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Resumen
La descripción de sistemas mediante distintas vistas es una práctica acep-

tada en la ingeniería de software moderna. En este trabajo, mostramos como es
posible razonar en un marco relacional a través de especificaciones que capturan
el comportamiento de un sistema., Para esto consideramos distintas vistas us-
ando lógica lineal temporal, lógica dinámica o lógica dinámica lineal temporal.
El principal resultado es que vistas generadas por separado pueden ser unifor-
mazadas dentro de un marco relacional común al que pueden aplicarse distintas
técnicas de análisis. Asimismo presentamos un problema del mundo real en el
que probamos una propiedad no trivial de un sistema partiendo de las especifi-
caciones de su comportamiento en lógica dinámica y en lógica lineal temporal.

Abstraci
Describing systems through the specification of different views is a well ac-

cepted practice in modern software engineering. In this work we show how
to reason across behavioral specifications within a relational framework. We
consider views specifying behavioral information using linear temporal logic,
dynamic logic or dynamic linear temporal logic. The main result is that in-
dependently generated specifications can be amalgamated within a common
relational framework to which different analysis techniques can be applied. We
also present a realistic problem for which behavioral specifications in dyamic
logic and linear temporallogic are jointly employed in the proof of a non trivial
property.
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1 Introduction
The algebraization of logic consists on substituting reasoning (both at the logic
and the metalogic level) by the study of properties of dasses of algebras.

Fork Algebras [HV91] are an extension of relation algebras, and have been
used towards the algebraization of dassical and non-classical logics. Among
the results that can be cited, we find the paper by Frias, Baum and Maibaum
on the interpretability of first-order dynamic logic [FBMOl], and the paper by
Frias and Lopez Pombo on the interpretability of first-order linear temporal
logics [FP]. These results constitute the foundations of the Argentum Project.

The A1'gentum project

Argentum is a CASE tool with relational foundations, under development at
the laboratory of relational methods of the departrnent of computer science at
Universidad de Buenos Aires. Rather than using a single monolithic language
for software specification, it uses different logics for modeling different views
of systems. Thus, a system specification is a collection of theories coming from
different logics. Using the interpretability results for these logics, the theories are
translated to a uniform (regarding the language) relational specification. Once
a relational specification is obtained, different tools such as model checkers or
theorem provers can be applied in order to verify the relational specification.

For a graphical description of Ar gentum, see Fig. l. The spheres located
at the top of the figure stand for specifications of different views of a system
according to different logics. The arrows originating at the spheres map logical
specifications to a relational specification (located in the box targeted by the
arrows). The homogeneous specification can later be analyzed using tools (the
lower boxes) which can be plugged into Argentum.

Specifying system behavior

PDL [HKTOO]is a formalism to reason about programs. It captures how system
state evolve from program execution. On the other hand, LTL [Eme90] focuses
on sequences of states, namely execution paths. In other words, LTL allows us
to characterize those execution paths which are valido In LTL, no notion of
program arises.

Finally, DLTL [HT99] is an extension of LTL with the aim of adding dynamic
flavor to a linear temporallogic. This logic allows us to express how a program
"consumes" states along an execution path.

If we consider the union of PDL and LTL logics, then DLTL looks like the
dosest language to such formalismo Nevertheless, more expressive power leads
to a more complicated deductive system, and requires the merging of dearly
different concepts from both logics. These concepts are much doser to intuition
when treated independently.
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Figure 1: Architecture of Argentum

Goals

Given a system specification, different views of the system can be captured using
PDL and LTL. In this work, we aim to use a relational calculus to homogenize
these views, and verify properties that combines concepts from the dynamic
view and the linear temporal view.

Notice that, since we regard PDL and LTL as simple logics, and DLTL as
a complex one, this approach agrees with the Argentum project philosophy.
Finally, we demonstrate its convenience with a study-case.

The work is organized as follows. In Section 2 we introduce the necessary
mathematical basis for the remaining parts of the work. In sections 3, 4 and
5 we present mappings from PDL, LTL and DLTL formulas to relations in the
calculus of the closure fork algebras. Also, in section 5, an interpretability
theorem showing that any validity proof of an DLTL formula can be reduced to
proving a certain equation in an equational calculus is proved. In section 6 we
present an abstract framework of reasoning across PDL and LTL theories using
the language of the fork algebras. In Section 7 a concrete case-study suitable
for the abstract framework presented in 6 is given. Finally, in Section 8, we
present the conclusions.
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2 A Gentle Introduction to the Omega Closure
Fork Algebras

In this section we will present the omega calculus for closure fork algebras
(w-CCFA) and its intended (standard) models, the omega closure fork algebras
(w-CFA), as they were defined in [BFM98].

In order to do so, we will begin in subsection 2.1 by defining a set of essential
definitions and concepts. Later, in subsection 2.2 we will introduce the classes
of algebras of binary relations and its abstract counterpart, the relational al-
gebras, together with formalisms ETBR and CR. In subsection 2.3 we present
fork algebras and finally, in subsection 2.4 we present the closure fork algebras
(w-CFA) and the omega calculus for closure fork algebras (w-CCFA)).

2.1 A Introduction To AIgebras
In this subsection we will present some fundamental definitions about algebras
and some classes of algebras. It will be assumed that reader has a nodding
acquaintance with elementary concepts of set-theory and first-order logic. As a
reference text in both areas the reader is referred to [Bar77].

'vVebegin by introducing what an algebra is. The interested reader is referred
to [BS81].

Definition 2.1 An algebra 2( is a structure (A, h, ...,fn) such that

I, :Aarity(J;) -> A

for all i E [1, n].

Given an algebra 2( = (A, h, ... ,fn), A will be called the universe of 2( and
h, ... fn will be called the operations of 2(. If arity(h) = O, fi will be called a
constant. The function Rd : E -> E' takes reduct (some operations and sets of
a given algebra are forgotten) of algebras of type E to the similarity type E'.

Definition 2.2 Given two algebras2( = (A, h, ... ,fn) andfJ3 = (B, 91,··· ,9n),
fJ3 is a subalgebra of 2( if

-B~A

- arity(h) = arity(gi) for all i

- fi(bl, ... , barity(J;») = gi(bl, ... , barity(g;») for all bl, ... , barity(g;) E B

Definition 2.3 Let 2( = (A, Íi , ... ,fn) and fJ3 = (B, gl, ... ,gn) two algebras
such that arities match for each operation, a function h : A -> B is an homo-
morphism from 2( to fJ3 if

gi (h( al), ... , h( aaritY(9;))) = hi]; (al, ... , aarity(J;)))

for all i.
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23 is an homomorphic image of 21 if exists such an homomorphism from 21
to 23. A bijective homomorphism is called isomorphism.

Definition 2.4 Given an algebra 21 and a class 01 algebras K, 21 is repre-
sentable in K if ihere exists 23 E K such that 21 is isomorphic to 23. This
notion generalizes as follows: a class of alqebras K 1 is representable in a class
of algebras K2 if every member o] Kl is representable in K2·

Definition 2.5 An algebra 21 with universe A is simple if:

- IAI 2: 2

- 21 has exactly two homomorphic images

Now, we present the class of boolean algebras.

Definition 2.6 A boolean algebra is an algebra (A, +, ., -, 0,1) uihere + and
. are binary operations, - is unary, and O and 1 are distinguished elements. The
following identities are satisfied for all x, y, z E A:

idempotence {

commutativity {

associativity {

absorptioti {

distributivity {

O and 1 {

complement {

x= x
x·x = x

x+y = y+x
x·y = y·x

x+(y+z) = (x+y)+z
x·(y·z) = (x·y)·z

x+(x·y)=x
x·(x+z) = x

x·(y+z) = (x·y)+(x·z)
x+(y·z) = (x+y)·(x+z)

x·O = O
x+1 = 1

x·X= O
x+x= 1

2.2 Algebras of Binary Relations and the Calculus of Re-
lations

In this subsection we will define the classes of algebras ofbinary relations and the
class of relation algebras. The study of algebras of binary relations began with
the works of Charles Sanders Peirce [Pei33] and Augustus De Morgan [dM66]
and was later continued Ernst Schróder [Sch95] when looking for an algebraic
counterpart of first-order reasoning, much the same as George Boole developed
the so-called Boolean algebras as an algebraic counterpart to propositional rea-
soning.
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Thraughout the rest of this work, given a binary relation R in a set A, and
a, b E A, we will denote the fact that a and b are related via the relation R by
(a, b) E R.

Definition 2.7 Let E be a binary relaiioti on a set A, and let R be a set of
binary relaiions satisfying: '

-UR~E

- Id is the identity reiation on the set A and belongs to R

- 0 is the empty relatioti and belongs to R

- E belongs to R

- R is closed under set union (U), itiiersection (n) and complement relaiiue
to E C)

- R is closed under relaiional composition (denoted by o) and converse (de-
noted by V). These two opemtions are defined by

xoy = {(a, e) 1(:3b)( (a, b) E x 1\ (b, e) E y)}

and
x = {(b, a) 1 (a, b) EX}

Then, the struciure (R, U,n, -,0, E, 0,1 d, V) is called an algebra of binary rela-
tions.

The class of algebras of binary relations will be denoted as ABR, and the class
of algebras of binary relations which are also simple algebras will be denoted by
SimpleABR.

It follows frorn def. 2.7 that every algebra of binary relations has a boolean
reducto

In 1941 Alfred Tarski [Tar41] intraduced the elementary theory of binary
relations (ETBR) as a logical formalization of the algebras of binary relations.
The elementary theory of binary relations is a formal theory with two differ-
ent sorts. The set 1ndV ar = {VI, V2, V3, } contains the so-called individual
variables, and the set RelVar = {R, S, T, } contains the so-called relaiioti
variables.

Definition 2.8 The set of relaiioti designations is the smallest set RelDes such
that:

• ReLV ar U {D, 1, 1'} ~ ReLDes

• If R, S E ReLDes, then (R, R, R+S, R-S, R;S} ~ ReLDes

Definition 2.9 The set of atomic formulas ofETBR is the smallest set AtomETBR
satisfying:
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• R = S E AtomET BR whenever R, S E RelDes

• vRvl E AtomET BR whenever v, Vi E IndVar and R E RelDes

From the atomic formulas, compound formulas are built as in first-order
logic, with quantifiers applied only to individual variables. We will denote this
set by ForETBR

Definition 2.10 The set of formulas of ETBR is the smallest set ForETBR
satisfying:

• AtomETBR <;;; ForETBR

• If a, {3 E ForETBR andv E IndVar, then {.a, aV{3, 3v a} <;;; ForETBR

Definition 2.11 We define the ETBR formalism as follows:

• Formulas: ForETBR

• Inference rules:

{3
(modus ponem)

__a_ (generalization)
Vx a

• Axioms:

VxVy(x1y)
VxVy(.xOy)
Vx(xl'x)
VxVyVz((xRy 1\ yl' z) ===;. xRz)

VxVy(xRy ~ .xRz)

VxVy(xRy ~ yRx)
VxVy(xR+Sy ~ xRy V xSy)
VxVy(xR-Sy ~ xRy 1\ xSy)
VxVy(xR;Sy ~ 3z(xRz) 1\ (zSy))
R = S ~ VxVy(xRy ~ xSy)

(unit definition)
(zero definition)

(refiexity of the identity)
(identity is a congruence)

(complement definition)

(converse definition)
(join definition)

(meet definition)
(relative product definition)

(equality definition)

Although the intended models of this theory were al! the algebras of binary
relations (ABR), Jónsson et al. in [JT52, Thm.4.l0iiiJ proved that ETBR forces
models to be simple (SimpleABR).

Definition 2.12 Let 2l = (R, U, n, -,0, E, 0, Id, V) be an algebra in SimpleABR.
An ETBR model is a structure (2l, m, v) where m is the meaning function that
assigns relations in R to variables in RelVar, and v is the valuation function
that assigns elements from B21 to individual variables. It is clear how to extend
m to a function mi : RelDes ~ R. For the sake of simplicity, we will use the
name m for both mappings.
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Definition 2.13 Given an ETBR model (2l,m,v), the semantics of a ETBR
formula is defined recursively as follows:

• (2l,m,v) I=ETBR xRy iff (v(x),v(y)) E m(R)

• (2l,m,v) I=ETBR R = S iffm(R) = m(S)

• (2l,m,v) I=ETBR ,a iff (2l,m,v) lFETBR a

• (2l,m,v) I=ETBRaV/3 iff(2l,m,v) I=ETBRa or(2l,m,v) I=ETBR/3

• (2l, m, v) I=ETBR :Jx a iff exists a E B'}i such that (2l, m, v) I=ETBR a[x/a]

From the elementary theory of binary relations, Tarski [Tar41] introduced
the calculus of relations (CR). The calculus of relations is defined as a restric-
tion of the elementary theory of binary relations. Formulas of the calculus of
relations are those formulas of the elementary theory of binary relations where
no variables over individuals occur.

Definition 2.14 The set of formulas of CR is the smallest set ForCR satisfy-
ing:

• R = S E ForCR [or all R, S E RelDes

• 1f a, /3 E ForCR, then {,a, a V /3} <;;; ForCR

As axioms of the calculus of relations, Tarski chose a subset of formulas with-
out variables over individuals valid in the elementary theory of binary relations.

Definition 2.15 We define CR formalism as follows:

• Formulas: ForCR

• 1nference rules:
R=R
R=S
S=R

R=S S=T
R=T

R, = SI ... R¿ = Sk

• Axioms:

1. (R = S 1\ R = T) => S = T
2. R = S => (R+T = S+T 1\ R-T = S·T)

3. R+S=S+RI\R-S=S·R

4. (R+S)·T = (R-T)+(S·T) 1\ (R-S)+T = (R+T)·(S+T)

5. R+O = R 1\ R-1 = R
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6. R +TI = 1 !\ R- TI = O
1. 1= O

8. R=R

9. (R;Sr = SiR
10. (R;S);T = R;(S;T)

11. R;l' = R
12. (R;S),i' = O ==} (S;T).R = O

13. R; 1= 1VI; TI = 1

The semantics of CR is defined as a class of algebras.

Definition 2.16 A relation algebra is an algebra (R, +, " -,O,1, ;, 1', V) where
+, . and ; are binary operations, - and V are unary operations, and O, 1 and l'
are distinguished elements. Furthermore, the reduct (R, +, " -, 0,1) is a boolean
algebra, and the following identities are satisfied for all x, y, z E R:

x;(y;z) = (x;y);z (Ax. 1)

(x+y);z = x;z+y;z (Ax. 2)

(Ax. 3)

x=x (Ax. 4)

x;l'=l';x=x (Ax. 5)

(x;yr = y;x (Ax. 6)

x;y·z = O ijJ z;Y·x = O ijJ x;z·y = O (Ax. 7)

We will denote the class of all relation algebras by RA.
In [CT51] it was proved that formulas (1)-(12) can be proved from Axs. (1)-

(7) and viceversa. If we add formula (13) to the axiomatization of relation
algebras, we obtain the class of simple relation algebras (SimpleRA).

Definition 2.17 Let 2t = (R, +, " ",0,1, ;, l' ,V) be an algebra in SimpleRA. A
CR model is a structure (2t, m) where m is the meaning function that assigns
relations in R to variables in RelVar. It is clear how to extend m to a function
mi : RelDes ~ R. For the sake of simplicity, we will use the name m for both
mappings.
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Definition 2.18 Given an CR model (21, m), the semantics of a CR formula is
dejined recursively as follows:

• (21, m) PCR R = 5 iff m(R) = m(5)

• (21, m). PCR -'0' iff (21, m) ~CR O'

• (21, m) PCR O' V (3 iff (21, m) PCR O' or (21, m) PCR (3

Theorem 2.1 (See for instance [Fri02]) ABR C;;; RA

Theorem 2.2 ([Lyn50]) RA is not representable in ABR.

Theorem 2.3 ([Tar55]) The class RA is a variety, i.e., it is axiomatizable
with a set of equations.

Theorem 2.4 ([TG87]) CR is equipollent(equivalent) with a three variable
fragment of first-order predicate logic.

For the rest of this work, we will use the notation x :::;y as a shorthand for
the equation x +y = y.

Definition 2.19 Let 21 be a relation algebra.

- A relation F is called functional if F iF :::;l' .

- A relation 1 is called injective if 1 i1:::;l' .

- A relation 5 is called symmetric if S = 5.

- A relation T is called transitive ifTiT:::; T.

- A relation D is called left- ideal if D = 1 .D,

- A relation D is called right-ideal if D = Di 1.

- A relation e is constant if it is functional and e i1 = 1.

- By Dom(R) we denote the relation (RiR)·l' (the domain ofrelation R),
and by Ran (R) we denote the relation (R iR) ·1' (the range of ihe relation
R).

Given a binary relation R we denote by dom (R) and ran (R) the sets {xl (:3y)(xRy)}
and {yl(:3x)(xRy)}, respectively. Given a set 5 we denote its power set as P (5).
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"'...Z E S(x)

Figure 2: The operator fork.

2.3 Proper Fork Algebras and the Calculus of Fork Rela-
tions

If we are looking for a framework suitable for system specification, two important
drawbacks arise from using CR. First, as a consequence of Thm. 2.2, some
models of CR cannot be seen as any algebra of binary relations. This means
that CR lacks of relational semantics (i.e. the universe of the algebra is not a set
of binary relations). Secondly, and perhaps more harmful, because of Thm. 2.4,
we will not be able to import specifications written in first-order predicate logic
with more than three variables.

Nevertheless, an advantage for using CR is its deductive system. It is quite
simple due to an equational finite axiomatization (which follows from Thm. 2.3)
and simpler inference rules.

Fork algebras were introduced by Haeberer and Veloso [HV91] when looking
for a formalism such that it overcomes the latter drawbacks and preserves CR
simple deductive system.

Definition 2.20 A pre proper fork algebra is a two-sorted algebraic structure
(R,U,U,n, -,0,E, o,Id, v, \7,*) with domains R and U, such that:

- (R, U, n, -,O, E, °,Id, V) is an algebra of binary relations on the set U

- * : U X U -+ U is a binary function that is injective on the restriction of
its domain to E

- R is closed under fork of binary relations, defined by:

S\7T = {(x, *(y, z)) IxSy 1\ xTz}

We will denote the class of pre proper fork algebras as PrePFA.
The definition of \7 is depicted in Fig. 2. Whenever x and y are related via

R, and x and z are related via S, x and *(y, z) are reiated via R\7 S.

Definition 2.21 We define the class of proper fork algebras (denoted by PFA)
as RdPrePFA, where the operation Rd takes reducts to the similarity type
(R,U,n, -,0,E,o,Id,v, \7).

14



We denote the class of proper fork algebras that are also simple algebras as
SimplePFA.

It was in [FBHV95] where the class of proper fork algebras as previously
depicted came up. From the first definition of fork algebras ([HV91]) until the
latter work, the definition of fork.evolved around the definition of the function
*.

The only requirement placed on function * by Frias et al. was that it had to
be injective. This was enough to prove in [FHV97] that the newly defined class
of fork algebras was indeed finitely axiomatizable by a set of equations.

In a similar way as Tarski, we will define the elementary theory of fork
relations (ETFR for short) having as target the definition of the class PFA. As
in ETBR, 1ndV ar contains the individual variables and RelVar contains the
relation variables.

Definition 2.22 The set of relation designations of ETFR is the smallest set
ForkRelDes satisfying:

• RelDes c:;; ForkRelDes

• If R, S E ForkRelDes, theti RV S E ForkRelDes

Definition 2.23 The set of individual terms of ETFR is the smallest set ForkI ndTerm
satisfying:

• IndVar c:;; ForkIndTerm

• tI, t2 E ForklndTerm, then *(tl, t2) E ForklndTerm

Definition 2.24 The set of atomic formulas of ETFR is the smallest set AtomForkFor
satisfying:

• If R, S E ForkRelDes, then R = S E AtomForkFor

• Iftl,t2 E ForklndTerm andR E ForkRelDes, thentIRt2 E AtomForkFor

Definition 2.25 The set of formulas of ETFR is the smallest set For ET F R
satisfying:

• AtomForkFor c:;; ForETFR

• Ifa,{3 E ForETFR andx E IndVar, then {-,a,av{3, ::Jxa} c:;; ForETFR

Definition 2.26 We define the ETFR formalism as follows:

• Formulas: ForETFR

• Inference rules: the same as ETBR

• Axioms: Extend the axioms of ETBR by adding

1. VxVy(xRV Sy) ~ ::Ju::Jv(y= *(u, v) 1\ xRu 1\ xSv))

15



2. 'Vx'Vy'Vu'Vv(*(x, y) = *(u, v) ===? x = u 1\ y = v)

Definition 2.27 Let 21= (R, U, n, -,O, E, o , Id, ", V) be an algebra in SimplePFA.
An ETFR model is a struciure (21,m, v) uihere mis the meaning function that as-
signs relations in R to variables il1 RelVar, and v is the valuation function that
assigns elements from B21 to individual variables. It is clear how to extend m
to a function mi: RelDes -+ R and v to a function Vi: ForklndTerm -+ B21.

For the sake of simplicity, we will use the name m and v for both mappings.

Definition 2.28 Given an ETFR model (21,m, v), the semantics of a ETFR
formula is defined recursively as follows:

• (21,m, v) FETFR tlRt2 iff (v(t1), v(t2)) E m(R)

• (21,m,v) FETFR R = S iffm(R) = m(S)

• (21, m, v) FETFR ·a iff (21, m, v) ~ETFR a

• (21,m,v) FETFR a V fJ iff (21,m,v) FETFR a or (21,m,v) FETFR fJ

• (21, m, v) FETFR :Jx a iff there exists a E B21 such that (21, m, v) FETFR
a[x/a]

Much the same as relation algebras are an abstract version of algebras of
binary relations, proper fork algebras also have their abstract counterpart.

