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Abst ract

En esta tesis construimos la especificación formal de un Sistema de Tclcoperación de
Robots conformado por un robot, un software de simulación y una cámara do video. Du-
rante el desarrollo, prestamos especial atención a la derivación trausformacional de las
especificaciones y, en particular, a aquellos pasos de derivación que introducen aspectos
relacionados con el diseño.
Nos interesa también la metodología, i.e., la organización de los pasos de transformación
que se aplican en la derivación de la especificación del Sistema de Teleoperación de Robots,
de modo que ese conocimiento pueda reutilizarse en casos similares.
El lenguaje elegido para la especificación es DisCo. Este lenguaje está basado en las ideas
de "acciones conjuntas" (joint-action) de Back y Kurki-Suonio. Las pruebas de las trans-
formaciones se realizan en el contexto formal de la Lógica Temporal de Acciones (TLA) de
Lamport debido a que la semántica de DisCo está definida en este forrnalisruo.
Comenzamos con una sencilla especificación del sistema que, a la vez, es lo suficientemente
rica como para permitirnos expresar un importante rcquerimiento de seguridad. A partir de
esta, se deriva una nueva especificación que toma en consideración las restricciones impucs-
tas por la transmisión de información entre 11 bicacioucs distantes entre sí, y la inínctibilidnd
de eventos simultáneos en más de una de estas ubicaciones. El método utilizado, denomi-
nado "Combinación Sincronizada'' ha sido utilizado en varias oportunidadcs en el pasado.
Sin ornbargo, hacemos aquí un an.ilisis de sus características y estudiamos cómo utilizarlo
para probar propiedades de las especificaciones derivadas, a partir de las propiedades de la
especificación inicial.

1 Introducción
Este trabajo es esencialmente un estudio práctico en el área de la especificación transforrnacional
y formal de sistemas re activos distribuidos, donde el objeto de estudio consiste de un sistema
de teleoperación de robots basado en modelos. Esto último significa que el robot es teleoperado
por medio de órdenes remotas emitidas desde un modelo del robot y su entorno (manipulados
por un simulador especializado).

El Sistema de Teleoperación de Robots especificado aquí fue desarrollado e implementado
como parte del Proyecto TELESAFE -integrado por la Universidad Tecnológica de Tampere
(Finlandia), la Universidad de Louisville (EE.UU.), entes gubernamentales finlandeses, etc. Su
principal objetivo fue el estudio de los mecanismos de seguridad necesarios para realizar teleo-
peración de robots.

Desde el punto de vista de la especificación formal del sistema, se prefirió un formalismo
basado en acciones por sobre aquellos basados en procesos. Los formalismos basados en acciones
se sostienen en la noción de acción, esencialmente una transición atómica en un sistema de
transición de estados. La atomicidad impide la concurrencia de acciones y, de esa manera, se
simplifica el estudio de las propiedades de los sistemas así definidos.

El marco lógico utilizado para analizar los sistemas de acciones está dado por la Lógica
Temporal de Acciones (TLA) de Lamport [Lam94] y el lenguaje usado para especificarlos es
DisCo (Distributed Cooperation, [BKs88], [Jar92], [JKs91], [JKSS90]).

Operacional mente hablando, la noción de acción esconde toda comunicación entre procesos.
Por ese motivo, las especificaciones deben sufrir una transformación capaz de hacer explicita
dicha comunicación, antes de poder ser implernentadas. En este trabajo, estudiamos diversos
métodos de transformación y aplicamos aquel que, a nuestro juicio, resulta más conveniente en
este caso.

1.1 TeleSys: Un Sistema de Teleoperación de Robots

TeleSys es un sistema -basado en modelos- para la operación a distancia de un robot. Los
componentes del sistema son:

• Un robot industrial de seis (6) grados de libertad y una pinza neumática.



software de simulación) y un objeto coordinador (Telesys). Para un listado completo de esta
especificación, consultar el apéndice A.

3.1 El Robot
Para modelar la combinación del robot Motoman y Sil controlador a YASNAC, utilizamos una
clase Robot que refinamos progresivamente para incluir varias eJe las restricciones impuestas por
estos dos componentes de hard ware.

La posición del robot (i.e., el estado eJesus seis ejes y de la pinza) fue simplificada a un entero,
ya que siempre podemos considerar que todas las coordenadas están así codificadas. El robot
puede ser programado para realizar un movimiento lineal entre la posición actual y una posición
dada, de manera que no tenemos que preocupamos por conocer las posiciones intermedias y el
control eJel robot para realizar dicho movimiento. Esto se refleja particularmente en la acción que
representa el movimiento del robot (move.Robot) que cambia directamente la posición actual
por la de destino, sin incluir puntos intermedios.

3.2 El Simulador (Telegrip)

En el proyecto TELESAFE, se decidió utilizar TELEGRlp™ (Tele-Interactive Graphics Robot
Instruction Program) como el software de simulación. TELEGRIP es un sistema de simulación
y programación de robots "fuera de línea" que provee una interface de bajo nivel (LLTI) para
int.eractuar con funciones definidas por el usuario. Nuestra modelización del simulador -a través
de la clase Telegrip- sólo permite conocer el estado de la LLTI, i.e., si está activa o no, y en el
primer caso, la posición del robot de acuerdo con el modelo en Tclcgrip.

3.3 La Cámara
En el proyecto TELESi\ FE se dedicó una cámara de video programable para detectar movimien-
tos dentro del área de operación del robot, no producidos por él mismo, como una medida extra
de seguridad. En la especificación definimos una clase Camera COIltan sólo dos estados posibles.
El estado id/e representa la situación en que la cámara no está realizando ninguna operación y el
estado detectiuq indica que la cámara está ejecutando su programa de detección de movimiento.

3.4 El Coordinador del Sistema

Una vez definidas las clases que representan al robot, el simulador y la cámara de video, las
c(lIllhinalllos un \1111'lIlico sisl.t~lll;t bajo la coordinación de otra clase encargada de mantener la
consistencia entre aqucllns (Notar asimismo que los elementos del entorno, iucluyeudo el usuario,
110 se modelan como objetos, sino como acciones).

class TeleSys is
st nt e "inopcr.u.ive, opcrativcf lastcpos: iut.cger};
extencl iuopcrative by

stut c "camcra.ofl', carncra.on;
e nd iuopcrntivc;
buf: scqucnrc intcger;
initially buf = <>;

end;

COJllO 110 hay Iorrun de solicitar a lu c.uuarn SIl estado, este debe ser repetido en el coordi-
n.ulor. Además, es preciso utilizar una cola de posiciones (bllf) para permitir que el modelo en
T(~lq~rip se mueva IIliís r.rpido o IlIAs lento que el robot real.



3.5 Clasificación de las Acciones de Telesys
Agrupamos aquí las acciones del sistema en tres categorías que !lOS serán de utilidad en la.
derivación de una nueva especificación del sistema a partir de esta:

• Acciones de Arranque: Sitúan a Telesys en su estado operativo y vacían el buffer de
posiciones.

• Acciones clc operación: Modifican la posición del robot en el modelo, leen dicha posición,
la transmiten y mueven el robot.

• Acciones de detención: Sitúan a Telesys en estado iuopcrativo ante pedidos del usuario o
eventos de alarma.

3.6 La Propiedad de Seguridad

En tclcopcración de robot" es importautc garantizar que, bajo ddclIllin,¡.d;¡s situaciones de
control, el robot nunca efectúe un movimiento a una posición no ordenada desde el modelo
remoto. Hornos llamado a tal garantía "la propiedad de seguridad" que podemos expresar
informalmente como:

"El camino seguido por el robot es siempre un prefijo del camino seguido por el
modelo en el simulador"

Para expresar esta propiedad en TLA, simplemente extendemos la definición del sistema
Telesys con dos variables nuevas:

• mpatli: El camino seguido por el modelo del robot (en Tclcgrip) tal como este ha sido
recibido por Telcsys (por medio de la acción qet.sieui.pos} desde el último paso que satisfizo

'I'elcssjs.uiopcrat.iue 1\ 'I'elcsiis.opcroriue'

• rpath: El camino seguido por el robot real desde el último paso que satisfizo la misma
condición de arriba.

Con estas variables, la propiedad de seguridad se expresa en TLA como:

o (Tclcs)Js.o]Jcmtivc => uipatl: = rpath. & Telcsys.buf)

4 Nociones de Irnplernent.ación

Analizando Telesys, la especificación del Sistema de Teleoperación de Robots desarrollada en la
sección anterior, encontramos un número de indicadores que nos muestran que dicha especifi-
cación está "lejos" de una posible implemcnf.ación utilizando los mecanismos requeridos por el
proyecto, i.e., el uso de comunicación asíncrona entre los procesos locales y remotos:

• El sistema está distribuido en dos lugares posiblemente muy separados (espacialmente)
entre sí: La ubicación local (Robot, controladora, y cámara) y la ubicación remota (Simu-
lador y tcleoperador).

• La especificación no hace distinción entre estas dos ubicaciones y define acciones (atómicas)
que requieren la modificación simultánea de variables en ambas ubicaciones.

• Una implementación donde dichas acciones sean ejecutadas en forma atómica no es realista
ya que el tiempo necesario para completar la comunicación de un dato de una ubicación
a la otra podría causar la postergación de la respuesta a un evento de gran importancia
desde el punto de vista de la seguridad en el área de trabajo.



Se impone entonces la idea de construir una nueva especificación del sistema que tenga
en cuenta estas consideraciones y, a la vez, esté basada en la especificación inicial (enfoque
transformacional) de moclo de poder "extender" de algún modo sus propiedades a la nueva
especificación. Es fundamental notar también que la especificación buscada deberá "partir" la
atornicidad de aquellas acciones de TeleSys que modifican ambas ubicaciones simultáneamente.

4.1 Relaciones entre especificaciones

Dado que se intenta establecer una relación entre las dos especificaciones del sistema de modo de
poder probar propiedades de la más concreta, por rcdución a propiedades de la más abstracta,
estudiamos las relaciones descriptas en la literatura.

4.1.1 La Relación de Implementación

Dadas una especificación abstracta A y una especificación concreta e, se dice que e implementa
a A si y sólo sí, toda traza de ejecución de e es una traza de ejecución de A [AL9i]. En TLA,
esta relación se expresa simplemente con la implicación lógica: e => A

Del estudio de esta relación, surge que:

• La relación de implementación fuerza a que, en toda traza, las variables visibles de C se
modifiquen exactamente como lo harían en alguna traza de A.

• Además, cuando C parte la atomicidad de ciertas acciones de A, lo anterior ya no es
posible. Es decir, la relación de implementación usual no podrá ser probada para nuestras
dos especificaciones.

4.1.2 Agregación de Transacciones Distribuidas

Como una alternat.iva a la relación de implernentación, consideramos el método de Agregación
de Transacciones Distribuidas [PD9G]. Este método consiste en la definición de una función de
abstracción entre los estados de e y los de A, tal que a partir de toda traza de e se pueda
construir, por la aplicación de la función a cada estado de la misma, una traza de A. Lo
importante es que este método es de utilidad cuando existe un conjunto de "transacciones" que
son atómicas en A, pero tienen una contrapartida no atómica en e.

El método plantea, además, los siguientes requisitos:

• Es ucces.uio dividir las variables de e en variables de especificación y variables de irnple-
meutación. Las variables de A deben ser exactamente aquellas variables de especificación
de e.

• Para cada transacción de e debe haber un único punto de "commit", que es cuando la
transacción modifica. por primera vez una variable de especificación,

El método presenta una serie de desventajas para nuestro proyecto:

• La función de abstracción sólo sirve para establecer una relación entre e y A.

• Las propiedades que se pueden extender de A a. e dependen fuertemente de la función
elegida.

• El método requiere una definición precisa de la función de abstracción. Esto puede implicar
mucho trabajo y sólo debería iutcutarse una vez que se conocen las propiedades a probar.

• El método requiere que las variables de A sean las variables de especificación de e. En
nuestro caso, algunas variables de Telesys serán reemplazadas por un par de variables, una
en cada ubicación.



• Al exigir que las transacciones tengan su punto de "cornmit" tan pronto COIlIOse modifica la
primera variable de especificación, se impide que una transacción "interrumpa" la ejecución
de otra.

La siguiente sección describe la relación que efectivamente !lOSservirá en la transformación
de la especificación TeleSys.

4.2 Combinación Sincronizada
Se trata de una generalización del método de Agregación de Transacciones donde la función de
abstracción es reemplazada por una relación binaria R.

Básicamente, se construye una nueva especificación S1' N e( e, A) donde cada estado del
sistema contiene los valores de las variables de e y de A (adecuadamente diferenciadas). Además,
las acciones de S1' N e( e, A) se obtienen de sincronizar cada acción de e con alguna acción de
A o un paso de "stuttering".

La especificación SY NC(C, A) define illlplícil.a.lll<'III.Cla n:J;¡ci(')ll H, lo <\11(' colll.ra.sl.a con los
requerimientos del método de Agregación de Trausaccioucs.

La sincrouización se puede realizar imponiendo restricciones y propiedades a la relación
resultante R, guiadas por las propicdcs de A que se quieren extender a e.

El método consta de tres fases intcrrclacionadas:

1. Combinación:

Consiste en la construcción de la espcci Iicación 5'1' N e( e, A). Esencialmente, se trata de
definir la sincronización

g: Actions(e) --+ P(Actions(A) U {Unclwngedva1's(A)}) \ 0

donde Unchangcr1Va1"S(A) es una propiedad satisfecha por cualquier paso de stuttering de
A.

El sistema sincrouizado entonces se define como

S1' Ne(e, A) == InitsYNc 1\ D[ASyNclvals(SYNC(C,A))

donde
InitsYNc

Vars(S1'Ne(C, A))
ASYNC

n

Inits 1\ InitT 1\ R*
Vars( e) U Vars(A)

SYNel V ... V SYNC"
IActions (C) I

y para cada i, tal que 1 :::;i :::;n,

S1' uc, == Si 1\ (B1 V ... V Bd 1\ (R*)'

asumiendo que g(Si) = {Bl,"" Bd·
Esta especificación establece implícitamente una relación R entre los estados de e y los
de A de la siguiente manera: Dado (ec, ca) E Statcs(e) x Statcs(A), entonces CeRCa sí Y
sólo si existe una traza de ejecución (7 =< (71, (72, ... > de SY N e(e, A) y un índice i, tal
que a¡ = (e.; ea).

2. Verificación:

Se verifica que cada traza de e pueda ser extendida a una traza de S1' NC(C, A). En
otras palabras, hay que probar que SY NC(e, A) satisface

D(Enabled(Si) '* Enabled(SY Nei)) (1)

para toda acción Si E Actions (e).



3. Traducción de propiedades:

La relación R es utilizada para relacionar una propiedad de e que se quiere probar, con
las propiedades conocidas de A.

5 Particionado de TeleSys

Ahora estamos en condiciones de generar una nueva especificación del Sistema de Teleoperación
de Robots a partir de TeleSys de modo que se tenga en cuenta la separación entre las ubicaciones
remota y local. La nueva especificación, que llamaremos TeleSysLoc, se obtiene de la siguiente
manera:

• Se distribuyen las variables de acuerdo a su ubicación. Algunas atributos de las instancias
de Telesys tienen que ser duplicados en ambas locaciones.

• Aquellas acciones de Telesys que modificaban variables en ambas ubicaciones son reem-
plazadas por procesos (conjunto de acciones que cooperan para lograr el mismo efecto que
la acción original). Esto sirve para simular el efecto de la comunicación asíncrona.

• Se construye un proceso por cada conjunto de acciones (de arranque, de operación y de
detención) de Telesys.

• Se agregan nuevos estados para representar los estados intermedios de cada proceso.

El Apéndice A incluye el listado completo de la especificación TeleSysLoc.

6 Sincronización de TeleSys y TeleSysLoc

Entre las dos especificaciones del Sistema de Teleoperación de Robots obtenidas se construye
1I1la relación de Combinación Siucronizada siguiendo el método descripto en 4.2. Previamente
se tradujo cada especificación a TLA y en ese mismo formalismo se escriben las acciones del sis-
tema sincronizado SYNC(TeleSysLoc, Tclesijs} (ver Apéndice TI). La sincronización es realizada
teniendo como objcti vo la prueba de la propiedad de seguridad para la especificación concreta
TeleSysLoc.

Luego, la sincrouizución es verificada probando el iuvariante ~)para cada una de las acciones
de TeleSysLoc que se siucroniza con alguna acción cle TeleSys.

6.1 La Propiedad de Seguridad para TeleSysLoc
Una vez construida y verificada la especificación SYNC(TeleSysLoc, Telesys), sabemos que:

1. D(R.pos'itúm = S,n·1)(Js.¿¿ion)

2. D(RT S.OJiCT => T'Tuictiue.positioti = sTT.acl'íve.]Josit-ion)

donde R, RT S y TT son variables de TeleSysLoc, mientras sR y sTT son de Telesys.
Dichas propiedades nos permiten probar sin mucha dificultad que: Si itrvpaili e irpaili son

las variables de Tr.lcSysLoc cuyos valores representan respectivamente el camino seguido por el
modelo y el c.uuino seguido por el robot, entonces

D('III,]Jath = iinpatli 1\ rpail: = 'Í1'path)

A partir de aqu í es inuucdiato que podemos basamos en la propiedad de seguridad de Telesys

o (Tclcsys.o]!c'f'{díve => nipatti = ¡·])(dh&Telesys./mj)

para probar la propiedad de seguridad para TeleSysLoc:



D(L-Yelcsys.opC7' => iuvpaili = irpaih. & qucv,c(L_Tclcsys, R-Yelcsys))

donde qucuc(L-Yclcsys, R-Yclcsys) es la. lista de posiciones en "camino" hacia el robot.

7 Conclusiones y Trabajo Futuro

7.1 Resultados
Dos especificaciones, con distinto grado de abstracción, fueron construidas para el Sistema de
Teleoperucióu de Robots del proyecto TELESAFE. La especificación de m.is alto nivel, a pesar
de su sencillez, nos permitió expresar una importante propiedad de seguridad en teleoperacióu
(sección 3.G).

La especificación de más bajo nivel (TcleSysLoc) se obtuvo a partir de la anterior, particio-
nando la atomicidad eJe alguna eJe sus acciones dentro del marco del método de Combinación
Sincroniznda (sección 4.2). El objetivo de ('st.a trausform.u.ióu Iuc el d(~ introducir cu la. es-
pecificación mecanismos relacionados con la t.ransmisióu de datos y control outrc ubicaciones
distantes entre sí.

Durante la prueba de la Combinación Slncrouizada, detectamos varios errores en la especi-
ficación original de TelcSysLoc que de otro modo hubiera sido bastante difícil de detectar.

7.2 Implementación
El Sistema de Tcleopcración de Robots, Telesys, fue implementado en el lenguaje de progra-
mación C, junto con bibliotecas de sockets TCP. La aplicación producida fue utilizada para
estudiar el tema de seguridad en ambientes de telcoperación de robots.

Esta tesis también sirve corno documentaciou para dicha implernentación.

7.3 Lenguaje de Especificación

Hemos aplicado el lenguaje Disco a un problema del "mundo real" , es decir que 110 fue concebido
como una prueba de las virtudes del lenguaje.

El lenguaje restringe el tipo de refinamiento de acciones que se pueden realizar. Esto nos
forzó, en algunas circunstancias, a escribir dos acciones cuando hubiera sido perfectamente válido
escribir sólo una.

Por otro lado, cuando quisimos derivar TeleSysLoc a partir de Telesys, nos vimos obligados
a definir un sistema completamente nuevo. La versión 2.0 del lenguaje [Dis94] no provee ningún
mechanisrno para reutilizar TeleSys. Sin embargo, la versión 3.0 [Dis96] sí lo tiene, pero no
fue utilizada porque, al momento de escribir esta tesis, no contábamos con una herramienta de
simulación de especificaciones para esta nueva versión.

7.4 Particionado de la atomicidad de las acciones
! '

En nuestro trabajo hemos sostenido la importancia de poder realizar refinamientos en la atom-
icidad de las acciones si es que estamos interesados en un enfoque transforruacional para la
especificación de sistemas distribuidos. Asimismo, 'al intentar aplicar estas ideas a nuestras es-
pecificaciones, analizamos diversos métodos incluyendo el reciente método de "Agregación de
Transacciones Distribuidas" [PD9G]. Hemos visto que este método no se ajustaba a nuestros
propósitos. En su lugar, aplicamos éxitosamente el también conocido método de "Combinación
Sincronizada" (4.2). Además, hemos prestado especial atención a la descripción y análisis del
método, cosa que consideramos la principal contribución de esta tesis.



7.5 Trabajo Futuro
Algunas posibles continuaciones para este trabajo son:

• Verificación semi-automática de la Combinación Sincronizada
¡I ,,'¡

• Refinamiento de la especificación del, Sistema de Teleoperación de Robots.
I!. . , f i
I 1:.'

Inclusión de otras consideriíciories de diseño como, por ejemplo, canales de mensajes
asíncronos. :1 ¡.

,
Serialización

:! '. .'.
Modelización de errores en-las comunicaciones. Tolerancia a fallas.

• Aprovechamiento de las nuevas facilidades de DisCo 3.0
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Abst ract

In this thcsis wo produce a formal spccification of a robot tclcopcration systcm consist-
illg of a robot, a simulator applicat.ion aurl a c.uncru. J u doing so, wc conccut.ratc on the
transform.itional dcrivat.ion of spccificatious and pay particular attcntion to t hosc translor-
m ations which introduce design-rclatcd issues into the spccifications.
\Ve are also iutercstcd in the mcthodology, i.e., in organizing the t.rausformation stcps to be
applicd in thc derivatiou of thc robot tclcopcration systcm spccification so í.hat they could
eventually be of use in similar cases.
The spccification is done using the DisCo specification language, which is based on the
joint action approach of Back ami Kurki-Suonio. The proofs of the transformations use
Lampoit's Temporal Logic of Aetions, in whicli the scmantics of the DisCo language is also
dcfincd.
\Ve start wit h a simple but rieh enough spccificatiou of the systcm and derive from it an
spccification that takcs into account the fundamental restrictions imposcd by the tr ans-
missiou of data among distant locations aud tlie iucxistcucc of simultaneous cvcnts. The
mctho d applicd, callcd Synchronizcd Combiuation, has bccu uscd on se ver al occasions be-
[ore, í.hnugh wc givc licrc a thorough aualysis of its charactc!rist.ics nud st.lldy how to use it
to preve propcrtics of í.hc derivcd spccific.u.iou Irom prnport.ics of tho original, supposcdly
siin plcr, spccification.
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This case study on tlie specification of thc Tclesys Robot Teleoperation Systcm originated as
part of lile TELESAFE Project, a collnborative research project on safcí.y in robot tcleopcration
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Chapter 1

Introduction

This thcsis work is Iundamcntally a case study into thc translonuational Iormal specification
of distributcd rcactivc systcnis whcrc thc objcct of sl.udy is a modcl-basnd robot tclcopcration
systcm.

In modcl-bascd telcoperation, thcre is a master statiou coutainiug a moclcl of thc robot anrl
its enviroument. The model, which is mude so as to reprcsent the slave station as accurately
as possible, includes knowlerlgc of the kincmatics of the robot and al! ncccssary inlorrnation
of the objects ncarby. Modcl-bascd telcopcration presenta niany advantages over traditional
teleoperation , particularly because it allows a highcr dcgrcc of precisión in the movement of the
robot and because it requires far less transmission bandwidth.

The robot tclcoperation system spccificd hcrc has bccn actually devcloped and implcmcntcd
as part of TELESAFE, a cornprehensive rescarch projcct at the Instit.ute of Hydraulics and
Autornation (Tampere University of Teclmology, Finland) involving rescarchers Irom different
disciplines aud whose main objective was the study of safety requirements in teleoperation
environments. In this context, it was assumed that formalmethods would provide an appropriate
framework to gain considerable conficlence in the properties of the clelivered software.

There are essentially two complementing approaches to the specification of concurrent ancl
clistributecl systems (such as the robot teleoperation system presented here): process-oriented
ancl cction-orietited. In the process-orienied approach processes execute in parallel ancl com-
municate with each other by sencling and receiving messages, or through shared memory, One
of the main disadvantages of this approach is that it is usually clifficult to reason about the
properties of the whole system based on tho bchavior of each of the processes.

On the other hand, the action-oriented approach is built around what are called eueni-based
action systcm [ormolisms. These formalisms are founded 011 the notion of action, mainly a
transition in a state transition system. Each action is al! atornic chango of system state whcre
atomicity means that no concurrency of actions is allowed in the model. Thus, a parallel
execution of an action system yielcls the same results than a sequential and nondeterrninistic
execution, therefore simplifying the reasoning necessary to unclerstancl its properties,

In this work, we follow the act.ion-oricutcd approach. The logicaJ framework used to dis-
cuss ancl analyze action systerns is that of Temporal Logic of Actions (TLA, [Lam94]) ancl the
language usecl to specify them is DisCo ([BKs88], [.Jar92], [.JKs91], [.JKSS90]).

From an operational point of view, the action system approach makes interprocess commu-
nication implicit within an action. As a result., actions are not necessarily suitable for clirect
implementation in their general formo Of course, this lets us build specifications without being
restrictecl by implementation-oriented mechanisms. However, it will then be part of the de-
signer's duty to transform the higher-level spccification into a similar, lower-level one which is
better suited for a clirect implementation. In other worcls, the designer is responsible for making
those implementation-orientecl mechanisms explicit.

This transformational approach is supported by a suite of transforrnation methocls that assist
the designer. Each method must satisfy at least the following requisites:

1



2 CHAPTER 1. INTRODUCTION

• The method should be constructive. That is, it should guide the designer through a series
of steps that result in the cleliverance of the transformecl specification, Those steps should
have a precise clescription in order to avoicl ambiguities as much as possible .

• The methocl should establish a formal link between the properties of the higher-Ievel
specification and those of the lower-Ievel one in such a way that it makes possible to clerive
properties of the latter (usually more complex) from properties of the former (usually
simpler).

It will be argued that, when transforrning a specification in order to make explicit the in-
terprocess communication mochanisins, actions neecl to be split. Of the available methods (for
example, refinement mappings, forward and backward simulation , hybrid methods, etc.) many
do not account for those transformations involving the splitting of action's atomicity. Therefore
those methocls are of little help in these situations.

Therefore we intend to analyze the available methods and apply the one considered to be the
more appropriate to our case study. We also plan to explicitly describe the characteristics of the
method used, inc1uding the kind of relations between abstract and concrete specifications that
it can manage and how the properties of the abstract specification are used to prove properties
01' the concrete one.

The following section enumerates the main objectives pursuecl not only in this work but also
in enclosing TELESAFE Projcct.

1.1 Objectives

The objectives of this work are manifold. Some of theru are related to the objectivcs of the
TELESAFE project itself, mainly the study of security in a teleoperation cnvi ronmcnt ; others
llave to do with the problem of spec:ifying a reactive system using a formal rnethod and finally,
others relate to the precise methodology employed in the development of the specifications and
to the characteristics of the systern specified.

• Objcctivcs relatcd to TELESAFE:

To coustruct a specification of a Robot Teleoperat.ion Systern.

To impleiuent the specified Robot Teleoperatiou System.

To anulyze safety conclitions in a telcoperation environrnent using the implernented
Syst,Plll as a test-bed.

To !J(: ablo Lovcrify propcrf.ics of tho spccifiecl systciu that have 1,0 do with Lile security
issucs cousidered in the TELESAFE project.

To documcnt í.he software produced and forrnally describe the bcliavior 01' the hard-
ware pieces used in the systcm

• Objcctivcs rclntcd Lo í.hc use of Iormal inethods:

To gain experience into the advantages and clisaclvantages of the use of formal methods
in Software Engincering.

To apply t.ho DisCo Mcthorl to thc trnnsformational dcrivation of the spccifications.

To a pply DisCo 1,0 a "real system" tliat has not bcen designcd with thc mere intention
of cxpcruuouting wi t.h the languagc and its propcrties.

• Objcct.ivcs rclatcd to the spccification of t.liis particular Robot Tcleoperation System:

To Sl!rVC.\' the dillcrcnt implcmentation rnethods available in the literature and 1,0

c]¡OOS(: <In appropriatc one to be applicd to the Robot 'Ieleoperation Systcm



1.2. TELESYS: A RODOT TELEOPEl?!lTlON SYSTEM :\

To cxtcnd thc t.ransforrnation mcthodology wlicruver necessary, spccially whcn consid-
ering the splitting of actions clue to the dillercutiation of locations and thc ncccssary
non-simultancity of the events occmring at difícrcnt locatious.

1.2 TeleSys: A Robot Teleoperation Syst ern

As has been said before, tliis thesis consists in the specification of a Robot Tclcoperation System.
This system, which we have called Telcsus Ior short , cousists of a Motoman robot, a Telegrip
sirnulation environment, a programmable camera ami the software that manages thern all in
cooperation.

VVehereby give a brief description of all three hardwarc componente of tho system. Ncv-
crtheless, notice that a more precise dcfinitiou of the characteristics of cach of thc liardware
aud software componcnts will be giVCll ;\S p.uL of thc spccificat.ion of Tclcsns in t.hc Iollowing
chaptcrs.

