Modelando un
Sistema de Teleoperacién de Robots
en DisCo

Tesis de Licenciatura

Autor
Pablo E. Giambiagi
Universidad de Buenos Aires
Departmento de Computacién

Co-directores
Reino Kurki-Suonio, TTKIK, Finlandia
Rosita Wachenchauzer, UBA, Argentina

Julio, 1997

Abstract

En esta tesis construimos la especificacién formal de un Sistema de Teleoperacién de
Robots conformado por un robot, un software de simulacién y una cdmara de video. Du-
rante el desarrollo, prestamos especial atencién a la derivacién transformacional de las
especificaciones y, en particular, a aquellos pasos de derivacién que introducen aspectos
relacionados con el diseilo.

Nos interesa también la metodologia, i.e., la organizacion de los pasos de transformacién
que se aplican en la derivacién de la especificacion del Sistema de Teleoperacién de Robots,
de modo que ese conocimiento pueda reutilizarse en casos similares.

El lenguaje elegido para la especificacién es DisCo. Este lenguaje estd basado en las ideas
de “acciones conjuntas” (joint-action) de Back y Kurki-Suonio. Las pruebas de las trans-
formaciones se realizan en el contexto formal de la Ldgica Temporal de Acciones (TLA) de
Lamport debido a que la semantica de DisCo estd definida en este formalismo.
Comenzamos con una sencilla especificacion del sistema que, a la vez, es lo suficientemente
rica como para permitirnos expresar un importante requerimiento de seguridad. A partir de
esta, se deriva una nueva especilicacion que toma en consideracion las restricciones impues-
tas por la transmision de informacion entre ubicaciones distantes entre si, y la infactibilidad
de eventos simultdneos en mds de una de estas ubicaciones. El método utilizado, denomi-
nado “Combinacién Sincronizada” ha sido utilizado en varias oportunidades en el pasado.
Sin embargo, hacemos aqui un andlisis de sus caracteristicas y estudiamos cémo utilizarlo
para probar propiedades de las especificaciones derivadas, a partir de las propicdades de la
especificacion inicial.

1 Introduccion

Iste trabajo es esencialmente un estudio préactico en el drea de la especificacion transformacional
y formal de sistemas reactivos distribuidos, donde el objeto de estudio consiste de un sistema
de teleoperacién de robots basado en modelos. Esto ultimo significa que el robot es teleoperado
por medio de drdenes remotas emitidas desde un modelo del robot y su entorno (manipulados
por un simulador especializado).

El Sistema de Teleoperacién de Robots especificado aqui fue desarrollado e implementado
como parte del Proyecto TELESAFE -integrado por la Universidad Tecnolégica de Tampere
(Finlandia), la Universidad de Louisville (EE.UU.), entes gubernamentales finlandeses, etc. Su
principal objetivo fue el estudio de los mecanismos de seguridad necesarios para realizar teleo-
peracién de robots.

Desde el punto de vista de la especificacién formal del sistema, se prefirié un formalismo
basado en acciones por sobre aquellos basados en procesos. Los formalismos basados en acciones
se sostienen en la nocién de accién, esencialmente una transicién atomica en un sistema de
transicion de estados. La atomicidad impide la concurrencia de acciones y, de esa manera, se
simplifica el estudio de las propiedades de los sistemas asi definidos.

El marco légico utilizado para analizar los sistemas de acciones estd dado por la Ldgica
Temporal de Acciones (TLA) de Lamport [Lam94] y el lenguaje usado para especificarlos es
DisCo (Distributed Cooperation, [BI(s88], [Jar92], [JKs91], [JKSS90]).

Operacionalmente hablando, la nocién de accién esconde toda comunicacién entre procesos.
Por ese motivo, las especificaciones deben sufrir una transformacién capaz de hacer explicita,
dicha comunicacién, antes de poder ser implementadas. En este trabajo, estudiamos diversos
métodos de transformacién y aplicamos aquel que, a nuestro juicio, resulta més conveniente en
este caso.

1.1 TeleSys: Un Sistema de Teleoperacién de Robots

TeleSys es un sistema -basado en modelos- para la operacién a distancia de un robot. Los
componentes del sistema son:

e Un robot industrial de seis (6) grados de libertad y una pinza neumdtica.

software de simulacién) y un objeto coordinador (Telesys). Para un listado completo de esta
especificacién, consultar el apéndice A.

3.1 El Robot

Para modelar la combinacién del robot Motoman y su controladora YASNAC, utilizamos una
clase Robot que refinamos progresivamente para incluir varias de las restricciones impuestas por
estos dos componentes de hardware.

La posicién del robot (i.e., el estado de sus seis ejes y de la pinza) fue simplificada a un entero,
ya que siempre podemos considerar que todas las coordenadas estdn asi codificadas. El robot
puede ser programado para realizar un movimiento lineal entre la posicién actual y una posicién
dada, de manera que no tenemos que preocuparnos por conocer las posiciones intermedias y el
control del robot para realizar dicho movimiento. Esto se refleja particularmente en la accién que
representa el movimiento del robot (move_Robot) que cambia directamente la posicién actual
por la de destino, sin incluir puntos intermedios.

3.2 El Simulador (Telegrip)

En el proyecto TELESAFE, se decidié utilizar TELEGRIPTY (Tele-Interactive Graphics Robot
Instruction Program) como el software de simulacién. TELEGRIP es un sistema de simulacién
y programacién de robots “fuera de linea” que provee una interface de bajo nivel (LLTI) para
interactuar con funciones definidas por el usuario. Nuestra modelizacion del simulador —a través
de la clase Telegrip— sélo permite conocer el estado de la LLTT, i.e., si estd activa o no, y en el
primer caso, la posicion del robot de acuerdo con el modelo en Telegrip.

3.3 La Camara

En el proyecto TELESATE se dedicd una camara de video programable para detectar movimien-
tos dentro del drea de operacién del robot, no producidos por ¢l mismo, como una medida extra
de seguridad. En la especificacion definimos una clase Camera con tan sélo dos estados posibles.
151 estado idle representa la situacion en que la cimara no esta realizando ninguna operacién y el
estado detecting indica que la camara estd ejecutando su programa de deteccién de movimiento.

3.4 Kl Coordinador del Sistema

Una vez definidas las clases que representan al robot, el simulador y la cimara de video, las
combinamos ¢n un 1nico sistema bajo la coordinacion de otra clase encargada de mantener la
consistencia entre aquellas (Notar asimismo que los elementos del entorno, incluyendo el usuario,
no se modelan como objetos, sino como acciones).

class TeleSys is
state *inoperative, operative(last_pos: integer);
extend inoperative by
state *camera_off, camera_on;
end inoperative;
buf: sequence integer;
initially buf = <>;
end;

Como no hay forma de solicitar a la camara su estado, este debe ser repetido en el coordi-
nador. Ademds, es preciso utilizar una cola de posiciones (buf) para permitir que el modelo en
Telegrip se mueva mas rapido o mds lento que el robot real.

3.5 Clasificacién de las Acciones de Telesys

Agrupamos aqui las acciones del sistema en tres categorias que nos serdn de utilidad en la
derivaciéon de una nueva especificacion del sistema a partir de esta:

o Acciones de Arranque: Situan a Telesys en su estado operativo y vacian el buffer de
posiciones.

e Acciones de operacion: Modifican la posicidon del robot, en el modelo, leen dicha posicion,
la transmiten y mueven el robot.

e Acciones de detencién: Sitian a Telesys en estado inoperativo ante pedidos del usuario o
eventos de alarma.

3.6 La Propiedad de Seguridad

En telecoperacion de robots es importante garantizar que, bajo determinadas situaciones de
control, el robot nunca efectie un movimicnto a una posicion no ordenada desde el modelo
remoto. Hemos llamado a tal garantia “la propiedad de seguridad” que podemos expresar
informalmente como:

“El camino seguido por el robot es siempre un prefijo del camino seguido por el
modelo en el simulador”

Para expresar esta propiedad en TLA, simplemente extendemos la definicion del sistema
Telesys con dos variables nuevas:

e mpath: Ll camino seguido por el modelo del robot (en Telegrip) tal como este ha sido
recibido por Telesys (por medio de la accidén get-new_pos) desde el ultimo paso que satisfizo

Telesys.anoperative A Telesys.operative’

e rpath: El camino seguido por el robot real desde el dltimo paso que satisflizo la misma,
condicién de arriba.

Con estas variables, la propiedad de seguridad se expresa en TLA como:

O (Telesys.operative = mpath = rpath & Telesys.buf)

4 Nociones de Implementacién

Analizando Telesys, la especificacién del Sistema de Teleoperacion de Robots desarrollada en la
seccion anterior, encontramos un nimero de indicadores que nos muestran que dicha especifi-
cacion estd “lejos” de una posible implementacién utilizando los mecanismos requeridos por el
proyecto, i.e., el uso de comunicacién asincrona entre los procesos locales y remotos:

¢ Ll sistema estd distribuido en dos lugares posiblemente muy scparados (espacialmente)
entre si: La ubicacién local (Robot, controladora, y cdmara) y la ubicacién remota (Simu-
lador y teleoperador).

e La especificacién no hace distincién entre estas dos ubicaciories y define acciones (atémicas)
que requieren la modificacién simultidnea de variables en ambas ubicaciones.

e Una implementacion donde dichas acciones sean ejecutadas en forma atémica no es realista
ya que el tiempo necesario para completar la comunicacién de un dato de una ubicacién
a la otra podria causar la postergacién de la respuesta a un evento de gran importancia
desde el punto de vista de la seguridad en el drea de trabajo.

N

Se impone entonces la idea de construir una nueva especificacién del sistema que tenga
en cuenta estas consideraciones y, a la vez, esté basada en la especificacién inicial (enfoque
transformacional) de modo de poder “extender” de algin modo sus propiedades a la nueva
especificacién. Es fundamental notar también que la especificacién buscada deberd “partir” la
atomicidad de aquellas acciones de TeleSys que modifican ambas ubicaciones simultdneamente.

4.1 Relaciones entre especificaciones

Dado que se intenta establecer una relacién entre las dos especificaciones del sistema de modo de
poder probar propiedades de la mds concreta, por reducién a propiedades de la mds abstracta,
estudiamos las relaciones descriptas en la literatura.

4.1.1 La Relacién de Implementacién

Dadas una especificacion abstracta A y una especificacién concreta C, se dice que C implementa
a A siy s6lo si, toda traza de ejecucién de C es una traza de ejecucién de A [AL91]. En TLA,
esta relacién se expresa simplemente con la implicacién 1égica: C = A

Del estudio de esta relacién, surge que:

e La relacién de implementacién fuerza a que, en toda traza, las variables visibles de C se
modifiquen exactamente como lo harian en alguna traza de A.

e Ademds, cuando C parte la atomicidad de ciertas acciones de A, lo anterior ya no es
posible. Es decir, la relacion de implementacién usual no podrd ser probada para nuestras
dos especificaciones.

4.1.2 Agregacién de Transacciones Distribuidas

Como una alternativa a la relacién de implementacion, consideramos el método de Agregacién
de Transacciones Distribuidas [PD96]. Este método consiste en la definicién de una funcién de
abstraccion entre los estados de C' y los de A, tal que a partir de toda traza de C se pueda
construir, por la aplicacién de la funcién a cada estado de la misma, una traza de A. Lo
importante es que este método es de utilidad cuando existe un conjunto de “transacciones” que
son atémicas en A, pero tienen una contrapartida no atémica en C.

El método plantea, ademds, los siguientes requisitos:

o [Is necesario dividir las variables de C' en variables de especificacién y variables de imple-
mentacion. Las variables de A deben ser exactamente aquellas variables de especificacién

de C.

o Para cada transaccién de C' debe haber un dnico punto de “commit”, que es cuando la
transaccion modifica por primera vez una variable de especificacion.

El método presenta una serie de desventajas para nuestro proyecto:
e La funcién de abstraccion sélo sirve para establecer una relacién entre C'y A.

e Las propicdades que se pueden extender de 4 a C dependen fuertemente de la funcién
clegida.

e Elmdétodo requiere una definicién precisa de la funcién de abstraccién. Esto puede implicar
mucho trabajo y sélo deberia intentarse una vez que se conocen las propiedades a probar.

o Il método requicre que las variables de A scan las variables de especificacion de C. En
nuestro caso, algunas variables de Telesys serdn reemplazadas por un par de variables, una
en cada ubicacién.

o Al exigir que las transacciones tengan su punto de “commit” tan pronto como se modifica la
primera variable de especificacion, se impide que una transaccion “interrumpa” la ejecucién
de otra.

La siguiente seccidn describe la relacion que efectivamente nos servird en la transformacion
de la especificacion TeleSys.

4.2 Combinacién Sincronizada

Se trata de una generalizacion del método de Agregaciéon de Transacciones donde la funcién de
abstraccion es reemplazada por una relacién binaria 2.

Basicamente, se construye una nueva especificacion SYNC(C, A) donde cada estado del
sistema contiene los valores de las variables de C'y de A (adecuadamente diferenciadas). Ademds,
las acciones de SY NC(C, A) se obtienen de sincronizar cada accién de C' con alguna acciéon de
A o un paso de ”stuttering”.

La especilicacion SYNC(C, A) define implicitamente la relacion 18y To que contrasta con los
requerimientos del método de Agregacién de Transacciones.

La sincronizacion se puede realizar impouniendo restricciones y propiedades a la relacion
resultante R, guiadas por las propiedes de A que se quieren extender a C'.

El método consta de tres fases interrelacionadas:

1. Combinacion:
Consiste en la construccion de la especificacion SY NC(C, A). Esencialmente, se trata de
definir la sincronizacion

g : Actions(C) — P(Actions(A) U {Unchangedyars(a)}) \ 0

donde Unchangedy q5(4y es una propiedad satisfecha por cualquier paso de stuttering de

A

El sistema sincronizado entonces se define como
SYNC(C,A) = Initsync AO[AsyNclvars(syNC(C,A))

donde
Initsync = Initg A Imitp AN R*
Vars(SYNC(C, A)) Vars(C) U Vars(A)
Async SYNC,V...VSYNC,
n Actions(C)|

y para cada 7, tal que 1 <17 < n,
SYNC; =S; A(By V...V B)A(RY)

asumiendo que ¢(S;) = {By,..., By}

Esta especificacion establece implicitamente una relacién R entre los estados de C' y los
de A de la siguiente manera: Dado (e, e,) € States(C) x States(A), entonces e.Re, si y
sélo si existe una traza de ejecucién o =< 01,02,... > de SYNC(C, A) y un indice 1, tal
que g; = (e, €eq)-

2. Verificacién:

Se verifica que cada traza de C' pueda ser extendida a una traza de SYNC(C, A). En
otras palabras, hay que probar que SYNC(C, A) satisface

O(Enabled(S;) = Enabled(SY NC})) (1)

para toda accién S; € Actions(C).

xri

3. Traduccién de propiedades:

La relacién R es utilizada para relacionar una propiedad de C' que se quiere probar, con
las propiedades conocidas de A.

5 Particionado de TeleSys

Alora estamos en condiciones de generar una nueva especificacién del Sistema de Teleoperacion
de Robots a partir de TeleSys de modo que se tenga en cuenta la separacién entre las ubicaciones
remota y local. La nueva especificacién, que llamaremos TeleSysLoc, se obtiene de la siguiente
manera:

e Se distribuyen las variables de acuerdo a su ubicacién. Algunas atributos de las instancias
de Telesys tienen que ser duplicados en ambas locaciones.

e Aquellas acciones de Telesys que modificaban variables en ambas ubicaciones son reem-
plazadas por procesos (conjunto de acciones que cooperan para lograr el mismo efecto que
la accién original). Esto sirve para simular el efecto de la comunicacién asincrona.

e Se construye un proceso por cada conjunto de acciones (de arranque, de operacién y de
detencién) de Telesys.

e Se agregan nuevos estados para representar los estados intermedios de cada proceso.

El Apéndice A incluye el listado completo de la especificacién TeleSysLoc.

6 Sincronizacion de TeleSys y TeleSysLoc

Entre las dos especificaciones del Sistema de Teleoperacién de Robots obtenidas se construye
una relacién de Combinacion Sincronizada siguiendo el método descripto en 4.2. Previamente
se tradujo cada especificacion a TLA y en ese mismo formalismo se escriben las acciones del sis-
tema sincronizado SYNC(TeleSysLoc, Telesys) (ver Apéndice B). La sincronizacién es realizada
teniendo como objetivo la prueba de la propiedad de seguridad para la especificacién concreta
TeleSysLoc.

Luego, la sincronizacién es verificada probando el invariante (l)pm'a cada una de las acciones
de TeleSysLoc que se sincroniza con alguna accién de TeleSys.

6.1 La Propiedad de Seguridad para TeleSysLoc

Una vez construida y verificada la especificacion SYNC(TeleSysLoc, Telesys), sabemos que:
1. O(R.position = sR.position)
2. O(RTS.oper = TT.active.position = sTT.active.position)

donde R, RT'S y TT son variables de TeleSysLoc, mientras sR y sTT son de Telesys.

Dichas propiedades nos permiten probar sin mucha dificultad que: Si impath e irpath son
las variables de TeleSysLoc cuyos valores representan respectivamente el camino seguido por el
modelo y ¢l camino scguido por ¢l robot, entonces

O(mpath = tmpath A rpath = irpath)

A partir de aqui es innmediato que podemos basarnos en la propiedad de seguridad de Telesys

O(T'elesys.operative = mpath = rpath&Telesys.buf)

para probar la propiedad de seguridad para TeleSysLoc:

i

D(L-Tclcsys.opcr = impath = irpath & queue(L_Telesys, R Telesys))

«

donde queue(L Telesys, R Telesys) es la lista de posiciones en “camino” hacia el robot.

7 Conclusiones y Trabajo Futuro

7.1 Resultados

Dos especificaciones, con distinto grado de abstraccion, fueron construidas para el Sistema de
Teleoperacién de Robots del proyecto TELESAFE. La especificacién de mds alto nivel, a pesar
de su sencillez, nos permitié expresar una importante propiedad de seguridad en teleoperacion
(seccién 3.6).

La especificacién de mds bajo nivel (TeleSysLoc) se obtuvo a partir de la anterior, particio-
nando la atomicidad de alguna de sus acciones dentro del marco del método de Combinacién
Sincronizada (scccion 4.2). Tl objelivo de esta transformacion fue el de introducir en la es-
pecificacion mecanismos relacionados con la transmision de datos y control entre ubicaciones
distantes entre si.

Durante la prueba de la Combinacién Sincronizada, detectamos varios errores en la especi-
ficacién original de TeleSysLoc que de otro modo hubiera sido bastante dificil de detectar.

7.2 Implementacion

El Sistema de Teleoperaciéon de Robots, Telesys, fue implementado en cl lenguaje de progra-
macién C, junto con bibliotecas de sockets TCP. La aplicacion producida fue utilizada para
estudiar el tema de seguridad en ambientes de teleoperacién de robots.

Esta tesis también sirve como documentacion para dicha implementacion.

7.3 Lenguaje de Especificacion

Hemos aplicado el lenguaje Disco a un problema del “mundo real”, es decir que no fue concebido
como una prueba de las virtudes del lenguaje. :

El lenguaje restringe el tipo de refinamiento de acciones que se pueden realizar. Esto nos
forzd, en algunas circunstancias, a escribir dos acciones cuando hubiera sido perfectamente valido
escribir s6lo una.

Por otro lado, cuando quisimos derivar TeleSysLoc a partir de Telesys, nos vimos obligados
a definir un sistema completamente nuevo. La versién 2.0 del lenguaje [Dis94] no provee ningiin
mechanismo para reutilizar TeleSys. Sin embargo, la versién 3.0 [Dis96] si lo tiene, pero no
fue utilizada porque, al momento de escribir esta tesis, no contdbamos con una herramienta de
simulacién de especificaciones para esta nueva version.

7.4 Particionado de la atomicidad de las acciones

En nuestro trabajo hemos sostenido la importancia de poder realizar refinamientos en la atom-
icidad de las acciones si es que estamos interesados eh un enfoque transformacional para la
especificacién de sistemas distribuidos. Asimismo, al intentar aplicar estas ideas a nuestras es-
pecificaciones, analizamos diversos métodos incluyendo el reciente método de “Agregacién de
Transacciones Distribuidas” [PD96]. Hemos visto que este método no se ajustaba a nuestros
propésitos. IEn su lugar, aplicamos éxitosamente el también conocido método de “Combinacién
Sincronizada” (4.2). Ademds, hemos prestado especial atencién a la descripcién y andlisis del
método, cosa que consideramos la principal contribucién de esta tesis.

7.5 Trabajo Futuro
Algunas posibles continuaciones para este trabajo son:
e Verificacién semi-automadtica de la Combinacién Sincronizada
e Refinamiento de la especiﬁcaciéj:l del Sistema de Teleoperacién de Robots.

— Inclusién de otras consideraciones de disefio como, por ejemplo, canales de mensajes
asfncronos. i

— Serializacién ;

— Modelizacién de errores en las comunicaciones. Tolerancia a fallas.

e Aprovechamiento de las nuevas facilidades de DisCo 3.0

Modeling a
Robot Telecoperation Systei
in DisCo

Licentiate Thesis

Pablo E. Giambiagi
University of Buenos Aires
Department of Computer Science

July, 1997

Abstract

In this thesis we produce a formal specification of a robot teleoperation system consist-
ing of a robot, a simulator application and a camera. In doing so, we concentrate on the
transformational derivation of specifications and pay particular attention to those transfor-
mations which introduce design-related issues into the specifications.

We are also interested in the methodology, i.e., in organizing the transformation steps to be
applied in the derivation of the robot telecoperation system specification so that they could
eventually be of use in similar cases.

The specification is done using the DisCo specification language, which is based on the
joint action approach of Back and Kurki-Suonio. The proofs of the transformations use
Lamport’s Temporal Logic of Actions, in which the semantics of the DisCo language is also
defined.

We start with a simple but rich enough specification of the system and derive from it an
specification that takes into account the fundamental restrictions imposed by the trans-
mission of data among distant locations and the inexistence of simultancous events. The
method applied, called Synchronized Combination, has been used on several occasions be-
fore, though we give here a thorough analysis of its characteristics and study how to use it
to prove propertics of the derived specification from properties of the original, supposedly
simpler, specification.

Preface

This case study on the specification of the Telesys Robot Teleoperation System originated as
part of the TELESAFE Project, a collaborative research project on safety in robot teleoperation
with the intervention of the Finnish State Techuical Research Centre (VI'T), Tampere University
of Technology (TUT, Finland), the University of Louisville (USA) and various others Finnish
governmental organizations and companics.

I participated in the TELESAFE Project fivst as a IAKSTI Trainee (July-September, 1995)
and then as a rescarch assistant (October 1995 — January 1996), always at the Institute of
Hydraulics and Automation (IHA/TUT).

After that and till June 1996, this work was funded by the Software System Laboratory
(SSL/TUT) where I worked at the DisCo Group as research assistant.

Finally, this thesis was mostly written while I was working as Teaching Assistant at the
Department of Computing of the University of Buenos Aires, Argentina.

Acknowledgments

Prof. Reijo Tuokko (IHA/TUT) and Prof. Reino Kurki-Suonio (SSL/TUT) are both mainly
responsible for all the good achievements of this work. Prof. Tuokko game me the opportunity
of visiting Finland in first place, of getting involved in the TELESAFE Project and of staying
there longer than what was originally expected. My gratitude for Prof. Kurki-Suonio, who by
the way got me interested into TLA, DisCo and action systems, goes well beyond what can be
written here.

The personnel from the Institute of Hydraulics and Automation (TUT), VI'T Safety En-
gineering and the Software System Laboratory (TUT) have all provided me with wonderful
working environments. Jari Sulkanen, Pasi and Klaus Pekonen (from VTT), Pertti Kelloméki,
Timo Aaltonen and Peeter Pruuden (from SSL/TUT) were great fun to work with.

T also want to thank the people from the Department of Computer Science at the University of
Buenos Aires — specially its director, Irene Loiseau, and my supervisor, Rosita Wachenchauzer—
for supporting me in so many ways.