Definition 2.29 An abstract fork algebra is a struciure (R, +, " -, 0,1, ;, 1', v, V)
uihere (R, +. " -, 0,1, ;, 1', V) is a relation algebra and for all r, s, t, q E R,

rVs = (r;(I'V1))·(s;(1 VI')) (Ax. 8)

(r V s) ;(t V qt = (r;t). (s; i'j) (Ax. 9)

(1'V1tV(1 V1't ~ l' (Ax. 10)

We denote the class of abstract fork algebras as AFA. Due to the definition,
this class can be axiomatized with a finite set of equations. We denote the class
of abstract fork algebras that are also simple algebras as SimpleAFA.

In a similar way as Tarski defined his calculus of relations, Veloso et al.
defined a calculus of fork relations (CFR) from the elementary theory of fork
relations.

Definition 2.30 We define the formalism CFR as follows:

• Fromulas: Those formulas from ETFR in which there is no occurrence
of the individual variables. The set of formulas of CFR will be denoted
ForCFR

• Inference rules: Same as ETBR

16



• Axioms: Extend the axioms of CR by adding Axs. (8)-(10).

Definition 2.31 Let 21. = (R, +, ., -, 0,1, ;, 1', ", V) be an algebm in SimpleAFA.
A CFR model is a structure (21., m) where m is the meaning function that assigns
relations in R to variables in RelVar. It is clear how to extend m to a function
m' : RelDes --> R. For the sake ~f simplicity, we will use the name m for both
mappings.

Definition 2.32 Given an CFR model (21., m), the semantics of a CFR formula
is defined recursively as follows:

• (21., m) FCFR R = S iffm(R) = m(S)

• (21., m) FCFR -,a iff(2I.,m) ~CFR a

• (21., m) FCFR a V (3 iff (21., m) FCFR a or (21., m) FCFR (3

Once defined both formalisms (ETFR and CFR) and their target classes (PFA
and AFA), we present the following theorems to determine the relationship be-
tween both classes.

Theorern 2.5 ([Fri02]) PFA ~ AFA

Theorern 2.6 ([FHV97, Gyu97]) AFA is representable in PFA

Since every praper fork algebra is an abstract fork algebra, and every abstract
fork algebra is isomorphic to a proper fork algebra, the relational semantics of
all models of CFR is assured.

Finally, in [VHF95], interpretability of FOLE in CFR through a semantic
preserving translation was proved. Hence, we are able to import FOLE speci-
fications into CFR.

We suggest the reader to take a look at [Fri02, Ch. 2] for another equally
valid semantic preserving translation and interpretability proof.

Given a 21. E PFA, elements from the base that do not represent pairs will be
called urelements. The set of urelements from 21. will be denoted by Urelu,

The next lemma proves that, given a praper fork algebra, it is possible to
single out its urelements (if there are any).

Lernrna 2.1 Let 21. E PFA

Urel'.}).= dom (Ran (1 VI))

ProoJ. It follows frorn the def. of PFA and domo _

We will denote the CFR term Ran (1 VI) by 1'u. Notice that in the previous
definitions we used AFA operations when referring to PFA operations. Since
PFA ~ AFA, it is clear how such mapping is defined.
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Under the previous definitions, the equation

l;l'u;l = 1

is valid in a proper fork algebra 2l if and only if Urelo; is not an empty seto We
denote by PFAU the class of proper fork algebras with urelements and by AFAU
the class of abstract fork algebras with urelements.

When interpreted in praper fork algebras, the relations (1' \lIt and (1\ll't
behave as projections, projecting components from pairs constructed by apply-
ing * to two elements in the universe. As is usual in literature, we call them 'Ir
and p respectively. They wiU allow us to cope with the lack of variables over
individuals in CFR. Figure 3 illustrates the meaning of these relations.

Figure 3: The projections 'Ir and p.

The operation CTOSS (denoted by ®) performs a kind of parallel producto A
graphic representation of crass is given in Fig. 4. An ETFR definition is given
by

V'wV'xV'yV'z(*(w,x)R®S * (y, z) <===> wRy /\ xSz)

Under the definitions of rr and p, the latter formula can be expressed in CFR as
follows:

R®S = ('Ir;R)\l(p;S)

It is not difficult to check that both definitions are equivalent. The proof is left
as an exercise to the eager reader.

x--R-w E R(x)

* ® *
y--S-z E S(y)

Figure 4: The operator crass.
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2.4 Proper Closure Fork AIgebras and the w-Calculus of
Closure Fork Relations

In [BFM98] the class of PCFA is introduced, and the omega calculus for closure
fork algebras (w-CCFA) was defined.

Definition 2.33 We define the i-th folded composition of a relation R (denoted
as R;i) by the conditions:

l'
R;R;n

Definition 2.34 Let (R, U, U, n, -,O, E, °,Id, v, V', *) be a pre proper fork alge-
bra, and let o and * unary functions from R to R, satisfying:

- R is closed under R*, the refiexive-transitive closure defined by

- R is closed under RO
, the set choice operator defined by condition

X
O <;:; x 1\ Ixo I = 1 ~ x =f °

Then, the structure (R, U,U, n, -,O, E, 0, Id, v, V', *, o, *) is a pre proper closure
fork algebra.

We denote the class of pre proper closure fork algebras by PrePCFA.

Definition 2.35 We define the class PCFA as RdPrePCFA where Rd takes
reducts to structures of the form

(R, U, n, -, 0, E, 0, Id, v, V', o, *)

Definition 2.36 A closure fork algebra is a structure of the form

(R, +,., -,O, 1,;,1', v, V', o, *)

where (R, +, .,-,0,1, ;, 1', v, V') is an abstract fork algebra and for all x, y E R,

(Ax. 11)

(Ax. 12)

l·(x·xO)·l = 1·x·1, , " (Ax. 13)

x* = l' +x;x* (Ax. 14)

x*;y:::; y+x*;(y·x;y) (Ax. 15)
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In the following paragraphs we introduce the calculus for closure fork alge-
bras (CCFA)

Definition 2.37 The set of relation designations of CCFA is the smallest set
ClosureForkRelDes satisfying:

• ForkRelDes ~ ClosureForkRelDes

• 1f x E ClosureForkRelDes, then {x*, z"} ~ ClosureForkRelDes

Definition 2.38 Given a set of relation variables RelVar, the set of CCFA for-
mulas on RelVar is the set of identities ti = t2, with ti, t2 E ClosureForkRelDes
and it is denoted by ForCCF A.

Definition 2.39 We define the formalism CCFA as follows:

• Formulas: ForCCF A

• 1nference rules: Same as CFR

• Axioms: Extend the axioms ofCFR by adding Axs. (11)-(15).

Definition 2.40 We define the calculus w-CCFA as the extension of the CCFA
obtained by adding the following inference rule:

f- l' < Y (i E IN)
f- x* :S y

Definition 2.41 We define the class of omega closure fork algebras (w-CFA)
as the models of the identities provable in w-CCFA.

Notice that every member of w-CFA has a simple abstract fork algebra reducto

Theorem 2.7 ([FBM01]) PCFA ~ w-CFA

Theorem 2.8 ([FBM01]) w-CFA is representable in PCFA

Definition 2.42 Let21 = (R, +,., -,O, 1,;,1', ': V, 0, *) be an algebra inw-CFA.
A w-CCFA model is a structure (21,m) where m be a meaning function m :
RelVar -> R that assigns relations in R to variables in RelVar. 1t is clear how
to extend m to a function mi : ClosureForkRelDes -> R. As previously done
with the definitions of CR models and CFR models, we will use the name m for
both functions.

Definition 2.43 Let (21,m) be an w-CCFA model, the semantics of a w-CCFA
formula a is defined as follows:

• 21,m Fw-CCFA R = S iff m(R) = meS)

• 21, m Fw-CCFA .(3 iff 21, m ~w-CCFA (3

• 21, m Fw-CCFA (3 V I iff 21, m Fw-CCFA (3 or 21,m Fw-CCFA I

Theorem 2.9 ([FBM01, Thm. 8]) Let Q: be a w-CCFA equation. Theti,

Fw-CCFA a ~f-w-CCFA a
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3 Interpreting PDL in Fork AIgebras
The syntax and semantics of propositional dynamic logic (PDL) can be found
in [HKTOO]. PDL is a formalism for reasoning about programs. From a set
of atomic actions, and using combinators, it is possible to build more complex
programs. PDL is a modal logic where the behavior of the modal operators
is determined by programs, understood as binary relations among on a set of
computational states.

When compared to classical propositionallogic, the difference is the dynamic
content, which is clear in the notion of satisfiability. While satisfiability in
classical propositional logic depends on a single valuation, in PDL there is a
multiplicity of valuations, in which valuation we evaluate wil! depend on the
state the program has reached.

Along this work we wil! assume a fixed (but arbitrary) finite signature l.; =
(A, P) where A = {adiEA are the atomic action symbols, and P = {PdiEP are
the atomic proposition symbols.

Definition 3.1 The set of programs and formulas on l.; are the smallest sets
PrgP DL(l.;) and For P DL(l.;) satisfying:

• A S;;; PrgPDL(l.;)

• lf {r, s} S;;; PrgP DL(l.;), then {r ;s, r U s, r*} S;;; PrgP DL(l.;)

• Ij a E ForPDL(l.;), then o:? E PrgPDL('L,)

• P S;;; ForPDL(l.;)

• lf {o, ¡'J} S;;; For P DL(l.;) , then {-,o:, o:V ¡'J} S;;; For P DL(l.;)

• I] o: E ForPDL('L,) and rE PrgPDL(l.;), then (r)o: E ForPDL(l.;)

The semantics of PDL formulas is defined over a Kripke structure K of the
form (S, A, p), where S is a set of states, A = {ai }iEA is a set of binary relations
on S and P = {pdiEP is a set where Pi S;;; S for al! i E P.

Given a Kripke structure K and a signature l.;, we can map A to A and P
to P using the subindexes.

Definition 3.2 Given a K Kripke structure for the signature l.; and q E SK,
the semantics of a PDL formula is defined recursively as follows:

• K,q FPDL Pi iffq E Pi
• K, q FPDL -'0: iff K, q ~PDL o:

• K,q FPDL o: V ¡'J iff K,q FPDL o: or K,q FPDL ¡'J

• K, q FPDL (r)o: iff exists q' E SK such that (q, q') E PrgK(r) and
K, q' FPDL o:

• PrgK(ai) = ai
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• PrgK(r;S) = PrgK(r) ;PrgK(S)

• PrgK(r U s) = PrgK(r) U PrgK(S)

• PrgK(r*) = (PrgK(r))*

• PrgK(a?) = {(q,q) IK,q foPDL a}

A formula a E Por P D L(~) is satisfied in a Kripke structure K for ~ if there
exists a state q E SK such that K, q foPDL a. A formula is valid in a Kripke
structure K if it is satisfied for all q E S K.

In [F098], Frias and Orlowska presented an interpretability result for PDL
in w-closure calculus of fork algebras. We present their result in this section.

Defining the translation for a dynamic language with signature E, requires
extending the language of w-closure fork algebras with new constants S,{A¡hEA
and {PdiEP' The meaning of these constants is established by adding the
following axioms:

s = l'u (Ax. 16)

Dom (Pj ) :::;S, for all i E P (Ax. 17)

1;P ¡ = 1, for all i E P (Ax. 18)

S; A¡ ;S = A¡, for all i E A (Ax. 19)

Axiom (16) establishes that the states are the urelements. Axiom (17) es-
tablishes that domains of relations P¡ are sets of states. Axiom (18) establishes
that relations P¡ are right ideal. Finally, axiom (19) establishes that A¡ is a
binary relation on states.

Definition 3.3 By w-CCFA+PDL we denote the extension of w-CCFA obtained
by adding symbols S, {A¡hEA, {P¡hEP as constants, and adding axioms (or
axiom schemes) (16) to (19).

Definition 3.4 We define the translation TpDL mapping formulas from PDL~)
to relations of w-CCFA+P DL, as follows:

• TpDdpi) = P¡

• TpDd.a) = S;TpDda)

• TpDda V (3) = TpDda) +TpDd(3)

• TpDd(r)a) = MpDL(r);TpDda)

• MpDdai) = A¡

• MpDdr U s) = MpDdr)+MpDds)
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• MpDL(r;s) = MpDdr);MpDds)

• MpDdr*) = (MpDdr))*

• MpDda?) = TpDda)·S

Lemma 3.1 ([F098]) Given a Kripke structure K = (S, A, F), there exists
a non empty class of proper closure fork algebras extended with constants S,
{A¡}iEA and {P¡}iEP such that, for all 2l in this class,

• 2l satisfies Axs. (16)-(19),

• for all q E S

Given a Kripke structure K, we denote the subclass of PCFA determined by
Lemma 3.1 by ([K.

Lemma 3.2 Given a Kripke structure K = (S, A, F), and let 2l E ([K, for all
P E PrgPDL("E,),

Proof. It follows fram definition of ([K, Pro« and MpDL. •
Lemma 3.3 ([F098]) Given 2l proper closure fork algebra extended with con-
stants S, {A¡}iEA and {P¡}iEP satisfying Axs. (16)-(19), there exists a Kripke
structure K such that for all q E dom (S),

q E dom (TpDL(a)) ~ K, q FPDL a

Theorem 3.1 ([F098, Thm. 7.15]) Let cpE ForPDL("E,). Then,
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4 Interpreting LTL in Fork AIgebras
The syntax and semantics of linear temporal logic (LTL) were introduced in
[Eme90]. LTL is a formalism suitable for reasoning about system behaviors.

Along this section we wil! assume a fixed (but arbitrary) finite set of atomic
proposition symbols P = {Pi}iEP,

Definition 4.1 The sets of formulas on Pis the smallest set ForLTL(P) sai-
isfying:

• P <;;;; ForLTL(P)

• If{a.,{3} <;;;; ForLTL(P), then {-,a.,a.V (3, EBa.,a. U {3} <;;;; ForLTL(P)

The semantics of LTL formulas is defined over a Kripke structure K of the
form (S, T, So, p), where S is the set of states, T <;;;; S x S is the transition
relation, So <;;;; S is the set of initial states, P = {PdiEP where Pi <;;;; S for al!
i E P. The transition relation T is assumed to be complete; that is, every state
has at least one successor.

Given a Kripke structure K and a set P, we can map P to P trivially using
the subindexes.

Given a Kripke structure K, the set of traces of K is denoted by t:,.K. A
trace s E t:,.K is a infinite sequence so, SI, ... such that Si E S and (Si, Si+l) E T
for all i 2::O. We denote by Si the suffix of S starting at positioni. Similarly,
we denote by Si, the i-th state in the trace s.

Definition 4.2 Given a Kripke structure K for a sei of atomic proposition
symbols P and S E t:,.K, the semantics of a LTL formula is defined recursively
as follows:

• K, S FLTL Pi iff So E Pi

• K, S FLTL -,a. iff K, S ~LTL -,a.

• K, S FLTL a. V {3 iff K, S FLTL a. or K, s FLTL {3

• K, S FLTL EBa. iff K, sI FLTL a.

• K, s F LTL a. U {3 iff there exists i 2:: O such that K, Si FLT L {3 and for all
j such that 02:: j < i, K, si FLTL a.

A formula is satisfied in a Kripke structure K if there exists s = SoSI ... E
t:,.K such that So E So and K, s FLT L a.. A formula is valid in a Kripke structure
K if it is satisfied along all traces s E t:,.K such that So E So. We will use OP
as a shorthand for true U P and OP for -,O-,P.

In [FP03] Frias and Lopez Pombo defined a translation from LTL formulas
to fork algebra terms and presented a interpretability theorem for LTL logic
into fork algebra. In the same way, in [FP], both authors presented a similar
result for the FOLTL logic.
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In order to do so, they extended the language of omega closure fork algebras
with new constants: S, T, So, tr and a family of constants {P¡}iEP,

Using Axs. (16)-(18), it can be established that

- the set of states (S) are the, urelements,

- the domain of the family of relations P¡ are states, and

- relations P¡ are right-ideal.

In order to give meaning to the remaining constants, the next axioms are
intraduced:

So::; S (Ax. 20)

Dom(T) = S. (Ax. 21)

Axiom (20) establishes that every initial state is in fact a state and axiom
(21) establishes that every state has at least one successor.

The constant relation symbol tr is added to represent the set of all traces.
Given a fork algebra 2l, traces can be modeled using infinite right degenerate
trees. The leaves in these trees are elements fram U'21.

In order to complete the notion of trace in fork algebras, more axioms can
be used. In [FP03], a set ofaxioms was originally presented. In [FP] this set
was impraved:

tr < l' (Ax.22)

7rjtrj7l' = S (Ax. 23)

tr ::; S®tr (Ax. 24)

trjp = Ran (7l'\1(T®p)) jpjtr (Ax. 25)

Axiom (22) states that tr ia a partial identity (a set). Axiom (23) establishes
that every element in a trace is a state, and therefore by axiom (16) a urelement.
Axiom (24) and (25) establish that traces are infinite, T-related, sequences.

Definition 4.3 By w-CCFA+LT L we denote the extension of w-CCFA obtained
by adding symbols S, T, So, tr and a family of constants P' = {P¡hEP as
constants, and Axs. (16)-{18) and Axs. (20)-(25).

25



Definition 4.4 We define the tmnslation TLTL mapping formulas from LTL
to relations of w-CCFA+LTL, as follows:

• TLTdpi) = 7TjP¡

• TLTd-.a) = trjTLTL(a)

• TLTL(a V (3) = TLTL(a)+TLTL((3)

• TLTL(EBa) = pjTLTL(a)

• TLTL(a U (3) = (Dom (TLTL(a)) jp)* jTLTd(3)

Definition 4.5 (Infinite trees) Let S be a nonempty set and T a binary re-
lation on S. Let T(S, T) be the set of binary trees t satisfying:

• t is a binary tree with information in the leaves,

• t has infinite height,

• leaves are labelled with elements from S,

• t is right degenerate,

• given two consecutive leaves of t holding information s and s', (s, s') E T

Definition 4.6 Let S be a nonempty set, T a binary relaiion on S and s =
SO,Sl,S2, ... a sequence ofT-connected elements of S. We define ts E T(S,T)
as the tree satisfying (Vi < W)(7T(pi(ts)) = sd·

Lemma 4.1 ([FP03, Lemma 6]) Given a Kripke struciure K = (S, T, So, p),
ihere exists a non empty class of proper closure fork algebra extended with con-
stants S, T, So, tr and {P¡}iEP such that, [or allm in this class,

• m satisfies Axs. (16)-(18) and Axs. (20)-(25)

• for all s E 6.K

K, S ~LTL a ~ ts E dom (TLTL(a))

Given a Kripke structure K, we denote the subclass of PCFA determined by
Lemma 4.1 by ([K.

Definition 4.7 Let S be a nonempty seto Let T be a binary relation on S. Let
t E T(S, T). We define s¡ as the sequence of states satisfying

Lemma 4.2 ([FP03, Lemma 5]) Given m E PCFA extended with constants
S, T, So, tr and {P¡}iEP satisfying Axs. (16)-(18) and Axs. (20)-(25), ihere
exists a Kripke siruciure K such that for all tE dom (tr),

tE dom (TLTL(a)) ~ K, St ~LTL a
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In order to reduce notation we will denote the relation Dom (7r ; S Q) ; tr as

trQ.

Theorem 4.1 ([FP03, Thm. 3]) Let O' E ForLTL(P). Then,
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5 Interpreting DLTL in Fork AIgebras
In this section we present the interpretability result for propositional dynamic
linear time logic (DLTL) [HT99]. In order to do so, we will define a translation
of DLTL formulas to relational expressions.

DLTL is a simple extension the logic of LTL. The main goal of this formalism
is to add dynamic behavior to linear temporal time logic. The basic idea is to
strengthen the until modality by indexing it with the regular programs of PDL
(See def. 3.1).

The syntax of DLTL is defined over a set of atomic propositios P = {pdiEP
and a set of atomic actions A = {ad iEA. Along this section we will assume a
fixed (but arbitrary) finite signature L: = (A, P).

Definition 5.1 The set of programs on L: is the smallest set PrgDLTL(L:)
satisfying:

• A s:;; PrgDLTL(L:)

• 1fr,s E PrgDLTL(L:), then {r*,rUs,r;s} s:;; PrgDLTL(L:)

Definition 5.2 The set of formulas on L: is the smallest set For DLT L(L:)
satisfying:

• P s:;; ForDLTL(L:)

• 1f 0'., (3 E For DLT L(L:) and RE PrgDLT L(L:), then {'o'., O'.v(3, o'. UR (3} s:;;
ForDLTL(L:)

The semantics of DLT L(L:) formulas is defined over a Kripke structure K
of the form (S, A, SO, p), where

- S is a set of states,

- A = {lidiEA is a set of binary relations on S characterizing atomic actions.
It is assumed that every state q has at least one atomic action a E A such
that q E dom (a)

- So s:;; S is the set of initial states and

- P = {Pi}iEP where Pi s:;; S.

Given a Kripke structure K and a signature L:, we can map A to A and P
to P using the subindexes.

