
Branching Semantics for Modal Transition

Systems

Tesista

Dario Fischbein

dfischbe(at)dc.uba.ar

L.U. 472/99

Director

Sebastian Uchitel

s.uchitel(at)doc.ic.ac.uk

(Imperial College London)

Co-director

Victor Braberman

vbraber(at)dc.uba.ar

Abril 2006

1

Abstract

Modal Transition Systems (MTS) are a formalism that allow for partial de-

scriptions of a system’s behaviour. These models characterise the set of imple-

mentations that satisfy the partial knowledge available and facilitate the analysis

of properties over this set. Given a model, the set of implementations it defines

depends on the semantics used to interpret it. In this thesis we analyse the exist-

ing MTS semantics concluding they are not adequate for incrementally evolving

a model from a software engineering perspective. We discuss the required charac-

teristics for a semantics to be suitable and subsequently give a formal definition

for a new semantics that has these characteristics. Finally, we present a software

tool that we have developed to verify whether an implementation conforms to a

partial model according to each of the studied semantics, i.e. if it is included in

the set of implementations given by each semantics for that partial model.

Contents

Abstract 1

Contents 3

Introduction 6

1 Background 7

1.1 Equivalences . 7

1.2 Refinements . 11

1.3 Modal Transition Systems . 13

2 Analysis of Existing Semantics 15

2.1 Case Study . 15

2.2 Strong Semantics . 17

2.3 Weak Semantics . 20

3 New Semantics 23

3.1 Exploration . 23

3.2 Definition . 29

2

CONTENTS 3

4 Tool Support 33

4.1 Fix Point Algorithm . 34

4.2 Implementation . 36

4.2.1 FSP . 37

4.2.2 User Guide . 39

5 Validation 42

6 Conclusions 46

6.1 Summary of Contributions . 46

6.2 Related Work . 47

6.3 Future work . 48

Bibliography 49

Introduction

The requirements and design of software systems are amenable to analysis through

the construction of behaviour models, that is, formal operational descriptions of

the intended system behaviour. This corresponds to the traditional engineering

approach to construction of complex systems. The major advantage of using

models is that they can be studied to increase confidence in the adequacy of

the product to be built. In particular, behaviour models used to describe soft-

ware systems can be analysed and mechanically checked for properties in order

to detect design errors early in the development process and allow cheaper fixes.

Although behaviour modelling and analysis have been shown to be successful

in uncovering subtle design errors [1], the adoption of such technologies by prac-

titioners has been slow. This is in part due to a mismatch between most widely

adopted software development techniques and a fundamental characteristic of

traditional behaviour models.

On one side, as part of the essence of widely used iterative and incremental

software development processes, the available system descriptions tend to be of

a partial nature leaving some aspects of the desired behaviour undefined until a

more advanced stage of the process is reached. Consequently, when the advan-

tages of constructing models are more rewarding the complete system description

is not available.

However, semantics of traditional behaviour models assume a complete de-

scription of the system behaviour up to some level of abstraction, and hence

cannot support reasoning in the presence of partial behavioural information. To

support such reasoning, a behaviour model should allow currently unknown as-

4

CONTENTS 5

pects of system behaviour to be modelled, moreover it should provide a notion

of elaboration of partial descriptions into more comprehensive ones.

Operational models that allow distinguishing unknown aspects of system be-

haviour are referred to as partial behavioural models. A particular kind of widely

studied partial behavioural models are Modal Transition Systems (MTS), an ex-

tension of Label Transition Systems (LTS).

With these type of models we can describe what is already known of the

desired behaviour of the system at an early stage of the software development

process, and also analyse it in spite of not having complete knowledge on the

expected system behaviour. Further on, once all behavioural information is avail-

able, we will need a way to ensure that the final and complete model constructed

actually conforms to the partial models initially developed. If this is the case

we say that the total model is an implementation of the partial model. If the

notion of conformance can be shown formally to preserve certain properties, then

all analysis previously done over the partial models will also be valid for the

implementation.