1.2.1 The Telegrip Simulat ion Software

TELEGRlp™, Tclc-Intcractivc Graphics Robot Instruction Program is a 3D robot simulation
and off-line programmiug software dcvclopcd by Deneb Robotics, Inc., USA. TELEGIUP is used
mainly for planning, building, prograrnmiug and controlliug intelligcnt robots aud telcrobots. as
wcll as tlicir systcm applications, by mcaus of int.cgratcd scnsors, graphic rcprcscnt.at.ion aud real-
time reasoning. With this software, tlie uscr can produce a highly detailcd modcl of the robot
aud its environment. It also providcs an optional interface called LLTI (Low Lcvcl Teleoperation
Interface) that allows the bi-dircctional transmission of the model state informatlon in real-time.

1.2.2 The Motoman Robot and its YASNAC-ERC Controller

For this project we used a Motoman IOOS industrial robot with six degrces of freeclom situated
in VTT Manufacturing Technology, Tampcrc, Finland (VTT is thc Finnish Technical Research
Center).

To control it, we used a standard YASNAC-ERC robot controller which supports a RS232
interface to the outside worlcl. This controller gives tlie possibility to read joint values of the
robot insteacl of reacling only TCP-point values, wliich saves us from cletcrmining the inverse
kinematics of the robot.

In its "Remo te" mocle, the Motornan controller has also so me aclclitional and useful Iunctious.
For example, servo power can be turnecl 011 ancl off ancl alarms can be read ancl cancellecl.
Regare!ing safety, this controller allows the installation of several stop mechanisms for emergency
si tuations.

1.2.3 The Smart Camera MAPP2200

This video camera has a programmable unit able to perforrn dillerent tasks like cclge- and rnotion-
cletection. In the Telesys system, the Smart Camera is usecl (as a security rnechanism) to cletect,
once teleoperation has been started, any movement inside the robot workcell not proclucecl by
the robot itself.

1.3 Overview of the Thesis Work

The thesis has been organizecl in the following way:
Chapter 2 introcluces action systems, the theoretical framework usecl to reason about them

(i.e., the Temporal Logic of Actions), and the language used here to describe them (i.e., the
DisCo language).
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Cha.pter 3 then gives a.n initial, simple but complete specification of Telesys, where there is
no distinction between remo te and local locations.

It is then argued, in Chapter 4, that t.he specification produced in the previous chapter is
inadequate for a proper implementation, as it does not make explicit the communication between
the locations. This suggests that a transformation step should be applied to the specification of
Chapter 3. After describing several different methods and showing them to be insufficient for
this problem, the Sy nchrorrized Combination method is presentecl. Our main contribution
here is presumed to be, not the method itself (as it has been applied on many occasions before),
but in its presentat.ion.

In Chapter 5, a new specification for Telesys is given, which now takes into account the
restrictions imposed by differentiating tlie local and the remoto locations.

By using the Synchronized Combination methocl, the specification of Chapter 5 is relatecl
to that of Chapter 3 and an important securitij properts] is proved for the former system by
reducinq it to properties of the simpler, latter one. This is done in Chapter 6.

Finally, Chapter 7 lists the conclusions of the thesis work and suggests lines for further
developrnent.



Chapter 2

Formal Specifications

2.1 Actions Syst erns and TLA

In this chaptcr, action systcms and a mat.hcmatical Iound.u.ion Ior thcui are iutroduced",
In the traditiorial process-orientccl vicw, a software systcin involving parallclism is modelccl

as a set of communicating sequential processcs. This often leads to complcx systerns, whose
properties are liard to undcrstand aud rcasou about.

Thc joint action approach developed by Back and Kurki-Suonio [DKs88] conccntrates OIl

actions instead of proccsses. Each action is an atornic change of systern state, expressed as a
set of assignments. Action systems próvido a convenicnt. way of speciíying rcactive and parallel
systerns. One can oftcn use local reasoning, i.e., reasoning that involves ouly those parts of the
system tliat are afíected by an individual action.

2.1.1 Action Systems

An action systern consists of a set of state variables, and a set of rules, called actions, that tell
how the values of variables may change. There are basically two ways of looking at an action
system: an operational view and a logical view. We first take an operational view, and later
introduce a logic (TLA) that can be usecl for the mathcmatical treatrnent of action systems.

2.1.2 Operational View of Action Systems

An action system can be regarclecl as an abstraer machine consisting of a set of state variables,
ancl a set of actions, where each action consists of a guarcl and a bocly. The guard is a boolean-
valued expression involving state variables, ami the body is a set of assignments to state variables.

The system starts in so me initial state. As time passes, actions are executed, changing
the system state accordingly. Actions aro sclccted for exccution nondetenuiuistically, the only
restriction being that the guard of an action must be true in order to be executed.

Thcre is no notion of real time, only the ordering of actions is considerecl. The execution of
an action is atomic, meaning that once the execution of an action has been startcd, it cannot
be interrupted or interfered by other actions. The cxecution model is interleaving, i.e., only one
action at a time is being executed. Note that this does not necessarily neecl to apply to the
"reality" that is being modeled. If two actions do not refer to the same state variables, they may
be executed in any order, or even simultaneously. The interleaving moclel is adopted, because
it allows for simpler reasoning.

lThe cont.ents of this chapter have bcen extracted in their majority from Pertti Kellomiiki's Licentiate Thesis
[I<cI94J.

5
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The following is a concrete, albeit not very useful, example of an action system which allows
x to be incrcmented by one at any time, and to be divided by two when it is even:

x E N
when irue do :¡; (- :1: + 1

when even(x) do x (- x/2
(2.1)

When we use an action system as a specification of a system, we do not imply that the actual
implementation should be an action systern. We are only interested in the sequences of states
resulting from executing the system. Any mechanism that produces (in some sense) the same
sequences of states suflices as an implementation.

2.1.3 Temporal Logic of Actions

Action systems can be conveniently described and analyzed with Larnport.'s Temporal Logic of
Actions (TLA) [Lam94]. We briefly introduce TLA, omitting some details that are not neeclecl
for the purposes of this case study.

State, State Funct ions and State Predicates

We assume that there exists an infinite number of variables, such that there is a unique value
for each variable in each state. A state is a function mapping variable names to values.

A state [uticiioti is an express ion built from variables and values. A state predicate is a
boolean-valuerl state function. The value of a state function in a given state is the value obtained
by subst.ituting variable llames with their values in the given state, anel cvaluating the resulting
expression under the ordinary mathematical interpretation.

Act io ns

An aciion is a boolean-valued expression built from values aud unprimecl and primed variables.
An action reprcsents el relation between states, where unprirned variables represent the values
of variables in one state, and prirned variables represent tlie values in another state. A pair of
statcs is called a stcu, anrl a pair of states satisfying action A is called un A-step.

A TLA actiou embodies both the guard and the body of an action in the operatiorial inter-
pretation. VOl' cxamplc, TLA equivalents of tlie actions in the system given in 2.1 are

:1;' = :1: + 1 (2.2)

even(:/:) ti :¡;' = x/2 (2.3)

A boolean-valued expression P involving only unprimecl variables can also be interpretecl as
an action. A pair of statcs satisfies P iff thc first stato satisfies P.

The st.atc prcdicat.o E1wblecl(A), defined Ior any action A, is true for a state s iff tliere exists
a state t sucli í.liat (8, t) is an A-step. The Euablctl predicate corresponda to the guarcl of thc
action in the opcrational interpretation,

Temporal Logic

The temporal propcrt.ies of <1.11 action systcrn are dcalt with by cousiclering the scquences of statcs
t.hat can he takcn uncler the operacional interprctation of tlie system. An infinite sequence of
st.ates is callcd a Lcluunor, and TLA provirles IllC¿UIS of rnaking st.atcmcnts about SIlC}¡ scqucnces,
Finite sequcnccs can be extended to infiuite sequcnces by rcpeating the final state indefinitely.

Beliaviors are nssociated with temporal orrlcriug. 'I'he first state of a behavior is the ini tial
statc of t.hc system, ami the rest of t.he sequencc represents the state of thc systern at different
times.
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TemporalOperators Temporal formulas are forrncd by using the unary opcrator O (always),
aud the boolean operators. A temporal formula is intcrprctcd as an asscrtion about behaviors.
Let F be a boolean-valucd formula not iuvolving temporal operat.ors, i.e., a statc prcdicate. Its
mcaning [F] is that F holcls for the first statc of a bchavior. We denote tho boolcan value that
F assigus to a bchavior (J with (J[F]'

The formula. oF asscrts that F holcls for all states of a bchavior, i.e., that F is always truco
Lct < so, S 1, ... > denote a behavior whosc first state is so, second state is SI, etc. We can now
define [oF] in terms of [F] as follows:

< 80,S1, ... > [oF] == \In E N:< 8,,,S,,+1, ... > [F] (2.4)

For convcnicucc, we define the adrl itional tCII1pornl operators O (evcn tually ) and ""'-+ (leads
to):

OF == -,O-,F (2.5)

F""'-+ C == O(F => OC) (2.6)

The formula OF statcs that F is truc Ior some statc of a bchavior. Thc formula F ""'-+ C
states that, whcnever F is true, C is true thcn or at some later time.

By allowing actions in temporal formulas, we can describe action systcms. \~Te interpret
action A as an asscrtion about the first stop of a bchavior, and DA as an asscrtion about al!
stcps in a behavior. Thus, a behavior satisflcs A, ilf the first stop in the bcliavior is an A step,
and it satisfics DA, iff cvery step is an A-st.cp.

Adding stuttering to actions A step (s, i) in which al! variables in a giveu set U have the
same valucs in both s and t is callcd a U -stuttcring step.

It is sometimes convenient to be able to express a step tliat is either a A-step or a U-stutterillg
step. So we define

[AJu == A V (U' = U)

where U' = U is shorthand for \Ix E U : x' = x.
Another useful notation allows us to express those executions of action A where stuttering

is ruled out:

< A »o= A/\ (U' i- U)

2.1.4 Describing Action Systems with TLA

It is now easy to describe action systems with TLA. We give tlie initial condition with a state
predicate INIT, ancl the actions Al,A2, ... ; A", corresponcling to the actions of the action
system. Ignoring all fairness assumptions, the action system can be understood to define a TLA
formula of the form

s == INIT /\ o[AJu (2.7)

where A is the disjunction of actions Ai and U is the set of all variables manipulated in
the system. We thus identify an action systern with its encryption in TLA, and use "action
system S" and "TLA description of action systern S" interchangeably. In fact, the Temporal
Logic of Actions is defined to be the temporal logic whose elementary formulas are predicates
and formulas of the form o[AJu.
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Safety and Liveness Properties

A specification of the form 2.7 only specifies what is allowed 1,0 happen. As long as no illegal
steps are taken, the specification is satisfiee!. No requirements for executing any specific action
is expressed by the specification, so a behavior where no state changes take place satisfies it
trivially. The properties expressed by this kincl of specifications are called safety properiies.
Informally, a safety property states that nothing "bad" will ever happen.

If we want a specification to express something about the progress of the computation, its
liueness properiies, we need to state the liveness conditions explicitly. Liveness properties are
usually of the form "eventually X", i.e., something "good" will eventual!y happen. See [AS85]
or [Ks96] for a precise c\efinition of these properties in terms of behavior prefixes.

Any temporal property of a specification can be statecl as a conjunction of safety properties
and liveness properties [AS85].

In TLA, liveness conclitions of concurrent algorithms are expressed by [airness properiies.
The execution is fair to an action if the action is guaranteed to be executecl uncler certain
conditions. Weak [airtiess with respect to an action asserts that the action must be executed if
it remains possible to do so for a long enough time. That is, the action must eventually either
he executecl, or become disabled. Stmng [airness with respect to an action asserts that the
action must be executecl if it is possible often enough to do so ([Ks96] shows how to express
these fairness properties in TLA).

Canonical Forrn

A TLA formula describing a system can always be written in the canonical forrn

INIT 1\ D[A]u 1\ F

where IN IT givcs the initial state, A is the disjunction of al! actions and F is a conjunction
of fairness couclitious.

2.1.5 Open vs. Closecl Systems

When reasoning about a reactive system, one often needs information about the behavior of
the euviroruncnt of the systern. Since thc environment can also be viewed as a reactive system,
it is natural to moclcl t.he environment in the same forrnalism as the system itself, This leads
to a closcd .'i))s/:C'II! IIp]!'roach, whcro thc specificatiou describes both the environment and thc
systcm. In contrast, the opcn susiem {J,ppmach specifics only tilo systern. Naturally, to make
any statcmcnts abou! the hcliavior of the systcm, one has 1,0 rnakc assumptions about the
envirorunent. However, these are 1\01, considered as part of the specification and they may be
expressed in a diílerent forrnalism.

TLA can he usod to describe and rcason about both open and closed systems.
III this thcsis, wc liavc followed the closed ssjsten: IlJlprolLch.

2.2 The DisCo Language

The DisCo spccificnt.iou language ([.JKSS90], [.JKs91]) is based OIl acticn systems, with additional
Icaturcs to aid in inodularization and incremental specification, The semantics of tito language
is bascd cm TLA. We now prcscnt enough of the language for thc purposcs of the specification
of Tclcsijs, thc Rohot Toleoperntlon Systern. A more tliorough discussion of the language can
be found in [J m02].

A specification cnvironrncnt has been built for thc DisCo language. Specifications written in
DisCo can be cxccutcd aJ1(1 animatcd usiug a graphical tool [Dis04][Dis96].



2.2. THE DISCO LANGUAGE

2.2.1 Related Approaches

Nondctcrrninism is an csscntial part of act ion systcms. Thc spccification of thc systcm only t.ells
which of the actions are cnablcd ami onc of thcm is uondcr.ormiuistically choscn Ior cxccution.

Dijkstru uses quurtlcd. cottim.atuls [Dij7G], which are bascd on nondctcrrninism. When a
set of guardcd conunands is cxccuted, ouc of the counnands whosc guarcls ovaluate to truc
is nondetcrrninistically choscn for cxccut.ion. IIowever, Dijkstra uses guardcd commancls as
building blocks of termiuating sequential programa, and no assumptions about whethcr a givcn
guarclecl cormnand will be executed or not are given.

The execution moclel of Unity [ChTvI88] is vcry close to actious systerns. A program consists
of a set of statcments ami each of thc statcmcnts is cxecutcd infinitcly oítcn, Evcry assignrncnt
is conditional, so sornc of the statcment cxecutions might not chango tho statc of the systcm.
Uuity also provides supcrposition and coiuposition of systems, although in a way that is slightly
different from DisCo's.

2.2.2 Introduction to the Language

A DisCo spccilication cousists oí a sct ol systcm«, cach systcm dcscribing a p.ut ol l.hc wholc,
or rcfining somc otlier systcm. Thc basit: mct.hods of building IJCWSySLcIllSare composition of
two or more sepárate systems aIlCIrcfincmcnt of syst.cms by supcrposition.

Composition of systems allows for bott.oru-up clesign, whcre parts of thc complete system are
first specifiecl separately ami later combincd to form a new systern, possibly synchronizing some
of tlie actions, A typical exarnple of tliis is thc combinatiou of a SyStCIlI specifyiug stations ami
a system specifying a bus, to procluce a new system that specifies a network of stations.

Superposition is uscd Ior stepwise rcfinemeut, or top-down clesign of systcms. By using
supcrposition , onc can add new statc coinponents, cxtcud actions to handlc the new statc
components, or add new actious, An important application of supcrposition is to strengthen
thc guards of previously introclucecl actions by adding new conjunct.s, thcreby constraining the
allowecl bchavior. For example, we might. first model a network of stations by letting any station
send at any time. Later we could imposc a ring discipline by allowing only thc station that has
the sencling token to sencl.

The semantics of the specification language guarantees that safety properties are preservecl in
composition and superposition. Liveness properties, on the other hand, are not always preserved.

Classes and Objects

The universe of a DisCo specification consists of a set of objects, which are instances of classes.
An object has a distinct iclentity and can participate in actions.

The attributes of an object can be simple values (such as integers or truth values), sets of
simple values, sequences of simple values, or states. A state is an enumeration which Can be
usecl for implementing state machines.

As with other object-orientecl methods, inheritance can be usecl Ior building more cornplex
classes from simpler ones. Discussion of inheritance is omitted here, as we do not use it.

A simple example of a class clefinition is the following specification of an input clevice:

class Device is
state waiting, data.ready;
data: integer;

end;

I ,

I

Actions

Disco Actions corresponcl to actions in an action system roughly in the same way as subroutines
correspond to orclinary blocks of cocle in a programming language. A DisCo action is a template,
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which tells how the objects participating in the action change. For example, an action to assign
a value to the data field of a e!evice object coule! be written as

action reae!(e!: integer) by D: Device is
when Diwaiting do

~D.data-1·eady;
D.data := el;

end;

Action reail illustrates a number of points about actions. An action consists of a name, ane!
optional paramcier list, a list 01 pcrticipants, a guard anel a body.

When an action is executed, the values for pararneters are chosen nondeterrninistically. A
typical use for parameters is the one in action reae!, where we want to indicate that the data
field is changed, but we do not yet want to fix the value that it will contain. In later refinements
of the system, restrictions can be imposed on the values that data can contain.

The list of participants tells wliat kinds of objects may participate in the action. When an
action is executed, the formal participants are replaced by the actual objects participating in
the action. The body of the action then tells how the attributes of the participants are changee!.

An action can only be executed if pararneters ane! participants can be foune! so that the guarcl
is satisfiecl. The guard can refer both to the parameters ancl to the participants of the action.
It is also possible to refer to the global state by using universal or existential quantification over
classes.

The execution of an action is atomic, which means that it cannot be interruptee! by other
actions once it has been startecl. Only one action at a time is (logically) being executee!, so
no mutual exclusión problerns can arise while executing an action, As with action systems in
general this docs not ru!e out non-intcrfering actions happening simultaneously in the "reality"
being modeled.

Systems

Classes and actions are collected into systems, wliich are used for modularizing spccifications.
Systems can be combincd, or a system can be refined by adding new actions arid classes, or
moelifying existing actions and classes.

When two or more independently defined systems are combined into a new systern, it is
possible to synclironize actions from diílerent subsysterns. When actions are combinecl the
guarcl of the result.ing action is thc conjunction of the guards of the original actions, ami the
bocly is a catenation of the original boclies.

Stcpwise rclincmcnt of a systcn: can be done by importing an existing system into a. new
systcm , aud rclining the classcs aml actions of thc imported system, The refincmcnts are bascd
on supcrposition , i.c., Lho ncw proportics are clefincd on top of the ole! properties. The language
takes cnrc Lo avoid conll ict.iug rcfiucmcnts.

It is also possiblc first to malee indepcudent refinements of a system and later combine these
int.o one systcui agilin. \~Teclo not considcr this case here, as such combinations are not usecl in
this case study.

Actions Hefiucm ent and Cluss Extension

The synt.ax of rcfincmcnt of actions is illustrated by the following refinement of action read:

rcfincd ncw .rcad of read
by ...
w he u ... ti > () is

end;

The p.uticip.uu.», guard ami body 01" thc original actions are refcrrcd to as
rcf Il CIllCIl t.

({ » in the



2.2. TIfE DISCO LANGUAGE 11

Classcs can be extended, i.e., new couipoucut.s can br: aclded. Extcnsiou 0[" t.lu: class Devicc
illustrates this:

cxt cn d Dcvicc by
id: iut.cgcr;

end;

Assertions and Initial Corid it io ns

Actions, classcs anrl systcms can al! includo asscrtions and initial conditions. 1\11 initial condition
cxprcsscs a condition that should hold iuiti.illy, and an nsscrt.ion cxprcsscs a condition t.hat should
hold invariantly.

Assertious and initial conclitions serve two purposcs: on one hand t.hey can bo checked when
simulating thc system , aud on tlie othcr haurl t.hcy inlorm thc rc.ulcr of a spccification about
intcndecl iuitial conditions and invariants of Lhr: systcm.

2.2.3 DisCo and TLA

It is rclatively straightforward to map DisCo 1.0'1'1A. \Ve do not at.tclllpt 1.0¡.!;ivcthc complete
semantics of DisCo in tcrms of T1A (seo [Jad.l2]) , l.J1It outline how the mappiug works for tho
cases we are interestcd in here.

Objccts

T1A does not incluclc the notion of objccts as such, it only has variables. Objccts can be
represcnted as arrays of variables, the indcx scrving as the identity of Lhe objcct. However, in
this thesis, we only need one instauce per class, which allows us to represent cach DisCo object
by a compound variable where each component is accesscd by means of the usual dot notation.

Actions

A DisCo action corresponde to a T1A action where the participants of the DisCo action are
existentially quantifiecl. Again, this is a general solution. In this particular work, though, we
can simplify this as we know that there is only one instance of each class.

For example, if we know there is only one possible instance of class A, the action

action ine by obj: A is
when true do

obj.i := obj.i + 1;
end;

corresponds to the T1A action
obj.i' = obj.i + 1



Chapter 3

Specifying TeleSys

In this cliaptcr we givc an initial, simple but complete spccificatiou of Tolesys, whcrc there is
no distinction bctwccn remoto ami local locaí.ions. It. is also worth noticing that al! t.he design
dccisions takcn in dcvcloping the Iollowing spccilications wcre guided by thc uudcrlying objectivo
of producing an spccificatiou dcaling Iuudamcntally witli thc communication a.lllong the diflercnt
componcnts of the system, rather than witli the intcrual details of any of thcm.

'vVefirst dcvelop specifications for the Robot (an incremcntal spccificatiou in fact), the Tele-
grip sirnulatiou software a.nd the Camera, AmI tlien, al! three cornponents are tied together by
means of a new objcct, called Telesys too, which represents thc controlliug software.

Notice that we have also clecicled to speciíy Telesys as a closcd system, i.e., a system which
models the environment actions as well as the internal actions. As a result of this, for exarnplc,
thc robot object variables are actually the robot controller variables. The controller is thought
of as being part of the system. The interface between the controller and the environment is
treatecl in a very abstract way, by expccting euvironrnent actions t.o dircctly access controller
variables. Similar decisions llave been taken for modeling the eílcct of the cnvironment over the
other components.

3.1 The Robot Subsystem

We proceed to define a model for the Motoman Robot subsystem used in the TELESAFE
project (called "the Robot" from now on). As we are building a model for a concrete robot, we
must take into account the restrictions imposed by this particular piece of hardware/software
that results from the combination of the Robot ancl its YASNAC ERC controller.

3.1.1 A simple initial system

Classes
From a very abstract point of view, a Robot consists of a position and a state of movement:

• Position:

The Robot usecl for the TELESAFE experiments has 6 joints and a gripper. Each joint is
servo-operatecl by its own step-mot.or whose position is uniquely cletermined by the "pulse"
value (an integer in an appropriate range). The gripper is pneumatic a1JCIcan be in any of
two positions, either "open" or "closed". This rneans that the complete spatial situation
of the robot can be describecl by an integer 6-tuple plus a boolean value.

However, we will abstract away the clifference between the various joints and the gripper.
Instead, our moclel will use a single non-negative integer value to represent the Robot
position in space because, in fact, we are not interested in the precise ("real") position of

13
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the Robot, but only in having the possibility to uniquely identify each position.

posiiion : inieqer;
assert posiiioti >= O;

• State of movement:

The robot controller is responsible not only for the correct positioning of the robot in
space, but also for its movement from one position to the other. This frequently involves
complex calculations that are outside our scope of interest. Furthermore, the YASNAC
ERC controller allows the user to define different types of movements (linear, circular,
etc.) but during the experimenta, just linear movement was used.

After analyzing the YASN AC ERC Controller capabilities, it was decided that, to begin
with , two states had to be differentiated. The robot can be either still or moving towards
a destination following a linear trajectory, and only in the former state the controller will
accept any order to move the robot to another point in space, or change the state of the
gripper.

state *sWI, moving(dest'inat'ion: integer);

This results into the following class definition for a Robot object:

class Robot is

state *still, moving( destination: integer );

position: integer;

initially position >= O;

assert 'posit.ior; >= O;

end;

Actions
Ideally, t.ho robot controller will allow the user to perforrn the following operations:

• ask for thc currcnt robot position,

• set the robot iu motion towards a position provided by the user, and

• stop thc robot.

T}¡(! YASNAC BI1C cont.rollcr uscd in the experiments acts always as a server, answering
dcmallds 1'1'0111LlI(! IIS(!!' (cithcr LlIC opor.u.or or tho tclcopcration software). 'I'his mcans that thcre
is !lO mcans by wliich thc controller can inforrn Lhat the robot has just reachcd its dcst.ination ami
is ready to accept a new posit.ion to move to. On the contrary, it is the user's own responsibility
1.0 inquirc LIle «outrollcr appropriaí.cly as to detcct thc corred mornent whore a new movcrnent
can be ordcrcd.

Since wc are intcrcsted in sjlecifying the communication properties 01' the systcrn, it is uude-
sirable to introduce such a leve! of detall into this initial mo del (we mean the ucccssary loop to
wait Ior the robot to rcach its dcstinatiou).

Tlicn thc only cvents we are interestcd in are:

• The robot. is sct in motion towarcls a ncw dcstination.

act ion set.Dcstination] p: intcger)

by r: Robot is

when r.still .uid P >= O
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do

-+ r.moving( p );

end;

• The robot reaclies its current dostination as a rcsult of complcting its programrned move-
ment.

action move.Robot

by r: Robot is

when r.moviug

do

r.position := r.moving.deatinatiou;

-+ r.still;

end;

• Thc robot is stoppcd.

action stop.Robot

by r: Robot is

when truc

do

-+ r.still;

end;

Notes
Refer to Appendix A (page 77) for the complete listing of system Robot.

3.1.2 Adding signals to the Robot controller

The are several reasons why the Robot might be stopped. Vve would like then to be able
to distinguish, .at least, a simple stop after successfulIy reaching destination, from any error
situation ancl from an stop command given by the user (refer to action stop.Robot in the
previous section).

In arder to do this, we present a new system, which has been callec! Robot.Signal and is a
direct refinemcnt of the Robot system defincd above.

sy st ern Robot.Signal
irnp or t Robot;

Classes
The "still" state is extended to clistinguish between the following situations:

1. The Robot stops after completing a correct movement (imported action
rnove.Robot)

2. The Robot stops after receiving a signal.

extend Robot by

extend still by
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state *idle, signaled;

end still;

end;

Actians
First, we refine action uioue.Robot in arder to correctly reflcct the event of the robot stopping

after successfully perfonning a movement:

refined move.Robot is
when ...
do

---+ r.still.idle;
end;

Every time a signal is received by the robot controller, the robot is immediately stoppecl.
AIso if the robot controller has reccived a signal, then the signal has to be clearcd before the
robot can perform any movernent.

Two new cvents are considered:

1. Turning a signal OIl (sct.Signal).

action sct.signa!

by r: Robot is

w hen true

do

--> r.st.ill.sigualcd;

end;

Note t]¡a\' sigIlals are uot disí.inguished. However, there can be several clifferent types of
sigunls, í.hus action sct.Signal is always enabled.

2. Clearillj!; all sigllals (clcaLSij!;llal).

ac t io n cleClL':iignal

by r: Robot is

\V hcn r.st.ill.signalcd

do

---+ r.st.ill.icllc;

cucl ;

Notes
It could be arj!;l1cd t hnt, \V(~ should l ravc: rclined act.ion sct.Destiiuition. as well, as it is expcctcd

t.liat t.lic nol)()!. \VOIl'!. be rc.uly Lo he moved bcforc a sigllal has hccu adcquatcly clcarccl. Du!., as
t.hc proccss Ileed(~d 1.0 clcar earj¡ signal clcpcnds on t.lic typc 01' t.lic signal , wc will now post pone
tliis refiucurcut (soc pago 20).

Hder to ¡\ppclldix A (pagc 78) rol' tlie complete list.ing of systcm Robot.Eigual.
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3.1.3 Applying the rest r ict ions imposed by the Robot controller

Al. this point in thc dcvclopmcnt of a speciflcaticn Ior t.hc Robot systcm , wo would like t.o
introduce souio rcstrictions dcrivcd Iroru t.hc actual controllor uscd in Llic TELESAFE projcct.
First., we study the particular siguals t.hat thc controllcr can rccognizc and , aftcrwards, we
aualyzc thc diílcrcnt controllcr connnauds ami thcir availability during Lile dillorent controllor
states, This iníormation will later he uscd to define él rcfincment of systcni Robo Lsignal, which
we have callcd RoboLDifSig.