Given a Kripke structure K, the set of traces of K is denoted by t::..K. A
trace s E t::..K is a infinite sequence so, SI, ... such that for al! i 2: O Si E S
and there exists a E A such that (Si, Si+1) E a. The set of trace prefixes of K
is denoted by rK. A trace prefix 7 E rK is a finite sequence such that it is a
prefix of a trace in t::..K. If 7 is a trace prefix, then the length of 7 is denoted as
171·
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Definition 5.3 (Trace prefix concatenation) Let T, TI E TK

if T = ,\ and TI = ,\
if T i- ,\ and TI = ,\
if,T = ,\ and TI i- ,\
if Ti- ,\ and TI i- ,\ and TITI-l = T6
otherwise

No confusion should arise from using symbol ; for relational composition
and also trace prefix concatenation.

We extend the trace prefix concatenation to sets of trace prefixes.

Definition 5.4 (Trace prefix set concatenation) Let E, El < fK'

E; El = {T; T/I(T E E /\ TI E El) /\ (T = ,\ V TI = ,\ V TITI-l = T6)}

Definition 5.5 We define ihe i-th folded concatenation of a trace prefix set E
(denoted as E; i) by the conditions:

Definition 5.6 Given a Kripke structure K for the signature I; and a program
P E PrgDLTL(I;), the set of all possible trace prefixes from program P (denoted
by IIPIIK) is defined recursively as follows:

• IlaillK = {pql (p, q) E lid

• IIR U SIIK = IIRIIK U IISIIK
• IIR; SIIK = IIRIIK; IISIIK
• IIR* IIK = (IIRIIK)* = Ui2:o(IIRIIK);i

Definition 5.7 (Trace prefix function) Let s be a trace in K and i E IN
. {,\ if i = O

exec(s,2) = 'f' Oso ... Si 2 2 >

Definition 5.8 Given a Kripke structure K for the signature I; and s E 6.K,
the semantics of a DLTL formula is defined recursively as follows:

• K, S FDLTL Pi iff So E Pi

• K, S FDLTL -'0 iff K, S FDLTL o

• K, S FDLTL o V f3 iff K, S FDLTL o or K, s FDLTL f3

• K, S FDLTL o uP f3 iff exists i 2:: O such that
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- K, Si ~DLTL (3
- for all fsuch that O::::; j < i ihen K, sj ~DLTL a

- exec(s, i) E IIPIIK
As in LTL, a formula is satisfied in a Kripke structure K if there exists

s = SOSI ... E ~K such that So E So and K, s ~DLTL a. A formula is valid in
a Kripke structure K if it is satisfied along all traces s E ~K such that So E So·

In [HT99] the interpretability of LTL in DLTL is presented.

Definition 5.9 We define the translation TLTL~DLTL mapping formulas from
LTL to formulas in DLTL, as follows:

• TLTL~DLTdpi) = Pi

• TLTL~DLTd-'a) = -,TLTL~DLTda)

• TLTL~DLTda V (3) = TLTL~DLTL(a) V TLTL~DLTd(3)

• TLTL~DLTdtBa) = true UR TLTL~DLTda), where R = UiEA ai

Theorem 5.1 ([HT99, page 190]) Given a Kripke structure K for DLTL('E,).
Let a E LTL(P), and let s E b..K, then,

We will interpret DLTL with an extension of w-CCFA.

Definition 5.10 By w_CCFA+DLTL we denote the extension of w-CCFA ob-
tained by adding symbols S, So, tr, {A;}iEA, {PiLEP as constants. The axioms
of this theory are the axioms of w-CCFA and:

- the axioms ofw-CCFA+PDL

- the axioms ofw-CCFA+LTL

- the equation
(Ax. 26)

Axiom (26) says that two states P and q can be consecutive if there is at
least one action in which we can evolve from p to q.

Lemma 5.1 I] a is an w-CCFA formula, then

I/w-CCFA+DLTL a ==}I/w-CCFA a

1Note that this is an equation because A is a finite seto
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Proof. It follows from w-CCFA+DLTL being an extension of w-CCFA. •

Definition 5.11 We define the translation TDLTL mapping formulas from DLT L
to relations of w-CCFA+DLTL, as follows:

• TDLTL (Pi) = 'Ir; P,

• TDLTL (--'0:) = tr;TDLTL (o)

• TDLTL (o: /\ (3) = TDLTL (o) +TDLTL ((3)

• TDLTL (o: uP (3) = MDLTL(o:,P);TDLTL ((3)

• MDLTL(O:, ai) = Dom (TDLTL (0:)) ;Ran ('lrV'(A¡@p)) ;p

• MDLTdo:, R*) = MDLTda, R)*

• MDLTL(O:, R U S) = MDLTL(o:, R) +MDLTL (o:, S)

• MDLTL(o:, R; S) = MDLTL(o:, R) ;MDLTL (o, S)

Lernrna 5.2 Given a Kripke structure K = (S, A, SO, p), there exists a non
empty class of proper closure fork algebras extended with constants S, T, So,
tr , {A¡hEA and {P¡hEP, such that, for all21 in this class,

• 2l satisfies Axs. (16)-(26)

• for all s E D..K,

K, S FDLTL o: {:=> ts E dom (TDLTL (0:)).

Proof. See lemma B.ll for a complete proof. •
Given a Kripke structure K, we denote the subclass of PCFA determined by

Lemma 5.2 by ([K.

Lernrna 5.3 Given 2l E PCFA extended with constants S, T, So, tr , {A¡hEA
and {P¡hEP satisfying Axs. (16)-(26), there exists a Kripke structure K such
that for all tE dom (tr),

tE dom (TDLTL (0:)) {:=> K, St FDLTL o: .

Proof. See lemma B.lO for a complete proof. •
Next we present the interpretability theorem for DLTL. It shows that it is

possible to replace reasoning both at the logical and metalogicallevel in DLTL
by equational reasoning in our extension of w-CCFA.

Theorern 5.2 Let o:E ForDLTL('L.). Then,

FDLTL o: {:=> r-w-CCFA+DLTL trO;TDLTL (o) = tro;1
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Proo].
*)

First, we assume that

!fw-CCFA+DLTL Dom (71";So) ;tr;TDLTL (o:) = Dom (71";So) ;tr;l

By Lemma 5.1,

!fw-CCFA Dom (71";So) ;tr;TDLTL (o:) = Dom (71";So) ;tr;l

Then, by Thm. 2.9, there exists w-CCFA model (2t,m) such that

(2t,m) ~w-CCFA Dom(71";So) ;tr;TDLTL (o:) = Dom(1T;SO) ;tr;l

By Thm. 2.8 there exists ~ E PCFA such that ~ is isomorphic to 2t, and mi
the meaning function isomorphic to m. Hence,

(~, mi) ~w-CCFA Dom (71";So) ;tr;TDLTL (o:) = Dom (1T;SO) ;tr; 1

This implies the existence of t E U'13 satisfying:

• tE dom(tr)

• 71"(t)E dom (So)

• t rf. dom (TDLTL (0:))

By Lemma 5.3 there exists a Kripke structure K such that

K, St ~DLTL o:

Thus, since (St)o E So
~DLTL o:

~)
We begin by assuming that

~DLTL o:

Then, there exists a Kripke structure K = (S, T, So, A) and a trace s E t:..K
with So E So such that

K, S ~DLTL o:

By Lemma 5.2, there exists 2t E PCFA extended with constants S, T, So,
tr, {A¡hEA and {P¡hEP satisfying the axioms of w_CCFA+DLTL

, such that

ts 1. dom (TDLTL (0:))
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Since ts E dom (tr) and 7r(ts) E dom (So),

Qt ~w-CCFA Dom(7r;So) ;tr;TDLTL (ex) = Dom(7r;So) ;tr;l

Hence,

~w-CCFA Dom (7r;SO) ;tr;TDLTL (ex) = Dom (7r;So) ;tr;l

and Thm. 2.9,

ffw-CCFA Dom(7r;So) ;tr;TLTL(ex) = Dom(7r;So) ;tr;l

Due to w-CCFA+DLT L is an extension of w-CCFA,
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6 Reasoning across dynamic and linear time tem-
poral logics

In this section we reason across P D L and LT L using the language of the omega
closure [ork alqebras as an amalgamating formalismo In order to do so, in
subsection 6.1 we describe an abstract system and formalize it by means of a
P DL theory and a LT L theory. Also, we introduce a desirable system property
written in DLT L. In subsection 6.2 and 6.3 we verify this property using
w_CCFA+DLTL (w-CCFA+ for short).

6.1 An Abstract System and its Specification
Let S be a system, such that:

1. There is a set of atomic actions.

2. System state is described by means of a finite set of atomic propositions.

3. Every atomic action has a known precondition and postcondition, both
expressed in terms of propositional formulas.

4. We have a linear temporal property I which is invariant under atomic
actions, i.e; every time a precondition and I hold in a state, the next state
verifies that if the postcondition is reached, then I holds.

5. If the precondition is not met, the atomic action is not enabled and cannot
be launched.

AIso, it is highly desirable that the next property holds:

"If I holds, then it is invariant over every program."

Now we will present two theories that grasp this system description. In order
to do so, and for the rest of this work, we will consider:

• A signature ~ = (A, P) where A = {adiEA and P = {Pi}iEP are sets of
symbols, representing atomic actions and atomic propositions mentioned
in system description.

• Let i E A, we have (ti E For Prop(P) and f3i E For Prop(P) representing
precondition and postcondition of action symbol ai.

• I E For LT L(~) representing the desirable property mentioned in system
description.

Definition 6.1 (specPDL Theory) specPDL is a PDL(I',) iheoru, contain-
ing the following axioms

(ti ===> [ailf3i, [or all i E A,
,(ti ===> [ailfalse, [or all i E A.
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Definition 6.2 (specLTL Theory) specLTL is a LTL(P) theory, containing
the following axioms

o((ai 1\ I) ===} 9({3i ===} 1)), for all i E A.

Once system features are forrnalized, it remains to specify the system prop-
erty we would like to verify, (i.e. if property 1 holds, it is invariant over every
program).

Notice that test programs are not included as DLTL programs. One way to
overcome this language constraint is to restrict the proof to a finite set of test
programs, and model them as atomic actions.

Definition 6.3 (Test free program) The set of PDL test free programs for
the siqnaiure-Y; is the smallest set TestFreePrgP DL("L.) such that:

• A S;; TestFreePrgP DL("L.)

• 1f{R, S} S;; TestFreePrgPDL("L.), then{R;S,RuS,R*} S;; TestFreePrgPDL("L,)

We rephrase our goal property as:

If 1holds, then 1 is invariant over every PDL test free programo

Let I' = TLTL->DLTdI), and let us consider only PDL test free programs.
Then, by Lemma C.3, the desirable system property is stated by means of a
DLTL theory as follows:

Definition 6.4 (specDLTL Theory) specDLTL is a DLTL(L,) theory, con-
taining the following axioms

(true UR true) ===} (I' ===} i' UR 1')

for all R E PrgDLTL("L.).

6.2 Verification of properties through fork reasoning
We begin this subsection by introducing mappings from DLT L models to P DL
and LT L models respectively.

Definition 6.5 Given a Kripke structure K = (S, A, So,?) that is a model for
theory D LT L("L.), we define K LT L as the K ripke structure satisfying

LTL U - -K = (S, ai, So,P)
iEA

Notice that KLTL is a model for theory LTL(P).

Definition 6.6 Given a Kripke structure K = (S, A, So,?) that is a model for
theory DLTL("L.), we define KPDL as the Kripke structure satisfying

KPDL = (S,A,?)
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Notice that KPDL is a model for theory PDL(l',).
Once we have defined both system features and its desirable properties, we

will prove that in every system that meets system features holds the desirable
property. Using model jergon, we need to show that every model of the system
features is a model of the desirable property. This notion is formalized by
Thm.6.l.

As shown in appendix E, this proof can be undertaken in a semantic manner.
Nevertheless, it is our main intention to show how fork calculus can be useful to
replace semantic proving when reasoning across dynamic and linear temporal
logics.

The praof of Thm. 6.1 is organized as follows. First, we use the translation
of PDL and LTL into fork algebras to homogenize system features (since system
features are formalized using only these logics). Secondly, we use the translation
of DLTL into fork algebras to see how the desirable property looks like in this
relationallanguage. Finally, we use the fork calculus to prove that the relational
translation of the praperty can be deduced frorn the relational translation of
system features (this notion is captured by Thm. 6.2).

Theorem 6.1 Let K be a Kripke siructure that is a model for the theory
DLTL(l',), sucli that

• KPDL is a model of specPDL .

• KLTL is a model of specLTL.

Then, K is a model of specDLTL.

Proof. Let 2l E r¿K. By Lemma C.5, 2l E r¿KPDL. Since KPDL is a model of
specPDL, then

and,
2l F=w-CCFA+ 8;TpDd-"CXi ==* [a;]false) = 8;1

By Lemma C.4, 2l E r¿KLTL. Since KLTL is a model of specLTL, then

By Thm. C.l,

I-w-CCFA+8;TpDdcxi ==* [ai],Bi)= 8;1
I-w-CCFA+8;TpDd-"CXi ==* [ai]false) = 8;1
I-w-CCFA+tro;TLTL(O(CXi /\ [==* EB(,Bi==* I))) = tro;l

Thus, by Thm. 6.2,

I-w-CCFA+ trO;TDLTL ((true UR true) ==* (I' ==* I' UR [')) = tro;1
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By w-CCFA+ completeness (Thm. C.I)

2l Fw-CCFA+ trO;TDLTL ((true UR true) ===} (1' ===} r UR 1')) = tro;l

Then, by Lemma 5.3, there exists a Kripke structure K' = (S', A', S6, F')
such that, for all s E !::,.K', for all RE PrgDLTL("L,),

K', s FDLTL (true UR true) ===} (1' ===} t' UR 1')

We finish this proof by showing that if a formula is valid in K', it is also
valid in K.

Let a a DLTL formula, s E !::,.K',

K',s FDLTL a
{==}ts E dom (TDLTL (a))

{==}K, s FDLTL a

(by Lemma 5.3)
(by def. ([DLTd

Therefore, K is a model of specDLT L. •

6.3 Reasoning across formalisms: Fork assault
We dedicate this subsection to present and prove Thm. 6.2. This theorem
captures how the relational translation of the property can be deduced from
the relational translation of system features using fork calculus only, and it is
essential to a fork algebraic proof of Thm. 6.l.

We begin by introducing some intermediate lemmas.

Lemma 6.1 Let i E A. Then,

S;TpDL(ai ===} [ai].Bi) = S;l,
S;TpDd,ai ===} [ai]false) = S;l

f- w-CCFA+

A¡ = Dom (TpDdai)) ;A¡ ;Dom (TpDd.Bi))

ProoJ. We proceed as follows.

SjTpDdai ===} [ai].Bi)
= SjTpDd-,ai V -,(ai)-'.Bi)
= S; (TpDL( ,ai) +TpDL( -,(ai)-,.Bi))

= SjSjTpDdai)+SjTpDd(ai)-,.Bi)

= S jTpDd ai) +S j Mp Dd ai) j Tp ot.'; -,.Bd

= S;TpDdai)+SjA¡;SjTpDd.Bi)

(by def. TpDL)

(by def. TpDL)

(by Thm. A.2.7 and def. TpDL)

(by def. TpDL and MpDd
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Hence,

We also have

s = Dom(S)
= Dom(S;1)
= Dom(S;TpDL\-,ai ~ [ai]false))
= Dom (S;TpDL(ai V -'(ai)true))

= Dom (S;(TpDL(ai)+S;Ai;S;1))

= S;Dom (TpDL(ai)+S;Ai;S;1)
-o----=--,.

= S;(Dom (TpDL\ai)) +Dom (S;Ai;S;1))

= S;(Dom (TpDL\ai)) +S;Dom (Ai ;S;1))

= S;Dom(TpDL\ai)) +S;S;Dom (Ai;S;1)

= S;Dom(TpDL\ai)) +S;Dom (Ai;S;1)
= S ;Dom (TpDL\ai)) +S;-,Dom (Ai ;S;1)
= S;Dom (TpDL\ai)) +S;-,Dom (Ai ;S)
= S;Dom(TpDL\ai)) +S;-,Dom(Ai)

Thus,

Then,

(1)

(by Lemma A.l.1)
(by Lemma A.1.14)

(by Hyp.)

(by def. TpDL)

(by Lemma A.l.4)

(by Thm. A.1.12)

(by Lemma A.l.4)

(by Lemma A.1.13)

(by Thm. A.2.7)
(by Thm. A.3.2)

(by Lemma A.l.14)
(by Lemma D.13)

(2)

Dom (A¡) = Dom (Ai) ;S (by Lemma D.14)
= Dom(Ai) ;(S;Dom(TpDL\ai)) +S;-,Dom(Ai)) (by (2))
= Dom (Ai) ;S;Dom (TpDL\ai)) +Dom. (Ai) ;S;-,Dom (Ai)

(by Lemma A.l.13)

= Dom(Ai) ;Dom(TpDdai)) +Dom(Ai) ;-,Dom(Ai)
(by Lemma D.14)

= Dom (Ai) ;Dom (TpDL\ai)) +Dotri (Ai) ·-,Dom (Ai)
(by Thm. A.l.7)

= Dom (Ai) ;Dom (TpDL(ai)) (by Thm. A.2.2)

Therefore,

In order to prove the lemma we will prove both inclusions.

2:)
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:::;)

A¡ = Dom (A¡) ;A¡ (by Thm. A.l.11)
= Dom (A¡) ;Dom (TpDL(O:i)) ;A¡ (by (3))
= Dom (TpDL(O:i)) ;A¡ (by Lemma A.2.5 and Thm. A.l.ll)
= Dom(TpDL(O:i)) ;S;A¡ (by Lemma D.12)
= Dom (TpDL(O:i)) ;Dom (S) ;A¡ (by Lemma A.l.1)
= Dom(TpDL(O:i)) ;Dom(S;l) ;A¡ (by Lemma. A.l.14)

= Dom(TpDL(O:i)) ;Dom (S;TPDL(O:i)+S;A¡;S;TpDL(,8i)) ;A¡
(by (1))

= Dom(TpDL(O:i)); ( Dom (S;TPDL(O:i)) ) ;A¡
+Dom (S;A¡;S;TpDL(,6i))

(by Thm. A.l.12)

= Dom(TpDL(O:i)) ;Dom (S;TPDL(O:i)) ;A¡

-s-Dom (TpDL(O:i)) ;Dom (S;A¡ ;S;TPDL(,6i)) ;A¡
(by Lemma A.1.13)

= Dom (TpDL(O:i)) ;S;Dom (TPDL(O:i)) ;A¡

-s-Dom (TpDL(O:i)) ;S;Dom ( A¡;S;TpDL(,6i)) ;A¡
(by Lemma A.1.4)

= S;(Dom(TpDL(O:i)) · .....Dom(TpDL(o:d));A¡

-s-Dom (TpDL(O:i)) ;S;Dom (A¡;S;TpDL(,6i)) ;A¡
(by Thms. A.3.2, A.2.5 and A.1.7)

= Dom(TpDL(O:i)) ;S;Dom (A¡;S;TpDL(,6i)) ;A¡
(by Thm. A.2.2 and A.l.1)

= Dom(TpDL(O:i)) ;S;Dom (--:-A-¡--=;S=-;:::::T=PD=L=("",6:=7'i));A¡;S

(by Lemma D.13)

< Dom(TpDL(O:i)) ;S;A¡;S;Dom(TpDL(,6i)) (by Lemma A.1.12)
= Dom (TPDL(O:i)) ;A¡ ;Dom (TpDL(,6i)) (by Ax. 19)

•
For the rest of this work, we will reduce notation by using trQ' to denote

relation Ran (tro ;p*).
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Lemma 6.2 Let i E A. Then,

rw-CCFA+

Proo]. In order to prove this property we will show that

(4)

We proceed as follows.

tro ;p'

= Dom (tro) .p" (by Lemma A.l.l)

= Dom (tro; 1) ;p' (by Lemma A.1.14)

= Dom (tro ;TLTL(O(ai 1\] ==* EB(,Bi==* 1)) .p" (by Hyp.)

