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Resumen

Esta tesis se basa en el proydoiscoTectdesarrollado por David Garlan
y su grupo de investigadores de la de la Univedsidia Carnegie Mellon cuyo
objetivo es descubrir la vista C&C (de componenyesonectores) de la
arquitectura actual de un sistema en ejecuciora &b definerreglas de mapeo
en el lenguajeDiscoStepque convierten eventos de ejecucién en eventos de
arquitectura con los cuales se va construyendalatactura del sistema.

Dada una un vista C&C de la arquitectura de uremiaten ejecucion,
pueden plantearse diferentes escenarios en térohnios constructos de esta vista
respecto de la configuracion actual de la arquitact Un escenario podria
especificar las cantidades de componentes y caesctel numero y tipo de
conexiones entre componentes, la ejecucion deampanente particular, etc.

En nuestra tesis desarrollamos una técnica queitpersaber si un
determinadcescenario arquitecténicen términos de componentes y conectores,
se cumple en base a lasglas de mapealefinidas enDiscoSteppara una
arquitectura. Y en caso afirmativo, encontramosrdza minima de eventos de
ejecucion que deben ocurrir en el sistema en gj@tpara que asi sea.
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Abstract

This thesis is based on the DiscoTect project dgeel by David Garlan
and his group of researchers from the Carnegiedvdllniversity whose aim was
to discover the C&C (components and connectorsy aethe current architecture
of a running system. To do that they define mappinigs in the DiscoStep
language that transform runtime events into archite events which are used to
build the system architecture

Given a C&C architectural view of the architectafea running system,
we could state different scenarios in terms ofdbestructs of this view respect to
the current configuration of the architecture. &rsario may specify the amount of
components and connectors, the number and type onhections between
components, the execution of a component, etc.

In our thesis we developed tachnique to know if a givenarchitecture
scenario, in terms of components and connectors, is fulfilleased on the
DiscoStepmapping rulesof an architecture. And if this is the case, walfthe
minimum trace ofuntime eventsthat should happen in the running system to do
So.
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Chapter: Introduction

1. Introduction

1.1. Motivation

Given a component and connector software architecive could imagine
many relevant scenarios it should fulfil at arctiiteal level. A scenario could
specify, for example, characteristics of an ardhitee configuration such as the
amount of components and connectors it should hidae connections between
components carried out in runtime, the executioa cbmponent, etc. It would be
really useful and interesting to know what shoudghren at runtime level to fulfill
the proposed scenario. In this way we could takevatéhge of it at the architecture
design time or coding time during the developmeantcess or after it to evaluate
the level of conformance between the developedBysind the architecture. So,
we present a technique to find, if there exists,tiinimum trace of runtime events
that maps into a given architectural scenario $jpgaton.

1.2. About this work

Our research is mainly based in [4] which is altbet discovery of a system
architecture at runtime. To address it, the cordpiheplementation of a system is
instrumented using aspects which emintime events(in the form of XML
elements) when a specific part of the system isueel. These runtime events are
captured and consumed by a runtime engine cdisdoTectwhich generates
architectural events. To do thdbiscoTect also takes as input a file called
DiscoSTEP Mapping Specificatiomhich contains rulesvritten in DiscoSTEP
language which specify how to map these runtimetesydevel events into
architectural ones, and are formally defined witbadored Petri Net Architectural
events are then fed to @mchitecture Builderthat incrementally creates a model
of the system architecture.

Our work is based on thBiscoSTEP Mapping Specificatior(or directly
mapping rulesfrom now on) mentioned in the above paragraph.s&heiles
establish mappings between runtime events andtecthial ones. In [4] a way of
translating these mapping rules intcCalored Petri Net(CPN from now on) is
provided. We extend this translation and show aegerway of specifyingdCPN
constructs in Promela, the verification modelingdaage understood by the well-
known model checke&PIN. In this way, the mapping rules can be model cbeck
together with an architectural scenario specifigatieturning, if there exists, the
trace of runtime events that fulfills this scenaN@hile model checking, we may
find a set of constraints related to each everteats of finding just one, and so
there may be more than one possible configuratorinfe trace. To cope with it,
we decided to use symbolic executionapproach, so we accumulate all these
constraints and finally we verify them in orderkimow if there exists such trace of
runtime events that maps with the proposed scenérisuch trace effectively
exists, the presented technique finds the minimuen, gonsidering the size of a
trace as the amount of instructions included isatthe minimum trace is the one
with the least amount of instructions.
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Chapter: Introduction

1.3. Thesis objective

The aim of the research is to developgeghnique to find, if exists, the
minimum trace ofuntime eventshat should be generated by a running system to
fulfill a given architectural scenario specification regarding the system’s
components and connectors, and based on tim@pping rules written in
DiscoSTER

1.3.1. Contributions

We identified in our work the following contributis:

1. We present a general form of modeling mapping ralégen DiscoSTEP
as a Colored Petri Net. Note that in [4] Garlarspres a basic idea of this,
we deepen and extend this.

2. We present a general way of specifying the Coldtetti Net in Promela,
the modeling language of the model checkEtN.

3. We create a stub that models an instrumented sysitedn simulates
random sequences of execution events.

4. We support the verification of architectural scémsin terms of type and
guantity of components and connectors, and relstips between them.

5. We developed an Assumption Verifier that checks th# conditions
collected duringSPIN verification as a consequence of the adoptions of
the symbolic executiorapproach. Note that this Verifier is independdnt o
the architecture characteristics.

6. We developed a tool that, in case of effectivatgliing a minimum trace of
runtime events that complies with the architectgenario, it interprets the
output trail thrown bySPIN during verification and generates a simple
report that contains a human readable version ef tths trace, the
conditions evaluated and information analysis tesul

7. Finally, we present a technique that gathers abehabove artifacts to
provide a general way to cope with the verificat@inC&C architecture
scenarios based @iscoSTEPmapping rules specification.

1.4. Related work

This work is mainly based in [4], [5] and [6]. Wake as starting point the
mapping rulesspecified inDiscoSTEPfor the components and connectors of a
system architecture (C&C view).

Additionally we decided to adoptsymbolic executiorapproach based on [11]
and [12] so that when executing the CPN uSiRgN verifier to find the minimum
trace of runtime events that complies the architecscenario, all the implied
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Chapter: Introduction

conditions are accumulated to be evaluated lastead of being evaluated when
found.

The theoretical background about CPN constructsnandeling aspects were
foundational for our work, and we based on [1],48¢ [3] for this.

It was also very useful for us, some work ab8BIN model checking taken
from [7] to [10].

1.5. Thesis structure

In Chapter 1 we give a general introduction towark.

In Chapter 2 we present some base knowledge néededierstand our work.

In Chapter 3 we show the components of the SceNariidier.

In Chapter 4 we describe the full technique thatdegeloped as a part of this
thesis. Here we explain the passages from Disco®tapping rules to its
corresponding CPN and from it to its Promela sjixation.

In Chapter 5 we show some potential applicationsunfwork.

In Chapter 6 we report our final conclusions artdrierwork

In Chapter 7 we present the work in which we basedhesis separated in themes.
In Appendix A we show the DiscoStep mapping rules & client-server
architecture.

In Appendix B Chapter 11we show the concrete syofddiscoStep Language.

In Appendix C we enumerate and explain all thesfilsed in the implementation
of the scenario verifier, the Promela specificatairnthe CPN for a client-server
example including the architecture scenario.
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Chapter: Preliminaries

2.Preliminaries

In the following subsections the theoretical aspaatolved in our work are
explained. Then the outline of this document ispnted.

2.1. Colored Petri Nets

A Colored Petri Net (also known as CP-net or CPNa igraphical oriented
modeling language for design, specification, siriata and verification of
systems.

The development of Colored Petri Nets has beenedriby the desire to
develop a modeling language — at the same timerdhieally well-founded and
versatile enough to be used in practice for systefnthe size and complexity
found in typical industrial projects. To achievést{tCPNs combine the strength of
Petri nets with the strength of programming langsagPetri nets provide the
primitives for describing synchronization of conmm processes, while
programming languages provide the primitives fofindiion of data types and
manipulation of their data values. Colored Petris\®e an extension to Petri nets
with the added possibility of setting a value tdaken. Furthermore in PN the
Tokens are indistinguishable.

It is in particular well-suited for systems in whiccommunication,
synchronization and resource sharing are importdifpical examples of
application areas are communication protocols,ridiged systems, imbedded
systems, automated production systems, workflowyaiseand VLSI chips

The ellipses and circles are callpthces They describe the states of the
system. The rectangles are callednsitions. They describe the actions. The
arrows are callea@rcs. The arc expressionsdescribe how the state of the CPN
changes when the transitions occur. Each placeaicent set of markers called
tokens In contrast to low-level Petri nets (such as @&a@nsition Nets), each of
these tokens carries a data value, which belongsgiwentype. Token values are
referred as tokenolors and we also refer to data typescatour sets.Tokens of a
CPN are distinguishable from each other and herodored” — in contrast to
ordinary low-level Petri nets which have “black’tistinguishable tokens. A state
of a CPN is called anarking. It consists of a number of tokens positionedtan t
individual places. Each token carries a value whielongs to the type of the place
on which the token resides. By convention, initi@rking is underlined, next to
the place. When the specification of the initialrknag is lengthy, we may omit the
underlining.

The pre-set of a transitidnpre-setf), is the set of its input places and its post-
set, post-set), is the set of its output places. Analogouslypgheset, pre-sed), of
a placep is the set of its input transitions and its pat-post-set(s), is the set of its
output transitions.

The weight in an incoming arc of a place indicdtess many tokens are going to
be added if the connected transition occurs. Aralsely the weight in an outgoing
arc of a place indicates how many tokens are gmirige removed if the connected
transition occurs.
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Chapter: Preliminaries

A Petri Net is said to be ordinary if the weightalff its arcs is 1. The absence of
weight in an arc implies it has weight 1.

A finite capacity Petri Net is that in which thésea maximum of tokens defined
for each place.

During the execution of a CPN each place will comta varying number of
tokens. Each of these tokens carries a data value thatdeeto the type associated
with the place.

Let’'s see some examples:

Update Receive
and a
Send Messages s Message
DB
Inactive
DBM DBM
Receive all s ) \r Send an
Acknowledg- } Acknowledg-
ments ment

Acknowledged

MES

Figure 1

Example Diagram

The diagram below has an example of each inscription and region
we will discuss 1n this chapter. The global declaration node is not
an inseription, but is included because it is an essential part of any
model.

Name Region .
Time Region

Arc Inscription
Place Transition fre P
Colorset Region 4 .
integer @3 Integer
Initial Input inp » Process out
Marking Q —LI c
15428 [inp=3] Guard Region
(* Global Declarations *) (* Process Code Region *) input: 3
color integer = int; IonL?tl[JJtLI::n&t output: 6
var inp : integer; action '
var out : integer; (output (log, "input:"
~ makestring inp
At
Global Deciaration Node A "output:” Lod Redi
. * makestring (inp + 3))) 0g Region
Code Regioti (inp + 3);
Figure 2
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Chapter: Preliminaries

2.2. DiscoTect: Architecture Discovery

A relatively unexplored, technique is to determihe architecture of a
system by examining its runtime behaviour. The kiea is that a system’s
execution can be monitored. Observations abouungme behaviour can
then, in principal, be used to infer its dynamichaiecture. This approach
has the advantage that it applies to any systemnctma be monitored, it
gives an accurate image of what is actually goingrothe real system, it
can accommodate systems whose architecture chaygesically, and it
imposes no a priori restrictions on system impletaigon or architectural
style.

A technique to solve the problem of dynamic ardtueal discovery for
a large class of systems was developed. The key isleo provide a
framework that allows one to map implementationestyto architecture
styles. This mapping is defined conceptually asobored Petri Net [1] that
is used at runtime to track the progress of thetesysand output
architectural events when predefined runtime pastare recognized. Thus
the mapping provides a way to identify when a paagrperforms
“architecturally significant” actions that produaechitectural structures. An
important additional feature of the approach is #bdity to reuse such
mappings across systems. In particular, they eixpleigularity in
implementation and architectural styles so thaihgles mapping can serve
as an architectural extractor for a large collectid similar systems, thereby
reducing the cost of writing each abstraction magpiwhile still providing
flexibility. They implemented a tool callediscoTect and theDiscoSTEP
language used for specifying mappings. Then thetlineu a formal
semantics foDiscoSTEPthat specifies its meaning in terms of ColorediPetr
Nets.

Architecture | __ | Architectural |
DiscoSTEP DiscoSTEP Builder Model
Mapping Specifi-[~ — H \ _
app::r;gt’ionpecI | Compller High-Level Events
"¢ DiscoTect Runtime
Engine

Legend
|j File /l Low-Level Events
C] DiscoTect  compo-
= Event bus
i Event flow
- File input

(This figure is taken from [4])

Figure 3
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Chapter: Preliminaries

2.2.1. Instrumentation

In DiscoTect events such as method calls, CPU utilizationwagt bandwidth
consumption, memory usage, etc. are captured. Tiergee them, the running
system is probed, or instrumented; for which tisedresource monitoring tools
or code instrumentation toolsuch as AspectJ and AspectC++ that allow to inject
code into the target system.

These frameworks implement Aspect Oriented Prograigpin Java and C++.
Using AOP to generate events is clean and lessivevgéhan other methods.

