e/@constructor_name, “ServerSocket”) ?} 

      action = {? 
let $server_id := $e/@instance_id; 
let $create_server := <create_component name=”{$server _id}” 
type=”ServerT”/>; 

?} 
} 
 
 
rule ConnectClient { 

input { call $e; string $server_id; } 
output {create_component $create_client; create_connector 

$create_cs_connection; 
 string $client_id;} 

trigger {? contains($e/@method_name, “ServerSocket.accept”)  and  
$e/@callee_id = $server_id ?} 

action = {? 
let $client_id := $e/@return_id; 
let $create_client := <create_client name=”{$client_id }” 
type=”ClientT” />; 
let $create_cs_connection :=  

<create_connector name= concat($client_id,”-
“,$server_id) 
type=”CSConnectorT” end1=”{$server_id}” 
end2=”{$client_id}” />; 

?} 
} 
 
 
rule ClientIO { 

input { call $e; string $client_id; } 
output { string $io_id; } 
trigger {? (contains($e/@method_name, “Socket.getInputStre am”) 
or contains($e/@method_name, “Socket.getOutputStream” )) and 

$e/@callee_id = $client_id ?} 
action {? let $client_id := $e/@return_id; ?} 

} 
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rule ClientRead { 
input { $e : call; $io_id : string; $client_id : string; } 
output { $update_client : update_component; $activity_type  : 
string;} 
trigger {? (contains($e/@method_name, “InputStream.read”) and 
$e/@callee_id = $io_id ?} 
action = {? 

let $update_client := <update_component name=$clien t_id 
property=”Read”  

value=”true” />; 
let $activity_type := “Read”; 

?} 
} 
 
 
rule ClientWrite { 

input { $e : call; $io_id : string; $client_id : string;  } 
output { $update_client : update_component; $activity_type  : 
string; } 
trigger {? (contains($e/@method_name, “OutputStream.write”)  and  

$e/@callee_id = $io_id ?} 
action = {? 

let $update_client := <update_component name=$clien t_id 
property=”Write”  

value=”true” />; 
let $activity_type := “Write”; 

?} 
} 
 
 
rule UpdateServer { 

input { string $server_id; string $activity_type; } 
output { update_component $update_server; } 
trigger {? ($activity_type = “Read”) or ($activity_type = 
“Write”) ?} 
action = {? 

let $ update_server := < update_componnet name=$ser ver_id 
property=”Activity”     

value=$activity_type />; 
?} 

} 
 
 
composition System { 

CreateServer.$server_id <-> ConnectClient.$server_id; 
ConnectClient.$client_id -> ClientIO.$client_id; 
ConnectClient.$client_id <-> ClientRead.$client_id; 
ClientIO.$io_id <-> ClientRead.$io_id; 
ConnectClient.$client_id <-> ClientWrite.$client_id; 
ClientIO.$io_id <-> ClientWrite.$io_id; 
ClientWrite.$activity_id -> UpdateServer.$activity_id; 
CreateServer.$server_id <-> UpdateServer.$server_id; 

} 
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Appendix B 
 

Concrete syntax of DiscoSTEP Language  
 

We present the concrete syntax of DiscoSTEP 2. 
 

 
 

Note that the productions XPRED and XQUERY in the language refer to XQuery 
Predicates and XQuery FLWOR expressions, respectively. The grammar for these 
is defined in http://www.w3.org/TR/xquery/ 
 
 
 

 

 

                                                 
2 The concrete syntax was taken from the Appendix A of the paper: “DiscoTect: A System 
for Discovering the Architectures of Running Programs using Colored Petri Nets” 
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Appendix C 
 

A client-server architecture example 
 

The CPN specification  
 

The table below lists the files used for the Promela specification of the CPN 
model of the DiscoSTEP mapping rules for the client-server architecture. 
 
File name Description 
client-server 
architectural rules 
CPN.decl 

This file specifies the declaration and definition of the places 
of the CPN, its colorsets, the token representation, the 
structure that stores the tokens in the places and some CPN 
constants. 

client-server 
architectural rules 
CPN.pml 

This file specifies  all the CPN transition occurrences and a 
stub for this architecture which determines a random initial 
marking for the input places of the CPN 

client-server CPN 
transitions to 
occur.pml 

In this file the CPN transitions are executed. 

 

The architecture scenario specification 
 

The specification is divided into these files: 
 
File name Description 
a client-server 
scenario.pml 

This file contains a Promela assertion about the CPN places 

constants related 
to a client-server 
scenario.decl 

This file contains related constants to the scenario. 

 

The Assumption Verifier 
 

The implementation is divided into these files: 
 

File name Description 
assumption 
verifier.decl 

This file contains the declaration and definition the structures 
that contain value and equality assumptions (conditions). 

assumption 
verifier.c 

This file contains functions and procedures to initialize the 
structures that contain the assumptions, to populate this 
structure with value an equality assumptions and to evaluate 
these assumptions. 
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General files 
 

File name Description 
support.decl This file contains support structures and variables. 
support.c This file contains support procedures to accumulate and 

print out the runtime events and to print out the value and 
equality assumptions.  

client-
server_Main.pml 

This file contains the entry point for the Spin verification. 
This file includes all the other files. I also contains a macro 
that adds a token in a place. Although the file is generic for 
whatever architecture, it must include the files related to the 
specific architecture and scenario. 

 

 