Let's separate now the clifferent possiblc signals accorcling t.o the documcntation providcd
by the manufacturcr of the YASN AC ERC controller+. This documcntation states that the
coutrollcr reacts to four differcnt signals:

1. External Holcl

An Exiernul Hold sigual is raiscd wlicncvcr the robot. IS 01JCmJin.'l (i.c., it. is moviug) and
occurs any of thc following:

(a) Tlre Stop Dutt.on at tlic COllt.1011crpanel is prosscc],

(h) Thc Stop Ilutton at thc T<Box (a luurd-hcld conunand cousolu) is prcsscd,

(e) An appropriato signal is rcceived tlnough tlic "Extcrnal Ilold Linc". This line was
used in the TELESAFE experirneuts to provide the operators of the robot with a
wrist-radio-transmitter that would allow tliem 1.0stop the robot when t.hey are 110t
close to any of tho consolcs,

2. Emergcncy Stop

Noticc that the External Hold sig11al can 0111yhe activatcd whilc tlic robot is rnoving. On
the other sicle, the Ernergency Stop signal can be activated at any moment and it is reserved
for particularly critica] situations. During the TELESAFE experiments, the Emergency
Stop signal was usecl in conjunction with a moclem connected to the telephone network. It
was argucd that, clue to the latcncy of the Internet connection, a complementary remote
control mcde was needed.

Immecliately after an Emergency Stop is recognizecl by the controller, the servos operating
the robot are turncd off (something which cloes not occur after any other signal).

3. Cornmand Bole!

This signal is raised when the robot is stoppecl by a software command,

4. Alarrn

This signal can result frorn an error intcrnal to the coutrollcr 01', for example, the irnpos-
sibility to reach a certain position where the robot has been instructecl to move to.

We now proceecl to analyze how each signal aííccts the enabledness of the actions in Ilo-
bot.siqnol, as we know that for each of the signals above, different restrictions apply to its
activation ancl deactivation, ancl the commane!s that can be executecl while it is active.

Table 3.1 was extractecl from the YASN AC ERC documentation and gives an exarnple of
these restrictions. The table only shows the rows correspone!ing 1.0 comrnands actually needed
for the implementation of tlie Robot Telcoperation Systern. The following is a brief explanation
of the comrnands accepted by the YASN AC ERC and their significance for the design of
Telesys:

1It is important to notice that the information provic!ec! by the manufacturers of the Motoman Robot and
the YASN AC ERC were by no means complete. Therefore, lile results of thesc stuc!ies and their validation in
practice, as well as their c!escription in DisCo, were c!oubly appreciated by thc owners of the hardware (i.e. VTT)
and the institutions involved in the TELESAFE project (i.e. TTI<I</IHA).
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Cornmand Robot Robot Panel Holding Command Alarm/
Name Stopped Running or After Stop Holding Error
STAR.T O - - - -

HOLD O O - O O
R.ESET O O - O O

DELETE O - - - -
SVON O O - O -

R.ALAIUvI O O O O O
R.POSJ O O O O O

R.STAT S O O O O O

O:

Possible - : Not possible

Table 3.1: YASNAC ER.C Status ancl Commancl Availability

• START: instructs the controller to run a program, wliich is the only way to move the robot.
This means that the START command is the one used to implement action seLDestination.

• HOLD: Turns en/off the Command I-Iole! signal. In the first case, it stops the current
program, as well as the robot movement. In the other one, it clears the Command Holel
signal. Used in the implementation of actions liold.on and seLDestination.

• R.ESET: Clears an Alarrn signal (check actions clecr.olarttil and clear.olarmñ in the fol-
lowing sections).

• DELETE: Deletes a robot progrrun Irom the controller's memory. This is needed so as
to be ahle to upload thc next robot programo Used in the implementation of action
set Destination:

• SVON: Turns servo power oll/off. Usecl in the implementation of actions set.Destituition,
clear.cuierqcncsj.stop l and clcar·_emcrgcncy_stop2 (check the following sections for their
defini tions).

The following comrnands will be used in the implernentation of several actions belonging
to the Telcsys systcm (see page 22).

• R..ALAnlVf: Rcads crrors and alarrn cedes.

• R.POSJ: n.l~i\ds í.hc currcut posi tion data in joiut coordiuates.

Not.ico t.har. t.hc st.ato 0[" t.he gripp(~r canuot. be road from the controller data. Thercfore,
this iuformaí.ion must be maintaincd by Tclesys itself.

Thc dillcrcn! trcatrncnts of joint coordinat.es ami gripper status has becn abstracted away
in our iuodcl lJlIL, of coursc, it liad to be takeu into account cluring the implementation
pitase.

• llSTATS: Rcads nmning status, alarrrr/ error status ancl servo status.

Classes
As siguals of diflcrcnt type can be raised at the same time, the state of thc robot has to be

extended wit.h thc ncccssary information to inforrn which signals llave been raised ancl which
have not. '1'0 do so, we first tried extcnding thc still.signalcd state with Iour new sub-states,
one for cach sigual, but this approach resulted in a quite clumsy cede, as we had to define two
IlCW idcntiíiors Ior cach signal: one idcnt.ifier st.ated a. raised signal condit.ion while the othcr
iuclicatcd a cle.ucd coudition. To avoid this uuncccssary complexity, we chose to rcpresent them
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as boolcan variables, i.c., onc variable Ior cach signal".

extend Robot by
cmcrgency .stop: boolcan;
cx tcrual.hold: boolcau;
conuuand.Iiold: boolcau;
alarm: boolcan;
initially not( emergency ..stop or cxtcrual.hold or

command.hold 01' alarrn);
end;

Notice as well that these Iour variables are of intercst ouly while thc robot is in the still.siqtui-
letl state. However, we llave also decidcd not to define them as extensions to tliis state, becausc
the notation T. commtnul.liold was casier lo manipulate than r.still.siqnolcd. comuunul.liold. Tho
price of this simplification in not.ation is í.hat. wc liavc to vcrify thc Iollowiug:

assert notfcmcrgency.stop 01' extcrnal.hold or command.hokl or alarm) or still.signaled;

which means that whenever any of t.he signal variables is true, thcn thc robot is in the
still.signalcd statc.

Actions
For each signal variable, we provide an action to set it on. Remcmber that the External Hole!

ami Alann signals could only be activatcd wliile thc robot is moving. Thercforc, as an exarnple,
we have:

r efin ed set.alann of set.signal is
when ... r.moviug
do

r.alarm := true;
end;

Also for each signal variable, we have to create an action to clear it. I-Iowever, whenever a
signal is cleared, we have to change the robot state accordingly. This cannot be done directly
in DisCo, as we need to change a state clefined in an imported systern (RoboLSignal).

For example, we would llave liked to define the action to clear the Emergency Stop signal, as:

refined clear .emergency.stop of clear..signal is
when ... r.emergency..stop
do

if notfr.extemal.hold or r.cornmand.hold or r.alarm) then

end if;
r.emergency..stop := false;

end;

but this is not a proper refinement as is defined in DisCo, although if it were possible to
program, the resulting system would still be a refinement of Robot.Signal. We couldnot find a
sirnpler way around this problem than writing two actions for clearing each signal:

refined clear.emergency ..stop 1 of clear ..signal is

2In version 3.0 of the DisCo Language, states have been removed and replaced by enumcrated values. This
new feature could be used hcre in advant age.
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w hen ... r.emergency..stop anel
notrr.external.hold or
r.command.hold or
r.alarrn)

do

r.emcrgency.stop := false;
end;

action clear.cmergeucy _stop2 by r: Robot is
when r.emcrgency.stop and

(r.external.hold or r.cornmand.hold or r.alarrn)
do

r.emergency..stop := Ialse;
end;

We found this kind of refined actions appearing quite frequently in our systems and think
that it would be an interesting improvernent if the DisCo language coulel let us elefine a single
action for thern.

Fmally, let lIS note that of al! the signals, the only one that can be cleared by Telesys is the
Commanel Hold signal which can only be raiseel by Telesys itself. For simplicity, we preferreel to
consieler both, the clearing of the Commanel Hold signal and the setting of the robot destination,
a single action.

refineel sct.Destination is
when ... noL(r.emcrgency..stop or r.extcrual.hold or r.alarrn)
do

r.couununel.hold := false;
erid ;

Notes
As the only way available to Telcsys 1.0 stop tlic robot is by raising a Commanel Holel signal

-by means of a HOLD ON command sent 1.0 tlic YASNAC ERC, the guard of the importcd
actiou stop.Robot is sl,r<~llgt!lened to Ialse. Its Iunctionality has becn rcplaccd by that of action
liold.on:

Refcr to App(~lIdix A (page 79) Ior I.IIC complete listing 01' systcm Robot.DifSig.

3.2 The Camera Subsystem

In ordcr to reinforcc sccurity inside the robot workcell, a Srnart Carnera rvIAPP2200 was used.
This video c.uncrn has a prograrruuable unit able to perforrn elifferent tasks like eclge- ancl motion-
detection. In tlie TELESAFE projcct, tlris camera was dedicatecl to check that the workcell was
in an acccptuhlc statc bcfore tclcoperation starts and, once this has been started, to c1etect any
movcmeut insidc L1wworkccll not prorluccd by í.hc robot.

As chcckiug t.hc stnt.c of lile workccll prior to telcoperution is of a static nature and we are
1I10re iutcrcst.cd in t.hc dynamics 01' the system, we have dccided not to moclel this function of
t.ho camoru illld liavc coucentiatod just Oll t.ho mot.iou-dctccr.iou Ieature.

Even tlloll¡.;h í.hc Smart Cruneru is prograllllllablc, the program that enablcd it to do motion-
dctecr.ion \Vas providud to lIS "as-is" by a diíferent working team in VTT. This impliecl that we
liad 1.0 aelap!".our software 1;0 tl«: rcstrictions imposcd by the motion-detection software loadcd
int.o th« c.uucra.
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The software controlling the camera consisted of a single control loop that pcrioclically reads
the serial port for the reception of any of two commands. The first cornmand is used to put
the camera into the motion-detection state. The other one performs just thc inverse function,
returning the camera to the initial idle state. If the camera detects any movement while being
in the motion-detection state, it sencls a simple packet through the serial port and moves to its
idle state.

\Ve started with a very simple Camera system, where we macle no distinction between the
state change that results from motion-detection and the change that occurs when the user sends
a command to set the camera idle (even when no motion has been detected). The resulting
system preved to be sufficient for our specification purposes. The difference bctween the two
state changes above is only noticecl by the user, but it is unsubstantial to the camera state.

The specification of the Camera system is:

syst em Camera

lS

class Camera is
state "idle, cletecting;

end;

action set.carnera.idle by cm: Carnera is
when true
do

~ cm.idle;
end;

action start.detection by cm: Camera is
when true
do

~ cm.cletecting;
end;

end;

Note that the guards of the actions have been kept as 110n restricting as possible.

3.3 The Simulator Subsystem

For the TELESAFE project, the simulation software usecl at the remo te site was TELE-
GRlp™ (Tele-lnteractive Graphics Robot lnstruction Program). TELEGRIP is a 3D robot
simulation ancl off-line robot programming cnvironment cleveloped by Dcneb Robotics, Inc.,
USA.

TELEGRIP provicles an LLTl (Low Level Teleoperation Interface) to interact with user-
defined functions. From the point of view of the Teleoperation System, it is only of concern to
know the state of the LLTI associated to the model (i.e. LLTI active or inactive) and, if the
LLTl is active, the position of the robot according to the Telegrip model. With these in mind,
we give a class definition for Telegrip:

class Telegrip is
st at e *inactive, active( position: integer );

end;
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Essentially, an LLTI is composecl of three functions: init, read and clase. Init is invoked
whenever the LLTI is activated by the operator of TELEGRIP. On the other side, clase is
invoked every time the LLTI is c1eactivated. Read is called periodically (in fact, ovc 600 times a
second, but this is hardware dependant). This poses a restriction to the amount of time during
which the read function can be active.

The init and read functions can easily be modelled like this:

action activate.Telegrip by tt: Telegrip is
when tt.inactive
do

-+ tt.active;
end;

action deactivate.Telegrip by tt: Telegrip is
when tt.active
do

-+ tt.inactive;
end;

As the reatl function concerns the real interface between the Telegrip system and its environ-
ment, it will be treated later, during the specification of the system (Telesys, page 22). Anyway,
the user of TELEGRIP (i.e. the remote operator, its program or even the LLTI!) can modify
at will the position of the robot, inclependent of the execution of the read function. Of course,
we cannot put any restrictions on the occurrence of environmental events. Being it such an
cvent, the action rcsponsible Ior thc movement of the robot model has a true guard:

action cliange.Pos] p: integcr ) by tt: Telegrip is
when tt.active and p >= O
do

-+ tt.uctive] P );
encl;

Notes
Notice that we have used a position parameter in action change.Pos. This is the usual way

to represent noncleterministic inputs in DisCo.
Refer to Appcudix A (page 84) Ior the complete listing of system Telegrip. I

3.4 Combining the Components in a Single System

The whole Telesys systcm is cornposed of the Robot, the Camera and the Telegrip systems, all
working distributivcly but cooperatively. This is one of the main reasons why DisCo was chosen
as the specification language for tliis project.

Classes
We prescnt a Telesys class, which is a container Ior all stute data related to the management

of tlie communication betwccn the differcnt componcnts of the system. \Ve intend to use only
one instance 01' this class in our moclel.

Let us now start analyzing the state structure of this class,
First of all, notice that it is always rathcr convenient to llave the possibility to decide whether

we want to teleoperate 01' noto This leads us to the realization tha.t Telesys must always be in
any of the two following sta.tes:
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state "inopcrativc, opcrativcflast.pos: integcr);

\Ve assumc that inopcratiuc is the default state, whilc we should lcavc Ior a. momcnt l.he
cxplanation of the integcr variable last.pos (seo page 2/1).

Then, noticing that thcre is no way to inquire the caruern to know whcthcr it is doiug motion-
dctcction 01' not., this inforumtiou has to be maintaincd by thc Tclcsys objcct iLself. lf Tclesys
is in it.s operativo st.atc, wc can safcly assumc that thc c.uucra is doillg mot.ion-dctoction (wc
assume no possibility of Camera failure in this model. In Iact, í.his whole spccificat.ion assumcs
that there cannot be iualfunction error in any of its componcnts). While, ou t.he othcr side, if
tlie Telesys object is in the inoperative st.atc, we cannot tcll. Thus, wc cxtcud this last state
with the neccssary sub-st.atcs:

extend inopcrative by
state "camera.oíf, camera.on;

cnd inoperative:

Finally, cousidcring that thc rato at wliich thc Robot aud thc simulat.od robot modcl might
move can be different, we uccd a way to gathcr position coordinatcs that cannot be haudled 1,0

the real robot bccause, for exarnple, it might be currcntly moving. This is casily done with the
introductiou of a buffer of positions (intcgers). The complete class dcfinition Ior Tclcsys is:

class TclcSys is
state *inoperative, operative(lasLpos: integer);
extencl inoperative by

state "camera.oíf, camera.on;
end inoperative;
buf: sequence integer;
initially buf = <>;

end;

Actions
As a way of attaining a conceptual organization that wil! be fully explcited in the next

chapters, we will group the actions into three categories:

1. Starting: Actions that move Telesys into state opemtivc and clear the buffer of positions.

There are two ways to start the Telesys, depending OIl the state of the camera,
If the camera is already doing motion-detection, to start the Telesys we just have to update
the model robot position in Telegrip (to synchronize it with the real robot, which must
not be in movement) ancl check that the LLTI is active. Besides that, the only signal that
could be raised in the YASNAC ERC controller is the Command Hold signal, as it can
later be cleared using software,

refined start of change.Pos by ... ts: TeleSys; 1': Robot is

when ... ts.inoperative.carnera.on and

notfrexternal.hold 01' r.emergency.stop 01' r.alarrn) and

r.still and p = r.position

do

ts.buf := <>;
-7 ts.operative(p);
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end;

If the camera is not doing motion-cletection, we have to combine the previous action with
action start.detection from the Camera system.

combined start.wit.h.cam of Telegrip.change.Pos, Camera.start.detection:

refined start.with.cam by ... ts: TeleSys; r: Robot is

when ... ts.inoperative.camera.off and

notfr.cxternal.hold or r.emergency..stop or r.alarm] and

r.still and p = r.position

do

ts.buf := <>;

--t ts.operative(p);

end;

2. Operating: Actions modify the robot model position in Telegrip, read the new position
into Telesys, transrnit it to the robot and opérate it.

The action to modify the robot model position has already been defined (change...Pos) but
in arder to simplify the simulation in tho DisCo tool, we found convenient to define the
following altcrnative, that prevents the movement of the model before its current position
has bccn rcad into the Telesys.

refined move.Model of change.Pos by ... ts: Telesys is

when ... (ts.inoperative or tt.active.position = ts.opcrative.last.pos)

do

end;

We re.ul a robot modcl position from Tclcgrip into Telesys, only when the position in
Telegrip is diflercnt Irorn the last position loaded. This is the rcason to keep the value of
the last position rcad in variable operatiue.last.spos. The new position is then appended to
the buffer of positions.

act ion gd._lle\V_pos by ts: Tclesys; tt: Telegrip is

wh e n ts.opcrative.last.pos /= tt.active.position

do

-1 ts.opcrativef tt.active.position);

ts.buf := ts.buf &3 <tt.active.position>;

end;

To trunsmit a position to the robot, we use action set.Destination, making sure that its
par.unet.er p cquals tlie first element in thc buffer of positions

3& is t.lic opcrntor r()r catcnatiou of scquuuccs in DiBCO.
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refined opcratc of sct.Destination

by ... ts: TeleSys is

when ... ts.opcrativc aud

p = hcadf ts.buf )

do

í.s.buf := tail(Ls.buf);

eucl ;

3. Stopping: Actions that move Tclcsys into statc iuopcrat.iuc.

The rcasons why the Telcsys might llave to be stopped "re:

• A signal is raised in tlie robot controllcr (The possiblc siguals are:
Eincrgcncy Stop, Extcrn.il IIold <llld Alarm).

action ack.Signal by r: Robot; ts: Telcsys is
when ts.operative ancl

(r.externaIJlOlcl or r.cincrgcncy .stop or r.alarm )

do
-+ ts.iuoperati vc.camera.on:

cnd;

Not.icc th at Lile raisillg 01" él sig,llal <loes uot produce .uiy rc.u.tiou Irom Tclosys, bcsiclcs
challgillg thc state of the Robot objcct. This reílccts ouc of thc rcstrictions imposed
by t.he controller. As thc controllcr cannot gcneratc its own mcssagcs to the rest of
the Telesys system, we need a separatc action to do the ackuowledgment of the signal
by Telcsys.
Notice as well that if a signal is set and cleared before it is acknowledged, the rest of
tlie system will not acknowleclge it.

• The camera detects movement insicle the robot workcell.

refined motion.detected of stop by ... ts: Tclesys is
when ... cm.detecting
do

-+ ts.inoperati ve.camera.ofl;

erid:
o ,

• The operator of the systern issues a comrnand to stop.

refined stop by ... ts: Telesys is
when ... ts.operative
do

-+ ts.inoperative.camera.off;

end;
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• The LLTI in TELEGRIP is deactivateel (clase function calleel).

refined deact.Telegrip by ... ts: Telesys is
when ... ts.operative
do

-+ ts.inoperative.camera.off;
end;

Notes
Notice that before its refinement, deact.Telegrip is the combineel action of Robot.Difflig.hold..

on, Carnera.set..Camera.Idle aud Telegrip.deactivate.Telegrip.
In case the LLTI in TELECIUP is eleactivatecl while Telesys is not operative, we have:

refined deactivate.Telegrip by ... ts: Telesys is
when ... ts.inoperative
do

end;
Some of the imported actions are no longer valid and so are permanently disabled in tlie

Telesys system. Refer to Appenclix A (page 85) for the complete listing of system Telesys.

3.5 Initial Conditions

We assume there is only one instauce of each c1ass c1efinecl, ancl we llave given each object
the llame of its class. Therefore the specification only declares the following objects: Tele-
grip, Cantera, Robot and Telcsys. Though the complete initial conclitions can be cleclucee! from
the initial conditions for each of the classes, we sumrnarize thern with this global DisCo assertion:

initially Init'Telesys is
Robot.still.i(lle
ami uot] emergenc:y .stop or cxternal.hold

or commantLhold or alarm)
ami Camera.idle
aud Telegrip.inactive
aud Tclesys.inoperativc.camer:Loff ami Telesys.buf = <>;

3.6 Fairness

3.6.1 Environmental and Implementation Actions
The speciíication of Telesys -as well as any other DisCo specification- is a closed one, which
means tliat it models not only tlie possible implementations of thc system, but it also moclels
the behavior of t.he cuvironmont. A goocl specific:ation malees a clear distinction bctween actions
perforrncd by the cnviromnent and actions perforrned by the implementation, as only the later
liave to be iruplerucuted [Mik!J5]; and , in arder to do it , the eveuts produced by thc environrncnt
and thc implcmcntut.ion have to be identified first.

Besidcs that, a gooe! specification is also one which imposes no arbitrary and unnecessary
rcstrictions ovcr the cnvironrnent actions. A system cannot restrain its environment, it only
rcacts to cnviroumeutnl evcnts.

Lcts t.nl«: a look now aL tlie Tclosys system wc have just given anrl try to determine which
cvcnts art: prorluccd by t.lic euvironment and which by the implementation: Those events like
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the ordcr to strut thc system , activatc/clcactivatc thc TELEGllIP LLTI, stop t.hc system aud
move the moclcl robot around in TELEGIUP, are clcarly cnviromncut cvcnts. AIso produced by
thc environmcnt are those evcnts like thc turning-ouj'off of a signal at thc robot cont.roller or a
modificat.ion insiclc tlic robot workccll that causes tlic camcra to detcct motion. On the othcr
side, the actions that gcts the new robot coordinates from the simulation software (get..ncw .poa),
transport the robot coordinates to thc actual robot and orrlers its movcment (opcrate), ami
acknow lcdgcs <1 signal raiscd at t.hc robot controllcr (ack.signal}, are clcarly the response t.o
nnplcmentation events.

Vve tlicn have implernentation actions (gcLncuqJOs, opcraie aud acLsignnl), euvironment
actions (the various actions that tu rn a. sigllal ou/off, 7/lavc_lI! orlcl, actiuatc: Tclcg¡·iJl) ami actions
that perfonn tasks associated in part with the cnvironmcnt ami in part with thc implcmentation
(star·t, start.untli.caui, stop, deaci: Telcqrip and moti07ulctcctcrl).

The problcm of specifying an implemcutablc interface in t.hc context of DisCo has becn thor-
oughly stuclied in [lVIik95] aud wc will not meddle with it. Instcad, we will kccp the spccification
of the interface as simple as possiblc.

\Vc havc considcrcd that SOlllCcxtcrnal C\'CIlt.Scould Iw modcllcd as lla.vill)!; an iunncdiat.c
cflcct 011tlic systcn: (i.o., act.ions 8lIl.1"I., sl.o]!, cte.) whilc Ior ot.hcr (~VCIlt.S,hccausc of rcstrict.ions
iinposcd by thc way tlie compoueuts can conuuuuicatc bcl.wccn tlicm, wc h.ul Lo spli] í.hc cvcnt
OCCUlTellCCIrom thc reaction generatcd by it (i.e., actious IJ,cLsig7!o.l and gcLnCllqiOs).

3.6.2 Fairness Properties of Implementation Actions
Alter identiíying cnvironment and implcmontat.ion ovcnts, and noting that somc actions in
Telcsys are both environrncnt and implcrncntation actious, we conduje that , at this point of
the specificatiou, we can only impose fairnoss rcstrictions over the actions gcLnCUL]iOS, operatc
and ack.siqtuil.

Though wc are not dealing with real-time here, it seerns natural to ask any sensible im-
plementation to eventually force the cxccution of intcrnal actions if they are infiuitely enabled
[Ks9G]. But, as the set of states at which these actions are euablcd are not disjoint, we will
require strong fairness for each of them, Thercfore, we liavc:

SF(AgeLneW_lJOS) ti SF(Aoperate) ti SF(AacLsigna¡)

where Ax is the TLA action associated with DisCo action x.

3.6.3 Assumptions about the Environment

Though the system cannot restrain the cnvironrnent in any way, we have to malee S0111eassump-
tions about the environment to be able to deduce some interesting properties of the system.

We have already introeluced one such assmnption when defining action niove.Model, which
is disableel if the system has not loaded the last position yet. In this case, we are not posing
a restriction on the environrnent but assuming that the loading of robot positions into system
will always be faster than the sirnulated movement of the robot in TELEGIUP. It is a realistic
assurnption since the calling of function read in the LLTI has arate of approximately GOOcalls
per second, while the real robot cannot chango directions that fasto

If we deleted this restriction from action Move.Model, our assurnption about the environment
could also be expressed in TLA as

Telesys .inoperativeV
'I'eleqrip.actiue.positioti = Tetesue.operative.iast.pos (3.1)

Another assumption about the environment will be to suppose that the operator of the
system never clears a signal from the robot controller before it has been detecteel by the system.
If this weren't the case, it could be possible for the robot to stop in the middle of a trajectory
and restart with anotlier direction violating the "security property" (see 3.8).
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For each of the signals Emergency .Stop, Command.Hold and Alarrn, and for each of the two
clearing actions, we assume properties like the following:

0[< Aclear'_E-rnc'1'yencv_stol'l >==> Telesus.inoperatiues (3.2)

3.7 Some Trivial Invariant Properties
d ' , •

11 ! . ~
We state here a few invariant propertiés of system Telesys that will be of use in the following

,¡ I '
chapters: :¡.'

:1 ['
• If there is a sigual at the coritroller, any movement in the workcell, the system operator

sends the order to stop it or the corresponding TELEGRIP LLTI is deactivated, then the
system goes into the inoperatioe state.· '

< AseLeme1'yencv_stop V AseLexte1·nr.l_hold V AseLalarm V
Amot'io1Ldetected V Astol' V AdeacLTeleY1'ip > "" Telesys.inoperative

(3.3)

Notice that we neec\ assumption 3.2 to prove this invariant property.

• Whenever the system is in the inoperatiue state, its estimation of the state of the camera
is correcto

Telesys .inoperatiue.caniera.ori ==> CameTa.detecting (3.4)

Telcsys:ino]Je1'ittivc.camc'/'cLoj j ==> Ctiniera.iille (3.5)

• Whenever thc systcrn is in thc inopcraiioe state, the robot is not moving.

T'elcsnjs.inopcrtüiue ==> Robot.still (3.6)

Note tliat this invarinnt will 1I0L be prescrved by the atornicity refinerncnt of the following
chapters.

• If the systcm is opcraliue and thcre is at lcast a robot joint value in the buffer, then the
robot. will Iinally be moved 01' the system be stoppec\ (by diflerent possible causes).

T'eiesus .operaiiver.

,c1l7.pty(Telcsys.1J'nf) ==> (3.7)

3.8 Security: An Important Property

Let's consider the two following situations:

1. Suppose the robot is instructcd to move frorn its current position A to point 13 and then
to point e, and supposc that thc order of thc instructions gct mixecl up so that the robot
gocs Irom A to e aud then to B. Clearly this is a disastrous situation as the robot can
destroy somcthing in the workcell 01' even destroy itself by attempting such a movement.

2. Thc uscr orrlcrs the robot to move frorn its current position A to point 13. While it is
moving, tho cameru detccts motion in the workcell and the robot is stoppcd in D, a point
betweon A and B. The user then restarts lile system, assuming the robot is in position 13,
aud ordcrs it (,0 niovc lo point e. Clearly the robot movemcnt will not be as expectecl by
tlic uscr.
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Clcarly, we would like to make surc no situation likc thcsc cvcr liappcns. Inlorrnally, thc
property that we would like Telesys to satisfy, says:

"The patli [ollouied by tlie robot is olunujs (L prcji» o] tlie pai]: [ollouicil by tlie uiodcl sincc
Tclesys went into ilie operativo staic",

Note tlrat, by invariant 3.6, if the robot is moving, thcn Telesys IIlUSt be in t.he operativo
statc, so the propcrty cnunciated must be valid whcncvcr thc robot is in IJlOtiOIl.

To formalizo it, \VCneed the following definition:

Dcfinition 1 A ptuh. is (L scquetice oJ [oiiit-ualuc coonlinutcs.

We introduce two !lC\Vvariables, whose valuc is ouly of import.anco whilc Tclcsys is in st.ato
operative:

• mpoih: The path taken by thc robot model (in Telegrip] LISit has been rcccived by Telesys
(by mcans of action geL.l1CW.pos) since the last stcp verifying

Tcicssjs.inopcruiiuc 1\Tclcsijs.opcrcdinc'

• rpatli: The path taken by thc real robot. since thc last step verifyiug t.he samc condition
as above.

It is assumed that both variables are initially empty, Noticc that the actual path takcu
by the model in Telesys can have at most 011e more step than the path rcceived by Telesys,
according to assumption 3.l.

T11e last step is to refino the actions in Tclcsys so as to update these two variables (rnpath
and rpath).

Actions start ancl suirt.untli.ctun are refined with the conjunct

rnpath' =< r.posiiioii > r.rpath' =< r.positioii >

action qei.sieui.pos aclcls the new position to mpaili with the disjunct

rnpath' = m.paili & < tt.active.position >

ancl action operaie updates rpatli with

rpaih' = ¡·]Jath & head( ts ./m})

Considering that tliese are then the only actions that modiíy the values of mpath ancl rpath,
the validity of the following property is easily preved.