Commercial technologies are used to instrumentséesyto produce runtime
events. For Java-based systems Aspect] was usee@fitee instrumentation
aspectghat are weaved into the compiled bytecode optiograms. These aspects
emit events when methods of interest are enterexkited, and when objects are
constructed. Any implementation of AOP, like SpriA@P, could be used to
generate the runtime events with the same resultgth AspectJ.

2.2.2. Runtime events

In the case of instrumentation, the aspects megdiam the section before can
reflectively retrieve information about the runtimmavironment of, for example, a
call, to ascertain the calling object, the instant¢he object that was called, the
argument values and types that were passed to dileod) the method signature,
etc. The aspects are written to eMi¥IL elementsthat conform to a schema
expected byiscoTect

For example, to instrument tlamatServer below, we could weave in aspects
to emit events when methods were called and whgatisbwere constructed.

public class Chat Server {

static class ClientThread extends Thread {...}
public void run() {

}

private static Vector clients = new Vector();

public  Chat Server () {
ServerSocket serverSocket = new ServerSocket(1111);
while (true) {
// Wait for clients to connect
Socket socket = serverSocket.accept();
new ClientThread(socket, clients).start();

}

public static void main(String[] args)throws IOExce ption {
new ChatServer();
}

After running this application, some of the runtiments generated would be:
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Chapter: Preliminaries

<init constructor_name="ServerSocket” instance_id=" 10">

<call method_name="ServerSocket.accept” callee_id=" 10"
return_id="11" .../>

The init event is generated when the following seoe is executed:

ServerSocket serverSocket = new ServerSocket(1111);

The call event was triggered by the execution effdtlowing method call:

Socket socket = serverSocket.accept();

As you can see, multiplelientThreads ~ can run concurrently, so some of the
runtime events will be generated in random ordef laance interleaved with each
other.

The generated runtime events can be fed DiscoTecteither in real time or
off-line, after the program has completed runnifigese events are then input into
a DiscoSTEP specification which produces architectural evegenerated as a
result of processing the runtime events, whichumtare used to produce the
software architecture.

2.2.3. DiscoSTEP Language

DiscoSTEPIs a language to write architectural rules. Babica DiscoSTEP
rule takes as input low-level events (generatedabgystem in runtime) or
intermediate events (generated by rules to berfedather rules) and generates as
output architecture events or intermediate evéntthe case of architecture events,
they are fed to an Architecture Builder that inceaally builds the system
architecture. ADiscoOSTEPprogram has three parts: the declaration of inpdt a
output event types used in the rules, the defmitd architectural rules and the
declaration of rule compositions.

2.2.3.1. Declaration of input and output event types

In a DiscoSTEPprogram we must declare which event types are mitiand
which ones of output, we can do it following thisusture:

event {
i nput{ input_event _type_nanes}
out put { out put _event _type_namnes }

}

Where input_event type names is a list of the input event type names and
output_event_type names is a list of the output event type names. Let's aa
example:

event {
i nput {
init;
call;
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Chapter: Preliminaries

string;

out put {
string;
create_component;
create_client;
create_connector;

}

Every DiscoSTEPprogram must declare its input and output evengégyphis
declaration is mandatory.

2.2.3.2. Architectural rules definition

A DiscoSTEParchitectural rule has the following parts:

rul e rule_name {
i nput { input_event_declarations }
out put { output_event _declarations }
trigger {$ conditions $}
action {$ assignnments $}

}

Where
e input_event _declarations are the declarations of the input events of a
rule, each declaration is given by an input evene tand the event name.

e output_event_declarations are the declarations of the output events of a
rule, each declaration is given by an output ewgpe and the event
name. Output events can be architecture eventgemtseto be consumed
by other rules because of rule composition.

= conditions are a set of conditions on the input events ofrthe. If all
these conditions are true then the rule is apgicabd its action block is
fired. Predicates are written in XQuery languadehé trigger block is
false then no input event is consumed.

e assignments are assignments from new output events to eaglubeatent
declared in the output block of the rule. Eachgassient is preceded by
the wordlet. Other assignments can be done, for examplegefoporary
usage inside the action block. The right membeevary assignment is
written in XQuery language.

Note that conditions or assignments inside a triggexn action block must be
enclosed between the ‘{$ and ‘$}. Event names tbe preceded with a ‘$’
symbol.

Input events are of a type suchcal, init, string, etc. Events, generated by the
system in runtime or by another rule, are boundthéftype matches, to the event
names declared in the input block of a rule. Whiéofathese input event names
have a binding then the trigger block is evalualkil is true, the rule is applicable
and the action block is carried out generating raput events which can be
architecture events or intermediate events to féedother rules in rule
compositions. Let's see an example@&coSTEPrules used to create a server
component, connect a client and connect it to énees:
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Chapter: Preliminaries

r ul e CreateServer {
i nput {init $e; }

out put {string $server_id; create_component $create_serv er; }
trigger {? contains($e/@constructor_name, “ServerSocket”) ?}
action={?
| et $server_id := $e/@instance_id,;
| et $create_server ;= <create_component name="{$server _idy”
type="ServerT"/>;
7}
}
r ul e ConnectClient {
i nput { call $e; string $server_id; }
out put {create_component $create_client; create_connector
$create_cs_connection;
string $client_id;
}
trigger {? contains($e/@method_name, “ServerSocket.accept”)
and $e/@callee_id = $server_id
?}
action={?
| et $client_id := $e/@return_id;
| et $create_client := <create_client name="{$client_id Y
type="ClientT” />;
(: $concatedlds is an auxiliary variable, not an event L)
| et $concatedlds := concat($client_id,”-*,$server_id)
| et $create_cs_connection :=
<create_connector name= "{$concatedlds}"
type="CSConnectorT” end1="{$server_id}"
end2="{$client_id}" />;
7}
}

The CreateServer rule creates a server componeatule declares in its input
block that it takes as input a runtime event $etype init. The output block
declares that it generates an architecture evemypef create_component called
$create_server and an intermediate event of typegstalled $serve id. The
trigger block has only one condition which statésttthe constructor_name
property of the input event $e contains the stterverSocket”. The action block
has two assignments, first the intermediate evesgn@r id is assigned the
instance_id property of the $e input event and s@thbe architecture event used to
create a component, a server in this case, isresbip $create_server.

The ConnectClient rule creates a client and cosniéa@ server identified by
$server_id. The rule can be understood in the saayeas the CreateServer rule.
Inside the action block a comment is written. Comtaeare enclosed between ‘(:’
and ), if more than one line is written then:arhust be written at the beginning
of the line. Below the comment the concatenatiotwaf strings $client_id, a dash
and $server_id is assigned to the $concatenate@idable. This variable is not
declared in the output block of the rule, so ihig an event, it is just an auxiliary
variable to be used inside the action block.

2.2.3.3. Composition of two rules

DiscoSTEP rules can be composed, that is to say, intermediaents
generated by a rule can be taken as input evengmdper rule. For instance, the
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CreateServer and the ConnectClient rules can bepased via the $server id
event in the way showed below:

conposition {
CreateServer.$server_id -> ConnectClient.$server_id
}

The unidirectional binding denoted by states that the output event $server_id
generated by the CreateServer rule can be conshyndte ConnectClient rule as
an input event.

The composition can also be bidirectional denotethb bidirectional binding
<->. Let’s see an example:

conposition {
CreateServer.$server_id <-> ConnectClient.$server_i d;
}

In the example above the bidirectional bindingestahat the rule that takes as
input the $server_id event can make use of it witltonsuming it. In our case the
ConnectClient rule uses the $server_id but it da#sconsume it so this event can
be consumed or used by another rule. Note thatrotgk could take the $server_id
event as input but in our example the CreateSeunlerdoes not take this event as
input.

When the input block of a rule declares runtimeuinpvents and the rule is
applicable then these runtime events are consuméebrule. But when the input
block of a rule declares non-runtime input evemtd the rule is applicable then
these events can be consumed or just used by lthevithout consuming them, it
depends on the type of composition.

The concrete syntax can be found at Appendix B.

2.3. Model Checking

Model checking is a widely used formal method fae tverification of
concurrent programs. The problem with concurreagmams is that the number of
possible computations is astronomical, so it se#ms exhaustive checking is
impractical as a method of gaining confidence md¢brrectness of the program. In
the 1980s, Clarke, Emerson and Sifakis showedittitan be feasible to check all
possible computations of a concurrent program. rTkeyy insight was to note that
both a concurrent program and its correctness propan be transformed into
nondeterministic finite automata (NDFA) and “runimsiitaneously. Given the
NDFA corresponding to the program and the NDFA egponding to the negation
of the correctness property (expressed in tempogat), a model checker searches
for an “input string” accepted by both automatdt finds one, the input represents
a computation of the program that breaks the couress claim; therefore, the
program is not correct and the computation careperted as a counterexample to
the correctness claim.

Model checking is a model-based, automatic methatl given a finite-state
modelM of a system and a propepychecks the validity of P in M, i&)|=p.
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Figure 4
Typically it involves three steps:

1. Create a finite state model of the system designformal language.

2. Specify a system property in a formal language.

3. Model-check the model and the property togethevetafy if the model
satisfies the property.

Some of the properties that can be verified withdetochecking are:
deadlocks, race conditions, assertion violatioafgtg properties (system is never
in a “bad” state), liveness properties (system wadly arrives in a “good” state),
livelock, starvation, under-specification, over-cifieation, violations of
constraints, etc.

An important ingredient of model checking is an regsive language that can
be used for model description. Such a language haws a precise semantics, yet
it must also be suitable for its application domeam easy to use.

2.3.1. The SPIN model checker

SPIN (Simple Promela Interpreter) is a powerful widely used and proved
automata-based model checker particularly for amadythe logical consistency of
concurrent system&PIN is nowadays one of the foremost model checkers.

It was written by Gerard J. Holzmann who in 200dereed the ACM Software
Systems Award foBPIN. It was originally designed for verifying commuations
protocols and has evolved since then for more tivanty years. It has become one
of the most widely used verification tool§SPIN is particularly suited for
modelling concurrent and distributed systems thatbased upon interleaving of
atomic instructions.

SPIN can be used as a flWlL model checking system, supporting all
correctness requirements expressibléniear time temporal logi¢c but it can also
be used as an efficient on-the-fly verifier for mdbasic safety and liveness
properties. Correctness properties can be spe@Beslstem or process invariants
using assertions, as LTL requirements, or in otveys.

SPIN is commonly used in simulation and verificationdas. In simulation
mode just one choice in the state-space is madedei@mministically. It allows
rapid prototyping with random, guided, or interaeti simulations. In the
verification mode, full exhaustive validation isrgad out using partial order
reduction theory to optimize the search, and baseeither depth-first or breadth-
first search in the state-space.
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Given a model and a property specified in Promiéla,language understood
by SPIN, both are model-checked together. Once the mddstker finds a trace
that complies with the specified property, it gettes a file containing the trail
with the information of all the non-deterministitiaices made by the model
checker. This information could also be read latethe model checker to make
simulations over the model.

For our work we also usei&pin, a graphical user interface f&PIN, from
which we can check syntax correctness of Promedaifépations, run simulations
and verifications and other useful things.

2.3.1.1. Promela language

As stated beforeSPIN supports a high level modeling language called
Promela (ProcessMeta Language) which allow us to specify system models and
properties. Promela also has the ability to embeaxbde blocks or include C code
files in specifications.

Promela models mainly consist of 3 types of objept®cesses, message
channels, and variables. Processes are global tebjstessage channels and
variables can be declared either globally or lgcalithin a process. Processes
specify behavior, channels and global variablegndethe environment in which
the processes run. Processes send and receivegemdbaough channels and
channels can store messages in different ways dejgeon its type, by default in
FIFO order.

Process communication via message channels can be defioede
synchronous (rendezvous), or asynchronous (bufferatked specifications are
supported. Processes can also communicate viadstmamory.

More about Promela, including the complete languaderence, can be found
at [10].

2.4. Symbolic Execution

Theidea ofsymbolic executioris born from the Symbolic Mathematics. These
relate to the use of computers to manipulate madkieal equations and
expressions in symbolic form, as opposed to maaimg the approximations of
specific numerical quantities represented by thgsabols. Such a system might
be used for symbolic integration or differentiati@ubstitution of one expression
into another, simplification of an expression, dtchas uses in software testing
under the title oBymbolic executiorwhere it can be used to analyse if and when
errors in the code may occur. It can be used tdigrevhat code statements do to
specified inputs and outputs. It is also importbort considering path traversal.
Thus Model Checking techniques have usgahbolic executiorfor more than 15
years.

Nowadayssymbolic executiontechniques are used in several fields. The
techniques have evolved so much that there are Incb@ekers like Zing which
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allow specifying a program using Object OrientedgPamming combined with
symbolic execution

We based our work in a more primitive ideasyimbolic executionAn easy
way to understand it is with the following pseudde@xample.

Function IsMinor (age as Integer)
If age < 21 Then
Return True
Else
Return False
End If
End Function

In this function we do not need to know the exacteaif the age parameter.
We just need to know in which of the intervalssilocated. The intervals would be
[0..20] and [21].

If we now have the following piece of a program:

If IsMinor(KidAge) Then
If KidAge > 21 Then
testvalue = True

Else
testvalue = False
End If
Else
testvalue = False
End If

Usingsymbolic executiomwe can know thatestvalue is always going to be
equal to False.