Finally, I wish to express here my gratitude to all those beloved friends who accompanied
me during this period abroad and at home, specially José Luis, Eva, Thilo, Anne, Roger Victor,
Silvano, Dominik, Andrés, Beatriz and Ammman

Pablo E. Giambiagi
Buenos Aires
July, 1997

iil

Contents

1 Introduction 1
1.1 ODbjectives o o oo oL 2
1.2 TeleSys: A Robot Teleoperation System 3

1.2.1 The Telegrip Simulation Software 3
1.2.2 The Motoman Robot and its YASNAC-ERC Controller 3
1.2.3 The Smart Camera MAPP2200 3
1.3 Overview of the Thesis Work o .. 3

2 TFormal Specifications 5

2.1 Actions Systems$ and TLA = = «ov 5« o 5w mm e v 5 5 5 5 5 5 8 5989 8 €55 s 5
2.1.1 Action Systems: : s s = 55 w5 5w % @ 5 5 5 ¥ 5 ¥ 5 55 bR E B EMEE S 5§ E 5
2.1.2 Operational View of Action Systems 5
2.1.3 Temporal Logic of Actions oL, 6
2.1.4 Describing Action Systems with TLA, 7
215 Open vs; Closed Systems o« wwow o 6 5 2 2 5 5 5 8 2 s s @@ o o @ s & 5 & 8

2.2 TheDisCoLanpguage : - o s 2o w5 a0 ¢ ¢ 85 5 8 5 5 5 86 5@ @ H®E® & 2 5 5 3 8
2.2.1 Related Approacheso 9
2.2.2 Introduction to the Language 9
2.2:3 DisCoand TLA . .o s 66556353 : 3 i3 s s mamesanmss s s 11

3 Specifying TeleSys 13

3.1 The Robot Subsystem « s & « s s 5 4 ¢ 5 5 ¢ 5 5 s 2 s B e R @& w5 & o+ v+ 5 5 5 &5 13
3.1.1 A simpleinitialsystem.. : « ¢ ¢ 5 5 4 5 5 5 5ok om mm s e s e B £ E 55 E 5 13
3.1.2 Adding signals to the Robot controller 15
3.1.3 Applying the restrictions imposed by the Robot controller 17

3:2 The Camera. SubsSyStem. = « : & « s ¢ s s 5 5 & sy s @ s ® @@ s 4 o & 5 3 38 &% 20

3.3 The Simulator Subsystem o 21

3.4 Combining the Components in a Single System 22

3:5 Initial'Conditions ¢ = = ¢ = 2 ¢ 5 ¢ 2 s « S @ w s G @me s @ e @ 8 5 5 5 5 &5 @ E S 26

3.6 Fairness e e 26
3.6.1 Environmental and Implementation Actions 26
3.6.2 Fairness Properties of Implementation Actions 27
3.6.3 Assumptions about the Environment 27

3.7 Some Trivial Invariant Properties 28

3.8 Security: An Important Property L 28

4 Implementation Notions 31
4.1 Motivation « : + : = ¢ 5 v 5 55 95 5 w8 E B 5 5 5 E 5 5 3wk s E A s s 5 . 31
4.2 Background definitionso Lo 32

4.2.1 Behaviorsof asystem 32
4.2.2 Visible variables and locations 33
4.2.3 Projection of a behavior (relative to a set of variables) 33

vi CONTENTS
4.3 The Usual Definition of Implementation 34
4.4 Refinement Mappings and other Simulation Techniques 34
4.5 Locations, Observers and Relativity Theory 0. 35
4.6 The Need for a Different Kind of Relation 36
4.7 Aggregation of Distributed Transactionso oL, 37

4.7.1 The Abstraction Function o000 37
4.7.2 The Aggregation Method 38
4.7.3 Advantages of the Aggregation Method 38
4.7.4 Proving Properties L e 38
4.7.5 A Critique e 40
4.8 Synchronized Combination. L 41
4.8.1 Motivation, « o w s s s 8 5 ¢ 3 8 5 5 + % % vy B @ ERE 55 5 5 2 0w EE 41
4.8.2 The Synchronized Combination Method 41

5 Partitioning TeleSys 45
Dl NOUVARHOR wmmwmams o555 2 3 5 5§33 : 98 Ba B8 2 5 & 8 4 3 ¢8558 3 45
5.2 Requisites of the Partitioned System 45
5.3 Constructing the Partitioned System L oo 46

5.3.1 Assigning Variables to Locations 46
5.3.2 Determining the Location of Environmental Events 47
5.3.3 Defining Reactions to Environmental Events 47
5.3.4 Defining the Partitioned Processes oL, 49
5.3:5 OSpecifying the Processes « s s « s s w0 s@ 9.5 50 5 5 6§ ¢ 5 3 6. 55 55 ¢ ¢ 3 49
5.3.6 Initial Conditions for TeleSysLoc 52

6 Property Preservation 53

6.1 A Synchronized Combination of Telesys and TeleSysLoc 53
6.1.1 ODbjectives o o oo o e e e 53
6.1.2 General Description 0oL 53
6,13 Notabiom: « « ¢ ¢+ v % 2 5 ¢ 5 3 b mm s S @88 8 58 8 5 5 5 5 6.5 8 sk 5 55 s 54
6.1.4 Synchronizing Signal Managing Actions, 54
6.1.5 Synchronizing the Robot Movement 55
6.1.6 Synchronizing the Operating Actions 56
6.1.7 Synchronizing the Starting Actions oL 56
6.1.8 Synchronizing the Stopping Actions 57
6.1.9 Synchronizing the Remaining Actions 59
6.1.10 Initial States of the Synchronized System 60

6.2 The Proof of the Synchronization 000 61
6.2.1 The Proof Goalso e 61
622 Provingsome Goals ¢ o uwmusmsswma 2855 ¢ 5 55 6 o v REa a5 5 3 62
6.2.3 The proof of an imMportant Property « « « « s v s v 5 » ;e mw w6 ¢ 5 5 & s 63
6.2.4 DProving the Remaining Goals00 68

6.3 TeleSysloc Satisfies the Security Propertyo ..o oL 71

7 Conclusions and Future work 73
Tl Resulfs., ¢ : 5 ¢ 2 s pnn s s m s ® o5 8 8 & 5 3 5 8§ V5 535 MBEE S a0 ¥ ¢ 558 73
7.2 huplementation . ..o 00000 L e 73
7.3 Spcecification Languageo oL e 73
7.4 Splitting of action atomicity « « .« = « ¢ v« v v b s s s s L b e s s e e e 74
T Buture Worlé & s s m s mem s s mms 58 8 v 8 5 5 5 5 8 8 5 68 v 9 @mm@s i 5 53 6 74

CONTENTS

A Telesys Source Code
A.1 The initial system 0 0L
A.1.1 The Robot system
A.1.2 The Robot_Signal System
A.1.3 The Robot_DifSig System
A.1.4 The Camera System
A.1.5 The Telegrip Systemo
A.1.6 'The Telesys System
A.2 The TelesSysLoc SYStemL - « ¢ = = ¢ ¢ = 2 5 5 % 2 & & s b s om0 & & & 2 + 4 5 s

B The Synchronized System in TLA

vii

Chapter 1

Introduction

This thesis work is fundamentally a case study into the transformational formal specification
of distributed reactive systems where the object of study is a model-based robot telecoperation
system.

In model-based telecoperation, there is a master station containing a model of the robot and
its environment. The model, which is made so as to represent the slave station as accurately
as possible, includes knowledge of the kinematics of the robot and all necessary information
of the objects nearby. Model-based teleoperation presents many advantages over traditional
teleoperation, particularly because it allows a higher degree of precision in the movement of the
robot and because it requires far less transmission bandwidth.

The robot teleoperation system specified here has been actually developed and implemented
as part of TELESAFE, a comprehensive rescarch project at the Institute of Hydraulics and
Automation (Tampere University of Technology, Finland) involving researchers from different
disciplines and whose main objective was the study of safety requirements in teleoperation
environments. In this context, it was assumed that formal methods would provide an appropriate
framework to gain considerable confidence in the properties of the delivered software.

There are essentially two complementing approaches to the specification of concurrent and
distributed systems (such as the robot teleoperation system presented here): process-oriented
and action-oriented. In the process-oriented approach processes execute in parallel and com-
municate with each other by sending and receiving messages, or through shared memory. One
of the main disadvantages of this approach is that it is usually difficult to reason about the
properties of the whole system based on the behavior of each of the processes.

On the other hand, the action-oriented approach is built around what are called event-based
action system formalisms. These formalisms are founded on the notion of action, mainly a
transition in a state transition system. Fach action is an atomic change of system state where
atomicity means that no concurrency of actions is allowed in the model. Thus, a parallel
execution of an action system yields the same results than a sequential and nondeterministic
execution, therefore simplifying the reasoning necessary to understand its properties.

In this work, we follow the action-oriented approach. The logical framework used to dis-
cuss and analyze action systems is that of Temporal Logic of Actions (TLA, [Lam94]) and the
language used to specify them is DisCo ([BIs88], [Jar92], [JKs91], [JKSS90]).

From an operational point of view, the action system approach makes interprocess commu-
nication implicit within an action. As a result, actions are not necessarily suitable for direct
implementation in their general form. Of course, this lets us build specifications without being
restricted by implementation-oriented mechanisms. However, it will then be part of the de-
signer’s duty to transform the higher-level specification into a similar, lower-level one which is
better suited for a direct implementation. In other words, the designer is responsible for making
those implementation-oriented mechanisms explicit.

This transformational approach is supported by a suite of transformation methods that assist
the designer. Each method must satisfy at least the following requisites:

2 CHAPTER 1. INTRODUCTION

e The method should be constructive. That is, it should guide the designer through a series
of steps that result in the deliverance of the transformed specification. Those steps should
have a precise description in order to avoid ambiguities as much as possible.

e The method should establish a formal link between the properties of the higher-level
specification and those of the lower-level one in such a way that it makes possible to derive
properties of the latter (usually more complex) from properties of the former (usually
simpler).

It will be argued that, when transforming a specification in order to make explicit the in-
terprocess communication mechanisins, actions need to be split. Of the available methods (for
example, refinement mappings, forward and backward simulation, hybrid methods, etc.) many
do not account for those transformations involving the splitting of action’s atomicity. Therefore
those methods are of little help in these situations.

Therefore we intend to analyze the available methods and apply the one considered to be the
more appropriate to our case study. We also plan to explicitly describe the characteristics of the
method used, including the kind of relations between abstract and concrete specifications that
it can manage and how the properties of the abstract specification are used to prove properties
of the concrete one.

The following section enumerates the main objectives pursued not only in this work but also
in enclosing TELESAFE Project.

1.1 Objectives

The objectives of this work are manifold. Some of them are related to the objectives of the
TELESAFE project itself, mainly the study of security in a teleoperation environment; others
have to do with the problem of specifying a reactive system using a formal method and finally,
others relate to the precise methodology employed in the development of the specifications and
to the characteristics of the system specified.

e Objectives related to TELESAFE:

— To construct a specification of a Robot Teleoperation Systemn.
— To implement the specified Robot Teleoperation System.

— To analyze safety conditions in a teleoperation environment using the implemented
system as a test-bed.

— To be able to verify properties of the specified system that have to do with the security
issucs considered in the TELESAFE project.

— To document the software produced and formally describe the behavior of the hard-

ware pieces used in the system
o Objectives related to the use of formal methods:

— To gain experience into the advantages and disadvantages of the use of formal methods
in Software Engineering.

— To apply the DisCo Method to the transformational derivation of the specifications.

— To apply DisCo to a “real system” that has not been designed with the mere intention
of experimenting with the language and its properties.

e Objectives related to the specification of this particular Robot Teleoperation System:

— To survey the different implementation methods available in the literature and to
choose an appropriate one to be applied to the Robot Teleoperation System

1.2. TELESYS: A ROBOT TELEOPERATION SYSTEM 3

— To extend the transformation methodology wherever necessary, specially when consid-
ering the splitting of actions due to the differentiation of locations and the necessary
non-simultancity of the events occurring at diflerent locations.

1.2 TeleSys: A Robot Teleoperation System

As has been said before, this thesis consists in the specification of a Robot Teleoperation System.
This system, which we have called Telesys for short, consists of a Motoman robot, a Telegrip
simulation environment, a programmable camera and the software that manages them all in
cooperation.

We hereby give a brief description of all three hardware components of the system. Nev-
ertheless, notice that a more precise definition of the characteristics of each of the hardware
and software components will be given as part of the specification of Telesys in the following
chapters.

1.2.1 The Telegrip Simulation Software

TELEGRIPTM Tele-Interactive Graphics Robot Instruction Program is a 3D robot simulation
and off-line programming software developed by Deneb Robotics, Inc., USA. TELEGRIP is used
mainly for planning, building, programming and controlling intelligent robots and telerobots. as
well as their system applications, by means of integrated sensors, graphic representation and real-
time reasoning. With this software, the user can produce a highly detailed model of the robot
and its environment. It also provides an optional interface called LLTT (Low Level Telcoperation
Interface) that allows the bi-directional transmission of the model state information in real-time.

1.2.2 The Motoman Robot and its YASNAC-ERC Controller

For this project we used a Motoman I{10S industrial robot with six degrees of freedom situated
in VI'T Manufacturing Technology, Tampere, Finland (VTT is the Finnish Technical Research
Center).

To control it, we used a standard YASNAC-ERC robot controller which supports a RS232
interface to the outside world. This controller gives the possibility to read joint values of the
robot instead of reading only TCP-point values, which saves us from determining the inverse
kinematics of the robot.

In its “Remote” mode, the Motoman controller has also some additional and useful functions.
For example, servo power can be turned on and off and alarms can be read and cancelled.
Regarding safety, this controller allows the installation of several stop mechanisms for emergency
situations.

1.2.3 The Smart Camera MAPP2200

This video camiera has a programmable unit able to perform different tasks like edge- and motion-
detection. In the Telesys system, the Smart Camera is used (as a security mechanism) to detect,
once teleoperation has been started, any movement inside the robot workcell not produced by
the robot itself.

1.3 Overview of the Thesis Work

The thesis has been organized in the following way:
Chapter 2 introduces action systems, the theoretical framework used to reason about them

(i.e., the Temporal Logic of Actions), and the language used here to describe them (i.e., the
DisCo language).

4 CHAPTER 1. INTRODUCTION

Chapter 3 then gives an initial, simple but complete specification of Telesys, where there is
no distinction between remote and local locations.

Tt is then argued, in Chapter 4, that the specification produced in the previous chapter is
inadequate for a proper implementation, as it does not make explicit the communication between
the locations. This suggests that a transformation step should be applied to the specification of
Chapter 3. After describing several different methods and showing them to be insufficient for
this problem, the Synchronized Combination method is presented. Our main contribution
here is presumed to be, not the method itself (as it has been applied on many occasions before),
but in its presentation.

In Chapter 5, a new specification for Telesys is given, which now takes into account the
restrictions imposed by differentiating the local and the remote locations.

By using the Synchronized Combination method, the specification of Chapter 5 is related
to that of Chapter 3 and an important security property is proved for the former system by
reducing it to properties of the simpler, latter one. This is done in Chapter 6.

Finally, Chapter 7 lists the conclusions of the thesis work and suggests lines for further
development.

Chapter 2

Formal Specifications

2.1 Actions Systems and TLA

In this chapter, action systems and a mathematical foundation for them are introduced!.

In the traditional process-oriented view, a software system involving parallelism is modeled
as a set of communicating sequential processes. This often leads to complex systems, whose
properties are hard to understand and reason about.

The joint action approach developed by Back and Kurki-Suonio [BIs88] concentrates on
actions instead of processes. Each action is an atomic change of system state, expressed as a
set of assignments. Action systems provide a convenient way of specifying reactive and parallel
systems. One can often use local reasoning, i.e., reasoning that involves only those parts of the
system that are affected by an individual action.

2.1.1 Action Systems

An action system consists of a set of state variables, and a set of rules, called actions, that tell
how the values of variables may change. There are basically two ways of looking at an action
system: an operational view and a logical view. We first take an operational view, and later
introduce a logic (TLA) that can be used for the mathematical treatment of action systems.

2.1.2 Operational View of Action Systems

An action system can be regarded as an abstract machine consisting of a set of state variables,
and a set of actions, where each action consists of a guard and a body. The guard is a boolean-
valued expression involving state variables, and the body is a set of assignments to state variables.

The system starts in some initial state. As time passes, actions are executed, changing
the system state accordingly. Actions arc sclected for execution nondeterministically, the only
restriction being that the guard of an action must be true in order to be executed.

There is no notion of real time, only the ordering of actions is considered. The execution of
an action is atomic, meaning that once the execution of an action has been started, it cannot
be interrupted or interfered by other actions. The execution model is interleaving, i.e., only one
action at a time is being executed. Note that this does not necessarily need to apply to the
“reality” that is being modeled. If two actions do not refer to the same state variables, they may
be executed in any order, or even simultaneously. The interleaving model is adopted, because
it allows for simpler reasoning.

1The contents of this chapter have been extracted in their majority from Pertti Kellomiiki’s Licentiate Thesis
[Kel94].

6 CHAPTER 2. FORMAL SPECIFICATIONS

The following is a concrete, albeit not very useful, example of an action system which allows
z to be incremented by one at any time, and to be divided by two when it is even:

zeN
when true do © ¢ v +1 (2.1)
when even(z) do x <+ z/2

When we use an action system as a specification of a system, we do not imply that the actual
implementation should be an action system. We are only interested in the sequences of states
resulting from executing the system. Any mechanism that produces (in some sense) the same
sequences of states suflices as an implementation.

2.1.3 Temporal Logic of Actions

Action systems can be conveniently described and analyzed with Lamport’s Temporal Logic of
Actions (TLA) [Lam94]. We briefly introduce TLA, omitting some details that are not needed
for the purposes of this case study.

State, State Functions and State Predicates

We assume that there exists an infinite number of variables, such that there is a unique value
for each variable in each state. A state is a function mapping variable names to values.

A state function is an expression built from variables and values. A state predicate is a
boolean-valued state function. The value of a state function in a given state is the value obtained
by substituting variable names with their values in the given state, and evaluating the resulting
expression under the ordinary mathematical interpretation.

Actions

An action is a boolean-valued expression built from values and unprimed and primed variables.
An action represents a relation between states, where unprimed variables represent the values
of variables in one state, and primed variables represent the values in another state. A pair of
states is called a step, and a pair of states satisfying action A is called an A-step.

A TLA action embodies both the guard and the body of an action in the operational inter-
pretation. For example, TLA equivalents of the actions in the system given in 2.1 are

' =w+1 (2.2)
even(z) A’ = x/2 (2.3)

A boolean-valued expression P involving only unprimed variables can also be interpreted as
an action. A pair of states satisfies P iff the first state satisfies P.

The state predicate Enabled(4), defined for any action A, is true for a state s iff there exists
a state ¢t such that (s,t) is an A-step. The Enabled predicate corresponds to the guard of the
action in the operational interpretation.

Temporal Logic

The temporal properties of an action system arve dealt with by considering the sequences of states
that can be taken under the operational interpretation of the system. An infinite sequence of
states is called a behavior, and TLA provides means of making statements about such sequences.
Finite sequences can be extended to infinite sequences by repeating the final state indefinitely.

Behaviors are associated with temporal ordering. The first state of a behavior is the initial
state of the system, and the rest of the sequence represents the state of the system at different
times.

2.1. ACTIONS SYSTEMS AND TLA

~!

Temporal Operators Temporal formulas are formed by using the unary operator O (always),
and the boolean operators. A temporal formula is interpreted as an assertion about behaviors.
Let I be a boolean-valued formula not involving temporal operators, i.e., a state predicate. Its
meaning [[7] is that I holds for the first statc of a behavior. We denote the boolean value that
F assigns to a behavior o with o[F].

The formula O asserts that I holds for all states of a behavior, i.e., that I is always true.
Let < sp,s1, ... > denote a behavior whose first state is sg, second state is 51, etc. We can now
define [OF] in terms of [F] as follows:

< 50,81,...> [OF] =Vn € N :< Sy, Spt1, ... > [F] (2.4)

For convenience, we define the additional temporal operators ¢ (eventually) and ~ (leads
to):

OF = —0-[(2.5)
I~ G=0(F = ©G) (2.6)

The formula OF states that I is truc for some state of a behavior. The formula F ~ G
states that, whenever I is true, G is true then or at some later time.

By allowing actions in temporal formulas, we can describe action systems. We interpret,
action A as an assertion about the first step of a behavior, and OA as an assertion about all
steps in a behavior. Thus, a behavior satisfies A, iff the first step in the behavior is an A step,
and it satisfies OA, iff every step is an A-step.

Adding stuttering to actions A step (s,?) in which all variables in a given set U have the
same values in both s and ¢ is called a U-stuttering step.

It is sometimes convenient to be able to express a step that is either a A-step or a U-stuttering
step. So we define

Ay = AV (U =U)

where U’ = U is shorthand for Vz € U : 2’ = =.

Another useful notation allows us to express those executions of action A where stuttering
is ruled out:

<A>y=AA({U #£U)

2.1.4 Describing Action Systems with TLA

It is now easy to describe action systems with TLA. We give the initial condition with a state
predicate INIT, and the actions A, As,..., A,, corresponding to the actions of the action

system. Ignoring all fairness assumptions, the action system can be understood to define a TLA
formula of the form

S = INIT AO[Aly (2.7)

where A is the disjunction of actions A; and U is the set of all variables manipulated in
the system. We thus identify an action system with its encryption in TLA, and use “action
system S” and “TLA description of action system S” interchangeably. In fact, the Temporal
Logic of Actions is defined to be the temporal logic whose elementary formulas are predicates
and formulas of the form O[A]y.

8 CHAPTER 2. FORMAL SPECIFICATIONS

Safety and Liveness Properties

A specification of the form 2.7 only specifies what is allowed to happen. As long as no illegal
steps are taken, the specification is satisfied. No requirements for executing any specific action
is expressed by the specification, so a behavior where no state changes take place satisfies it
trivially. The properties expressed by this kind of specifications are called safety properties.
Informally, a safety property states that nothing “bad” will ever happen.

If we want a specification to express something about the progress of the computation, its
liveness properties, we need to state the liveness conditions explicitly. Liveness properties are
usually of the form “eventually X7, i.e., something “good” will eventually happen. See [AS85]
or [Ks96] for a precise definition of these properties in terms of behavior prefixes.

Any temporal property of a specification can be stated as a conjunction of safety properties
and liveness properties [AS85].

In TLA, liveness conditions of concurrent algorithms are expressed by fairness properties.
The execution is fair to an action if the action is guaranteed to be executed under certain
conditions. Weak fairness with respect to an action asserts that the action must be executed if
it remains possible to do so for a long enough time. That is, the action must eventually either
be executed, or become disabled. Strong fairness with respect to an action asserts that the
action must be executed if it is possible often enough to do so ([I{(s96] shows how to express
these fairness properties in TLA).

Canonical Form

A TLA formula describing a system can always be written in the canonical form
INITAQ[Alg AT

where INIT gives the initial state, 4 is the disjunction of all actions and F'is a conjunction
of fairness conditions.

2.1.5 Open vs. Closed Systems

When reasoning about a reactive system, one often needs information about the behavior of
the environment of the system. Since the environment can also be viewed as a reactive system,
it is natural to model the environment in the same formalism as the system itself. This leads
to a closed system approach, where the specification describes both the environment and the
system. In contrast, the open system approach specifies only the system. Naturally, to make
any statements about the behavior of the system, one has to make assumptions about the
environment. However, these are not considered as part of the specification and they may be
expressed in a different formalism.

TLA can be used to describe and reason about both open and closed systems.

In this thesis, we have followed the closed system approach.

2.2 The DisCo Language

The DisCo specification language ([JIXSS90], [JKs91]) is based on action systems, with additional
features to aid in modularization and incremental specification. The semantics of the language
is based on TLA. We now present enough of the language for the purposes of the specification
of Telesys, the Robot Teleoperation System. A more thorough discussion of the language can
be found in [Jar92).

A specification environment has been built for the DisCo language. Specifications written in
DisCo can be exccuted and animated using a graphical tool [Dis94][Dis96].

2.2. THE DISCO LANGUAGE 9

2.2.1 Related Approaches

Nondeterminism is an essential part of action systems. The specilication of the system only tells
which of the actions are cnabled and one of them is nondeterministically chosen for execution.

Dijkstra uses guarded commands [Dij76], which are based on nondeterminism. When a
sct of guarded commands is executed, one of the commands whose guards evaluate to true
is nondeterministically chosen for execution. However, Dijkstra uses guarded commands as
building blocks of terminating sequential programs, and no assumptions about whether a given
guarded command will be executed or not are given.

The execution model of Unity [ChM88] is very close to actions systems. A program consists
of a set of statements and cach of the statements is executed infinitely often. Ivery assignment
is conditional, so some of the statement executions might not change the state of the system.
Unity also provides superposition and composition of systems, although in a way that is slightly
different from DisCo’s.

2.2.2 Introduction to the Language

A DisCo specification consists of a set of systems, each system describing a part of the whole,
or refining some other system. The basic methods of building new systems are composition of
two or more separate systems and refinenmient of systems by superposition.

Composition of systems allows for bottom-up design, where parts of the complete system are
first specified separately and later combined to form a new system, possibly synchronizing some
of the actions. A typical example of this is the combination of a system specifying stations and
a system specifying a bus, to produce a new system that specifies a network of stations.

Superposition is used for stepwise refinement, or top-down design of systems. By using
superposition, one can add new state components, extend actions to handle the new state
components, or add new actions. An important application of superposition is to strengthen
the guards of previously introduced actions by adding new conjuncts, thereby constraining the
allowed behavior. For example, we might first model a network of stations by letting any station
send at any time. Later we could impose a ring discipline by allowing only the station that has
the sending token to send.

The semantics of the specification language guarantees that safety properties are preserved in
composition and superposition. Liveness properties, on the other hand, are not always preserved.

Classes and Objects

The universe of a DisCo specification consists of a set of objects, which are instances of classes.
An object has a distinct identity and can participate in actions.

The attributes of an object can be simple values (such as integers or truth values), sets of
simple values, sequences of simple values, or states. A state is an enumeration which can be
used for implementing state machines.

As with other object-oriented methods, mherltan(‘e can be used for building more complex
classes from simpler ones. Discussion of inheritance is omitted here, as we do not use it.

A simple example of a class definition is the following specification of an input device:

class Device is
state waiting, data_ready;
data: integer;

end;

Actions

Disco Actions correspond to actions in an action system roughly in the samme way as subroutines
correspond to ordinary blocks of code in a programming language. A DisCo action is a template,

10 CHAPTER 2. FORMAL SPECIFICATIONS

which tells how the objects participating in the action change. For example, an action to assign
a value to the data field of a device object could be written as

action read(d: integer) by D: Device is
when D.waiting do

—D.data_ready;

D.data := d;
end;

Action read illustrates a number of points about actions. An action consists of a name, and
optional parameter list, a list of participants, a guard and a body.

When an action is executed, the values for parameters are chosen nondeterministically. A
typical use for parameters is the one in action read, where we want to indicate that the data
field is changed, but we do not yet want to fix the value that it will contain. In later refinements
of the system, restrictions can be imposed on the values that data can contain.

The list of participants tells what kinds of objects may participate in the action. When an
action is executed, the formal participants are replaced by the actual objects participating in
the action. The body of the action then tells how the attributes of the participants are changed.

An action can only be executed if parameters and participants can be found so that the guard
is satisfied. The guard can refer both to the parameters and to the participants of the action.
It is also possible to refer to the global state by using universal or existential quantification over
classes.

The execution of an action is atomic, which means that it cannot be interrupted by other
actions once it has been started. Only one action at a time is (logically) being executed, so
no mutual exclusion problems can arise while executing an action. As with action systems in
general this does not rule out non-interfering actions happening simultaneously in the “reality”
being modeled.

Systems

Classes and actions are collected into systems, which are used for modularizing specifications.
Systems can be combined, or a system can be refined by adding new actions and classes, or
modifying existing actions and classes.

When two or more independently defined systems are combined into a new system, it is
possible to synchronize actions from different subsystems. When actions are combined the
guard of the resulting action is the conjunction of the guards of the original actions, and the
body is a catenation of the original bodies.

Stepwise refinement of a system can be done by importing an existing system into a new
system, and relining the classes and actions of the imported system. The refinements are based
on superposition, i.c., the new properties are defined on top of the old properties. The language
takes care to avoid conflicting refinements.

It is also possible first to make independent refinements of a system and later combine these
into one system again. We do not consider this case here, as such combinations are not used in
this case study.

Actions Refinement and Class Extension

The syntax of refinement of actions is illustrated by the following refinement of action read:

refined new_rcad of read

by ...
when ... d > 0is

end;

13 »

The participants, guard and body of the original actions are referred to as in the

refinement.

2.2. THE DISCO LANGUAGE 11

Classes can be extended, i.e., new components can be added. Extension of the class Device
illustrates this:

extend Decvice by
id: integer;
end,;

Assertions and Initial Conditions

Actions, classes and systems can all include assertions and initial conditions. An initial condition
cxpresses a condition that should hold initially, and an assertion expresses a condition that should
hold invariantly.

Assertions and initial conditions serve two purposes: on one hand they can be checked when
simulating the system, and on the other hand they inform the reader of a specification about,
intended initial conditions and invariants of the system.

2.2.3 DisCo and TLA

It is relatively straightforward to map DisCo to TLA. We do not attempt to give the complete
semantics of DisCo in terms of TLA (see [Jar92]), but outline how the mapping works for the
cases we are interested in here.

Objects

TLA does not include the notion of objects as such, it only has variables. Objects can be
represented as arrays of variables, the index serving as the identity of the object. However, in
this thesis, we only need one instance per class, which allows us to represent each DisCo object
by a compound variable where each component is accessed by means of the usual dot notation.

Actions

A DisCo action corresponds to a TLA action where the participants of the DisCo action are
existentially quantified. Again, this is a general solution. In this particular work, though, we
can simplify this as we know that there is only one instance of each class.