The Security Property

O iTetesus.operotiue ~ m.pat.li = rpaili & Tele.sys.buJ) (3.8)



Chapter 4

Implernentation Notions

4.1 Motivation

It can be argued tliat the specification of a system should be indepcndent of its designo Theu,
from the point of view of a purist, the dccisions involvecl iu clioosiug an appropriate software
architecture 01' cleciding whether the system should LJc a concurrcnt 01' distributed one, are
outsicle the scope of the specifier as well as of t.he specification language. But, in real life, the
is no clear-cut frontier between specification and clesign, as wel! as clesign somct.imes facles into
implementation (for exarnple, notice that tliis cxactly what happcns with so me prototyping
methoclologies) .

The whole clevelopment process can be vicwecl as continuum that starts with a very simple
and abstract moclel of the system ancl its environrnent ancl t.hen goes into aclding complexity ancI
information in successive steps, until a model is obtained that is expressive ancl restrictecl enough
to be executecl in the computer. This encompasses specification, clesign and implementation, an
idea whicli is at the heart of the transformationalmethodology aclvocated, among many others,
by the developers of DisCo.

Consistently, if a specification language can be used to support the clesign process, why not
use it as a design language too?

Here, we investigate this possibility in the frarnework of action systems and a specification
language based on them (DisCo). We intend to use this language in the design of our Robot
Teleoperation System.

Starting from a DisCo specification of the system, we are then interested in obtaining a
system with action guarcls and bodies that have a direct implementation using the mechanisms
provided by the programming language and operating environment to be usecl [1<s1<88].

Some design considerations taken frorn the Robot Teleoperation System

The TeleSys specification of the previous chapter does not describe the fact that there are
inherent restrictions to the exchange of information between the local and the remo te sites. The
local si te is where the robot is locatecl, whereas the remoteone is where the simulation software
is run, and from where the teleoperator instructs the robot movements.

The TELESAFE project irnposed the following restriction to the systern: The local and
remote sites can be situated very far from each other and they must use the usual transport
protocols supported by the Internet. This restriction was added to the security objectives
regarcling teleoperation of robots, pursuecl by the whole project.

As a result, a number of clesign prerogatives where outlined, which the clesigned system
should adapt to:

• There should be a clear division between data to be stored lccally ancI data to be stored
remotely.

31



32 CHAPTER 4. IMPLEMENTATION NOTIONS

• A number of lose-less, order-preserving, point-to-point connections could be assumed as
provided by the operating environment.

• An atornic implementation of each communication between the two sites is not feasible
01', at least, not desired, given the necessity to attain some level of security related to the
response velocity of the teleoperation system.

The design prerogatives sketched above, llave motivated us to study how to extend the DisCo
methoclology based on successive refinements of actions systems to manage the introcluction of
asynchronous communication channels at the clesign stage.

In other wore!s, we are interested in stuclying atomicity refinement in the context of reactive
action systems. The object of our present analysis is therefore, the possible relations between
the refinee! ane! the original systems.

If we defined an appropriate relation between the systems, some properties previously verified
for the original system, could be relatively extended to the refined one, freeing thus the designer
from the burden of a bigger and more complex proof.

4.2 Background definitions

4.2.1 Behaviors of a system

Given the canonical forrn specification

s == (3Xl, ... , :1:11 : Init /\ O[A]/\ F) (4.1)

we define some tenns that will be useful in the following sections. (Notice that most of these
definitions liave been taken from [Ks9G, Chapter 2]).

Definition 2 Set o/ states o/ a system. A n state is an assujnment o/ values to. state variables.
Tlie set o/ al! sluies o/ system S, uilictlier reacluible 01' not, unll be denoted by States(S).

Observation 3 It is common to úlenti/y properties unili the set o/ states iluit sat'is/y tliem. In
tliai lisie, prcdicaie lnit is botli utulerstood as tlie loqicol predicaie arul as the set o/ states

{q E States(S) : q[In'it]}

lII/!C1·eq[[Init]] denotes ilie euuluiitioii o/ predicate I nit in siate q.

Definition L1 EVlll,ltll{ion o/ IL siete prcdicate. Giuen a siete predicatc {anoloqousls] siate [une-
tion) P arul a state q, tlie eualuatioti o/ P in q is tlie expression q[[P]] uiliicli resulis from
substituliru] ilie utiriablcs o/ P by tlie utilues q assujns to ihem.

Definition 5 Step, A step o/ system S is a ptiir o/ states (s, t), sucli that s[[A]]t liolds, uilierc
this last exprcssion is obtcined [rom A by itiierpretiruj iis unpritned var-iables x in state s, i. e.
as s[[x]L tuul priuieti variables x' in siate t, i.e. as t[[X/]].

Definition 6 Beluunor. A bcluunor [or system S is an infinite sequence o/ elemenis o/
States(S) tluit satisjies (4.1).

Definition 7 Set o/ beluunors o/ ti system. Froui now on, ilie set o/ all bcliauiors o/ ssjsietns S
unll be denoteil by beh(S).

H is somct.imes uscíul to be ablc to look at a behavior of a systern without considering its
stuttering stcps. Givcn a behavior a, we consider the sequence that results of elimiuating al!
stuttcring st.cps Irom a. Ir this sequcncc is finito, we malee it infinite by repeating the final state
indefinitcly, Thc rcsulting scqucnce is called Ci.
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4.2.2 Visible variables and locations

Distributed systems represent naturally those systems where data itcms are sprcad among a va-
riety of locations and there is an associatcd and, usually substantial, delay in the transportation
of data from one location to another for processing purposes.

A location is a set of visible variables that are t.hought of as being close enough to each
otlier so that every transmission of data bctwecn auy two of thcin can Le inodcllcd as an atomic
transition.

Definition 8 Visible variables of a systcm. Tliese variables clunactcrizc thc externolls] visible
siatc of thc systcm.. Visible variables are tliosc tluii are not cbstractcd (L1IJ(L1Jby (j1Uwtification
in thc TLA expression dcfining thc systcm. Wc denote by lis ilie sct of ull uisible uoriobles in
S1Jstcm.S,

Definition 9 Location. Givcn the sijsicm S, arul the set 115 of visiblc uariobles in S, a locatiou
is [usi a subset of 115,

Definition 10 Set oí locations of a sysí.em. Givcn a. sijsicn: S, (Lsci 01 locaiunis 101' s1Jstcm S
is a finitc partitioii o/ Vs.

4.2.3 Projection of a behavior (relative to a set of variables)

First, we give an intuitive definition bascd on behaviors as sequenees of statcs. Given a set l of
visible variables for system S, and given a behavior !J of S such that

where the Vi are the visible states (composed of the values of al! visible variables Vs) and
the li, are the hidden states (values corresponding to al! variables not in 1/5); then we define the
projeciion of a w, r. t. l as

!J¡= (vo/¡,vl/t,v2/¡" .. )

where each iu]¡ is the restriction of the state Vi to the variables in set l.
We are now in position of giving a couple of useful notation definitions.

Definition 11 Projcctcd behaviors o/ a systenl ui.r. t. a sct o/ visible variables. Given a system
S, a set W o/ sequences o/ states o/ S arul a set l E Vs, ilie projection o/ W ui.r.i. lis defined
as

W¡ = {úll!J E W)}

Noiice that we luiue abstracted away stuiterinq sieps.
When W is the set o/ all beluunors allowed by system. S, we Iuiue

beh¡(S) = (beh(S))¡ = {úll!J E beh(S))}

This process of projection can be expressed in TLA by quantification of program variables,
That is, the behaviors in beh¡(S) satisfy the TLA formula

3Xl, X2, . , . ,X" : S

where {Xl, X2, .. , , Xll} = 115 \ l, is the set of visible variables of S that do not belong to the
location l [Ks96, Chapter 2].

Observation 12 Given a system. S with visible variables Vs, behvs(S) is ihe set o/ externally
visible beliauiors o/ S alter abstmcting away stuiieriuq steps.
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4.3 The Usual Definition of Implementation

The transformational approach to the development of system specifications is based on the pos-
sibility of defining some kind of relation between a higher-level specification and lower-level one.
A relation commonly used is the "implemeniatioti relatioti" by which the lower-level specification
is considered to be an implementation of the higher-level specification.

As was stated in [AL91, page 3], "a specification S implements a specification T if every ex-
ternally visible behavior allowed by S is also allowed by T. To prove that S correctly implements
T, it is enough to show that if S allows the behavior

((Vo, ho), (VI, lii), (V2, h2), ... )

where the Vi are the visible states (composed of the values of all visible variables Vs) and
the li, are the hidden states (values corresponding to all variables not in Vs); then there exist
hidden states h~ such that T allows the behavior

(( Va , h~), (Vl , h~), (V2, h~), ... )

Observation 13 It is not necessary that tlie variables o/ S coincide with tlie variables o/ T, but
it is requiretl that llie visible variables o/ boili systerns be ilie same, i.e. Vs = VT (AL91j.

Observation 14 With the notations defined abone, the "implementation relation" can be ex-
pressed like this

behvs (S) ~ behvs (T)

The "implcmentation relatiou" between two systems (the specification or abstraer system S
and the implementation system S) can be expressed shortly and elegantly in TLA. If the systems
S and T are representad using canonical TLA expressions, S is a correct implementation of T,
if S => T [l(s96, Chapter 5J.

The "implementation relation" is just a relation between two specifications. Its importance is
related to the fact that any real system satisfying the implementation (lower-Ievel) specification
will satisfy the abstruct (higher-level) specification. Thus, some properties of the real system
coulcl be provee! over the abstract, and supposedly simpler, specification instead of using tlie
implementation specification.

Of course, not nll properties 01' the implementation specification wiII be satisficd by the ab-
stract onc. In esscnce, the "implementation relation" preserves properties that involve externaIly
visible variables (which are the same For both specifications) and are insensible to stuttering.

4.4 Refinernent Mappings and other Simulation Tech-
nrques

To preve that. thcrc is an "irnplementation relation" between a lower-level specification S and a
higher-level specificaticn T, several different techniques have been c1evelopecl. These teclmiques
reduce the proof of properties of complete behaviors to reasoning about single states and state-
transi tions.

One of the simplcst is the refincment inapping technique [Lam83] which consists in fincling
a function / Irom t.lie states of S to the states of T such that:

• / maps exterually visible variables 01' S identically to the corresponcling visible variables of
T. Rcmcmbcr tliat in trying to prove the "implementation relationship", we have assurncd
Vs = 1.1.1'.

• J iuaps init.ia! stntes of S to initial states of T (i.e., /(Inds) ~ In'itT)

• / maps (~;lch possible step 01' S to a stop 0[" T (which might be a stuttering step).
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• f preserves liveness properties. (This requirement is usually relaxed leaving liveness prop-
erties to a separate treatment).

It has been long known that if there is such a refinement mapping between S and T, then
there is an "implementation relation" between thern [AL91, section 2.4). However, this technique
is not complete in the sense that there might be a pair of specifications S ancI T for which no
refinement mapping can be defined.

The main result of [AL91, Completeness Tbeorem] states that uncler some restrictions over
S (machine-closed) and T (internal continuity ancl finite invisible noncleterminism) there exists
a specification S' that satisfies:

• S' is obtained from S by first aclcling a history uarioble (a variable which recorcls past
events) ancI then a propheci] variable (one which perfonns noncleterministic choice in ad-
vance).

• there exists a refinement mapping from S' to T.

There are severaI other simulation techniques that intencl to prove an "implementation rela-
tion" between two specifications. Lynch and Vaanclrager [LV94] have macle a unifiecl presenta-
tion of several simulation techniques for verification of concurrent systems, in terms of a simple
untimed automaton model. These teclmiques include: refinements, forward and backward sim-
ulations, hybricl forwarcl-backwarcl simulations ancl history ancI prophecy relations (These last
ones being a generalization of the history and prophecy variables of Abadi ancl Lamport [AL91]).

In [LV94], the authors followecl an action-based approach, according to which the behavior of
a system is a sequence of (visible) actions. Here, instead, we will follow the somewhat equivalent
state-basecl approach. By the way, [AL91] also follows the latter approach . For a cliscussion of
tbe relations between these two concepts, see [DNV90].

However, it is not the purpose of this work to go into the small details of these simulation
techniques. V·,rerefer the interested reader to the literature for that. And recall for the following
sections the importance of the result by Abadi anel Lamport regarding the existence of refinement
mappings.

4.5 Locations, Observers and Relativity Theory

Let's concentrate on the clefinition of "implementation relation" (4.3) which will be our starting
point. What is the meaning of "externally visible behavior"? Essentially, it implies the existence
of an external observer which, at every moment, is able to capture in a kinel of snap-shot, the
state of all visible variables in the system.

If we are considering a distributed system, it is natural to question the mere existence of
such an observer.

One of the elefinitive eliscoveries that Physics owes to the special theory of relativity is the
inexistence of simultaneity among distant events [Ein49]. To make this clearer, we retort to
Bertrand Russell's argumentation: the wireless telegram travels at the speecl of light, so there
coulel be nothing faster. Whatever a person does as a result of receiving a radiornessage, it is
done ofter the message has been sent. However, everything that she cloes while the message is
travelling cannot be affected by the sending of the message. Anel, similarly, whatever she does
cannot affect the seneler before some time has passeel after the emission of the message.

In other words, if two bodies are separated by a considerable distance, the first cannot affect
the second but after a time interval.

Returning to our argumentation regarding distributeel systems, and always accoreling to
relativity theory, there cannot be such an observer, because it would imply the transmission
of information at an unlimited speed. Is this a trivial observation? We think it is noto Just
consieler the time it takes for any satellite communication to cross the worlel. The clelays are no
longer negligible compared to the minimum reaction time for the system.

!:
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What would happen then if we den)' the existence of a global observer capable of determining
"the state of al! visible variables in the system"? Certainly, we must change our concept of
implementation. It is necessary then to overcome the distinction between time and space based
in the conviction that it is possible to describe the universe in purely spatial terms, at a given
instant.

4.6 The N eed for a Different Kind of Relation

Starting from the Telesys specification that we have developed in the previous chapter, we would
like to transform it into a specification reflecting the fact that it is a distributed system. The
specification that we are looking for should be related to the forrner one, but we have seen that
the "implementation relation" is not appropriate for the kind of transforrnations we would like
to apply here. As a consequence, the action refinement features of DisCo will not be of help, as
these features are based mainly on the ability to induce an "implementation relation" without
the need of a proof. Therefore a difíerent relation between the higher-level and the lower-level
specifications in a transformation is needed. Here, we analyze what we want of this relation and
leave for the next section the study of a recent proposal in that direction.

The "implementation relation" only lets the lower-level specification perform changes to the
visible variables in the same way as they are alIowed by the higher-level specification. Any
action refinement that would lead to splitting one or several of those changes to visible variables
will result, therefore, in a lower-Ievel specification for which the "implementation relation" does
not hold.

The previous argumentation showed why we cannot pretend to use the "implementation
relation" if we are specifying a distributed system and our high-Ievel specification pays no
attention to locations, The Robot Teleoperation System, Telesys, is indeed a distributed system.
And its specification, as clevelopecl in the previous chapter, cloes not clistinguish between the
information generated at the robot encl (the robot workcell and its neighborhood) from the
information generated at the simulation encl.

The DisCo Method provides a series of methodological clirectives to guicle the construction
of DisCo systems. As such , it is mainly basecl on the capabilities of the language to clefine
refinements of actions and object extensión. Actions are rcfinecl by strengthening their guarcls
(by adcling conjuncts) ancl by aclcling statements to their boclies (provided these statements only
modify variables elcfined in the sarne system, not in an importecl one). Objects are extended
by the addition of variables and the extension of their state machines. Both of these constructs
guarantee that the refined systcm satisfies an "impIemcntation relation" with the original system.
Under the light of what has been said, we conduele that the DisCo Method provides no guidance
for the kind of transformation we would like to operate on Telesys. We also conclude that we
cannot base that transformation on action refinements and object extensions. Instead, we neecl
an extended methodology and a clifferent relation between the specifications.

What we are looking for then is the possibility to define other relationships between a higher-
level specification and a lower-level one, the latter been the result of the splitting of actions and
the redistribution of information according to a precise definition of the locations of interest.
The purpose of al! this is, simply, to have a way to relate the lower-Ievel specification to the
higher-Ievel one, as to see the latter as a more abstract view of the system. Understancling the
relation between these two systems will allow us to recluce the proof of some properties of the
more concrete specification to those of the abstraction.

From a general view point, we want:

1. to construct a specification of a clistributecl system where the difference among locations
is abstracted away,

2. to write a specification at a lower leve! of detall where no two variables, belonging to
clifferent locations, are modified sirnultaneously, and
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3. to be ablc to establish a relation betwecn the two spccifications in such a. way that will
allow us to exteiul sorne of the properties of the first to the second.

Scvcral approachcs have bccn takcn in tliis direction. In the Iollowing scct.ion we analyze onc
of them which is bascd on a relaxation of the conditions imposed upon refinemcnt mappings to
cstablish a. Iuuctional rclation betwccn two spccifications.

4.7 Aggregation of Distributed Transactions

Quite recently, S. Park and D. L. Dil! [PDOG] proposcd a method for thc verification of protocols
by Aggrega.tion of Distributed Transactions. In the present section, we first give a brief preseu-
tation of tlie method ami analyze its advantages regare!ing tlie transforrnation of specifícations
by splitting of a.ctions. Then we shortly discuss what it means to prove properties of the specifi-
cations by means of this methocl ancl finally we give some reasons why we consider tliis methocl
not to be appropriate for the kind of transformation we are looking for in this work.

For thc prcsent sectiou we will assuiuc thc existencc of two systcms:
A higher-level, more abstract system

T == (:JY1, ... , y", : 1nitT 1\O[AT] 1\Fr)

and a lower-Ievel, more concrete systern

s == (:JXl, ... ,x" : 1nits 1\ OlAs] 1\ Fs)
System S is supposed to be the result of action splitting and data redistribution (according

to él. given choice of locations) being applied to system T.

4.7.1 The Abstraction Function
The rnethod presented in [PDOG] defines an abstraction Iunction bctwecn S and T, in order to
establish a functiorial relationship bctween its behaviors. The abstraction Iunction abs maps
lower-level states into higher-level ones

abs : States(S) -t States(T)
and must satisfy:

1. abs maps initial states of S to initial states of T:

abs(Inits) ~ 1nitT

2. abs maps each possible step of S to a step of T (which might be a stuttering step)

Vq,q' E States(S) : q[As]q' => (abs(q) [AT] abs(q')) Vabs(q) = abs(q') (4.2)

Observation 15 I] we use the siatulard notation [or incl7Uling stuiicriru; sicps

[A]u = A V (V' = V)

where U' = U is a shortluirul [or Vx E U : :¡;' = x, then (4.2) can be reuiritien as

v«, q' E States(S) : q[As]q' => abs(q)[[AT]u]abs(q') (4.3)

where we take V to be the set of all variables.

Observation 16 I] tliere is an invariant Ltiu that we know to be saiisficd by every reachable
state of sijstem S, then we can replace (4.2) by

v«. q' E States(S) : (q[1nv] 1\ q[As]q') => abs(q)[[AT]u]abs(q')
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4.7.2 The Aggregation Method
The authors of [PD96] presented a methodology to establish a relationship between systems S
and T basecl on the clefinition of an appropriate abstraction function.

To be applicable, the methocl requires that:

1. The state variables of system S should be divided into specification variables and implemen-
tation variables. And the state variables of system T should be exactly those specification
variables of system S.

2. There should be a set of transactions which are atomic at system T, but have a non-atornic
counterpart at system S. That means that each single-action transaction of T shouId be
implemented by a set of actions of S.

3. For each transaction of S there should be an identifiable commit-point, that is an identifi-
able action that first moclifies a specification variable.

The commit point is then an action that moves system S from a pre-commit state to a
post-commit state. A state where every committed transaction has completed is called a clean
state.

The method of Aggregation of Distributed Transactions consists then in the clefinition of an
abstraction function (see section 4.7.1) such that, for every state q, it completes any transaction
for which q is a post-commit state, as if the transaction had been executed completely.

4.7.3 Advantages of the Aggregation Method
The Aggregation Methocl has a number of interesting features. As its authors state in [PD96],
the idea of abstraction functions has been usecl many times before to relate implementation ancl
specification state graphs. But their method generalizes previous work in a couple of directions:

1. The method is a generalization of refinement mappings [LLOR.96][AL91] in the sense that
the Aggregatíon Method allows the mergíng of steps even when specification variables
change more than once. As we llave seen from the clefinition, an abstraction function is
a relaxed type of refinement mapping, where the conclítíon on the preservation of local
variables has bcen dropped. In other words, this method accounts for the splittíng of
action atomicity that we are interested in hcre.

2. The method aggregates stcps across distributecl cornponents whereas some previous work,
Ior example [LaIll83], only joined scquential steps pertaíning to the same local procesa. As
we are interested in partitioning the actions of the Telesys system according to the spatial
distribution of data, we wíll certainly have to spIit actions into sub-actions moclífying
different components of the distríbuted system.

However convenient these features of the method couId be, we maintain that ít can be of
littIe use before some points are properly clarified. The presentation of the Aggregatíon Method
in [PD96] does not forrnalize on the criteria for the election of a proper abstraction function
and thus, it is not clear what kind of relationship is established between systems S ancl T. The
authors even wrote that they have used the method to preve the cache coherence prctocol for
the FLASH microprocessor, but the papel" cloes not incIude any means as to relate proofs of the
implernentation to proofs of the specification.

4.7.4 Proving Properties

Here, we wil! aualyzc the Aggregation Methocl from the poínt of view of the relation it estabIishes
between systcms. The next proposition gíves a way to relate propertics of the higher-level system
to those of the lower-Ievcl one. Bu!' first, we nccd a definitíon:
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Definition 17 Given a =< (]o, (]l,." >E beh(S), abs(a) is ilie beluiuior of T tliat rcsulis [roui
applying function abs to everi) state (]i

abs(a) =< abs((]o), abs(q¡), ... >E beh(T)

Proposition 18 1f T satisfice properis¡ W, thcn S saiisjies properti¡ abs-1 (W).

Proof. Suppose that T satisfies property H', then we know that bch(T) ~ W ancl as abs is
an abstraction function, abs(beh(S)) ~ beh(T). Therefore abs(bch(S)) ~ W.

By applying the inverse of abs, and noticing that beh(S) ~ abs-1(abs(bch(S))), we get

beh(S) ~ abs-1 (W)

which means that system S satisfies property abs-1(W).
O

Observation 19 To proue tliat a louier-lcucl specification S satisfics P1"OJiC¡·tyP, by mcans of
the preuious proposition, it is enough to jiiul IL properiu W of tlie highe¡'-lcvcl specificatioii T
sucli that abs-1 (W) ~ P.

Certainly, the complexities of finding such a property W \ViIIvary dcpending on the properties
of the abstraction function itself. Let's consiclcr two simple cases as to clarify the matter a bit:

1. Suppose that qt is an initial state for system T. In other words,

qt E 1nitT

and let's define abs : States(S) --+ Statcs(T) as

abs(q) = qt

for every q E States(S).

Obviously, this choice of abstraction function will be of little help in proving any property,
as abs-1 (W) is the empty set if qt i W, or the whole of States(S) otherwise. By the
way, this is why we affirm that the authors of [PD96] have not given criteria to choose an
appropriate abstraction function.

2. Suppose now that we know abs to be a refinement ma.pping. That means that the sets of
visible variables for both systems, S ancl T, coincide (i.e. Vs = VT) and that abs/ Vs = idvs
(the abstraction function behaves like the identity over visible variables). Suppose then
that property P is an assertion over the values of Vs and that we wanted to prove that
system S' satisfies P. That is, we have to prove that

beliv¿ (S) ~ P

Knowing that abs behaves like the identity for the visible variables, we have abs-1(p) = P.
Therefore, by the observation above, it suffices to preve that system T satisfies property
P, or that

These two cases just considered show that the election of the abstraction function is critical to
the kind of properties that can be translated from the higher-level specification to the lower-Ievel
one. They also show that the more we know about the definition of the abstraction function,
the richer properties we can proveo
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4.7.5 A Critique

The foIlowing is an enumeration of the difficulties and problems we encountered while trying to
apply the Aggregation Method to the Robot Teleoperation System,

• The definition of the abstraction function serves the sole purpose of determining a relation
between the specifications. That is, the conditions posed over the abstraction function
only guarantee that a state to state relat.ionship (expressed functional!y in this case) can
be ext.ended t.o whole behaviors,

• The properties that can be proved for the lower-Ievel specification by reducing them to
properties of the higher-level specification using the method depend heavily on the choice
of the relation between abstraction and implementation chosen.

• The method requires a precise definit.ion of the abstraction function, at least for reachable
states. This coulcl be time consuming ancl should be only attempted after deciding which
properties to proveo

• But, there is no clear way to relate the properties that the abstraction function must fulfill,
to the properties we want to prove for the lower-level specification.

• There is the iclea that in any clean state, the values of the specification variables in S are
equal to those of the variables of T, but the method cloes not formalize it enough.

• The method is too restrictive as long as it requires that the elements of States(S) possess
enough information as to reconstruct the states of system T. Therefore it wil! not be
always possible t.o define the abstraction function.

As was said in section 4.4, we can always enrich the states of system S with history and
prophecy variables that coukl help in defining the abstraction function, Anyway, that
means changing system S.

Even if the Aggregation Method can accourit for the splitting of act.ions anel the aggregation
of steps across distributed components, it is not appropriate for the kind of transformation we
would like to apply to the Telcsys specification of the previous chapter. The reasons for this are:

• Tlic metliod, as prcsetiied in {PDD6}, requires ihe spccification variables o/ system S to be
ilie SIL'II!C uarinbles as o/ systcm T.

As we want a specification of the Teleoperation System that takes into account the local
and remoto locatious, we cannot prctend that every variable will be destined to a unique
location. Thc inforruatiou hcld iu some of the variables will havc to be rcdistributed. For
example, variable Telesys.buf holds the information in transit between the local and the
remoto locations. Therefore, some of this information will be at a moment in one location
anel some other information at the other location. This means that we will have to split
not ouly actions but also variables, something which is not allowed, at least directly, by
the Aggregation Method.

• Tlierc is no prouisioti /07' tlie inierruption o/ tlie executum o/ a trunsaction by tlie execution
o/ otlicr tnuisaction.

Tho Aggregation Method suggest.s that \Vecommit a transaction as soon as a specification
variable is first changed. This rulcs out any possibility of cancelling a transaction even
when it has already changecl él specification variable.

In our Telcoperation System, we cannot lock any part of it just because a transactiou
is waitiug for a message to get through. It is simply unreasonable not to attend any
emergeucy situatiou just because a messagc is taking some time to go [1'0111 one cornponent
to the otlicr. To cope for these situations, we need a way to define the possible interruption
of a transnction by tlie execution of another.
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In the next section, we present a method that attempts to overcome this problems and
difficulties.

4.8 Synchronized Combination

In the previous section we have arguecl that the Aggregation Method cannot cope with the kind
of transíorrnation we would like to opérate 011 the Telesys specification.

It is worth noticing that we have fouud that the Aggregation Method has bcen applicd long
bcfore -under different names - by many researchers (including those working with the DisCo
Language [Mik95][Ks95]) ancl also in somewhat more general ways. Taking into account these
generalizations, we present here a description of the method to be usecl in the transformation of
the Telesys system developed in the previous cha.pter.

We are not pretending this methocl to be new. In fact, we have adopted the name "Syn-
chronized Combination" from [Ks95] where it was used to prove the correctness of a solution to
"The RPC-Memory Specification Problern" [DL94]. In [l'vIik95J, a similar mcthod was used to
preve the refincment of an interface in DisCo. Our contribution can be found in the prcscntation
of this method 'immersed in a framework where its relationship with refinement mappings and
abstraction functions is evident. We expect to provie!e a suíficiently general view so as to ease
the application of the methoe! to very diverse cases.

4.8.1 Motivation

From the e!iscussion in the previous section, we foresaw two possible ways to generalize the
aggregation method (remernber that S is our low-level concrete systern whereas T is the high-
level abstract one):

1. The abstraction function coule! be replaced by an unrestrained binary relation.

2. Instead of adding history and prophecy variables to system S, a complete copy of the
variables in system T could be addee! to S (thus producing a "combined specification" of
S and T).

The first generalization results from appreciating that, in proving properties of system S, it
is necessary to be able to calculate the inverse of the abstraction function (see section 4.7.4).
In general, the inverse is not a function, just a binary relation. In that case, we seem to loose
nothing in replacing the abstraction function by a binary abstraction relation.

The purpose of the second generalization is twofold: First, it fixes a deficiency in the aggre-
gation methoe! as the state of the "cornbined specification" now holds enough information to
reconstruct the state of T. And second, it lets us define the abstraction relation as a relation
between the elements of the state of a single system. Moreover, this last observation will allow
us to give an implicit definition of the abstraction relation -rather than the explicit relation
required by the Aggregation Method.

The main idea of the method consists in synchronizing each atomic transaction of the higher-
level system T, with one of the steps belonging to the same transaction, but in S. This will
establish the implicit abstract relation

4.8.2 The Synchronized Combination Method

The main objective of the Synchronized Combination method is the implicit definition of a
relation R between the states of systems S and T, such that every state of S (the implementation)
is included in the relation.