We used this idea to create a model where each ttime is a branch or an
assignment an assumption is created with the dondgtated. After a trace
execution is finished the assumptions are evalutteske if the set is satisfiable
comparing all the assumptions made.
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3. The Scenario Verifier

First we explain howDiscoTect[4] works in order to provide the base for
understanding the technique defined in this w@riscoTecttakes as input a file
containingmapping specification rulesvritten inDiscoSTEPlanguageDiscoTect
constructs &olored Petri Nefrom these rules which consume runtime events and
generate architectural ones as outputs. Architectevents are fed to an
Architecture Builderthat incrementally creates a model of the systexitecture

In [4] a way of translating the mentionethpping specification rulesnto a
CPN is provided. We extend this translation andsshayeneric way of specifying
CPN constructs in a language accepted by a moeéekeh We start by modeling
these rules as@PN modeland then we specify it in Promela language. Giver
our aim is to find a trace of runtime events, wedcheomething to generate them,
so we specify astub in Promela which is able to produce all possiblstime
events. Aninitial marking of a CPN sets a configuration of tokens in it
determining the number of tokens to be positionedvery place. Thetub is
responsible for generating all the differémtial markings. An initial marking of
the CPN models a determined sequence of runtime systenmeveurthermore the
stub establishes thegdaitial markings in the modeled CPN for a fixed amount of
tokens. For a same amount of tokens, differentaaniditial markings are tried
simulating different instrumentations, and conseguentime events, that could be
generated by any program. The desired trace mug tmaan architectural
scenariowhich specifies a determined situation at highkeleVhis scenario is also
written in Promela language.

The three mentioned elements: BN mode] the stub and thearchitectural
scenarioare all of them model checked by the model cheS8RIN [10]. During
the model checking stage thiibfirst sets a randonmitial marking and then the
CPN execution starts consuming and generating sofssm and into places.
Tokens are consumed when mapping rules apply d@achétppens when certain
conditions on runtime events, which means on tgkans true. While the CPN
“executes” these conditions are not evaluated, #neyust supposed to be true and
are accumulated to be evaluated later. This apprizagpartly taken fronsymbolic
execution[12].

Given an initial marking of a CPN for a fixed amowf tokens, a CPN
execution finishes when either all the architedtacanario properties are gathered
or when all tokens are consumed before reachingdéeario.

In the latter case, the initial marking is discatdend the model checker
continues trying with others initial markings (filve same fixed amount of tokens)
and different sequences of token consumptionsifBlis situation happens for all
these different initial markings, then the modeédaiing finishes without having
found a trace of runtime events for the architedtgcenario. So a new higher
amount of tokens must be fixed for the stub andntieelel checking is restarted,
repeating the whole process again and again tiileea trace is finally found or all
possible traces are inspected and none of them imaphe specified scenario.

Otherwise, in the first case, when the scenarice&hed, the set of all the
accumulated assumptions (those constraints calleatieen consuming tokens
while executing the CPN) is verified by &ssumption Verifierwhich determines
the satisfiability of this set. If it is satisfiabthen a valid trace of runtime events
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that maps into the architectural scenario has #ffdg been found. The
Assumption Verifie is also model checked together with @@N mode| thestub
and thearchitectural scenario

The approach used to find the minimum trace is dase the fact that if a
possible trace exists the model checker will fihdThe size of the trace, when
found, is the same as the amount of tokens ofakeinitial marking used by the
stub. A token consumption models a runtime event executo we start with one
initial token and we apply model checking to fitn trace. If a trace is found then
it is minimal because it will have one event, it me model check again but using
one more token and so on. If, for example, a tiredeund using five tokens (and
so the trace will have five events) we know it ismiimal because a trace with four
tokens was not found. If the user has a good utatetisg of theCPN modeland
of thearchitectural scenariohe may predict a more approximated amount of the
minimum of necessary tokens. Then he may try viigt amount of tokens and if a
trace is found he can then start trying with fewgkens as a way to discover the
minimum trace.

As an example, we decided to model and implemest chent-server
architectural rules shown in Appendix A of [4]. Beerules were modeled as a
CPN and translated into Promela code in order talile to model check this
model with SPIN [10]. The architectural scenario was written asoastraint in
Promela which must be verified during the whole elezhecking. The stub is a
Promela process which establishes the initial mgrki the CPN

When modelchecking, the CPN is executed untilkadl tbkens are consumed
(so a blocking state is reached) or the architatBaenario properties are gathered.
When the model checker finds an error, in the mdtelsearched trace is found. If
the modelchecking process finishes without anyrefren no trace has been found
for the initial marking of the CPN. The consump#oof tokens determine certain
constraints over their properties which can befiegkriat that moment or later. As
we mentioned before, we have adopteslymbolic executiorapproach based on
[12] in which, while finding the desired trace, iligg constraints (assumptions
from now on) are accumulated instead of being lestifit the moment of being
found. We work with two kinds of assumptions:

- Value Assumptionit constraints a token property to a constant@al

- Equality Assumption it establishes an equality relation between two
properties of two different tokens, properties whitay not be necessarily
the same.

While modelchecking the CPN, value and equality uagdions are
accumulated in two structures, one for each tygewa explained before, once the
desired trace is found then all the accumulatediraggons are verified by an
Assumption Verifierthat determines the satisfiability of the assuongiset. If the
set is satisfiable then a trace of runtime evetitat satisfies the architectural
scenario for the specified architectural rules, éféectively been found. Otherwise
the model checker tries to find another trace dwedwhole verification process is
repeated.
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3.1. Architecture of the Scenario Verifier

Below a sketch of the C&C view of the architecture iewh:

P s

[ Verifier

H :

Stub ] [ Assumptian Verifier J

Results : ‘:

Reporter

SPIN Model Checker l j
\[ Hurman Readable Report Generatar ]J

Figure 5

Oneinput is the Promela and C specification of thehdectural rules in
DiscoSTEPand the other is the architectural scenario sgtiih Promela.

The output is aeport that includethe trace of runtime events that fulfil the
scenaricand other results of the analysis.
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4. The technigue

In this section we will explain the full technique sl is the base of our

work. It combines manual and semi-automatic steps.

4.1. Steps of the technique

1.

Select or create the set dDiscoOSTEP architectural mapping rules
corresponding to the architecture you wish to use.
Model the previous architectural mapping rules &4al.
Specify the CPN model in Promela and C code.
3.1. Determine some CPN-related constants.
Specify an architectural scenario in Promela.
4.1. Determine some scenario-related constants.
Model check the Promela specification.
5.1. Determine verification parameters of tBBIN model checker.
5.2. Start verification.
5.3. Analyze results:
5.3.1if memory was insufficient then determine new valu®r the
verification parameters of tHePIN model checker and restart model
checking. Go to step 5.2.
5.3.2If the model checking process finishes without ggses then (if a
trace exists) the initial amount of tokens is nabuwgh so it is
necessary to increment it in one:
5.3.2.1. If this new initial amount of tokens is higher thidwe sum of
all quantities chosen in the architectural scenddp the
architectural events then it is not possible talfan trace of
runtime events that maps the architectural scemmdposed in
4. Gotostep 7.
5.3.2.2. Otherwise go to 5.2 to restart model checking.
5.3.3If an assertion (which is not the last assert(jalse risen then
determine new values for the corresponding scemalaed
constants. The assertion raised will provide chaoediscover which
constant has to be modified. Go to step 5.2.
5.3.41f the final assertion is raised then a trace hasnbfound and it is
minimal.
If a trace has been found, run tBBIN Ouput Analyzer to interpret tHePIN
output trail and generate a human readable trace.
End.

In the following sections we explain the main stap®lved in the technique.

Some of the explanations are based on a s&issfoSTEP mapping rules for
client-server architecture, see appendix A.
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4.2. Model a set of DiscoSTEP architectural

mapping rules as a CPN

In this section we explain how a set of architegitiscoSTEPmapping rules
is modelled as a CPN. In [4] a way of translatimgse mapping rules into a CPN is
provided; in this section we extend that explamatading a detail process for

doing this.

4.2.1.

(trd).

(tr2).

(tr3).

(trd).

(tr5).

(tr6).

Translation rules

EachDiscoSTEPrule is modeled as a CPN transition.

Each event declared in the input block of a relentType eventName,

is modelled as a CPN place calledgentNamewith an associated

colorset derived from the event tymwentType The place is then

connected to the transition that models the rutd widirected arc from

the place to the transition. Finally a declaratraeiable name is placed
as an arc inscription and we declare that its selois the same as the
colorset associated to the place.

Each event declared in the output block of a rueentType
eventName,is modelled as a CPN place calledentNamewith an
associated colorset derived from the event ByEntTypeThe place is
then connected to the transition that models thewith a directed arc
from the transition to the place. Finally a dediaeavariable name is
placed as an arc inscription and we declare thatalorset is the same
as the colorset associated to the place.

The declaration of colorsets (those associatedacep) for the CPN
depends on the differeBiscoSTEPevent types. An event type can be
simple, if it does not have any property, or commbuf it has
properties of possibly different colorsets or typAscolorset derived
from a compound event type is declared as a regithdas many fields
as properties the event type has. The record (@igproperty) names
remain the same as the properties of the eventagdeheir colorsets
or types are derived from the types of the properif the event type.

Each evene generated by the system (runtime event) or byhematile
is modelled as a CPN token positioned in the CPRi¢glthat models
the declared event (in an input or output bloclaatile) to which the
evente is bound. Note that the fact of binding the evert one event
declared, in the input or output parts of a ridanodelled as the fact of
binding a token to the corresponding arc inscriptio

EachDiscoSTEPtrigger block is modelled as a CPN transition guard
written in CPN ML,

! CPN ML is an acronym for Coloured Petri Net Metmbuage.
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(tr7). EachDiscoSTEPaction block is modelled as a transition code segme
written in CPN ML.

(tr8). The composition of rule output R1.01 with rule ibR2.12, denoted as
R1.01 -> R2.12, generates a merging of the placéhBtlrepresent O1
and 12. If the rules are well defined the colorseO1 and 12 must be
the same.

(tr9). The dual composition of rule output R1.01 with rumgut R2.12,
denoted as R1.01 <-> R2.12, generates a mergirtgeoplace P1 that
represent O1 and I2. If the rules are well defitieticolorset of O1 and
I2 must be the same. Then a transition is added fR2 to the new
place. This implies that each time R2 is executéokan is consumed
from P1 and after R2 execution a new token is tegen P1. This new
token has the same color that the token previar@hgumed.

(tr10). A rule application is modeled as the occurrencétotorresponding
CPN transition.

Runtime events are always input events, their datoitens appear only in the
input block of a rule so they are always modelledirgput places Instead
architecture events are always output events, ttesifarations appear only in the
output block of a rule so they are always modedsdutput places Respect to
intermediate events, they are generated by arthitecules to be fed to other
rules. Their declarations always appear in thewwdpd input blocks of composed
rules so they are always modelledrtermediate places that is to say, input and
output places.

Now let’s take, as an example, the CreateSdpigoSTEPmapping rule:

event {
i nput {
init;
}
out put {
string;
create_component;
}
}

rul e CreateServer {
i nput {init $e;}
out put { string $server_id; create_component
$create_server; }
tri gger {? contains($e/@constructor_name, “ServerSocket”)
7}
action={?
| et $server_id := $e/@instance_id;
| et $create_server := <create_component
name="{$server_id}" type="ServerT"/>;

?}

Let's apply the translation rules to this exampled det's see how it is
modelled with CPN constructs.
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(trl) The rule CreateServer is modeled as a transiibaccCreateServer.

(tr2) The input block of the rule has only one eventlatation: init $e, so the
transition has an only input place named $e with #ssociated colorsénit
derived from the event typmit. The variable nam@it_eventis written as arc
inscription surrounding the arc that goes from tilace $e to the transition
CreateServer. We must also state that the colofdeit_event variable ignit and
we do it via this declaration:

var init_event :Init ;

(tr3) The output block of the rule has two event detiana: string $server_icand
create_component $create_servand so the transition has two output places
called $server_id and $create_serverwith associated colorsetString and
CreateComponent respectively. The variable namesserver_id and
create_componenfare written as arc inscriptions surrounding thes éinat go from
the CreateServer transition to the plackserver_id and $create_component
respectively. We now declare the colorsets of thgadables with these
declarations:

var server_id: String;
var create_server :CreateComponent;

By now, the CPN looks like this:

Init String

init_event server_id
CreateServer $server_id

create_server

$create_server

CreateComponent

Figure 6

var init_event: Init;
var server_id : String;
var create_server: CreateComponent;

Note that we haven't still declared the colorsdist, String and
CreateComponenit will be done in the following translation rule

(trd) The event type string does not have any propesieits derived colorset
String is simple.
col or String = string;

Note that we are just renaming the ML type string.
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Events of type init are runtime events. The XML estia of this type is the
following:

<element name="init">
<complexType>
<attribute name="constructor_name” type="string” />
<attribute name="instance_id” type="string” />
</complexType>
</element>

The colorsetlnit derived from the event type init is compound. $dsi
declared as a record with two fields, constructame and instance_id, whose
colorsets are String. Let’s see the declaration:

col or Init= r ecor d constructor_name :String * instance_id
:String;

Events of type create_component are architectueatevThe XML schema of
this event type is the following.