For example, if we know there is only one possible instance of class A, the action

action inc by obj: A is
when true do
obj.i := obj.i + 1;

end,;

corresponds to the TLA action
obj.i' = obj.i+ 1

Chapter 3
Specifying TeleSys

In this chapter we give an initial, simple but complete specification of Telesys, where there is
no distinction between remote and local locations. It is also worth noticing that all the design
decisions taken in developing the following specifications were guided by the underlying objective
of producing an specification dealing fundamentally with the communication among the different
components of the system, rather than with the internal details of any of them.

We first develop specifications for the Robot (an incremental specification in fact), the Tele-
grip simulation software and the Camera. And then, all three components are tied together by
means of a new object, called Telesys too, which represents the controlling software.

Notice that we have also decided to specify Telesys as a closed systein, i.e., a system which
models the environment actions as well as the internal actions. As a result of this, for example,
the robot object variables are actually the robot controller variables. The controller is thought
of as being part of the system. The interface between the controller and the environment is
treated in a very abstract way, by expecting environment actions to directly access controller
variables. Similar decisions have been taken for modeling the eflect of the environment over the
other components.

3.1 The Robot Subsystem

We proceed to define a model for the Motoman Robot subsystem used in the TELESAFE
project (called “the Robot” from now on). As we are building a model for a concrete robot, we
must take into account the restrictions imposed by this particular piece of hardware/software
that results from the combination of the Robot and its YASNAC ERC controller.

3.1.1 A simple initial system

Classes
From a very abstract point of view, a Robot consists of a position and a state of movement:

e Position:

The Robot used for the TELESAFE experiments has 6 joints and a gripper. Each joint is
servo-operated by its own step-motor whose position is uniquely determined by the “pulse”
value (an integer in an appropriate range). The gripper is pneumatic and can be in any of
two positions, either “open” or “closed”. This means that the complete spatial situation
of the robot can be described by an integer 6-tuple plus a boolean value.

However, we will abstract away the difference between the various joints and the gripper.
Instead, our model will use a single non-negative integer value to represent the Robot
position in space because, in fact, we are not interested in the precise (“real”) position of

13

14 CHAPTER 3. SPECIFYING TELESYS

the Robot, but only in having the possibility to uniquely identify each position.

position : integer;
assert position >= 0;

o State of movement:

The robot controller is responsible not only for the correct positioning of the robot in
space, but also for its movement from one position to the other. This frequently involves
complex calculations that are outside our scope of interest. Furthermore, the YASNAC
ERC controller allows the user to define different types of movements (linear, circular,
etc.) but during the experiments, just linear movement was used.

After analyzing the YASNAC ERC Controller capabilities, it was decided that, to begin
with, two states had to be differentiated. The robot can be either still or moving towards
a destination following a linear trajectory, and only in the former state the controller will
accept any order to move the robot to another point in space, or change the state of the
gripper.

state *still, moving(destination : integer);

This results into the following class definition for a Robot object:

class Robot is
state *still, moving(destination: integer);
position: integer;
initially position >= 0;
assert position >= 0;

end;

Actions
Ideally, the robot controller will allow the user to perform the following operations:

e ask for the current robot position,
e sct the robot in motion towards a position provided by the user, and

e stop the robot.

The YASNAC ERC controller used in the experiments acts always as a server, answering
demands from the user (either the operator or the teleoperation software). This means that there
is no means by which the controller can inform that the robot has just reached its destination and
is ready to accept a new position to move to. On the contrary, it is the user’s own responsibility
to inquire the controller appropriately as to detect the correct moment where a new movement
can be ordered.

Since we are interested in specifying the communication properties of the system, it is unde-
sirable to introduce such a level of detail into this initial model (we mean the necessary loop to
wait for the robot to reach its destination).

Then the only events we are interested in are:

o The robot is set in motion towards a new destination.
action set_Destination(p: integer)

by r: Robot is

when rstill and p >= 0

3.1. THE ROBOT SUBSYSTEM 15

do
— r.moving(p);
end;

e The robot reaches its current destination as a result of completing its programmed move-
ment.

action move_Robot

by 1: Robot is

when r.moving

do
r.position := r.moving.destination;
— r.still;

end;

e The robot is stopped.

action stop_Robot
by r: Robot is
when true
do

— r.still;

end;

Notes
Refer to Appendix A (page 77) for the complete listing of system Robot.

3.1.2 Adding signals to the Robot controller

The are several reasons why the Robot might be stopped. We would like then to be able
to distinguish, at least, a simple stop after successfully reaching destination, from any error
situation and from an stop command given by the user (refer to action stop_Robot in the
previous section).

In order to do this, we present a new system, which has been called Robot_Signal and is a
direct refinement of the Robot system defined above.

system Robot_Signal
import Robot;

Classes
The “still” state is extended to distinguish between the following situations:

1. The Robot stops after completing a correct movement (imported action
move_Robot)

2. The Robot stops after receiving a signal.

extend Robot by
extend still by

16 CHAPTER 3. SPECIFYING TELESYS

state *idle, signaled;
end still;

end;

Actions

First, we refine action move_Robot in order to correctly reflect the event of the robot stopping
after successfully performing a movement:

refined move_Robot is
when ...
do

— r.still.idle;
end;

Every time a signal is received by the robot controller, the robot is immediately stopped.
Also if the robot controller has received a signal, then the signal has to be cleared before the
robot can perform any movement.

Two new events are considered:

1. Turning a signal on (set.Signal).
action sct_signal
by r: Robot is
when true
do
- r.stillsignaled;

end;

Note that signals are not distinguished. However, there can be several different types of
signals, thus action set_Signal is always enabled.

2. Clearing all signals (clear_Signal).

action clear_signal
by r: Robot is
when r.still.signaled
do

— r.stilllidle;

end;

Notes
It could be argued that we should have refined action set_Destination as well, as it is expected
that the Robot won’t be ready to be moved before a signal has been adequately cleared. But, as
the process needed to clear cach signal depends on the type of the signal, we will now postpone
this refineinent (sce page 20).
Refer to Appendix A (page 78) for the complete listing of system Robot_Signal.

3.1. THE ROBOT SUBSYSTEM 17

3.1.3 Applying the restrictions imposed by the Robot controller

At this point in the development of a specification for the Robot system, we would like to
introduce some restrictions derived from the actual controller used in the TELIESAFE project.
First, we study the particular signals that the controller can recognize and, afterwards, we
analyze the different controller commands and their availability during the different controller
states. This information will later be used to define a refinement of system Robot_signal, which
we have called Robot_DifSig.

Let’s separate now the different possible signals according to the documentation provided
by the manufacturer of the YASNAC ERC controller!. This documentation states that the
controller reacts to four different signals:

1. External Hold

An Ezternal Hold signal is raised whenever the robot is operating (i.c., it is moving) and
occurs any of the following:

(a) The Stop Button at the controller pancl is pressed,
(b) The Stop Button at the T-Box (a hand-held command console) is pressed,

(¢) An appropriate signal is received through the “Ixternal Hold Line”. This line was
used in the TELESAFE experiments to provide the operators of the robot with a
wrist-radio-transmitter that would allow them to stop the robot when they are not
closc to any of the consoles.

2. Emergency Stop

Notice that the External Hold signal can only be activated while the robot is moving. On
the other side, the Emergency Stop signal can be activated at any moment and it is reserved
for particularly critical situations. During the TELESAFE experiments, the Emergency
Stop signal was used in conjunction with a modem connected to the telephone network. It
was argued that, due to the latency of the Internet connection, a complementary remote
control mode was needed.

Immediately after an Emergency Stop is recognized by the controller, the servos operating
the robot are turned off (something which does not occur after any other signal).

3. Command Hold

This signal is raised when the robot is stopped by a software command.

4. Alarm

This signal can result from an error internal to the controller or, for example, the impos-
sibility to reach a certain position where the robot has been instructed to move to.
¥ I

We now proceed to analyze how each signal affects the enabledness of the actions in Ro-
bot_signal, as we know that for each of the signals above, different restrictions apply to its
activation and deactivation, and the commands that can be executed while it is active.

Table 3.1 was extracted from the YASNAC ERC documentation and gives an example of
these restrictions. The table only shows the rows corresponding to commands actually needed
for the implementation of the Robot Teleoperation System. The following is a brief explanation
of the commands accepted by the YASNAC ERC and their significance for the design of
Telesys:

1Tt is important to notice that the information provided by the manufacturers of the Motoman Robot and
the YASNAC ERC were by no means complete. Therefore, the results of these studies and their validation in
practice, as well as their description in DisCo, were doubly appreciated by the owners of the hardware (i.e. VI'T)
and the institutions involved in the TELESAFE project (i.e. TTKK/IHA).

18 CHAPTER 3. SPECIFYING TELESYS

Command | Robot Robot | Panel Holding | Command | Alarm/
Name Stopped | Running | or After Stop Holding Error
START o) - - - -

HOLD 0) 0] - O 0]
RESET O 0] - 0] 0] 0 -
DELETE 0] - - - - ’
SVON 0O 0] - 0] -

RALARM O 0] 0] O (0]

RPOSJ 0 0O (0] &, 0
RSTATS 0] 0] O 0O)

Possible - : Not possible

Table 3.1: YASNAC ERC Status and Command Availability

e START: instructs the controller to run a program, which is the only way to move the robot.
This means that the START command is the one used to implement action set_Destination.

e HOLD: Turns on/off the Command Hold signal. In the first case, it stops the current
program, as well as the robot movement. In the other one, it clears the Command Hold
signal. Used in the implementation of actions hold_on and set_Destination.

e RESET: Clears an Alarm signal (check actions clear_alarml and clear_alarm2 in the fol-
lowing sections).

e DELETE: Deletes a robot program from the controller’s memory. This is needed so as
to be able to upload the next robot program. Used in the implementation of action
set_Destination.

¢ SVON: Turns servo power on/off. Used in the implementation of actions set_Destination,
clear_emergency_stopl and clear_emergency_stop2 (check the following sections for their
definitions).

The following commands will be used in the implementation of several actions belonging
to the Telesys system (see page 22).

e RALARM: Reads errors and alarm codes.

e RIPOSJ: Reads the current position data in joint coordinates.

Notice that the state of the gripper cannot be read from the controller data. Therefore,
this information must be maintained by Telesys itself.

The different treatments of joint coordinates and gripper status has been abstracted away

in our model but, of course, it had to be taken into account during the implementation
) g I

phase.

e RSTATS: Reads running status, alarm/error status and servo status.

Classes

As signals of different type can be raised at the same time, the state of the robot has to be
extended with the necessary information to inform which signals have been raised and which
have not. To do so, we first tried extending the still.signaled state with four new sub-states,
one for cach signal, but this approach resulted in a quite clumsy code, as we had to define two
new identiliers for cach signal: one identifier stated a raised signal condition while the other
indicated a cleared condition. To avoid this unnecessary complexity, we chose to represent them

3.1. THE ROBOT SUBSYSTEM 19

as boolean variables, i.c., one variable for each signal?.

extend Robot by
emergency _stop: boolean;
external_hold: boolean;
command_hold: boolean;
alarm: boolean;
initially not(emergency_stop or external_hold or
command_hold or alarm);
end,;

Notice as well that these four variables are of interest only while the robot is in the still. signa-
led state. However, we have also decided not to define them as extensions to this state, because
the notation r.command_hold was easier to manipulate than r.still.signaled.command_hold. The
price of this simplification in notation is that we have to verify the following:

assert not(emergency stop or external_hold or command_hold or alarm) or still.signaled;

which means that whenever any of the signal variables is true, then the robot is in the
still.signaled state.

Actions

For each signal variable, we provide an action to set it on. Remember that the External Hold
and Alarm signals could only be activated while the robot is moving. Thercfore, as an example,
we have:

refined set_alarm of set_signal is

when ... r.moving
do

r.alarm := true;
end,;

Also for each signal variable, we have to create an action to clear it. However, whenever a
signal is cleared, we have to change the robot state accordingly. This cannot be done directly
in DisCo, as we need to change a state defined in an imported system (Robot_Signal).

For example, we would have liked to define the action to clear the Emergency Stop signal, as:

refined clear_emergency stop of clear_signal is
when ... r.emergency_stop
do

if not(r.external_hold or r.command_hold or r.alarm) then

end if;
r.emergency-stop := false;
end;

but this is not a proper refinement as is defined in DisCo, although if it were possible to
program, the resulting system would still be a refinement of Robot_Signal. We could not find a

simpler way around this problem than writing two actions for clearing each signal:

refined clear_emergency _stopl of clear_signal is

2In version 3.0 of the DisCo Language, states have been removed and replaced by enumerated values. This
new feature could be used here in advantage.

20 CHAPTER 3. SPECIFYING TELESYS

when ... r.emergency_stop and
not(r.external hold or
r.command_hold or
r.alarm)

do

r.emergency.stop := false;
end;
action clear_emergency_stop2 by r: Robot is
when r.emergency_stop and

(r.external_hold or r.command_hold or r.alarm)

do

r.emergency_stop := false;
end;

We found this kind of refined actions appearing quite frequently in our systems and think
that it would be an interesting improvement if the DisCo language could let us define a single
action for them.

Finally, let us note that of all the signals, the only one that can be cleared by Telesys is the
Command Hold signal which can only be raised by Telesys itself. For simplicity, we preferred to
consider both, the clearing of the Command Hold signal and the setting of the robot destination,
a single action.

refined sct_Destination is
when ... not(r.emergency_stop or r.external hold or r.alarm)
do

r.command_hold := false;
end;

Notes
As the only way available to Telesys to stop the robot is by raising a Command Hold signal
~by means of a HOLD ON command sent to the YASNAC ERC, the guard of the imported
action stop_Robot is strengthened to false. Its functionality has been replaced by that of action
hold_on.
Refer to Appendix A (page 79) for the complete listing of system Robot_DifSig.

3.2 The Camera Subsystem

In order to reinforce security inside the robot workeell, a Smart Camera MAPP2200 was used.
This video camera has a programmable unit able to perform different tasks like edge- and motion-
detection. In the TELESAFE project, this camera was dedicated to check that the workcell was
in an acceptable state before teleoperation starts and, once this has been started, to detect any
movement inside the workeell not produced by the robot.

As checking the state of the workeell prior to teleoperation is of a static nature and we are
more interested in the dynamics of the system, we have decided not to model this function of
the camera and have concentrated just on the motion-detection feature.

Even though the Smart Camera is programmable, the program that enabled it to do motion-
detection was provided to us “as-is” by a different working team in VIT'T. This implied that we
had to adapt our software to the restrictions imposed by the motion-detection software loaded
into the camera.

3.3. THE SIMULATOR SUBSYSTEM 21

The software controlling the camera consisted of a single control loop that periodically reads
the serial port for the reception of any of two commands. The first command is used to put
the camera into the motion-detection state. The other one performs just the inverse function,
returning the camera to the initial idle state. If the camera detects any movement while being
in the motion-detection state, it sends a simple packet through the serial port and moves to its
idle state.

We started with a very simple Camera system, where we made no distinction between the
state change that results from motion-detection and the change that occurs when the user sends
a command to set the camera idle (even when no motion has been detected). The resulting
system proved to be sufficient for our specification purposes. The difference between the two
state changes above is only noticed by the user, but it is unsubstantial to the camera state.

The specification of the Camera system is:

system Camera
is

class Camera is
state *idle, detecting;
end;

action set_camera_idle by cm: Camera is
when true
do
— cm.idle;
end;

action start_detection by cm: Camera is
when true
do
— cm.detecting;
end;

end;

Note that the guards of the actions have been kept as non restricting as possible.

3.3 The Simulator Subsystem

For the TELESAFE project, the simulation software used at the remote site was TELE-
GRIPTM (Tele-Interactive Graphics Robot Instruction Program). TELEGRIP is a 3D robot
simulation and off-line robot programming environment developed by Deneb Robotics, Inc.,
USA.

TELEGRIP provides an LLTI (Low Level Teleoperation Interface) to interact with user-
defined functions. From the point of view of the Teleoperation System, it is only of concern to
know the state of the LLTI associated to the model (i.e. LLTI active or inactive) and, if the
LLTI is active, the position of the robot according to the Telegrip model. With these in mind,
we give a class definition for Telegrip:

class Telegrip is
state *inactive, active(position: integer);
end;

22 CHAPTER 3. SPECIFYING TELESYS

Essentially, an LLTI is composed of three functions: init, read and close. Init is invoked
whenever the LLTI is activated by the operator of TELEGRIP. On the other cide, close is
invoked every time the LLTI is deactivated. Read is called periodically (in fact, ove 600 times a
second, but this is hardware dependant). This poses a restriction to the amount of time during
which the read function can be active.

The init and read functions can easily be modelled like this:

action activate_Telegrip by tt: Telegrip is
when tt.inactive
do
— tt.active;
end;
action deactivate_Telegrip by tt: Telegrip is
when tt.active
- do
— tt.inactive;
end;

As the read function concerns the real interface between the Telegrip system and its environ-
ment, it will be treated later, during the specification of the system (Telesys, page 22). Anyway,
the user of TELEGRIP (i.e. the remote operator, its program or even the LLTI!) can modify
at will the position of the robot, independent of the execution of the read function. Of course,
we cannot put any restrictions on the occurrence of environmental events. Being it such an
event, the action responsible for the movement of the robot model has a true guard:

action change Pos(p: integer) by tt: Telegrip is
when tt.active and p >= 0
do
= tt.active(p);
end;

Notes
Notice that we have used a position parameter in action change Pos. This is the usual way
to represent nondeterministic inputs in DisCo.
Refer to Appendix A (page 84) for the complete listing of system Telegrip.

3.4 Combining the Components in a Single System

The whole Telesys system is composed of the Robot, the Camera and the Telegrip systems, all
working distributively but cooperatively. This is one of the main reasons why DisCo was chosen
as the specification language for this project.

Classes
We present a Telesys class, which is a container for all state data related to the management

of the communication between the different components of the system. We intend to use only
one instance of this class in our model.

Let us now start analyzing the state structure of this class.

First of all, notice that it is always rather convenient to have the possibility to decide whether
we want to teleoperate or not. This leads us to the realization that Telesys must always be in
any of the two following states:

3.4. COMBINING THE COMPONENTS IN A SINGLE SYSTEM 23

state *inoperative, operative(last.pos: integer);

We assume that inoperative is the default state, while we should leave for a moment the
explanation of the integer variable last_pos (sce page 24).

Then, noticing that there is no way to inquire the camera to know whether it is doing motion-
detection or not, this information has to be maintained by the Telesys object itself. 1f Telesys
is in its operative state, we can safely assume that the camera is doing motion-detection (we
assume no possibility of Camera failure in this model. In fact, this whole specilication assumes
that there cannot be malfunction error in any of its components). While, on the other side, if
the Telesys object is in the inoperative state, we cannot tell. Thus, we extend this last state
with the necessary sub-states:

extend inoperative by
state *camera_off, camera_on;
end inoperative;

Finally, considering that the rate at which the Robot and the simulated robot model might,
move can be different, we need a way to gather position coordinates that cannot be handled to
the real robot because, for example, it might be currently moving. This is casily done with the
introduction of a buffer of positions (integers). The complete class definition for Telesys is:

class TeleSys is
state *inoperative, operative(last_pos: integer);
extend inoperative by
state *camera_off, camera_on;
end inoperative;
buf: sequence integer;
initially buf = <>;
end;

Actions
As a way of attaining a conceptual organization that will be fully exploited in the next
chapters, we will group the actions into three categories:
1. Starting: Actions that move Telesys into state operative and clear the buffer of positions.
There are two ways to start the Telesys, depending on the state of the camera.

If the camera is already doing motion-detection, to start the Telesys we just have to update
the model robot position in Telegrip (to synchronize it with the real robot, which must
not be in movement) and check that the LLTT is active. Besides that, the only signal that
could be raised in the YASNAC ERC controller is the Command Hold signal, as it can
later be cleared using software.

refined start of change Pos by ... ts: TeleSys; r: Robot is
when ... ts.inoperative.camera_on and
not(r.external_hold or r.emergency.stop or r.alarm) and
r.still and p = r.position
do
ts.buf 1= <>;

— ts.operative(p);

24 CHAPTER 3. SPECIFYING TELESYS
end;

If the camera is not doing motion-detection, we have to combine the previous action with
action start_detection from the Camera system.

combined start_with_cam of Telegrip.change_Pos, Camera.start_detection;
refined start_with_cam by ... ts: TeleSys; r: Robot is
when ... ts.inoperative.camera_off and
not(r.external -hold or r.emergency stop or r.alarm) and
r.still and p = r.position
do
ts.buf := <>;

— ts.operative(p);

end;

2. Operating: Actions modify the robot model position in Telegrip, read the new position
into Telesys, transmit it to the robot and operate it.

The action to modify the robot model position has already been defined (change_Pos) but
in order to simplify the simulation in the DisCo tool, we found convenient to define the
following alternative, that prevents the movement of the model before its current position
has been read into the Telesys.

refined move_Model of change_Pos by ... ts: Telesys is
when ... (ts.inoperative or tt.active.position = ts.operative.last_pos)

do

end,;

We read a robot model position from Telegrip into Telesys, only when the position in
Telegrip is dillerent from the last position loaded. This is the reason to keep the value of
the last position read in variable operative.last_pos. The new position is then appended to
the buffer of positions.

action get_new_pos by ts: Telesys; tt: Telegrip is
when ts.operative.last_pos /= tt.active.position
do

— ts.operative(tt.active.position);

ts.buf := ts.buf &* <tt.active.position>;

end;

To transmit a position to the robot, we use action set_Destination, making sure that its
parameter p equals the first element in the buffer of positions

3& is the operator for catenation of sequences in DisCo.

3.4. COMBINING THE COMPONENTS IN A SINGLE SYSTEM 2

o !

refined operate of set_Destination
by ... ts: TeleSys is
when ... ts.operative and

p = head(ts.buf)

do

ts.bufl := tail(ts.buf);

end;

3. Stopping: Actions that move Telesys into state inoperative.

The reasons why the Telesys might have to be stopped are:

e A signal is raised in the robot controller (The possible signals are:
Emergency Stop, External Hold and Alarm).

action ack_Signal by r: Robot; ts: Telesys is
when ts.operative and
(r.external_hold or r.emergency_stop or r.alarm)
do
— ts.inoperative.camera_on;

end;

Notice that the raising of a signal does not produce any reaction from Telesys, besides
changing the state of the Robot object. This reflects one of the restrictions imposed
by the controller. As the controller cannot generate its own messages to the rest of
the Telesys system, we need a separate action to do the acknowledgment of the signal
by Telesys.

Notice as well that if a signal is set and cleared before it is acknowledged, the rest of
the system will not acknowledge it.

e The camera detects movement inside the robot workeell.

refined motion_detected of stop by ... ts: Telesys is
when ... cm.detecting
do

— ts.inoperative.camera_off;

end;
e The operator of the system issues a command to stop.
refined stop by ... ts: Telesys is

when ... ts.operative
do

— ts.inoperative.camera_off;

end;

26 CHAPTER 3. SPECIFYING TELESYS

e The LLTI in TELEGRIP is deactivated (close function called).

refined deact_Telegrip by ... ts: Telesys is
when ... ts.operative
do

— ts.inoperative.camera_off;
end;

Notes
Notice that before its refinement, deact_Telegrip is the combined action of Robot_DifSig.hold .-
on, Camera.set_Camera_Idle and Telegrip.deactivate_Telegrip.
In case the LLTT in TELEGRIP is deactivated while Telesys is not operative, we have:

refined deactivate_Telegrip by ... ts: Telesys is
when ... ts.inoperative

do

end;
Some of the imported actions are no longer valid and so are permanently disabled in the
Telesys system. Refer to Appendix A (page 85) for the complete listing of system Telesys.

3.5 Initial Conditions

We assume there is only one instance of each class defined, and we have given each object
the name of its class. Therefore the specification only declares the following objects: Tele-
grip, Camera, Robot and Telesys. Though the complete initial conditions can be deduced from
the initial conditions for each of the classes, we summarize them with this global DisCo assertion:

initially InitTelesys is
Robot.still.idle
and not(emergency_stop or external_hold
or command_hold or alarm)
and Camera.idle
and Telegrip.inactive
and Telesys.inoperative.camera_off and Telesys.buf = <>;

3.6 Fairness

3.6.1 Environmental and Implementation Actions

The specification of Telesys -as well as any other DisCo specification- is a closed one, which
means that it models not only the possible implementations of the system, but it also models
the behavior of the environment. A good specification makes a clear distinction between actions
performed by the environment and actions performed by the implementation, as only the later
have to be implemented [Mik95]; and, in order to do it, the events produced by the environment
and the implementation have to be identified first.

Besides that, a good specification is also one which imposes no arbitrary and unnecessary
restrictions over the environment actions. A system cannot restrain its environment, it only
reacts to environmental events.

Let’s take a look now at the Telesys system we have just given and try to determine which
events are produced by the environment and which by the implementation: Those events like

3.6. FAIRNESS 27

the order to start the systemn, activate/deactivate the TELEGRIP LLTI, stop the system and
move the model robot around in TELEGRIP, are clearly enviromment events. Also produced by
the environment are those events like the turning-on/off of a signal at the robot controller or a
modification inside the robot workeell that causes the camera to detect motion. On the other
side, the actions that gets the new robot coordinates from the simulation software (get_-new_pos),
transport the robot coordinates to the actual robot and orders its movement (operate), and
acknowledges a signal raised at the robot controller (ack.signal), are clearly the response to
implementation events.

We then have implementation actions (get_new_pos, operate and ack_signal), environment
actions (the various actions that turn a signal on/off, move_Model, activate_Telegrip) and actions
that perform tasks associated in part with the environment and in part with the implementation
(start, start_with_cam, stop, deact_Telegrip and motion_detected).

The problem of specifying an implementable interface in the context of DisCo has been thor-
oughly studied in [Mik95] and we will not meddle with it. Instead, we will keep the specification
of the interface as simple as possible.

We have considered that some external events could be modelled as having an immediate
ceffect on the system (i.c., actions start, stop, cte.) while for other events, because of restrictions
imposed by the way the components can communicate between them, we had to split the event,
occurrence from the reaction generated by it (i.e., actions ack_signal and get_new_pos).

3.6.2 Fairness Properties of Implementation Actions

After identifying environment and implementation events, and noting that some actions in
Telesys are both environment and implementation actions, we conclude that, at this point of
the specilication, we can only impose fairness restrictions over the actions get_new_pos, operate
and ack_signal.

Though we are not dealing with real-time here, it seems natural to ask any sensible im-
plementation to eventually force the execution of internal actions if they are infinitely enabled
[I{s96]). But, as the set of states at which these actions are enabled are not disjoint, we will
require strong fairness for each of them. Therefore, we have:

SF(Agct_new_pos) A SF(Aoperate) A SF(Aack-si,gnnl)

where A, is the TLA action associated with DisCo action z.

3.6.3 Assumptions about the Environment

Though the system cannot restrain the environment in any way, we have to make some assump-
tions about the environment to be able to deduce some interesting properties of the system.