Refinement is a generalization of the notion of implementation that allows us

to establish when one partial model conforms to another one. Intuitively, model

N is a refinement of model M if and only if the set of implementations of model

N is a subset of the implementations of M. With this notion we can start with

an immature model and gradually and repeatedly evolve it while new knowledge

is gathered until the complete system description is reached.

There exist two different semantics over MTS given by two refinements intro-

duced by Larsen et al. [2, 3]. As part of this work we analyse from an incremental

software modelling point of view the applicability of the implementation notions

derived from Larsen’s refinements. Based on our analysis we conclude that from

this perspective these implementation notions are not adequate.

To address the limitations of existing semantics, we define a new semantics

for MTS given by a novel notion of implementation. This semantics has a cor-

respondence with branching bisimulation[4] over LTS in a similar way Larsen’s

semantics informally correspond to strong and weak bisimulation over LTS. In

CONTENTS 6

addition, we show that the natural generalization of branching bisimulation does

not lead to an appropriate notion of refinement over MTS. Hence, in this work

we provide a declarative definition of branching refinement over MTS but leave

a operationally definition, in the style of Larsen [2, 3] for future work. Finally,

we present a tool we have developed that checks the implementation relation be-

tween any two models using strong, weak, or the new semantics. We have used

this tool to validate the examples presented in the work.

The rest of this thesis is organized as follows. In Chapter 1, we provide the

background for the rest of the work introducing LTS, some semantics for them and

finally defining MTS. In Chapter 2, we present and analyse the existing semantics

for MTS. In Chapter 3, we define a novel semantics for MTS. Chapter 4 gives an

algorithm to verify the implementation relation between models and introduce a

tool that has been developed to support the verification of the different relations

discussed in this work. In Chapter 5, we validate the novel semantics against a

set of analised examples. Finally, in Chapter 6 we conclude with a summary of

contribution, an analysis of related work and future directions.

Chapter 1

Background

In this chapter we introduce LTS, three standard equivalence relations and two

standard refinements on them, and also MTS. We provide formal definitions,

some intuitions and examples, and fix notation.

1.1 Equivalences

Definition 1.1.1 (Labelled Transition Systems). Let States be a universal set of

states, Act be a universal set of observable action labels, and let Actτ = Act∪{τ}.

A labelled transition system (LTS) is a tuple P = (S, L, ∆, s0), where S ⊆ States

is a finite set of states, L ⊆ Actτ is a set of labels, ∆ ⊆ (S×L×S) is a transition

relation between states, and s0 ∈ S is the initial state. We use αP = L \ {τ} to

denote the communicating alphabet of P .

Figure 1.1 shows a graphical representation of two LTSs. Given an LTS P =

(S, L, ∆, s0) we say P transitions on ℓ to P ′, denoted P
ℓ

−→ P ′, if P ′ = (S, L, ∆, s′0)

and (s0, ℓ, s
′

0) ∈ ∆. Similarly, we write P
ℓ̂

−→ P ′ to denote that either P
ℓ

−→ P ′

or ℓ = τ and P = P ′ are true. We use P
ℓ

=⇒ P ′ to denote P (
τ

−→)∗
ℓ

−→ (
τ

−→)∗P ′.

Let w = w1, . . . , wk be a word over Actτ . Then P
w

−→ P ′ means that there exist

P0, . . . , Pk such that P = P0, P ′ = Pk, and Pi

wi+1

−→ Pi+1 for 0 ≤ i < k. We write

P
w

−→ to mean ∃P ′ · P
w

−→ P ′. Finally, we extend =⇒ to words in the same

7

CHAPTER 1. BACKGROUND 8

way as we do for −→.

Definition 1.1.2 (Strong Bisimulation Equivalence). Let ℘ be the universe of all

LTS, and P,Q ∈ ℘. P and Q are strong equivalent, written P ∼ Q, if αP = αQ

and (P,Q) is contained in some bisimulation relation R ⊆ ℘ × ℘ for which the

following holds for all ℓ ∈ Actτ :

1. (P
ℓ

−→ P ′)⇒(∃Q′ · Q
ℓ

−→ Q′ ∧ (P ′, Q′) ∈ R)

2. (Q
ℓ

−→ Q′)⇒(∃P ′ · P
ℓ

−→ P ′ ∧ (P ′, Q′) ∈ R)

Informally, two models are strong equivalent if their initial states are strong

equivalent, and two states are strong equivalent if, whenever one action can be

executed in one of them leading to a state B, the other can execute the same

action reaching a state B′, where B′ is again equivalent to B. This equivalence

does not distinguish τ transitions as special or unobservable actions. A property

of this equivalence is that it respects the branching structure of processes[5].