= Dom(tro;TLTL(.(true U .(.ai V.] V EB(.,Bi V]»») ;p' (by def. ==* and o)
= tro ;Dom (TLTL( .(true U .( .ai V .] V EB(.,Bi V 1))) ;p' (by Lemma A.1.4)

= tro; Dom (tr; (Dom (TLTL(true» ;pr; tr; TLTL( ·ai V -il V EB(·,Bi V 1)) ;p'
(by def. TLTL)

:::::tro; Dom (tr; (t r ;»)" ;tr; TLTL (.ai V.] V EB(·,Bi V 1)) ;p'

(by tr::::: Dom(TLTL(true»)

= tro; tr ;Dom ('-:(t-r-;p-:)-=-.-;t-r-=;T'.=L=T=L""(.=a=i=V='=]=V=EB=:'(=.,B==,=V===1)») ;p' (by Lemma A.l. 4)

= tro;Dom ((tr;p)';tr;TLTL(.ai V.] V EB(.,Bi V 1)) ;tr;p' (by Thm. A.2.5)

Notice that Ran (tr;p) :::::tr by Lemma D.4,

= tro;Dom ((tr;p)' ;tr;TLTL(.ai V.] V EB(.,Bi V 1)) ;tr;p';tr (by Lemma A.3)

= tro ;Dom ( (tr;p)' ;tr;TLTL( .ai V -s V EB(.,Bi V 1)) ;tr; (tr;p;tr)' ;tr

(by Lemma A.3)

:::::tro;Dom ((tr;p)';tr;TLTL(.a; V.] V EB(.,Bi V 1)) ;(tr;p)';tr

(by Thm. A.2.8 and monotonicity)

:::::tro; (tr;pr; tr; Dom (TLTL( .ai V.] V EB(.,Bi V 1)) (by Lemma A.1.l2)
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(

trjTLTda;) )
= troj(trjp)'jDom +trjTLTL(I)

+Pj (trjTLTL(f3;) +TLTL(I))

(

trjTLTL(a;) )
:::;trojp*jDom +trjTLTL(I)

+ p ;(trjTLTL (f3;) +TLTL (I))
(by Thm.A.2.8 and monotonicity)

(by def. TLTL)

(

trjTLTL(a;) )
t * D +trjTLTL(I)= rojp j om

+pjtrjTLTL(f3;)
+PjTLTL(I)

(

Dom (trjTLTda;)) J
= tro'P*' +Dom (trjTLTL(I))

, , +Dom (pjtrjTLTL(f3;))
+Dom (PjTLTL(I))

(

trj,Dom (TLTL(a;)) J
+trj,Dom (TLTL(I))

- tro'P*' ( )- " +Dom pjtrjTLTdf3;)
-s-Doni (PjTLTL(I))

(by Lemma A.1.13)

(by Thm. A.1.12)

(by Thm. A.3.2 and Lemma A.1.4)

Hence,

tr; = Ran (tro ;p*)

'" Ram (,ro;po;
(by def. tr;)

(by Thm. A.2.8)

•
We will reduce notation by denoting relation Ran (7r \7 (A¡ 0p)) as Rg(Ai)'
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Lernrna 6.3

1-w-CCFA+

Por all P E PrgDLTL('E-),

tro;Dom(TDLTL(I')) < tro;Dom(TDLTL(I'))
;MDLTL(true, P) - ;MDLTL(I', P) ;Dom (TDLTL (I'))

Proof. In order to prove this property, we will show that

tro ;Dom (TDLTL (1')) < tro ;Dom (TDLTL (1'))
;MDLTL(true, P) - ;MDLTL(I', P) ;tro ;Dom (TDLTL (I')) (5)

trQ' ;Dom (TDLTL (1')) ;MDLTL(true, ai)
= trQ' ;Dom (TDLTL (I')) ;Dom (TDLTL (true)) ;Rg(A¡);p

(by def. MDLTL)

(by Thm.A.2.8)< trQ' ;Dom (TDLTL (1')) ;Rg(A¡);p
= trQ' ;Dom (TDLTL (I'))

;Rg(Dom (TpDL(ai)) ;A¡ ;Dom (TpDL(f3i)));P
= trQ' ;Dom (TDLTL (1')) ;Rg(A¡)

; (Dom (TpDL(ai)) !g) 1') ;p; (Dom (TpDL(f3i)) !g) 1')
(by Lemma A.2.5)

= trQ' ;Dom (TDLTL (I')) ;Rg(A¡)
;Dom (-ll";TpDL(ad) ;p;Dom (-ll";TpDL(f3i)) (by Thm. AA.16)

= trQ' ;Dom (TDLTL (1')) ;Rg(A¡)
;tr;Dom (7r;TpDL(ai)) ;p;tr;Dom (7r;TpDL(f3i))

(by Thms. A.2.5 and A.2.7 and Lemma DA)

= trQ' ;Dom (TDLTL (I')) ;Rg(A¡)
;Dom (tr;7r;TpDL(ai)) ;p;Dom (tr;7r;TpDL(f3i))

(by Lemma A.1.4)

(by Hyp.)
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= tr; ;Dom (TDLTL (I')) ;Rg(Ai)
;Dom (tr;TLTdai)) ;p;Dom (tr;TLTd!3i)) (by Lemma D.9)

= tr; ;Dom (TDLTL (1')) ;Rg(Ai)
;tr;Dom (TLTL(ai)). ;p;tr;Dom (TLTd!3i)) (by Lemma A.1.4)

= tr; ;Dom (Tr,TL(I)) ;Rg(Ai)
;tr;Dom (TLTL(ai)) ;p;tr;Dom (TLTd!3i)) (by Lemma D.8)

::;tr; ;Dom (TLTL(I)) ;Rg(Ai)
;Dom (TLTL(ai)) ;p;Dom (TLTL(!3i)) (by monotonicity)

= tr; ;tr; ;Dom (TLTL(I)) ;Rg(Ai)
;Dom (TLTL(ai)) ;p;Dom (TLTL(!3i)) (by Thm. A.2.7)

( ~~~~~t;:;:m))
::;tr;; -s-Dom (p;tr;TLTd!3i)) ;Dom (TLTL(I))

+Dom (P;TLTL(I))
;Rg(Ai) ;Dom (TLTL(ai)) ;p;Dom (TLTL(!3i))

(by Hyp. and monotonicity)

Now, let us apply Ax. 2 and Lemma A.1.13 and label each relation.

trü; =Dorri (TLTL(ai)) ;Dom (TLTL(I)) ;Rg(Ai)
;Dom (TLTL(ai)) ;p;Dom (TLTL(!3i))

+
trü; -,Dom (TLTL(I)) ;Dom (TLTL(I)) ;Rg(Ai)
;Dom (TLTL(ai)) ;p;Dom (TLTd!3i))

r2

+
trü;Dom (p;tr;::::T:-LT-L-:(""'!3:-;-i));Dom (TLTL(I)) ;Rg(Ai)
;Dom (Tr,TL(ai)) ;p;Dom (TLTd!3i))

r3

+
trü ;Dom (P;TLTL(I)) ;Dom (TLTL(I)) ;Rg(Ai)
;Dom (TLTL(ai)) ;p;Dom (TLTL(!3i))

Let us analyze relations TI, T2 ,T3 and T4 one at a time. For relation TI,

tr;; -,Dom (TLTL(ai)) ;Dom (TLTL(I))
;Rg(Ai) ;Dom (TLTL(ai)) ;p;Dom (Tr,TL(!3i))

::; =Dorti (TLTL(ai)) ;Dom (TLTL(ai)) ;p (by Thm. A.2.8)
= (-,Dom (TLTL(ai)) -Dom (TLTL(ai)));p (by Thm. A.1.7)
= O (by Thm. A.3.3)
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Regarding relation r2, a proof similar to the one performed for rl allows
us to show that

tr; ;-.Dom (TLTL(l)) ;Dom (TLTL(I)) ;Rg(A¡) = O
;Dom (TLTL(O:i)) ;p;Dom (TLTdf3i))

Regarding relation r3,

tr; ;Dom (p;tr;TLTL(f3d) ;Dom (TLTL(I)) ;Rg(A¡)

;Dom (TLTL(Cii)) ;p;Dom (TLTdf3i))

:S Dom (p;TLTdf3d) ;p;Dom (TLTdf3i))

= p;Dom (TLTdf3i)) ;Dom (TLTL(f3i))

= p; (Dom (TLTdf3i)) .Dom(TLTL(f3i)))

=0

(by Thm. A.2.8)

(by Lemma A.1.5)

(by Thm. A.1.7)

(by Thm. A.3.3)

And finally, frorn r4 we have that,

tr; ;Dom (p;TLTL(I)) ;Dom (hTL(I))
;Rg(A¡) ;Dom (TLTL(Cii)) ;p;Dom (TLTdf3i))

:S tr; ;Dom (p;TLTL(I)) ;Dom (TLTL(l)) ;Rg(A¡);p (by Thm. A.2.8)
= tr; ;Dom (TLTL(I)) ;Rg(A¡) ;Dom (p;TLTL(I));P (by Thm. A.2.5)
= tr;;Dom(TLTL(I)) ;Rg(A¡);p;Dom(TLTL(I)) (by Lemma A.1.5)
= tr; ;tr;Dom (TLTL(I)) ;Rg(A¡) ;p;Dom (TLTL(I))

(by Lemma D.lO)

= tr; ;tr;Dom (TLTL(I)) ;Rg(A¡) ;tr;p;Dom (TLTL(I))
(by Thms. A.2.7and A.2.5)

= tr; ;tr;Dom (TLTL(I)) ;Rg(A¡) ;tr;p;tr;Dom (TLTL(l))
(by Lemma D.4)

:S tr; ;tr;Dom (hTL(I)) ;Rg(A¡) ;p;tr;Dom (TLTL(l))
(by Thm. A.2.8)

= tr; ;Dom (tr;TLTL(I)) ;Rg(A¡) ;p;Dom (tr;TLTdI))
(by Lemma A.1.4)

= tr; ;Dom (tr;TDLTL (1')) ;Rg(A¡) ;p;Dom (tr;TDLTL (1'))
(by Lemma D.8 and def. I')

:S tr; ;Dom (TDLTL (I')) ;Rg(A¡) ;p;Dom (TDLTL (I'))
(by Thm. A.2.8 and monotonicity of Dom)

= tr; ;Dom (TDLTL (I')) ;Rg(A¡) ;tr; ;p;Dom (TDLTL (I'))
(by Thms. A.2.7 and A.2.5)
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= trñ .Dom (TDLTL (1')) ¡Rg(A¡) ¡trñ ;p¡trñ ;Dom (TDLTL (1'))
(by Lemma D.l1)

S; trñ .Dom (TDLTL (1')) ;Rg(A¡) ;p¡trñ ;Dom (TDLTL (1'))
(by Thm. A.2.8)

= trñ ;Dom (TDLTL (1')) .Dom (TDLTL (1'))
;Rg(A¡) ;p¡trñ .Dom. (TDLTL (1')) (by Thm. A.2.7)

= trñ .Dom (TDLTL (1')) ;MDLTL(1', a;) ¡trñ ;Dom (TDLTL (1'))
(by def. MDLTd

• P=QuR

trñ .Dom (TDLTL (1')) ;MDLTL(true, Q UR)

-t -'·D (T (1'))' (MDLTL(true,Q) )
- ro, om DLTL , +MDLTdtrue, R)

(by def. MDLTL)

= trñ ;Dom (TDLTL (1')) ;MDLTL(true, Q)
+trñ ;Dom (TDLTL (1')) ;MDLTL(true, R) (by Lernma A.1.l3)

S; trñ ;Dom (TDLTL (1')) ¡MDLTL (1', Q) ;trñ ;Dom (TDLTL (1'))
+trñ .Dom (TDLTL (1')) ;MDLTL(1', R)¡trñ ;Dom (TDLTL (1'))

(by lud. Hyp.)

= trñ ;Dom (TDLTL (1')) ¡ ( ~f:;:;~'('1~)R) ) ;trñ .Dom (TDLTL (1'))

(by Ax. 2 and Lemma A.1.13)

= trñ ;Dom (TDLTL (1')) ¡MDLTL (1', Q UR)¡trñ ;Dom (TDLTL (1'))
(by def. MDLTL)

• P = Q¡R

trñ ;Dom (TDLTL (1')) ;MDLTL(true, Q; R)
= trñ ;Dom (TDLTL (1')) ;MDLTL(true, Q) ;MDLTL(true, R)

(by def. MDLTL)

S; trñ ;Dom (TDLTL (1')) ;MDLTL(1', Q)
;trñ ;Dom (TDLTL (1')) ¡MDLTL(true, R) (by Ind, Hyp.)

S; trñ .Doni (TDLTL (1')) ¡MDLTL(1', Q)
;trñ ;Dom (TDLTL (1')) ;MDLTL(1', R) ¡trñ ;Dom (TDLTL (1'))

(by lud. Hyp.)

S; trñ .Doni (TDLTL (1')) ;MDLTL(1', Q)
;MDLTL(1', R) ;trñ ;Dom (TDLTL (1')) (by Thm. A.2.8)

= trñ .Dom (TDLTL (1')) ;MDLTL(1', Q¡ R);trñ .Dom (TDLTL (1'))
(by def. MDLTL)
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• P = Q*.
We will begin by proving that the hypothesis of Lemma A.3 are satisfied.
First, note that,

Ran (tro ;Dom (TDLTL (I')) ;MDLTL(true, Q)) ::; tro ;Dom (TDLTL (I'))
(by lnd. Hyp.)

And we also have that,

tro ;Dom (TDLTL (I')) ::; l'

Then, once the hypothesis that allow the application of Lemma A.3 has
been established, we proceed as follows:

tro ;Dom (TDLTL (I')) ;MDLTL(true, Q*)
= tro;Dom(TDLTL(I')) ;(MDLTL(true,Q))* (by def. MDLTL)

= tro ;Dom (TDLTL (I')) ;(tro ;Dom (TDLTL (I')) ;MDLTL(true, Q))*
(by Lemma A.3)

::; tro ;Dom (TDLTL (I'))

;(tro ;Dom (TDLTL (I')) ;MDLTL(I', Q) ;tro ;Dom (TDLTL (I')))*
(by lnd. Hyp.)

= tro ;Dom (TDLTL (I')) ;(MDLTL (I', Q))* ;tro ;Dom (TDLTL (I'))
(by Lemma A.3)

= tro ;Dom (TDLTL (I')) ;MDLTL(I', Q*) ;tro ;Dom (TDLTL (I'))
(by def. MDLTd

We finish this proof by showing that property holds,

tro ;Dom (TDLTL (I')) ;MDLTL(true, P)
= tro ;tro ;Dom (TDLTL (I')) ;MDLTL(true, P) (since tro ::;tro)
::; tro ;tro ;Dom (TDLTL (I')) ;MDLTL(I', P) ;tro ;Dom (TDLTL (I'))

(by (5))

::;tr¿ ;Dom (TDLTL (I')) ;MDLTL(I', P) ;Dom (TDLTL (I')) (by Thm. A.2.8)

•
We continue by presenting Thm. 6.2 and its proof.

Theorem 6.2

For all i E A,
S;TpDL(O:i ===> [ai],6i) = S;l,
S;TpDL(,O:i ===> [ai]false) = S;l,
tro ;TLTL(O(O:i 1\ I ===> EB(,6i ===> I))) = tro; 1

~ w-CCFA+

For all P E PrgDLTL(-¿,),

trO;TDLTL ((true uP true) ===> (I' ===> (I' uP I'))) = tro;l
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Proof.

::;)

trojTDLTL ((true u~ true) =} (1' =} (I' uP I'))) ::; troj1
(by monotonicity)

~) In order to prove the inclusion, we will show that

trojTDLTL (true uP true) ::; trojTDLTL (1' =} (I' uP I')) (6)

We proceed as follows,

trojTDLTL (true uP true)
= tro jMDLTdtrue, P) jTDLTL (true)
::; trojMDLTdtrue,P)j1
= tro jtrjMDLTdtrue, P) .L

= tro jtrjMDLTdtrue, P) jtrj1
= trojDom(TDLTL (1')) jtrjMDLTdtrue,P)jtrj1

+tro j,Dom (TDLTL (I')) jtrjMDLTL(true, P) .tr ;1
(by Thm. A.2.9)

::; tro .Dom (TDLTL (I')) jtrjMDLTL(1', P) .Dom (TDLTL (1')) jtrj 1
+tro j,Dom (TDLTL (I')) jtrjMDLTL(true, P) .tr ;1

(by Lemma 6.3)

= tro .Dom (TDLTL (1')) jtrjMDLTL(1', P) .Dom (TDLTL (I')) jtrj 1
+troj,Dom(TDLTL (1')) .Dom (trjMDLTL(true,P) jtr) j1

(by Thm. A.1.l4)

::; tro jMDLTL(1', P) .Dom (TDLTL (1')) j1
+troj,Dom(TDLTL (1')) j1 (by Thm. A.2.8)

= tro jMDLTL (1', P) jDom (TDLTL (1')) j1

+tro jDom (TDLTL (1')) j1 (by Thm. A.3.2)

= trojMDLTL(1', P) jTDLTL (I') jl+trojTDLTL (1')j1
(by Thm. A.1.l4)

(by def. TDLTL)

(by monotonicity)
(by Lemma D.15)
(by Lemma D.5)

= tro jMDLTL (1' , P) jTDLTL (I') +tro jTDLTL (I')
(by TDLTL and TDLTL right ideals)
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= trO;MDLTL(I',P);TDLTL (1') +tro;tr;TDLTL (I')
(by Lemma D.15)

= tro; (MDLTL(I',P);TDLTL(I') +tr;TDLTL(I'))
, (by Lemma A.1.13)

= tro ;TDLTL (I' ==> t' uP 1') (by def. TDLTL)

Therefore,

trO;TDLTL ((true uP true) ==> (I' ==> (I' uP 1')))

= tro;(tr;TDLTL (true uP true)+TDLTL (I' ==> t' uP 1'))
(by def. TDLTd

= tro;tr;TDLTL (true UP true)+tro;TDLTL (1' ==> t' uP 1')
(by Lemma A.1.13)

= tro ;TDLTL (true UP true) +tro ;TDLTL (1' ==> r uP 1')
(by Lemma D.15)

2: tro ;TDLTL (true UP true) +tro ;TDLTL (true uP true) (by (6))

= trO;(TDLTL (true uP true)+TDLTL (true uP true))
(by Lemma A.1.13)

= tro;l (BA)

•
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7 Case-Study: A Fictitious Mobile Tourist In-
formation Guide

In this section we present a case-study of verification of properties using fork
algebras. This case-study shows a fictitious system that is a instance of the
abstract system showed in subsection 6.l.

In subsection 7.1 we present a brief introduction to our case-study (both
system features and desirable property). In subsection 7.2 we give a detailed
description of such a system through natural language. In subsection 7.3 we
define the collection of atomic propositions that will serve to keep track of
system state. In subsection 7.4 we show dynamic behavior as a instance of the
specPDL theory. In the same way, in subsection 7.5 we show linear temporal
behavior as a instance of the specLT L theory. Finally, in subsection 7.6, we
end the case-study presentation by concluding that system meets the desirable
property.

7.1 Introduction
A user of a mobile system interacts with the system while on the road. Think
for instance of a tourist with his PDA 2 in a city, interacting with some local
information server through a wireless connection.

Once tourist has logged into the system, his PDA signals every change of
position automatically (with no need of human interaction).

Some of the interactions can be irÍfluenced by the tourist location. As an
example, asking for hotels to spend the night, might retrieve the hotels in the
zone (say ten blocks around). Similarly, asking for cash dispensers will result in
the nearest cash dispensers in the zone. Any time he changes his position, all
previously gathered location-sensitive information becomes useless, and it can
be erased from his PDA.

Now, the verification engineers wish to ensure that, if a local server reaches
proper behavior, it remains invariant along any execution of the server.

7.2 The Fictitious Mobile Tourist Information Guide
Once user becomes a member of the Mobile Tourist Jnformation Cuide ser-
vice, he is able to log into the system if user location falls within geographical
coverage .

• Due to its low computational cost, a local server can perform either a
user-login or a user-logout almost instantaneously .

• After user logs in, his PDA reports his actual position. Depending on local
server load, this position report can be immediately served (updating user
current position) or enqueued for further processing.

2Personal digital assistant, a handheld device that combines computing, telephone/fax,
Internet and networking features.
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• Following position report, a user may request for location-sensitive infor-
mation on a variety of topics, such as hotels, restaurants, cash dispensers,
etc.

• Any request of location-sensitive information involves a high computa-
tional cost (i.e.: queries on both internal and external databases, fetch-
ing data from internet , conducting searches in federative systems, etc.).
Therefore, these requests can be either enqueued or served.

• System protocols ensure that every server delivers location-sensitive infor-
mation according to current user position. In other words, a user never
receives location-sensitive information belonging to a sector different from
where he is.

• Queue policy implementation assures abscence of starvation for user re-
quests.

• User receives location-sensitive advertising at least once a session.

• City space is divided into discrete sectors (e.g.: honeycombs in cellular
phone technology), and each covered city has a unique local server.

7.3 System States
Due to the limited network bandwidth and data-retrieval capability, only a finite
number of users can connect simultaneously to a unique server. We model this
fact by defining a finite set U of possible user connections.

In the same way, we model city space as a discrete fixed set S of sectors.
Also, we limit the location-sensitive information topics to a finite set I.

Therefore, given a covered city, we capture system state through a finite set
of atomics propositions:

• logged j, asserts that user u is logged into the system,

• positionu,s, asserts that position s is the current position of user u,

• localInfo",s,i, asserts that user u has received location-sensitive informa-
tion on topic i in position s,

• advertising",s,i' asserts that server has sent user u advertising of topic i
in position s,

• pndrig Upclt.Pos., s i asserts that PDA of user u has reported a new posi-
tion s, but server has enqueued the update,

• pndng Rtr vl.clfnfo¿ i' asserts that user u has requested location-sensitive
information on topic i, but server has enqueued the request.
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7.4 System Dynamic Behavior
Both user and server can trigger actions (i.e.: requesting location-sensitive in-
formation, serving enqueued requests, etc.). Actions might lead to a transition
between different system states. ,

We formalize these actions together with its pre and post conditions using a
instance of theory specP D L defined in 6.l.

In other words, we enumerate the components of formulas of the shape:

ai ===} [ad.8i, for all i E A,
(-,ai) ===} [adfalse, for all i E A.

Now, let u,u' E U, s,s' E S, and let i E I.