<element name="create_component">
<complexType>
<attribute name="name” type="string” />
<attribute name="type” type="string” />
</complexType>
</element>

So the derived colorséreateComponenis declared as a record with two
fields, name and type with colorsets String. Legs the declaration:

col or CreateComponent = record name :String * type :String;

Let's see all the declarations of the CPN together:

col or String = String;

col or Init = r ecor d constructor_name: String *
instance_id: String;

col or CreateComponent = record name: String * type
:String;

var init_event: Init;
var server_id: String;
var create_server: CreateComponent;

Let's continue translating.
(tr6) The trigger block of the rule:
trigger {? contains($e/@constructor_name, “ServerSocket”) ?}

has a condition that states that the property coctsr_name of the $e event
contains the value of “ServerSocket”. Without angsl of generality, this condition
is modeled as an equality expression between thetre@tor name property of the
token and the string value “ServerSocket”. The egpion is enclosed between
brackets and positioned next to the transitiorthis rule we make a simplification
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in our implementation, supporting a small amounbpérations instead of the full
XPath stack. This is only due to simplify our woidr this thesis and more
operations could be added in future work.

(tr7) The action block of the rule:

action={?

| et $server_id := $e/@instance_id;

| et $create_server := <create_component
name="{$server_id}" type="ServerT"/>;

?}
carry out the following assignments:

- Theinstance_id property of thebe event is assigned to the output event
$server_id.

- The output evenfcreate_serveris set as a compound element of type
create_component with two properties:name and type. The name
property is set as thserver_id which is in factinstance_id property of
the$e event and theype property is set as the string valugetverT”.

These assignments are modeled inside the transitide segment as bindings
between the values retuned by the action clausettad/ariables listed in the
output clause.

Below the resulting CPN is shown.

Init String

init_event server_id
CreateServer $server_id

[init_event#constructor_name= "ServerSocket"]

create_server

input (init_event);
output (server_id, create_server);
action
(init_event#instance_id,
{name=init_event#instance_id, type="ServerT"});

$create_server

CreateComponent

Figure 7

col or String = string;

col or Init = r ecor d constructor_name :String *
instance_id :String;

col or CreateComponent = record name :String * type
:String;

var init_event :Init;
var server_id: String;
var create_server :CreateComponent;
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4.2.2. Rules composition

Now we explain how to compose two rules. We take eaample the
CreateServer and ConnectClient rules. The CreateSBiscoSTEPrule and its
CPN model were already shown. Let's see the Co@teat DiscoSTEPrule.

r ul e ConnectClient {
i nput { call $e; string $server_id; }
out put {create_component $create_client; create_connector
$create_cs_connection; string $client_id;}
trigger {?contains($e/@method_name,

“ServerSocket.accept”) and $e/@callee_id = $server_id
?}
action={?

| et $client_id := $e/@return_id;

| et $create_client := <create_client

name="{$client_id}" type="ClientT" />;

| et $create_cs_connection :=
<create_connector name= concat($client_id,”-
“$server_id)

type="CSConnectorT” end1="{$server_id}"
end2="{$client_id}" />;
?}

Note that the string event type should also beuthedl in the input block of the
declarations of input and output event types feldfscoSTEPprogram.

Below the CPN model of the ConnectClient rule isvs.

input(call_event, server_id);
output(client_id, create_client, create_cs_connection);
action
let
val concatedlds = call_event#return_id"~"-""server_id;
n
(call_event#return_id, {name=concatedlds, type=CSConnectorT,
endl=server_id, end2=call_event#return_id});

Call

end;
call_event

[call_event#method _name = ServeSocketAccept
and call_event#calle_id = server_id]

. server_id . client_id _ )
$server_id ConnectClient $client_id

String

String

create_client

create_cs_connection

h 4
CreateConnector CreateClient

Figure 8
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col or String = string;
col or Call = r ecor d method_name :String * callee :String
* return_id :String;
col or CreateClient = record name :String * type :String;
col or CreateConnector = record name :String * type
:String * end1 :String *

end?2 :String;

var call_event :Call;

var server_id, client_id: String;

var create_connector :CreateConnector;
var create_client :CreateClient;

The following piece ofDiscoSTEP code states that the CreateServer and
ConnectClient rules are composed via the $servegvieht. The unidirectional
binding denoted by> states that the output event $server_id of thext€8erver
rule can be consumed by the ConnectClient rulenaspat event.

composition {
CreateServer.$server_id -> ConnectClient.$serve r_id;
}

Now we model this composition by applying the ttatisn rule 8(tr8). The
place $server_id is common to both transitions:a@®erver on the left in the
diagram and ConnectClient on the right. Note thattegether the declarations of
both CPNs. Below we show the resulting CPN.

input(call_event, server_id);
output{client_id, create_client, create_cs_connection};
action
let
val concatedlds = call_event#return_id~"-"*server_id;
all b
c (call_event#return_id, {name=concatedIds, type=CSConnectorT,
endl=server_id, end2=call_event#return_id});

end;

call_event

[call_event#method_name = ServeSocketAccept
and call_event#calle_id = server_id]

ConnectClient

Init

init_event server_id client_id

CreateServer

[init_event#constructor_name= ServerSocket] String

String

input (init_event);
output (server_id, create_server),;
action
(init_event#instance_id,
{name=init_event#instance_id, type="ServerT"});

create_client

create_server

$create_server

create_cs_connection

CreateComponent
CreateConnector CreateClient
Figure 9
col or String = string;
col or Init = r ecor d constructor_name :String * instance_id
:String;
col or Call = r ecor d method_name :String * callee :String *
return_id :String;
col or CreateComponent = record name :String * type :String;
col or CreateClient = record name :String * type :String;
col or CreateConnector = record name :String * type :String *

end1l :String * end?2 :String;
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var init_event :lInit;

var call_event :Call;

var server_id, client_id: String;

var create_server :CreateComponent;
var create_connector :CreateConnector;
var create_client :CreateClient;

The composition can also be bidirectional denotethk bidirectional binding
<->. |t states that the rule that takes as input tieevds_id event can make use of it
without consuming it.

conposition {
CreateServer.$server_id <->ConnectClient.$server_id ;

This bidirectional binding is modeled as bidirenab arcs between the
$server_id place and the CreateServer and ConnectGiansitions. But, if we
look at the input block of the CreateServer rulesge that it does not consume a
$server_id event so the only bidirectional archis bne between the $server_id
place and the ConnectClient transition. Note thdirdctional bindings and arcs
are shorthand for two bindings and arcs respegtivéth opposite directions.
Below the resulting CPN is shown.

input(call_event, server_id);
output{client_id, create_client, create_cs_cannection);
action
let
val concatedlds = call_event#return_id~"-"~server_id;
in
cal (call_event#return_id, {name=concatedlds, type=CSConnectorT,
endl=server_id, end2=call_event#return_id});

end;
call_event

[call_event#method_name = ServeSocketAccept
and call_event#calle_id = server_id]

ConnectClient

Init

client_id

init_event server_id

CreateServer

[init_event#constructor_name= ServerSocket] String

String

input (init_event};
output (server_id, create_server);
action
(init_event#instance_id,
{name=init_eventiinstance_id, type="ServerT"});

create_client

create_server

4$create_server

create_cs_connection

CreateComponent
CreateConnector CreateClient
Figure 10

CPN declarations remain the same.

The complete translation of the Client-Server exdarhpa CPN would be:

col or String = string;

col or Init= r ecor d constructor_name :String * instance_id
:String;

col or Call = r ecor d method_name :String * callee :String *
return_id :String;

col or CreateComponent = record name :String * type :String;
col or CreateClient = record name :String * type :String;

col or CreateConnector = record name :String * type :String *

end1l :String * end?2 :String;
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col or UpdateComponent = recor d name :String * property:String
* value :String;
col or UpdateConnector = recor d name :String * property:String

* value :String;

var
var
var
var
var
var
var
var

init_event :Init;

call_event :Call;

server_id, client_id, io_id, activity type : Strin g;
create_server :CreateComponent;

create_client :CreateClient;

create_connector :CreateConnector;

update_component :UpdateComponent;

update_connector :UpdateConnector;
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4.3. Specify the CPN model in Promela and C
code

In this section it is explained how to specify aNCRhat models a set of
architectural DiscoSTEP mapping rules, into a Promela specification. As a
teaching example, we show how to specify the paitthe CPN shown in the
previous section which models a set of architetiDiscoSTEPmMapping rules for
a Client-Server architecture.

The whole specification is written in Promela, irdihg the stub; nevertheless,
there are some embedded pieces of C code to matgpatcumulations of value
and equality assumptions because of the adgyt®tbolic executiorapproach.

In the following subsections it is explained howNCBonstructs are specified
in Promela language.

The specification was modularized in different dilgrouped by the CPN
specification, the architecture scenario, the Aggion Verifier and general files
such as the main one and support files. A detagadanation of the contents of
each file may be found in Appendix C.

4.3.1. Places

Places are modeled as Promela channels. Chanrelsised to transfer
messages between active Promela processes. Cligateglations are preceded by
the reserved wordhan followed by channel names. By default, channetsest
messages in FIFO order. Messages can have mady Gedifferent types. Below
we show all channel declarations and definitionsieddor the Client-Server
architecture:

S
CFN places are specified a=s channels.

Frefizes:

C5: ClientServer
CC: ConnectClient
CIO: ClienrIC

CR: ClientRead
CH: ClientWrite

*®.

<% Input places. #*®

chan C5 _eFlace [mazimumninountOf TokensFerFlace] of {tokenldInFlace}:
chan CC_eFlace [maximuminountOf TokensPerFPlace] of {tokenldInFlace}:
chan CIO ePlace [maximuminountOf TokensPerFPlace] of {tokenldInFlace}:
chan CR_eFlace [maximuminountOf TokensPerFlace] of {tokenldInFlace}:
chan CV_ePlace [maximuminountOf TokensPerPlace] of {tokenIdInPlace}:

% Intermediate {(input and output) places. =~

chan server_ idFlace [mazimuninountOf TokensPerPlace] of {tokenldInPlace};
chan client_idPFlace [mazimuninountOf TokensPerPlace] of {tokenldInPlace}:
chan io_idPlace [mazimuninountOf TokensPerPlace] of {tokenldInPlace}:
chan activity_typePlace [mazimuninountOf TokensPerPlace] of {tokenldInPlace}:

<% Cutput places. =7

chan create serverFPlace

chan create clientPlace

chan create cs connectionFPlace
chan CR_update clientPlace
chan CV_update clientFlace
chan update_serwverPlace

[maximuninountOf TokensPerFPlace] of {tokenldInFPlacel:
[maximuninountOf TokensPerFPlace] of {tokenldInFPlacel:
[maximunimnountOf TokensPerFPlace] of {tokenldInFPlacel:
[maximunimnountOf TokensPerFPlace] of {tokenldInFPlacel:
[mazimunhnountOf TokensPerPlace] of {tokenldInPlacel}:
[mazimunhnountOf TokensPerPlace] of {tokenldInPlace}:

Let’s take as an example the first Promela sententtee above piece of code;
it declares a channel call&S ePlacedefined with a maximum channel capacity
of maximumAmountOfTokensPerPlacemessages which only have one field of
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type tokenldInPlace. This sentence models a place that can contaimcet
maximumAmountOfTokensPerPlacetokens of typaéokenldinPlace.

In some parts of our Promela specification chanaedsidentified by numbers
denoted by a constants. Below we show these cdastan

<% Input places Ids. *-
#define CS _ePlaceld
#define CC_eFPlaceld
#define CIO_eFPlaceld
fdefine CE_eFPlaceld
#define CW_ePlaceld

W ara O

% Input and output places Ids. %~
#define =erver idPlaceld

#define client_idFPlaceld

#define io_idPlaceld

fdefine actiwvity_typePlaceld

o0 =1 O

s% Cutput places Ids. =~

#define create_serverFPlaceld 9
#define create clientFPlaceld in
fdefine create_cs_conhectionPlaceld 11
#define CE_update clientPlaceld 12
fdefine CW_update clientPlaceld 13
#define update_serverFlaceld 14

Note that constant names have the channel nanrefisand the word “Id” as
suffix.

4.3.2. Tokens

A token may carry one or many property values ddipgnon whether its
colorset is simple or compound. Due to our symbekecution approach it is not
necessary for a token to carry values in its ptgmmwhen the CPN is being
executed. Instead we do need to identify each tdlemause conditions on token
properties (assumptions) are collected when exagtiie CPN

Tokens identifiers are of tygekenldInPlace which is a compound type as we
can see below:

<% 4 synbolic tolken representation -
typedef tokenldInPlace
{

zhort locTId:
byte pld;

ThelocTId property represents a local token identifier, grepld property is
the place identifier. When a new token is created place, it is identified using
the place identifier and a local consecutive nuniberthe token in the place. In
this way a token is univocally identified in a pacSo we defined a macro that
does it whenever a token is created, as we cabedew:
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/* Token id initialization. */
inline newTaokenldIinPlace(newToken, newPlaceld)
1
d_step
i
newToken.pld = newPlaceld;
newToken.locTld = nextTokenldForPlace[newPlaceld];
nextTokenldForPlace[newPlaceld] = nextTokenldForPlace[newPlaceld] + 1;

i

assert{maximumAmountOfTokensPerPlace > newToken.locTid);

!

Where nextTokenldForPlace[newPlaceld] stores, as its names says, the
identifier for the next token to be created in pit@cenewPlaceldwhich is used as
index for the array.