Consider the LTS shown in Figure 1.1. These two models are an example

of strong equivalent models, and the bisimulation relation between them is R =

{(a0, b0), (a1, b1), (a2, b2), (a0, b3), (a1, b4), (a2, b5)}. On the other hand Figure 1.2

shows an example of two LTS that are not strong equivalent. There not exist a

strong bisimulation for these models because state 1 of the model in 1.2(a) cannot

be related with any state of the model in 1.2(b).

0

1 2

a

b c

(a)

0

1 2

3

4 5

a

ab c b c

(b)

Figure 1.1:

Definition 1.1.3 (Weak Bisimulation Equivalence). Let ℘ be the universe of all

LTS, and P,Q ∈ ℘. P and Q are weak bisimulation equivalent, written P ≈ Q, if

αP = αQ and (P,Q) is contained in some weak bisimulation relation R ⊆ ℘× ℘

for which the following holds for all ℓ ∈ Actτ :

CHAPTER 1. BACKGROUND 9

0

1

2 3

a

b c

(a)

0

1

2

3

4

a a

b c

(b)

Figure 1.2:

1. (P
ℓ

−→ P ′)⇒(∃Q′ · Q
ℓ̂

=⇒ Q′ ∧ (P ′, Q′) ∈ R)

2. (Q
ℓ

−→ Q′)⇒(∃P ′ · P
ℓ̂

=⇒ P ′ ∧ (P ′, Q′) ∈ R)

This equivalence compares the observational behaviour of models ignoring silent

actions (τ -transitions). Some authors call this equivalence observational equiv-

alence, but we are going to use this expression to refer to any equivalence that

considers τ -transitions as silent actions. Weak bisimulation equivalence is coarser

than strong equivalence and does not preserve the branching structure of processes

as it is shown in [4].

Figure 1.3 shown an example of two models that are not strong equivalent

but weak equivalent. The weak bisimulation relation between them is R =

{(a0, b0), (a1, b1), (a2, b1), (a3, b3)}.

0

1

2

3

a

τ

c

(a)

0

1

2

a

c

(b)

Figure 1.3:

Definition 1.1.4 (Branching Bisimulation Equivalence). Let ℘ be the universe

of all LTS, and P,Q ∈ ℘. P and Q are branching bisimulation equivalent, written

CHAPTER 1. BACKGROUND 10

P ≈b Q, if αP = αQ and (P,Q) is contained in some observational bisimulation

relation R ⊆ ℘ × ℘ for which the following holds for all ℓ ∈ Actτ :

1. (P
ℓ

−→ P ′)⇒(∃Q′, Q′′ · Q
τ̂

=⇒ Q′
ℓ̂

−→ Q′′ ∧ (P,Q′), (P ′, Q′′) ∈ R)

2. (Q
ℓ

−→ Q′)⇒(∃P ′, P ′′ · P
τ̂

=⇒ P ′
ℓ̂

−→ P ′′ ∧ (P ′, Q), (P ′′, Q′) ∈ R)

Lemma 1.1.5 (Stuttering Lemma). Let R be the largest branching bisimulation

between P and Q. If r
τ

−→ r1
τ

−→ · · ·
τ

−→ rm
τ

−→ r′(m ≥ 0) is a path such that

(r, s), (r′, s) ∈ R then (ri, s) ∈ R ∀ i ≤ m.

Branching bisimulation equivalence is an observational equivalence coarser than

strong equivalence and finer than weak bisimulation equivalence. This equiva-

lence is the coarsest equivalence that preserves the branching structure of processes[5].

The Stuttering Lemma will have an important role in the results we present in

section 3.2.