- user u begins a session,

al -ilogged¿
al Loqin¿
.81 logged¿

- user u ends a session,

a2 logged¿
a2 Loqoui¿
.82 -ilogged¿

- PDA of user u reports a new position s,

a3 Iogged¿
a3 ReportPosu,s

.83 1\ -,localInfou,s',i ti

iEI
s' E U
s' -=1- s

(
(Po,ition", ¡\ ;: ~ ~ ~Po,ition",,) )

V pndngUpdtPosu,s

- user u requests for some local information i,

a4 logged¿ ti positionu,s 1\ -,pndngUpdtPosu,s'
s' EU
s' -=1- s

a4 RetrieveLocalInfou,i
.84 localInfou,s,i Vpndng'Rtrv Lclfnfo.j,
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- local server responses information request frorn user u,

a5 logged¿ 1\ pndngRtrvLclInfou,i 1\ positionu,s

a5 Sendlnfou,i
/35 localInfo~,s,i 1\ -,pndngRtrvLclInfou,i

- local server attends a change of position frorn user u,

a6 Iogged., 1\ positionu,sl 1\ pndngUpdtPosu,s
a6 UpdatePositionu,s
/36 positionu,s 1\ -,pndngUpdtPosu,s 1\ -,positionu,s'

- local server sends advertising to user u,

a7 logged., 1\ localInfou,s,i
a7 SendAdu,i
/37 advertisingu,s,i

7.5 System Linear Temporal Behavior
Finally, certain time concerning praperties hold globally. As an example: no
user requesi can be enqueued indefinitely. We specify such praperties as a in-
stance of theory specLTL defined in 6.2.

In other words, we will define a formula 1such that,

D((ai 1\ I) ==> EfJ(/3i ==> I)), for all i E A.

• Local server do not enqueue position updates indefinitely,

(

/\ u E U pndngUpdtPosu,s ==>
OSES

O ( (positfon.j, 1\ -ipndng Updt.Pos.jj )
v-ilogged¿

• Local server do not enqueue requests of information indefinitely,

o

/\ i E I pndng Rtrvf.clfnfo.j, ==>
uEU

(
(

positíon., s

O /\ s E S ==> locatInfou,s,i
V-,loggedu

• Local server sends advertising to user at least once per session,

h O ( /\ u E U Iogged., ==> logged., U ado Serit¿ )

52



where ado Sent¿ stands for formula:

/\ (Positionu,s ==?

sES '
V

i E I
adve,ti,ing.",; )

• Each user eventually ends session,

Using h, 12, h and 14, we define formula 1 of specLTL theory as,

7.6 Verification of dynamic linear temporal properties
Since the Mobile Tourist lnformation Cuide is a instance of specP DL and
specLT L theories, and by reasoning presented in subsection 6.2, we can en-
sure that the desirable P DLT L property holds. In other words, system meets
that,

If a local server reaches proper behavior, this proper behavior re-
mains invariant along any execution of the server.
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8 Conclusions
We have presented a interpretability result for the dynamic linear temporallogic
DLTL. Jointly with previous results on the interpretability of PDL and LTL,
this allows us to propose a general framework for reasoning across dynamic and
linear temporal logics. We use this framework to verify a non trivial property
that combines both dynamic and linear temporal concepts. Finally, we presented
a realistic problem in which such reasoning is relevant.
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A Arithmetical Properties of Omega Closure Fork
Algebras

Theorem A.1 The following properties are valid in all relation algebras for all
relations R, S, T, F, G and 1: '

1. R;O=O;R=O.

2. 1= 1.

3. 1;1 = 1.

4. (R+Sf = R+S.

5. (R-Sf = ks.
6. 1f R :S l' then R = R.

7. 1f R, S :S l' then R;S = R-S.

8. 1f R:S l' then (R;l) ·S = R;S and (l;R) ·S = S;R.

9. I] F+G = l' and FsG = O, then F;l = G;1.

10. Dom(R) = (R;l) ·1' andRan(R) = (l;R) ·1'.

11. Dom (R) ;R = R and R;Ran (R) = R.

12. Dom (R+S) = Dom (R) +Dom (S), i.e., Dom is additive. Similarly,
Ran(R+S) = Ran(R) +Ran(S).

13. Dom (R) = Ran (R) and Ran (R) = Dom (R).

14. R;l=Dom(R);l and1;R=1;Ran(R).

15. R= k
16. (R-S);T:S (R;T) . (S;T) and R; (S·T) :S (R;S) . (R;T).

17. I] F is a functional relation then F; (R- S) = (F; R) . (F; S).

18. I] F is a functional relation, G :S F, and Dom (G) = Dom (F) then
G=F.

19. I] F is a functional relation then Dom (F) ;F;R = F;R.

20. I] 1 is a injective relation then (R-S) ;1 = (R;I) . (S;I).

21. I] 1 is a injective relation then R;1;Ran(I) = R;I.

22. I] F :S l' then F;R . S = F; (R-S) and R;F . S =;= (R-S) ;F.
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Proof. See [Fri02], Thm 2.3. •
Filters are partial identities, i.e., relations F satisfying the condition F :::::1'.

Given a filter F, by .F we denote the relation F·1'.

Theorem A.2 The following properties of filters are valid in all relation alge-
bras:

1. I] F is a filter, then F+.F = l'

2. I] F is a filter, then F·.F = O

3.• Dom(R);l = R;l

4. I] F is functional, then

F;.Dom(R);l = (Dom(F) ·.Dom(F;R));l

5. Let Fl, ... .Fi, be filters and leti1, ... ,ik be a permutation of 1, ... , k, then

6. I] F is a filter, iheti .F is a filter.

7. 1f F is a filter, then F = F;F

8. tt F is a filter, then F;R::::: R and R;F :::::R

9. I] F is a filter, then R = (F;R)+(.F;R) = (R;F)+(R;.F)

Proof.

1. See [Fri02] Thm. 7.1.1.

2. See [Fri02] Thm. 7.1.2.

3. See [Fri02] Thm. 7.1.3.

4. See [Fri02] Thm. 7.1.4.

5.

Fl ; ... ;Fk = Fl ..... Fk

= Fil···· ·Fik

= Fil; ... ;Fik

(by Thm. A.1.7)
(BA and Hyp)

(by Thm. A.1.7)

6.

.F= F·1'
< l'

(by def. .)

(by absorption)
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7.
F=F-F

=F;F
(by idempotence)
(by Thm. A.1.7)

8.

F;R:S l';R
=R

(by monotonicity and Hyp.)
(by Ax. 5)

The proof for R; F :S R follows in the same way.

9.

R= l';R
= (F+.F);R
= F;R+.F;R

(by Ax. 5)
(by 1)

(by Ax. 2)

The proof for R = F;R+.F;R follows in the same way.

•
Theorem A.3 Let R be a right ideal relation, then the following properiies are
valid:

1. R is right ideal.

2. Dom (R) = +Dom (R)

3. Dom (R) -Dom (R) = O

4. Dom (R) +Dom. (R) = l'

Proo].

1. In order to prove this result we will use the following property of Boolean
algebras. Let R and S be arbitrary, then

(7)

We have that,

R;l+R = R;l+R;l
= (R+R);l
= 1;1

=1

(by R right ideal)

(by Ax. 2)
(BA)

(by Thm. A.1.3)
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Also,

R;l·R = R;l·R;l

::::(R·R);l

= 0;1
=0

(by R right ideal)

(by Thm. A.l.l6)

(BA)
(by Thm. A.l.l)

Thus, by 7,
R;l=R

Therefore, R is right ideal.

2.

Dom (R) = Dom (R;l)
= Dom (-,Dom (R) ;1)
= (-,Dom(R) ;1;1)·1'
= (-,Dom(R) ;1)·1'
= Dom (-,Dom (R))
= -Dom (R)

(by R right ideal)
(by Thm. A.2.3)

(by Thm. A.l.lO)
(by Thm. A.1.3)

(by Thm. A.l.lO)
(by Lemrna A.l.l)

3.

Dom(R) +Dotti (R) = Dom(R) +-,Dom(R) (by 2)
= l' (by Thm. A.2.1)

4.

Dom(R) -Dom (R) = Dom(R) ·-,Dom(R) (by 2)
= O (by Thm. A.2.2)

•
Lemma A.1 The following properties are valid in all relation algebras:

1. 1f R::; 1', then Dom (R) = R and Ran (R) = R

2. 1f R ::;1', then R-1' = R

3. Dom (R;S) = Dom (R;Dom (S)) and Ran (R;S) = Ran (Ran (R) ;S)

4. 1f F < 1', then Dom (F;R) = F;Dom (R) and Ran (R;F) = Ran (R) ;F

5. 1f F functional, then Dom (F;S) ;F = F;Dom (S)

6. I] R = R', R·T = O, R'·T' = O and R+T = R' +T', then T = T'

60



7. 1f R s; S, then Ran (R) < Ran (S) and Dom (R) s; Dom (S)

8. 1f S S; 1', then Ran (R) S; S ~ R S; 1;S

9. 1fRS;1',thenR;SS;T~SS;--,R;1+T

10. 1f R S; S, then R-S = R

11. 1f Ran(R) S; Dom(S), then R;S;l = R;l

12. 1f Q right ideal, then Dom (R;Q) ;R S; R;Dom (Q).

13. R;(S+T) = (R;S)+(R;T).

14. Dom(R) = Dom(R;l)

Proo].
1.

Dom(R) = R;R.1'
= R;R-1'
= R-R;l'
= R-R

=R
The proof for Ran follows in a similar way.

2.

R·1' = R;l'
=R

3.

Dom(R;S) = (R;S;l)·l'
= (R;Dom(S) ;1)·1'
= Dom (R;Dom (S))

The proof for Ran is analogous to Dom.

4.

Dom (P;R) = Dom (P;Dom (R))
= (P;Dom(R) ;(P;Dom(R)n·1'

= (P;Dom(R) ;(Dom (R)t;f).l'

= (P·Dom(R) ·f·(Dom(R)n·l'
= (P·Dom(R) ·P·Dom(R))·l'
= FíDom (R)
= P;Dom(R)

The proof for Ran follows in a similar way.
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(def. Dom)
(by Thm A.1.6)
(by Thm A.1.7)

(by Ax. 5)
(BA)

(by Thm A.1.7)
(by Ax. 5)

(by Thm A.l.lD)
(by Thm A.l.l4)
(by Thm A.l.ID)

(by 3)
(by def. Dom)

(by Ax. 6)

(by Thm A.1.7)
(by Thm A.1.6)

(by 2 and BA)
(by Thm. A.1.7)



5. In order to prove the equality we will prove both inclusions.

::;)
F;Dom (S) = Dom (F;Dom (S)) ;F;Dom (S)

= Dom{F;S) ;F;Dom(S)
::; Dom(F;S) ;F;l'
= Dom (F;S);F

(by Thm A.l.ll)

(by 3)
(by def. Dom)

(by Ax. 5)

2':)
Dom (F;S) ;F = Dom (F;Dom (S)) ;F (by 3)

= (((F;Dom (S)); (F;Dom (S)f) ·l');F
(by def. Dom)

< F;Dom (S) ;(F;Dom (S)t;F (BA)
= F;Dom(S) ;(Dom(S)t;F;F (by Ax. 6)
::; F;Dom(S) ;(Dom(S)r;l' (by F functional)
= F;Dom(S) ;(Dom(S)r (by Ax. 5)
= F;Dom (S) ;Dom (S) (by Thm A.1.6)
= F;Dom (S) (by Thm A.2.7)

6.

R+T=R'+T'
{==? R+T = R+T'
==> (R+T)·R = (R+T').R

{==? R-R+T·R = R-R+T'·R

{==? T·R = T'·R

{==? T·R = T'·R'

(Hyp.)

(BA)
(BA)
(BA)

(Hyp.)

We have to show that T· R = T and T' .R' = T' to prove the lemma.

T=T·l

= T·(R+R)

= T·R+T·R

=T·R

(BA)
(BA)
(BA)

(Hyp.)

The proof for T' .R' = T' follows in a similar way.

7.

Dom(R)::; Dom(R) +Dom(S)
= Dom(R+S)
= Dom(S)

(BA)
(by Thm A.1.12)

(Hyp.)

The proof for Ran follows in a similar way.
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8.===»

==)

9.===»

~)

R = R;Ran (R)
~ R;S
~ 1;3

(by Thm A.l.11)

(by Hyp. and monotonicity)
(by monotonicity)

Ran (R) ~ Ran (1 ;S)
= (l;(l;S))·l'
= (l;S)·l'
= Ran (S)

(by 7 and Hyp.)
(by def. Ran)

(by Thm A.l.3)
(by Thm A.l.10)

S = l';S
= (R+-'R);S
= R;S+-,R;S
< T+-,R;S

(by Ax. 5)

(by Thm. A.2.1)
(by Ax. 2)

(Hyp.)

R;S ~ R;(-'R;l+T)
= R;-,R;l+R;T
= (R--,R);l+R;T
= (R-R·l');l+R;T
= R;T

(Hyp.)
(by Ax. 2)

(by Thm A.1.7)
(by def. -,)

(BA)

~)
10. In order to prove the equality, we will prove both inclusions

~)

11.

R-S = R-(R+S)
= R·R+R-S
= R+R-S

(Hyp.)
(BA)

(by idempotence)

R+(R-S) = R (by absorption)

R'S'l = R'Dom (S) '1" , ,
= R;Ran(R) ;Dom(S);l
= R; (Ran (R) ·Dom(S));l
= R;Ran(R);l
= R;l

(by Thm A.1.l4)
(by Thm A.l.11)
(by Thm A.l.7)

(by Hyp. and 10)
(by Thm A.l.11)
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12.

Dom (R;O);R

= ,Dom (R;O) ;R
= ,Dom (R;Dom (O)) ;R
= ,Dom (R;,Dom (Q)) ;R
= ,Dom (R;,Dom (Q)) ;R;Dom (Q)

+,Dom (R;,Dom (Q)) ;R;,Dom (Q))
= =Dotti (R;,Dom (Q)) ;R;Dom (Q)

+,Dom (R;,Dom (Q)) ;Dom (R;,Dom (Q)) ;R;,Dom (Q))
(by Thm A.l.ll)

= ,Dom (R;,Dom (Q)) ;R;Dom (Q)
+ (,Dom (R;,Dom (Q)) -Dom (R;,Dom (Q))) ;R;,Dom (Q))

(by Thm A.l.7)

(by Thm. A.2.2)
(by Thm. A.2.8)

(by Thm. A.3.2)

(by Lemrna A.l.3)
(by Thm. A.3.2)

(by Thm. A.2.9)

= ,Dom (R;,Dom (Q)) ;R;Dom (Q)
~ R;Dom(Q)

13.

R;(S+T) = ((R;(S+T))T

= ((S+Tf;R)v

= ((S+T);R)v

= (S;R+T;R)v

= ((R;Sf+(R;T)T
= (((R;S) +(R;T))T
= (R;S)+(R;T)

(by Ax. 4)

(by Ax. 6)

(by Ax. 3)

(by Ax. 2)

(by Ax. 6)
(by Ax. 3)
(by Ax. 4)

14.

Dom (R) = (R; 1) ·1'
= (R;l;l)·l'
= Dom(R;l)

(by Thm. A.l.I0)
(by R; 1 right ideal)

(by Thm. A.l.10)

•
Theorem AA The following properiies hold in all [ork algebms [or all relations
F, 1, R, S, T and U.

1. (RV S) ;2 = R-S.
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2. (RV S) ;7T = Dom (S) ;R and (RV S) ;p = Dom (R) ;S.

3. R; (SVT) :::;(R;S) V (R;T).

4. Let F be functional, then F; (RV S) = (F;R) V (F;S).

5. 1fF:::;1' then(F;R)VS=F;(RVS).

6. (RVS)· (TVU) = (R-T) V (S·U).

7. (R0Sr = R05.

8. (R0S), (T0U) = (R-T) 0 (S·U).

9. (RV S) ; (T0U) = (R;T) V (S;U).

10. (R0S); (T0U) = (R;T) 0 (S;U).

11. (R+S)0T = (R0T)+(S0T), i.e., 0 is additive. Similarly, R0(S+T) =
(R0S)+(R0T).

12. (R01');7T = 7T;R and (1' 0R) ;p = p;R.

13. The relations 7T and pare functional.

14. fr;p = l.

15. Dom(7T) = Dom(p) = 1'01'.

16. Dom (7T;R) = Dom (R) 01' and Dom (p;R) = l' 0Dom (R).

17. (R01');2 = Dom ((1'0R) ;2) ;p.

18. Let F be functional, then fr . 1; (1' V F) = l' V F.

19. 1f 1is injective, then (1' 0 R;I) ;2 = Dom ((10R) ;2) ;7T and (R;I 0 1') ;2 =

Dom ((R01);2) ;p.

20. (1'01') ;R0S; (1'01') = (R01) + (108).

Proof. See [Fri02] Thm. 3.2 .. •
Lemma A.2 The following properties are valid in al! abstract fork algebras for
al! relations R, S, T and U.

1. 1f R:::; S and T:::; U, then RVT:::; SVU and R0T:::; S0U.

2. Dom(RVS) = Dom(R) ·Dom(S)

3. 7T;fr = l' 01

4. p;R;p = 10R
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5. 11 R, T :::;l' J then

&n(
PTOOf.

1. We will prove the first property, namely, that

R'VT:::; S'VU (8)

We proceed as follows.

R'VT = R;*·T;p
< S;*·U;p
= S'VU

(by Ax. 8)
(by monotonicity)

(by Ax. 8)

We will finally show that R@T :::;S@U

R@T = 1f;R'V p;T
< 1f;S'V p;U
= S@U

(by def. @)
(by (8) and monotonicity of ;)

(by def. @)

2. First note that
Ran(l'Vl) = 1'@1' (9)

Then,

Dom(R'VS) = Dom(R;l''VS;l') (by Ax. 5)
= Dom((R'VS);(l'@l')) (by Thm. A.4.9)
= Dom (R'V S;Ran (1 'VI)) (by (9))
= Dom (R'V S;Dom ((1'Vlt)) (by Thm. A.l.13)
= Dom (R'V S;(1 'Vlt) (by Lemma A.1.3)

= Dom ((R;l).(S;l)) (by Ax. 9)
= Dom((R;I)·(S;I)) (by Thm. A.1.2)
= (((R;I)·(S;I));I)·l' (by Thm. A.1.lO)
= (R;I)·(S;I)·l' (because (R;I)·(S;I) is right ideal)
= (R;I)·l'·(S;I)·l' (by idempotence)
= Dom (R) -Dom (S) (by Thm. A.l.10)

3. In order to prove the property, we will show that

p;l;p = 1f;I;* (10)
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p; l;p = Dom (p) ;1 ;Ran (p)
= Dom (p) ;1;Dom (p)
= Dom iti¡ ;l;Dom(7f)
= Dom (7f) ;1 ;Ran (*)

= 7f;1;*

Second, we prove that

7f;* = 7f;1';*
::; 7f;1;*

Then,

Once both results were established, we proceed as follows.

7f;* = (7f;*)'(7f;1;*)
= (7f;*)·(p;l;p)
= (7f;l';*)·(p;l;p)
= 7f;l'V'p;l
= 1'@1

4. The proof begins by showing that

p;R;p::; 7f;1;*

p;R;p::; p;l;p
= 7f;1;*

Finally, we proceed as follows,

p ;R; P = (p; R ;p) . (íT ;1;*)
=7f;lV'p;R
=l@R

5. First, we have that, if R, T ::; 1', then

(R@(T@l'));p= (R@l');p;(T@l')

(R@(T@l'));p = (7f;RV' p;(T@l'));p
= Dom(7f;R) ;p;(T@l')
= (Dom(R)@l');p;(T@l')
= (R@l');p;(T@l')
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(by Thm. A.l.14)
(by Thm. A.l.13)

(by Thm. AA.15)
(by Thm. A.l.13)
(by Thm. A.l.14)

(by Ax. 5)
(by monotonicity)

(11)

(by (11))
(by (10))

(by Ax. 5)
(by Ax. 8)

(by def. @)

(12)

(by monotonicity)
(by (10))

(by (12))
(by Ax. 8)

(by def.. @)

(13)

(by def. @)
(by Thm. AA.2)

(by Thm. AA.15)
(by Lemma A.l.1)



We also have that, if R, T ::::1', then

(by def. 0)

( (.;R)V(P;l~;((S;T)@P) )
(by Thm. AA.9)

Since,

(by def. 0)

(by Thm. A.4.5)

(by Thm. AA.12)

(by Ax. 5)

(by Thm. A.4.10)

(by Thm. AA.9)

Ran ( ( R;~;T ) ) = Ran (( ; ); ( ~ ))o (S0p) (T01')
P

((
7f )) ( R )- Ran 'V . 0

- (S0P) , (T01')
(by Lemma A.1.4)
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Therefore, we have

Ran ( (R;~;T ) ) :S: ( ~) (14)o (T01')
P

Finally, we prove the lemma by showing both inclusions

::::)

Rari ( ( R;;;T) ): ( n ;p; O )
S &n ( ( R;;;T) ):P (by Thm. A28)

69



•
Lemma A.3 1f F :::;l' and Ran (F; R) < F, then,

F·R* = F·(F·R-F)* = F·R*·F, '" "

Proo]. In order to prove this property, we will show that, if Ran (F;R) :::;F
and F is a filter, then,

R* = F;(F;R)*;F+.F;R* (15)

2::)

R*=l';R*
= (F+.F);R*
= F;R*+.F;R*
2:: F;(F;R)*;F+.F;R*

(by Ax. 5)
(by Thm.A.2.1)

(by Thm.A.1.13)

(by monotonicity)

:::;) We prove this inclusion by using the w-rule.