We decided to use this identification structurehwtivo numbers (instead of
using only one identifying number for each tokes)aaway to optimize the model
checking process. Model checkers detect the spatees and its changes, of the
specification while it is being analyzed. The stspace contains the information
which identifies the status of the model. This nsetmat the order in which tokens
are created affects the state space because faratiel checker the number used
as an identifier has a meaning. For example if aeeha state space where there
are two tokens in a place which the model chedfentifies with the numbers 1
and 2,then there is another state space whichhalsdwo tokens in the same place
but which are identified 2 and 1. Logically the B@lence of these two state
spaces will depend on the properties of the tokeasthe model checker the state
spaces will not be equivalent because the idergifiee different. The comparison
made by the model checker between the two stateespaill see the channels
(places) as queues, and will compare the messagé® iorder they have been
inserted into the channel. For us the only meafonghe numbers is the ability to
identify each token, but not the number itself. tiéeided to identify each token in
this way due to how the chosen model che&@MN works. This option allows
SPIN to make a better identification of two equivaletdte spaces. This is easily
seen in an example where there are two places, widitlone token. If only one
number is used, and this number is created witksaguent numbers in order to be
sure that the numbers will not be repeated, twaiptss state spaces may arise
depending which token is inserted first. Insteasing the chosen structure the
order will not make any difference and only ondestpace is going to be created
for this example.

If we look at channel declarations in the previgestion, we see that token
identifiers are specified as Promela messageslifahannels. Since now on we
will talk about tokens instead of token identifiefBhis is because despite of
dealing with token identifiers for our particulapesification, we are in fact
specifying tokens of a CPN.

Tokens can be removed or added from and into planoethe same way,
Promela messages can be removed or added frorm@n&romela channels. For
instance, when a token identifier message is coedufrom a channel, we are
specifying that a token is consumed from a place.
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4.3.3. Colorsets

As explained in the previous section, in our Pr@nsglecification we deal with
tokens identifiers, instead of tokens. All tokendentifiers are of type
tokenldinPlace. The question is then ¢How do we store the prppstues of
tokens of different colorsets then? Well in a wagy do not. We store assumptions
of the possible values of these properties. Fa& We use a constant number to
denote a token property and use this number asidgexiin an array where the
property value is stored.

Below we can see the constant numbers for evergntqitoperty of every
colorset:

<% Colorsets =7
c_decl
{
<% String colorset. =7
un=zigned char self = 0;

% Init colorset. #7
unsigned char constructor_nanes
un=zigned char instance_id

= O

% Call colorsset. #7
unsigned char method namne
unzighed char callees id
unzigned char return_id

0;
1:
2.
<% CreateComponent and CreateClient colorsets. *7

un=zigned char nane
un=zigned char type

1

<% CreateConnector colorset. *®7
<% [I=z2 name and type constant=s for 0 and 1 respectively *-
un=zigned char endl
un=zigned char end:

2;
3

<% [IpdateConponent and UpdateConnector colorsets. *7
<% =2 name constant for 0 *7
un=zigned char property
unsigned char wvalue

1;
2.

Note that constant names are the same as the (@lgsoperties) of records in
the declaration of the CPN colorsets:

col or String = string;

col or Init = r ecor d constructor_name :String *

instance_id :String;

col or Call = r ecor d method_name :String * callee :String

* return_id :String;

col or CreateComponent = record name :String * type

:String;

col or CreateClient = record name :String * type :String;

col or CreateConnector = record name :String * type

:String * end1 :String * end2 :String;

col or UpdateComponent = record name :String *
property:String * value :String;

col or  UpdateConnector = record name :String *

property:String * value :String;

The String colorset is simple so it just has oaki@ which is indexed with the
self constant.
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4.3.4. Transitions, transition guards, code segments
and arc inscriptions

Each CPN transition is specified as a Pronpetactype with some embedded
pieces of C code to manipulate accumulations ofirapions. In our Promela
specification we create a proctype for every titamsiin the CPN. These are:
createServer(), connectClient(), clientlO, clieraB@, clientWrite() and
updateServer(). The execution of each of th@setypes models the occurrences
of a CPN transitions

We will explain how a CPN transition is specifiead Promela language. To
ease its understanding we will base our explanatidhe CreateServer transition
which will be used as example. Let's remember thesition:

Init String

init_event server_id .
CreateServer $server_id

create_server

[#constructor_name init_event = "ServerSocket"]

input (init_event);
output (server_id, create_server);
action
(#instance_id init_event,
{name=#instance_id init_event, type="ServerT"});

$create_server

CreateComponent

Figure 12

And let's see its Promela specification.

/= It models occurrences of the CreateServer transition. =/
proctype createServer() {

tokenldInPlace init_eventTokenld;
tokenldinPlace server_idTokenld;
tokenldinPlace create_serverTokenld;
byte isValidAss =0;

xr C5_ePlace;
¥s create_serverPlace;

start:
atomic{
/* Token consumptions from input places. */
C5_ePlace 77 init_sventTokenld;
c_code { runTimeEventCallDetector(PcreateServer-»init_eventTokenld); ;

/* Transition guard: assumption accumulations. */f

[* init_event *f
c_code { PcreateServer->isValidAss = addValuefAssumption|PcreateServer-=init_eventTokenld, constructor_name, cServerSocket); };
[isValidAss);

{* Transition code segment: assumption accumulations. =/

[* create_server *f

newTokenldInPlace{create_serverTokenld, create_serverPlaceld);

c_code { PcreateServer-=isValidAss = addValueAssumption|PcreateServer->create_serverTokenld, type, cServerT); §;

[isValidAss);

c_code { addEqualityAssumption|PcreateServer->init_eventTokenld, instance_id, PcreateServer->create_serverTokenld, name); §;

[* server_id */
newTokenldInPlace{server_idTokenld, server_idPlaceld);
c_code { addEqualityAssumption|PcreateServer->init_eventTokenld, instance_id, PcreateServer->server_idTokenld, self); };

/* Token additions into output places. */
create_serverPlace | create_serverTokenld;

server_idPlace | server_idTokenld;

goto start;
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Now we explain how this CPN transition is specifiadPromela showing the
mappings between parts of the CPN transition ants patheproctype.

4.3.4.1. Proctype declarations

The incoming arc from th$e place into theCreateServertransition indicates
it removes tokens from this place while the outgoamcs to thebcreate server
and$server_id places indicate that the transition adds tokerthese places. For
every token consumed frobe a token is added into thgcreate_serverand
$server_id places. These three tokens are declared at thmnieg of the
proctype.

tokenldInFlace init_eventTolenld:
tokenldInFPlace serwver idTokenld:
tokenldInFlace create serwverTokenld:

In fact inside theproctype we deal with token identifiers but we will refer t
them as tokens. Then a variable cal®d¢hlidAssis declared and initialized:

byte i=Validis=s=s = 0

This variable is used to know the result of sonterlaalidations.

The CreateServer transition is the only one to wowstokens from th&e
place and to add tokens into theréate_serverplace and it is specified with two
assertions:

®¥r C5_ePlace:
=z create serverPlace;

The first assertion states that treateServer proctypeis the only process in
the system that can consume messages fronCghePlacechannel. While the
second assertion states that theateServerproctype is the only one allowed to
send messages to t&_createServerchannel.

4.3.4.2. Transition occurrence

All the actions involved in a transition occurrenbappen all together
instantaneously without interleaving with any otlesecution of the CPN. Inside
the createServerproctype a loop is implemented with a label nanstdrt and a
goto statement at the end of theoctype. A loop iteration specifies an occurrence
of the CPN transition. The body of the loop is @rRela atomic block which
allows executing the enveloped code indivisiblytéNthat the loop does not have
any guard, it's because the transition occurs wiemeossible. To complete a
transition occurrence, it is required that all tiygut places have at least one token.
If this is not the case, the transition gets blacketil all the input tokens can be
consumed. A blocking breaks the atomicity of theaetion. This may seem as a
problem because it may generate a scenario whdeadock may appear when
two or more proctypes have consumed at least one token and they need to
consume more tokens which have been consumed lpthbes waitingoroctypes
Fortunately, given that we decided to use a modekker, we do not have to
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worry about this issue, the model checker will discall the blocked scenarios
until it finds the right order of consumption whereproctype gets blocked.

Note that there are two constructs in PROMELA feedfying that a sequence
of statements must be executed atomicalystepandatomic. We decided to use
atomic becausd_stephas the limitations that except for the first sta¢nt in the
sequence (the guard), statements cannot bloclasang see before it may happen.

All the constraints found in the CPN execution atered as assumptions
because of theymbolic executiorapproach adopted by us. Each assumption is
validated twice, first when it is created and seltprwhen a trace that complies
with the chosen scenario is found. The first vadlaahelps the model checker to
discard invalid solutions faster.

In the following subsections we explain in deth# inside of the atomic block.

4.3.4.3. Token consumptions from input places of the
transition

When a transition occurs it first consumes tokenmfits incoming places so
inside the atomic block the tokenit_eventTokenld is first removed from the
$CS_ePlacelace. In Promela it is specified like this:

<% Tolken consumnptions from input places. *7

CS ePlace 77 init_eventTokenld;

In this sentence a message is consumed fron$@® ePlacechannel and
copied into theanit_eventTokenld variable. The?? operator determines that the
election of the message to be consumed is cardechndomly.

If there is no message to be consumed from thengtdahen the statement is
blocked and in consequence the execution opthetype is blocked at this point.
As explained before when this happen the modelkehiemontinues executing the
other proctypes The blocked sentence can be passed wherSEiBl process
scheduler chooses thisoctype to execute again and the sentence can effectively
be executed, it means, there is a message in #mnehto be consumed.

A c_codeblock is used to write C code in it allowing, fexample, calls to C
functions defined in other files. The C functiomnTimeEventCallDetector is
called inside & codeblock:

c_code |
runTimeEventCalllDetector{PoreateServer—rinit_eventTokenId)
T

This function keeps count of the number of consimngt of tokens (that
model runtime events) that have been consumed dry ¢ransition in the CPN. In
this case runtime events are of typall or Init. It also registers the order in which
each input token has been consumed. This is negdssknow, once a trace has
been found, which runtime events must be execaiadljn what order, to have the
desired scenario. We register the global order murabconsumption to be able to
recognize token consumptions backtracke®BYN so that they are not taken into
account in the final analysis.

44171



Chapter: The technique

4.3.4.4. Transition guard

If we look at the guard of the CPN transition, vee & has a condition on the
constructor_name property of thanit_event CPN variable which states its value
to be the string ServerSocket. In our Promela specification this condition istn
evaluated at the time of the occurrence of thesttian, instead, it is assumed to be
true and accumulated to be verified later. The wdation of this value
assumption is carried out inside the secontbdeblock in the atomic block:

/* Transition guard: assumption accumulations. =f

[* init_event */
c_CCII'::icertia’ceSer\-'er->is\.l'a|id,l%ss = addValueAssumption(PcreateServer->init_eventTokenld, constructor_name, cServerSocket);
i;s\falidﬂss];

Inside the c_block the C functiaddValueAssumptionis called with three
arguments. The first one is the tokeit_eventTokenld, the second one is the
name of the propertgonstructor_name and the third argument is the value
cServerSocketto which theconstructor_name property is constrained to be
bound. Note that it was decided to precede consiames with a lowercase letter
c. In our example theaddValueAssumption function accumulates a value
assumption that states that the propedgnstructor name of the token
init_eventTokenld has the valuecSeverSocket Before accumulating this
assumption, the function evaluates if the tokerperty has already been set and if
its current value is different from the new oneb®set. If this is the case then a
contradiction is found and a false answer is retdyotherwise the function returns
true. This answer is assigned to tis¥alidAss variable of thecreateServer
proctype. Note that inside & block a proctype namelust be preceded with an
uppercase letter P, for exampRcreateServer in order to access the objects
defined in theproctype scope. An arrow is also used after the proctygraento
refer to its local variablesValidAss. This variable is then evaluated by the model
checker via this sentence.

(izValidi==);

This evaluation is always done after calling theédValueAssumption C
function. If the value is false (represented byth®n SPIN blocks this execution
thread. With this blockin@PIN will not finish this transition which will elimin
any chance of finding the desired trace. Then tbdahchecker engine is going to
backtrack in order to try to find another trace ethis not blocked.

4.3.4.5. Transition code segment

The code segment of the CreateServer transitioestads input the
init_event CPN variable (which is used as arc inscriptiontf@ incoming arc of
the transition) and returns as output the variabdeger_id and thecreate_server
CPN variables (which are used as arc inscriptiangte outgoing arcs form the
transition). By the time the CPN transition occuis init_event variable has
already been bound to a token from $eplace so we refer to this variable as the
token itself. Inside the action clause of the cedgment thaerver_id variable is
bound to thenstance_id property of theinit_event token. After this binding or
assignment both, the variable and the property, egeal. In our Promela
specification this equality is stored as an equalgsumption.
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f* semver_id */f
newTokenldinPlace(server_idTokenld, server_idPlaceld);

c_code {
addEqualityAssumption|PcreateSener->init_eventTokenld, instance_id, PereateServer-*server_idTokenld, self);

Note that first theserver_idTokenld token is initialized by calling the inline
definition newTokenldInPlace. The first parameter is the token itself and the
second is the identifier of the plaserver_idPlacewhere this token will be added.
Then the equality assumption is effectively added fealling the
addEqualityAssumption C function inside ac_block It accumulates an
assumption that states that timstance_d property of theinit_eventTokenld
token is equal to theerver_idTokenld.