Figure 1.4 shows an example of two models that are weak equivalent but not

branch equivalent. If we make a comparative analysis of models (a) and (b) we

can see that while from the initial state in model (a) we can take transition a

in only one way, in model (b) there are two different possibilities to take this

transition from state 0. One of those two possibilities leads to a state from where

both b1 and b2 transitions can be taken. This is the same that happens if we take

transition a in model (a). However, if from the initial state in model (b) we take

0

1

2

3

4

5

a

τ

a

b1

b2

(a)

0

1

2

3

4

5

a

τ

a

b1

b2

a

(b)

Figure 1.4:

CHAPTER 1. BACKGROUND 11

transition a leading to state 2 then the possibility of taking b1 is discarded before

having the chance of taking it, which is never the case in model (a). Therefore,

we can conclude that these two models do not have the same branching structure.

1.2 Refinements

In the previous section we present a series of equivalences over LTS. While all

these equivalences determine whether two models have or not the same behaviour,

they differ in the criteria used to interpret the behaviour given by a model.

However, in the context of evolving a software model we need to be able to

add further information to the model while more knowledge regarding the system

is acquired. This implies that we do not only need to be able to assess if two

models are equivalent or not but to define if a model with more information

actually refines a previous one. In order to do so, we will need to find a suitable

semantics that establishes an order between models.

In this section we present two different refinement notions over LTS and we

analyse why they do not allow us to evolve a model according to our expectations.

Definition 1.2.1 (Strong Simulation [6]). Let ℘ be the universe of all LTS, and

P,Q ∈ ℘. Q simulates P , written P ⊑s Q, if αP = αQ and (P,Q) is contained in

some simulation relation R ⊆ ℘×℘ for which the following holds for all ℓ ∈ Actτ :

1. (P
ℓ

−→ P ′)⇒(∃Q′ · Q
ℓ

−→ Q′ ∧ (P ′, Q′) ∈ R)

While Strong Bisimulation defines an equivalence, Strong Simulation defines

a partial order over LTS. Note that P ∼ Q ⇒ P ⊑s Q ∧ Q ⊑s P .

A standard refinement notion between LTS consists in considering that P

refines Q if P simulates Q. i.e. Q ⊑s P . One of the properties that characterize

this refinement is that it reduces the degree of non determinism. With this

refinement we know that any behaviour of Q is a valid behaviour of P . However,

using this semantics it is not possible to ensure that a forbidden behaviour for

CHAPTER 1. BACKGROUND 12

0

1

2

a

b

(a)

0

1

2

3
a

c

b

(b)

Figure 1.5:

the system which is captured in Q will be preserved in the refined model P . For

example, the model shown in figure 1.5(b) refines the one shown in figure 1.5(a)

and it can be easily seen that model 1.5(b) has the possibility of taking transition

c after taking a in spite of being forbidden in model 1.5(a). Moreover, a model

consisting in a state with a self-transition for every element of the alphabet is

considered by this semantics a refinement of any other model.

On the other hand, if we consider that P refines Q if Q simulates P , i.e.

P ⊑s Q. In this case we know that any behaviour of P is a valid behaviour of Q,

but not the other way around. Therefore, if Q determines that certain behaviour

is forbidden in a system we know that it will also be forbidden by P since any

behaviour in P can be simulated by Q. However, using this semantics it is not

possible to ensure that a desired behaviour for the system which is depicted in

Q will be preserved in the refined model P . For example, the model shown in

figure 1.5(a) refines the one shown in figure 1.5(b) and it can be easily seen that

model 1.5(a) loses the possibility of taking transition c after taking transition a.

Moreover, a model consisting in a state with no transitions is, considered by this

semantics, a refinement of any other model.

Definition 1.2.2 (Traces). A trace is a sequence w ∈ Act∗. Given P a LTS, the

set of traces of P is defined as follows:

TRACES(P) = { w ∈ Act∗ | P
w

−→ }

Definition 1.2.3 (Trace Refinement). Let P and Q be LTSs. We say that Q is

a trace refinement of P , written P ⊑tr Q, iff TRACES(P) ⊇ TRACES(Q).