We have organized the method by dividing it into three interrelated phases:
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1. Combination Phase

This phase consists in the definition of a synchronized system SY NC(S, T) out of systems
S and T. The definition of SY NC(S, T) provides the implicit definition of the relation R
between the states of S ancl T. Notice that relation R replaces the abstraction function
abs from the Aggregation Method.

2. Verification Phase

By proving that SY NC(S, T) satisfies a given precise restriction, this phase verifies that
every behavior of syst.em S can be extended to a behavior of system SY NC(S, T). Notice
again that this is the counterpart of property 4.2, which was requirecl for the abstraction
function abs according to the Aggregation Method.

3. Property Translation Phase

Once relation R has been defined, it is usecl to relate a (not yet provecl) property of
system S, to one 01' several (already proven) properties of system T. Notice that though

_, this phase clepends on the previous two, the way the SY NC(S, T) system is constructecl
should be also cletermined by the kind of properties that one would like to prove by using
this methocl.

We turn now to describe each phase in detail.

Combination Phase

As before, we will assume the existcnce of two systems:
A higher-levcl, more abstract systcm

T == InitT 1\ D[AT]\fa"s(T) 1\ FT
and a lower-level, more concrete system

s == hvíts 1\ D[As]\f(¡Ts(S) 1\ Fs
Systern S is supposcd to be thc resulto of action splitt.ing and data reclist.ribut.ion (ac:corcling

to a given choice of locations) being applied to systern T, We also require:

• 11ars (S) n11(L,,.::;(T) = 0 (ir not, thc name clash is resolved by renaming onc of the collicling
variables) .

• The sct of actions of system T (idem S) is Act'ions(T) (resp. Act'¿ons(S)). Each action is
assumcd to be distiuguishablu Irom the others,

Thc syuchrouizutiou of both systems consists rnainly in assigning, to cvery action in systcrn
S, a set of actions tukcn from systcm T 01' a stuttering step. Thcn, if P(X) denotes the set of
non-empt.y subsets 01'X, we are looking for a function

[J : Achons(S) -t P(Actions(T) U {Unchangecl\faTs(T)})

whcrc Unclw'/l.gcd\f"TS(T) is a propcrty satisficd by any stuttering step of systern T.

Defin it io n 20 Wc are now in ti posiiion to define tlie sijnchronized system (Notice tluit, as uie
ure noi uücrested in liuencss properties liere, wc do not iake into consuleration FL 11,01' Fs):

SYNC(S,T) == Init sv nc 1\ D[AsYNC]\f(¡1's(SYNC(S,T))

uilierc
hútSYNC

11(l.1's(SY NC(S, T))
ASYNC

n

Inits 1\ In'ÍtT 1\ R*
Vars(S) U VaTs(T)

SY N C1 V ... V SY N e;
lJ1ctions(S)1
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atul, lar eucri] i, S1Lch that 1 ::::;i ::::;n,

SY NCi == Si 1\ (BI V ... V B¡J 1\ (R*)'

assuming that g(Si) = {BI, ... ,Bd.

SYNC(S,'r:) is well-defined. To guarantee that the actions of the synchronized system
are correctly defined, it has to be proved that, for every action SY NCi E Actions(SY N C(S, T)),

Vu E States(SY NC(S, T)) : u[[Enabled(SY NCi)]] => (3v : u[[SY NC;))v)

Observation 21 R* is an expression containing only utiprimeil variobles. It is tlie desiqners
responsibility to define R* appropriatcly so as to induce ilie desired relaiion R bctween systcms
S arul T. Natice as well that R* constitutes un inocruint lar system SY N C(S, T).

Obscrvat ion 22 Fvoin llic rleJini/.ion i/. can be cusih¡ 1J7"(J1)ul iluii S¡¡s/.C7l! SY N C(8, T) stüisjies
an "implementation relaiionsliip JJ untli rcspeci to eacli ane al susicnis S iuul T: Tlien, accorduu¡
to obseruation 14

behVa1"s(S) (81" NC(S, T)) ~ beh(S) (4.4)

and
behVa"s(T) (SY NC(S, T)) ~ bch(T)

Verification Phase

Once system 81" NC(8, T) has been defined, it induces a relation R between systcms 8 and T
in the following way:

Definition 23 1mplicit relation R. Givcn (eS) et) E States(S) x States(T), then esRet if and
only if tliere exists a beluunor a =< al, a2, ... >E beh(8Y NC(S, T)) arul an indcx i, sucli that
a¡ = (es,et).

This phase then consists in verifying that each possible behavior T E beh(S) can be extended
to a behavior a E beh(SY NC(S, T)) such that aVars(S) = T. In other words, in this phase we
try to prove that system SY NC(S, T) satisfies the following restriction:

beh(8) ~ behVa1"s(s)(8YNC(8,T)) (4.5)

Observation 24 I] restriciion 4.5 is prouetl to hold, then by 4.4, we know that

behVars(S)(SYNC(S,T)) = beh(S)

Tliis cquality itulicates that if we wanted to prove a propertsj [or system S, we would just
have to proue itfor system (3XI,""Xn: SYNC(S,T)), uihere Vars(S) = {XI, ... ,X,,},

Finally, in order to prove 4.5, it suffices to verify that:

1. Ves E States(S) : es[[1nits]] => (3et E States(T) : ed[1nitr]]1\ esR*et)

2. System 8Y NC(S, T) satisfies

O(Enabled(Si) => Enabled(8Y NCi))

for every action Si E Actions(S).
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Property Translation Phase

During this phase, a property W that is to be proved for system S, is tr~slated into a property
W of system T by means of the relation R. It is assumed that pI2Ying vV is considerably easier
than proving W and that R guarantees that W holds whenever VV holds.

It is worth noticing that we would need to make partially explicit the characteristics of
relation R to be able to use it in tl?e proof, and that not every property W can be proved using
this method. Also notice that ther~ areiiwo points where the designer can affect R, namely: The
choice of function D which determines how actions are tied together; and the choice of relation
R*, which helps in adjusting the s~~chronization whenever an action of system S is synchronized
with more than an action of S or ,~henever there areaction parameters.

Since this phase depends abso¡Jtely on the choice of property W and relation R, we refer the
reader to section 6.3 for an example of the application of this phase to the Robot Teleoperation
System. :.,

The following chapters describe our experiences in applying the Synchronized Combina-
t iorimethod to the Robot Teleoperation System.

First, in cliapter 5, a lower-level specification of the Robot Teleoperation System is presented,
This specification, called TeleSysLoc, takes into account the existence of a local and a remote
location.

Then, chapter 6 describes each of the three phases of the method as they were applied
to TeleSysLoc. Section 6.1, wliich corresponds to the Combination Phase, defines system
SY NC(TeleSysLoc, Telesys). Section 6.2, corresponding to the Verification Pitase, makes sure
that the synchronized system defines an adequate relation between TcleSysLoc and Telesys. Fi-
nally, section 6.3 shows that TclcSYiíLoc satisfies an adapted versión of the Security Property
by reducing the proof to that in Telesys (see section 3.8).



Chapter 5

Pur t it ion ing TeleSys

5.1 Motivation
The DisCo specification of system Tclesys that was given in sectiou 3 has the problcm, Irom thc
clesigner's point of view, that it cloes not reflect the underlyiug communication architecture usecl
in the implementation. In this chapter, by introclucing locations as defined in page 33 (clefinition
9), we take a first step towarcls the inclusión of these clesign characteristics in the specification
of the system.

Telesys is a teleoperation system meant to counect a robot with a simulator possibly thou-
sancls of kilomcters apart. Due to the current technology and relativistic restrictions, it seems
unreasonable to pretend atomicity for the actions supposecl to act on both encls of the system
(robot ancl simulator). There are security reasons as wel! for not irnplementing some actions as
atomic: In the event of an emergency, the robot must be stopped as soon as possible ancl this
cannot be preventecl by any locking mechanism (or of other kincl) guarauteeing the atomicity of
actions that involve the comrnunication of the more clistant components of the system.

The choice of locations is a rather arbitrary one and there are many possibilities. For instance,
we could choose to place the Robot and the Camera in different locations. Instead, we have
basecl our election of locations in the physícal clistance between the components, obtaining only
two different locations:

• Locallocation: Includes the Robot and the Camera .

• Remote location: Includes the simulation software (Telegrip).

Notice that Telesys, being involved with the communication and coorclination of the three
components above (Robot, Camera and Telegrip), shoulcl be split into two parts, each one for a
different location (More on this later).

5.2 Requisites of the Partitioned System
Having clefinecl our set of locations (see page 33) , we intend to build a new system which we will
cal! TeleSysLoc. This system will be basecl on Telesys, and we intencl it to fulfill the following
requisites:

1. No action in the system can moclify more than a single location.

2. The events produced by the environment are moclel!ecl as actions moclifying only the
location where the event occurs.

3. There is ,some formal way of relating properties of the original system (i.e., Telesys) with
properties of the partitionecl system (i.e., TeleSysLoc).

45
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Note that by the first requisite, TeleSysLoc will induce implementations that do not neecl
any implicit locking mechanism 1'01' any communication involving the two separatecl locations
(Local and Remote). The seconcl requisite prevents any implicit communication between the
location where the event occurs and where the system reaction to it initiates. The last requisite
points to considering system TeIesys as an abstraction over TeleSysLoc, ancl thus, to consiclering
Telesys as a guide into the construction of the more concrete system.

5.3 Constructing the Partitioned System

We proceed now to construct system TeleSysLoc, starting from Telesys and trying to satisfy the
requisites described above, We consicler that the construction procedure used in this section
can be usecl as a guide in solving similar tasks, where a DisCo system has to be partitionecl
according to a given set of locations.

5.3.1 Assigning Variables to Locations

For each piece of information, we try to determine a location where it belongs.
For those DisCo objects clearly associated with a location, the clecision is trivial. In that

way, al! variables belonging to the Telegrip object belongs to the Remote location while those
variables in the Robot and Camera objects belong to the Local location. Moreover, as these
systems wil! not be moclified at all in this transformation, once we have assigned a location to
any of them, we do not neecl to care about the locations of any variables adclecl to them.

Partitioning t lie Telesys Object The situation with the variables in the Telesys object is
not as simple.

A Telesys object has essentially two states: inoperative ancl operative. There are actions
that opérate the transition between these states that, coincielentally, moclify both locations. As
we intencl to replace each these actions by a set of actions respecting requisite 1 above, we will
aelcl a state to represent a moment in the mieldle of a transition. As there are only two states
in Telesys, we nced two new states, one for what we have calleel "the starting process" (i.e.,
going from inopcrative to opcrativo) ancl the other for "the stopping proc:ess" (i.e., going from
operative to inoperative).

Consequently, we start with tho following state description:

st at.e *NOT_OP, STARTING, STOPPING, OPER;

wlierc stuto N(YLOP corrcsponds to Telcsys.inoperativc, OPER to Telesys.operative and
the other two, rcpresent each 01' the transition processes, as described.

Finally, noticc that , in a way, a Telesys object control s the two ends of the communication
between the locations, 'Ve llave chosen to replicate its state machine in two new objects:
R_Telesys (thc part 01' Telesys situated in the Remote Loc:ation) and Lz'Ielesys (situated in the
Local location).

Thcre were two reasons for using él buffer 01' positions in the Telesys object: buffering the
arrival 01' dat.a Irom Telegrip and buflcring the sencling 01'data t.o the Robot. As each of thesc
activities should be perforrned at a diffcrent locatiou, we use a buffer in the two new objec:ts.
Up to !lO\V, wc have:

class R_TelcSys is
st.ato *NOT_OP, STARTING, STOPPING, OPER;
buf: scquence integcr := < >;

end;
Class L_Tclcsys is dcfined similarly.
'Ve \ViII pretcnd t.hat the system is operativo ir both, R_Telesys and L_Telesys are in their

OPER st.atcs; wl.ile we will say the systcm is inopcrative if they are in their respective NOT _OP
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states. In the fortheoming seetions, we will llave to give some meaning to ambiguous situations
like R_Telesys.STARTING and L_Telesys.STOPPING and we will also have to preve that some
combinations of states will never be reached.

5.3.2 Determining the Location of Environmental Events

To be able to fulfill Requisite 2, we first have to determine which is tbe location were au
environmental event is first deteeteel. As we are assurning there can be no simultaneous events,
it is sensible to pretend this determination to be possible.

The environmental events in Telesys are:

1. Events proelueeel at location Remo te:

(a) The Telegrip LLTI is aetivateel/eleactivated (actions activatc.Telegrip and
deact..Tclegrip) .

(b) The robot position is ehangeel in the simulator (action moveJ\tIoclel).

(e) The remo te operator asks the system to start telcoperation (actions start anel
start.with.cam] .

(el) The remote operator asks thc systcm to stop (action stop).

2. Events proelueeel at loeation Local:

(a) A signal is raised at the robot eontroller (aetions seLemergeney...stop,
set..extemal.hold, ete.)

(b) A signal is cleareel at the robot eontroller (aetions clear .alarrn l , clear.alarrnz, ete.).

(e) Motion is eleteeteel by the eamera insiele the workeell (aetion motion).

(d) The robot reaehes its destination (action move.Robot).

Of all of the above, 1.3, 1.4 and 2.3 are the only events with associateel aetions that moelify
more than one loeation.

5.3.3 Defining Reactions to Environmental Events

Event 1.1 AetivationjDeactivation of Telegrip We only have to consider what to elo
when Telegrip is deaetivatecl, because the activation is handled properly by class Telegrip. Ba-
sically, the deactivation of the Telegrip LLTI forces the system to follow the "stopping process"
if it is already operating or in the "starting process". As this is a Remote event, the reaction
can only modify variables in the Remote location:

refined -deactivate.Telegrip by ... rts: R_Telesys is
when ...
do

if (rts.OPER or rts.STARTING) then
-+ rts.STOPPING;

end if;
end;

Notice that the "stopping process" has priority over the "starting process".
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Event 1.2 Movement of the Model Robot As was said in page 27 (Assumptions about
the Environment), we have introduced so me assumptions about the environment events in the
guards of the reactions to them, noting that we don't pretend to restrict the environment, but
to reflect its properties in the system.

After changing the state machine associated with the remote copy of the Telesys object (i.e.,
R_Telesys), we have to change accordingly the definition of the actions:

refined move.Model of change.Pos by ... rts: R_Telesys is
when ... (not(rts.OPER) or tt.active.position = rts.OPER.lasLpos)
do

end;

Event 1.3 Start Request The "starting process" can only be fired if Telegrip is active
and the whole system is not operating (R_Telesys.NOT_OP ancl L_Telesys.NOT_OP). It will
later be seen that whenever R_Telesys is in the NOT_OP state, then Li'Ielesys is in this same
state. The specification of the action that reacts to this event is:

action start by tt: Telegrip; rts: R_Telesys is
when tt.active and rts.NOT_OP
do

-+ rts.STARTING;
rts.session := rts.session + 1;

end;

Event 1.4 Stop Request If the system is supposeclly operating or starting (as seen by
an observer sit.uated al, the Remote location), then it can st.art the "stopping process". If not,
then it is already not operating or in the "stopping process":

action stop by rts: R_Telesys is
when rts.OPER or rts.STARTING
do

-+ rts.STOPPING;
cnd;

Event 2.1 A Robot Controller Signal is Turned On No change has to be done, as
these events are treatee! properly by system RoboLDifSig (The so urce cocle for these actions can
be found in A.1.3).

Event 2.2 A Robot Cont.ro ller Signal is Turnecl Off No change has to be done, as
these evcnts are trcated properly by systern RoboLDifSig (The source cocle for these actions
can be found in A.l.3. See also a discussion on the assumptions made about tlie environrnent
events in pago 27).

Evcnt 2.3 Motion Detection Like in the case of dcactivation of the Telegrip LLTI (event
l.1), wc uecd ouly mo.lif'y act.ion motion to start the "stopping process" if necessary. Tlie spec-
ification is:

refin cd moí.ion of set..camera.idlc by ... lts: L_TeJesys is
whcn ... cm.det.ccting
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do

-t Its.carnera.idle;
if (lts.OPER or lts.STARTING) then

-t lts.STOPPING;
end if;

end;

Event 2.4 Robot rnovernent This event is handleel properly by the Robot systern (sec
A.1.3). As tlie Robot object has been placecl into the Local location, there is no neeel to chango
anything here.

5.3.4 Defining the Part.itioned Processes

While developiug systern Telesys (scction 3.4), \VC groupcd the diílcrcnt actions into thrce groups:
starting, operating anel stopping actions. In our partitioned system TclcSysLoc, thcse actions
have to be split respecting our choice of locations (section 5.1) anel the partitioning of the Telesys
class into a local copy, Li'Ielesys, anel a remote one, R_Telesys (section 5.3.1).

As before, we can collect all the rcsulting split actions into groups which we llave calleel
"processes" as there is a notion of several actions coopcrating with a cornrnon objcctive. We
then have:

• Starting Process: Consists of all actions that cooperate to put TeleSysLoc into an operativc
state (i.e., ILTelesys.OPER ancl L_Telesys.OPER). This process is started when action
start puts R_Telesys in state STARTING. As the buffer of positions is now split in the two
different locations, it is needed to clean both of them before new data can be sent to the
robot.

• Operating Process: Consists of the transmission of robot positions from Telegrip to the
Robot, including the reading of the data into Ri'Ielesys and its transmission to L_Telesys.
As only partial information concerning the state of the whole system is available at either
location, the actions in this process will be kept enabled as long as the local information
indicates the possibility that the global system is in its operative state. (More on this
subject later).

• Stopping Process: Consists of all the actions that cooperate to put TeleSysLoc into an
inoperative state (i.e., R_Telesys.NOT_OP and L_Telesys.NOT_OP). The actions of this
process stops the other two processes if any is underway.

5.3.5 Specifying the Processes
r " .\; "

Each copy of Telesys (R_1'elesys ami Lz'Ielesye) has.stales thht reflect which process is underway
in each location. These states define which actions are enabled for execution in the corresponcling
location. i '" , ¡ I

: .j,: ·1

The Starting Process ¡ "~;. ! :¡
I 1I •.

Each time the remo te operator invokes the starting procedure, a new session opening is at-
tempted. Each session is assigned a distinctive number, which is communicated to the Local
location and is used to distinguish new and valid data from data corresponding to previous
sessions. To register the id of the latest session opening attempted, we extend classes Ri'Ieleaya
and Li'Ielesys with

session : inteqer := O;

Then "starting process" can be divided into the following steps:
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1. If R_Telesys.STARTING, the intention to start the system is communicated to location
Local. This communicates the session number as well (com.start).

2. If the Camera is idle, it is started (starLcamera).

3. If the Cornmand.Hold signal is on, t.urn it off (release.hold).

4. Confirm that both the robot and the Camera are reaely (reaely). This step is needeel as a
checkpoint for the two previous one, as they can be executecl in clifferent orclers.

5. Once Lc'Telesys is reacly to start, the current robot position is sent to the Remote location
(send.pos). Additionally, the Remote buffer is cleared ancl a special token is queueel so as
to tell Lc'Telesys to discard all previous positions. This token carries the information of
the session number whose opening is being attempted.

6. Telesys waits for the special token (in fact we should be considering a union type fol'
position data and this separator. Instead, we have chosen to represent robot positions with
non-negative values and reserved negative ones for the transmission of session numbers)
which inclicates that valid new positions come only after it (waiLconfirm). This step
involves discarding all positions that arrive frorn the Remote location before the separator,
i.e., it eliminates data corresponeling to previous sessions.

7. Upon arrival of the separator, Li'Ielesys assumes the whole system is operative (startJts).

The Operating Process
The "operating process" can be divided into the Eollowing steps, all cooperating concurrently:

1. R, Telcsys acquires a new position from Telegrip, if this has changed (geLnew .pos).

2. The head of the Remote buffer is appended to the Local buffer (tx.pkt).

3. The roception of a new position is acknowleclged by L_Telesys, which perrnits the elimina-
tion of the first elemcnt in the Remote buffer (aek).

4. The position at the head of the Local buffer (if it is not the separator) is used to instruct
the robot movement (operate).

Observation 25 Because 11Ie 11I(L'fltuil aciions in TcleSysLoc to modi/y ilie contents o/ variables
o/ only one location ai a time, tlierc is no 11Iay lo remember ttiat a robot positioti has been copied
to tlie Local b'ILffc'''' Tlieti, ilie robot position has to be resent all tlie time till an actioti oriqinated
in ilie Local lociiiioii (ack) tclls tlie setuler to stop serulituj. Tliis aiicincd in ihe specificatiou
11Idh ilie use a/ ilie Alternatitu; Bit Pro toco l. Tli erefo re, boili tlie R_Tclesys arul Li.Telessjs classes
uiere extended uritl:

abp : booleari := [ol se;

Alter the obscrvation, the spccification of the actions responsible for the trausmission of thc
robot positions Irom the Remoto location to tlie Local one, is:

action tx..pkt by rts: R_Telesys; lts: L_Telesys is
w hen rts.buf /= <> and lts.abp = rts.abp and
not(rts.NOT_OP 01' rts.STOPPING or Its.NOT_OP 01' Its.STOPPING)
do

lts.buf := lts.buf & <head( rts.buf »;
lts.abp := not(lts.abp);

end;

act ion ack by rts: R._Tclesys; lts: L_Telcsys is
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w lre n rt.s.buf 1= <> and lts.abp 1= rt.s.abp
do

rts.buf := tail(rts.buf);
rts.abp := not(rts.abp);

end;

Observation 26 As action Infor m.rrot.iop , be/onging to the "stopping proccss", cluuiqes the
contente o/ ilic Remate buffer, it has to quorunlec iliat the bits L_Telesys.abp atul Ic.Telesus.oln)
nre equal ajter its execuiion.

The Stopping Process
The "stopping process" is initiatecl each time R._Telesys or Lc'Felesys enter their STOPPING

states. This transition can be motivatecl by the execution of any of the following actions:
ack_signal, stop, motion or deactTeieqrip.

After its initialization, thc "struting proccss" trics 1.0 complete l.hc Iollowiug stcps:

1. If the cause of the stoppage is an ordcr from the remote operator (i.e., R._Telesys.STOP-
PIN G), then R._Telesys informs L_Telesys the orcler to stop (comm.stop).

2. The robot is stoppecl, if it was still running, by setl.ing the signal CommancLHold (stop,r).

3. Once tlle'robot has been stoppecl, Li'Iclesys entcrs its NOT _OP state (rest).

4. Li'Ielesys informs R._Telesys that it is no longer operating (inform.not.op). As a result,
R._TeJesys, enters state NOT _OP, as well.

Observation 27 As action rest leaues LTclesys m state NOT_OP, ilie system can reacli a
state Q verilying

RJ'elesys.ST ART I NG /\ LTelesys.NOT _OP

while execuiiru; the "stopping process". But Q is also tlie state o/ the system ajier the exe-
cution o/ action start, so we need some criterio to dccide uiliicli procese to [olloui [rotn state Q.
Our criterio is based on the [ollounnq appreciaiion:

1/ the system reaclies state Q alter the e.'l:ecution o/ action rest, then inform.not.op must be
executed (ihus 'compleiinq the "stoppinq procese"] be/ore action com.start is enabled again.

L_Telesys and R_Telesys will be extended uritli a counier. Each time action rest is executed,
this counter is incremented by one in LTelesys (becouse rest modifies location Local). And each
time action inforrn.not.op is executed, the value o/ the counter in R_Telesys is updaied with the
value o/ the counier in LcTelessjs. Tlierejorc, aciioti com.start is only enabled if boili counters
aqree (while action inform.not.op is only etuibled i/ they disagree). Notice finally that these
couniers can be 2-valued, as the difference betuieeti them can be at most one.

Both classes, R_Telesys and Li.Telesys are extended with their respective count.ers:

seq : booleari := false;

Then the specification of actions rest and infarm_noLop is:

action rest by lts: Lz'Telesys; r: Robot is
when lts.STOPPING and r.still
do

-+ lts.NOT _OP;
lts.seq := not(lts.seq);

end;
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action inform.not.op by rts: ILTelesys; Its: L.Telesys is
when Its.NOT_OP and

(rts.OPER or rts.STOPPING or
(rts.STARTING arid Its.seq /= rts.seq))

do
-7 rts.NOT _OP;
rts.seq := lts.seq;

. rts.abp := lts.abp;
rts.buf := <>;

end;

And the guard of action com.start is strengthened with the conjunct:

ris.seq = lts.seq

Please, refer to section A.2 for a complete listing of system TeleSysLoc.

5.3.6 Initial Conditions for TeleSysLoc
As with system Telesys (section 3.5), the initial conditions for system TeleSysLoc can be deduced
from the initial conditions for each of its classes. We can summarize them with this global DisCo
assertion:

initially InitTeleSysLoc is
Robot.still.idle
and not( emergency .stop or external.hold

or command.hold or alarrn)
and Cnrnera.idlc
and Telegrip.inactive
and TLTelesys.noLop and R_Telesys.buf = <> and

ILTclcsys.seq = Ialse and R_Tclesys.abp = falso and
R_T'e1csys.sessioll = O

aud Lc'I'elcsys.not.op and Li'Ielesys.camcra.idle anel
R_Telcsys.sec¡ = falso ane! ILTelesys.abp = false and
R_Telcsys.scssion = O and Lc'Telcsys.buf = <>;



Chapter 6

Property Preservation

In this chaptcr wc apply the ideas of "Synchronized Combination" 1.0 cstablish a rclationship
between systerns Tclesys and TeleSysLoc. This relationship is constructcd stop by step a11(1a
somewhat formal proof is offered showing that it satisfies the requireinents of any "synchronized
combination" relationship. Finally, we provide a version of the Security Property for system
TeleSysLoc and use the synchronization relationship to reduce its proof to the almost trivial
proof of the Securitsj Properisj for system Telessjs (Section 3.8).

6.1 A Synchronized Combination of Telesys and TeleSys-
Loc

A synchronized combination of two systems is essentially a relationship bctween the states of
each system so that we can always pret.end tliat, given a behavior of the more concrete system
(TeleSysLoc in this case), there exists a behavior of the more abstract syst.em such that the
corresponding states of each behavior satisfy t.he stated relationship.

6.1.1 Objectives

We provide here a synchronized combination of the two systems developed so far, in arder to
be able to prove an analogous of the Securitij Propertij for system TeleSysLoc. The construction
of the synchronization and it's subsequent proof is guided by this objective. As a subsidiary
objective, we expect this to be an illustrative example of the use of this methodology.

6.1.2 General Description

In arder to define the synchronizee! combination of Telesys and TeleSysLoc, each action in
TeleSysLoc is combined with a number of actions of Telesys (possible none). We expect each
transition step performed by the more concrete system (TeleSysLoc) to be reftected by a legal
step of the more abstract system, maybe a stuttering step.

Let us suppose then that we have a "combined" system whose state is composed of a repli-
cation of each of the states of TcleSysLoc ane! Telesys, where enough provision has been made
so as to differentiate variables from both systems with the same name.

Not only do we want that any transition of TeleSysLoc be followed by a step of Telesys, but
we also want no action from TeZeSysLoc to be restrained by this requirement. That is, we have
to prove that, in our combined system, the guards added to the actions derived from TeleSysLoc
always hold whenever the original action is enablecl. This can be reducecl to proving that the
new guarcls are implied by the original guarcls.

In synchronizing the actions of TeleSysLoc with those of Telesys, we proceecl in the opposite
clirection: For each action of Telesys, we choose an action from TeleSysLoc to synchronizecl it

53
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Variable Name Class
rus TeleSysLoc.R_ Telesys
LTS TeleSysLoc.L_ Telesys
TS TeleSys. Telesys
R TeleSysLoc.Robot
sR TeleSys.Robot
CM TeleSysLoc. Carnera
sCM TeleSys. Camera
TT TeleSysLoc. Telegrip
sTT TeleSys.Telegrip

Table 6.1: Variables usecl in the synchronization

with. This coulcl be relatecl to the choosing of a commit point for each "abstract" transaction as
in [PD96]. The difference here is that we will not require this commit point to correspond to the
action that first changes a specification variable in the transaction (in fact, we don't differentiate
specification from implementation variables in this method).

The starting actions of system Telesys i start and start.soitli.ctnti¡ require a special treatment
worth mentioning: Their counterpart in TeleSysLoc is what we have called "the starting process"
(see page 49). The main characteristic of this process is that it can be interruptecl by any action
leacling to the stopping of the whole system ("stopping procesa", page 51).

6.1.3 Notation

In the following we use TLA, instead of DisCo, to express the actions resulting from the combi-
nation 01' Tclessjs and TeleSysLoc. In doing so, we required the DisCo tool to produce a listing
with a complete description for each action which was thcn manually translated into TLA. As
both systems employ only one instance 01' each object, thcre was no need to introduce quantifi-
cation over the clernents of each class, but we llave kept it as u way of indicating which variables
are accessed by each action. Furthennore, while doing the combination, we were'forcecl to differ-
entiate variables with the same name but belonging to different systems. In those cases of name
elas 11 , we adoptcd tlie following convention: Variables belonging to system TeleSysLoc retained
thcir original n.uuc, whilc thosc belonging to Telcsys wcre rcnamcd with an 's' appended at thc
front.