Inside the action clause the CPN variabteate_serveris also bound to a
record of the same colorset. In the recordniésne property is bound to the
instance_id property of thenit_event token and itgype property is bound to the
string value “ServerT.” These bindings apply fore thproperties of the
create_server variable given that the record is bound to it. \Wefer to
create_servervariable as a token. In our Promela specificatimse two bindings
are specified as the accumulation of two assumgtion

f* create_server */f
newTokenldinPlace|create_serverTokenld, create_serverPlaceld);

c_code{
PereateServer-=isValidAss = addValueAssumption{PcreateServer-=create_serverTokenld, type, cServerT);

[isValidAss);

c_code {
addEqualityAssumption|{PcreateServer-=init_eventTokenld, instance_id, PcreateServer->create_serverTokenld, name);

First the create_serverdTokenld token is initialized by calling the inline
definition newTokenldInPlace having as arguments the token itself and the
identifier of the placereate_serverldPlacewhere this token will be added. Then
the assumptions are stored. First the value assomist added by calling the C
function addValueAssumption inside ac_block It accumulates an assumption
which states that the value of the type propertthetreate serverTokenldtoken
is cServeT. Then the equality assumption is accumulated bifinga the
addEqualityAssumption C function inside another_block It accumulates an
assumption that states that the name propertyecfrrate serverTokenldtoken
is the same as thiestance_idproperty of thenit_event token.

Note that we first accumulate all value assumptiand then equality ones
because we want we want to avoid unnecessary at¢atioms of any equality
assumption. If after the accumulation of a valusuagption theisValidAss
statement evaluates to false (a contradiction wasd) then the model checker
will backtrack and no unnecessary equality assumptccumulation will be
carried out.

4.3.4.6. Token additions into output places of the transitio

Finally the CPN tokenserver_id andcreate_serverare added into the places
$server_id ans$create_serverrespectively. Remember that by this time the CPN
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variablesserver_id andcreate_serverhave already been bound after the execution
of the code segment, so we refer to them as tokernsur Promela specification
these additions are specified like this:

<% Token addition=z into output places of the transition. #®7

create _serverPlace | create ssrverTolkenld:
zerver_idPlace | server_ idTokenld:

In these sentences the messagesreate serverTokenld and
server_idTokenld are sent to the channelsreate serverPlace and
server_idPlacerespectively.

We have finished explaining the CreateServer ttimmsand all its related CPN
constructs.

4.3.4.7. Double-oriented arcs

In this subsection we explain how double-orientd®NCarcs are specified in
Promela. We take as base example the Connect@harsition:

input(call_event, server_id);

output(client_id, create_client, create_cs_connection);

action

let
val concatedlds = #return_id call_event~"-"~server_id;

in
(#return_id call_event, {name=#return_id call_event, type="ClientT"},
{name=concatedIds, type="CSConnectorT", endl=server_id,

end2=+#return_id call_event});
end;

[#method_name call_event = "ServeSocket.accept”
and #callee_id call_event = server_id]

server_id client_id
$server_id ConnectClient Sclient_id

String

String

create_client

create_cs_connection

A 4

@ $create_client
CreateConnector CreateClient

Figure 13

Remember that a double-oriented arc is shorthantifo arcs with the same
arc inscriptions but opposite directions.

The Promela specification for this transition wobkl
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<% Hepresents occurences of a CPH transition. =
proctype connectClient() {
<% ¢_code { log{"connectClient"); J; =7

tokenldInFPlace call eventTokenld:
tokenldInPlace serwver_ idTokenld;
tokenldInFPlace client_idTokenld:
tokenldInFlace create clientTokenld:
tokenldInPlace create_cs_connectionTokenId:
byte isValidiss = 0;
=r CC_ePlace:
s create _clientPlace:
¥z create o= connectionPlace:

start:
atomic {

% Tolken consumptions from input places. *7

CC_ePlace 77 call_eventTokenld:
szerver_idPlace *? <server_ idTokenId::

c_code

runTimeEventCallDetector(PoconnectClient—>rcall_eventTokenlId)

#% Transition guard: assunption accumulations. =

<% Transition code ssgment: assumption accunulations. *-

~% create_client =7

<% Token additions into output places. *-

client_idPlace | client_idTokenld:

create_clientPlace | create clientTokenId:

create_cs connectionPlace | create_cs connectionTokenld:
sezerver_1dFlace | server_idTokenld; *-

goto start:

Note that a message is received fromgbever_idPlacechannel and copied,
not consumed, into theerver_idTokenld variable. This is because of the double-
oriented arc; instead of having the token firstazoned and then immediately sent
to the same channel we decided to have it copredtty to a local variable, which
is semantically the same, in order to have a spafbrmance improvement when
model checking. We specify it in Promela in thisywa

server_idPlace 7Y <=zerver_idTokenld::

Note that the variable name is enclosed betweete drgckets. This implies
that the message will be copied and not consurha@tstead of using a variable we
would have use a constant the angle bracket opexatadd have found a message
using pattern matching.

4.3.5. CPN to Promela Conversion Algorithm

Below we present an algorithm to build a Promelecgjation from a CPN
that models a set of architectural rules. The $igations shown in the previous
sections are used.
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4.3.5.1. Places

1. For every CPN place:

1.1. Create a channel with a capacity of
maximumAmountOfTokensPerPlace messages which only have
one field of typaokenldinPlace.

1.2. Define a constant number to identify the place. Thestant name is
the name of the channel that specifies the plade thie suffix ‘1d”.
Each place must have a different constant number.nimbers must
be consecutives starting from O.

4.3.5.2. Tokens

2. Tokens are identified as specified before. All tokdentifiers are of type
tokenldinPlace. A token is identified via a local id and the id thie place
where it will be added:

<% A4 symbolic tolen representation %7
typedef tokenldInPlace
{

short locTId:
byte pld;
L

This token identifier specification is the samealhthe Promela specifications
of any CPN model.

4.3.5.3. Colorsets

3. For every CPN colorset declared:

3.1. If the colorset is simple, define a constant cadlelfiwith value 0. Use
the same constant for all declarations of simplersets.

3.2. If the colorset is compound, a record in our cdsen define constants
named as the record property (or field) names ait different
values in order to be able to uniquely identifyragerty of the record.

Note that when different CPN colorsets have priogewith the same
names their corresponding constants could be reused

4.3.5.4. Transitions

4. For every CPN transition:

4.1. Create goroctype and inside it write an infinite loop with an atami
block as body.

Arc inscription variables of incoming arcs
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4.2. For every CPN arc inscription of an incoming arctloé transition
declare a variable of typekenldinPlace named as the name of the
arc inscription variable with the suffixiokenid”.

These declarations are written at the beginnineproctype and outside
the loop. Inside thproctype these variables are treated as if they specified
tokens.

Input and output places of the transition
4.3. For each input and output place of the transition:

4.3.1If the transition is the only one to consume tokémsn an
input place then assert that tlgioctpype is the only one to
receive messages from the corresponding channel.

4.3.21f the transition is the only one to add token®iah output
place then assert that thisoctpype is the only one to send
messages to the corresponding channel.

Assertions are written at the beginning of fhectype and outside
the loop.

Transition occurrence
Token consumption from input places of the transitbn
4.4. For every input place of the transition:

4.4.1)f it is only an input place of the transition thennsume a
message from the channel that specifies the place.

Double oriented arcs

4.4.21f there is a double-oriented arc between the placé the
transition, that is to say, the place is also apuatuplace of the
transition then receive a message from the chaitimea
specifies the place but do not consume it.

In both cases the message must be received inreadgldeclared
variable (in 4.2) derived from the CPN arc insdadptvariable that
surrounds the arc between the input place and rthesition.
Message receptions are carried out at the beginofirthe atomic
block of the loop.

Transition guard

4.5. For every condition in the transition guard accuatella value or
equality assumption. Write all accumulations ofuealassumptions
first and then all the accumulations of equalityuasptions. For every
value assumption call treeddValueAssumption C function inside a
separate c_block and after every block evaluatedhge returned by
the function using a blocking statement. Reuse i#\éalidAss
variable declared at the beginning of theoctype. The function
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receives three parameters, the desired token, d¢mstant which
represent the property of the token to be bind thedbinding value.
For every equality assumption call taddEqualityAssumption C

function. The function receives four parameterg, finst token, the
constant that represent the property of the fioken to bind, the
second token and the constant that represent thyenty of the
second token to bind. Write all these calls insidesame c¢_block.

nscription variables of outgoing arcs

For every CPN arc inscription variable of an outgpiarc of the
transition:

4.6.1Initialize the Promela variable declared in 4.2 tbis arc
inscription variable. This initialization consisits stating that
this variable specifies the token to be added th® output
place of the transition which is pointed by the &hat is
surrounded by the arc inscription in matter. Thigalization is
carried out by calling the inline definitiarewTokenldInPlace
whose arguments are the mentioned Promela varaidethe
identifier of the mentioned output place of thengision.

Transition code segment

4.6.2.For every binding for the CPN arc variable or fees record
property of it done in the action clause of thengraon code
segment accumulate a value or equality assumpilbite all
accumulations of value assumptions first and théntree
accumulations of equality assumptions. For everjyuesa
assumption call thaddValueAssumption C function inside a
separate ¢_block and after every block evaluate viee
returned by the function using a blocking statemBeiuse the
isValidAss variable declared at the beginning of prectype.
The function receives three parameters, the desilesh, the
constant which represent the property of the takebe bind
and the binding value. For every equality assumpuall the
addEqualityAssumption C function. The function receives
four parameters, the first token, the constant teptesent the
property of the first token to bind, the secondetoland the
constant that represent the property of the setukeh to bind.
Write all these calls inside the same c_block.

Token additions into output places of the transitio

4.7.

For every output place of the transition send asags into the
channel that specifies the place. This message beusent from the
variable derived from the CPN arc inscription vialgathat surrounds
the arc between the output place and the transitil@ssages are sent
at the end of the atomic block of the loop.
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4.4. Specify an architectural scenario in
Promela

Scenarios are specified in Promela. In scenarmsan state facts such as the
number of component creations, connector creatams connections between
components including the number of occurrences eftam activities in
components, ie, component executions. Below, a lgasgenario is shown.

(len(create_serverPlace) == 1 && len(create_clientPlace) == 2 && len(create_cs_connectionPlace) ==2);

It specifies that one server and two clients wereated and they were
connected with each other.

4.5. Model check the Promela specification of
the CPN

This section explains general behavior of the Ptarsgecification and C code
and how to write the stub which depends on theitactare.

4.5.1. The init process

Theinit proctype is is the main process and is the first to be etegt_et’s
see its specification:

init{
byte isSatisfacible =0;

/= Initilize structrures */
c_code {
initAssStructures|);

f* Initial CPN marking is built non-deterministically. *f
run stuby{);
[stubFinishedPlacing == 1);

/= CPN transitions able to occur. */f
atomic {
#include "client-server CPN transitions to occur.pml”

/* The assertion for detection program finalization is defined. *f
#include "a client-server scenario.pml”

/= Verify accumulated assumptions. =/
assertmaximumAmaountOfEqualityAssumptionsPerProperty > maxEgAssMembersAmaount);

c_code {
Pinit-»isSatisfacible = assumptionVerifier();

lisSatisfacible);

f* Printing. =/

c_code |
printRunTimeEventCall{0);
printValueAssumptions(0);
printEqualityAssumptions(0);

assert{false);
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TheisSatisfiablevariable is used to know if the trace found iddial'he structure
that stores the assumptions to be accumulated velxecuting the CPN, is
initialized. Then the stub is run to generate atiainmarking in the CPN. Then a
file which contains all the transitions of the CRBNncluded. They were specified
as proctypes and they may occur non-determiniticAfter executing the CPN
we want to know if the architecture scenario idilfatl. If this is the case then the
Assumption Verifier is executed to evaluate all #issumptions accumulated when
executing the CPN. In case they are valid thentthee of runtime events that
made the scenario to be fulfilled, are printed éyaa the order they happened.
This print is followed by the value and equalitys@siptions verified about the
found trace.

45.2. Stub

Our aim is to find a trace of runtime events andneed something to generate
them, so we specify stubin Promela which is able to produce all possibéeds
of runtime events. Amitial marking of a CPN sets a configuration of tokens in it,
determining the tokens inside each place. A detexchsequence of runtime events
is conceptually equivalent to an initial markingtie CPN model derived from the
mapping rules. This initial marking only configurdse amount of tokens in the
input places of the CPN because those are the saokext represent the runtime
events. Due to ousymbolic executiompproach we do not need to define any
property of the tokens placed in the initial magkinFurthermore the stub
establishes this initial marking in the modeled CRIN a bounded amount of
tokens. For a same amount of tokens, differentaanahitial markings are tried
simulating different instrumentations, and conseguentime events, that could be
generated by any program.

The stub is specified by thepaoctype calledstub() which executes before all
the processes that represent the actions. Let'stsapecification for the Client-
Server example:

proctype stub()
atonic

tokenIdInPlace auxTokenld:
short tokenAmountPlaced = 0

do

:: (tokenAmountPlaced < initialTokenAmount) ->
if
.. newTokenldInPlace(auxTokenld, 0); CS_e ! auxTokenld
.. newTokenldInPlace(auxTokenld, 1) CC_e ! auxTokenld
:: newTokenldInPlace(auxTokenld, 2): CIO e | auxTokenld

: newTokenldInPlace(auxTokenld, 3); CR_e ! auxTokenld
.. newTokenldInPlace(auxTokenId, 4); CW_e ! auxTokenld
fi;
tokenAnountPlaced++
. else -> break
od;
c_code

) initRunTimneEventCallStructure();

stubFinishedPlacing = 1;

Inside the atomic block we see a loop; it iteravdsile the number of
positioned tokens is lower than the chosen ingrabunt of tokens denoted by the
constantnitialTokenAmount . In every iteration only one token is initializedd
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added into a place that models a runtime event,isha say, a place that does not
have incoming arcs. This place is chosen non-détestically using anif
construct where the decision between the inneersiatts is taken by the model
checker. These statements must be modified depgnalinthe model to be
analyzed. There must be one line for each inputepld’'s important to note that an
input place represents a type of runtime event.