We have already introduced one such assumption when defining action move_Model, which
is disabled if the system has not loaded the last position yet. In this case, we are not posing
a restriction on the environment but assuming that the loading of robot positions into system
will always be faster than the simulated movement of the robot in TELEGRIP. It is a realistic
assumption since the calling of function read in the LLTT has a rate of approximately 600 calls
per second, while the real robot cannot change directions that fast.

If we deleted this restriction from action Move_Model, our assumption about the environment
could also be expressed in TLA as

< Amove_Model >= Telesys.inoperativeV

O : : i s .
Telegrip.active.position = Telesys.operative.last_pos

(3.1)
Another assumption about the environment will be to suppose that the operator of the
system never clears a signal from the robot controller before it has been detected by the system.

If this weren’t the case, it could be possible for the robot to stop in the middle of a trajectory
and restart with another direction violating the “security property” (see 3.8).

28 CHAPTER 3. SPECIFYING TELESYS

For each of the signals Emergency_Stop, Command_Hold and Alarm, and for each of the two
clearing actions, we assume properties like the following:

O[< Actear_Emergency_stopt >=> Telesys.inoperative] (3.2)

3.7 Some Trivial Invariant Properties

g ,
We state here a few invariant properties of system Telesys that will be of use in the following
chapters: -
|
.
e If there is a signal at the controller, any movement in the workeell, the system operator
sends the order to stop it or the cl'orresppndiug TELEGRIP LLTI is deactivated, then the

system goes into the inoperative state.

< AASct_cmergency_stop \ Aset-ewternul_hold \ Aset_alurmv

. . (3.3)
Aviotion_detécted V Astop \ Adeact_Teleyrip > ~» Telesys.inoperative

Notice that we need assumption 3.2 to prove this invariant property.

e Whenever the system is in the inoperative state, its estimation of the state of the camera

is correct.
Telesys.inoperative.cameraon = Camera.detecting (3.4)
Telesys.inoperative.camera.-of f = Camera.idle (3-5)

e Whenever the system is in the inoperative state, the robot is not moving.
Telesys.inoperative = Robot.still (3.6)

Note that this invariant will not be preserved by the atomicity refinement of the following
chapters.

e If the system is operative and there is at least a robot joint value in the buffer, then the
robot will finally be moved or the system be stopped (by different possible causes).

Telesys.operativeN
“ﬁ(f’lll‘])/,y(ijilC.S:ljS.ll‘lLf) = ¢ < Aopm'n.te Vv Aack-siynul V Amolion-detecl,e(lv > (37)

VAsI,op \ fqzlcact-’]‘elegriu

3.8 Security: An Important Property
Let’s consider the two following situations:

1. Suppose the robot is instructed to move from its current position A to point B and then
to point C; and suppose that the order of the instructions get mixed up so that the robot
goes from A to C and then to B. Clearly this is a disastrous situation as the robot can
destroy something in the workcell or even destroy itself by attempting such a movement.

2. The user orders the robot to move from its current position A to point B. While it is
moving, the camera detects motion in the workceell and the robot is stopped in D, a point
between A and B. The user then restarts the system, assuming the robot is in position B,
and orders it to move to point C. Clearly the robot movement will not be as expected by
the user.

3.8. SECURITY: AN IMPORTANT PROPERTY 29

Clearly, we would like to make sure no situation like these ever happens. Informally, the
property that we would like Telesys to satisfy, says:

“The path followed by the tobot is always a prefix of the path followed by the model since
Telesys went into the operative state”.

Note that, by invariant 3.6, if the robot is moving, then Telesys must be in the operative
state, so the property enunciated must be valid whenever the robot is in motion.

To formalize it, we need the following definition:

Definition 1 A path is a sequence of joint-value coordinates.

We introduce two new variables, whose value is only of importance while Telesys is in state
operative:

e mpath: The path taken by the robot model (in Telegrip) as it has been received by Telesys
(by means of action getnew_pos) since the last step verifying

Telesys.inoperative A T'elesys.operative’

e rpath: The path taken by the real robot since the last step verifying the same condition
as above.

It is assumed that both variables are initially empty. Notice that the actual path taken
by the model in Telesys can have at most one more step than the path received by Telesys,
according to assumption 3.1.

The last step is to refine the actions in Telesys so as to update these two variables (mpath
and rpath).

Actions start and start_with_cam are refined with the conjunct

mpath' =< r.position > Arpath' =< r.position >
action get_new_pos adds the new position to mpath with the disjunct
mpath' = mpath & < tt.active.position >
and action operate updates rpath with
rpath’ = rpath & head(ts.buf)

Considering that these are then the only actions that modify the values of mpath and rpath,
the validity of the following property is easily proved.

The Security Property

O (Telesys.operative = mpath = rpath & Telesys.buf) (3.8)

Chapter 4

Implementation Notions

4.1 Motivation

It can be argued that the specification of a system should be independent of its design. Then,
from the point of view of a purist, the decisions involved in choosing an appropriate software
architecture or deciding whether the system should be a concurrent or distributed one, are
outside the scope of the specifier as well as of the specification language. But, in real life, the
is no clear-cut frontier between specification and design, as well as design sometimes fades into
implementation (for example, notice that this exactly what happens with some prototyping
methodologies).

The whole development process can be viewed as continuum that starts with a very simple
and abstract model of the system and its environment and then goes into adding complexity and
information in successive steps, until a model is obtained that is expressive and restricted enough
to be executed in the computer. This encompasses specification, design and implementation, an
idea which is at the heart of the transformational methodology advocated, among many others,
by the developers of DisCo.

Consistently, if a specification language can be used to support the design process, why not
use it as a design language too?

Here, we investigate this possibility in the framework of action systems and a specification
language based on them (DisCo). We intend to use this language in the design of our Robot
Teleoperation System.

Starting from a DisCo specification of the system, we are then interested in obtaining a
system with action guards and bodies that have a direct implementation using the mechanisms
provided by the programming language and operating environment to be used [KsIK88].

Some design considerations taken from the Robot Teleoperation System

The TeleSys specification of the previous chapter does not describe the fact that there are
inherent restrictions to the exchange of information between the local and the remote sites. The
local site is where the robot is located, whereas the remote.one is where the simulation software
is run, and from where the teleoperator instructs the robot movements.

The TELESAFE project imposed the following restriction to the system: The local and
remote sites can be situated very far from each other and they must use the usual transport
protocols supported by the Internet. This restriction was added to the security objectives
regarding teleoperation of robots, pursued by the whole project.

As a result, a number of design prerogatives where outlined, which the designed system
should adapt to:

e There should be a clear division between data to be stored locally and data to be stored
remotely.

31

32 CHAPTER 4. IMPLEMENTATION NOTIONS

e A number of lose-less, order-preserving, point-to-point connections could be assumed as
provided by the operating environment.

e An atomic implementation of each communication between the two sites is not feasible
or, at least, not desired, given the necessity to attain some level of security related to the
response velocity of the teleoperation system.

The design prerogatives sketched above, have motivated us to study how to extend the DisCo
methodology based on successive refinements of actions systems to manage the introduction of
asynchronous communication channels at the design stage.

In other words, we are interested in studying atomicity refinement in the context of reactive
action systems. The object of our present analysis is therefore, the possible relations between
the refined and the original systems.

If we defined an appropriate relation between the systems, some properties previously verified
for the original system, could be relatively extended to the refined one, freeing thus the designer
from the burden of a bigger and more complex proof.

4.2 Background definitions

4.2.1 Behaviors of a system
Given the canonical form specification
S=(Bx,...,zn: Init ANO[A]AF) (4.1)

we define some terms that will be useful in the following sections. (Notice that most of these
definitions have been taken from [Ks96, Chapter 2]).

Definition 2 Set of states of a system. An state is an assignment of values to state variables.
The set of all states of system S, whether reachable or not, will be denoted by States(S).

Observation 3 It is common to identify properties with the set of states that satisfy them. In
that line, predicate Init is both understood as the logical predicate and as the set of states

{q € States(S) : q[Init]}
where q[[Init]] denotes the evaluation of predicate Init in state q.

Definition 4 Lvaluation of a state predicate. Given a state predicate (analogously state func-
tion) P and a state q, the evaluation of P in q is the expression ¢[[P]] which results from
substituting the variables of P by the values q assigns to them.

Definition 5 Step. A step of system S is a pair of states (s,t), such that s[[A]]t holds, where
this last expression is obtained from A by interpreting its unprimed variables 2 in state s, i.e.
as s[[z]], and primed variables o' in state t, i.e. as t[[z']].

Definition 6 Behavior. A behavior for system S is an infinite sequence of elements of
States(S) that satisfies (4.1).

Definition 7 Set of behaviors of a system. From now on, the set of all behaviors of systems S
will be denoted by bel(S).

It is sometimes useful to be able to look at a behavior of a system without considering its
stuttering steps. Given a behavior o, we consider the sequence that results of eliminating all
stuttering steps from o. If this sequence is finite, we make it infinite by repeating the final state
indefinitely. The resulting sequence is called o.

4.2. BACKGROUND DEFINITIONS 33

4.2.2 Visible variables and locations

Distributed systems represent naturally those systems where data items are spread among a va-
riety of locations and there is an associated and, usually substantial, delay in the transportation
of data from one location to another for processing purposes.

A location is a set of visible variables that are thought of as being close enough to each
other so that every transmission of data between any two of them can be modelled as an atomic
transition.

Definition 8 Visible variables of a system. These variables characterize the eaternally visible
state of the system. Visible variables are those that are not abstracted away by quantification
in the TLA ecapression defining the system. We denote by Vg the set of all visible variables in
system S.

Definition 9 Location. Given the system S, and the set Vs of visible variables in S, a location
1s just a subsct of V.

Definition 10 Set of locations of a system. Given a system S, a sct of locations for system S
is a finite partition of Vs.

4.2.3 Projection of a behavior (relative to a set of variables)

First, we give an intuitive definition based on behaviors as sequences of states. Given a set [of
visible variables for system S, and given a behavior o of S such that

a = ((vo, ho), (v1, M), (va2, h2),...)

where the v; are the visible states (composed of the values of all visible variables Vg) and
the h; are the hidden states (values corresponding to all variables not in Vs); then we define the
projection of o w.r.t. | as

ag| = (1)0/[,’()1/1,1}2/[,. ‘)
where each v;/; is the restriction of the state v; to the variables in set .

We are now in position of giving a couple of useful notation definitions.

Definition 11 Projected behaviors of a system w.r.t. a set of visible variables. Given a system

S, a set W of sequences of states of S and a set | € Vg, the projection of W w.r.t. 1 is defined
as

Wi = {Gi|o € W)}

Notice that we have abstracted away stuttering steps.
When W is the set of all behaviors allowed by system S, we have

behi(S) = (beh(S)): = {ai]o € beh(S))}

This process of projection can be expressed in TLA by quantification of program variables.
That is, the behaviors in beh;(S) satisfy the TLA formula
3:1)1,.’132,.. eyTp - S

where {z1,22,...,2,} = Vs \ [, is the set of visible variables of S that do not belong to the
location ! [Ks96, Chapter 2].

Observation 12 Given a system S with visible variables Vs, behy (S) is the set of externally
visible behaviors of S after abstracting away stuttering steps.

34 CHAPTER 4. IMPLEMENTATION NOTIONS

4.3 The Usual Definition of Implementation

The transformational approach to the development of system specifications is based on the pos-
sibility of defining some kind of relation between a higher-level specification and lower-level one.
A relation commonly used is the “implementation relation” by which the lower-level specification
is considered to be an implementation of the higher-level specification.

As was stated in [AL91, page 3], “a specification S implements a specification T" if every ex-
ternally visible behavior allowed by S is also allowed by T'. To prove that S correctly implements
T, it is enough to show that if S allows the behavior

((vo, ho), (v1, M), (v2, ha), .. .)

where the v; are the visible states (composed of the values of all visible variables Vg) and
the h; are the hidden states (values corresponding to all variables not in Vs); then there exist
hidden states h} such that 7" allows the behavior

{(vo, hg), (v1, 1), (v, hs), . ..)

Observation 13 It is not necessary that the variables of S coincide with the variables of T, but
it is required that the visible variables of both systems be the same, i.e. Vg = Vp [AL91].

Observation 14 With the notations defined above, the “implementation relation” can be ex-
pressed like this
behy, (S) C behy, (T)

The “implementation relation” between two systems (the specification or abstract system S
and the implementation system S) can be expressed shortly and elegantly in TLA. If the systems
S and T are represented using canonical TLA expressions, S is a correct implementation of T,
if S = T [Ks96, Chapter 5].

The “implementation relation” is just a relation between two specifications. Its importance is
related to the fact that any real system satisfying the implementation (lower-level) specification
will satisfy the abstract (higher-level) specification. Thus, some properties of the real system
could be proved over the abstract, and supposedly simpler, specification instead of using the
implementation specification.

Of course, not all properties of the implementation specification will be satisfied by the ab-
stract one. In essence, the “implementation relation” preserves properties that involve externally
visible variables (which are the same for both specifications) and are insensible to stuttering.

4.4 Refinement Mappings and other Simulation Tech-
‘niques

To prove that there is an “implementation relation” between a lower-level specification S and a
higher-level specification 7', several different techniques have been developed. These techniques
reduce the proof of properties of complete behaviors to reasoning about single states and state-
transitions.

One of the simplest is the refinement mapping technique [Lam83] which consists in finding
a function f from the states of S to the states of 7" such that:

e f maps externally visible variables of S identically to the corresponding visible variables of
T. Remember that in trying to prove the “implementation relationship”, we have assumed
Vs = Vp.

o f maps initial states of S to initial states of T' (i.e., f(Inits) C Initr)

e f maps cach possible step of S to a step of 7' (which might be a stuttering step).

4.5. LOCATIONS, OBSERVERS AND RELATIVITY THEORY 35

e f preserves liveness properties. (This requirement is usually relaxed leaving liveness prop-
erties to a separate treatment).

It has been long known that if there is such a refinement mapping between S and T', then
there is an “implementation relation” between them [AL91, section 2.4]. However, this technique
is not complete in the sense that there might be a pair of specifications S and T' for which no
refinement mapping can be defined.

The main result of [AL91, Completeness Theorem] states that under some restrictions over
S (machine-closed) and 7' (internal continuity and finite invisible nondeterminisin) there exists
a specification S’ that satisfies:

o S’ is obtained from S by first adding a history variable (a variable which records past
events) and then a prophecy variable (one which performs nondeterministic choice in ad-
vance).

e there exists a refinement mapping from S’ to 7.

There are several other simulation techniques that intend to prove an “implementation rela-
tion” between two specifications. Lynch and Vaandrager [LV94] have made a unified presenta-
tion of several simulation techniques for verification of concurrent systems, in terms of a simple
untimed automaton model. These techniques include: refinements, forward and backward sim-
ulations, hybrid forward-backward simulations and history and prophecy relations (These last
ones being a generalization of the history and prophecy variables of Abadi and Lamport [AL91]).

In [LV94], the authors followed an action-based approach, according to which the behavior of
a system is a sequence of (visible) actions. Here, instead, we will follow the somewhat equivalent
state-based approach. By the way, [AL91] also follows the latter approach . For a discussion of
the relations between these two concepts, see [DNV90].

However, it is not the purpose of this work to go into the small details of these simulation
techniques. We refer the interested reader to the literature for that. And recall for the following
sections the importance of the result by Abadi and Lamport regarding the existence of refinement
mappings.

4.5 Locations, Observers and Relativity Theory

Let’s concentrate on the definition of “implementation relation” (4.3) which will be our starting
point. What is the meaning of ”externally visible behavior”? Essentially, it implies the existence
of an external observer which, at every moment, is able to capture in a kind of snap-shot, the
state of all visible variables in the system.

If we are considering a distributed system, it is natural to question the mere existence of
such an observer.

One of the definitive discoveries that Physics owes to the special theory of relativity is the
inexistence of simultaneity among distant events [Ein49]. To make this clearer, we retort to
Bertrand Russell’s argumentation: the wireless telegram travels at the speed of light, so there
could be nothing faster. Whatever a person does as a result of receiving a radiomessage, it is
done after the message has been sent. However, everything that she does while the message is
travelling cannot be affected by the sending of the message. And, similarly, whatever she does
cannot affect the sender before some time has passed after the emission of the message.

In other words, if two bodies are separated by a considerable distance, the first cannot affect
the second but after a time interval.

Returning to our argumentation regarding distributed systems, and always according to
relativity theory, there cannot be such an observer, because it would imply the transmission
of information at an unlimited speed. Is this a trivial observation? We think it is not. Just
consider the time it takes for any satellite communication to cross the world. The delays are no
longer negligible compared to the minimum reaction time for the system.

36 : CHAPTER 4. IMPLEMENTATION NOTIONS

What would happen then if we deny the existence of a global observer capable of determining
”the state of all visible variables in the system”? Certainly, we must change our concept of
implementation. It is necessary then to overcome the distinction between time and space based
in the conviction that it is possible to describe the universe in purely spatial terms, at a given
instant.

4.6 The Need for a Different Kind of Relation

Starting from the Telesys specification that we have developed in the previous chapter, we would
like to transform it into a specification reflecting the fact that it is a distributed system. The
specification that we are looking for should be related to the former one, but we have seen that
the “implementation relation” is not appropriate for the kind of transformations we would like
to apply here. As a consequence, the action refinement features of DisCo will not be of help, as
these features are based mainly on the ability to induce an “implementation relation” without
the need of a proof. Therefore a different relation between the higher-level and the lower-level
specifications in a transformation is needed. Here, we analyze what we want of this relation and
leave for the next section the study of a recent proposal in that direction.

The “implementation relation” only lets the lower-level specification perform changes to the
visible variables in the same way as they are allowed by the higher-level specification. Any
action refinement that would lead to splitting one or several of those changes to visible variables
will result, therefore, in a lower-level specification for which the “implementation relation” does
not hold. '

The previous argumentation showed why we cannot pretend to use the “implementation
relation” if we are specifying a distributed system and our high-level specification pays no
attention to locations. The Robot Teleoperation System, Telesys, is indeed a distributed system.
And its specification, as developed in the previous chapter, does not distinguish between the
information generated at the robot end (the robot workeell and its neighborhood) from the
information generated at the simulation end.

The DisCo Method provides a series of methodological directives to guide the construction
of DisCo systems. As such, it is mainly based on the capabilities of the language to define
refinements of actions and object extension. Actions are refined by strengthening their guards
(by adding conjuncts) and by adding statements to their bodies (provided these statements only
modify variables defined in the same system, not in an imported one). Objects are extended
by the addition of variables and the extension of their state machines. Both of these constructs
guarantee that the refined system satisfies an “implementation relation” with the original system.
Under the light of what has been said, we conclude that the DisCo Method provides no guidance
for the kind of transformation we would like to operate on Telesys. We also conclude that we
cannot base that transformation on action refinements and object extensions. Instead, we need
an extended methodology and a different relation between the specifications.

What we are looking for then is the possibility to define other relationships between a higher-
level specification and a lower-level one, the latter been the result of the splitting of actions and
the redistribution of information according to a precise definition of the locations of interest.
The purpose of all this is, simply, to have a way to relate the lower-level specification to the
higher-level one, as to see the latter as a more abstract view of the system. Understanding the
relation between these two systems will allow us to reduce the proof of some properties of the
more concrete specification to those of the abstraction.

From a general view point, we want:

1. to construct a specification of a distributed system where the difference among locations
is abstracted away,

2. to write a specification at a lower level of detail where no two variables, belonging to
different locations, are modified simultaneously, and

4.7. AGGREGATION OF DISTRIBUTED TRANSACTIONS 37

3. to be able to establish a relation between the two specifications in such a way that will
allow us to extend some of the propertics of the first to the second.

Several approaches have been taken in this direction. In the following section we analyze one
of them which is based on a relaxation of the conditions imposed upon refinement mappings to
establish a functional relation between two specifications.

4.7 Aggregation of Distributed Transactions

Quite recently, S. Park and D. L. Dill [PD96] proposed a method for the verification of protocols
by Aggregation of Distributed Transactions. In the present section, we first give a brief presen-
tation of the method and analyze its advantages regarding the transformation of specifications
by splitting of actions. Then we shortly discuss what it means to prove properties of the specifi-
cations by means of this method and finally we give some reasons why we consider this method
not to be appropriate for the kind of transformation we are looking for in this work.

For the present section we will assume the existence of two systems:

A higher-level, more abstract system

T =By, Ym : Initr AD[A7] A Fr)

and a lower-level, more concrete system

S = (3z1,...,z, : Inits AO[As] A Fs)

System S is supposed to be the result of action splitting and data redistribution (according

to a given choice of locations) being applied to system T’

4.7.1 The Abstraction Function

The method presented in [PD96] defines an abstraction function between S and T, in order to
establish a functional relationship between its behaviors. The abstraction function abs maps
lower-level states into higher-level ones

abs : States(S) — States(T")
and must satisfy:
1. abs maps initial states of S to initial states of T':
abs(Inits) C Initp
2. abs maps, each possible step of S to a step of T' (which might be a stuttering step)
Va,q' € States(S) : a[Aslq’ = (abs(q) [Ar] abs(¢")) V abs(q) = abs(q’) (4.2)
Observation 15 If we use the standard notation for including stuttering steps
[Alv = AV (U =U)

where U' = U s a shorthand for Vo € U : &' =z, then (4.2) can be rewritten as

Vq,q' € States(S) : q[As]qd’ = abs(q)[[Ar]u]abs(q’) (4.3)

where we take U to be the set of all variables.

Observation 16 If there is an invariant Inv that we know to be satisfied by every reachable
state of system S, then we can replace (4.2) by

| Vq,q € States(S) : (q[Inv] A q[As]q’) = abs(q)[[Ar]u]abs(q’)

38 CHAPTER 4. IMPLEMENTATION NOTIONS

4.7.2 The Aggregation Method

The authors of [PD96] presented a methodology to establish a relationship betwéen systems S
and T based on the definition of an appropriate abstraction function.
To be applicable, the method requires that:

1. The state variables of system S should be divided into specification variables and implemen-
tation variables. And the state variables of system T' should be exactly those specification
variables of system S.

2. There should be a set of transactions which are atomic at system 7', but have a non-atomic
counterpart at system S. That means that each single-action transaction of 7' should be
implemented by a set of actions of S.

3. For each transaction of S there should be an identifiable commit-point, that is an identifi-
able action that first modifies a specification variable.

The commit point is then an action that moves system S from a pre-commit state to a
post-commit state. A state where every committed transaction has completed is called a clean
state.

The method of Aggregation of Distributed Transactions consists then in the definition of an
abstraction function (see section 4.7.1) such that, for every state ¢, it completes any transaction
for which ¢ is a post-commit state, as if the transaction had been executed completely.

4.7.3 Advantages of the Aggregation Method

The Aggregation Method has a number of interesting features. As its authors state in [PD96],
the idea of abstraction functions has been used many times before to relate implementation and
specification state graphs. But their method generalizes previous work in a couple of directions:

1. The method is a generalization of refinement mappings [LLORIG][ALI1] in the sense that
the Aggregation Method allows the merging of steps even when specification variables
change more than once. As we have seen from the definition, an abstraction function is
a relaxed type of refinement mapping, where the condition on the preservation of local
variables has been dropped. In other words, this method accounts for the splitting of
action atomicity that we are interested in here.

2. The method aggregates steps across distributed components whereas some previous work,
for example [Lam83], only joined sequential steps pertaining to the same local process. As
we are interested in partitioning the actions of the Telesys system according to the spatial
distribution of data, we will certainly have to split actions into sub-actions modifying
different components of the distributed system.

However convenient these features of the method could be, we maintain that it can be of
little use before some points are properly clarified. The presentation of the Aggregation Method
in [PD96] does not formalize on the criteria for the election of a proper abstraction function
and thus, it is not clear what kind of relationship is established between systems S and 7. The
authors even wrote that they have used the method to prove the cache coherence protocol for
the FLASH microprocessor, but the paper does not include any means as to relate proofs of the
implementation to proofs of the specification.

4.7.4 Proving Properties

Here, we will analyze the Aggregation Method from the point of view of the relation it establishes
between systems. The next proposition gives a way to relate properties of the higher-level system
to those of the lower-level one. But first, we need a definition:

4.7. AGGREGATION OF DISTRIBUTED TRANSACTIONS 39

Definition 17 Given o0 =< qo,q1, ... >€ bel(S), abs(o) is the behavior of T' that results from
applying function abs to every state g;

abs(o) =< abs(qo), abs(q1), ... >€ beh(T")

Proposition 18 If T satisfies property W, then S satisfies property abs™ (V).

Proof. Suppose that T satisfies property W, then we know that beh(T) C W and as abs is
an abstraction function, abs(beh(S)) C beh(T"). Therefore abs(beh(S)) C W.
By applying the inverse of abs, and noticing that beh(S) C abs~!(abs(beh(S))), we get

beh(S) C abs™ (W)

which means that system S satisfies property abs=(WW).
O

Observation 19 To prove that a lower-level specification S satisfies property P, by means of
the previous proposition, it is enough to find a property W of the higher-level specification T
such that abs™'(W) C P.

Certainly, the complexities of finding such a property W will vary depending on the properties
of the abstraction function itself. Let’s consider two simple cases as to clarify the matter a bit:

1. Suppose that q; is an initial state for system T'. In other words,
q € Inity

and let’s define abs : States(S) — States(T") as

abs(q) = q

for every q € States(S).

Obviously, this choice of abstraction function will be of little help in proving any property,
as abs~}(W) is the empty set if ¢t ¢ W, or the whole of States(S) otherwise. By the
way, this is why we affirm that the authors of [PD96] have not given criteria to choose an
appropriate abstraction function.

2. Suppose now that we know abs to be a refinement mapping. That means that the sets of
visible variables for both systems, .S and T', coincide (i.e. Vs = V) and that abs/y, = idy;,
(the abstraction function behaves like the identity over visible variables). Suppose then
that property P is an assertion over the values of Vs and that we wanted to prove that
system S satisfies P. That is, we have to prove that

behyg (S) C P

Knowing that abs behaves like the identity for the visible variables, we have abs™!(P) = P.
Therefore, by the observation above, it suffices to prove that system T' satisfies property
P, or that

behy,.(T) C P

These two cases just considered show that the election of the abstraction function is critical to
the kind of properties that can be translated from the higher-level specification to the lower-level
one. They also show that the more we know about the definition of the abstraction function,
the richer properties we can prove.

40

CHAPTER 4. IMPLEMENTATION NOTIONS

4.7.5 A Critique

The following is an enumeration of the difficulties and problems we encountered while trying to
apply the Aggregation Method to the Robot Teleoperation System.

The definition of the abstraction function serves the sole purpose of determining a relation
between the specifications. That is, the conditions posed over the abstraction function
only guarantee that a state to state relationship (expressed functionally in this case) can
be extended to whole behaviors.

The properties that can be proved for the lower-level specification by reducing them to
properties of the higher-level specification using the method depend heavily on the choice
of the relation between abstraction and implementation chosen.