'vVe havo also associatcd a dcfiuite class to each variable llame, so as to simplify the TLA
descriptions, The variables used together with their correspone!ing class is listed in table 6.1.

6.1.4 Syricln-on izing Signal Managing Actions

There are two main groups of actions to control anel modify the state of robot controller signals:
actions that setoa given signal and actions that clear it. 'Ve consic\er here only signals "alarm";
"externaLhold" and "emergency ....stop" , as the fourth one ("commandJlOlcl") is managed by
actions that involve other participants bcsides the robot.

Each Tclcssjs act.ion that scts a. signal is syuchronizcd with the corresponding action in
TcleSysLoc. In t.liat way, action Telcsus.set.ularm is synchrcnized with TclcSysLoc.seLnlal'm,
yiclding thc Iollowiug TLA express ion:
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SeLAlann ==
3R,sR:

sR.nwving
/\R.moving
/\sR.still.signaled'
/\sR.alaTm'
/\R.still.signaled'
r-Ic.alorm'
/\UnchangedSeLAlar·",

The synchronization of the actions responsible for the clearing of controller signa.ls is not
that direct because we have used the occasion to fix the inconvenience causecl by the refinement
mechanism in DisCo which forced us to define two different actions to clear each signal. For
example, in thc case of the "alarrn" signal, Telesys includes two actions to clear it: clear.olarm l
aud clear.olornvz. In TLA, we can combine first this two act.ions into OIlC (similar1y with actions
in TcleSysLoc) aud produce the Iollowing synchronization:

Clear.Alorni ==
3sR,R:

sR.alarm
R.alan¡¿
/\--.sR.Alann'
/\if --.(sR.emcrgcncy_stop V sRiexternai.liolsi

VsR.command_hold) tlien
sR.still.idle'

cndif
/\--.R.alarm'
/\if --.(R.emcTgcncy_stop V Riexternal hold

V R.command-'wld) tlieri
R.still.idle'

endif
/\U nchangedClear -Alarm

Similar synchronizations were performed with actions that setjclear signals "ext er nalchold"
and "emergency .stop". (See B.3, B.4, B.5, B.6).

6.1.5 Synchronizing the Robot Movement

The robot movement is performed both in system Tclcsys and TeleSysLoc by action mooe.robot.
As we want both systems to perform the same robot movements, it's just natural to force this
two actions to be executed simultaneously. We therefore llave:

NI oue.Hoboi ==
3sR,R:

sR.moving
R.moving
/\sR.position' = sR.moving.destination
/\s R. still. idl e'
/\R.position' = R.moving.destination
/\R.still.idle'
/\U nchangedM ave_Robot

Note that we are aiming here at being able to prove that the property

D(R.position = sR.position) (6.1)
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holds for the resulting synchronizecl system. This will allow us to relate the properties of
TeleSysLoc, relatecl to the robot position, to analogous properties of Telesys.

6.1.6 Synchronizing the Operating Actions

In Section 3.4, the main actions of system Telesys were collected into three groups: Starting,
Stopping and Operating actions. Tbe actions belonging to this last group, qct.neui.pos ancl
operaie, are treated in a way similar to the synchronization of action moue.roboi in the previous
section. That is, the Telesys version of each of those actions is fused with the action with the same
name from TelcSysLoc. The case of moue.rnotlel is slightly different because the guard refiects
our assumptions about the environment (Section 3.6.3). In fact, the assumptions regarding
the enableclness of action mooe.model are different in Telesys than in TeleSysLoc. But, as
the underlying iclea is that conclitions under which TeleSysLoc. mooe.model is enabled are more
general than tbose for Telessjs.mooe.model, we cannot use tbe same kind of combination as
above. Instead, action TeleSysLoc.movemodel is syncbronized with a stuttering step of Telesys
if Telesys. moue.snodel is not enabled.

Finally, we want property 6.1 to hold and for that we require the model robot to follow the
same path in the concrete Telegrip (TT) as in the abstract one (sTT), whenever possible.

For the complete description of the resulting synchronized actions, check B.9, B.lO and B.19.

6.1. 7 Synchronizing the Starting Actions

Until now, we llave been able to synchronize each action of Telesys with its corresponding
action (i.e., thc action with the same name) from system TeleSysLoc. However, the case of the
Starting actions of system Telcsys (star·t ane! stcrt.untli.com¡ is different. These are actions
whose effect in TcleSysLoc is implementee! not by a single atomic action, but by a so-called
"process" (scctiou 5.3.4) consisting of several cooperating actions. Therefore, in orcler to clefine
the synchronizatiou, we have to ielentify at least one action of the Starting process to match
with action sttut (sirnilarly staTLwitlLcam).

In choosing oue of the actions of the Starting process to synchronize with Tclessjs.start, we
could have certuiuly followecl [PD96]. In that case, we woulcl have to choose a commit point for
the Starting procese; in other words, we would have to find tlie action of TeleSysLoc that first
moclifies variables wliich al so appear in system Telesys and then we woulcl have to guarantee
that the Starting process is carried to its completion.

This suggestion, however, would llave preventecl the possibility of letting the Stopping pro-
ccss intcrrupt t.hc Starting proccss bcforo thc lattor is complctecl. As was extcnsively e!iscussecl
in chaptcr 11, \V(~ .uo 1101. williug to acccp], such a solution,

Instead \VC would postpone this "commit point" as much as possible. Idea.l!y the commit
point would he at action Teleinjsl.oc.start.lts as it is the action that ends the Starting process
by setting H.TS iuto thc OPEH.ative sta.te. However, if we did so, the synchronization would not
verify the following simple and desirable property:

O(RTS.o1Jer ~ T'Tuictiue.positioti = sTT.active.position) (6.2)

[The previous property will be necessary to prove the Security Property for systern
TcleSysLoc) .

Then, instcad of synchronizing action Telesys.start (or Telessjs.start.suithccarní with TeleSys-
Loc.start.lis, we synchronize it with TeleSysLoc.send_pos. As this last action is the one responsi-
ble for upc\ating lile position of the moclel in Teleqrip (TT. active.position) by copying the valuc
of tlie robot real position (R.pos·it'ion), 6.2 wil! be satisfied.

Finally, notice that actions situt and start.initli.cam. can be joincd into él single action just
as wc llave done wit.h thc sigual-clcaring actions.

T'he rcsult.ing synchronlzation of Tcicsijs.sinri, Tclesus.storc.untli.cani and Tcleiiusl.oc.sesul:»
1)OS is:
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Seiul.Pos ==
3T S, sTT, sR, LTS, RT S, TT, R :

sTT.active A TS.inoperative A sR.still
-.(sR.exter·naLhold V sR.emerqencsj.stop V sR.alann)
LT S.staTting A LTSccamera.sietectiiuj A R.still.idle A RT S.stm·ting A TT.active
ATS.buj' =<>
Aif T'Ssinoperatioe.ccmerc.o] j tlieii

sC Jl1.detecting'
endij·

AT S.opemtive'
AT S.opeTative.lasLpos' = s R.positioti
AsTT.active.position' = s R.position.
/vnipaih' =< sR.position >
A7"]Jn.th'=< sR.position. >
ARTS./mj' =< (-RTS.sessio7l.) >
ART S.abp' = LTS.abp
ART S.opeT'
ART S.ope1·.lastl'0s' = R.position
ATT.active.position' = R.position
Aimpath' =< R.position >
AiTpath' =< Rrpositioti >
AUnchangedSenrLPos

6.1.8 Synchronizing the Stopping Actions

The Stopping Process in system TeleSysLoc is non-interruptible, which means that once it
has been initiated, it leacls the whole system towards its inoperative state (i.e., a state satis-
fying RTS.noLop A LTS.noLop) and, cluring its execution, no action belonging to either the
Operating or Starting processes is enabled.

The previous observation leaves us plenty of freedom to choose the commit point for each of
the Stopping Actions in Telesys, as no matter what the system cloes, we can be pretty sure that
the Stopping process will be completed (given that the necessary action fairness requirements
are satisfied).

However, we should notice that the splitting of actions operated in the transformation of
system Telesys into system TeleSysLoc has allowed new behaviors (in a general sense) that were
not allowed by the original specification (Telesys). For example, according to TeleSysLoc, the
following situation is possible: Suppose that the system is operative and the robot is moving. The
remo te user presses the Stop Button, an event that is received at the Remote Location by RTS
(action TeleSysLoc.stop). Before the order to stop the system reaches the Local Location, motion
is detected in the workcell, an event which is received by LTS (action TeleSysLoc.motion). It is
clear then that we cannot synchronize TeleSysLoc.stop with Tclesys.stop and TcleSysLoc.motion
with Telessjs.motioti.iletected, as the two actions in Telesys cannot be executed in succession
without having another action start the system in between.

One possible solution would be to synchronize TeleSysLoc.stop (resp. motion) with a stut-
tering step, if the system is alreacly inoperative, and with Telesys.stop (resp. motion.sletectedy,
if it is operative.

Our experience with this method was that it resulted in a too complex solution which was
too difficult to reason about as the nurnber of possibilities of interleaving actions in the Stopping
Process is high. Instead, we looked for a single common point to the execution of any instance
of the Stopping Process. We chose action TeleSysLoc.injoTm_noLop, as it is always executed
in any instance. So we synchronized inform.mot.op with every Stopping action in Telesys and
with a stuttering step as well. This multiple synchronization, on the other hancl, was guided by
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a set of relations (between Telesys' and TeleSysLoc's state variables) we wanted to hold at the
end of the Stopping Process.

Then, the idea is to construct the synchronized action like this:

In j orm siot.op ==
3LT S, RT S, TT, CM, T S, sTT, sC M, sR :

T'ele Síjs Loc.Ln f orm.rioi.op r. ReZ'/\
iTelesíjs.deactieleqrip" V TeZesys.stop*V
VTeZesys.motion_clet ecied' V Telesys.ack..signaZ*V
v'I'elessje.deactioate.ieieqrip" V TeZesys.stutte-ring*)

/\U'¡!c1wnged1nfo'T"m_not_op

(6.3)

where

• the astcrisk inc\icates the necessary substitution of variables {TT / sTT, CM / sCM, R /
sR},

• Telessjs.stutterinq the preelicate TS' = TS /\ TT' = TT /\ CM' = C1\11/\ R' = R and

• Rel is a predicate expressing the relationship that we want to holel after the execution oE
synchronized action inform.mot.op,

ReZ == TS:inopeTative /\ (TT.active {::> sTT.active) /\ (CM.idZe =} sCM.idZe) (6.4)

Notice thnt wc cannot rcquire C lvI.úlle <= sC lvI.idle as the Starting Process can be stoppeel
after setting CM. det ecting but before executing action Telesys.start.with.carn, thus leav-
ing sC M.úlle.

As inform.not.op is the only action to put the synchronizecl system into a state satisfying

RT S. HoL01) /\ LT S.noLo]J (6.5)

and any othcr action preserving 6.5 does not invalidate Rel, we would be able to conduele
that relation ReZ \ViII hold in every state satisfying 6.5. In other words, the synchronizecl
systern will satisfy

O(RTS.HOLop /\ LTS.noLo]J =} ReZ) (6.6)

By algebraicnlly rnanipulating t.he dcfinition of inform_noLop resulting from 6.3, we obtained
a more "opcratioual" expression which is easier to translate to DisCo (something that is not done
in this work ) anc\ that, hopefully, \ViII give more insight to the reaeler about the characteristics
of the actiou. 111 particular, the resulting expression shows clearly that the conjuncts aelelecl to
TelcSysLoc. inf01"1TL'lwLop does not add rcstrictions to its enabledness, as the guard of the action
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is not modificd.

Inj01'lILNoLOp ==
3LTS, RTS, TT, CM, TS, sTT, 8CM, sR:

LTS.noLop
(RT S.oper V RT S.sto]JpingV

(RTS.sta1'l.ing /\ LTS.seq f= RTS.seq))
/\RT S.noLop'
/\RT S.seq' = LT S.seq
/\ij (T S.opemtive /\ sTT.active) /\ TT.inactive then

sTT.inactive'
sCM.idle'
sR.still.signaled'
s Rscommosui.Iioid'
T Siinoperaiive.coinero:o j t'

else if T S.opemtive/\
((sTT.inactivc r; TT.inactivc)V
(sTT.activc r; TT.ac/.ive))

then
sCM.idle'
sR.still.signaled'
s Rsconuruuul.Iioid'
T Ssinoperoiioe.cosnera.o] I'

else ij sCM.detecting
((sTT.inactive /\ TT.inactivc)V
(sTT.active /\ TT.acl.ive))

(6.7)

then
sCM.idle'
sR.still.signaled'
sR.command_/wld'
T Scinoperatiue.camera:o] r

el se ij (TS.ope1'ative/\
(sR.externaLhold V sHiemerqencf.stop V sR.alann))/\
((sTT.inactive /\ TT.inactive)V
(sTT.active /\ TT.active))

then
T S.inoperative.camera_onl

else if (TS.inoperative /\ sTT.active)/\
TT.inactive /\ (---,(CM.idle V sCM.idle))

then
sTT.inactive'

endif
/\UnchangedlnjonnJVoLO"

6.1.9 Synchronizing the Remaining Actions

At this point there remains just one action of system Telesys to synchronize: actiuate.ieleqrip,
As actions Telesijs.deactivate.Leleqrip and Telesys.dcacLtelegrip have been synchronized with
TeleSysLoc.injorm_noLop, we cannot guarantee that TT.active == sTT.active hods. Instead, we
will be able to prove the restricted property:

O(TT.active:::} sTT.active) (6.8)

That is, whenever TT is activated, sTT must be activated if it was not active already. This
is done by synchronizmg TcleSysLoc. actiuaie.Leleqrip with both, Telcsys. aciiuate.teleqrip and a
stuttering step of system Telesys, depending on the previous state of sTT.
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Synchronized Action Telesys Actions TeleSysLoc Actions
seLalarm set.alarrn seLalarm

clear .alarrn clear.alarrn l clear.alarrn l
clear .alarmz clear.alarrnz

sct.external.hold seLexternaLhold setexternal.hold
clear.external.hold clear .external.hold 1 clear .extemal.hold l

clear.extemal.holdz clear .external.holdz
seLemergency...stop seLemergency...stop seLemergency...stop

clear.ernergency.stop clear.ernergency.stop l clear.emergency.stop l
clear.ernergency .stopz cleacemergency...stop2

move.robot move.robot move.robot
move.rnodel move.rnodel move.rnodel

(stuttering step)
get.new .pos get.new .pos get.new .pos

operate operate operate
scnd.pos start send.pos

start.with.cam
inform.riot.op stop inforrn.not.op

motiori.detected
ack...signal

deactivate.telegrip
deacLtelegrip

(stuttering step)
acti va te.telcgri p activate.telegrip acti vate.telcgri p

(stuttering step)
(al! rcinaining actions) (stuttering step) (al! remaining actions)

Taule 6.2: The Syucluonization of Telesys ancl TeleSysLoc

Actiuate.Téleqrip ==
:JsTT, TT:

TT:inactive
I\.¿j sTT.inaclive ilicri

sTT.act·ivc'
ciuli]

I\TT.active'
I\U"Lc1uLngeclAct'i'Uate_Tele9'f'i¡J

As a summary, tablc 6.2 schematically displays the syncluonization between systems Telesys
and TeleSysLoc built in tliis section. Refer to Appendix B for a complete description of the TLA
actions composing the synchronization of systems Telesys and TeleSysLoc.

6.1.10 Initial States of the Synchronized System

Thc systcm stntc is coinposed of the variables from both Tclesys and TeleSysLoc. The initial
states of tlie synchronizcd system (In'itsvlLch,'o) then , are each composecl of an initial state of
Telcsys (scct.iou 3.5) anil an initial state of TeleSysLoc, plus a synchronization rcquirement: we
would likc thc two robot objccts to be placcd initially in the same position (i.e., Rrpositiori =
:5R.]Josdúm.). Thus, wc llave: '
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In-itsvnclu'o =
sR.still.idle
Anof;(sR.emergency_stop V sR.extcrnaLhold

v s Ii.commcrui.lioid V sR.alan/?)
AsCl\1.idle A sTT.inactive A TS.inopemtive.CCLmem_oj j A TS.buj =<>
AR.still.idle
Anot(R.emergency_stop V Icexternnl.Iiotd V Ii.commaiui.liold V R.alann)
I\CM.idle A TT.inactive A RTS.noLop A RTS.buj =<> A-,RTS.abp
A-,RTS.seq A RTS.session = O
ALTS.noLop A LTS.camera_idle 1\ LTS.buj =<> I\-,LTS.abp
A-,LTS.seq A LTS.session = O
AR.position = sR.position

6.2 The Proof of the Synchronization
As our intention is 1.0 use the synchronized combination of systems Telcssjs and TclcSysLoc
to prove the Security Property, we don't have 1.0 prove that it preserves any of the liveness
properties of Tclcsys 01' TcleSysLoc. Instead, we have 1.0 verify that for cvcry action in the
synchronized system constructed in the previous section, tlie conjuncts of the guard that were
obtained from the actions in Telesys always hold whenever the rest of the guard holds.

6.2.1 The Proof Goals

By browsing through the synchronized actions (Appendix 13), the proof of the synchronization
is reduced 1.0 prove each of the foIlowing Goals:

1. D(R.alarm => sR.ala7'1n) i cleor.olcrm, B.2)

2. D(R.externaLhold => s Rsexterrial Jiol-I¡ (cleaLexternaLhold, B.4)

3. O (-,R.emergency .siop => -,sR.emergency .siop¡ (seLemergency .stop , B .5)

4. D(R.emergency_stop => sRsemerqencu.stop¡ i cleor.emerqencsj.stop , B.6)

5. D(R.moving => sR.moving) (Derived from actions sei.olarm, sei.externol.hold,
moue.robot. See respectively B.1, B.3, B.7)

6. From act~on qet.meui.pos (B.IO):

D(RTS.oper.lasLpos i TT.active.position =>
=> 'I'Scoperatiue.last.pos i sTT.active.position)

I

7. From action send.pos (B.15):

D(LTS.starting 1\ LTS.camera_detecting 1\ R.still.idle 1\ RTS.stal'ting 1\ TT.active =>
=> sTT.active 1\ 'I'Siinoperatiue 1\ sR.still

, 1\-'(sR.externaLhold V s Hiemerqencsj.stop V sR.alar·m))

8. From action operaie (B.19):

O (LTS.oper 1\ LTS.buj i<> I\R.stilll\
1\-,(R.emergenC'lJ_stop V Rtexterrial liold V R.alarm) =>

=> T S.operative A sR.stilll\
A-,(sR.emergency_stop V sR.extemaLhold V sR.alarm))
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6.2.2 Proving some Goals

We proeeed now to prove each of the properties just enuneiated. For some of the proofs, we will
need some previous lemmas. Sometimes, it will also be neeessary to prove stronger properties
which will provide us with more insight into the kind of relationship established between Telesys
and TeleSysLoe.

Proving Goal 1

Proposition 28 D(R.alarm {:} sR.alar·m)

Proof. The proof is straightforward as

Initsynch,'O => =R.alorm. /\ ""sR.alarm

and
set.aiarm =>

clear.uiarm. =>
R.alarm /\ sR.alarm
<Rxuarm. /\ <s Rsolarm.

(by B.l)
(by B.2)

No other aetion in the synehronizecl system modifies either R.alar·m 01' sR.alarm.
O

Observation 29 Goal tiumber 1 follows fram proposiiioti 28.

Proving Goals 2, 3 ancl 4

Proposition 30 O(R.externaLhold {:} sR.externaLhold)

Proposition 31 O(R.eme7'gency_stop {:} s R.emerqencsj.siop¡

The proof 01' propositions 30 ami 31 are similar to that of proposition 28.

Observation 32 Goal tiumber 2 follows from proposiiion 30. Goals 3 asul 4 follow [rom 31.

Proving Goal 5

Lernrna 33 O(LTS.noLop => R.still)

Proot'. Notice first that In'ÍtsyHch,'o => LT S.noLop /\ R.still.
The only action to imply R.rJwv'ing' is operate, but operaie => LT S.oper'. And the only

action to impIy LT S.noLop' is rest, but rest => R.still'.
O

Proposition 34 O(R.moving => sR.moving)

Proof. As In'Ítsynch,'o => Rsstill.idle, the proposition holds initially. We then have to show
that 1'01' every synchronized aetion A, we have

(R.moving => sR.moving) /\ A => (R.moving' => sR.moving')

We consider only those actions that couIcl moclify the state maehines of R 01' sR:

• A = operaie. TIy B.19, operaie => sR.mov·ing' .

• A = set alorm, A = set.exterruil Jtolsl 01' A = set.emerqerunj.stop. By B.l (resp. B.3,
B.5), A=> R.si'ill.signaled' => ...,R.movin[j'.
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• A = clearsüarui. By B.2, cleor.alariri => sR.alann. It is a property of Tclcsys that
sR.alorni => -,sR.moving. Then, we are only have to prove that

<Ic.mouiru; 1\ clcar.ulruni => (R.1noving' => SR.l/wv'in!/)

which always holds since <R.niouisu; 1\ clcar.altuni => <Rnnoouu]',

• A = clear.external hold 01' A = clear.emerqencsj.stop. Thc proof is similar to that of
clear.olarm, as it is verified that

A =>
-,R.moving 1\ A =>

sR.clorui
-,R.moving'

• A = moue.robot. By B.7, moue.roboi => R.still' => -,R.1noving.

• A = inf ortn.siot.op, By D.25, inf orui.not.op => LTS.noLo]J. Thcn, by lemma 33,
inf orm.iiot.op => R.still ami, as R doos 110t participate in this action, wc conclude that
inf orui.uot.op => R.still'.

o

Observation 35 Goal iiumber 5 follows [roni propositioti 34.

6.2.3 The proof of an important property
To be able to prove goal 6, we wil! nced to first prove a property relating the position of the
robot in Telesys to the position of the robot in TeleSysLoc. The propcrty if of the utmost
importance here as it wil! playa central róle in the verification of the Security Property for
system TeleSysLoc (see 6.3), as it states that at every state of a behavior of the synchronized
system, the two robot positions coincide. In other words, we wil! preve the following

Proposition 36 D(R.position = sR.position)

However, several definitions and lemmas wil! be presented and proved before we are in a
position to demonstrate this property.

Lernrna 37 O(RTS.oper => TT.active 1\ TS.operative)

Proof. InitSynchro => RT Smoi.op, then the property hoIds initially. We have to check the
invariant only for three groups of actions:

1. Actions that change the state machine of RT S into the oper state,

2. Actions that change the state machine of TT, into the inactive state and

3. Actions that change the state machine of T S, into the inoperative state.

This means that we don't have to consider in the first group, for exampIe, those actions that
are only enabIed when RT S is already in its oper state. In this case, there is only one action in
each group:

1. setui.pos: By B.16, send.pos => TT.active' 1\ T S.operative'.

2. deactiuate.teleqrip: By B.ll, we have two cases:

(a) (RTS.oper V RTS.starting) :
deactiuate.ieleqrip 1\ (RTS.oper V RTS.starting) => RTS.stopping' => -,RTS.oper.
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(b) ,(RTS.oper· V RTS.staTi'ing) :
deactiuate.ieleqrip 1\ ,(RT S.opeT V RT S.sta¡·ting) =} RT S' = RT S.
Then RTS' = RTS.I\,(RTS.opeT V RTS.star·ting) =} ,RTS.opeT

As in both cases, we have ,RT Sioper, we conclude that the property is invariant under
the execution of action deactipate.teleqrip,

'1 .
JI ¡o .. o'

3. inform.siotop: By B.25, inf ol'1YL'IwLop =} RTS.noLop' =} ,RTS.ope7",
11 \ '¡l ¡,
i' i,
,1 i

Lemma 38 D(TT.active =} sTT.á!ctive)
¡! o

Proof. As Initsynchl'o =} TT:inÓ.ctiv~, th~"property holcls initially. We have then to consider
only those actions that can change the state machines of TT (into the active state) 01' sTT (into
the inactive state):

o

• Actions that can eflectively change to sTT:inactive:

itijorni.siot.rip: By TI,25, this change can only occur when T'Tviruiciiue ancl the state
of TT is kept unmoclifiecl .

• Actions that can effectively cliange to TT.active:

uctiuatc.Lelcqrip: TIy TI.8, aciiuaie.ieleqrip =} s'I'Tvactiue':

moue.modcl: TIy B.a, nioue.inotlel =} sTT.active'

o

Lemma 39 D(RT Sioper =} T'Tsactive.posiiioti = sTT.active.positionl\
RT S.o]Je1'.lasLpos = T S.opeTCLt-ive.lasLpos)

Pr'oof. Firstly, notice that according to Lemuia 37 if the state of the synchronizecl systems
satisfies RT S.ope'l' tlien it makes sense to refer to the value 'I'Tuictiue.positioii, as the state
also satisfics T'Tiactiue. Then, accorcling to Lemma 38 the state satisfies sTT.active too, ancl it
malees sense to evalúate s'I'Tcactiue.posiiiori.

Secondly, notice tliat according to Lernma 37 if the state of the synchronizecl systems satisfies
RT S.oJicr' thcn it malees seusc to rcícr to thc value TS.o]Jc'J"ativc.lasLpos, as the state also
satisfics T S.IJ1!t!"/"IIJivc.

The property holds initially as Initsynchl"o =} RTS.rwLop =} ,RTS.ope7".
Vve only llave 1.0 veril' y the invariunce of this property for the following two groups of actions:

1. Actious that change the state of RT S into RT S.oJier·:

• sctui.pas: As this action belongs to the other group too, it is verifiecl there.

2. Ac:tions that modify 'I'Tuictiue.positiori, s'I'Tíactioe.position, RTS.opeT.lasLpos ancl/or
T S.ope'l'al:ivc.lasLpos:

• seiulcpos: By TI.16,

setul.pos =} TT.active.position' = Icpositionr;
I\sTT.nctive.posdion' = s Rspositioti

TIu!; theu by Lernma 36, we liave

Rcpositiou = sRrpositioti
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Notice here that, though we havcn't preved Lcmma 36 aud that its proof will actualIy
use this lemma, there is no circularity here. \Ve are assuming the validity of Lemma 36
at the state holding be/ore the execution of setui.pos, while here we prove a property
for the state holding a/tc,· its execution.
Ancl we conclude that

setui.pos => TT.active.position' = sTT.active.position' (6.9)

Also by B.16,

send.pos => T S.operative.lasLpos' = sTT.active.position'/\
/\RT ScoperLast spos' = TT.active.position'

And, Irorn 6.9, we conclude that

setui.pos /\ RT Sioper => T S.opeTative.lasLpos' = RT S.opeT.lasLpos'

• qet.ricuupos: By B.lO,

qet sicui.pos => T S.opemtive.lasLpos' = s'I'Tvactiue.positionr.
/\RT Scoper.last.pos' = TT.active.position

If the proposition holcls in the state from which action qei.sicui.pos is executed, then
we know that

RT Scoper => s'I'Tiaciiue.position /\ TT.active.position

in that state. Therefore, also in that state:

setul.pos /\ RT S.opeT => T S.opeTative.lasL]Jos' = RT S.opcT.lasL]Jos'

FinalIy notice that action setui.pos docs not change the values of sTT.active.]Josition
or TT.active.position.

• moue.rnodel: From the guarcl of action mouc.rnodcl (see B.9), we know that

moue.model r. RT S.opeT => TT.active/\
/\TT.active.position = RT S.o]JedasLpos

If we assume the proposed property to hold for the state prior to the execution of
action moue.model, then by replacing sTT.active.position for TT.active.position and
T S.ope/"ative.lasLpos for RT S.opeT.lasLpos, we have

mooe.modei r. RT S.opeT => sTT.active.position = T S.ope/"ative.lasLpos(6.l0)

Also, by Lemma 38,

moue.model r, RT Sioper => sTT.active (6.11)

Finally, by B.9, 6.10 and 6.11, the guard of the if-statement is enabled ancl we then
know that

moue.model r. RT S.oper => T'I'iaciioe.position' = sTT.active.position'

Note also that action moue.inodel clocs not change the values of RT ScoperLast.pos
or T S.ope/"ative.lasLpos.

• actiuate.ieleqrip: By B.8 this action can change the values of TT.active.position
or sTT.active.position, but as it is only enablecl whcn TT.inactive, we know that
aciivate.ieleqrip => ,RTS.oper (Lemma 37). This action does not change the state
of RT S either.



66 CHAPTER 6. PROPERTY PRESERVATION

o
Now we intend to determine a relationship between the values of T S.buj and those of

RT S.buj and LT S.b'lLj for sorne particular states of t.he synchronized system. In cloing so, we
will use some special functions wh. ..,(~correct clefinition will be relatecl to the following lemma:

Lemma 40 O(RTS.abp 1= LTS.abp =} RTS·/J'lLf i=<»

Proof. This property holcls initially because In'Ítsynch1'o =} -,RT S.aup /\ -,LT S.aup.
Action tx.pkt implies RTS./J'lLj i=<>, and thus, as it cloes not change it, RTS.uuj' i=<>.
Ancl action ack irnplies RT S.ab]) == LT S.ablJ.
As these are the only actions that can change the state as to valiclate the antececlent or

invalidate the consec¡uence, wc are done.
O

Definition 41 Quwe of robot posiiiotis in TeleSysLoe. We define a state [unction that reeon-
sirucis tlie queue of robot posiiiotis (plus sessioti separators} in tlie refined system.