4.6. The Assumption Verifier

In this section we are going to explain an overvigishow the assumption
verifier works. As we mentioned in previous secsiothe Assumption Verifier
verifies that all the accumulated value and equakisumptions has been satisfied.

The accumulated assumptions are collected in twactstes called
EqualityAssumptions and ValueAssumptionsas we can see bellow.

<% VALUE ASSUMPTIONS *
typedef struct TokenValuehssumptions

unszigned char properties[nazinumnidnountOfPropertiesPerToken]:
unsigned isEmpty : 1

+ TokenValuedssunptions:

typedef struct FPlaceValusissumptions
TokenValued=ssunption=s tokens[mazinuminountOf TokensPerPlace]:
unsigned isEmpty ;1

+ PlaceValueissunptions;

typedef s=truct Valusissunptions

FlaceValusi=zsunption=s places[placesiAmnount]:
T Valusissunptions:

<% BEQUALITY ASSUMPTIONS *,

typedef struct EgqualitvissunptionMember
short locTId:;
un=igned char pld:
un=signed char propldx:
+ EqualitvAssumptionMemnber
tyvpedef struct PropertvEqualitvissunptions
{
EqualitviA=zsunptionMenber egissHenbers[mazinuninountOfEqualityissunptionsPerProperty]:
short egizsMenbersimnount
+ PropertyEqualityissunptions:
typedef struct TokenEqualitvissumptions

FropertyEqualityissunptions properties[mazinuminountlfPropertiesPerToken] :
T TokenEqualitvissumptions:

typedef struct PlaceEqualityissumptions
{

TokenEqualitvissunptions tokens[mnazimundnountOf TokensPerPlace];
+ PlaceEqualitvAssumptions:

typedef struct Equalitvissunptions

FlaceEqualityissunptions places[placesimnount]:
T Equalitvissumnptions:

Both structures are insidecadeclblock, which means that they are written in
C and that they declare C types.
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q_decl

typedef struct tokenldInPlace TokenIdInPlace:

We choose these structures in order to optimizesd¢hidication algorithm. The
chosen structures provide a complexity order Gflipsertion operations, O(1) to
value assumption access operation and O(N) to iguassumption access
operation; where N equals the maximum amount ofakfguassumptions per
property constant which is configure by the userdach model. The complexity
O(1) is given by using C direct access in arrayge tomplexity O(N) is given by
having to search inside thegualityAssumptionMember array. These structures
have the disadvantage of requiring much more merspace than the straight
approach where you use a list to store the assongpti

The algorithm is implemented completely in C. Let& it:

uchar assumptionVerifier(){
uchar actualPlace = 0;
short actualTeoken = 0
uchar actualProperty - 0
uchar actualValue;
uchar aValusdssunptionlsValid = 1
while (actualPlace ¢ placesimount && aValuekssunptionIsValid)
i

actualToken = 0;
if (lnow.valdss.places[actuslPlace]. isEnpty)

while (actualToken < maxinumdmountOfTokensPerPlace && aValushssumptionIsValid)

actuslProperty = 0:
if (lnow valdss. places[actualPlace] tokens[actualToken].isEmpty)

while {actualProperty < namimumdnountOfPropertissPerToken && aValushssumptionIsValid)

actualValue = now.valhss places[actualPlace].tokens[actualToken] properties[actualProperty].
if (actualValue |= cHull)

aValuchssumptionlsValid - isValiddssunption{actualPlace, actuslToken, actualProperty, actualValuc);

actualPropezty++:
}

actualToken++!

actualPlace++;

return aValusissunptionIsValid;

The algorithm verifies the absence of contradictibg calculating a transitive
closure of the assumptions set. Let’'s see an exaaf@ contradiction:

tokenl.propertyl=1
tokenl.propertyl= token3.property4
token3.property4= token2.property3
token2.property3=5

As we can see, by transitivity, 1 = 5 which is atcadiction.

The algorithm navigates all the value assumptiorss far each one checks if
there is a contradiction. This is done by navigatine equality assumption tree,
expanding the tree each time an equality assumidaund. Each node would
represent a token property and the node value woeild value assumption. If no
value assumption exist the node value is null. Othee whole tree has been
navigated all the node values should have beenanute initial value. If not a
contradiction has been found.
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4.7. Summary of the key challenges raised
when specifying and verifying the CPN

As we could see from sections 4.3 to 4.6 we hambpe with different types of
challenges related to how to specify some CPN cocist and its operational
aspects in Promela and how it affects the verificatarried out by SPIN. The
explanations of the solution to these challengeswslthe correction of the
specification and the assertiveness of the takeisida. Below we sum up some of
these challenges:

We found an appropriate and comfortable way to ifp@taces as channels,
transitions as processes declarep@stypes and tokens as messages. Channels
may hold messages as places may hold tokens, essghges may carry data values
as tokens doProctypes may access channels to allow communication between
processes and they are shared, as a place mays dcaesitions. Inproctypes
messages can be removed, added or just only adciesse and into channels; as
transitions may remove and add tokens from andglaces.

We needed to find an appropriate way to identiketts as explained in 4.3.2.
We found a way that make an optimization to théestpace and consequently
avoid unnecessary possibilities.

Having specified transitions aproctypes allowed us to simulate the
nondeterministic occurrence of CPN transitions gitleat processes are run non-
deterministically by SPIN.

Transitions occurrence is indivisible so executioh its corresponding
proctype should be too. So we embraced its body in an atdoick. A transition
is enabled only when all its incoming input plabese tokens, otherwise it is not.
We simulate it by blocking the process executioreva message is attempted to
be received from a channel that specifies an inegnplace. Fortunately the
management of blocking and unblocking is carried by SPIN when the
conditions are given. Note that there are two cootst in PROMELA for
specifying that a sequence of statements must éeuted atomicallyd_stepand
atomic. We decided to usatomic becausal_step has the limitations that except
for the first statement in the sequence (the guatdjements cannot block, and as
we see before it may happen.

When executing the CPN and accumulating assumpti@ndid not want
to accumulate unnecessary assumptions. So whectidgtan invalid assumption
the model checker cut that execution, backtracklscamtinues with other and we
would not accumulate this assumption. Furthermore,the case of value
assumptions, we could immediately evaluate thenmeter found.

After having found a way to specify a CPN, we waedehow we would
manage its transition occurrences when SPIN veriie CPN. As we explained in
previous sections, while model checking, we magl firset of constraints related to
all the transitions occurrences involved in a trand so there may be more than
one possible configuration for the trace. To copthut, we decided to use a
symbolic execution approach, so we accumulatéafie constraints. We used this
idea to create a model where each time there @ndition, or an assignment, an
assumption is created with the condition statederAd trace execution is finished
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the assumptions are evaluated to see if the ssatisfiable comparing all the
assumptions made.

Finally we had to put it all together. We had th®N; the Stub, the
Assumption Verifier and architecture scenario. Véeided that the CPN execution
would be carried out non-deterministically. The iden of using a symbolic
approach obliged us to have at least an algorithtwm big steps: first execute the
CPN and then evaluate the assumptions accumul#teds clear that Stub should
run at the beginning of the algorithm. But whenwdtave verify the scenario? The
scenario predicates on output places given thgtriedel the architectural events
generated by the DiscoSTEP mapping rules. So befaeiating all the conditions
accumulated in the trace that leads to a CPN mgukim first want to know if that
marking is the desired one, that is to say, ifdbenario is fulfilled. So we evaluate
the architecture scenario after executing the CPN.

4.8. Run the SPIN Output Analyzer

We developed a tool that interprets the output ganerated by SPIN into a
human readable trace, in this section we explamwe do this translation.

Analyzer to interpret the SPIN output trail and gexte a human readable
trace.

Translate the SPIN trace into a human readable thruntime events
4.8.1. The report generator

Once the model checker finds a trace that complittsthe scenario specified
a file is generated b$PIN. This file contains the information of all the ron
deterministic choices made by the model checkes ififormation may be read by
the model checker to make simulations over the mdue is not easy to be read
by an external program or by the human. Anotherisilgenerated with information
of the model checking process itself. We decideddd information of the trace
found to this file. So when a trace is found a Ghuod is called which prints all the
important information related with the trace fourithis information will look
similar to the following example:

UN TIME EVENTS CALL ORDER - START

0
0
2
0
2

OUTh OO+

R
0
3
3
3
4
4
4
R

1

1

UN TIME EVENTS CALL ORDER - END
VALUE ASSUMPTIONS - START
000
010
020
100
110
120
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Coooooo
Mowowoo oo

ASSUMPTIONS - END
LITY ASSUMPTIONS - START

c -

" oPoco0ocor0000O+HOOOOROOOOOOO

NHONHONNHHOONNNNI\JHHHHHOOOOONNHHOO’O>NHONHO
NENENENNNEERNNNEERENNNRERRRRRRRS

MADPRRWWWNNNNNNFRRRPRRERRPERHERRRERERPRERRRPRRERFEPOOOOOOOM<CWWWNNN

o
[
SHERRRR

LITY

>

SSUMPTIONS - END

Is easy to see that the information is dividethiee sections:

1. Run Time Events Call Order: This section contains information
regarding the events that were executed for theetfaund and the
order in which they were executed. Each line reprissan event. Each
event is represented by 3 numbers, the first ipthee id, the second
is the local token id and the third is the ordember.

2. Value Assumptions: This section contains information regarding the
values that the parameters of the events must inagader to have a
complying trace. Each line represents the bindih@ @ariable to a
value. Each binding is represented by 4 numbeesfitt is the place,
the second is the local token id, the third isphaperty index and the
fourth is the constant id.

3. Equality Assumptions: This section contains information regarding
an equality relation between some of the eventarpeters. Each line
represents a binding between two properties. Eattdirly is
represented by 6 numbers, the first three numbepsesent one
property and the rest the other one. Each propsertgpresented by
three numbers, the first is the place, the secstiki local token id and
the third is the property index.
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For a human it is very difficult and time consumitg analyze all these
numbers. So we created a tool to automaticallyyaeathis information. The input
of this tool is the information explained earliéngptwo sets of XML files. The first
set has a XML file for each constant used in thelehdEach XML contains the id
and the name of a constant. The second set haslafi\for each place used in
the model. Each XML contains the place id, the @laame, if the consumption of
a token represent a run time event or not, andate type of the events. The data
type has a name and the name of each propertyedefiim the type. For simple or
primitive data types as for example “String” a prdyp named “value” is added for
consistency with more complex types. This XML filesve to be specified
according to the model and scenario specified amfeia.

After executing the tool a report is generated i information presented in
a way easily understandable for humans. The foligwis an example of such a
report:

CreateServer.e (constructor_name 'ServerSocket', instace_id A)
ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C)
ClientIO.e (method_name 'SocketGetInputStream’, calee_id C, return_id D)
ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-0)
ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-1)
ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-2)
ClientRead.e (method_name 'InputStreamRead’, calee_id D, return_id-3-0)
ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-1)
ClientRead.e (method_name 'InputStreamRead’, calee_id D, return_id-3-2)
ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-1)
ClientIO.e (method_name 'SocketGetInputStream’, calee_id C, return_id-2-2)
CreateServer.e (constructor_name 'ServerSocket', instace_id B)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-1)
ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-2)
CreateServer.e (constructor_name 'ServerSocket', instace_id-0-2)

A = {instace_id-0-0, calee_id-1-0}

B = {instace_id-0-1, calee_id-1-1, calee_id-1-2}

C = {return_id-1-0, calee_id-2-0, calee_id-2-1, calee_id-2-2}

D = {return_id-2-0, calee_id-3-0, calee_id-3-1, calee_id-3-2, calee_id-4-0,
calee_id-4-1, calee_id-4-2}

The report has two different sections. The firsthie resulting trace of the
whole process. All the events appear in the omlevHich they should be executed.
For each event you can see its name and the pan@niet that specific execution.
For each parameter you can either see its type raamdevalue, type name and
equality class or type name with unique instaneatification. The second section
shows the definition for each equality class. Ealdss is composed by two or
more instances.
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5. Conclusions

5.1. Concluding remarks

Having chosen the symbolic execution approach waasaerted key decision
given that otherwise we would not have been abiagpect the whole state-space
when model-checking.

Working with SPIN conducted us to write the specification in Promehach
turned out to be a very intuitive language to siyeiCPN. Furthermor8PIN has
the flexibility that allowed us to easily add cust&€ code, and it was fast enough
to model check big scenarios.

As we could see we had to cope with some issues specifying the CPN in
Promela, mainly related to the semantic and opmrati aspects of the CPN.
Fortunately we could find neat and clear ways tatdadth Promela and Spin, and
the theoretical background of SPIN help us to yetlile correctness of some key
parts of this work. In our opinion, SPIN is greabdsl checker and Promela is a
very comfortable language to specify concurrenaysymchronization.

We first started our work with the idea of just yicing a way to verify if
some important architecture scenarios were stlidvia an already implemented
system at runtime. Fortunately we noted that ocinrigjue approach was flexible
enough to be used at an early stage of a systerelogewent, during its
codification and testing, and even after finishthg development. It took us to
conclude that our work could be useful during thele development process and
that it seems to be worth extending our techniqukedeveloping tools to automate
steps of it, tasks that are left as future work.