The method requires a precise definition of the abstraction function, at least for reachable
states. This could be time consuming and should be only attempted after deciding which

properties to prove.

But, there is no clear way to relate the properties that the abstraction function must fulfill,
to the properties we want to prove for the lower-level specification.

There is the idea that in any clean state, the values of the specification variables in S are
equal to those of the variables of 7', but the method does not formalize it enough.

The method is too restrictive as long as it requires that the elements of States(S) possess
enough information as to reconstruct the states of system 7'. Therefore it will not be
always possible to define the abstraction function.

As was said in section 4.4, we can always enrich the states of system S with history and
prophecy variables that could help in defining the abstraction function. Anyway, that
means changing system S.

Even if the Aggregation Method can account for the splitting of actions and the aggregation
of steps across distributed components, it is not appropriate for the kind of transformation we
would like to apply to the Telesys specification of the previous chapter. The reasons for this are:

The method, as presented in [PDIG], requires the specification variables of system S to be
the same variables as of system T.

As we want a specification of the Teleoperation System that takes into account the local
and remote locations, we cannot pretend that every variable will be destined to a unique
location. The information held in some of the variables will have to be redistributed. For
example, variable Telesys.buf holds the information in transit between the local and the
remote locations. Therefore, some of this information will be at a moment in one location
and some other information at the other location. This means that we will have to split
not only actions but also variables, something which is not allowed, at least directly, by
the Aggregation Method.

There is no provision for the interruption of the execution of a transaction by the execution
of other transaction.

The Aggregation Method suggests that we commit a transaction as soon as a specification
variable is first changed. This rules out any possibility of cancelling a transaction even
when it has already changed a specification variable.

In our Telcoperation System, we cannot lock any part of it just because a transaction
is waiting for a message to get through. It is simply unreasonable not to attend any
emergency situation just because a message is taking some time to go from one component
to the other. To cope for these situations, we need a way to define the possible interruption
of a transaction by the execution of another. '

4.8. SYNCHRONIZED COMBINATION 41

In the next section, we present a method that attempts to overcome this problems and
difficulties.

4.8 Synchronized Combination

In the previous section we have argued that the Aggregation Method cannot cope with the kind
of transformation we would like to operate on the Telesys specification.

It is worth noticing that we have found that the Aggregation Method has been applied long
before —under different names— by many researchers (including those working with the DisCo
Language [Mik95][I{s95]) and also in somewhat more general ways. Taking into account these
generalizations, we present here a description of the method to be used in the transformation of
the Telesys system developed in the previous chapter.

We are not pretending this method to be new. In fact, we have adopted the name “Syn-
chronized Combination” from [K{s95] where it was used to prove the correctness of a solution to
“The RPC-Memory Specification Problem” [BL94]. In [Mik95], a similar method was used to
prove the refinement of an interface in DisCo. Our contribution can be found in the presentation
of this method immersed in a framework where its relationship with refinement mappings and
abstraction functions is evident. We expect to provide a sufliciently general view so as to ease
the application of the method to very diverse cases.

4.8.1 Motivation

From the discussion in the previous section, we foresaw two possible ways to generalize the
aggregation method (remember that S is our low-level concrete system whereas T' is the high-
level abstract one):

1. The abstraction function could be replaced by an unrestrained binary relation.

2. Instead of adding history and prophecy variables to system S, a complete copy of the
variables in system 7' could be added to S (thus producing a “combined specification” of
S and 7). ‘

The first generalization results from appreciating that, in proving properties of system S, it
is necessary to be able to calculate the inverse of the abstraction function (see section 4.7.4).
In general, the inverse is not a function, just a binary relation. In that case, we seem to loose
nothing in replacing the abstraction function by a binary abstraction relation.

The purpose of the second generalization is twofold: First, it fixes a deficiency in the aggre-
gation method as the state of the “combined specification” now holds enough information to
reconstruct the state of T. And second, it lets us define the abstraction relation as a relation
between the elements of the state of a single system. Moreover, this last observation will allow
us to give an implicit definition of the abstraction relation -rather than the explicit relation
required by the Aggregation Method.

The main idea of the method consists in synchronizing each atomic transaction of the higher-
level system 7', with one of the steps belonging to the same transaction, but in S. This will
establish the implicit abstract relation

4.8.2 The Synchronized Combination Method

The main objective of the Synchronized Combination method is the implicit definition of a
relation R between the states of systems S and T', such that every state of S (the implementation)
is included in the relation.

We have organized the method by dividing it into three interrelated phases:

42 CHAPTER 4. IMPLEMENTATION NOTIONS

1. Combination Phase

This phase consists in the definition of a synchronized system SY NC(S,T) out of systems
S and T'. The definition of SYNC(S,T) provides the implicit definition of the relation R
between the states of S and 7T'. Notice that relation R replaces the abstraction function
abs from the Aggregation Method.

2. Verification Phase

By proving that SYNC(S,T) satisfies a given precise restriction, this phase verifies that
every behavior of system S can be extended to a behavior of system SYNC(S,T). Notice
again that this is the counterpart of property 4.2, which was required for the abstraction
function abs according to the Aggregation Method. ‘

3. Property Translation Phase

Once relation R has been defined, it is used to relate a (not yet proved) property of
system S, to one or several (already proven) properties of system T'. Notice that though

_ this phase depends on the previous two, the way the SYNC(S,T) system is constructed
should be also determined by the kind of properties that one would like to prove by using
this method.

We turn now to describe each phase in detail.

Combination Phase
As before, we will assume the existence of two systems:
A higher-level, more abstract system
T = Inity A D[AT]Vars(T) A Fp

and a lower-level, more concrete system

S = Inits A D[—*lS]Vtw's(S) N Fs
System S is supposed to be the result of action splitting and data redistribution (according
to a given choice of locations) being applied to system T'. We also require:

o Vars(S)NVars(T) = § (if not, the name clash is resolved by renaming one of the colliding
variables).

e The set of actions of system T (idem S) is Actions(T") (resp. Actions(S)). Each action is
assumed to be distinguishable from the others.

The synchronization of both systems consists mainly in assigning, to every action in system

S, a sct of actions taken from system 71" or a stuttering step. Then, if P(X) denotes the set of
non-empty subsets of X, we are looking for a function

g Actions(S) — P(Actions(T') U {Unchangedy qrs(1)})
where Unchangedy .4y is a property satisfied by any stuttering step of system T'.
Definition 20 We are now in a position to define the synchronized system (Notice that, as we
are not interested in liveness properties here, we do not take into consideration Fy, nor Fs):
SYNC(S,T) = Initsync A D[ASYNC]Vars(SYNC(S,T))

where
Initsy o = Inits A Initp N R*
Vars(SYNC(S,T)) Vars(S)UVars(T)
Asyne SYNC,V...VSYNC,
n |Actions(S)|

Il

4.8. SYNCHRONIZED COMBINATION 43

and, for every i, such that 1 <1 <n,
SYNC; =S;AN(By V...V B) AR
assuming that g(S;) = {Bu,...,Bx}.
SYNC(S,T) is well-defined. To guarantee that the actions of the synchronized system
are correctly defined, it has to be proved that, for every action SYNC; € Actions(SYNC(S,T)),
Yu € States(SYNC(S,T)) : u[[Enabled(SY NC;)]] = (3v : u[[SY NC;]Jv)

Observation 21 R* s an expression containing only unprimed variables. It is the designers
responsibility to define R* appropriately so as to induce the desired relation IR between systems
S and T'. Notice as well that R* constitutes an invariant for system SYNC(S,T).

Observation 22 From the definition it can be casily proved that system SY NC(S,T) satisfics
an “implementation relationship” with respect to each one of systems S and 1. Then, according
to observation 1

behyars(5)(SYNC(S,T)) C beh(S) (4.4)

and

behy ors(r) (SYNC(S,T)) C beh(T)

Verification Phase

Once system SY NC(S,T) has been defined, it induces a relation R between systems S and T
in the following way:

Definition 23 Implicit relation R. Given (es,er) € States(S) x States(T), then esReq if and
only if there exists a behavior ¢ =< 01,03,... >€ beh(SYNC(S,T)) and an indez i, such that
o; = (es,et)-

This phase then consists in verifying that each possible behavior 7 € beh(S) can be extended
to a behavior o € beh(SYNC(S,T)) such that oy,rss) = 7. In other words, in this phase we
try to prove that system SY NC(S,T) satisfies the following restriction:

beh(S) C behyars(s)(SYNC(S,T)) . (4.5)
Observation 24 If restriction 4.5 is proved to hold, then by 4.4, we know that
behvars(s)(S)fNC(S,T)) = beh(S)

This equality indicates that if we wanted to prove a property for system S, we would just
have to prove it for system (3zy,...,xn : SYNC(S,T)), where Vars(S) = {z1,...,zn}.

Finally, in order to prove 4.5, it suffices to verify that:

1. Ve, € States(S) : es[[Inits]] = (3e: € States(T) : e [[Initr]] AesR*et)

2. System SYNC(S,T) satisfies

O(Enabled(S;) = Enabled(SY NC;))

for every action S; € Actions(S).

44 CHAPTER 4. IMPLEMENTATION NOTIONS

Property Translation Phase

During this phase, a property W that is to be proved for system S, is translated into a property
W of system T by means of the relation R. It is assumed that proving W is considerably easier
than proving W and that R guarantees that W holds whenever W holds.

It is worth noticing that we would need to make partially explicit the characteristics of
relation R to be able to use it in the proof, and that not every property W can be proved using
this method. Also notice that ther,’e1 are two points where the designer can affect R, namely: The
choice of function g which determines how actions are tied together; and the choice of relation
R*, which helps in adjusting the syilchronization whenever an action of system S is synchronized
with more than an action of S or :\:ivhenever there are action parameters.

Since this phase depends absolutely on the choice of property W and relation R, we refer the
reader to section 6.3 for an example of the application of this phase to the Robot Teleoperation
System. ' S

The following chapters describe our experiences in applying the Synchronized Combina-
tion method to the Robot Teleoperation System.

First, in chapter 5, a lower-level specification of the Robot Teleoperation System is presented.
This specification, called TeleSysLoc, takes into account the existence of a local and a remote
location.

Then, chapter 6 describes each of the three phases of the method as they were applied
to TeleSysLoc. Section 6.1, which corresponds to the Combination Phase, defines system
SYNC(TeleSysLoc, Telesys). Section 6.2, corresponding to the Verification Phase, makes sure
that the synchronized system defines an adequate relation between TeleSysLoc and Telesys. Fi-
nally, section 6.3 shows that TeleSysLoc satisfies an adapted version of the Security Property
by reducing the proof to that in Telesys (see section 3.8).

Chapter 5

Partitioning TeleSys

5.1 Motivation

The DisCo specification of system Telesys that was given in section 3 has the problem, from the
designer’s point of view, that it does not reflect the underlying communication architecture used
in the implementation. In this chapter, by introducing locations as defined in page 33 (definition
9), we take a first step towards the inclusion of these design characteristics in the specification
of the system.

Telesys is a teleoperation system meant to connect a robot with a simulator possibly thou-
sands of kilometers apart. Due to the current technology and relativistic restrictions, it seems
unreasonable to pretend atomicity for the actions supposed to act on both ends of the system
(robot and simulator). There are security reasons as well for not implementing some actions as
atomic: In the event of an emergency, the robot must be stopped as soon as possible and this
cannot be prevented by any locking mechanism (or of other kind) guaranteeing the atomicity of
actions that involve the communication of the more distant components of the system.

The choice of locations is a rather arbitrary one and there are many possibilities. For instance,
we could choose to place the Robot and the Camera in different locations. Instead, we have
based our election of locations in the physical distance between the components, obtaining only
two different locations:

e Local location: Includes the Robot and the Camera.
e Remote location: Includes the simulation software (Telegrip).

Notice that Telesys, being involved with the communication and coordination of the three
components above (Robot, Camera and Telegrip), should be split into two parts, each one for a
different location (More on this later).

5.2 Requisites of the Partitioned System

Having defined our set of locations (see page 33) , we intend to build a new system which we will
call TeleSysLoc. This system will be based on Telesys, and we intend it to fulfill the following
requisites:

1. No action in the system can modify more than a single location.

2. The events produced by the environment are modelled as actions modifying only the
location where the event occurs.

3. There is some formal way of relating properties of the original system (i.e., Telesys) with
properties of the partitioned system (i.e., TeleSysLoc).

45

46 CHAPTER 5. PARTITIONING TELESYS

Note that by the first requisite, TeleSysLoc will induce implementations that do not need
any implicit locking mechanism for any communication involving the two separated locations
(Local and Remote). The second requisite prevents any implicit communication between the
location where the event occurs and where the system reaction to it initiates. The last requisite
points to considering system Telesys as an abstraction over TeleSysLoc, and thus, to considering
Telesys as a guide into the construction of the more concrete system.

5.3 Constructing the Partitioned System

We proceed now to construct system TeleSysLoc, starting from Telesys and trying to satisfy the
requisites described above. We consider that the construction procedure used in this section
can be used as a guide in solving similar tasks, where a DisCo system has to be partitioned
according to a given set of locations.

5.3.1 Assigning Variables to Locations

For each piece of information, we try to determine a location where it belongs.

For those DisCo objects clearly associated with a location, the decision is trivial. In that
way, all variables belonging to the Telegrip object belongs to the Remote location while those
variables in the Robot and Camera objects belong to the Local location. Moreover, as these
systems will not be modified at all in this transformation, once we have assigned a location to
any of them, we do not need to care about the locations of any variables added to them.

Partitioning the Telesys Object The situation with the variables in the Telesys object is
not as simple.

A Telesys object has essentially two states: inoperative and operative. There are actions
that operate the transition between these states that, coincidentally, modify both locations. As
we intend to replace each these actions by a set of actions respecting requisite 1 above, we will
add a state to represent a moment in the middle of a transition. As there are only two states
in Telesys, we need two new states, one for what we have called “the starting process” (i.e.,
going from inoperative to operative) and the other for “the stopping process” (i.e., going from
operative to inoperative).

Consequently, we start with the following state description:

[

state *NOT.OP, STARTING, STOPPING, OPER;

where state NOT.OP corresponds to Telesys.inoperative, OPER to Telesys.operative and
the other two, represent each of the transition processes, as described.

TFinally, notice that, in a way, a Telesys object controls the two ends of the communication
between the locations. We have chosen to replicate its state machine in two new objects:
R_Telesys (the part of Telesys situated in the Remote Location) and L_Telesys (situated in the
Local location).

There were two reasons for using a buffer of positions in the Telesys object: buffering the
arrival of data from Telegrip and buffering the sending of data to the Robot. As each of these
activities should be performed at a different location, we use a buffer in the two new objects.
Up to now, we have:

class R_TeleSys is :
state *NOT_OP, STARTING, STOPPING, OPER;
buf: sequence integer := <>;

end;

Class L_Tclesys is defined similarly.

We will pretend that the system is operative if both, R_Telesys and L_Telesys are in their
OPER states; while we will say the system is inoperative if they are in their respective NOT_OP

5.3. CONSTRUCTING THE PARTITIONED SYSTEM 47

states. In the forthcoming sections, we will have to give some meaning to ambiguous situations
like R_Telesys.STARTING and L_Telesys.STOPPING and we will also have to prove that some
combinations of states will never be reached.

5.3.2 Determining the Location of Environmental Events

To be able to fulfill Requisite 2, we first have to determine which is the location were an
environmental event is first detected. As we are assuming there can be no simultaneous events,
it is sensible to pretend this determination to be possible.

The environmental events in Telesys are:

1. Events produced at location Remote:
(a) The Telegrip LLTI is activated/deactivated (actions activate-Telegrip and
deact_Telegrip). :
(b) The robot position is changed in the simulator (action move_Model).

(¢) The remote operator asks the system to start teleoperation (actions start and
start_with_cam).

(d) The remote operator asks the system to stop (action stop).
2. Events produced at location Local:

(a) A signal is raised at the robot controller (actions set_emergency_stop,
set_external_hold, etc.)

(b) A signal is cleared at the robot controller (actions clear_alarml, clear_alarm2, etc.).
(¢) Motion is detected by the camera inside the workeell (action motion).

(d) The robot reaches its destination (action move-Robot).

Of all of the above, 1.3, 1.4 and 2.3 are the only events with associated actions that modify
more than one location.

5.3.3 Defining Reactions to Environmental Events

Event 1.1 Activation/Deactivation of Telegrip We only have to consider what to do
when Telegrip is deactivated, because the activation is handled properly by class Telegrip. Ba-
sically, the deactivation of the Telegrip LLTI forces the system to follow the “stopping process”
if it is already operating or in the “starting process”. As this is a Remote event, the reaction
can only modify variables in the Remote location:

refined deactivate_Telegrip by ... rts: R_-Telesys is
when ...
do

if (rts.OPER or rts.STARTING) then
— rts.STOPPING;
end if;
end;

Notice that the “stopping process” has priority over the “starting process”.

48 CHAPTER 5. PARTITIONING TELESYS

Event 1.2 Movement of the Model Robot As was said in page 27 (Assumptions about
the Environment), we have introduced some assumptions about the environment events in the
guards of the reactions to them, noting that we don’t pretend to restrict the environment, but
to reflect its properties in the system.

After changing the state machine associated with the remote copy of the Telesys object (i.e.,
R._Telesys), we have to change accordingly the definition of the actions:

refined move_Model of change Pos by ... rts: R_Telesys is

when ... (not(rts.OPER) or tt.active.position = rts.OPER.last_pos)
do

end;

Event 1.3 Start Request The “starting process” can only be fired if Telegrip is active
and the whole system is not operating (R-Telesys.NOT_OP and L_Telesys.NOT_OP). It will
later be seen that whenever R_Telesys is in the NOT_OP state, then L_Telesys is in this same
state. The specification of the action that reacts to this event is:

action start by tt: Telegrip; rts: R_Telesys is
when tt.active and rts. NOT_OP
do
— rts. STARTING;
rts.session := rts.session + 1;
end;

Event 1.4 Stop Request If the system is supposedly operating or starting (as seen by
an observer situated at the Remote location), then it can start the “stopping process”. If not,
then it is already not operating or in the “stopping process”:

action stop by rts: R_Telesys is
when rts.OPER or rts. STARTING
do

— 1ts.STOPPING;

end;

Event 2.1 A Robot Controller Signal is Turned On No change has to be done, as
these events are treated properly by system Robot_DifSig (The source code for these actions can
be found in A.1.3).

Event 2.2 A Robot Controller Signal is Turned Off No change has to be done, as
these events are treated properly by system Robot_DifSig (The source code for these actions
can be found in A.1.3. See also a discussion on the assumptions made about the environment
events in page 27).

Event 2.3 Motion Detection Like in the case of deactivation of the Telegrip LLTT (event
1.1), we neced only modify action motion to start the “stopping process” if necessary. The spec-
ification is:

refined motion of set_cameraidle by ... lts: L_Telesys is
when ... cm.detecting

<
(o)

CONSTRUCTING THE PARTITIONED SYSTEM 49

do

— Its.camera_dle;

if (Its.OPER or lts.STARTING) then
— 1ts.STOPPING;

end if;

end;

Event 2.4 Robot movement This event is handled properly by the Robot system (see
A.1.3). As the Robot object has been placed into the Local location, there is no need to change
anything here.

5.3.4 Defining the Partitioned Processes

While developing system Telesys (section 3.4), we grouped the different actions into three groups:
starting, operating and stopping actions. In our partitioned system TeleSysLoc, these actions
have to be split respecting our choice of locations (section 5.1) and the partitioning of the Telesys
class into a local copy, L_Telesys, and a remote one, R_Telesys (section 5.3.1).

As Dbefore, we can collect all the resulting split actions into groups which we have called
“processes” as there is a notion of several actions cooperating with a common objective. We
then have:

e Starting Process: Consists of all actions that cooperate to put TeleSysLoc into an operative
state (i.e., R-Telesys.OPER and L_Telesys.OPER). This process is started when action
start puts R_Telesys in state STARTING. As the buffer of positions is now split in the two
different locations, it is needed to clean both of them before new data can be sent to the
robot.

e Operating Process: Consists of the transmission of robot positions from Telegrip to the
Robot, including the reading of the data into R_Telesys and its transmission to L_Telesys.
As only partial information concerning the state of the whole system is available at either
location, the actions in this process will be kept enabled as long as the local information
indicates the possibility that the global system is in its operative state. (More on this
subject later).

e Stopping Process: Consists of all the actions that cooperate to put TeleSysLoc into an
inoperative state (i.e., R_Telesys. NOT_OP and L_Telesys.NOT_OP). The actions of this
process stops the other two processes if any is underway.

5.3.5 Specifying the Processes

Each copy of Telesys (R-Telesys and L_Telesys) has states tlxiit reflect which process is underway

in each location. These states define which actlons are enabled for execution in the corresponding
location. . ‘

|
|
i

The Starting Process '

Each time the remote operator invokes the startmg procedure a new session opening is at-
tempted. Each session is assigned a distinctive number, which is communicated to the Local
location and is used to distinguish new and valid data from data corresponding to previous
sessions. To register the id of the latest session opening attempted we extend classes R_Telesys
and L_Telesys with

session : integer := 0;

Then “starting process” can be divided into the following steps:

50

CHAPTER 5. PARTITIONING TELESYS

. If R_Telesys.STARTING, the intention to start the system is communicated to location

Local. This communicates the session number as well (com_start).
If the Camera is idle, it is started (start_camera).
If the Command_Hold signal is on, turn it off (release_hold).

Confirm that both the robot and the Camera are ready (ready). This step is needed as a
checkpoint for the two previous one, as they can be executed in different orders.

. Once L_Telesys is ready to start, the current robot position is sent to the Remote location

(send_pos). Additionally, the Remote buffer is cleared and a special token is queued so as
to tell L_Telesys to discard all previous positions. This token carries the information of
the session number whose opening is being attempted.

. Telesys waits for the special token (in fact we should be considering a union type for

position data and this separator. Instead, we have chosen to represent robot positions with
non-negative values and reserved negative ones for the transmission of session numbers)
which indicates that valid new positions come only after it (wait_confirm). This step
involves discarding all positions that arrive from the Remote location before the separator,
i.e., it eliminates data corresponding to previous sessions.

Upon arrival of the separator, L_Telesys assumes the whole system is operative (start_lts).

The Operating Process
The “operating process” can be divided into the following steps, all cooperating concurrently:

1.
2.

R_Telesys acquires a new position from Telegrip, if this has changed (get-new_pos).

The head of the Remote buffer is appended to the Local buffer (tx_pkt).

. The reception of a new position is acknowledged by L_Telesys, which permits the elimina-

tion of the first element in the Remote buffer (ack).

. The position at the head of the Local buffer (if it is not the separator) is used to instruct

the robot movement (operate).

Observation 25 Because we want all actions in TeleSysLoc to modify the contents of variables
of only one location at a time,there is no way to remember that a robot position has been copied
to the Local buffer. Then, the robot position has to be resent all the time till an action originated
in the Local location (ack) tells the sender to stop sending. This attained in the specification
with the use of the Alternating Bit Protocol. Therefore, both the R_Telesys and L_Telesys classes
were extended with

abp : boolean := false;

After the observation, the specification of the actions responsible for the transmission of the
robot positions from the Remote location to the Local one, is:

action tx_pkt by rts: R_Telesys; lts: L_Telesys is
when rts.buf /= <> and lts.abp = rts.abp and
not(rts. NOT_OP or rts.STOPPING or lts. NOT_OP or lts.STOPPING)
do
Its.buf := lts.buf & <head(rts.buf)>;
lts.abp := not(lts.abp);
end;

action ack by rts: R_Telesys; Its: L_Telesys is

5.3. CONSTRUCTING THE PARTITIONED SYSTEM o1

when rts.buf /= <> and Its.abp /= rts.abp
do

rts.buf := tail(rts.buf);

rts.abp := not(rts.abp);
end;

Observation 26 As action inform not_op, belonging to the “stopping process”, changes the

contents of the Remote buffer, it has to guarantee that the bits L_Telesys.abp and R_Telesys.abp
are equal after its execution.

The Stopping Process
The “stopping process” is initiated each time R_Telesys or L_Telesys enter their STOPPING
states. This transition can be motivated by the execution of any of the following actions:
ack_signal, stop, motion or deact_Telegrip.
After its initialization, the “starting process” tries to complete the following steps:

1. If the cause of the stoppage is an order from the remote operator (i.e., R_Telesys.STOP-
PING), then R_Telesys informs L_Telesys the order to stop (comm_stop).

2. The robot is stopped, if it was still running, by setting the signal Command_Hold (stop_r).
3. Once the robot has been stopped, L_Tclesys enters its NOT_OP state (rest).

4. L_Telesys informs R.Telesys that it is no longer operating (inform_not_op). As a result,
R_Telesys, enters state NOT_OP, as well.

Observation 27 As action rest leaves L_Telesys in state NOT_OP, the system can reach a
state Q verifying
R Telesys.STARTING A L Telesys.NOT_-OP

while executing the “stopping process”. But Q) is also the state of the system after the exe-
cution of action start, so we need some criteria to decide which process to follow from state Q.
Qur criteria is based on the following appreciation:

If the system reaches state Q) after the execution of action rest, then inform_not.op must be
executed (thus completing the “stopping process”) before action com_start is enabled again.

L_Telesys and R_Telesys will be extended with a counter. Each time action rest is executed,
this counter is incremented by one in L_Telesys (because rest modifies location Local). And each
time action inform_not_op is exzecuted, the value of the counter in R_Telesys is updated with the
value of the counter in L_Telesys. Therefore, action com_start is only enabled if both counters
agree (while action inform_not_op is only enabled if they disagree). Notice finally that these
counters can be 2-valued, as the difference between them can be at most one.

Both classes, R-Telesys and L_Telesys are extended with their respective counters:
seq : boolean := false;

Then the specification of actions rest and inform_not_op is:

action rest by lts: L_Telesys; r: Robot is
when lts.STOPPING and r.still
do
— 1ts.NOT_OP;
Its.seq := not(lts.seq);
end;

52 CHAPTER 5. PARTITIONING TELESYS

action inform not_op by rts: R_Telesys; lts: L_Telesys is
when lts. NOT_OP and
(rts.OPER or rts.STOPPING or
(rts.STARTING and lts.seq /= rts.seq))
do
— rts.NOT_OP;
rts.seq := lts.seq;
‘rts.abp := lts.abp;
rts.buf := <>;
end;

And the guard of action com.start is strengthened with the conjunct:
rts.seq = lts.seq

Please, refer to section A.2 for a complete listing of system TeleSysLoc.