{
LTS./mf & RTS.bu! i] (RTS.abp == LTS.abp)

queuet I/I'S, RTS) = LTS.uuf & tail(RTS.uuj) if (RTS.abp 1= LTS.aup)

Observation 42 Noiice tluit Lemma 4 O quurantees iluit siate [unction queue is well defined.

Definition 43 Ti/e unll stu] Iluü: clement x is in llie sequcucc S =< SJ, 052,... , Sil > atul we will
uniic it "u: in S" ijf tliere c.cists i sucli that Si = X.

Definition 44 Fuuctioti [J'1/.7"!Jcelituinutes FO'II! tlie scqucnce S all elemeuts prccedituj arul in-
cliulitu¡ ihe jirs! OCC'IL1Teneeo] a given elemeut :c:

iolicre k is tlic unly úLtege',. uiliicl; satisjics

(k =n/\-'(:l:inS))V (Sk-l =:¡;/\-,(xin <SI, ... ,o5k-2 »

\Ve statc without proof some propcrties of functions queue and purge:

Lemma 45 (t:LpldVaek) =} quc'/Lc(LTS1,RTS/) = queue(LTS,RTS)

Lemma 40 (LT S.lmj' = LT su«¡ /\ RT S.ab1/ = RT S.ab1J /\ LT S,ab]/ = LT S.abp/\
/\RT S./m!' = RT S./m! & < x » =}

=} QlLC1LC(LTS1,RTS/) = qlLeue(LTS,RTS)& < x >

Lemma 47 x i= y /\ :¡; in S =} ]J'1I,1'ge(:c,S & < y » = ])1L1'ge(:l:,S) & < y >

Lemma 48 x i= y /\:¡; in S=} ])1L1'9C(:¡;,< y > & S) = ]J"lLl'ge(x, S)

For the following lemma we will just. give a sketch of the proof as it is rather lengtliy ancl
analogous to the proof of Lernma 50.

(
(LTS.o5taTtíngl\(-LTS.sess'ion) in (jucue(LTS,RTS))=:»

Lemma 49 O
=} TS./.IIL! = PIL1"[jC(-LT Scsession, queuc(LT S, RT S))



6.2. TIfE PR.OOF OF TIfE SYNCIIR.ONIZATION 67

Proof. (Just a sketch)
InitsY71ch"o implies the initial validity of this property,
Its invariance under the exccution of actions tX_IJkt ami ack is bascd 011 Lcmma 45 (see thc

proof of Lemrna 50).
For action send.pos the proof is casy as this action scts TS./mf' = <>, R.TS.ab¡J' = LT S.abJi'

and R.TS.buj' =< -R.TS.scssion > whilc it is not diíficult to provo thnt

D(LT S.starting ==> R.T Sisession = LT Scseesioii¡

For action qct.rieui.pos, the proof follows the corrcsponding to the samc ací.ion in proof of
Lcmma 50, but there we ncecl Lemma 47 instcad.

For action uuiitconfirm; follows casily froin Lcmma 48.
Finally, for action cotri.siart (thc only action that can chango LT S into sí.ate s/'arting), wc

have just to prove that

D(C011Lstart ==> ('tI:¡:::¡:inqucuc(LTS',R.TS'):;1: > -LTS.sr;ssúl'll.'))

o

Lemma 50 o (LTS,oper ==> TS.buf = queue(LTS,RTS))

Proof. ,Ve only need to show the invariance of this property under thc cxecution of those ac-
tions that eithcr leave LT S in state oper, or chango any of T S.buf, LT S.bnJ, RT S.buf, LT S.abp
or RT S.abp. For cach of the actions we assume that LT S.o]Jer ==> T S.buf = qucuc(LT S, RT S)
holds ancl prove that it implies LTS.oper' ==> TS.bu!, = qucue(LTS',RTS') .

• start.lts: By B.18,

start Lts ==> LT S.starting 1\ hearl(LT S./mJ) = - LT S.scssionl\
I\LT S.bu!, = tail (LTS.buJ)

Then, by Lemma 49, TS.buf = purge( -LT S.scssion, queue(LT S, RTS)) and since
head(LTS.buJ) = -LTS.session,

TS b f = { tail(LTS.buJ) & ta si«¡ if (RTS.abp == LTS.abp)
, u tail(LTS.buJ) & tail(RTS.buJ) if (RTS.abp:t. LTS.abp)

But, as LTS.buf' = tail(LTS.buf), finally TS.buf' = TS.buf = qucue(LTS',RTS') .

• qet.meur.pos: By B.IO, we first notice that we have only to consicler the case when LT Sioper,
since this action cannot change it.

Then, also by B.IO

LT S'bu]' = LT S.buf 1\ RT S.abp' = RT S.abp 1\ LT S.abp' = LT S.abpl\
I\RT S.bu!, = RT S.buf & < T'Tuiciiue.posiiitni >

ancl
TS.bu!, = TS.buf & < sTT.active.position >

By Lemma 46 we coulel conduele that

TS.bu!, = qv,eue(LTS',RTS')

only if we knew that 'I'Tiactiue.position = sTT.active.position. Sinc:e qet sieui.pos ==>
RT S.oper, this follows from Lemma 39.



68 CHAPTER 6. PROPERTY PRESERVATION

• setui.pos: By B .16, setui.pos =} -.LT S.oper.

• operate: By B.19, operaie =} LTS.oper·/\ LTS.oper·' /\ LTS.buf =1-<>
Then, by our assumption, TS.buf = queue(LTS, RTS) and we have to prove that
TS.buJ' = queue(LTS', RTS').

TS.buJ' tail(TS.buf)
tail(queue(LT S, RT S))
tail (queue( LT S, RT S'))
tail (LT S.buf) &
(if LTS.abjJ == RTS.abp') theti RT S.b'u,j'
else üúl(RT S./m!'))

q'lteue(LTS', RTS'))

(B.19)
(assumption)

(B.19)
(LTS.buf =1-<»

(B.19)

• iai.pk: arid ack: These actions cannot change the state machine in LT S and, by lemma 45,
they neither change queue(LTS, RTS).

• uiait.conjirm: By B.17, soait.con jirm =} -,LTS.ojJel'.

o
\Ve finally have al! necessary elernents to prove property 36:

Proof. The property holds initially as In'itsynchl'o =} Rrpositioti = s Rsposition.
The only action that modifies each of the position values is moue.robot.
Since by B.7, mooe.roboi =} Riposition' = Rcmouin.q.destituitionr;

r.s R.position' = sR.moving.dest'ination
it suffices to preve that

O (R.movin.1J /\ sR:mov'ing =} Icmoviiiq.destinatioii = sR.moving.dest'inal'ion)

This last cxpression liolds initially as In:itSyncm'o =} Ristill r: s Ic.still, And the only action
tliat intercsts is 01JCmtc:

By B.19, operaie =} LTS.o]Je'f' /\ LTS.buf =1-<> /\
r.Ii.mouituj.dcstination' = head(LTS.buf)/\
r.s Ii.mouin.q.destination' = head(TS.buf)

In that case, by 50, we know that

head(TS.úuf) = head(q'ueuc(LTS,RTS) = head(LTS.buf)

wliich preves the property.
O

6.2.4 Proving the Remaining Goals

Proving Goal 6

Proposition 51 O(RTS.opedasLpos =1- T'I'iactive.positioii =}

=} T S.operative.lasLpos =1- sTT.activc.position)

Proof. Por the antecedent of the property to be evaluable, we llave to assume RT Sioper
(Actually this is the assumption in the DisCo tool). In that case, the property follows directly
from Lemrna 39

O

Observation 52 Goal uumber 6 follo'Ws [rotti proposiiion 51.

Proving Goal 7

Lemma 53 O(RTS.'/!oLopV RTS.sta'l'l'ing =} TS:inope1'C!tive)
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Proof. As !nitsYl1Ch,'o => T Scinopcratiuc, t.he propcrty holds initially.

1. Actious t.hat can chango T S into statc opetaiiuc:

• sctui.pos: By 13.16, setui.pos => RTS.ope¡-'

2. Actions that can chango RTS into state uot.op or startiiuj:

• iiijorm.siot.op: \Ve constructcd this synchronized action as to satisfy
iuf 07'1)LnoLo]J => Rel', whcre Rcl is thc rclation dcfincd in 6.4 aud this iruplics
T S:ino]Jcrativc.

• siart: What has been done up to now in this proof sufTiccs 1.0 state that
D(RTS.noLo]J => TS.ino]Jerativc), and since action start is only enabled whcn
RTS.noLo]J aud it docs not modiíy TS, thc property Iollows,

o

Lemma 54 D((LTS.stm·ting V LTS.ope7") /\ R.still => sR.still)

Proof. As I nitsYl1Ch,'o => LT S.noLo]), the property holds initially.

1. Actions that can change sR into statc moving:

• operaie: By 13.19,operaie => R.moving'.

2. Actions that can change R into state still:

• set.olarm, set.emerqencsj.stop, set.externol.liold, moue.robot: Al! these actions imply
sR.still'.

• st01LT: By 13.28, stop.r => LTS.st,opping'.

3. Actions tliat can change LT S into state starting 01' oper:

• com.start: By 13.13,com istart => RTS.starting'. Then, by Lemma 53, com.start =>
T S.inoperative'. Finally, it is a property ofsystern Telesys that T Scinoperatiue =>
sR.still. ~. ~. 1.

• stort.lts: What has been done up to now in ,~his i~roof suffices to state that
D(LTS.star·ting /\ R.still => sR.still).< Theh, by 13.18, start.Its => LTS.starting;
and, since it does not modify sR, we conclude thdt sR.still' holds after the execution
f hi . . , I 11o t us action. ' 'í" ' I

'. . '. ~¡ I¡
o

Proposition 55 D(LTS.stm·ting /\ LTS.camera_detecting/\
/\R.still.idle /\ RT S.stm·ting /\ TT.active =>

=> sTT.active /\ T S.inope7"ative /\ sR.still
/\-,(sR.extenwUwld V sR.emerqericf.stop V sR.alar-m))
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Proof. Because Icstillidle we know that

,(R.command_hold V Riexternol.liotd V R.emer·genc:lJ_stop V R.ala1"m)

Then, by Propositions 28, 30 and 31, we conduele that

,(sR.exte1"naLhold V s Il.emerqencsj.stop V sR.alm·m))

The rest follows frorn Lernrnas 53, 54 and 38.
O

Observation 56 Goal tiumbet: 7 [ollouis from proposiiion 55.

Proving Goal 8

Lemma 57 D(LTS.start'ing 1\ (-LTS.session) 'in queue(LTS, RTS) => TS.operative)

Proof. (Just a sketch) Accorcling to Lemma 45, this property rernains invariant under
actions tx.pkt and ack. Action send.pos is the only one that can add (- LT S.session) to
queue(LTS,RTS). It then sets TS.operative'. AmI the only action that changes the TS into
state inoperatioe is injorm.not.op, which is on!y enabled when LT S.noLop.

O

Lemma 58 D(LTS.o]Je'l' => TS.ojJcmt'ive)

Proof. Since Indsynchl'o => LT Smot.op, the property holds initially.

1. Actions tliat cliange T S into state inoperatiue:

• itijormcnot.xrp: By B.25, inf 07'17LnoLo]J => LTS.noLop'.

2. Actions that change LT S into state oper:

• start.lts: By B.18, start Lis => LTS.stm·ting 1\ head(LTS.buj) = -LTS.session.
Therefore, before the execution of this action (-LTS.sess'ion) in queuei L'l'S, RTS).
By Lemrna 57 thcn, wc conduele T S.opcrat'ivc.

o

Proposition 50 O (LTS.o]Je7·1\ LTS.buj =1=<> l\R.stilll\
1\,(R.cmcrgency_sto]J V Ic.externol.liotd V R.alm·m) =>

=> TS.operat-ive 1\ «Rstillr;
1\,(sR.emergency_stop V eRsexterruxi.hotd V sR.alm·m))

Proof. Tllis follows directly frorn Lernrnas 58, 54, 53, 54 and 38.
O

Observation 60 Goal tiumber 8 [ollouis from proposiiiou 59.

By having preved al! Proof Goals, we llave verified that the system proposed at the begin-
ning of this chaptcr constitutes in fact a Synchronized Combination of systems Tclesys and
TclcSysLoc.
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6.3 TeleSysLoc Satisfies the Security Property

In order to formally expresa the Security Property, now of system TeleSysLoc, we follow the
same ideas of section 3.8. Systern TeleSysLoc is thus enriched wi l.h two new variables:

• inipath: The path takcn by thc robot moclol as it has bcen rcceivcd by ILTelesys (by means
of action geLnew_pos) since the last step verifying

(this step only occurs when action seiui.pos is executed).

• irpatli: Thc path takcn by the real robot. siuce t.hc las!. stop vcrifyiug tlw s.uno coudit.ion
as abovc.

It is assuincd that both variables are iuitially equal to the crupty scqucncc.
Since the robot can ouly be moved whcn R.Telesus is in its opct state, we are 0111)'intercstcd

in verifying the Security Propert.ies for those states whcre R_Telcs)JS.01JC1' holds. We can then
express the Security Property for systcm TeleSysLoc as:

D(L_Tclcsys.opeT =} impath = irpaili & que1Le(LIelesys, R.Ielesys)) (6.12)

Instead of proving this propcrty c1irectly Irorn the dcfinition of systcm TcleSysLoc, now that
we have cstablished a rclationship between tliis system aud system Telesys, we intend to ta.ke
advantage of the Iact that we already know the propcrty to be valid for this latter system (sce
3.8).

First, notice that we have already includcd new variables inipaili anr] irpriih. in the TLA
version of the actions in the synchronized system (see appcndix TI), though thcy never affected
the proofs of tho synchronization relationship given above.

Second, notice that we llave includcd as wcll the variables niptitli and l']1rll.h into the synchro-
nized syst.em. These variables were definecl in section 3.8 and used there to express the Security
Property (3.8) Ior system Telesus.

Now we prove a simple lemrna relating variables mpath and rpatli 1.0 impatli and irpaili,
respectively. This proof depencls heavily on properties that have already been preved while
verifying the synchronization of systems Telesijs and TeleSysLoc. Notice specially the use of
Proposition 36 (section 6.2.3) that assures that both, the robot in system Telesys and the robot
in system TeleS'[sl.oc, are always in the same position.

Lemma 61 D(mpath = impath 1\ rpail» = Í1'path)

Proof. Initially both variables hold the empty sequence. We then consider only the actions
that modify any of these variables:

• qet.neui.pos: By Lemma 39 we know that TT.active.position = sTT.active.position.
Therefore, qet.sieui.pos =} 111.p!Lth'= impath'. This action <loes not chango rpaili or
irpatli.

• serul.pos: By Proposition 36, we know that Rrpositioti = s R.position: Then the required
equalities hold in the state immecliately after the execution of this action.

• opérate: By Lemma 50 we know that head(LTS.buf) = head(TS.bu.f). Therefore,
operaie =} rpath' = irpath': This action does not chango mpaili or impath,

o
Finally, we have

Proposition 62 System TeleSysLoc uerijies the SecuT'ity Properiij (6.12)
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Proof. We prove that this property is satisfiecl by the synchronizecl system clevelopecl at the
beginning of this chapter. Since we have proved that it is in fact a Synchronized Combination
of systems Telessjs and TeleS'!)sLoc, every behavior of TeleS'!)sLoc can be extended to a behavior
of the synchronizecl system. Therefore, a property relating values of the state variables belonging
to TeleSysLoc that holds for every behavior of the synchronized system wil! also hold for every
behavíor of TeleSysLoc. Therefore we just have to preve:

D(LTS.oper:::} impatli = irpatli & queue(LTS,RTS))

Then, if we assurne LT S.oper·, by Lemma 58, LT S.oper :::}T S.operative. And by Lemma
50, que'lle(LTS,RTS) = TS.buf. Combining these with the equalities from Lemma 61, we see
that it suffices to prove that

D(TS.operat'ive:::} ttipaili = rpaili & TS.buf)

which we know to hold as it is exactly the Security Property for system Telesys.
O



Chapter 7

Conclusions and Future work

7.1 Results

This works describes the results we obtained in attempting the specification of Tclesys, the robot
telcopcration systcm demancled by the TELESAFE project.

Two specifications, with diffcrent levels of abstraction, wcre produccd. The higher-levcl
specification described Telesys -as well as its hardware and software coruponents- as a closccl
system in a simple way, but rich enough as to allow for the specification ami verification of an
important sccurity property (see section 3.8).

Afterwards, the higher-level specification (TeleSysLoc) was transformcd into a lower-level one
by splitting the atornicity of several actions in the framework of the Syuchronized Combination
Method (4.8). This was done as a first step towards the introduction of implcmentation-oriented
mechanisrns related to the transmission of data and control between distant locations.

During the proof of the Synchrouized Cornbinatiou, several errors were detectad in the origi-
nallower-level DisCo specification (TeleSysLoc) which would have been quite difficult to detcct
otherwise.

7.2 Implementation

The robot teleoperation system specified here, Telesys, has been implemented with the C pro-
gramming language and TCP sockets. The resulting software was used for studying different
security concerns in the robot teleoperation environment.

This thesis serves also as documentation for that implementation.

7.3 Specification Language

We applied DisCo to a "real world" problem, which was not originally designed to test the
languagc. The fact that the two DisCo specifications of the robot teleoperation system are
relatively short and simple (specially the higher-level one) is more a virtue of DisCo than an
indicator of the difficulty posed by the problcm. In fact, the C implementation of the system is
quite complex and took several months to develop.

The restrictions imposed over the refinement of actions by the definition of the language
forced us, on some occasions, to write two actions where it would have been perfectly valid to
write only one (see page 19).

When starting from the Telesys specification and trying to derive the TeleSysLoc specifica-
tion, a complete new system had to be written. Version 2.0 of the language [Dis94] provided no
mechanism to reuse Telesys. The latest language version [Dis96] does, but it was not used here
as there was no simulation tool implemented for it when this thesis was written.

73
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7.4 Splitting of action atomicity
We have argued for the necessity of action atornicity refinement in the transformational approach
to the specification of distributecl systems ancl, in trying to apply it to our specifications, we
have analyzed several clifferent methods. In particular, the recent "Aggregation of Distributed
Transactions" methocl (see section 4.7) was shown to be insufficient for our purposes and of
little general use if it does not proviele a way to link properties from the specifications among
themselves. Instead , we have applied an already known Synchronized Combination Methocl
(4.8). Moreover, we have paid special attention to the description and analysis of this method;
a work which we hurnbly consicler the main contribution of this thesis.

7.5 Future Work
From now on, work can follow in several directions:

• The proof of t.lie Synchronizecl Combination of Telesys anel TeleSysLoc done in Chapter G
showed us that for any reasonably sized system, these proofs can be quite time consum-
ing ancl error-prone, though they clo not present major clifficuIties. Just because of this
simpIicity, they are amenable 1'01' the application of semi-automatic proof methocls.

• The specifications of the robot teleoperation system producecl so far are still at too high
a level of abstraction and there are plenty of implementation mechanisms that coulcl be
introcluced as a way of deriving a formal design of the system.

First, tlie comrnunication modcl, wliich corresponcls to the asynchronous message passing
style, could be complcted. In fact, work has already been done towards the introcluction
of communication channels as a new step in the transforrnational specification of Telesys.
A pmticular implementation relation between two specifications has been clefined for that
purpose and a mcchanisrn to preve the serializability of behaviors of the clerivecl specifica-
tion has been cleveloped.

Ancl second , we liave assurned comrnunications among locations to be error-free in our
rnoclel. However, this is not very realistic, as even with the use of protocols such as
TCP sockets, connect.ions can brake clown resulting in the necd for an appropriate reset
mechanism. These fault tolerant properties coulcl be added to the specification given here
but it could be convenient to have them introc\ucecl in the specification from the very
beginning (Telesys).

• Finally, regarding the DisCo spccification language, it woulcl be interesting to analyze how
thc work done here would benefit from thc new constructs of Version 3.0 [Dis0G] and to
sturly liow í.liey could be extended to avoicl the inconvenient duplication 01' actions (p. 10).



Bibliography

[AUn] IvI. Abadi and L. Lamport, The Existcncc of Rcfiucmcnt Mappings. Thcorctical C0111-
puter Science, 82(2):253-284,1991.

[ALM04] M. Abadi, L. Larnport and S. Merz, A 1'LA Solution t.o thc RPC-Mc111ory Spcci-
fication Problcm. Worlcl 'Vicie Web page at, ht.tp:/ /w\Vw.rescarcb.digit.al.com/SRC/
clagstuhl/dagst.uhl.html. August., 1004.

[AS85] B. Alpern and F. B. Sclmeider, Defining Livencss, Information Proccssing Letters,
21(4):181-185,1985.

[BKs88] R. J. R. Back and R. Kurki-Suouio, Distributcd coopcration with act.ions systems.
ACM 1'ral1s. Programming Languagcs Syst. 10, 4, October 1988, pp. 513-554.

[DL94] M. Broy and L. Lamport. 1'he RPC-Mc1110ry spccification problcm. Worlcl Wide
Web page at hUp:/ /w\Vw.research.digital.colll/SRC/dagstuhl/c1agst.uhl.html. August,
1994.

[ChM88] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation. Addison- Wesley,
1988.

[Dij76]

[Dis94]

[Dis96]

[DNV90]

[Ein49]

[Jar92]

[JKs91]

E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

The Disco Language Version 2.0. Software Systems Laboratory, Tarnpere University
of Technology. March 11, 1994.

The Disco Language Version 3.0. Software Systcrns Laboratory, Tampere University
of Technology. 1996.

R. De Nicola and F. W. Vaandrager, 'I'hree logics for branching bisirnulation (ex-
tended abstract). In Proceedings 5th Annual Syrnposium on Logic in Computer Sci-
ence, Philadelphia, USA, pages 118-129. IEEE Computer Society Press, 1990.

A. Einstein, Authobiographical Notes. Albert Einstein: Philosopher-Scientist. Library
of Living Philosophers. Open Court Publishing Company, La Salle, IlIinois, U.S.A.,
1949.

H.-M. Jarvinen, The design of a specification language for reactive systems. Tarnpere
University of Technology, Publication 95, 1992.

H.-M. .larvinen and R. Kurki-Suonio, DisCo specification language: Marriage of ac-
tions and objects. Proc. l l th Conf. 011Distributcd Computing Syst., 1901, pp. 142-151.

[JKSSOO] H.-M. .Iarvinen, R. Kurki-Suonio, M. Sakkinen and K. Systá, Objcct-oriented speci-
fication of reactive systerns. Proc. 12th Int. Conf. 011Software Eng., 1990, pp 63-71.

[KeI94] P. Kellomáki, Analysis of a Stabilizing Protocol: A Case Study in Reasoning about
Action Systerns. Thesis for the Degree of Licentiate of Technology. Software Systerns
Laboratory, Tarnpere University of Technology. December, 1994.

75



76 BIBLIOGRAPHY

[Ks95] R.. Kurki-Suonio, Incremental Specification with Joint Actions: The RPC-Memory
Specification Problem.Software Systems Laboratory, Tampere University of Technol-
ogy. 1995

[Ks96] R. Kurki-Suonio, Notes for the course "Specification of Reactive Systerns ". Software
Systems Laboratory, Tampere University of Technology. January, 1996.

[Ks96b] R. Kurki-Suonio, Fuudamentals of Object-Oriented Specification and Modeling of Col-
lective Behaviors, Software Systerns Laboratory, Tampere University of Technology.
1906.

[KsK88] R. Kurki-Suonio and Ti Kankaanpaa, On the Design 01" Reactive Systems. Software
Systems Laboratory, Tampere University 01' Tcchnology. Report l. October, 1988.

[LLOR96] P. B. Ladkin, L, Larnport, B, Olivier, and D. Roegel. Lazy caching: An assertional
view. Distributed Computing, 1996.

[Lam83] L, Lamport, Specifying concurrent program modules. ACtvI Transactions on Program-
ming Languages and Systems, 5(2):190-222, 1983,

[Lam88] L, Lamport, A Tlieorem on Atomicity in Distributecl Algorithms. Digital Equipment
Corporation. May, 1988.

[Lam04] L. Lamport, The Temporal Logic of Actions. ACM Trans. Prog. Lang. Syst., 16(3):872-
923, May, 1994.

[La1l196] L. Lamport, Refinernent iu Statc-Based Forrnalisms. Digital Equipment. Corportation.
Dccember, 100G,

[LV94] N. Lynch ancl F. Vaandragcr, Forward and Backward Sirnulations - part 1: Untimec\
Systems. October, 1094.

[Lyn04] N. Lynch, Atomic Transactions for lVIultiprocessor Programming: A Formal Ap-
proach. DIMACS Series in Discrete Math. and Theoretical Comp. Se., 1904.

[Mik05] T. Mikkonen, Implementation of Reactive Systems based 011 Closecl-system Specifi-
cations. Software Systems Laboratory, Tarnperc University of Technology. Licentiatc
thcsis, June, 1005.

[PaG0G] E. Pascal Cribomont, Atomicity Refinement and Trace Rec\uction Theorerns. Corn-
putcr Aidcd Verification, 8th International Conference, CAV'96, pp. 311-322, LNCS
1102, Springcr- Verl ag , July 1006.

[PD9G] S. Park and D. L. Dill, Protocol Verlfication by Aggregation of Distributed Transac-
tious. Computor Aided Verification, 8th International Conference, CAV'9G, pp. 200-
310, LNCS 1102, Springer-Verlag, July 1906.

[Sys01] I<. Systri, A graphica! 1.001Ior tlie specification 01'reactive systems. Proc. Euromicro'91
Worksliop Oll Roal-Tune Systems, 1091, pp. 12-10.



Appendix A

Telesys Source Code

A.l The initial syst.ern

A.l.1 The Robot system

- - DisCo specification of Telesys Robot Teleoperation System.

ROBOT SYSTEM

- - Author: Pablo Giambiagi
- - Date: 27.03.96

- - Observations:

This is a highly simplified specification of a robot.

At any moment, the robot can be in any of two states: moving or still.
If it is moving, then it is moving towards a target position
(clestination) .

The current position of the robot can be acquired at any time. This
value has been simplifiecl to be just an integer.

The actual path taken by the robot to go from it's current position
to its destination is abstracted away,

The only events consiclerecl are:
1. Starting off towarcls a new position (action Set.Destination).
2. Reaching clestination (action move.Robot).
3. Stoppage of the robot by any other circumstance,
e.g. "emergency stop" (action stop-Robot). Notice that a robot
can be stoppecl even when it is already still. In this case, there
is no associated state-change.

system Robot is

class Robot is
state *still, moving( destination: integer );

77
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position: integer;
initialIy position >= O;

• assert position >= O;

end;

- - Actions --------------

action set.Destination] p: integer) by r: Robot is
when r.still and P >= O
do

---+ r.moving( p );
end;

action stop.Robot by r: Robot is
when true
do

---+ r.still;
end;

action move.Robot by r: Robot is
when r.moving
do

r.positiou := r.moving.destination;
---+ r.still;

cnd;

encl;

A.1.2 The RoboLSignal System

- - DisCo spccification of Telesys Robot Teleoperation System.

- - Author: Pablo Giambiagi
- - Date: 01.0·1.%

- - Obscrvations:

1. Robot system extencled with robot controller signals.
2. Evcry time él signal is received by the robot controller,

thc robot is imruediately stopped.
3. Robot statc "still" is extended to distinguish between these

situations:
a) Robot stopped after completion of corred movement

(importcd action movc.Robot.)
1» Robot stoppcd after rcception of signal.

4. Ir the robot controllcr has rcccived a signal, tlien the signul
has tu he cleared bcfore tlie robot can perform any rnovcment.
Howcvei, tlus rcstriction is not introduced at t.his level , as
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t.lic process needed to clcar that signal clcpcnds 011 í.he type of
the signal (sce system Robot_DifSig).

5. Two IICW evcnts are considcred:
a) Turning a signal 011 (sotsignal)
b) Clearing all signaJs (clcar .sign.il}.

G. Signals are 1I0t. distinguishccl. Auyway, t.hcrc can be scvcral
different typcs of signals. Accordingly, action set.aignal is
always enabled,

sy st ern Robot.Signal

irnp ort Robot;

IS

extend Robot by
extcnd still by

state *icllc, signaled;
end still;

end;
- - Actions --------

refined move.Robot is
when ...
do

----t r.still.idle;
end;

action set.signal by r: Robot is
when true
do

----t r.still.signalecl;
end;

action clear.signal by r: Robot. is
when r .still.signalecl
do
----t r.still.iclle;
end;

end;

A.1.3 The RoboLDifSig System

- - DisCo specification of Telesys Robot Teleoperation System.