When we modeled thBiscoSTEPmapping rules as a CPN, we detected some
errors in these rules. So we discovered that aimique could also be used as a
way for healing the mapping rules, especially i€ tmodeling is carried out
automatically.

Nowadays distributed architectures are more comthan ever thanks to the
new Cloud services, with its natural elasticitytthalps to scale horizontally in
ways that were never thought before. What's move ared complex architectures
like CQRS ES or EDA are being commonly used initiaeistry. Even though the
advantages are clear, the architecture complerity lgigger every day, even in the
most basic web applications. The importance of wark grows alongside this
complexity making the possibility of leaving theademic sphere to enter the
industry a reality.
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5.2. Potencial applications

Below we list some of the possible uses of this:

System architecture testing

It could be used to test that an already develsysttm complies with the key
architecture scenarios in terms of components, extons and their relationships.

Software development guidance

This technique can be used to help take some dasisivhen coding and at
design time being able to test how the system mealyatior under certain
architectural scenarios. It provides a tool to mize the risk of developing an
application that does not comply with an alreadingel architecture. It provides a
guide on how to realize a given specified architedtscenario.

Code generation

The presented technique may also be used as totgeherate source code of
the system skeleton so that when correctly useanbgpplication, it would assure
that the architecture is being complied. In thisywee could effectively state that
the generated system complies with the architesitggaario.

Let's see an example based on the client-serveroBisp mapping rules
sample of this thesis and let’s suppose we waggnerate Java code.

DiscoStep mapping rules could be specified withtaxing written any piece
of code, just knowing the programming language ayrdand considering some
design aspects given that we have to choose clases) method names, object
relations, etc. which impact directly in the codebe generated as a consequence
of the application of a mapping rule.

Let’s suppose that after verifying an architectscenario our SPIN Output
Analyzer outputs this trace:

CreateServer.e (constructor_name 'ServerSocket', instace_id A)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C)
ClientIO.e (method_name 'SocketGetInputStream’, calee_id C, return_id D)
ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-0)
ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-1)
ClientWrite.e (method_name 'OutputStreamWrite', calee_id D, return_id-4-2)
ClientRead.e (method_name 'InputStreamRead’, calee_id D, return_id-3-0)
ClientRead.e (method_name 'InputStreamRead', calee_id D, return_id-3-1)
ClientRead.e (method_name 'InputStreamRead’, calee_id D, return_id-3-2)
ClientIO.e (method_name 'SocketGetInputStream', calee_id C, return_id-2-1)
ClientIO.e (method_name 'SocketGetInputStream’, calee_id C, return_id-2-2)
CreateServer.e (constructor_name 'ServerSocket', instace_id B)

ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-1)
ConnectClient.e (method_name 'ServerSocketAccept', calee_id B, return_id-1-2)
CreateServer.e (constructor_name 'ServerSocket', instace_id-0-2)

A = {instace_id-0-0, calee_id-1-0}
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B = {instace_id-0-1, calee_id-1-1, calee_id-1-2}

C = {return_id-1-0, calee_id-2-0, calee_id-2-1, calee_id-2-2}

D = {return_id-2-0, calee_id-3-0, calee_id-3-1, calee_id-3-2, calee_id-4-0,
calee_id-4-1, calee_id-4-2}

And if we look, for instance, at the definition tife first involved rule, the
CreateServer one:

r ul e CreateServer {
i nput {init $e; }

out put { string $server_id; create_component $create_s erver;
}
trigger {? contains($e/@constructor_name, “ServerSocket”) ?}
action={?
| et $server_id := $e/@instance_id;
| et $create_server := <create_component name="{$server _id}”
type="ServerT"/>;
?}

we could immediately infer that we there must ldaas callecserverT .
Then if we look at the second rule, ConnectClient,:

r ul e ConnectClient {
i nput { call $e; string $server_id; }
out put {create_component $create_client; create_connector
$create_cs_connection;
string $client_id;}

trigger {?contains($e/@method_name, “ServerSocket.accept”) and
$e/@callee_id = $server_id ?}
action={?
| et $client_id := $e/@return_id,;
| et $create_client := <create_client name="{$client_id Y

type="ClientT" />;
| et $create_cs_connection :=
<create_connector name= concat($client_id,"-
“$server_id)
type="CSConnectorT” end1="{$server_id}"
end2="{$client_id}" />;
?}

We could infer that there must be a class catiedtT . If we observe the let
part we see that there isca@ate_connector high level event which represents
that there exist a static relationship betweerstrger and the client. The server is
identified because its id is received as a paranietthe input part and both rule
applications:

CreateServer.e (constructor_name 'ServerSocket', instace_id A)
ConnectClient.e (method_name 'ServerSocketAccept', calee_id A, return_id C)

are related because of thargument. Finally we know that the server refeesmar
contains the client as a consequence of the rol@pasition:

conposi tion System{
CreateServer.$server_id <- > ConnectClient.$server_id;

At first sight we can see that some types and sstatec relationships can be
inferred with just a simple observation. A more plenalysis may show other
useful characteristics.
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DiscoSTEPmapping rules healing

Given that the way of modeling the mapping rules &PN is clearly defined
it is a good opportunity to verify the correctne$shem. When we were modeling
the CPN for the set @iscoSTEPmapping rules of a client-server architecture, we
detected some bugs and errors in these rules assegquence of following the
translations rules (from mapping rules to CPN) egubin this thesis. So we
discovered that our technique could also be usedvesy for healing the mapping
rules, especially if the modeling is carried outomatically.

5.3. Future work

Below we list some tentative improvements or extarsfor our work:

1. In this thesis we presented the detailed steps d@deimwhatever set of
DiscoSTEPmapping rules as a CPN and how to specify this @PRromela.
It would be useful to automate these two stepsiabtheDiscoSTEPmMapping
rules are taken as input and the Promela spedaificaf its corresponding CPN
is returned as output.

2. We specify an architecture scenario as a Promslkertaan about the places of
the CPN that models thRiscoSTEP mapping rules of the components and
connectors of the architectures. We think that kgieg a visual SDL
(Scenario Description Language) and a tool to $pexciscenario directly in
terms of these last elements (and then translatedaiPromela assertion about
the corresponding CPN) would facilitate the taskvdfing scenarios.

3. The source code generator mentioned in a secti@nebeould be developed to
generate the skeleton of the system from a sbtswioSTEPmapping rules.

The three above items could extend the currentitanthre of our work as
shown below.
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Note that the responsibility of the new added comembs were clearly

described above.

4. We support architecture scenarios about the nummbeomponent creations,

6.

7.

connector creations and connections between compon&cluding the
number of occurrences of certain activities in comgnts, ie, component
executions. Scenarios could be extended to supgort,example, the
specification obrder between the creations, connections and activities.

In our implementation we simplify the translatiohX®ath statements defined
in [4] into simple equality statements between txdables or a variable and a
constant. We could extend our work to support tak power of XPath
statements.

A way of making our work more accessible and mooputar could be to
develop an Eclipse plugin to carry out all the step/olved in our technique
including all the extensions improvements and nogtil above. The plugin
could allow us, for example, to visualize the réagl CPN, to execute it, to ran
Spin verifications, visualize traces and reports.

We only implemented completely the Client-Servarhiecture rules defined
by Garlan. We tried some small variants but inftitare it would be good to
implement more architectures.
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Appendix A

DiscoSTEP client-server mapping rules

Below aDiscoSTEPprogram for mapping runtime events into a cliemtge
architecture is shown. It was taken from [4] buheadetails were corrected.

event {

i nput {
init;
call;
string;

out put {
string;
create_component;
create_client;
create_connector;
update_component
update_connector

}

r ul e CreateServer {
i nput {init $e; }

out put {string $server_id; create_component $create_serv er; }
trigger {? contains($e/@constructor_name, “ServerSocket”) ?}
action={?
| et $server_id := $e/@instance_id;
| et $create_server := <create_component name="{$server _id}”

type="ServerT"/>;
7}

r ul e ConnectClient {
i nput { call $e; string $server_id; }
out put {create_component $create_client; create_connector
$create_cs_connection;
string $client_id;}

trigger {?contains($e/@method_name, “ServerSocket.accept”) and
$e/@callee_id = $server_id ?}
action={?
| et $client_id := $e/@return_id,;
| et $create_client := <create_client name="{$client_id Y

type="ClientT" />;
| et $create_cs_connection :=
<create_connector name= concat($client_id,"-
“$server_id)
type="CSConnectorT” end1="{$server_id}"
end2="{$client_id}" />;
7}

rul e ClientlO {

i nput { call $e; string $client_id; }

out put {string $io_id; }

trigger {? (contains($e/@method_name, “Socket.getinputStre am”)

or contains($e/@method_name, “Socket.getOutputStream” )) and
$e/@callee_id = $client_id ?}

act i on {? let $client_id := $e/@return_id; ?}
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r ul e ClientRead {

i nput { $e : call; $io_id : string; $client_id : string; }
out put { $update_client : update_component; $activity type :
string;}
trigger {? (contains($e/@method_name, “InputStream.read”) and
$e/@callee_id = $io_id ?}
action={?

let $update_client := <update_component name=$clien t id
property="Read”

value="true” />;
let $activity_type := “Read”;

?}
}
r ul e ClientWrite {
i nput {$e : call; $io_id : string; $client_id : string; }
out put { $update_client : update_component; $activity type
string; }
trigger {? (contains($e/@method_name, “OutputStream.write”) and
$e/@callee_id = $io_id ?}
action={?
let $update_client := <update_component name=$clien t id
property="Write”
value="true” />;
let $activity_type := “Write”;
?}
}

rul e UpdateServer {
i nput {string $server_id; string $activity _type; }
out put { update_component $update_server; }

trigger {? ($activity_type = “Read”) or ($activity_type =
“Write”) ?}
action={?
let $ update_server := < update_componnet name=$ser ver_id
property="Activity”
value=$activity _type />;

?}

}

conposi tion System {
CreateServer.$server_id <- > ConnectClient.$server_id;
ConnectClient.$client_id - > ClientlO.$client_id;
ConnectClient.$client_id <- > ClientRead.$client_id,;
ClientlO.$io_id <- > ClientRead.$io_id;
ConnectClient.$client_id <- > ClientWrite.$client_id;
ClientlO.$io_id <- > ClientWrite.$io_id;
ClientWrite.$activity_id - > UpdateServer.$activity_id;
CreateServer.$server_id <- > UpdateServer.$server_id;

68/71



Chapter: Appendix B

Appendix B

Concrete syntax of DiscoSTEP Language

We present the concrete syntaxDi§coSTEP?.

PROGRAM ::=
IMPORT™; EVENT; (COMPOSITION | RULE)

IMPORT ::=
import guoted file name

EVENT ::= event type declarations:
‘event’ "
‘input’ '{* (ID *;")* '}
‘output’ " (ID *;7)* '}
'}

RULE ::= rule declarations:
‘rule’ ID *{* RULEPARTS "}’

RULEPARTS? ::= rule property declarations:
‘input’ *{* (ID VARID *;"}* '}’
‘output” '{* (ID VARID *;")* "}
‘trigger’ '1$" XPRED '$}'
‘action’ '{$' XQUERY '&}'

COMPOSITION ::= composition declarations:
‘composition’ ID " COMPOSITIONPART™ 3

COMPOSITIONPART = composition property declarations:
MEMBER '-=" MEMBER
MEMEER '<-=" MEMBER

MEMBER.::=
ID "' VARID
1D . MEMBER

ID ::= [a-zA-Z][a-zA-Z0-9_1*

WVARID ::= [$][a-zA-Z0-9_1%

Note that the productions XPRED and XQUERY in threguage refer to XQuery
Predicates and XQuery FLWOR expressions, respégctiVbe grammar for these
is defined inhttp://www.w3.org/TR/xquery/

2 The concrete syntax was taken from the Appendix the paper: “DiscoTect: A System
for Discovering the Architectures of Running Pragsausing Colored Petri Nets”

69/71



Appendix C

A client-server architecture example

The CPN specification

The table below lists the files used for the Prar@ecification of the CPN
model of theDiscoSTEPmapping rules for the client-server architecture.

File name Description

client-server This file specifies the declaration and definitiminthe places
architectural rules ot he CPN, its colorsets, the token representatite

CPN.dec] .
structure that stores the tokens in the placessante CPN
constants.

client-server This file specifies all the CPN transition occuces and a

architectural rules g1 for this architecture which determines a ramdoitial

CPN.pm1 : X

i marking for the input places of the CPN
client-server CPN In this file the CPN transitions are executed.
transitions to
occur.pml

The architecture scenario specification

The specification is divided into these files:

File name Description

a client-server This file contains a Promela assertion about thy gRces
scenario.pml

constants related This file contains related constants to the scenari

to a client-server
scenario.decl

The Assumption Verifier

The implementation is divided into these files:

File name Description
assumption This file contains the declaration and definititwe tstructures
verifier.decl that contain value and equality assumptions (cardi.
assumption This file contains functions and procedures toidhite the

verifier.c structures that contain the assumptions, to poputats

structure with value an equality assumptions andv@aluate
these assumptions.
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General files

File name Description
support.decl This file contains support structures and variables
support.c This file contains support procedures to accumukate

print out the runtime events and to print out tladue and
equality assumptions.
client- This file contains the entry point for the Spin ifieation.
server_Main.pml This file includes all the other files. | also caims a macro
that adds a token in a place. Although the filgaseric for
whatever architecture, it must include the fildlated to the
specific architecture and scenario.
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