- base case.

l' +F; (F;R)* ;F+.F;R*
= l'+F;(l'+(F;R);(F;R)*);F+.F;(l'+R;R*) (by Ax. 14)
= l' +(F;l' +F;F;R;(F;Rf);F-t.F;l' +.F;R;R*

(by Thm.A.1.13)

= l' +F;l' ;F+F;F;R; (F;R)* ;F+.F;l' +.F;R;R* (by Ax. 2)
= l' +(F+.F)+F;R;(F;R)* +.F;R;R*

(by Ax. 5 and Thm. A.2.7)

= (F+.F)+F;R;(F;R)* +.F;R;R* (by Thm.A.2.1)
= F;(F;R)* +.F;R* (by Axs. 2, 5 and 14, and Lemma A.1.13)

Therefore,
l' < F· (F· R)*· F+.F· R*- , " ,
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- inductive step.

Ri+l = RjRi (by def. 2.33)

::; Rj(Fj(FjR)*jF+,FjR*) (by lnd. Hyp.)
= RjFj(FjR)*jF+Rj,FjR* (by Lemma A.1.13)

= FjRjFj(FjR)*jF+,FjRjFj(FjR)*jF
+FjRj,FjR*+,FjRj,FjR* (by Thm. A.2.9)

= FjRjFj(FjR)*jF+,FjRjFj(FjR)*jF
+FjRjFj,FjR*+,FjRj,FjR* (by Hyp.)

= F· R- F· (F- R)*· F+,F- R- F-(F· R)*·F, , , " "'"
+FjRj(P.,F)jR*+,FjRj,FjR* (by Thm. A.1.7)

= F- R· F- (F· R)*· F+,F· R- F· (F- R)*· F, , , " "'"
+,FjRj,FjR* (by Thm. A.2.2)

< F·R· F· (F· R)*· F+,F·R· R*- , , , " "
+,FjRjR*

= F· R- F· (F· R)*· F, , , , ,
+,FjRjR*

- F·F·R·F-(F·R)*·F- , , , , , ,
+,FjRjR*

< F·F-R·(F·R)*·F- , , , , ,
+,FjRjR*

< F·(F-R)*·F+,F·R*- , " ,
Now we will show that the lemma is valido

- F·R* = F·(F·R·F)*, '"
::;)

F·R* = F·(F·(F·R)*·F+,F·R*), "" ,
= F·F·(F-R)*·F+F·,F·R*, , , , "
- F-(F·R)*·F+F·,F·R*- , , , "
= Fj(FjR)*jF+(F·,F)jR*
= Fj(FjR)' .F
= Fj(FjRjF)'jF
< F· (F· R- F)*- , , ,

F· R* > F· (F· R- F)*, - , , ,

- FjR* = FjR* .F
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(by Thm. A.2.8)

(by idempotence)

(by Thm A.2.7)

(by Thm A.2.8)
(by Ax. 14)

(by (15))
(by Lemma A.1.l3)

(by Thm. A.2.7)
(by Thm. A.1.7)
(by Thm. A.2.2)

(by Hyp.)
(by monotonicity)

(by monotonicity)

1'"



::;)

2:)

F' R* = F' (F' (F' R)*' F+,F' R*), "" ,
= F· F· (F' R)*' F+F',F' R*, , , , "
::; F;R* ;F+F; ,F;R*
= F;R*;F+(F·,F);R*
= F;R*;F

F;R* 2: F;R*;F

72

(by (15))
(by Lemma A.1.13)

(by monotonicity)
(by Thm. A.1.7)

(by Thm. A.2.2)

(by monotonicity)

•



B On DLTL interpretation
Lemma B.l Let K be a Kripke siruciure. Let s E b.K and n E IN.

exec(s, n) E IIPIIK; IIQIIK

(:3i E [O,n])(exec(s, i) E IIPIIK A exec(si, n - i) E IIQIIK)
Proo].

exec(s, n) E IIPIIK; IIQIIK

(:3T)(:3T') (
(exec(s, n) = T;T')A
(TE IIPIIKAT' E IIQIIK)A
(T =,\ V T' =,\ V Tlrl-1 = T¿))

~ by def. 5.3

(:3T)(:3T') (
(exec(s, n) = T;T')A
(T E IIPIIK AT' E IIQIIK)A
((exec(s, n) = T') V (exec(s, n) = T) V (exec(s, n) = T&T,l)))

~ by def. 5.7

(:3T)(:3T') (
(exec(s,n) = T;T')A
(T E IIPIIK AT' E IIQIIK)A
((exec(s, n) = T') V (exec(s, n) = T)V
(:3i E (O,n))(exec(s,i) = T A exec(si,n - i) = T')))

(exec(s, n) E IIPIIK A'\ E IIQIIK)V
(,\ E IIPIIK A exec(s, n) E IIQIIK)V
(:3i E (O,n))(exec(s, i) E IIPIIK A exec(si, n - i) E IIQIIK)

~ by def. 5.7

(exec(s,n) E IIPIIKAexec(sn,n-n) E IIQIIK)V
(exec(s,O) E IIPIIKAexec(sO,n-O) E IIQIIK)V
(:3i E (O,n))(exec(s, i) E IIPIIK A exec(si, n - i) E llQllK)

(:3i E [O,n]) (exec( s, i) E IIPIIK A exec(si, n - i) E IIQIIK)
•

We present al! the necessary definitions to end with the main result on the
interpretability of D LT L. Most of them were also presented in [FP03] to prove
the interpretability of LT L.
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Lemma B.2 Given a nonempty set S, a binary relation T (on S), and a se-
quence ofT-connected elements of S, namely, s = so, SI, S2, ... ,

Proof. The proof follows by an easy induction on i.

Lemma B.3 Given a nonempty set S, a binary relation T (on 'S), and t E
7(S, T), (Vi < W)(Spi(t) = (St)i).

Proof. The proof follows by a simple induction on i.

Definition B.1 ([FP03]) Let S be a nonempty set, and T a binary relation
on S. We denote by 7(S, T)* the smallest set R of binary trees built as follows:

• SU7(S,T) ~ R,

• iftl, t2 E R, then tI * t2 E R.

Definition B.2 Let S be a nonempty set, and A = {aihEA a set of binary
relations on S. We define,

When no confusion arise, we will simply denote TlJ. as T.

Definition B.3 ([FP03]) Let S be a nonempty set, and A = {ai}iEA a set
of binary relations on S. Let 2l = (R, u, n, -,0, E, 0, ia;', 'íl, 0, *) be a proper
closure fork algebra (PCFA) satisfying:

• R = P (7(S, T)* x 7(S, T)*),

• E = 7(S, T)* x 7(S, T)*

2l is then called a ''full infinite closure fork algebra on S, A".
Definition B.4 ([FP03]) Given 2l = (R, u, n, -,0, E, 0, Id, v, 'íl, o, * ) E PCFA,
we define:

• 'Ir(x * y) = x for all x, y E U~,

• p(x*y) = y for all x,y E U~.

Notice that no confusion should arise between the relation constants 'Ir and
p and the functions 'Ir and p from Def. B.4; while the former are relational con-
stants, the latter are functions and always appear being applied to arguments.

Definition B.5 ([FP03]) Given K = (S, A, SO,F) a Kripke structure for the
signature ~ and let (R, +, " -,O, 1, ;, 1', ", 'íl, o, *) be a full infinite closure fork
algebra on S and A, extended with constants S, So, T, tr, {P¡}iEP, {A¡hEA,
satisfying:
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- s = {(s,s) [s E S},

- So s;:; S,

- T=T,

- tr = {(t,t) It E T(S,T)},

- dom (Pr) s;:; S and P¡ is right-ideal for all i E P, and

- Ai = ai for all i E A;

we call 2l a "full infinite closure fork algebra on S ,A extended with constants"

It follows from the previous definition that every full infinite closure fork
algebra on S, A, extended with constants satisfies the axioms of w-CCFA +DLTL.

Lemma B.4 Let K = (S, A, So,?) be a Kripke structure for the signature ~,
and let 2l a fullinfinite closure fork algebra on S, A, extended with constants.
Then,

s E L:::.K {:::=> ts E dom (tr) .

Proof.

=» Since s E L:::.K, S is a T-connected sequence of elements of S. Then, by
DeL 4.6, ts E T(S, T). Thus, by definition of S, T and tr, ts E dom (tr).

~) Assume that ts E dom (tr). By definition of S, T and tr, ts E T(S, T),
and by DeL 4.6, s is a T-connected sequence of elements of S. Then, by
definition of trace in a Kripke structure, s E L:::.K.

•
Lemma B.5 Let K = (S, A, So,?) be a Kripke structure for the signature ~,
and let 2l be a full infinite closure fork algebra on S and A, extended with
constants.. Then,

i e dom (tr) {:::=> StEL:::.K .

Proof.

=» Since t E dom (tr), t E T(S, T). Since consecutive elements in t are T-
connected, St is a T-connected sequence of elements of S. Finally, by
definition of K, StEL:::.K .

~) Assume that StEL:::.K . Since St is a T-connected sequence of elements of
S, t E T(S, T) = dom (tr).

•
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Lemma B.6 Let K = (S, A, SO,p) be a Kripke struciure for the signature ~,
and let 2l be a full infinite closure fork algebra on S and A, extended with
constants. 1f a E ForDLTL(~), and t, t' E 7(S, T), then

(:Ji 2: O)(:Ji' 2: O)(:Jtl!)(
(tI! = pi(t)) /\ (Vj E [O,i))(~(t) E dom (TDLTL (a)))/\
(exec(st, i) E IIPIIK) /\
(t' = pi' (tl!)) /\ (Vj E [O,i/))(~ (tI!) E dom (TDLTL (a)))/\
(exec(stll,i/) E IIQIIK))

(:Jn 2: O) (
(t' = pn(t)) /\ (Vj E [O,n))(~(t) E dom (TDLTL (a)))/\
(exec(st,n) E 1IPIIKiI!QI!K))

Proo].

(:Ji 2: O)(:Ji' 2: O)(:Jtl!) (
i" = pi(t) /\ (Vj E [O,i))(p-i(t) E dom (TDLTL (a)))/\

exec(st, i) E I!PIIK /\
t' = / (tI!) /\ (Vj E [O, i/))(p-i (tI!) E dom (TDLTL (a)))/\

exec(st",i/) E IIQIIK)

~ because t" = pi(t)

(:Ji 2: O)(:Ji' 2: 0)(
(Vj E [O, i))(p-i (t) E dom (TDLTL (a)))/\

exec(st, i) E IIPI!K /\
t' = / (/(t)) /\ (Vj E [O,i/))(p-i (pi(t)) E dom (TDLTL (a)))/\

exec(spi(t), i/) E IIQIIK)
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(3i ~ 0)(3i' ~ 0)(
t' = / (pi(t))/\
(Vj E [O,i))(pl(t) E dom (TDLTL (a)))/\

(Vj E [O, i'))(plV(t)) E dom (TDLTL (a)))/\

exec(St, i) E IIPIIK/\
eXeC(Spi(t), i') E IIQIIK)

{==> by def. of p

(3i ~ 0)(3i' ~ 0)(
t' = pi+i' (t)/\
(Vj E [O, i))(pl(t) E dom (TDLTL (a)))/\

(Vj E [O,i'))(pi+i(t) E dom (TDLTL (a)))/\

exec(St, i) E IIPIIK /\
exec(Sti,i') E IIQIIK)

{==>

(3i ~ 0)(3i' ~ 0)(
t' = pi+i' (t)/\
(Vj E [O, i))(pi(t) E dom (TDLTL (a)))/\

(Vj E ti, i + i'))(pl(t) E dom (TDLTL (a)))/\

execis-, i) E IIPIIK/\
exec(Sti,i') E IIQIIK)

{==>

(3i ~ 0)(3i' ~ 0)(
t' = pi+i' (t)/\
(Vj E [O, i + i'))(pl (t) E dom (TDLTL (a)))/\

exec(St, i) E IIPIIK/\
exec(Sti,i') E IIQIIK)

{==> by Lemma B.l

(3i ~ 0)(3i' ~ 0)(
t' = pi+i' (t)/\

(Vj E [O,k + k'))(pl(t) E dom (TDLTL (a)))/\

execis., i + i') E IIPIIK; IIQIIK)
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<===> because i + i' = n

(:ln 2': 0)(
t' = pn(t)/\
(Vj E [O,n))(p1(t) E dom (TDLTL (0:)))/\

execie., n) E IIPIIK; IIQIIK)

Lemma B.7 Let K = (S, A, SO,F) be a Kripke structure for the signature ~,
and let 2l be a full infinite closure fork algebra on S ,A, extended with constants.
lft E 7(S, T), then

i e ran (7r'V(Ai@p)) <===> (StO, Stl) E A,
Proof.

t « ran (7r'V(Ai@P))

<===> by def. of ra n

(:lt' E 7(S,T))((t',t) E 7r'V(Ai@P))

<===> by def. of 'V and @

(:lt' E 7(S, T))(:lx, y, z)(
t=x*(y*z)/\(t',x) E7r/\(t',y) E 7r;Ai/\(t',z) Ep;p)

<===> by def. of 7r and p

(:lt' E 7 (S, T)) (:lx, y, z)(
t = x * (y * z) /\ x = 7r(t') /\ (t', y) E 7r;Ai /\ z = p(p(t')))

<===> by def. of ;

(:lt' E 7(S, T))(:lx, y, z)(
t = x * (y * z) /\ x = 7r(t') /\ z = p(p(t'))/\
(:ly') ((t', y') E 7r /\ (y', y) E Ai)))
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~ by def. of 7r

(:Jt' E T(S,T))(:Jx,y,z)(
t = x * (y * z) /\ x = 7r(t') /\ z = p(p(t'))/\
(:Jy')(y' = 7r(t') /\ (y',y) E A¡)))

~ because x = 7r(t') and z = p(p(t'))

(:Jt' E T(S,T))
(:Jy)(t = 7r(t') * (y * p(p(t')))/\
((7r(t'),y) E A¡))

~ because y = 7r(p(t))

(:Jt' E T(S,T))
(7r(t') = 7r(t) /\ p(p(t')) = p(p(t)) /\ ((7r(t'), 7r(p(t))) E A¡))

~ because 7r(t') = 7r(t)

(:Jt' E T(S, T))
(7r(t') = 7r(t) /\ p(p(t')) = p(p(t)) /\ ((7r(t), 7r(p(t))) E A¡))

(7r(t),7r(p(t))) E A¡

~ by def. of St, 7r and p

((St)o, (8th) E A¡

•
Lemma B.8 Let K = (S, A, SO, P) be a Kripke struciure [or the signature I:,
and let 21 be a tull infinite [ork: alqebra on S and A, extended with constants. 1f
t, t' E T(S, T), a E ForDLTL(I:) and R E PrgDLTL(I:), then
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(Vk E 1N)(

(t, ti) E MDLTL(a, R);k

(:3i 2: 0)(
ti = pi(t) /\
(Vj E [O, i))(pl (t) E dom (TDLTL (a))) /\

·kexec(st,i) E IIRIIK' ))

Proof. The proof follows by induction on k .

• base case)

{=::::> by def. 2.33

(t, ti) E l'

{=::::> by def. of 1I

t = ti

{=::::> by def, 5.5

t = ti /\ A E IIRIIK;O

{=::::> by def, of exec

'0t = ti /\exec(st,O) E IIRIIK'

{=::::> by def. of p

ti = pO(t)/\
(Vj E [O, O))(pl(t) E dom (TDLTL (a)))/\
exec(st, O) E IIRIIK;O

(:3i 2: 0)(
ti = pi(t)/\
(Vj E [O, i))(pl(t) E dom (TDLTL (a)))/\
execis-, i) E IIRIIK;O)
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• inductive step)
(t, t') E MDLTL(a, R) ;k+l

{=:}- by def. 2.33

{=:}- by def. of ;

(3t")((t,t") E MDLTL(a,R) /\ (t",t') E MDLTL(a,R);k)

{=:}- by lnd. Hyp.

(3t")(
(3i 2: 0)(

t" = pi(t)/\
('Vj E [O,i))(pJ(t) E dom (TDLTL (a)))/\
exec(st,i) E IIRIIK)/\

(3i' 2: O)(
t = pi(t")/\
('Vj E [O,i))(pJ(t") E dom (TDLTL (a)))/\
exec(stlf,i) E IIRIIK;k))

{=:}- by independence of t", i, i'

(3i 2: 0)(3i' 2: 0)(3t")(
t" = pi(t)/\
('Vj E [O,i))(pJ(t) E dom (TDLTL (a)))/\
exec(st, i) E IIRIIK/\
t = pi(t")/\
('Vj E [O,i))(pJ(t") E dom (TDLTL (a)))/\
exec(stlf,i) E IIRIIK;k)

{=:}- by Lemma B.6

(3n 2: 0)(
t = pn(t)/\
('Vj E [O,n)) (p-i (t") E dom (TDLTL (a)))/\
exec(st,n) E IIRIIK;(IIRIIK;k))

{=:}- by def. 2.33

(3n 2: 0)(
t = pn(t)/\
('Vj E [O,n))(p-i(t") E dom (TDLTL (a)))/\
exec(st, n) E IIRIIK;k+1)
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•
Lemma B.9 Let K = (S, A, SO,P) be a Kripke structure for the signature I":,
and let 2t be a full infinite closure fork algebra on S and A, extended with
constants. Ij a E ForDLTL(I":), RE PrgDLTL(I":) and t,t' E T(S,T), then

(t, t') E MDLTL(a, R)

(3i ~ 0)(
t' = pi(t)/\
(Vj E [O, i))(pi(t) E dom (TDLTL (a)))/\
exec(st,i) E IIRIIK)

Proof. The proof of this lemma follows by induction on the structure of program
R.

~ by def. of MDLTL(a, P)

(t, t') E Dom (TDLTL (o)) ;Ran (7r'V (Ak0p)) ;p

~ by def. of;

(3r)(3r/)(
(t, r) E Dom (TDLTL (o)) /\
(r,r') ERan (7r'V(Ak0P)) /\
ir", t') E p)

~ since Dom ::;i: and Ran ::; l'

(t, t) E Dom (TDLTL (a)) /\
(t, t) ERan (7r'V (Ak0P)) /\
(t, t') E P

~ by def. of Dom and Ran

t e dom (TDLTL (a)) /\'t Eran (7r'V(Ak0p)) /\ (t, t') E p ..

~ by def. of p

t e dom (TDLTL (a)) /\ t e ran (7r'V(Ak0p)) /\ t' = pl(t)

~ by Lemma B.7
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{==? by def. 5.6

{==? by def. 5.7

ti = pl(t) 1\ tE dom (TDLTL (a)) 1\ exec(St, 1) E IlakllK

{==? by def. of p

ti = pl(t) 1\ pO(t) E dom (TDLTL (a)) 1\ execi s«, 1) E IlakllK

ti = pl(t)1\
(Vj E [O, l))(pJ(t) E dom (TDLTL (a)))1\
exec(St, 1) E IlakllK

(:Ji ;:::0)(
ti = pi(t)1\
(Vj E [O,i))(pJ(t) E dom (TDLTL (a)))1\
execis., i) E IlakllK)

• R=PUQ

(t, ti) E MDLTL(a, P U Q)

(t, ti) E MDLTL(a, P) U MDLTL(a, Q)

{==?by set theory

(t, ti) E MDLTL(a, P) V (t, ti) E MDLTL(a, Q)
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-e=e-by Ind. Hyp.

(3i 2: 0)(
ti = /(t)/\

(Vj E [O, i))(pJ (t) E dom (TDLTL (a)))/\

exec( St, i) E IIPIIK)
V

(3i' 2: O) (

ti = / (t)/\

(Vj' E [O, i'))(pJ' (t) E dom (TDLTL (a)))/\

exec(St, i') E IIQIIK)

(3i 2: 0)(

ti = /(t)/\
(Vj E [O, i))(pJ (t) E dom (TDLTL (a)))/\
(exec(st,i) E IIPIIK Vexec(st,i) E IIQIIK))

{:=:=>by set theory

(3i2:0)(
ti = pi(t)/\

(Vj E [O,i))(pJ(t) E dom (TDLTL (a)))/\

exec(st, i) E IIPIIK U IIQIIK)

{:=:=>by def. 5.6

(3i 2: 0)(
ti = /(t)/\

(Vj E [O,i))(pJ(t) E dom (TDLTL (a)))/\
execl s«, i) E IIP U QIIK)
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• R= P;Q

(t, t') E MDLTL(O'., P; Q)

~ by def. of MDLTL

(t, t') E MDLTL(O'., P) ;MDLTL(O'., Q)

~ by def. of;

(:3t") (
(t, tI!) E MDLTL(O'., P)/\
(t", t') E MDLTL(O'., Q))

~ by lnd. Hyp.

(:3tl!) (
(:3i 2': 0)(

t" = pi( t)/\
(Vj E [O,i))(pi(t) E dom (TDLTL (0'.)))/\
exec(St, i) E IIPIIK)/\

(:3i' 2': 0)(
t' = i' (t")/\
(Vj' E [O, i'))(pi' (t") E dom (TDLTL (0'.))))/\
exec(stll,i') E IIQIIK)

(:3i 2': O) (:3i' 2': O)(:3t")(
t" = pi(t)/\
(Vj E [O, i))(pi(t) E dom (TDLTL (0'.)))/\
exec(st, i) E IIPIIK/\
t' = pi' (tl!)/\
(Vj' E [O,i'))(pi' (tI!) E dom (TDLTL (0'.)))/\
exec(stll,i') E IIQIIK)

~ by Lemma B.6

(:3n 2': 0)(
t' = pn(t)/\
(Vj E [O,n))(pi (t) E dom (TDLTL (0'.)))/\
exec(St,n) E IIP;QIIK)
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• R= P*

(t, t') E MDLTL(a, P*)

<=} by def. of MDLTL

(t, t') E MDLTL(a, P)*

<=} by def. of *

(3k E [O,oo))((t, t') E MDLTL(a, p);k)

<=} by Lemma E.8

(3k E [O,(0))(3n ~ 0)(
t = pn(t)/\
(Vj E [O,n))(pJ(t") E dom (TDLTL (a)))/\
exec(st, n) E IIPIIK;k)

<=}
(3n ~ 0)(

t' = pn(t)/\
(Vj E [O,n))(pJ(t) E dom (TDLTL (a)))/\
(3k E [O,(0)) (exec(st, n) E IIPIIK;k))

<=} by def. of *

(3n ~ 0)(
t' = pn(t)/\
(Vj E [O,n))(~(t) E dom (TDLTL (a)))/\
exec(St, n) E IIPIIK *)

<=} by def. 5.6

(3n ~ 0)(
t' = pn(t)/\
(Vj E [O,n))(~(t) E dom (TDLTL (a)))/\
execie¿ n) E IIP* IIK)

•
Finally, we present the proofs for lemmas previously introduced in section 5.