- - Author: Pablo Giambiagi
- - Date: 26.08.96

- - Observations:
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1. Robot system plus signals, now differentiated.
2. The robot controller recognizes four different signals:

a) Emergency Stop
b) External Bole!
e) Comrnand Hold : This signal is raisecl when the robot is stoppecl
by a software command, As this is the only way available to the
Teleopcration System :to stop the robot,the guarcl of the
imported action "stop'~'obot" is strengthened to falseo
<1) Alann : This sigl1a~ can result from an error internal to the

coutroller or, Ior dam¡)le, the impossibility to reach a certain
. . ,1'

pOS¡(,IOI1, i¡'
3. A refinemeut in Disco [orces a complete inclusion of the original

bocly in every refinecl 'action, That is, the original body cannot be
guarded by an IF command. This has forced us to split every action
to clcar a signal into two actions, taking into account the state of
the other signals.

system RoboLDifSig

import Robot.Sigual;

lS

exteud Robot by
- - The 1'0111' diílcrcut siguals rccognized by the robot controller.
- - Notice that this could be dcfined as extensions to the state
- - still.signaled, but it would have made the notation ratlier clumsier.
crncrgcncy .stop: boolean;
oxtcrnal.hold: boolcan;
couunand.hold: boolcan;
alarn}: boolcan;

- - Thc Iollowiug asscrts that any signal irnplies the state still.signaled
assert not( cmergcncy .stop or external.hold or comrnancl.hold or alarrn) or

still.sigualcd:
c nrl ;

- - Actions ----~~---~~--~--
- - Sigua! sctting actions:

rcfincd sctcmergcncy.atop of set.signal is
when ... not.( r .eincrgcncy .stop)
do

r.cmergcncy.stop := truc;
erid;

rcfincd sct..cxternal.hold 01' set.signal is
whcn ... r.moving
do

r.cxtcrual.hold := true;
e ncl ;
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- - The guard of this actions does 1l0L require "uotfr.command.hold}"
- - bccause it will later be uscd in a 'combinecl' clause and we dou't
- - cxpcct that guarrl to propagate to that syst.ern (Telcsys). Wit.hout t.he
- - guard, the exeeution of this action rcsults in a stutt.cring st.cp.
refincd hold.on of sct.signal is
when ...
do

r.command.hold := true;
end;

refined sct .alarrn of set.sigual is
when ... r.moving
do

r.alarrn := true;
end;

- - Signal clearing actions:

- - Note that DisCo's own restrietions llave forccd us to implcment
- - each event as a pair of aetions. "Ve would have likecl t.o be able
- - to write, for example:

- - refined clear.emcrgency .stop l of c1ear....signa.lis
- - wlrcn ... r.emergeney....stop
- - do

if notfrextemal.hold 01' r.cornmand.hold or r.alarm) then

cnd if;
r.emergeney....stop := false;

- - end;

refined clear.ernergency.stop l of c1ear....signal is
when ... r.emergeney....stop and

notfr.external.hold or
r.cornmand.hold or
r.alarm)

do

r.emergeney....stop := false;
end;

action clear .ernergency ....stop2 by r: Robot is
when r.emergeney....stop and

(r.extemal.hold or r.cornmand.hold or r.alarrn)
do

r.emergeney....stop := false;
end;

refined clear.external.hold l of clear....signal is
when ..~ r.external.hold and

not(r .emergeney ....stop01'

r.command.hold or
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r.alarm)
do

r.external.hold := false;
end;

action clear.external.hold? by r: Robot is
when r.external.hold and

(r.emergency...stop or r.command.hold or r.alarrn)
do

r.external.hold := false;
end;

refined hold.offl of clear...signal is
wlien ... not(r.emergency...stop or

r.external.hold or
r.alarm)

do

r.cornmand.hold := false;
end;

action holcLoff2 by r: Robot is
when r .emergency ...stop or r.cxterrial.hold or r.alarrn
do

r.command.hold := false;
end;

refined clear.alarm l of clcar.signal is
when ... r.alarrn ami

not.( r.cmcrgcucy .stop or
r.cxtornal.hold or
r .cornmand.Jiokl]

do

r.alarm := fnlse;
cud;

action cleaLillarm2 by r: Robot is
w h e n r.ul.uru aud (r.emergency...st.op 01" r.exterual.hold or r.cornmand.hold)
do

r.nlnrm := Ialse;
erid;

- - The action that sets tlie robot moverncnt is able to clear a comrnandhold.
rcfincd sct.Destination is
when ... notfr.cmcrgcncy.stop or r.external.hold or r.alarrn)
do

r.conunaud.Iiokl := Ialse;
e n d;

-- - Tlle origillal actious are pcrm.uieutly disabled.
rofi nccl scL_signal is
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when ... Ialsc
do

end;

refined clear.sigual is
when ... false
do

end;

- - The functionality of the "stop.robot" action is rcplaccd by
- - that of action "hold.on".
refined stop.robot is
w h en ... false
do

end;

end;

A.1.4 The Camera System

- - DisCo specification of Telesys Robot Tcleoperation Systern.

CAMERA

- - Author: Pablo Giambiagi
- - Date: 28.03.96

- - Observations:

This systems represents the camera used to detect movements insicle
the robot workcell.

system Camera

1S

class Camera is
state *idle, detecting;

end;

- - Actions ---------

action set.carnera.idle by cm: Camcra is
when true
do

-t cm.idle;
end;

action starLdetection by cm: Camer a is
when true
do

-t cm.detecting;
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end;

cnd;

A.1.5 The Telegrip System

- - DisCo specification of Telesys Robot Teleoperation System.

TELEGRIP

- - Author: Pablo Ciarnbiagi
- - Date: 27.03.96

- - Observations:

1. This system representa lile Teleoperation simulation software
whcrc tlie remo te operator directs a 3D model of the robot ane! its
workcell.

2. From thc point of view of thc Teleoperation System, it is only of
concern to know the state of the LLTI associated to the model (i.e.
LLTI active or inactive) and, if the LLTI is active, the position
of tho robot according to lile Telegrip model.

3. Being part of the environment of the Teleopeiation System, no
rcstrictions are imposcd lo tlie action responsible for the movement
of the robot rnodel.

system Telcgrip

is

c lass Tclcgrip is
s t a t.e "inuctivc, act.ivc] position: intcger );

e n d ;
- - Actions ------~-~.~----.-~-.--

act io n act.ivaí.u.Tclegrip by tL: Telegtip is
w lie u t.t.iuuct.ivc
do

-+ tt.activc;
erid;

act io n dcactivate .Tclegrip by tt: Telegrip is
wlrcn tt.act.ive
do

-+ t.tiunctive;
cnd;

act io n change_Pos( p: iutcgcr ) by tt: Tclcgrip is
whcn tt.activc and p >= O
clo

-+ tt.act.ive] p );
cud;
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end;

A.1.6 The Telesys Syst em

- - DisCo spccification of Tclcsys Robot Tclcopcratiou System.

TELESYS

- - Author: Pablo Giambiagi
- - Date: 19.04.96
- - fvIodified: 25.04.96

- - Initial TeleSys system (with a simple unbounded buffer)

system TcleSys

import ,Telegrip, Camera, Rohot.Diffiig;

cornb in ed start.with.cam of Telcgrip.change.Pos,
Camer a.star t _<1etection;

combined stop of Robot.Diffiig.hold.on,
Camera.set.camera.idle;

combincd deact.Telegrip of Robot.Difflig.hold.on,
Camera.set.camera.idle,
Telcgrip.deactivatc.Tclcgrip;

lS

class TeleSys is
state *inoperative, operativeflast.pos: integer);
extend inoperative by

state "camera.off, camcra.on;
end inoperative;
buf: sequence integer;
initially buf = <>;

end;

- - Actions ----------------
- Starting ...

refined start of change.Pos by ... ts: TeleSys; r: Robot is
when ... ts.inoperative.camera.on and

notfr.external.hold or r.emergency .stop or r.alarrn) and
r.still and p = r.position

do
ts.buf := <>;
-t ts.operative(p);

end;

refined start..with.cam by ... ts: TeleSys; r: Robot is
when ... ts.inoperative.carnera.off ancl
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not(r.externaLhold 01' r.emergency .stop or r.alarrn) and
r.still and p = r.position

do
ts.buf := <>;
-7 ts.operntivefp);

end;

- - Operating ...

refined movc.Model of change.Pos by ... ts: Telesys is
when ... (t.s.inoperative 01' tt.active.position = ts.operative.last.pos)
do

end;

action get.new.pos by ts: Tclesys; tt: Telcgrip is
when ts.operative.last.pos /= tt.active.position
do

-¿ ts.opcrative( tt.active. posi tion);
ts.buf := ts.buf & <Lt.active.position >;

end;

rcfin ed oper.uc of sct.Dcsí.ination
by ... ts: TeleSys is
whcn ... ts.operative and

]> = I1cae1( ts .011f)
do

Ls.hu f := tail( ts.huf');
errd ;

- Stoppiug ...

nc t io n ilck_Sigllal by 1': Robot; ts: Telesys is
w lren ts.opcrní.ivc ami

(r.cx torual.hold 01' r.cmergeucy .stop 01' ralarrn)
do

-7 ts.inopcrnt.ivc.cruuera.ou;
e ud ;

refinecl moí.iou.dctccted of stop by ... ts: Telesys is
wh cn ... cm.dctcct.ing
do

-1 í.s.uropor.u.ive.camoraoft';
c nd ;

r-cfin ccl stop hy ... ts: Tclcsys is
w he n ... í.s.opcrative
do
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~ ts.iuoperative.camera.olf
end;

refincd dcact.Telcgrip by ... í.s: Telesys is
wh en ... ts.operative
do

~ ts.inoperative.camera.oíl;
end;

refined deactivatc.Telegrip by ... ts: Telesys is
when oo. ts.iuoperativc
do

end;

- - So me actions are !lO longer valid

refined ,starLeletection is
when .oo false
do

end;

refin ed set..camera.idle is
when oo. false
do

end;

refined hold.on is
when oo. false
do

end;

refined hold.offl is
when oo. false
do

end;

refined hold.offz is
when oo' false
do

end;

end;

creation C_TELESYS of TeleSys is
new Robot;
new Camera;
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new Telegrip;
new TeleSys;

end C_TELESYS;

A.2 The TelesSysLoc System

- - DisCo specification of Telesys Robot Teleoperation System.

TELESYSLOC

- - Author: Pablo Giambiagi
- - Date: 26.08.96
- - Last modified: 28.08.96

- - TeleSys systcm with sepárate (Local ancl Remo te) locations.

system TeleSysLoc

import Tclegrip, Camera, RoboLDifSig;

is

class R_TeleSys is
st at.e *NO'LOP, STAIlTING, STOPPING, OPER(lasLpos: integer);
buf: scquencc integer := <>;
scq: boolcau := false;
abp: hoolean := Ialse;
SCSSiOll: int.cger := O;

end;

class L_TcleSys is
st.at.e *NO'LOP, STAHTING, STOPPING, OPER;
state "c.unera.idle, cameru.dctccting;
buf: scqucnce intcger := <>;
seq: boolean := false;
abp: hoolcan := Falsc;
scssion: intcgcr := O;

encl;

- - Actions ._.
- - Starting Llu: systcm ...

action st.ut by tt: Telegrip; rts: TLTclesys is
when tt.active and rts.NOT_OP
do

-t rLs.STAHTING;
rt.s.session := rts.scssion -1- 1;

e n d ;

- -- Couunuuic.u.ing thc intention to start the system to
- -- t.hc local Location.
a c t io n com.strut by rts: R_Telesys; lts: Lc'Telesys is
w h en rt.s.S'fARTING aud lts.NO'LOP and rts.scq = lts.seq
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do
--+ Its.STARTING(false);
lts.scssion := rt.s.session;

cn d:

- - Start thc camcra if it is idlc and L_Telesys want.s t.o st.ut.
refincd start..camera of start.xlctcction by ... lts: L_Tclesys is
w h cu ... lts.camern.idle and lt.s.STAHTING
do

--+ lt,~.camera_detecting;

end;

- - Relcase hold if robot has to (and can) be rcstartcd.
refined rclease.hold of hold.offl by ... lts: L_Tclesys is
wlren ... lts.STARTING
do

end;

- - When ready, L_Telesys sends the robot position to updatc Tclegrip.
refined send.pos of changc.Pos
by ... rts: R_Telesys; lts: L_Telesys; r: Robot is
when ... lts.STARTING and lts.camera.detecting and

r.still.idle and rts.STARTING ami p = r.position
do

rts.buf := < (- rts.session) > ; - a token to clear the channcl
--+ rts.OPEH.(p);
rts.abp := lts.abp;

end;

- - While waiting for the confirmed-start message, all positions
- - received are eliminated.
action wait.confirrn by lts: L_Telesys is
when lts.STARTING and head(lts.buf) 1= - Its.session
do

lts.buf := tail(lts.buf);
end;

- - Reception of the confirmed-start message.
action startJts by Its: Lz'Ielesys is
when lts.STARTING and heacl(lts.buf) ~ ~ lts.session
do '! ' I

--+ lts.OPER;
lts.buf := tail(lts.buf);

end;

i 1"¡¡
1,
l',1,1

- - Stopping the system ...

- - Recognize a robot exception condition.
action ack.Signal by r: Robot; Its: Li'Ielesys is
when r.still.signalecl and (lts.OPER or lts.STARTING)
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do
-+ Its.STOPPINGj

erid;

- - Stop the robot if it is not already stopped.
refined stop.r of hold.on by oO' lts: Lz'Ielesys is
when oO, Its.STOPPING
do

erid ;

- - When the camera detects movements inside the workcell, it
- - informs (interrupts) immediately L3elesys.
refined motion of set.camera.idle by oO, lts: Lc'Telesys is
when oO. cm.cletecting
do

-+ lts.camera.idle;
if (lts.OPER 01' Its.STARTING) then

-+ Its.STOPPING;
encl if;

erid;

- - Alter Lc'Fclesys has stopped the robot, it can rcst.
action rest by lts: L_Telesysj 1': Robot is
when Its.STOPPING and r.still
do

-+ ILs.NOT _OPj
lts.seq := not.Ilts.scq};

end;

- - If L_TcJcsys has not accomplished a complete start , it tclls
- - ILTcksys.
act io n iníorm.uot.np by rt.s: ILTclesysj lts: L_Telcsys is
wh en lLs.NOT_OP aud

(rt.:dWEn. or rts.STOPPING or
(rl,s.STAHTING and lts.scq /= rts.seq))

do
-+ 1'Ls.NCYLOP;
rt.s.seq := lts.seq;

end;

_. - Thc systcm c.ur be stoppcd by user request.
act.ion stop by rts: R_Telesys is
when rt.s.O'PElt or rts.STARTING
do

-+ rts.STOPPINGj
end;

.- -- Dcnctivatiug Tclcgrip also stops the system.
rcfí uccl dcactivate_Telcg1'ip by oO, rts: R_Tclesys is
whcn oO,

do
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if (rts.OPEIl or rts.STAIUING) th en
--+ rts.STOPPING;

end if;
end;

- - Once ILTelcsys cntcrs its STOPPING statc, it should communicaí.c it
- - to Lz'Iclesys.
action comrn.stop by rts: ILTelesys; lts: Lz'Ielesys is
when rts.STOPPING amlnot(!ts.STOPPING or Its.NOT _OP)
do

--+ lts.STOPPING;
end;

- Operating the system ...

- - Bccause the idea is ncvcr to writ.c to more tlian one location at thc
- - same time, there is no way to remcmber tliat a message has bccn scnt.
- - Then , the message has to be resent all the time till an action
- - originated in another location (ack) tells the scndcr to stop
- - scnding tliat packet.

action tx.pkt by rts: R_Telesys; lts: Lc'I'elesys is
when rts.buf /= <> and Its.abp = rts.abp and

not(rts.NOrLOP 01' rts.STOPPING or lts.NOT _OP or lts.STOPPING)
do

lts.buf := lts.buf & <heae!(rts.bur»;
lts.abp := not(lts.abp);

encl;

action ack by rts: ILTelesys; lts: Lc'Telesys is
when rts.buf /= <> and lts.abp /= rts.abp
do

rts. buf := tail(rts. buf):
rts.abp := not(rts.ahp);

end;

refined move.Model of change.Pos by ... rts: Il_Telesys is
when ... (not(rts.OPEIl) or tt.active.position = rts.OPER.last_pos)
do

end;

action geLnew .pos by rts: Il_Telesys; tt: Telegrip is
when rts.Of'Elt.last.pos /= tt.activc.position
do

--+ rts.OPER(tt.active.position);
rts.buf r= rts.buf & <tt.active.position>;

encl;

refined operate of set.Destination
by ... lts: LTeleSys is
when ... lts.OPER and p = head(!ts.huf)
do

al
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lts.buf := tail(lt.s.buf);
end;

- - Some actions are no longer valid

refined setcamera.idle is
when ... false
do

errd ;

refined holcl.on is
when ... falso
do

erid ;

refined holcl.off? is
when ... falso
do

erid;

erid:

ereation C_TELESYSLOC of TelcSysLoc is
new Robot:
new Canuua;
n ew Telq~rip;
new ILTckSys;
new L_TelcSy::;;

end C_TELESYSLOCj

APPENDIX A. TELESYS SOURCE CODE
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The Synchronized Syst.ern
TLA

Sei.Alcun: ==
3sR,R:

sR.moving
R.moving
I\sR.still.signalec1'
I\sR.alann'
I\fl.still.signaled'
I\R.alann'
I\U nchangedSeLAla1"1"

ClearAlcriri ==
3sR,R:

sR.alann
R.alarm
1\-,sR.Alm'm'
I\if -'(sR.eme¡·gency_sto]J v sIc.extcriuil.liold

VsR.command-'wld) then
sR.still.idle'

endif
/v=Ruilartn'
I\if -,(R.emergency_sto]J v R.exteTnaLhold

vRsconvmarui.holii¡ then
R.still.idle'

endi]
I\UnchangedClearJ\larm

Set.Externai.Hold ==
3sR,R:

sR.moving
R.nwving
I\sR.still.signaled'
I\sR.exteTnal_hold'
I\R.still.signaled'
I\R.exte¡'nal_hold'
I\U nchangedseL.Exte1"1wLII old

93
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(D.l)

(B,2)

(B.3)
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Clear_ExtcrnaLH old ==
3sR,R:

s Hi.cxt.erruilhol d
Rscxternol Lioui
1\ -'sR.e:l:ienwLhold'
I\ij -,(sR.ernergency_stop V s Ii.alarrri

v sHscomrruuul.liolth tlieti
.n.auu.u«

eruli ]
1\-,R. external Jiol d'
I\ij -,(R.emergency_stoj! V Rsalcrm

V R.comrnancLhold) then
R.still.idle'

endij
I\UnclwngedCleal'_Exter'nal_H ol d

(B.4)

Sec.Emevqencij.Stop ==
3sR,R:

-,( sR.emergency_stop)
-,( R.ernergency _stO]!)
I\sR.sI:¿II.s·ignaled'
I\sR.emergcncy_stop
I\R.st'ill.signaled'
I\R.emcr!)cnc:y .stop
I\U'II.c:hangedseLE,"e/'oe'l1cy_S/,ol'

(B.5)

Clc(l1'_Emc'r!Jcncy_SloJi ==
3sR,R:

sn.C·IIUTf}C'll.cy _st(1)
R.C'/luT.lJency_stop
1\<sIi.emerqencs¡ .siop'
I\¿j -'(sR.c:¡;fcrnaUwLcl V s Iirilccrm.

VsR.coTn'//w.nILhoLd) tlien
s n..still.úLle'

cndif
1\ -,R.elll.crye/l.ey _stO]!'
I\'ij -,(R.c:ctc1"lwUwld V R.czla'/"m

V R.cmn.mmuLhold) tlien
Ii ..still.úlle'

eiuli ]
1\ U'/ u)U 1.'1¡!Jcric l cccr _1': mery C/Ley .s 101'

(I3.6)

1I1ovc_fl.o{)(){, ==
3sR,R. :

sR.niouiiu¡
R .'lIlO'U'Ó¡[j

I\sR.]ws·iI,úm' = s It.rnovuuj.destination
I\sR.stilL uu«
I\!?jwsit.ún¡' = R.'/IW'lI'ÓI.[J.dcstirwlúnl
l\H.st.ilL.úLlc'
I\Ullclul:ll!}Crl Mooe _/Iol,,,t,

(B.7)
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Activate--'I'elegrip ==
3sTT,TT:

TT.inactive
/\if sTT.inactive ilieri

sTT.active'
endif

/\TT.active'
/\UnchangedActivate_Telegrip

(B.8)

M oue.M odel ==
3T S, sTT, RT S, TT :

3P:
TT.active /\ P >= O
(-.(RT S.oper)V

TT.active.position = RT S.oper.lasL]Jos)
/\íf sTT.aclive /\ (T S.ínopemtiveV

s'I'Tiactiue.poeitioii = T S.opemtive.lasL]Jos) ilieti
sTT.active'
s'I'Tiaciive.position' = P

endif
/\TT.active'
/\TT.active.position' = P
/\U nchangec1M oue s.M odei

(D.9)

Get.Neui.Pos ==
3T S, sTT, RT S, TT :

T S.opemtive.lasLpos =1= sTT.active.position
RT S.o]JedasLpos =1= T'Tiactioe.positiori
/\T Ssoperative.last spos' = s'I'Tvactiue.posiiioti
/\T S.buf' = T S.buf & < sTT.active.position >
/\RT S.opeT.LasLpos' = TT.active.position
/\RT S.bu!, = RT S.buf & < TT.active.position >
/vmpath' = mpaili & < sTT.active.position >
/\impath' = impatli & < TT.active.position >
/\UnchangeclCeLNe1V_Pas

(B,IO)

D'eactiuate.T'eleqrip ==
3RTS,TT:

TT.active
/\TT.inactive'
r.i] (RTS.oper V RTS.starting) then

RT S.stopping'
endif

/\U nchanged Deactivate_Teleg"ip

(B.11)

Start ==
3RTS,TT:

TT.active /\ RT S.noLop
/\RT S.sta7'ting'
/\RT S.session' = RT S.session + l
/\U nchangeclSta..t

(B,12)
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Com.Siart ==
3LTS,RTS:

RT S.staTting /\ LT S.noLop /\ RT S.seq = LT S.seq
/\LT S.staTt'ing' '
/\LT S.session' = RT S.session
/\Unchangeelco11LStm.t IJ

I1

ReleaseJ-Iolel == 11
3LTS,R: 1/

LT S.stm·ting '1
I '

,(R.emeTgency_stop v R.ex,te1'naLholel v R.alaTm)
R.still.signaled'
/\R.comman(Lhold' = jalse
/\U nchangedReleaseJl old

(B.13)

,.
1 .
1'-·-'
¡

¡,
ii
1 '/:
I
I

l·i
, .,

(B.14)
1,
';

Start.Camera ==
3CM,LTS:

LT S.came1·cLidle /\ LT S.staTting
/\LT S.cameTajletect'ing'
/\c M,detechng'
-unchangedstm'LCame1'll

(B.15)

Send_Pos ==
3T s, sTT, sR, LT S, RT S, TT, R :

sTT.active /\ T S:inoperat'ive /\ sR.still
'(sR.e:d;enwLlwld V sIi..enierqencsj.siop V sR.alann.)
LT S.s/'o:rting /\ LT Scccuriercc.detectisuj
n.suu s.u« /\ RT S.SI,CL·rt:ing/\ TT.CLct-ive
/\TS./mj' =<>
/\'ij 'I'Scitioperaiiue.camerc.o] j then

sC M.detect-ing'
eiuli]

/\T S.operative'
/\T S.o1Icmtivc.lasLpos' = sIcpositiou
/\sTT,acL·ivc.pos'¡¿·ion' = sR.position
/\m]Jath' =< sR.position >
/\'I']Jath' =< s R.positiori >
/\RTS.b'lL!, =< (-RTS.sess·ion) >
/\RT S.abp' = LT S.abp
/\RT S.01JeT'
/\RT S.opcdasL]Jos' = Ripositioti
/\TT.active.])os'ition' = Rvposition
/\-i171pCLth'= < R.]Jos-it·ion >
/\i1']Jath' = < Riposition >
/\UnchangedSendYos

(B.16)

WaiLConjinn ==
3LTS:

LTS.start·ing /\ head(LTS.buJ) i -LTS.session
/\LT S./m!' = tai] (LTS.buJ)
/\U·/tclwngedw niLCon!i,.",

(B.17)
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Stost.Ets ==
3LTS:

LT S.starting 1\ hcad(LT S.bu!) = - LT S.scssion
I\LT Sioper'
I\LT S./m,j' = tail (LT S.bu!)
I\U,,¡c/Ul.'1I.ycflslo,·{._LI.s

(13.18)

Opérate ==
3LTS,R,TS,sR:

LT S.OpeT 1\ LT S.buf f <> r.n.euu
-,(fl.cmcrgcncy_stop V R.c:J:tc1'1wLhold V fl.ala1'1n.)
T S.opcmtive 1\ sR.still
-,(sR.eme1·gency_stop V sHsextertuil.hoid V s Ii.olos-ni¡
I\sR.moving'
r.s R.mouiruj.destiruuion' = heacl(TS.bu!)
1\-vs It.command.Iioul'
I\T S.bu!, = tail(T S./m!)
I\r]Jath' = rpail; & head(T S.bu!)
I\R.nwving'
I\R.m.oving.dcstination' = head(LT S./m!)
1\-,R.comm.and_hold'
I\LT S.bu!, = tail(LT S.bu!)
l\ir]Jath' = irpaili &hcad(LT S.bu!)
I\U nchangedOpe1'ate

(13.10)

TxYkt ==
3LTS,RTS:

RTS.buf f<> I\LTS.abp = RTS.abp
-,(RTS.noLop V RTS.stopping

VLTS.noLopV LTS.stopping)
I\LTS.bu!, = LTS.buf & < head(RTS.bu!) >
I\LT S.abp' = not(LT S.abp)
I\UnchangedTx.Ykt

(B.20)

Ack ==
3LTS,RTS:

RTS.buf f<> I\LTS.abp f RTS.abp
I\RTS.bu!, = tail(RTS.bu!)
I\RT S.abp' = not(RT S.abp)
I\U nchangedAck

(B.21)

Stop ==
3RTS:

RT S.opel' V RT S.starting
I\RT S.stopping'
I\U nchangedstop

(B.22)

Ack .Si qnal ==
3LTS,R:

R.still.signaled 1\ (RT Sioper V LT S.starting)
I\LT S.stopping'
I\U nchangedAcLSignal

(B.23)
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Motion ==
3CM,LTS:

CMuleteciiru;
/\CM.idle'
/\LTS.camercLiclle'
/\ij (LT Scoperor L'T S.starting) then

LT S.stopping'
endif

/\U nchangeclM atían

(B.24)

Ln j orm..N'ot.Op ==
3LT S, RT S, TT, CM, 1'5, sTT, sCM, sR :

LTS.noLop
(RT S.oper· V RT S.stopp'ingV

(RTS.starting /\ LTS.seq f:. RTS.seq))
/\RTS.noLop'
/\RT S.seq' = LT S.seq
/\'if (TS.opemtive /\ sTT.active) /\ TT.inactive then

s'I'Tíinaciiue'
sCM:iclle'
sR. still.signaled'
sR.coi nmumd.lioltl'
l' S.inopemt'Íve.camem_oj t'

el se ij T 5.opemt'Íve/\
(( sTT:inacl:ive /\ TT.inact'Íve)V
(sTT.active /\ TT.active))

then
sCM.úlle'
sR.sWI.signaled'
s ii.conuruuid.liold'
TS.inoperat'Íve.carrw1"lLo f I'

else i ] sCM.detecting
(( sTT.inacl'ive /\ TT.inactive)V
(sTT.a(:t'Ívc /\ TT.ILdúJe))

(B.25)

the'/!
sCM.úlle'
sR.st'¿¿l.s'ignaled'
sH.comrtuuui.hotd'
l' S:ino]Jerative.camera_o f t'

el se if (1' S.o]Jeral'tve/\
is Ii.exterviol Jioid V sR.emerqencu.stop V sR.alarm))/\
(( sTT:inactive /\ TT:inactive)V
(sTT.active /\ TT.aci'Íve))

then
T S:i noperatiue. cm nera.on'

else if (TS:inopemtive /\ sTT.active)/\
TT.inactive /\ (-.(CM.úlle V sCM:idle))

then
sTT.i'lwctive'

cntli ]
/\U'II.ch(/.1¡yed1ItjO/"IILNoLOji
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Conim..Stop ==
3LTS,RTS:

RTS.sto]J]Jin.9/\ -,(LTS.stopping v LTS.71.oLup)
/\LT S.stopping'
/\U nchangedCommsl.op

(B.2G)

Rest ==
3LTS,R:

LT S.sto]Jping /\ R.still
/\LT Smotop'
/\LT S.seq' = not(LT S.ser¡)
/\U nchangednest

(B.27)

Stop_R ==
3LTS,R.:

LT S.sl;o]J]Jing
/\R.still.sigll.aled'
/\R.cmrmw71,cUwld'
/\U nchangedStolLR

(B.2S)

~pto. COMPUBC!OH
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