5.3.6 Initial Conditions for TeleSysLoc

As with system Telesys (section 3.5), the initial conditions for system TeleSysLoc can be deduced
from the initial conditions for each of its classes. We can summarize them with this global DisCo
assertion:
initially InitTeleSysLoc is
Robot.still.idle
and not(emergency_stop or external_hold
or command_hold or alarm)
and Camera.idle
and Telegrip.inactive
and R_Telesys.not_op and R_Telesys.buf = <> and
R _Telesys.seq = false and R_Telesys.abp = false and
R_Telesys.session = 0
and L_Telesys.not_op and L_Telesys.camera_idle and
R_Telesys.seq = false and R_Telesys.abp = false and
R_Telesys.session = 0 and L_Telesys.buf = <>;

Chapter 6

Property Preservation

In this chapter we apply the ideas of “Synchronized Combination” to establish a relationship
between systems Telesys and TeleSysLoc. This relationship is constructed step by step and a
somewhat formal proof is offered showing that it satisfies the requirements of any “synchronized
combination” relationship. Finally, we provide a version of the Security Property for system
TeleSysLoc and use the synchronization relationship to reduce its proof to the almost trivial
proof of the Security Property for system Telesys (Section 3.8).

6.1 A Synchronized Combination of Telesys and TeleSys-
Loc

A synchronized combination of two systems is essentially a relationship between the states of
cach system so that we can always pretend that, given a behavior of the more concrete system
(TeleSysLoc in this case), there exists a behavior of the more abstract system such that the
corresponding states of each behavior satisfy the stated relationship.

6.1.1 Objectives

We provide here a synchronized combination of the two systems developed so far, in order to
be able to prove an analogous of the Security Property for system TeleSysLoc. The construction
of the synchronization and it’s subsequent proof is guided by this objective. As a subsidiary
objective, we expect this to be an illustrative example of the use of this methodology.

6.1.2 General Description

In order to define the synchronized combination of Telesys and TeleSysLoc, each action in
TeleSysLoc is combined with a number of actions of Telesys (possible none). We expect each
transition step performed by the more concrete system (TeleSysLoc) to be reflected by a legal
step of the more abstract system, maybe a stuttering step.

Let us suppose then that we have a “combined” system whose state is composed of a repli-
cation of each of the states of TeleSysLoc and Telesys, where enough provision has been made
so as to differentiate variables from both systems with the same name.

Not only do we want that any transition of TeleSysLoc be followed by a step of Telesys, but
we also want no action from TeleSysLoc to be restrained by this requirement. That is, we have
to prove that, in our combined system, the guards added to the actions derived from TeleSysLoc
always hold whenever the original action is enabled. This can be reduced to proving that the
new guards are implied by the original guards.

In synchronizing the actions of TeleSysLoc with those of Telesys, we proceed in the opposite
direction: For each action of Telesys, we choose an action from TeleSysLoc to synchronized it

53

54 CHAPTER 6. PROPERTY PRESERVATION

Variable Name | Class

RTS TeleSysLoc.R_-Telesys
LTS - | TeleSysLoc.L_Telesys
TS ’ TeleSys.Telesys

R TeleSysLoc.Robot

sR TeleSys.Robot

CM TeleSysLoc.Camera
sCM TeleSys.Camera

TT TeleSysLoc.Telegrip
sTT TeleSys. Telegrip

Table 6.1: Variables used in the synchronization

with. This could be related to the choosing of a commit point for each “abstract” transaction as
in [PD96]. The difference here is that we will not require this commit point to correspond to the
action that first changes a specification variable in the transaction (in fact, we don’t differentiate
specification from implementation variables in this method).

The starting actions of system Telesys (start and start_with_cam) require a special treatment
worth mentioning: Their counterpart in TeleSysLoc is what we have called “the starting process”
(see page 49). The main characteristic of this process is that it can be interrupted by any action
leading to the stopping of the whole system (“stopping process”, page 51).

6.1.3 Notation

In the following we use TLA, instead of DisCo, to express the actions resulting from the combi-
nation of Telesys and TeleSysLoc. In doing so, we required the DisCo tool to produce a listing
with a complete description for each action which was then manually translated into TLA. As
both systems employ only one instance of each object, there was no need to introduce quantifi-
cation over the elements of each class, but we have kept it as a way of indicating which variables
are accessed by each action. Furthermore, while doing the combination, we were forced to differ-
entiate variables with the same name but belonging to different systems. In those cases of name
clash, we adopted the following convention: Variables belonging to system TeleSysLoc retained
their original name, while those belonging to Telesys were renamed with an ‘s’ appended at the
front.

We have also associated a definite class to cach variable name, so as to simplify the TLA
descriptions. The variables used together with their corresponding class is listed in table 6.1.

6.1.4 Synchronizing Signal Managing Actions

There are two main groups of actions to control and modify the state of robot controller signals:
actions that set a given signal and actions that clear it. We consider here only signals “alarm”,
“external_hold” and “emergency_stop”, as the fourth one (“command_hold”) is managed by
actions that involve other participants besides the robot.

Fach Telesys action that sets a signal is synchronized with the corresponding action in
TeleSysLoc. In that way, action Telesys.set_alarm is synchronized with TeleSysLoc.set_alarm,
yielding the following TLA expression:

6.1. A SYNCHRONIZED COMBINATION OF TELESYS AND TELESYSLOC

én
[

' Set_Alarm =
IR.sR :

sIR.moving
AR.moving
AsR.still.signaled’
AsR.alarm/
AR.still.signaled'
AR.alarm’
AUnchangedset_Atarm

The synchronization of the actions responsible for the clearing of controller signals is not
that direct because we have used the occasion to fix the inconvenience caused by the refinement,
mechanism in DisCo which forced us to define two different actions to clear each signal. For
example, in the case of the “alarm” signal, Telesys includes two actions to clear it: clear_alarm1
and clear_alarm®. In TLA, we can combine first this two actions into one (similarly with actions
in TeleSysLoc) and produce the following synchronization: '

Clear_Alarm =
dsR, R :
sR.alarm
R.alarm
A=sR. Alarm/
Aif =(sR.emergency_stop V sR.external _hold
VsR.command_hold) then
sR.still.idle'
end: f
A-R.alarm/
Aif =(R.emergency-stop V R.external_hold
VR.command_hold) then
R.still.idle’
endif
AUnchangedciear_Alarm

Similar synchronizations were performed with actions that set/clear signals “external_hold”
and “emergency_stop”. (See B.3, B.4, B.5, B.6).

6.1.5 Synchronizing the Robot Movement

The robot movement is performed both in system Telesys and TeleSysLoc by action move_robot.
As we want both systems to perform the same robot movements, it’s just natural to force this
two actions to be executed simultaneously. We therefore have:

Move_Robot =
dsR, R :
sR.moving
R.moving
AsR.position’ = sR.moving.destination
AsR.still.idle’
AR.position' = R.moving.destination
AR.still.idle'
/\U"Changedl\loue-}?obot

Note that we are aiming here at being able to prove that the property

O(R.position = sR.position) (6.1)

56 CHAPTER 6. PROPERTY PRESERVATION

holds for the resulting synchronized system. This will allow us to relate the properties of
TeleSysLoc, related to the robot position, to analogous properties of Telesys.

6.1.6 Synchronizing the Operating Actions

In Section 3.4, the main actions of system Telesys were collected into three groups: Starting,
Stopping and Operating actions. The actions belonging to this last group, get-new_pos and
operate, are treated in a way similar to the synchronization of action move_robot in the previous
section. That is, the Telesys version of each of those actions is fused with the action with the same
name from TeleSysLoc. The case of move_model is slightly different because the guard reflects
our assumptions about the environment (Section 3.6.3). In fact, the assumptions regarding
the enabledness of action move_model are different in Telesys than in TeleSysLoc. But, as
the underlying idea is that conditions under which TeleSysLoc.move_model is enabled are more
general than those for Telesys.move_model, we cannot use the same kind of combination as
above. Instead, action TeleSysLoc.move_model is synchronized with a stuttering step of Telesys
if Telesys.move_model is not enabled.

Finally, we want property 6.1 to hold and for that we require the model robot to follow the
same path in the concrete Telegrip (TT) as in the abstract one (sTT), whenever possible.

For the complete description of the resulting synchronized actions, check B.9, B.10 and B.19.

6.1.7 Synchronizing the Starting Actions

Until now, we have been able to synchronize each action of Telesys with its corresponding
action (i.e., the action with the same name) from system TeleSysLoc. However, the case of the
Starting actions of system Telesys (start and start_with_cam) is different. These are actions
whose effect in TeleSysLoc is implemented not by a single atomic action, but by a so-called
“process” (section 5.3.4) consisting of several cooperating actions. Therefore, in order to define
the synchronization, we have to identify at least one action of the Starting process to match
with action start (similarly start_with_cam).

In choosing one ol the actions of the Starting process to synchronize with Telesys.start, we
could have certainly followed [PD96]. In that case, we would have to choose a commit point for
the Starting process; in other words, we would have to find the action of TeleSysLoc that first
modifies variables which also appear in system Telesys and then we would have to guarantee
that the Starting process is carried to its completion.

This suggestion, however, would have prevented the possibility of letting the Stopping pro-
cess interrupt the Starting process before the latter is completed. As was extensively discussed
in chapter 4, we are not. willing to accept such a solution.

Instead we would postpone this “commit point” as much as possible. Ideally the commit
point would be at action TeleSysLoc.start_lts as it is the action that ends the Starting process
by setting RTS into the OPERative state. However, if we did so, the synchronization would not
verify the following simple and desirable property:

O(RT S.oper = TT.active.position = sTT.active.position) (6.2)

(The previous property will be necessary to prove the Security Property for system
TeleSysLoc).

Then, instead of synchronizing action Telesys.start (or Telesys.start_with_cam) with TeleSys-
Loc.start_lts, we synchronize it with TeleSysLoc.send_pos. As this last action is the one responsi-
ble for updating the position of the model in Telegrip (T T.active.position) by copying the value
of the robot real position (R.position), 6.2 will be satisfied.

Finally, notice that actions start and stert_with_cam can be joined into a single action just
as we have done with the signal-clearing actions.

The resulting synchronization of Telesys.start, Telesys.start_with_cam and TeleSysLoc.send._-
pos is:

6.1. A SYNCHRONIZED COMBINATION OF TELIESYS AND TELESYSLOC 5

~1

Send_Pos =

a1'S,sTT, sR, LTS, RT'S, TT, R :
sTT.active A T'S.inoperative A\ sR.still
—(sR.external_hold V sR.emergency_stop V sR.alarm)
LT S.starting A LT S.camera_detecting A R.still.idle N RT S.starting A T'T.active
AT S.buf' =<>
At f T'S.anoperative.cameraof f then

sC M .detecting'

endif
AT'S.operative’
AT S.operative.last_pos’ = sR.position
AsT'T.active.position’ = sR.position
Ampath' =< sR.position >
Arpath' =< sR.position >
ARTS.buf' =< (—RTS.session) >
ART S.abp' = LT'S.abp
ART S.oper’
ART S.oper.last,os' = R.position
ATT.active.position’ = R.position
Aimpath' =< R.position >
Airpath' =< R.position >
AUnchangedsend_pos

6.1.8 Synchronizing the Stopping Actions

The Stopping Process in system TeleSysLoc is non-interruptible, which means that once it
has been initiated, it leads the whole system towards its inoperative state (i.e., a state satis-
fying RT'S.not-op A LT S.not_op) and, during its execution, no action belonging to either the
Operating or Starting processes is enabled.

The previous observation leaves us plenty of freedom to choose the commit point for each of
the Stopping Actions in Telesys, as no matter what the system does, we can be pretty sure that
the Stopping process will be completed (given that the necessary action fairness requirements
are satisfied).

However, we should notice that the splitting of actions operated in the transformation of
system Telesys into system TeleSysLoc has allowed new behaviors (in a general sense) that were
not allowed by the original specification (Telesys). For example, according to TeleSysLoc, the
following situation is possible: Suppose that the system is operative and the robot is moving. The
remote user presses the Stop Button, an event that is received at the Remote Location by RTS
(action TeleSysLoc.stop). Before the order to stop the system reaches the Local Location, motion
is detected in the workcell, an event which is received by LTS (action TeleSysLoc.motion). It is
clear then that we cannot synchronize TeleSysLoc.stop with Telesys.stop and TeleSysLoc.motion
with Telesys.motion_detected, as the two actions in Telesys cannot be executed in succession
without having another action start the system in between.

One possible solution would be to synchronize TeleSysLoc.stop (resp. motion) with a stut-
tering step, if the system is already inoperative, and with Telesys.stop (resp. motion_detected),
if it is operative.

Our experience with this method was that it resulted in a too complex solution which was
too difficult to reason about as the number of possibilities of interleaving actions in the Stopping
Process is high" Instead, we looked for a single common point to the execution of any instance
of the Stopping Process. We chose action TeleSysLoc.inform_not_op, as it is always executed
in any instance. So we synchronized inform_not_op with every Stopping action in Telesys and
with a stuttering step as well. This multiple synchronization, on the other hand, was guided by

58 CHAPTER 6. PROPERTY PRESERVATION

a set of relations (between Telesys’ and TeleSysLoc’s state variables) we wanted to hold at the
end of the Stopping Process.

Then, the idea is to construct the synchronized action like this:

Inform_not_op =
3LTS,RTS, TT,CM,TS,sTT,sCM,sR:
TeleSysLoc.Inform_not_op A Rel' A
(Telesys.deact telegrip* V Telesys.stop*V (6.3)
VTelesys.motion_det ected* V Telesys.ack_signal*V
VTelesys.deactivate telegrip* V Telesys.stuttering®)
AUnchangedrn form_not_op

where

e the asterisk indicates the necessary substitution of variables {TT / sTT, CM / sCM, R /
sR},

e Telesys.stuttering the predicate TS'=TSATT' =TT ACM' =CM AR' = R and

e Rel is a predicate expressing the relationship that we want to hold after the execution of
synchronized action inform_not_op.

Rel = T'S.inoperative A (TT.active < sTT.active) A (CM.idle = sCM.idle) (6.4)

Notice that we cannot require C'M.idle <= sC M .idle as the Starting Process can be stopped
alter setting C'M. det ecting but before executing action Telesys.start-with_cam, thus leav-
ing sC'M.idle.

As inform_not_op is the only action to put the synchronized system into a state satisfying

RTS.not_op AN LT S.not_op (6.5)

and any other action preserving 6.5 does not invalidate Rel, we would be able to conclude
that relation Rel will hold in every state satisfying 6.5. In other words, the synchronized
system will satisfy

O(RTS.not.op A LT S.not_op = Rel) (6.6)

By algebraically manipulating the definition of inform_not_op resulting from 6.3, we obtained
amore “operational” expression which is easier to translate to DisCo (something that is not done
in this work) and that, hopefully, will give more insight to the reader about the characteristics
of the action. In particular, the resulting expression shows clearly that the conjuncts added to
TeleSysLoc.inform_not_op does not add restrictions to its enabledness, as the guard of the action

6.1. A SYNCHRONIZED COMBINATION OF TELESYS AND TELESYSLOC 59

is not modified.

Inform_Not_Op =
LTS, RTS, TT,CM,TS,sTT,sCM,sI:
LT S.not_op
(RT S.oper V RT' S.stoppingV
(RT S.starting A LT S.seq # RT'S.seq))
ART S.not_op'
ART S.seq' = LT S.seq
Nif (T'S.operative A sTT.active) A TT.inactive then
sTT.inactive’
sCM.idle
sR.still.signaled’
sR.command_hold'
T S.inoperative.camera_of f'
else if T'S.operativeN
((sTT.inactive A T'T.inactive)V
(sTT.active A TT.active))
then
sCM.idle
sR.still.signaled'
sR.command_hold'
T S.inoperative.camera_of f' (6.7)
else if sCM.detecting
((sTT.inactive N TT.inactive)V
(sTT.active AN TT.active))
then
sCM.idle'
sR.still.signaled'
sR.command_hold'
T'S.inoperative.camera_of f'
else if (T'S.operativeA
(sR.external-hold V sR.emergency-stop V sR.alarm))A
((sT'T.inactive A TT.inactive)V
(sTT.active A TT.active))
then
T'S.inoperative.camera_on'
else if (T'S.inoperative A sTT.active)A
TT.inactive A (—(CM.idle V sCM .idle))
then
sTT.inactive’
endi f
AUnc"/angedlnform_Not_Op

6.1.9 Synchronizing the Remaining Actions

At this point there remains just one action of system Telesys to synchronize: activate_telegrip.
As actions Telesys.deactivate_telegrip and Telesys.deact-telegrip have been synchronized with
TeleSysLoc.inform_not_op, we cannot guarantee that T7T.active = sTT.active hods. Instead, we
will be able to prove the restricted property:

O(TT.active = sTT.active) (6.8)

That is, whenever T'T is activated, sTT must be activated if it was not active already. This
is done by synchronizing TeleSysLoc.activate_telegrip with both, Telesys.activate_telegrip and a
stuttering step of system Telesys, depending on the previous state of sTT.

CHAPTER 6. PROPERTY PRESERVATION

Synchronized Action

Telesys Actions

TeleSysLoc Actions

set_alarm

set_alarm

set_alarm

clear_alarm

clear_alarm1
clear_alarm?2

clear_alarml
clear_alarm?2

set_external_hold

set_external_hold

set_external_hold

clear_external_hold

clear_external_hold1l
clear_external_hold2

clear_external_hold1
clear_external_hold2

set_emergency _stop

set_emergency_stop

set_emergency.stop

clear_emergency stop

clear_emergency._stopl
clear_emergency _stop2

clear_emergency_stopl
clear_emergency_stop2

move_robot

move_robot

move_robot

move_model

move_model
(stuttering step)

move_model

get_new_pos

get_new_pos

get_new_pos

operate operate operate
send_pos start send_pos
start_with_cam
inform_not_op stop inform_not_op
motion_detected
ack_signal

deactivate_telegrip
deact_telegrip
(stuttering step)

activate_telegrip

activate_telegrip
(stuttering step)

activate_telegrip

(all remaining actions)

(stuttering step)

(all remaining actions)

Table 6.2: The Synchronization of Telesys and TeleSysLoc

Activate Telegrip =

P, TT :
TT.inactive
N f sTT.inactive then
sTT.active'
endi f
ATT.active'
AUnchanged sctivate_Telegrip

As a summary, table 6.2 schematically displays the synchronization between systems Telesys
and TeleSysLoc built in this section. Refer to Appendix B for a complete description of the TLA
actions composing the synchronization of systems Telesys and TeleSysLoc.

6.1.10 Initial States of the Synchronized System

The system state is composed of the variables from both Telesys and TeleSysLoc. The initial
states of the synchronized system (Initsynenro) then, are each composed of an initial state of
Telesys (section 3.5) and an initial state of TeleSysLoc, plus a synchronization requirement: we
would like the two robot objects to be placed initially in the same position (i.e., R.position =
sR.position). Thus, we have: ‘

6.2. THE PROOF OF THE SYNCHRONIZATION 61

Inits_l/nchro =
sR.still adle
Anot(sR.emergency.-stop V sR.external -hold
VsR.command_-holdV sR.alarm)
AsC M .idle A sTT.inactive A T S.inoperative.camera-of f ATS.buf =<>
AR.still.idle
Anot(R.emergency_stop V R.external_hold V R.command_hold V R.alarm)
ACM .idle A TT.inactive A RT'S.not_op A RT S.buf =<> A-RT'S.abp
A-RTS.seq AN RT S.session = 0
ALT Snot.op A LT S.camera_idle AN LT S.buf =<> A-LT'S.abp
A-LT'S.seq AN LT S.session = 0
AR.position = sIR.position

6.2 The Proof of the Synchronization

As our intention is to use the synchronized combination of systems Telesys and TeleSysLoc
to prove the Security Property, we don’t have to prove that it preserves any of the liveness
properties of Telesys or TeleSysLoc. Instead, we have to verify that for every action in the
synchronized system constructed in the previous section, the conjuncts of the guard that were
obtained from the actions in Telesys always hold whenever the rest of the guard holds.

6.2.1 The Proof Goals

By browsing through the synchronized actions (Appendix B), the proof of the synchronization
is reduced to prove each of the following Goals:

18

2.

O(R.alarm = sR.alarm) (clear_alarm, B.2)

O(R.external_-hold = sR.external_hold) (clear_ezternal_hold, B.4)

. O(=R.emergency_-stop = —sR.emergency.stop)(set_emergency_stop, B.5)

O(R.emergency_stop = sR.emergency_stop) (clear_emergency_stop, B.6)

. O(R.moving = sR.moving) (Derived from actions set_alarm, set_external_hold,

move_robot. See respectively B.1, B.3, B.7)

From action get-new_pos (B.10):

O(RT S.oper.last-pos # T'T.active.position =
= T'S.operative.last_pos # sTT.active.position)

. From action send_pos (B.16):

O(LT S.starting A LT S.camera_detecting A R.still.idle A RT S.starting A TT.active =
= sT'T.active A T'S.inoperative A sR.still
A-(sR.external_hold V sR.emergency_-stop V sR.alarm))

. From action operate (B.19):

O(LT S.oper A LT S.buf #<> AR.stillA
A-(R.emergency_stop V R.external_hold V R.alarm) =
= T'S.operative A\ sR.stillA
A-(sR.emergency_stop V sR.external_hold V sR.alarm))

62 ‘ CHAPTER 6. PROPERTY PRESERVATION

6.2.2 Proving some Goals

We proceed now to prove each of the properties just enunciated. For some of the proofs, we will
need some previous lemmas. Sometimes, it will also be necessary to prove stronger properties
which will provide us with more insight into the kind of relationship established between Telesys
and TeleSysLoc.

Proving Goal 1

Proposition 28 O(R.alarm < sR.alarm)

Proof. The proof is straightforward as
Initsyncnhro = " R.alarm A ~sR.alarm
and

set_alarm = R.alarm A sR.alarm (by B.1)
clear_alarm = -R.alarm A ~sR.alarm (by B.2)

No other action in the synchronized system modifies either R.alarm or sR.alarm.
a

Observation 29 Goal number 1 follows from proposition 28.
Proving Goals 2, 3 and 4
Proposition 30 O(R.external_hold & sR.external_hold)
Proposition 31 O(R.emergency_stop < sR.emergency-stop)
The proof of propositions 30 and 31 are similar to that of proposition 28.
Observation 32 Goal number 2 follows from proposition 80. Goals 8 and 4 follow from 81.
Proving Goal 5

Lemma 33 O(LTS.not.op = R.still)

Proof. Notice first that Initsynenro = LT'S.not_op A R.still.

The only action to imply R.moving' is operate, but operate = LT S.oper’. And the only
action to imply LT S.not.op' is rest, but rest = R.still'.

O

Proposition 34 O(R.moving = sR.moving)

Proof. As Initsyncnro = R.still.idle, the proposition holds initially. We then have to show
that for every synchronized action A, we have

(R.moving = sR.moving) A A = (R.moving' = sR.moving')
We consider only those actions that could modify the state machines of R or sR:
o A = operate. By B.19, operate = sR.moving'.

e A = set.alarm, A = set_external_hold or A = set_emergency_stop. By B.1 (resp. B.3,
B.5), A = R.still.signaled’ = - R.moving'.

6.2. THE PROOF OF THE SYNCHRONIZATION 63

e A = clear_alarm. By B.2, clear_alarm = sR.alarm. It is a property of Telesys that
sR.alarm = —sR.moving. Then, we are only have to prove that

= R.moving A clear_alarm = (Ranoving' = sR.anoving')

which always holds since =R.moving A clear_alarm = —R.noving'.

e A = clear_external_hold or A = clear_emergency_stop. The proof is similar to that of
clear_alarm, as it is verified that

A = sR.alarm
-“Ranoving AN A = - R.moving'
e A = move_robot. By B.7, move_robot = R.still' = —R.moving.

e A = inform_not_op. By B.25, inform_not.op = LT Snot.op. Then, by lemma 33,
inf orm_not_op = R.still and, as R does not participate in this action, we conclude that
inf orm_not_op = R.still'.

]

Observation 35 Goal number 5 follows from proposition 3.

6.2.3 The proof of an important property

To be able to prove goal 6, we will need to first prove a property relating the position of the
robot in Telesys to the position of the robot in TeleSysLoc. The property if of the utmost
importance here as it will play a central réle in the verification of the Security Property for
system TeleSysLoc (see 6.3), as it states that at every state of a behavior of the synchronized
system, the two robot positions coincide. In other words, we will prove the following

Proposition 36 O(R.position = sR.position)

However, several definitions and lemmas will be presented and proved before we are in a,
position to demonstrate this property.

Lemma 37 O(RT S.oper = TT.active A T'S.operative)

Proof. Initsyncnro = RT'S.not_op, then the property holds initially. We have to check the
invariant only for three groups of actions:

1. Actions that change the state machine of RT'S into the oper state,
2. Actions that change the state machine of T'T, into the inactive state and

3. Actions that change the state machine of T'S, into the inoperative state.

This means that we don’t have to consider in the first group, for example, those actions that
are only enabled when RT'S is already in its oper state. In this case, there is only one action in
each group:

1. send_pos: By B.16, send_pos = T'T.active' A T 'S.operative’.
2. deactivate_telegrip: By B.11, we have two cases:

(a) (RTS.oper V RTS.starting) :
deactivate_telegrip A (RT'S.oper V RT S.starting) = RT'S.stopping' = ~RT S.oper.

64 CHAPTER 6. PROPERTY PRESERVATION

(b) —(RTS.oper V RT S.starting) :
deactivate_telegrip A ~(RT S.oper V RT S.starting) = RTS" = RT'S.
Then RTS' = RT'S.A-(RTS.oper V RT S.starting) = —~RT S.oper

As in both cases, we have ~RT S.oper, we conclude that the property is invariant under
the execution of action deactivate_telegrip.

3. inform_not_op: By B.25, inf ojirm-ﬁot-op = RTSnot_op' = - RT S.oper.

i

|

Lemma 38 O(7TT.active =» STT.cifcti’ué)'
I

|
] i
I

Proof. As Initsyncnro = TT.in&(:ti'vé, the property holds initially. We have then to consider
only those actions that can change the state machines of 77T (into the active state) or sT'T' (into
the inactive state):

e Actions that can effectively change to sTT.inactive:

— dnform_not_op: By B.25, this change can only occur when T'7T.inactive and the state
of T'T is kept unmodified.

e Actions that can effectively change to T'T'.active:
— activate_telegrip: By B.8, activate_telegrip = sTT.active'.
— move_model: By B.9, move_model = sTT.active'

O

Lemma 39 O(RTS.oper = TT.active.position = sTT.active.position\
RTS.oper.last_pos = T S.operative.last_pos)

Proof. Firstly, notice that according to Lemma 37 if the state of the synchronized systems
satisfies RT'S.oper then it makes sense to refer to the value T7T.active.position, as the state
also satisfies TT.active. Then, according to Lemma 38 the state satisfies sTT.active too, and it
makes sense to evaluate sTT.active.position.

Secondly, notice that according to Lemma 37 if the state of the synchronized systems satisfies
RTS.oper then it makes sense to refer to the value T'S.operative.last_pos, as the state also
satisfies T'S.operative.

The property holds initially as Initsynenro = RTS.not.op = ~RT'S.oper.

We only have to verify the invariance of this property for the following two groups of actions:

1. Actions that change the state of RT'S into RT S.oper:
e send_pos: As this action belongs to the other group too, it is verified there.