Lemma B.lO Given 2l E PCFA extended with constants S, T, So, tr, {A¡hEA
and {P¡hEP satisfying Axs. (16)-(26), there exists a Kripke structure K such
that for all tE dom (tr),

tE dom (TDLTL (a)) <=} K, St FDLTL a .
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Proo]. Let us define the Kripke structure K = (S, A, So,?) as follows:

• S = dom (S)

• ai = A¡ for all i E A

• So = dom (So),

• Pi = {s]s E dom (p¡)} for all i E P

The proof follows by induction on the structure of the formula 0:.

• o: = Pi, for i E P:

tE dom (TDLTL (Pi))

o!;==}t E dom (lrjP¡)
o!;==}lr(t) E dom (p¡)
o!;==}StO E dom (p¡)
o!;==}StO E fh
o!;==}K, St FDLTL Pi

(by def. of TDLTL (0:))
(by set theory)
(by def. of St)
(by def. of K)

(by def. of FDLTL)

• o: = ,{3:

tE dom (TDLTL (,{3))

o!;==}t E dom (trjTDLTdf3)) (by def. of TDLTdo:))

o!;==}t E dom (tr) V t rt. dom (TDLTL ({3))
(by set theory and TDLTL (o:) yields right-ideals)

o!;==}K, St ~DLTL {3 (by lnd. Hyp.)
o!;==}K,st FDLTL ,{3. (by def. of FDLTL)

.00={3V¡:

i e dom (TDLTL ({3 V,))
o!;==}t E dom (TDLTL ({3) +TDLTL (¡)) (by def. of TDLTL (0:))
o!;==}t E dom (TDLTL ({3)) V i e dom (TDLTL (¡))

(by set theory and TDLTL (o:) yields right-ideals) ..

o!;==}K, St FDLTL {3 V K, St FDLTL , (by lnd. Hyp.)
o!;==}K, St FDLTL {3 V, . (by def. if FDLTL)
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{=> by def. of TDLTL (a)

t e dom (MDLTL({3, P) ¡TDLTL (¡))

{=> by def. of ¡

(3tl)( (t, tI) E MDLTd(3, P) /\ i' E dom (TDLTL (,)))

{=> by Lemma B.9

(3tl)(3i ~ 0)(
t' = pi(t)/\
(Vj E [O,i))(pi(t) E dom (TDLTL ((3)))/\
exec(St, i) E IIPIIK/\
tI E dom (TDLTL (¡)))

(3i ~ 0)(
pi(t) E dom (TDLTL (¡)) /\
(Vj E [O, i))(pi(t) E dom (TDLTL ((3)))/\
execie., i) E IIPIIK)

{=> by Ind. Hyp.

(3i ~ 0)(
K, Spi(t) FDLTL ,/\
(Vj E [O, i))(K, Spi(t) FDLTL (3)/\
execie., i) E IIPIIK)

{=> by def. of St

(3i ~ 0)(
K, (St)i FDLTL ,/\
(Vj E [O,i))(K, (St)j FDLTL (3)/\
execis», i) E IIPIIK)

{=> def FDLTL

K, St FDLTL (3 uP ,
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Lemma B.ll Given a Kripke structure K = (S, A, SO, p), there exists a non
empty class of proper closure fork algebras extended with constants S, T, So,
tr, {A¡}iEA and {P¡}iEP, such that, for all 2l in this class,

• 2l satisfies Axs. (16)-(26)

• for all s E !:"K,

K, S FDLTL a{:=}- t , E dom (TDLTL (a)).

Proof. Let 2l E PCFA, such that,

• 2l is a full infinite closure fork algebra on S and A, extended with constants.

• So = {(s,s) [s E So}

• dom (Pj) = Pi for all i E P

Since 2l is a full infinite closure fork algebra, 2l satisfies the axioms of
w_CCFA+DLTL.

The proof of this lemma follows by induction on the structure of formula a.

K,s FDLTL Pi
{:=}-so E Pi
{:=}-so E dom (Pj)
{:=}-7r(ts) E dom (p¡)
{:=}-ts E dom (7rjP¡)
{:=}-ts E dom (TDLTL (Pi))

(by def. of FDLTL)

(by def. of p¡)
(by def. of ts)

(by set theory)
(by def. of TDLTL)

K, S FDLTL -,f3
{:=}-K, S ~DLTL f3
{:=}-ts rf. dom (TDLTL (f3))
{:=}-ts E dom (tr) 1\ tB rf. dom (TDLTL (f3))

{:=}-ts E dom (trjTDLTL (f3)))
(by set theory, def. tr and TDLTL yields right-ideals)

{:=}-ts E dom (TDLTL (-,f3)) (by def. of TDLTL)

(by def. of FDLTL)

(by Ind. Hyp.)
(by def. of ts)
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.o.={3v,

K,s FDLTL {3v,
<;:=:>K, S FDLTL {3V K, S FDLTL' (by def. of FDLTL)

<;:=:>ts E dom (TDLTL ({3))V t , E dom (TDLTL (r)) (by lnd. Hyp.)

<;:=:>ts E dom (TDLTL ({3) + TDLTL (r))
(by set theory and TDLTL yields right-ideals)

<;:=:>ts E dom (TDLTL ({3V,)) (by def. of TDLTL)
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• Q = (3 uP,

K, S l=DLTL (3 uP ,

~ by def. of l=DLTL

(3i ~ 0)(
K, Si l=DLTL ,/\
(Vj E [O,i))(K,sj l=DLTL (3)/\
exec(s, i) E IIP\lK)

~ by Ind. Hyp.

(3i ~ 0)(
ts' E dom (TDLTL (r)) /\
(Vj E [O,i))(tsj E dom ((3))/\
exec(s,i) E IIPIIK)

~ by def. of ts

(3i ~ 0)(
pi(ts) E dom (TDLTL (r)) /\
(Vj E [O,i))(pi (ts) E dom ((3))/\
exec(st.,i) E IIP\lK)

(3tl)(3i ~ 0)(
ti = pi(ts)/\
(Vj E [O,i))(pi(ts) E dom((3))/\
exec(st., i) E \lP\lK/\
ti E dom (TDLTL (r)))

~ by Lemma B.9

(3tl)( (ts, ti) E MDLTd(3, P) /\ ti E dom (TDLTL (r)))

~ by def. of ;
ts E dom (MDLTL((3, P) ;TDLTL (r))

~ by def. of TDLTL

ts E dom (TDLTL ((3 uP
,))
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e Reasoning across formalisms: Laying founda-
tions

In this appendix we lay some foundation to reason across PDL, LTL, and
DLTL using w-CCFA+.

Lemma C.I Let e be a fark algebra equatian. Then,

~ r- w-CCFA+ e

Proaf.

==})

I=w-CCFA+ e==} EqTh(w-CFA +) I=w-CCFA+ e (by def. w-CFA +)

==} EqTh(w-CFA+) r-w-CCFA+ e
(by completeness of eq. logic)

Notice that an equational proof e from EqTh(w-CFA +) will be a finite
height tree (probably with infinite width) whose leaves are equations in
EqTh(w-CFA+). In arder to show that r-w-CCFA+ e , it suffices to replace
each leaf in EqTh(w-CFA +) by its corresponding proof in w-CCFA +.

{:=) This implication follows directly from the definition of w-CFA

•
In the next lemma, we state that every PDL test free program is a DLTL

program and viceversa.

Lemma C.2 Let ~ be a signature.

R E FreePrgPDL(~) ~ R E PrgDLTL(~)

Proaf. It follows by induction en the program structure. •
The next lemma states that, given a program P, there is a DLTL formula

to single out those traces which begin with a trace prefix frorn IIPIIK.
Lemma C.3 Let K be a Kripke structure far the lagic DLTL(~). Let R E
PrgDLTL(~), and s E D..K,

(3k E [O, oo))(exec(s, k) E IIRIIK)) ~ K, S I=DLTL true UR true
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Proo].
(:Jk E [O,oo))(exec(s,k) E IIRIIK))

~ by def. of PDLTL

(:Jk E [0,00))(
K, sk PDLTL true/\
(Vj E [O, k))(K, si PDLTL true))/\
exec(s,k) E IIRIIK)

~ by def. of PDLTL

K, S PDLTL true UR true

•
Lemma C.4 Given a Kripke siruciure K [or the logic DLTL,

Proo]. Let 2t E ([K,

• 2t is a proper closure fork algebra extended with constants.

• 2t satisfies Axs. (16)-(26), therefore, 2t satisfies Axs. (16)-(18) and Axs. (20)-
(25).

• We have to prove that

for all s E b.KLTL, a E ForLTL(P).

KLTL, s PLTL a

~K, s PDLTL TLTL_DLTda)
~ts E dom (TDLTL (TLTL_DLTL(a)))
~ts E dom (trjTDLTL (TLTL_DLTL(a)))
~ts E dom (trjTLTL(a))
~ts E dom (TLTda))

(by Thm. 5.1)
(by 2t E ([DLTL)

(since ts E dom (tr))
(by Lemma D.8)

•
Lemma C.5 Given a Kripke struciure K [or the logic DLTL,
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• 2t is a proper closure fork algebra extended with constants.

• 2t satisfies Axs. (16)-(26), therefore, 2t satisfies Axs. (16)-(19).

• We have to prove that

for all q E S, a E ForPDL("E;). We prove this by induction on formula a.
Let q E S,

- a=Pi

KPDL, q FPDL Pi
{:=:} q E Pi (by def. FP DL)
{:=:} (\ls E .6.K )(so = q ===> So E Pi)
{:=:} (\ls E .6. K )(so = q ===> K, S FDLTL Pi) (by def. FDLTL)
{:=:} (\ls E .6.K)(-7r(ts) = q ===> t , E dom(TDLTL (Pi)))

(by 2t E ~DLTL)
{:=:} (\ls E .6.K)(-7r(ts) = q ===> ts E dom(7l";P¡)) (by def. TDLTL)
{:=:} (\ls E .6.K)(7l"(ts) = q ===> 7l"(ts) E dom (p¡))
{:=:} (\ls E .6.K)(q E dom (p¡))
{:=:} q E dom (Pj )

- a = -,(3

KPDL, q FPDL -,(3
{:=:} KPDL,q ?!=PDL (3
{:=:} q fj. dom (TpDL((3))

{:=:} q E dom (TPDL((3))

{:=:} q E dom (S;TPDL((3))

{:=:} q E dom (TP DL (-,(3))

(by def. FPDL)
(by Ind. Hyp.)

(since TpDL is right ideal)

(since q E S)

(by def. TpDL)

- a=(3V,

KPDL, q FPDL (3 V,
{:=:} KPDL, q FPDL (3 V KPDL, q FPDL ,
{:=:} q E dom (TpDL((3)) V q E dom (TpDLb))
{:=:} q E dom (TpDL((3)) U dom (TpDLb))
{:=:} q E dom (TpDL((3)+TpDLb))
{:=:} q E dom (TpDL((3 V,))

(by def. FPDL)
(by Ind. Hyp.)
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KPDL,q FPDL (P){3
~ C:Jq')((q,q') E PrgK(P)) 1\ (KPDL,q' FPDL (3)

(by def. FPDd
(by lnd. Hyp.)

(by Lemma 3.2)

-a=(P){3

~ (:Jq')((q,q') E PrgK(P)) 1\ (q' E TpDL({3))
~ (3q')((q,q') E MpDdP)) 1\ (q' E TpDd(3))
~ q E dom (MpDdP) jTpDd(3))
~ q E dom (TpDd(P){3))
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D On Fork results for reasoning across formalisms
Lemma D.l Por all a E ForDLTL(~), TDLTL (a) is right-ideal.

Proof. It is easy to see from definition of TDLTL.

By l' k we denote the relation l' 181... 1811'."---v-'
k times

•

Lemma D.2 for all k ;::: 1

Proof.

• base case:

tr::::; Sl8ltr
::::;1'1811'

(by Ax. 24)
(by Ax. 22, Ax. 16 and Lemma A.2.1)

• inductive step:

tr::::; Sl8ltr
::::;l'l8Itr

::::;l'18I1,k
= 1,k+l

(by Ax. 24)
(by Ax. 16 and Lemma A.2.1)

(by Ind. Hyp, and Lemma A.2.1)

•
Lemma D.3

f-w-CCFA+tr;TDLTL (true) = tr;l

Proof. Follows easily from Lemma D.1 •
Lemma D.4

f-w-CCFA+tr;p = tr;p;tr

Proof.

tr;p = Ran (71' 'V (Tl8lp)) ;p; tr
Ran (71''V (Tl8lp)) ;p; (tr·tr)

Ran (71''V (Tl8lp)) ;p;tr;tr
tr;p;tr

(by Ax. 25)
(by idempotence)

(by Thm A.1.7)
(by Ax. 25)

•

96



Lemma D.5 Let a E ForDLTL(~) and P E PTgDLTL(~)

rw-CCFA+ tr;MDLTda, P) = tr;MDLTda, P) ;tr

Proof. In order to prove the lemma, we will show that

rw-CCFA+ Ran (tr;MDLTda, P)) :::;tr

We proceed as follows

• P = ai

(16)

Ran (tr;MDLTL(a, ai))
= Ran (tr;Dom (TDLTL (a)) ;Ran (7r'V(A¡0p)) ;p)

(by def. MDLTd
(by Thm A.l.7 and monotonicity)

(by Lemma D.4)
(by Thm A.l.4)
(by Thm. A.2.8)

:::;Ran (tr;p)
= Ran (tr;p;tr)
= Ran (tr;p) ;tr
:::;tr

• P=RuS

Ran (tr;MDLTL(a, R U S))
= Ran (tr;(MDLTL(a, R) +MDLTL (a, S)))
= Ran (tr;MDLTL(a, R)+tr;MDLTL(a, S))
= Ran (tr;MDLTL(a, R)) +Rari (tr;Mr>LTL(a, S))
:::;tr-l-t.r

= tr

(by def. MDLTL)
(by Thm A.l.13) .
(by Thm A.1.12)

(by lnd. Hyp.)
(by idempotence)

• P=R;S

Ran (tr;MDLTda, R;S))
= Ran (tr;MDLTL(a, R) ;MDLTL(a, S)) (by def. MDLTd
= Ran (Ran (tr; MDLTL (a, R)) ;MDLTL(a, S)) (by Thm A.l.3)
:::;Ran (tr;MDLTL(a, S)) (by Thm A.l.7 and lnd. Hyp.)
:::;tr (by lnd. Hyp.)

• P= R*

Ran (tr;MDLTL(a, R*)) :::;tr
{=';>Ran (tr;MDLTL(a, R)*) :::;tr
{=';>tr;MDLTL(a,Rr:::; l;tr
{=';>MDLTda,Rr:::; ..,tr;l+l;tr

(by def. MDLTL)
(by Thm A.l.8)
(by Thm A.l.9)

We will prove this using w-rule:
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- base case:

l' = -,tr+tr
= -,tr;l'+l';tr
~ -,tr;l+l;tr

(by Thm A.2.1)
(by Ax. 5)

(by monotonicity)

- inductive step:

MDLTda,R);k+l

= MDLTL(a,R);MDLTL(a,R);k

= tr;MDLTL(a, R) ;MDLTL(a, R);k

+-,tr;MDLTL(a, R) ;MDLTL(a, R);k

~ tr;MDLTL(a, R) ;MDLTL(a, R);k
+ -,tr; 1 (by monotonicity)

= tr;MDLTL(a, R) ;Ran (tr;MDLTL(a, R)) ;MDLTL(a, Rrk

+-,tr; 1 (by Thm. A.l.ll)

~ tr;MDLTL(a, R) ;tr;MDLTL(a, R);k +-,tr; 1
(by lnd. Hyp. on R and monotonicity)

~ tr;MDLTL(a, R) ;tr; (-,tr; 1+ 1;tr) +-,tr; 1
(by lnd. Hyp. on k and monotonicity)

= tr;MDLTda, R) ;tr; -,tr; 1

+tr;MDLTL(a, R) ;tr; 1;tr
+-,tr;l

= tr;MDLTL(a, R) ;tr·-,tr; 1

+tr;MDLTL(a, R) ;tr; l;tr
+-,tr;l

~ tr;MDLTda,R);tr;l;tr+-,tr;l
~ 1;tr+-,tr; 1

(by def. 2.33)

(by Thm A.2.9)

(by Thm A.1.13)

(by Thm A.1.7)
(by Thm A.2.1)

(by monotonicity)

Now, we will prove both inclusions:

~)
tr;MDLTda,P);tr ~ tr;MDLTda,P) (by Thm. A.2.8)

?:)
tr;MDLTL(a, P) = tr;MDLTL(a, P) ;Ran (tr;MDLTL(a, P))

(by Thm. A.U1)

~ tr;MDLTL(a,P);tr (by (16) and monotonicity)
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=Rar: (7r'V(T0p)) -t.r
= -,Ran (7r'V(T0p)) -t r-Lr
= -'Ran(7r'V(T0p)) ;tr;tr
$ -,Ran(7r'V(T0p)) ;tr;(S0tr)
= -,Ran(7r'V(T0p)) ;tr;(7r;S'V p;tr)

(

-,Ran(7r'V(T0P)) ;tr;7r;S )

-,Ran (7r'V(T'V0P)) ;tr;p;tr

(

-,Ran(7r'V(T0P)) ;tr;7r;S )

-,Ran (7r'V(T0p)) ;R~ (7r'V(T0p)) ;p;tr;tr

(

-,Ran(7r'V(T0p)) ;tr;7r;S )
'V . (by Thm. A.l.7)

(-,Ran (7r'V(T0P)) ·Ran (7r'V(T0p))) ;p;tr;tr

(

-,Ran(7r'V(T"o0P)) ;tr;7r;S )
v (by Thm. A.l.1 and Thm. A.2.2)

= (-'Ran(7r'V(T0p)) ;tr;7r;S;7r)'(O;p) (by Ax. 8)
= O (by Thm, A.l.1 and BA)

Lemma D.6
f-w-CCFA+ tr = tr;Ran (7r'V(T0p))

Proo]. We begin by proving that

Therefore,

tr = tr;Ran (7r'V(T0P)) +tr; =Han. (7r'V(T0p))
= tr;Ran (7r'V(T0p))

Lemma D.7 Let o: E ForDLTL('E,) and A = {aihEP.

•

(17)

(by idempotence)
(by Thm. A.l. 7)

(by Ax. 24)
(by def. 0)

(by Thm. AAA)

(by Ax. 25)

(by Thm. A.2.9)
(by (17))

•

f-w-CCFA+ tr;MDLTL(o:, U ai) = tr;Dam (TDLTL (0:)) ;p
iEP
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Proo].

triMDLTda, U ai)
iEP

= tri(+iEpDom(TDLTL (a)) iRan(7rV'(A¡Q9p)) iP)
= triDom(TDLTL(a)) i(+iEpRan(7rV'(A¡Q9p)) iP
= triDom (TDLTL (a)) .Rari (+iEP(7rV'(A¡Q9p))) iP
= triDom (TDLTL (a)) iRari (7rV'(+iEPA¡ Q9p))iP
= triDom (TDLTda)) i Rari (7rV'(TQ9p)) iP
= triDom (TDLTL (a)) itriRan (7rV'(TQ9p)) iP
= triDom (TDLTL (a)) itriP

= triDom (TDLTL (a)) iP

(by def. MDLTL)
(by Lemma A.1.13)

(by Thm. A.1.12)
(by Thm. A.4.11)

(by Ax. 26)
(by Thms. A.2.7 and A.2.5)

(by lemma D.6)
(by Thms. A.2.7 and A.2.5)

Lernrna D.8 Let ¿; = (A,P) be a signature. Let a E ForLTL(P)

1-w-CCFA+ triTLTL(a) = triTDLTL (TLTL~DLTda))

• a = Pi

ProoJ. We will prove this lemma by induction on the complexity of formula a.

triTLTL(Pi) = tri7riP¡

= triTDLTL (Pi)
= triTDLTL (TLTL~DLTL(Pi))

(by def. TLTL(a))
(by def. TDLTL)

(by def. TLTL~DLTd

• a = --,f3.
In order to prove the equality we will use Lemma A.1.6. We will begin by
proving that the hypothesis of Lemma A.1.6 are satisfied. First, it is easy
to see that,

triTLTL(f3) ·triTLTL(f3) = tr ;(TLTdf3) ·nTL(f3)) (by Thm. A.1.17)
= triO (BA)
= O (by Thm. A.l.1)

Then,
(18)

The proof for

follows in a similar way. We also have that,

triTDLTL (TLTL~DLTdf3)) ·triTDLTL (TLTL~DLTdf3)) = O (19)

triTLTL(f3) = triTDLTL (TLTL~DLTL(f3)) (by Ind. Hyp.) (20)
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(

(

( Also,

triTLTL((3) +triTLTL(f3) = tr ;(TLTL((3) +TLTL(f3))
(by Lemma A.1.13)

= tr j I (BA)

Then,
(21)triTLTd(3)+triTLTL(f3) = tr iI

The proof for

triTDLTL (TLTL->DLTdf3)) +triTDLTL (TLTL->DLTdf3)) = tri1 (22)

follows in a similar way.
Then, as the hypothesis that of Lemma A.1.6 are valid, we proceed as

follows.
Joining (18)-(22), by Lemma A.1.6,

(23)triTLTL(f3) = triTDLTL (TLTL->DLTdf3))

Therefore,

(by def. TLTd

(by (23))
(by def. TDLTL)

(by def. TLTL->DLTL)

triTLTL(.f3) = tritriTLTL(f3)
~---=~----~~

= tritriTDLTL (TLTL->DLTdf3))
= triTDLTL (.TLTL->DLTL(f3))
= triTDLTL (TLTL->DLTL(·f3))

• a=f3V,

triTLTL(f3 V ,)

= tr ; (TLTdf3) +TLTL (-y)) (by def. TLTL(a))
= trihTd(3)+triTLTL(-y) (by Lemma A.1.13)

= triTDLTL (TLTL->DLTL(f3)) +triTDLTL (TLTL->DLTL(-y))
(by lnd. Hyp.)