2. Actions that modify TT.active.position, sT'T.active.position, RTS.oper.last_pos and/or
TS.operative.last_pos:

e send_pos: By B.16,

send_pos = TT.active.position' = R.positionA
ASTT.active.position' = sR.position

But then by Lemma 36, we have

R.position = sR.position

6.2. THE PROOF OF THE SYNCHRONIZATION 65

Notice here that, though we haven’t proved Lemma 36 and that its proof will actually
use this lemma, there is no circularity here. We are assuming the validity of Lemma 36
at the state holding before the execution of send_pos, while here we prove a property
for the state holding after its execution.

And we conclude that
send_pos = T'T.active.position’ = sTT.active.position’ (6.9)

Also by B.16,

send_pos = T S.operative.last_pos' = sTT.active.position'A
ART S.oper.last_pos' = TT.active.position’

And, from 6.9, we conclude that

send_pos N RT S.oper = T'S.operative.last_pos' = RT S.oper.last_pos'

e get_necw_pos: By B.10,

get new_pos = T S.operative.last_pos' = sTT.active.positionA\
ART S.oper.last_pos' = TT.active.position

If the proposition holds in the state from which action get_new_pos is executed, then
we know that

RTS.oper = sTT.active.posttion A T'T.active.position

in that state. Therefore, also in that state:

send_pos A RT S.oper = T'S.operative.last_pos' = RT'S.oper.last_pos'

Finally notice that action send_pos does not change the values of sTT.active.position
or T'T.active.position.
e move_model: From the guard of action move-model (see B.9), we know that

move_model AN RT'S.oper = TT.activeN
AT'T.active.position = RT'S.oper.last_pos

If we assume the proposed property to hold for the state prior to the execution of
action move_model, then by replacing sTT.active.position for TT .active.position and
T S.operative.last_pos for RT S.oper.last_pos, we have

move_model A RT S.oper = sTT.active.position = T'S.operative.last_pos(6.10)
Also, by Lemma 38,

move_-model A RT'S.oper = sTT.active (6.11)
Finally, by B.9, 6.10 and 6.11, the guard of the if-statement is enabled and we then

know that

move_model A RT S.oper = TT.active.position' = sT'T.active.position’

Note also that action move_model does not change the values of RT'S.oper.last_pos
or T'S.operative.last_pos.

e activate_telegrip: By B.8 this action can change the values of TT.active.position
or sTT.active.position, but as it is only enabled when TT.inactive, we know that

activate_telegrip = ~RT S.oper (Lemma 37). This action does not change the state
of RT'S either.

66 CHAPTER 6. PROPERTY PRESERVATION

O

Now we intend to determine a relationship between the values of T'S.buf and those of
RTS.buf and LT S.buf for some particular states of the synchronized system. In doing so, we
will use some special functions who.e correct definition will be related to the following lemma:

Lemma 40 O(RTS.abp # LT S.abp = RTS.buf #<>)

Proof. This property holds initially because Initsyncnro = ~RT'S.abp A ~LT S.abp.
Action tz_pkt implies RT'S.buf #<>, and thus, as it does not change it, RT'S.buf’ #£<>.
And action ack implies RT S.abp = LT S.abp.
As these are the only actions that can change the state as to validate the antecedent or
invalidate the consequence, we are done.
0O

Definition 41 Queue of robot positions in TeleSysLoc. We define a state function that recon-
structs the queue of robot positions (plus session separators) in the refined system.

/ _f LTSbuf & RT'S.buf if (RTS.abp = LT S.abp)
e B { LTSbuf & tail(RTS.buf) if (RTS.abp # LTS.abp)

Observation 42 Notice that Lemma 40 guarantees that state function queue is well defined.

Definition 43 We will say that element x is in the sequence S =< sy, 85,...,8, > and we will
write it “c in S iff there exists i such that s; = x.

Definition 44 Iunction purge eliminates from the sequence S all elements preceding and in-
cluding the first occurrence of a given element w:

purge(z, S} = purge(x, < $1,82,..-,80 >) ==< S, Sktl, -, 80 >
where k is the only integer which satisfies
(k=nA=(zinS))V(sg—1 =2z A-(zin < $1,...,84-2 >)
We state without proof some properties of functions queue and purge:
Lemma 45 (ta_pktV ack) = queue(LTS', RTS") = queue(LTS, RTS)
Lemma 46 (LTS.buf' = LTS.buf A RTS.abp' = RT'S.abp A LT S.abp' = LT S.abpA
ARTSbuf' = RTSbuf & <z >) =
= queue(LTS', RTS") = queue(LTS,RTS) & < x >
Lemma 47 ¢ # y AzinS = purge(z, S& <y >) = purge(x, S) & <y >
Lemma 48 = # y AzvinS = purge(z, <y > & 5) = purge(z, S)

For the following lemma we will just give a sketch of the proof as it is rather lengthy and
analogous to the proof of Lemma 50.

Lemma 49 O < (LT S.starting A (—LT S.session) in queue(LT S, RTS)) = >

= T'S.buf = purge(—LTS.session, queue(LTS, RTS))

6.2. THE PROOF OF THE SYNCHRONIZATION 67

Proof. (Just a sketch)

Initsyncnro implies the initial validity of this property.

Its invariance under the execution of actions tz_pkt and ack is based on Lemma 45 (see the
proof of Lemma 50).

For action send_pos the proof is easy as this action sets T'S.buf' =<>, RT'S.abp' = LT S.abp'
and RTS.buf' =< —RT'S.session > while it is not difficult to prove that

O(LTS.starting = RTS.session = LT'S.session)

For action get_new_pos, the proof follows the corresponding to the same action in proof of
Lemma 50, but there we need Lemma 47 instead.

For action wait_confirm, follows ecasily from Lemma 48.

Finally, for action com_start (the only action that can change LTS into state starting), we
have just to prove that ’

O(com_start = (Vo : zinqueue(LTS', RT'S") : © > —LT'S.scssion'))
O

Lemma 50 O (LT S.oper = T'S.buf = queue(LTS, RT'S))

Proof. We only need to show the invariance of this property under the execution of those ac-
tions that either leave LT'S in state oper, or change any of T'S.buf, LT S.buf, RT S.buf, LT S.abp
or RT'S.abp. For each of the actions we assume that LT'S.oper = T'S.buf = queue(LTS, RT'S)
holds and prove that it implies LT'S.oper’ = T'S.buf' = queue(LTS', RT'S").

e start_lts: By B.18,

start_lts = LT S.starting A head(LT S.buf) = — LT S.sessionA
ALTS.buf' = tail (LT S.buf)

Then, by Lemma 49, T'S.buf = purge(—LTS.session, queue(LTS, RT'S)) and since
head(LT S.buf) = —LT'S.session,

TSbuf = tail (LT S.buf) & RTS.buf if (RTS.abp = LT S.abp)
VUl = tail (LT S.buf) & taill(RTS.buf) if (RTS.abp # LT S.abp)

But, as LT S.buf' = tail (LT S.buf), finally TS.buf' = TS.buf = queue(LTS', RTS").

e get_new_pos: By B.10, we first notice that we have only to consider the case when LT'S.oper,
since this action cannot change it.

Then, also by B.10

LTS.buf' = LTS.buf AN RTS.abp' = RTS.abp A LT S.abp' = LT S.abpA
ARTS.buf' = RTS.buf & < TT.active.position >

and
TS.buf =TSbuf & < sTT.active.position >

By Lemma 46 we could conclude that

TSbuf" = queue(LTS', RTS")

only if we knew that TT.active.position = sTT.active.position. Since get_new_pos =
RT S.oper, this follows from Lemma 39.

68 CHAPTER 6. PROPERTY PRESERVATION

e send_pos: By B.16, send_pos = -~ LT S.oper.

e operate: By B.19, operate = LT'S.oper A LT S.oper' N LT S.buf #<>

Then, by our assumption, 7°S.buf = queue(LTS, RT'S) and we have to prove that
TS.buf' = queue(LTS', RT'S").

TSbuf' = tail(TS.buf) (B.19)
= tail(queue(LTS, RTS)) (assumption)
= tail(queue(LTS, RTS")) (B.19)
= tail(LTSbuf)& (LTS.buf #<>)

(if LTS.abp = RT S.abp') then RT S.bu f'
elsetail(RTS.buf"))
= queue(LTS',RTS")) (B.19)

e tz_pkt and ack: These actions cannot change the state machine in L7'S and, by lemma 45,
they neither change queue(LTS, RT'S).

o wait_confirm: By B.17, wait_con firm = LT S.oper.

m}
We finally have all necessary elements to prove property 36:

Proof. The property holds initially as Initsyncnro = R.position = sR.position.
The only action that modifies each of the position values is move_robot.
Since by B.7, move_robot = R.position' = R.moving.destinationA
AsR.position' = sR.moving.destination
it suffices to prove that

O(R.moving A sRR.moving = R.moving.destination = sR.moving.destination)

This last expression holds initially as Initsyncnro = R.still A sR.still. And the only action
that interests is operate:
By B.19, operate = LT S.oper AN LT S.buf #<> A
AR.moving.destination’ = head(LTS.buf)A
AsR.moving.destination' = head(TS.buf)
In that case, by 50, we know that

head(T'S.buf) = head(queue(LT S, RT'S) = head(LT S.buf)
which proves the property.
O
6.2.4 Proving the Remaining Goals
Proving Goal 6
Proposition 51 O(RTS.oper.last_pos # T'T.active.position =

= T'S.operative.last_pos # sTT.active.position)

Proof. For the antecedent of the property to be evaluable, we have to assume RTS.oper
(Actually this is the assumption in the DisCo tool). In that case, the property follows directly
from Lemma 39

O

Observation 52 Goal number 6 follows from proposition 51.
Proving Goal 7
Lemma 53 O(RTS.not.opV RTS.starting = T S.inoperative)

6.2. THE PROOF OF THE SYNCHRONIZATION 69
Proof. As Initsynchro = T'S.anoperative, the property holds initially.
1. Actions that can change T'S into state operative:
e send_pos: By B.16, send_pos = RT'S.oper’
2. Actions that can change RT'S into state not.op or starting:

e inform_not_op: We constructed this synchronized action as to satisfy
inf orm_not_.op = Rel’, where Rel is the relation defined in 6.4 and this implics
T S.anoperative.

e start: What has been done up to now in this proof suflices to state that
O(RTS.notop = TS.inoperative), and since action start is only enabled when
RT S.not_op and it does not modify 7S, the property follows.

a

Lemma 54 O((LT S.starting V LT S.oper) A R.still = sR.still)

Proof. As Initsyncnro = LT'S.not_op, the property holds initially.
1. Actions that can change sR into state moving:
e operate: By B.19, operate = R.moving'.
2. Actions that can change R into state stull:

e sct_alarm, set_emergency.stop, set_external_hold, move_robot: All these actions imply
sR.still'.

o stop_r: By B.28, stop_r = LT'S.stopping’.
3. Actions that can change LTS into state starting or oper:

e com_start: By B.13, com_start = RT S.starting’. Then, by Lemma 53, com_start =
T'S.inoperative’. Finally, it is a property of system Telesys that T'S.inoperative =
sR.still. = Lo

e start_lts: What has been done up to now in this I'Sroof suffices to state that
O(LTS.starting A R.still = sR.still).: Then, by B.18, start_lts = LT S.starting;

and, since it does not modify sRR, we conclude that sRR.still’ holds after the execution

of this action. ; I’
fi H

a |

Proposition 55 O(LT'S.starting A LT'S.camera_detectingA
AR.still.idle N RT S.starting A TT.active =
= sTT.active AT S.inoperative A sR.still
A-(sR.external_hold V sR.emergency_stop V sR.alarm))

70 CHAPTER 6. PROPERTY PRESERVATION

Proof. Because R.still.idle we know that
—(R.command_hold V R.external_hold V R.emergency_stop V R.alarm)
Then, by Propositions 28, 30 and 31, we conclude that
—(sR.external _hold V sR.emergency_stop V sR.alarm))

The rest follows from Lemmas 53, 54 and 38.
O

Observation 56 Goal number 7 follows from proposition 55.

Proving Goal 8

Lemma 57 O(LTS.starting A (—LT S.session) in queue(LTS, RT'S) = T S.operative)

Proof. (Just a sketch) According to Lemma 45, this property remains invariant under
actions tz_pkt and ack. Action send_pos is the only one that can add (—LTS.session) to
queue(LTS, RTS). It then sets T'S.operative’. And the only action that changes the T'S into
state inoperative is inform_not_op, which is only enabled when LT'S.not_op.

0O

Lemma 58 O(LT'S.oper = T'S.operative)

Proof. Since Initsyncnro = LTS.not_op, the property holds initially.
1. Actions that change T'S into state inoperative:
e inform_not_op: By B.25, inf orm_not_op = LT S.not_op'.
2. Actions that change LTS into state oper:

o start_lts: By B.18, start_lts = LT S.starting A head(LT S.buf) = —LT S.session.

Therefore, before the execution of this action (—LT'S.session) in queue(LTS, RTS).
By Lemma 57 then, we conclude T'S.operative.

]

Proposition 59 O(LT'S.oper A LT S.buf #<> AR.stillA
A=(R.emergency-stop V R.external_hold V R.alarm) =
= T'S.operative A sR.stillA
A= (sR.emergency_stop V sR.external_hold V sR.alarm))

Proof. This follows directly from Lemmas 58, 54, 53, 54 and 38.
0

Observation 60 Goal number 8 follows from proposition 59.
By having proved all Proof Goals, we have verified that the system proposed at the begin-

ning of this chapter constitutes in fact a Synchronized Combination of systems Telesys and
TeleSysLoc.

6.3. TELESYSLOC SATISFIES THIZ SECURITY PROPERTY 71

6.3 TeleSysLoc Satisfies the Security Property

In order to formally express the Security Property, now of system TeleSysLoc, we follow the
same ideas of section 3.8. System TeleSysLoc is thus enriched with two new variables:

e smpath: The path taken by the robot model as it lias been received by R_Telesys (by means
of action get_new_pos) since the last step verifying

-R_Telesys.oper A R_Telesys.oper’

(this step only occurs when action send_pos is executed).

e irpath: The path taken by the real robot since the last step verifying the same condition
as above.

It is assumed that both variables arce initially equal to the empty sequence.

Since the robot can only be moved when IRR_T'elesys is in its oper state, we are only interested
in verifying the Security Properties for those states where _Telesys.oper holds. We can then
express the Security Property for system TeleSysLoc as:

O(L Telesys.oper = impath = irpath & queue(L Telesys, R Telesys)) (6.12)

Instead of proving this property directly from the definition of system TeleSysLoc, now that
we have cstablished a relationship between this system and system Telesys, we intend to take
advantage of the fact that we already know the property to be valid for this latter system (see
3.8).

First, notice that we have already included new variables impath and irpath in the TLA
version of the actions in the synchronized system (see appendix B), though they never affected
the proofs of the synchronization relationship given above.

Second, notice that we have included as well the variables mpath and rpath into the synchro-
nized system. These variables were defined in section 3.8 and used there to express the Security
Property (3.8) for system Telesys.

Now we prove a simple lemma relating variables mpath and rpath to impath and irpath,
respectively. This proof depends heavily on properties that have already been proved while
verifying the synchronization of systems Telesys and TeleSysLoc. Notice specially the use of
Proposition 36 (section 6.2.3) that assures that both, the robot in system Telesys and the robot
in system TeleSysLoc, are always in the same position.

Lemma 61 O(mpath = impath A rpath = irpath)

Proof. Initially both variables hold the empty sequence. We then consider only the actions
that modify any of these variables:

e get_new_pos: By Lemma 39 we know that T'T.active.position = sTT.active.position.
Therefore, get-new_pos = mpath' = impath’. This action does not change rpath or
irpath.

e send_pos: By Proposition 36, we know that R.position = sR.position. Then the required
equalities hold in the state immediately after the execution of this action.

o operate: By Lemma 50 we know that head(LT S.buf) = head(T'S.bu.f). Therefore,
operate = rpath’ = irpath’. This action does not change mpath or impath.

0O
Finally, we have

Proposition 62 System TeleSysLoc verifies the Security Property (6.12)

€2 CHAPTER 6. PROPERTY PRESERVATION

Proof. We prove that this property is satisfied by the synchronized system developed at the
beginning of this chapter. Since we have proved that it is in fact a Synchronized Combination
of systems Telesys and TeleSysLoc, every behavior of TeleSysLoc can be extended to a behavior
of the synchronized system. Therefore, a property relating values of the state variables belonging
to TeleSysLoc that holds for every behavior of the synchronized system will also hold for every
behavior of TeleSysLoc. Therefore we just have to prove:

O(LT S.oper = impath = irpath & queue(LTS, RT'S))

Then, if we assume LT'S.oper, by Lemma 58, LT S.oper = T S.operative. And by Lemma
50, queue(LTS, RT'S) = T'S.buf. Combining these with the equalities from Lemma 61, we see
that it suffices to prove that

O(T S.operative = mpath = rpath & TS.buf)

which we know to hold as it is exactly the Security Property for system Telesys.
(]

Chapter 7

Conclusions and Future work

7.1 Results

This works describes the results we obtained in attempting the specification of Telesys, the robot
teleoperation system demanded by the TELESAFE project.

Two specifications, with different levels of abstraction, were produced. The higher-level
specification described Telesys —as well as its hardware and software components— as a closed
system in a simple way, but rich enough as to allow for the specification and verification of an
important security property (see section 3.8).

Afterwards, the higher-level specification (TeleSysLoc) was transformed into a lower-level one
by splitting the atomicity of several actions in the framework of the Synchronized Combination
Method (4.8). This was done as a first step towards the introduction of implementation-oriented
mechanisms related to the transmission of data and control between distant locations.

During the proof of the Synchronized Combination, several errors were detected in the origi-
nal lower-level DisCo specification (TeleSysLoc) which would have been quite difficult to detect
otherwise.

7.2 Implementation

The robot teleoperation system specified here, Telesys, has been implemented with the C pro-
gramming language and TCP sockets. The resulting software was used for studying different
security concerns in the robot teleoperation environment.

This thesis serves also as documentation for that implementation.

7.3 Specification Language

We applied DisCo to a “real world” problem, which was not originally designed to test the
language. The fact that the two DisCo specifications of the robot teleoperation system are
relatively short and simple (specially the higher-level one) is more a virtue of DisCo than an
indicator of the difficulty posed by the problem. In fact, the C implementation of the system is
quite complex and took several months to develop.

The restrictions imposed over the refinement of actions by the definition of the language
forced us, on some occasions, to write two actions where it would have been perfectly valid to
write only one (see page 19).

When starting from the Telesys specification and trying to derive the TeleSysLoc specifica-
tion, a complete new system had to be written. Version 2.0 of the language [Dis94] provided no
mechanism to reuse Telesys. The latest language version [Dis96] does, but it was not used here
as there was no simulation tool implemented for it when this thesis was written.

73

74 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.4 Splitting of action atomicity

We have argued for the necessity of action atomicity refinement in the transformational approach
to the specification of distributed systems and, in trying to apply it to our specifications, we
have analyzed several different methods. In particular, the recent “Aggregation of Distributed
Transactions” method (see section 4.7) was shown to be insufficient for our purposes and of
little general use if it does not provide a way to link properties from the specifications among
themselves. Instead, we have applied an already known Synchronized Combination Method
(4.8). Moreover, we have paid special attention to the description and analysis of this method;
a work which we humbly consider the main contribution of this thesis.

7.5 Future Work

Irom now on, work can follow in several directions:

e The proof of the Synchronized Combination of Telesys and TeleSysLoc done in Chapter 6
showed us that for any reasonably sized system, these proofs can be quite time consum-
ing and error-prone, though they do not present major difficulties. Just because of this
simplicity, they are amenable for the application of semi-automatic proof methods.

e The specifications of the robot teleoperation system produced so far are still at too high
a level of abstraction and there are plenty of implementation mechanisms that could be
introduced as a way of deriving a formal design of the system.

First, the communication model, which corresponds to the asynchronous message passing
style, could be completed. In fact, work has already been done towards the introduction
of communication channels as a new step in the transformational specification of Telesys.
A particular implementation relation between two specifications has been defined for that
purpose and a mechanism to prove the serializability of behaviors of the derived specifica~
tion has been developed.

And second, we have assumed communications among locations to be error-free in our
model. However, this is not very realistic, as even with the use of protocols such as
TCP sockets, connections can brake down resulting in the need for an appropriate reset
mechanism. These fault tolerant properties could be added to the specification given here
but it could be convenient to have them introduced in the specification from the very
beginning (Telesys).

e [Minally, regarding the DisCo specification language, it would be interesting to analyze how
the work done here would benefit from the new constructs of Version 3.0 [Dis96] and to
study how they could be extended to avoid the inconvenient duplication of actions (p. 19).

Bibliography

[AL91]

[ALM94]

[AS85]

[BKs88]

[BLY4]

[ChMSS)

[Dij76]
[Dis94]

[Dis96]

[DNV90]

[Ein49]

[Jar92]
[1Ks91]
[JKSS90]

[Kel94]

M. Abadi and L. Lamport, The Existence of Refinement Mappings. Theoretical Com-
puter Science, 82(2):253-284, 1991.

M. Abadi, L. Lamport and S. Merz, A TLA Solution to the RPC-Memory Speci-
fication Problem. World Wide Web page at http://www.rescarch.digital.com/SRC/
dagstuhl/dagstubl.html. August, 1994.

B. Alpern and F. B. Schneider, Defining Liveness. Information Processing Letters,
21(4):181-185, 1985.

R. J. R. Back and R. Kurki-Suonio, Distributed cooperation with actions systems.
ACM Trans. Programming Languages Syst. 10, 4, October 1988, pp. 513-554.

M. Broy and L. Lamport. The RPC-Memory specification problem. World Wide
Web page at http://www.research.digital.com/SRC/dagstuhl/dagstuhl.html. August,
1994.

K. M. Chandy and J. Misra, Parallel Program Design: A Foundation. Addison-Wesley,
1988.

E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

The Disco Language Version 2.0. Software Systems Laboratory, Tampere University
of Technology. March 11, 1994.

The Disco Language Version 3.0. Software Systems Laboratory, Tampere University
of Technology. 1996.

R. De Nicola and F. W. Vaandrager, Three logics for branching bisimulation (ex-
tended abstract). In Proceedings 5" Annual Symposium on Logic in Computer Sci-
ence, Philadelphia, USA, pages 118-129. IEEE Computer Society Press, 1990.

A. Einstein, Authobiographical Notes. Albert Einstein: Philosopher-Scientist. Library
of Living Philosophers. Open Court Publishing Company, La Salle, Illinois, U.S.A.,
1949.

H.-M. Jarvinen, The design of a specification language for reactive systems. Tampere
University of Technology, Publication 95, 1992.

H.-M. Jarvinen and R. Kurki-Suonio, DisCo specification language: Marriage of ac-
tions and objects. Proc. 11th Conf. on Distributed Computing Syst., 1991, pp. 142-151.

H.-M. Jérvinen, R. Kurki-Suonio, M. Sakkinen and K. Systd, Object-oriented speci-
fication of reactive systems. Proc. 12th Int. Conf. on Software Eng., 1990, pp 63-71.

P. Kelloméki, Analysis of a Stabilizing Protocol: A Case Study in Reasoning about
Action Systems. Thesis for the Degree of Licentiate of Technology. Software Systems
Laboratory, Tampere University of Technology. December, 1994.

75

76

[Ks95]

[Ks96]

[Ks96b]

[KsK88]

BIBLIOGRAPHY

R. Kurki-Suonio, Incremental Specification with Joint Actions: The RPC-Memory
Specification Problem.Software Systems Laboratory, Tampere University of Technol-
ogy. 1995

R. Kurki-Suonio, Notes for the course ”Specification of Reactive Systefns 7. Software
Systems Laboratory, Tampere University of Technology. January, 1996.

R. Kurki-Suonio, Fundamentals of Object-Oriented Specification and Modeling of Col-
lective Behaviors. Software Systems Laboratory, Tampere University of Technology.
1996.

R. Kurki-Suonio and T.Kankaanpiid, On the Design of Reactive Systems. Software
Systems Laboratory, Tampere University of Technology. Report 1. October, 1988.

[LLORY6] P. B. Ladkin, L. Lamport, B. Olivier, and D. Roegel. Lazy caching: An assertional

[Lam83|

[Lam88|

[Lam94]

[Lam96]

[LVo4]

[Lyn94]

[Miko5]

[PaGI06]

[PDYG)

[Sys91]

view. Distributed Computing, 1996.

L. Lamport, Specifying concurrent program modules. ACM Transactions on Program-
ming Languages and Systems, 5(2):190-222, 1983.

L. Lamport, A Theorem on Atomicity in Distributed Algorithms. Digital Equipment
Corporation. May, 1988.

L. Lamport, The Temporal Logic of Actions. ACM Trans. Prog. Lang. Syst., 16(3):872-
923, May, 1994.

L. Lamport, Refinement in State-Based Formalisms. Digital Equipment Corportation.
December, 1996.

N. Lynch and F. Vaandrager, Forward and Backward Simulations - part I: Untimed
Systems. October, 1994.

N. Lynch, Atomic Transactions for Multiprocessor Programming: A Formal Ap-
proach. DIMACS Series in Discrete Math. and Theoretical Comp. Sc., 1994.

T. Mikkonen, Implementation of Reactive Systems based on Closed-system Specifi-
cations. Software Systems Laboratory, Tampere University of Technology. Licentiate
thesis. June, 1995.

E. Pascal Gribomont, Atomicity Refinement and Trace Reduction Theorems. Com-
puter Aided Verification, 8" International Conference, CAV’96, pp. 311-322, LNCS
1102, Springer-Verlag, July 1996.

S. Park and D. L. Dill, Protocol Verification by Aggregation of Distributed Transac-
tions. Computer Aided Verification, 8" International Conference, CAV’96, pp. 299-
310, LNCS 1102, Springer-Verlag, July 1996.

K. Systii, A graphical tool for the specification of reactive systems. Proc. Euromicro’9l
Workshop on Real-Time Systems, 1991, pp. 12-19.

Appendix A

Telesys Source Code

A.1 The initial system

A.1.1 The Robot system

— — DisCo specification of Telesys Robot Teleoperation System.
- = ROBOT SYSTEM

— — Author: Pablo Giambiagi
— — Date : 27.03.96

— — Observations:
- - This is a highly simplified specification of a robot.

- - At any moment, the robot can be in any of two states: moving or still.
s If it is moving, then it is moving towards a target position
- - (destination).

- - The current position of the robot can be acquired at any time. This
- - value has been simplified to be just an integer.

i The actual path taken by the robot to go from it’s current position
—— to its destination is abstracted away.

- The only events considered are:

e 1. Starting off towards a new position (action Set_Destination).
- = 2. Reaching destination (action move_Robot).

- - 3. Stoppage of the robot by any other circumstance,

- - e.g. "emergency stop” (action stop_Robot). Notice that a robot
- - can be stopped even when it is already still. In this case, there
- - is no associated state-change.

system Robot is

class Robot is
state *still, moving(destination: integer);

7

APPENDIX A. TELESYS SOURCE CODE

position: integer;
initially position >= 0;

° assert position >= 0;
end;
— — Actions
action set-Destination(p: integer) by r: Robot is
when r.still and p >= 0
do
= ramoving(p);
end;
action stop_Robot by r: Robot is
when true
do
— r.still;
end;
action move_Robot by r: Robot is
when r.moving
do
r.position := r.moving.destination;
— r.still;
end;
end;
A.1.2 The Robot_Signal System

— - DisCo specification of Telesys Robot Teleoperation System.

= ROBOT_SIGNAL

— Author: Pablo Giambiagi
— Date : 01.04.96

Observations:

— 1. Robot system extended with robot controller signals.

[very time a signal is received by the robot controller,

- the robot is immediately stopped.

— 3. Robot state ”still” is extended to distinguish between these
= situations:

|
o

= a) Robot stopped after completion of correct movement

= (imported action move_Robot)

- b) Robot stopped after reception of signal.

— 4. If the robot controller has received a signal, then the signal

= has to be cleared before the robot can perform any movement.
- However, this restriction is not introduced at this level, as

A.l. THE INITIAL SYSTEM

- - the process needed to clear that signal depends on the type of
- = the signal (see system Robot_DifSig).

—— 5. Two new events are considered:

= a) Turning a signal on (sct_signal)

— b) Clearing all signals (clear_signal).

== B, Siguals are not distinguished. Anyway, there can be scveral

- = different types of signals. Accordingly, action set_signal is

- - always enabled.

system Robot_Signal
import Robot;
is

extend Robot by
extend still by
state *idle, signaled;
end still;
end;
— — Actions

refined move_Robot is
when ...

do

— r.still.idle;
end;

action set_signal by r: Robot is
when true
do
— r.still.signaled;
end;

action clear_signal by r: Robot is
when r.still.signaled

do

— r.still.idle;

end;

)

end;

A.1.3 The Robot_DifSig System

— — DisCo specification of Telesys Robot Teleoperation System.

= ROBOT_DIFSIG

— — Author: Pablo Giambiagi
—— Date : 26.08.96

— — Observations:

79

80

APPENDIX A. TELESYS SOURCE CODE

—— 1. Robot system plus signals, now differentiated.

— = 2. The robot controller recognizes four different signals:

e a) Emergency Stop

- = b) External Hold

- - ¢) Command Hold : This signal is raised when the robot is stopped
- = by a software command. As this is the only way available to the

- - Teleoperation System 'to stop the robot, the guard of the

- - imported action ”stopirobot” is strengthened to false.

= d) Alarm : This signal can result from an error internal to the

- = controller or, for example, the impossibility to reach a certain
— position. . .

—— 3. A refinement in Disco forces a complete inclusion of the original

- - body in every refined action. That is, the original body cannot be
- guarded by an IF command. This has forced us to split every action
et to clear a signal into two actions, taking into account the state of
= the other signals.

system Robot_DifSig
import Robot_Signal;
is

extend Robot by
~ — The four different signals recognized by the robot controller.
— — Notice that this could be defined as extensions to the state
- — still.signaled, but it would have made the notation rather clumsier.
cmergency _stop: boolean;
external_hold: boolean;
command _hold: boolean;
alarm: boolean;

- — The following asserts that any signal implies the state still.signaled
assert not(emergency . stop or external_hold or command_hold or alarm) or
still.signaled;
end;

— — Actions — -
— — Signal setting actions:

refined set_emergency stop of set_signal is
when ... not(r.emergency _stop)
do

r.emergency.stop = true;
end;

refined sct_external_hold of set_signal is
when ... ranoving
do

r.external hold := true;
end;

Al

THE INITIAL SYSTEM

— — The guard of this actions does not require "not(r.command_hold)”

— — because it will later be used in a ’combined’ clause and we don’t,

— — expect that guard to propagate to that system (Telesys). Without the
— — guard, the execution of this action results in a stuttering step.
refined hold_on of sct_signal is

when ...

do

r.command_hold := true;
end,;

refined set_alarm of set_signal is
when ... r.moving
do

r.alarm := true;
end;

— — Signal clearing actions:

— — Note that DisCo’s own restrictions have forced us to implement
— — each event as a pair of actions. We would have liked to be able
- — to write, for example:

— — refined clear_emergency stopl of clear_signal is

— - when ... r.emergency_stop

——do

—— if not(r.external_hold or r.command_hold or r.alarm) then

- - end ifj
-— r.emergency.stop := false;
— — end;

refined clear_emergency_stopl of clear_signal is

when ... r.emergency_stop and
not(r.external_hold or
r.command_-hold or
r.alarm)

do

r.emergency_stop := false;
end;

action clear_emergency_stop2 by r: Robot is
when r.emergency _stop and
(r.external_hold or r.command.hold or r.alarm)
do
r.emergency.stop := false;
end;

refined clear_external_holdl of clear_signal is

when ... r.external_hold and
not(r.emergency.stop or
r.command_hold or

81

APPENDIX A. TELESYS SOURCE CODE

r.alarm)
do

r.external_hold := false;
end;

action clear_external_hold2 by r: Robot is
when r.external_hold and
(r.emergency . stop or r.command_hold or r.alarm)
do
r.external hold := false;
end;
refined hold_oftl of clear signal is
when ... not(r.emergency_stop or
r.external_hold or
r.alarmn)

do

r.command _hold := false;
end;

action hold_off2 by r: Robot is
when r.emergency_stop or r.external hold or r.alarm
do
r.command_hold := false;
end;

refined clear_alarml of clear_signal is

when ... r.alarm and
not(r.cmergency stop or
r.external_hold or
r.command_hold)

do

r.alarm = false;
end;

action clear_alarm2 by r: Robot is
when r.alarm and (r.emergency _stop or r.external hold or r.command_hold)
do
r.alarm = false;
end,;

— — The action that sets the robot movement is able to clear a command_hold.
refined sct_Destination is

when ... not(r.emergency_stop or r.external hold or r.alarm)

do

r.command_hold := false;
end;

~ — The original actions are permanently disabled.
refined sctosignal is

A.l1. THE INITIAL SYSTEM

when ... false
do

end,;

refined clear_signal is
when ... false
do

end;

— — The functionality of the ”stop_robot” action is replaced by
— — that of action ”hold_on”.

refined stop_robot is

when ... false

do

end,;
end;

A.1.4 The Camera System

— — DisCo specification of Telesys Robot Teleoperation System.

e CAMERA

— — Author: Pablo Giambiagi
— — Date : 28.03.96

— — Observations:

- - This systems represents the camera used to detect movements inside
= the robot workcell.
system Camera

is

class Camera is
state *idle, detecting;
end;

— — Actions

action set_camera_dle by cm: Camera is
when true
do
— cm.idle;
end;

action start_detection by cm: Camera is
when true
do

— cm.detecting;

83

84

A

APPENDIX A. TELESYS SOURCE CODE

end;

end;

.1.5 The Telegrip System

- — DisCo specification of Telesys Robot Teleoperation System.

- - TELEGRIP

— — Author: Pablo Giambiagi

— — Date : 27.03.96

— — Observations:

- - 1. This system represents the Teleoperation simulation software

- - where the remote operator directs a 3D model of the robot and its
- workeell.

- - 2. Irom the point of view of the Teleoperation System, it is only of
== concern to know the state of the LLTT associated to the model (i.e.
- = LLTI active or inactive) and, if the LLTI is active, the position

o of the robot according to the Telegrip model.

- - 3. Being part of the environment of the Teleoperation System, no

- = restrictions are imposed to the action responsible for the movement
- - of the robot model. ‘

system Telegrip
is
class Telegrip is
state *inactive, active(position: integer);

end;
- — Actions —

action activate Telegrip by tt: Telegrip is
when tt.inactive
do
— tt.active;
end;

action deactivate_ Telegrip by tt: Telegrip is
when tt.active
do
— tt.inactive;
end;

action change Pos(p: integer) by tt: Telegrip is
when tt.active and p >= 0
do
= tt.active(p);
end;

A.l. THE INITIAL SYSTEM 85

A.

end;

1.6 The Telesys System

-~ — DisCo specification of Telesys Robot Teleoperation Systeni.
- - TELESYS

— — Author: Pablo Giambiagi
— — Date : 19.04.96
- — Modified: 25.04.96

— — Initial TeleSys system (with a simple unbounded buffer)
system TeleSys

import Telegrip, Camera, Robot_DifSig;

combined start_with_cam of Telegrip.change Pos,
Camera.start_detection;

combined stop of Robot_DifSig.hold_on,
Camera.set_camera_dle;

combined deact-Telegrip of Robot_DifSig.hold_on,
Camera.set_camera_dle,
Telegrip.deactivate_Telegrip;

is

class TeleSys is
state *inoperative, operative(last_pos: integer);
extend inoperative by
state *camera_off, camera_on;
end inoperative;
buf: sequence integer;
initially buf = <>;
end;

— — Actions
— Starting...

refined start of change Pos by ... ts: TeleSys; r: Robot is
when ... ts.inoperative.camera_on and
not(r.external hold or r.emergency stop or r.alarm) and
r.still and p = r.position
do
ts.buf =<3
— ts.operative(p);

end;

refined start_with_cam by ... ts: TeleSys; r: Robot is
when ... ts.inoperative.camera_off and

86 APPENDIX A. TELESYS SOURCE CODE

not(r.external_hold or r.emergency_stop or r.alarm) and
r.still and p = r.position
do
ts.buf = <>3;
— ts.operative(p);

end;

— — Operating...

refined move_-Model of change_Pos by ... ts: Telesys is
when ... (ts.inoperative or tt.active.position = ts.operative.last_pos)
do

end;

action get_new_pos by ts: Telesys; tt: Telegrip is
when ts.operative.last_pos /= tt.active.position
do

-;, ts.operative(tt.active.position);

ts.buf := ts.buf & <tt.active.position>;
end;

refined operate of set_Destination
by ... ts: TeleSys is
when ... ts.operative and
p = head(ts.buf)
do

ts.buf := tail(ts.buf);
end,

~ Stopping...

action ack_Signal by r: Robot; ts: Telesys is
when ts.operative and
(r.external_hold or r.emergency stop or r.alarm)
do
— ts.inoperative.camera_on;
end;

refined motion_detected of stop by ... ts: Telesys is
when ... cundetecting
do

— ts.noperative.camera_oft;
end;

refined stop by ... ts: Telesys is
when ... ts.operative
do

Al

THE INITIAL SYSTEM

— ts.inoperative.camera_ofl;
end;

refined deact_Telegrip by ... ts: Telesys is
when ... ts.operative
do

— ts.inoperative.camera_off;
end;

refined deactivate_Telegrip by ... ts: Telesys is
when ... ts.inoperative

do

end;

- — Some actions are no longer valid

refined start_detection is
when ... false
do

end;

refined set_camera_dle is
when ... false
do

end;

refined hold_on is
when ... false
do

end;

refined hold_offl is
when ... false
do

end;

refined hold_off2 is
when ... false
do

end,;

end;

creation C_TELESYS of TeleSys is
new Robot;
new Camera,

88 APPENDIX A. TELESYS SOURCE CODE

new Telegrip;
new TeleSys;
end C_TELESYS;

A.2 The TelesSysLoé System

— — DisCo specification of Telesys Robot Teleoperation System.

- - TELESYSLOC
- — Author: Pablo Giambiagi

- — Date : 26.08.96

— — Last modified: 28.08.96

— — TeleSys system with separate (Local and Remote) locations.
system TeleSysLoc

import Telegrip, Camera, Robot_DifSig;
is |

class R_TeleSys is
state *NOT_OP, STARTING, STOPPING, OPER(last_pos: integer);
buf: sequence integer := <>;
seq: boolean := false;
abp: boolcan := false;
session: integer (= 0;
end;

class L._TcleSys is
state *NOT_OP, STARTING, STOPPING, OPER;
state *camera.dle, camera_detecting;
buf: sequence integer := <>;
seq: boolean := false;
abp: boolean := false;
session: integer := 0;
end;

— — Actions
— — Starting the system...

action start by tt: Telegrip; rts: R_Telesys is
when tt.active and rts. NOT_OP

do
— 1ts. STARTING;
rts.session = rts.session + 1;
end;

— — Communicating the intention to start the system to

- - the local Location.

action com_start by rts: R_Telesys; Its: L_Telesys is

when rts.STARTING and 1ts. NOT_OP and rts.seq = lts.seq

A.2. THE TELESSYSLOC SYSTEM 89

do
= lts. STARTING (false);
Its.session 1= rts.session;
end;

— — Start the camera if it is idle and L_Telesys wants to start.
refined start_camera of start_detection by ... Its: L_Telesys is
when ... Its.camera_idle and lts.STARTING

do

— lts.camera_detecting;
end;

— — Release hold if robot has to (and can) be restarted.
refined release_hold of hold_offl by ... lts: L_Telesys is
when ... Its.STARTING

do

end,;

— — When ready, L_Telesys sends the robot position to update Telegrip.
refined send_pos of change_Pos
by ... rts: R_Telesys; Its: L_Telesys; r: Robot is
when ... Its.STARTING and lts.camera_detecting and
r.still.idle and rts.STARTING and p = r.position

do

rts.buf := < (- rts.session) > ; — a token to clear the channel

— 1ts.OPER(p);

rts.abp := lts.abp;

end,;

— — While waiting for the confirmed-start message, all positions
— — received are eliminated.
action wait_confirm by lts: L_Telesys is
when 1ts. STARTING and head(lts.buf) /= - lts.session
do
Its.buf := tail(lts.buf);
end;

— — Reception of the confirmed-start message.
action startts by lts: L_Telesys is SO ‘
when lts.STARTING and head(lts.buf) = - lts.sessioh
do ¥ ‘ .
— 1ts.OPER;
Its.buf := tail(lts.buf);

end;

— — Stopping the system...

— — Recognize a robot exception condition.
action ack_Signal by r: Robot; Its: L_Telesys is
when r.still.signaled and (Its.OPER or 1ts.STARTING)

90 APPENDIX A. TELESYS SOURCE CODE

do
— lts.STOPPING;
end;

— — Stop the robot if it is not already stopped.
refined stop.r of hold.on by ... Its: L_Telesys is
when ... Its.STOPPING

do
end;
— — When the camera detects movements inside the workeell, it
— — informs (interrupts) immediately L_Telesys.

refined motion of set_camera.idle by ... Its: L_Telesys is

when ... cm.detecting
do

— lts.camera_idle;
if (Its.OPER or lts.STARTING) then
— lts.STOPPING;
end if;
end,;

— — After L_Tclesys has stopped the robot, it can rest.
action rest by 1ts: L_Telesys; 12 Robot is
when 1ts.STOPPING and r.still
do
= 1ts.NOT_OP;
lts.seq = not(lts.seq);
end;

~~~~~ If L_Telesys has not accomplished a complete start, it tells
- — R_Telesys.
action inform.not_op by rts: R_Telesys; lts: L_Telesys is
when lts. NOT_OP and
(rts.OPER or rts.STOPPING or
(rts.STARTING and lts.seq /= rts.seq))
do
- rts. NOT_OP;
rts.seq = lts.seq;
end;

— — The system can be stopped by user request.
action stop by rts: R_Telesys is
when rts.OPER or rts. STARTING
do
— 1ts.STOPPING;

end;

~ - Deactivating Telegrip also stops the system.
refined deactivate_Telegrip by ... rts: R_Telesys is
when ...

do



A.2. THE TELESSYSLOC SYSTEM ' 91

if (1ts.OPER or rts.STARTING) then
— 1ts.STOPPING;
end if;
end;

— — Once R_Telesys enters its STOPPING state, it should communicate it
— — to L_Telesys.
action comm_stop by rts: R_Telesys; lts: L_Telesys is
when rts.STOPPING and not(1ts.STOPPING or 1ts. NOT_OP)
do
— lts.STOPPING;
end;

- Operating the system...

~ — Because the idea is never to write to more than one location at the

- — same time, there is no way to remember that a message has been sent.
— — Then, the message has to be resent all the time till an action

- — originated in another location (ack) tells the sender to stop

- — sending that packet.

action tx_pkt by rts: R_Telesys; lts: L_Telesys is
when rts.buf /= <> and Its.abp = rts.abp and
not(rts. NOT_OP or rts.STOPPING or lts. NOT_OP or 1ts.STOPPING)
do
Its.buf := lts.buf & <head(rts.buf)>;
Its.abp := not(lts.abp);
end;

action ack by rts: R_Telesys; lts: L_Telesys is
when rts.buf /= <> and lts.abp /= rts.abp
do

rts.buf := tail(rts.buf);

rts.abp := not(rts.abp);
end;

refined move_Model of change_Pos by ... rts: R_Telesys is
when ... (not(rts.OPER) or tt.active.position = rts.OPER.last_pos)
do

end;

action get_new_pos by rts: R_Telesys; tt: Telegrip is
when rts.OPER.last.pos /= tt.active.position
do
— 1ts.OPER(tt.active.position);
rts.buf := rts.buf & <tt.active.position>;
end;

refined operate of set_Destination

by ... Its: L_TeleSys is

when ... Its.OPER and p = head(lts.buf)
do



92

lts.buf := tail(lts.buf);
end;

— — Some actions are no longer valid

refined set_camera_dle is
when ... false
do

end,;

refined hold_on is
when ... false
do

end;
refined hold_off2 is

when ... false
do

end;
end;

creation C.TELESYSLOC of TeleSysLoc is
new Robot;
new Camery;
new Telegrip;
new R_TeleSys;
new I,._TeleSys;

end C_TELESYSLOG;

APPENDIX A.

TELESYS SOURCE CODE



Appendix B

The Synchronized System in
TLA

Set_Alarm =
IsR, R :
sR.moving
R.moving
AsR.still.signaled’ (B.1)
AsR.alarm’
AR.still.signaled’
AR.alarm’
AUnchangedset_atarm

Clear_Alarm =
IsR, R :
sR.alarm
R.alarm
A-$R. Alarm/
Aif —(sR.emergency_stop V sR.external _hold
VsR.command_hold) then
sR.still.idle’ (B.2)
endi f
A-R.alarm/
Aif =(R.emergency_stop V R.external_hold
VR.command_hold) then
R.still.idle’
endi f
AUnchangedciear_Atarm

Set_External _Hold =
dsR, R :
sI>.moving
R.moving
AsR.still.signaled (B.3)
AsR.external _hold'
AR.still.signaled’
AR.external _hold'
AUnchangedset_aternal_frold

93



APPENDIX B. THE SYNCHRONIZED SYSTEM IN TLA

Clear_External _Hold =
JsR, R :
sR.external_hold
R.external_hold
A=-sR.external _hold'
Aif ~(sR.emergency_stop V sR.alarm
VsR.command_hold) then
sR.still.idle’ ‘ (B.4)
endi f
A-R.external_hold'
Nif =(R.emergency_stop V R.alarm
VR.command_hold) then
R.still.didle’
endi f
/\(]“(:/"(”L.(]edClear-Ewter:ml..Hol(l

Set_Emergency_Stop =
dsR, R :
= (sR.emergency_stop)
~(R.emergency_stop)
AsR.still.signaled’ (B.5)
AsR.emergency_stop
AR.still .signaled
AR.emergency_stop
/\U“c}“”Lg(')dSet_Emurgency_Sl,op

Clear_Emergency Stop =
s, I :
sR.emergency_stop
R.cmergency_stop
A=sR.emergency_stop'
Nif =(sB.external _hold V sR.alarm
VsR.command_hold) then
sR.stillidle! (1B.6)
endi f
A-L.emergency _stop'
Nif ~(R.external _hold Vv R.alarm
V IR.command_hold) then
R.still idle’
endi f

I p ) .
AU ’L('l"(”L.[/Ld()lc(u;b'mw'ycncy_Slop

Move_Robot =
sk, R :
sR.moving
R.moving
AsR.position' = sR.moving.destination (B.7)
AsIi.stillidle!
AR position’ = Ranoving.destination
AR still adle!
ANUnchangedprove_iovot



Activate Telegrip =
3IsTT,TT :
TT.inactive
Aif sTT.anactive then
- sTT.active'
endif
AT T.active'
/\Unc,"angcd/lcf.ivate_Telcgrip

Move_Model =
3rs,sTT,RTS, TT :
P ;
TT.active AP >=0
(=(RT S.oper)V
TT.active.position = RT S.oper.last_pos)
Aif sTT.active A (T'S.inoperativeV
sTT.active.position = T S.operative.last_pos) then
sTT.active'
sTT.active.position’ = P
endi f
ATT.active'
AT'T.active.position' = P
ANUnchangedarove_Model

Get_New_Pos =

371S,sTT;, RT'S, TT :
T'S.operative.last_pos # sTT.active.position
RT S.oper.last_pos # TT.active.position
AT S.operative.last_pos' = sT'T.active.position
AT S.buf' =TS.buf & < sT'T.active.position >
ART S.oper.last.pos’ = TT.active.position
ART S.buf' = RTS.buf & < TT.active.position >
Ampath' = mpath & < sTT.active.position >
Nimpath' = impath & < TT.active.position >
/\UnCh'a'ngedGet_New_Pos

Deactivate Telegrip =
dRT S, TT :
TT.active
ATT.inactive’
Aif (RTS.oper V RT S.starting) then
RTS.stopping'
endif
/\Unc,"angedDeactivate_Telegrip

Start =
ARTS, TT";
TT.active AN RT S.not_op
ART S.starting’
ART S.session' = RT'S.session + 1
AUnchangedsiart

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)



APPENDIX B. THE SYNCHRONIZED SYSTEM IN TLA

Com_Start =
LTS, RT'S :
RT S.starting A LT'S.not_op A RT'S.seq = LT S.seq
ALT S.starting'
ALT S.session’ = RT'S.session
AUnchangedcom_Start J' |
|

I Sl

i

!

Release_Hold = ;
|

|

LTS, R : !
LT S.starting |
—(R.emergency.stop V R.external_holdV R.alarm)
R.still.signaled .

AR.command_hold' = false

AUTLChangedRelease_Hol(l

Start_Camera =

ICM,LTS :
LT S.camera_idle N LT S.starting
ALT S.camera_detecting'
AC M .detecting'
AUnchangedsiart_camera

Send_Pos =
378, sTT, sk, LTS, RT'S, TT, R :
sTT.active AT S.inoperative A sR.still

= (sR.external_hold vV sR.emergency-stop V sR.alarm)

LTS starting A LT S.camera_detecting

R.still idle N RT'S.starting AN TT.active

ATS.buf" =<>

A f TS inoperative.camera_of f then
sC'M.detecting'

endif

AT S.operative’

AT S.operative.last_pos' = sR.position

AsTT.active.position’ = sR.position

Ampath! =< sR.position >

Arpath’ =< sR.position >

ARTS.buf' =< (—RT'S.session) >

ART S.abp’ = LT'S.abp

ARTS.oper'

ART S.oper.last_pos' = R.position

AT'T.active.position’ = R.position

Nimpath' =< R.position >

Atrpath’ =< R.position >

AUnchangedsend_pos

Wait_Con firm =

LTS :
LTS .starting A head(LTS.buf) # —LTS.session
ALT S buf' = tail (LT S.buf)
AUnchangedwqit_Confirm

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)



97

Start_Lts =

LTS :
LT S.starting A head(LT S.buf) = — LT S.session
ALTS.oper’ (B.18)
ALTS.buf' = tail (LT S.buf)

AUnchangedsiari_nis

Operate =

LTS, R, TS,sR:
LT S.oper AN LT S.buf #<> AR.still
=(R.emergency_stop V R.external _hold V R.alarm)
TS.operative A sIR.still
—(sR.emergency_stop V sR.external_hold V sR.alarm)
AsRR.moving'
AsR.moving.destination' = head(TS.buf)
A-sR.command_hold’ (B.19)
AT S.buf' = tail(T'S.buf)
Arpath' = rpath & head(TS.buf)
AR.moving'
AR.moving.destination’ = head(LTS.buf)
A=R.command_hold’'
ALTS.buf' = tail (LT S.buf)
Airpath’ = irpath &head(LT S.buf)
AUnchangedoperate

P Pkt =

ALTS, RTS :
RTSbuf #<> ALT S.abp = RT S.abp
~(RTS.not_opV RT'S.stopping

VLT S.not_op V LT S.stopping) (B.20)
ALTS.buf' = LTSbuf & < head(RTS.buf) >
ALTS.abp' = not(LTS.abp)
AUnchangedr,_prt
Ack =
JLTS,RTS :
RTS.buf #<> ALT S.abp # RT S.abp
ARTS.buf' = tail(RTS.buf) (B-21)
ARTS.abp' = not(RT S.abp)
AUnchanged A,
Stop =
IRT'S :
RT S.oper V RT'S.starting (B.22)
ARTS.stopping'
AUnchangedsiop
Ack_Signal =
3LTS, R :
R.still.signaled A (RT'S.oper V LT S.starting) (B.23)
ALT S.stopping'

AUnchanged ack_signai



98

APPENDIX B. THE SYNCHRONIZED SYSTEM IN TLA

Motion =
3CM, LTS :
C M .detecting
ACM idle
ALT S.camera_idle’
Nif (LT S.operor LT S.starting) then
LTS.stopping’
endif
AUnchangedpsorion

Inform_Not Op =
LTS, RTS, TT,CM,TS,sTT,sCM,sR:
LTS.not_op
(RT'S.oper V RT'S.stoppingV
(RTS.starting A LT S.seq # R1T'S.seq))
ARTS.not_op'
ARTS.seq' = LTS seq
Nif (T'S.operative A sTT.active) A TT . inactive then
sTT.inactive'
sCM.idle'
sIt.still.signaled'
sR.command_hold'
TS inoperative.camera_of f’
else if T'S.operativen
((sTT.inactive AN TT.inactive)V
(sTT.active N TT.active))
then
sC'M idle'
sIt.still.signaled'
sR.command_hold'
T'S.inoperative.camera_of f'
else if sCM.detecting
((sTT.inactive AN TT inactive)V
(sTT.active N TT.active))
then
sC M .idle'
sR.still.signaled
sR.command_hold'
T'S.inoperative.camera_of f'
else if (T'S.operativeN
(sR.external _hold V sR.emergency_stop V sR.alarm))A
((sTT.inactive AN TT .inactive)V
(sT'T.active A TT.active))
then
TS anoperative.carnera_on’
else if (1'S.inoperative A sTT.active)A
TT.inactive A (~(CM.idleV sCM.idle))
then
sTT . inactive’
endi f
AUnchangedy, form Not_Op

(B.24)

(B.25)



Comm_Stop =

ALTS, RTS :
RT S.stopping A ~(LT S.stopping V LT S.not_op)
ALT S.stopping'
AUnchangedcomm_Stop

Rest =

3ETS,.R
LT S.stopping N\ R.still
ALT S.not_op'
ALTS.seq" = not(LT'S.seq)
AUnchangedpest

Stop_.R =

ILTS, R :
LT S stopping
AR.still.signaled’
AR.command_hold'
AUnchangedsiop_r

99

(B.26)

(B.27)

(B.28)