= tri(TDLTL (TLTL->DLTdf3)) +TDLTL (TLTL->DLTL(-y)))
(by Lemma A.1.13)

= triTDLTL (TLTL->DLTdf3) V TLTL->DLTL(-y)) (by def. TDLTL)
= triTDLTL (TLTL->DLTLCf3v,)) (by def. TLTL->DLTL)
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• a = tB(3

tr;TLTL(tB(3) = tr;p;TLTd(3) (by def. TLTL)
= tr;p;tr;TLTd(3) (by Lemma D.4)
= tr;p;tr;TDLTL (hTL--+DLTL((3)) (by Ind. Hyp.)
= tr;p;TDLTL (TLTL--+DLTL((3)) (by Lemma D.4)
= Dom (tr;TDLTL (true)) ;p;TDLTL (TLTL--+DLTL((3))

(by Lemma D.3)

= tr;Dom (TDLTL (true)) ;p;TDLTL (TLTL--+DLTL((3))
(by Lemma A.1.4)

= tr;MDLTL(true, U ai) ;TDLTL (TLTL--+DLTL((3))
iEP

(by Lemma D.7)

= tr;TDLTL (true UU;EPa
; TLTL--+DLTd(3))

(by def. TDLTL)

= tr;TDLTL (TLTL--+DLTL((fJ(3)) (by def. TLTL--+DLTL)

• a=(3U,

tr;TLTL((3 U ,)

= tr;(Dom (TLTd(3)) ;p)* ;TLTL (¡) (by def. hTL)
= tr;(tr;Dom (TLTd(3)) ;p;tr)* ;TLTLCr) (by Lemma A.3)
= tr; (Dom (TLTd(3)) ;tr;p;tr)* ;TLTL(¡) (by Thm. A.2.5)
= tr; (Dom (hTd(3)) ;tr;p)* ;TLTL(¡) (by Lemma D.4)
= tr; (tr;Dom (TLTd(3)) ;p)* ;TLTL (¡) (by Thm. A.2.5)
= tr; (Dom (tr;TLTd(3)) ;p)* ;TLTL(¡) (by Lemma A.1.4)
= tr; (Dom (tr;TDLTL (TLTL--+DLTL((3))) ;p)* ;TLTL(¡)

(by Ind. Hyp.)

= tr; (tr;Dom (TDLTL (TLTL--+DLTL((3))) ;p)* ;TLTL (¡)
(by Lemma A.1.4)

= tr; (tr;MDLTL(TLTL--+DLTL((3), U ai))* ;hTL(¡)
iEP

= tr;MDLTL(TLTL--+DLTd(3), U ai)* ;TLTL (¡)
iEP

= tr; MDLTL(TLTL--+DLTL ((3), (U ai)*);TLTL(¡)
iEP

(by Lemma D.7)

(by Lemma A.3)

(by def. MDLTL)
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= tr;MDLTL(hTL-tDLTd(3), (U ai)*) ;TDLTL (TLTL-tDLTL(¡))
iEP

(by lnd. Hyp.)

= tr;TDLTL (TLTL-tDLTd(3) U(UiE'P ai)' TLTL-tDLTL(¡))
(by def. TDLTL)

= tr;TDLTL (TLTL-tDLTL((3 U ,)) (by def. TLTL ....DLTL)

•
Lemma D.9 Let ¿; = (A,P) be a signature. Let a E ForProp(P). Then,

Proo]. It follows by induction on the complexity of formula a .

• a = p,

tr;'Ir;TpDdpi) = tr;'Ir;P¡

= tr;TLTdpi)

• a=(3V,

(by def. TpDda))
(by def. TLTL(a))

tr;'Ir ;TpDL((3 V ,) = tr;'Ir; (TpDd(3) +TPDL(¡)) (by def. TpDda))
= tr; 'Ir;TpDd(3) -l-t.r ; 'Ir;Tp DL(¡)

(by Lemma A.1.13)

(by lnd. Hyp.)
(by Lemma A.1.13)

(by def. TLTL(a))

= tr;TLTd(3)+tr;TLTL(¡)
= tr; (TLTd(3) +TLTL (¡))
= tr;TLTd(3 V ,)

• a =--,(3
Fírst, note that

Ran (tr; 'Ir)= ((tr; 'lrt; (tr ;'Ir)) ·1'

= (*. fr' tr .'Ir).l', , ,
= (*;tr;tr;'Ir)·l'

= (*;tr;'Ir)·l'

= Sv I'

=s
Then,

Ran (tr;'Ir) = S
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(by Ax. 6)
(by Thm. A.1.6)
(by Thm. A.2.7)

(by Ax. 23)

(by Ax. 16)
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Now, we continue by proving that hypothesis of Lemma A.1. 7 are satisfied.

tr;7r;TpDda)+tr;7r;TpDda) = tr;7r; (TpDda) +TpDL(a))
(by Lemma A.1.13)

= tr;7r;l (BA)
= tr; 1 (by Lemma A.1.ll)

and,

tr;nTL(a) +tr;TLTL(a) = tr; (TLTL(a) +TLTL(a))
(by Lemma A.1.13)

=tr;l (BA)

It follows that,

On the other hand, by Ind. Hyp.

(26)

Also,

(tr;7r;TpDda))· (tr;7r;TpDL(a)) = tr;7r; (TpDda) ·TpDda))
(by Thm. A.l.l7)

= tr;7r;O (BA)
= O (by Thm. A.l.l)

Then,
(27)

The proof for
(28)

follows in a similar way.
Thus, joining (25)-(28) and by Lemma A.1.7

(29)

Finally, we have that,

tr;7r;TpDd·{3) = tr;7r;S;TpDL({3)

= tr;7r;TpDd{3)

= tr;TLTd{3)

= tr;tr;TLTd{3)
= tr;TLTL(·{3)

(by def. TpDda))

(by (24))

(by (29))

(by Thm. A.2.7)
(by def. TLTda))
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Lemma D.lO
f--w-CCFA+ tr; = tr;; tr

Proof. In order to prove the lemma, we will show that

f--w-CCFA+ tr; ::;tr

We proceed as follows

tr; = Ran (tro;p*)

= Ran (Dom (7r;So) ;tr;p*)

::; Ran (tr;p*)

= Ran (tr;p* ;tr)
= Ran(tr;p*) ;tr
::;tr

Now, we prove both inclusions

tr; = tr; ;tr;
::;tr;; tr

2:)
tr; ;tr ::;tr;

Lemma D.ll
f--w-CCFA+ tr;;p=tr;;p;tr;

Proo]. In order to prove the lemma, we will show that

f--w-CCFA+ Ran(tr;;p)::; tr;

(30)

(by def. trO')
(by def. tro)

(by Thm. A.2.8)
(by Lemma A.3)

(by Lemma A.1.4)
(by Thm. A.2.8)

(by Thm. A.2.7)
(by (30) and monotonicity)

(by Thm. A.2.8)

(31)

Ran(tr;;p) = Ran (Ran (tro;P*) ;p)

= Ran(tro;p*;p)

::; Ran (tro;p*)

= tr;

(by def. trO')
(by Lemma A.1.3)

(by p*; p ::; p" and monotonicity of Ran)

(by def. trO')

Now, we prove both inclusions
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:S:)

~)

Lemma D.12

Proo].
:S:)

~)

Lemma D.13

trQ';p = trQ' ;p;Ran (trQ' ;p)
:s: trQ';p;trQ'

trQ' ;p;trQ' :s: trQ';p

r-w-CCFA+ S;A¡ = A¡

S;A¡ :s: A¡

A¡ = S;A¡;S
< S;A¡

r- w-CCFA+ A¡; S = A¡

Proo]. The proof is analogous to Lemma D.12.

Lemma D.14

Proof.

Lemma D.15

Proo].

(by Thm. A.l.l1)

(by (31) and monotonicity)

r-w-CCFA+ Dom(A¡) = Dom(A¡);S

Dom (A¡) = Dom (S;A¡)
= S;Dom (A¡)
= Dom(A¡);S

r- w -CCFA + tro = tro; tr

tro = Ran (-71"; So) ;tr
= Ran(7r;So) ;tr;tr
= tro ;tr
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(by Thm. A.2.8)

•

(by Thm. A.2.8)

(by Ax. 19)
(by Thm. A.2.8)

•

•

(by Lemma D.12)
(by Lemma A.1.4)

(by Thm. A.2.5)

•

(by def. tro)
(by Thm. A.2.7)

(by def. tro)
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E Reasoning across formalisms: Semantic ap-
proach

In this appendix we present a proof for Thm. 6.1.

Lemma E.l Let K be a K ripke structure that is a model for the theory D LT L(I;).
Let ex E ForProp(P), and s E t::.K.

(Vj)(KLTL, sj FLTL ex {::::::::;> KPDL, Sj FPDL ex)

Proof. It follows by induction on the formula structure. •
Lemma E.2 Let K = (S, A, F) be a Kripke structure that is a model for the
theory PDL(I;), let ex,(3 E ForPDL(I;), let a E A, and let p, q E S. Then,

(K,p FPDL ex/\ K,p FPDL ex~ [a](3/\ (p, q) E a) ~ K, q FPDL (3

Proof.

K,p FPDL ex/\ K,p FPDL ex~ [a](3/\ (p, q) E a
~K,p FPDL ex/\ (K,p ~PDL exV K,p FPDL [a](3)/\ (p, q) E a
~K,p FPDL [a](3/\ (p, q) E a
~K,p FPDL .(a).(3/\ (p,q) E a
~K,p ~PDL (a).(3/\ (p,q) E a
~.(3p')(K,p' FPDL .(3/\ (p,p') E a) /\ (p, q) E a
~.(3p')(K,p' ~PDL (3/\ (p,p') E a) /\ (p,q) E a
~K,q FPDL (3

(by def. of FPDL)

(by def. of FPDd

(by def. of FPDL)

•
Lemma E.3 Let K = (S, T, So, F) a Kripke structure that is a model for the
theory LTL(P), let 0'.,(3" E ForLTL(P), and let s E t::.K. I],

K, S FLTL ex and,
K, s FLTL (3 and,
K, SI FLTL , and,
K, s FLTL (ex/\ (3) ~ EB(¡ ~ (3)

then,
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Proof.

K,8 FLTL a
A K, 8 FLTL {3

A K, 8
1 FLTL 'Y

A K, 8 FLTL (a A {3) =} EB(¡ =} (3)
=}

K,8 FLTL aA{3

A K, 8
1 FLTL 'Y

A K, 8 FLTL (a A {3) =} EB(¡ =} (3) (by def. of FLTL)
{=>

K,8 FLTL a A {3

A K, 8
1 FLTL 'Y

A ((K, 8 ~LTL a A {3)V (K, 8 FLTL EB(¡ =} {3))) (by def. of FLTL)
{=>

K,8 FLTL a A {3

A K, 8
1 FLTL 'Y

A K, 8 FLTL EB(¡ =} (3)

K,8 FLTL a A {3

A K, 8
1 FLTL 'Y

A K, 8
1 FLTL 'Y =} {3

=}

K,81 FLTL {3

(by def. of FLTL)

(by def. of FLTL)

•
Lemma E.4 Given K a Kripke struciure that is a model for the theory D LT L(~)
and saiisfies Thm. 6.1 hypothe8is. Let 8 E D.K and P E PrgDLTL(~).

(Vk) (ez ecf s, k) E IIPIIK =} ((K, 8 ~DLTL 1') V (Vj E [O, k]) (K, 8
j FDLTL 1')))

Proof. Let us assume k such that exec(8, k) E IIPIIK. The proof follows by··
induction on the structure of program P .

• P = ai
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- If KLTL, S ~LTL 1 we prove it as follows,

KLTL, S ~LTL 1
==}K, S ~DLTL TLTL-+DLTL(I) (by Thm. 5.1)
==}K, s ~DLTL t' (by def. of 1')

==}(K, s ~DLTL 1') V (Vj E [O,k]) (K, sj FDLTL 1')

- If K LT L , s FLT L 1, we proceed as follows.
Since K satisfies Thm. 6.1 hypothesis, we have that,

KPDL,sO FPDL ai ==} [ai]¡'3i,

KPDL, So FPDL -,ai ==} [ai]false, and,

KLTL, S FLTL (ai /\ 1) ==} EB(¡'3i ==} 1)

And since exec(s, k) E lIaillK, we can conclude that,

KPDL, So FPDL ai ==} [ai]¡'3i

/\ KPDL, So FPDL -,ai ==} [ai]false

/\ KLTL, S FLTL (o, /\ 1) ==} EB(¡'3i ==} 1)

/\ KLTL, S FLTL 1

/\ exec(s, k) E lIaillK
~

KPDL, So FPDL ai ==} [ai]¡'3i

/\ KPDL, So FPDL -,ai ==} [ai]false

/\ KLTL, S FLTL (ai /\ 1) ==} EB(¡'3i ==} 1)

/\ KLTL, S FLTL 1
/\ (so, SI) E ai
/\ k = 1 (by def. 5.6)

~
KPDL, So FPDL ai ==} [ai]¡'3i

/\ (KPDL, So FPDL ai V -,(~s') (so, s') E ai)

/\ KLTL, S FLTL (ai /\ 1) ==} EB(¡'3i ==} 1)

/\ KLTL, S FLTL 1
/\ (so, SI) E ai
/\ k = 1 (by def. of FPDd
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==}

KPDL, So I=PDL ai ==} [ai],8i

A KLTL, S I=LTL (o, Al)==} ffi(,8i ==} l)

A KLTL, S I=LTL 1

A (SO,Sl) E ai

Ak=l

A KPDL, So I=PDL ai

==}KLTL, S I=LTL (ai Al) ==} ffi(,8i ==} l)

A KLTL, S I=LTL 1

Ak=l

A KPDL, So I=PDL ai

AKPDL,SlI=PDL,8i
==}

KLTL, S I=LTL (ai Al)==} ffi(,8i ==} l)

AKLTL,S I=LTL 1

Ak=l

A KLTL, S I=LTL ai

A KLTL, Sl I=LTL,8i

==}

KLTL, S I=LTL 1

A KLTL, Sl I=LTL 1

Ak=l

(by Lemrna E.2)

(by Lemma E.1)

(by Lemrna E.3)
==}

K, S I=DLTL t'
A K, sl I=DLTL t'
A k = 1 (by Lemma 5.1)

==}(Vj E [O, k]) (K, Si I=DLTL 1')

==}(K, S ~DLTL 1') V (Vj E [O,k]) (K, si I=DLTL 1')

• P=Ru8

exec(s, k) E IIR U 811K
==}exec(s, k) E IIRIIK U 11811K
==}exec(s, k) E IIRIIK V exec(s, k) E 11811K
==}K, S ~DLTL r V (Vj E [O, k]) (K, si I=DLTL 1')
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• p = R;S

exee(s, k) E IIR; SIIK
===}exee(s, k) E IIRIIK; IISIIK (by def. 5.6)
===}(:3T) (:3T')((exee(s, k) = T; T') 1\ (T E IIRIIK) 1\ (T' E IISIIK))

(by def. 5.4)

- If it is the case that T = A:

===}A E IIRIIK 1\ exec(s, k) E IISIIK
===}A E IIRIIK 1\ (K, S ~DLTL t' V (Vj E [O,k]) (K, sj PDLTL 1'))

(by lnd. Hyp.)

===}K, S ~DLTL l' V (Vj E [O,k]) (K, sj PDLTL 1')

- The proof for the case that T' = A is analogous to the previous one.
- If it is the case that T =1= A and T' =1= A is true:

===} (:3k' E (O, k))((exec(s, k') E IIRIIK) 1\ (exee(sk', k - k') E IISIIK))

by lnd. Hyp.

(:3k' E (O, k))(
(K, S ~DLTL r V (Vj E [O, k']) (K, sj PDLTL 1'))1\
(K, sk' ~DLTL I' V (Vj E [O, k - k']) (K, (sk')j PDLTL 1')))

(:3k' E (O,k))(
(K, s ~DLTL t' V (Vj E [O, k']) (K, sj PDLTL 1'))1\
'----- ------.J , J--v------- 'V

a b

(K, sk' ~DLTL t' V (Vj E [k', k]) (K, sj PDLTL 1')))
, " , J

V

e d
It is easy to see that b ===} ,e.
So from (a V b) 1\ (e V d) we can conclude that a V (e 1\ d)

(:3k' E (O, k))((K, S ~DLTL 1')v
(Vj E [k, k']) (K, sj PDLTL 1') 1\ (Vj E [k', k]) (K, sj PDLTL 1'))

(K, S ~DLTL 1') V (Vj E [O,k]) (K, sj PDLTL 1')

• P= R*

exee(s, k) E IIR*IIK
===}exec(s,k) E (IIRIIK)*
===}(:3n E [O, oo))(exec(s, k) E IIRII;n)

(by def. 5.6)
(by def. of *)
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We will prove that

(:3n E [O, (0))(
(exec(s, k) E (IIRIIK);n)

=> ((K, S ~DLTL 1') V (Vj E [O,k]) (K, sj FDLTL 1')))

by induction on natural n.
- base case

exec(s, k) E (IIRIIK );0
=>exec(s, k) E {A} (by def. 5.6)
=>exec(s, k) = A (by set theory)
=>k = O (by def. of exec)

=>(K, s ~DLTL I') V (Vj E [O, k]) (K, sj FDLTL I')

- inductive step

exec(s, k) E (1IRIIK);n+1
=>exec(s, k) E IIRIIK; (11RIIKrn (by def. 5.6)

The rest of the proof is analogous to the P = R; S case.

•
Lemma E.5 Given K a K ripke structure that is a model for the theory D LT L(~)
satisfying Thm. 6.1 hypothesis. Let s E t::..K and P E PrgDLTL(~).

(3k E [O, oo))(exec(s, k) E IJPIIK) => K, S FDLTL I' => (I' uP I')
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Proof.

(:lk E [O, oo))(exec(s, k) E IIPIIK)
=>(:lk E [O, oo))((K, S ~DLTL 1') V (V'j E [O, k]) (K, sj F=DLTL 1'))

(by Lemma E.4)

=>(:lk E [O, (0))(
(K, S ~DLTL 1')v

((V'j E [O,k])(K,sj F=DLTL 1') /\ (exec(s,k) E IIPIIK)))

~(:lk E [O, (0))(
(K, S ~DLTL 1')V

(K, sk F=DLTL 1')/\

(V'j E [O, k))(K, sj F=DLTL 1')/\
(exec(s,k) E IIPIIK)))

~(K, S ~DLTL 1')V
(:lk ;:::0)(

(K, Sk F=DLTL 1')/\

(V'j E [O, k))(K, sj F=DLTL 1')/\
(exec(s, k) E IIPIIK)))

~(K, S ~DLTL 1') V (K, S F=DLTL r uP 1')

~K, S F=DLTL t' => (1' uP 1')

(by def. of F=DLTL)

(by def. of F=DLTL)

•
Lemma E.6 Given K a Kripke struciure that is a modelfor the theory DLTL('f,)
satisfying Thm. 6.1 hypothesis. Let s E !::,.K and P E P~gDLTL('f,).

K, S F=DLTL true uP true => (1' => (1' uP 1'))

Proo].

K, S F=DLTL true uP true
~(:lk E [O, oo))(exec(s, k) E IIPIIK)
=>(:lk E [O,oo))(K, S F=DLTL r => (1' uP 1'))

~K,s F=DLTL t' => (1' uP 1')

(by Lemma C.3)

(by Lemma E.5)

Then,
K, S F=DLTL true uP true => (1' => (1' uP 1'))
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-
Theorem E.l Let K be a K ripke structure that is a model for the theory
DLTL(2',), such that

• KPDL is a model of specPDL .

• KLTL is a model of specLTL.

Then, K is a model of specDLTL.

Proof. The proof is almost trivial from the previous results. Given K a Kripke
structure for logic DLTL(2',) satisfying Thm. 6.1 hypothesis, then by Lemma
E.5 it follows that every axiom of specDLTL is valid in K. Therefore, K is a
model of specDLTL. -
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