Suppose an LTS model P describes the knowledge we have at a certain stage

CHAPTER 1. BACKGROUND 13

of the development process. Then, according to trace refinement semantics, an

LTS model Q will be a valid implementation of P iff the set of traces of Q is a

subset of the traces of P . Therefore, P determines the set of all possible traces for

the system but cannot guarantee any of them. This means that while P describes

the “maximum” behaviour possible for the implementations it cannot assure any

required behaviour will be preserved. For example, according to this semantics, a

model consisting of only one state and no transitions is a possible implementation

of any system. Moreover, the definition of trace refinement is such that the

inclusion of any trace is independent from the inclusion of other traces (except

for its prefixes). Consequently, using this semantics it is not possible to describe

a requirement such as ’if the implementation has this specific behaviour then it

must have this other behaviour’.

Bearing in mind our aim of supporting the evolution of behavioural models

having partial information as a starting point and enriching the model while more

requirements are gathered, the refinements presented in this section have the

following limitation: they consider the less refined model to completely describe

either the maximum or the minimum allowed behaviour for the system. In the

first case all possible behaviour is specified whereas in the second case the model

describes all the required behaviour for the system. This means only one bound is

specified, i.e. either the lower or upper bound, and hence the other bound remains

open. In fact, this limitation is not due to the analysed refinement notions in

themselves, failures [7], testing [8] refinements have similar problems, but to an

intrinsic characteristic of LTS models. Specifically, using these models it is not

possible to identify which aspects of the system have already been defined and

which still has to be refined. This is true both for the expected and the forbidden

behaviour. For this reason we will consider MTS since they allow us to explicitly

specify which behaviour is required, possible or forbidden.

1.3 Modal Transition Systems

Definition 1.3.1 (Modal Transition Systems). A modal transition system (MTS)

M is a structure (S, L, ∆r, ∆p, s0), where ∆r ⊆ ∆p, (S, L, ∆r, s0) is an LTS rep-

CHAPTER 1. BACKGROUND 14

resenting required transitions of the system and (S, L, ∆p, s0) is an LTS repre-

senting possible (but not necessarily required) transitions of the system. We use

αM = L \ {τ} to denote the communicating alphabet of M .

Figure 2.1 shows a graphical representation of a MTS. Transition labels that have

a question mark are those in ∆p − ∆r. We refer to these transitions as “maybe”

transitions, to distinguish them from required ones (those in ∆r). Given an MTS

M = (S, L, ∆r, ∆p, s0) we say M transitions on ℓ through a required transition

to M ′, denoted M
ℓ

−→r M ′, if M ′ = (S, L, ∆r, ∆p, s′0) and (s0, ℓ, s
′

0) ∈ ∆r, and M

transitions through a possible transition, denoted M
ℓ

−→p M ′, if (s0, ℓ, s
′

0) ∈ ∆p.

Similarly, for γ ∈ {r, p} we write M
ℓ̂

−→γ M ′ to denote that either M
ℓ

−→γ M ′

or ℓ = τ and P = P ′ are true, and we use P
ℓ

=⇒γ P ′ to denote P (
τ

−→γ)
∗

ℓ
−→γ

(
τ

−→r)
∗P ′.

Note that LTS are a special type of MTS that do not have maybe transitions.

Chapter 2

Analysis of Existing Semantics

In this section we analyse the adequacy of MTS refinement as introduced by

Larsen for software development, especially in iterative and incremental software

development processes. We present a case study upon which we analyse the use

of the implementation notions given by strong and weak MTS refinements.

2.1 Case Study

The case study that we will analyse consists of a model of the control software

for an electronic device at an early stage of the development process. This device

offers different functions grouped into several menu items. The general behaviour

of the system is basically as follows: the user selects the desired menu item and

the system offers the functions of this menu entry. If the user does not choose

any function after an elapsed time, the system makes a beep and returns to the

initial state. At this stage of the development process some menu items and their

associated functionalities have been discovered, but the stakeholders are not sure

whether some of the menu entries described will be adequate or not for the final

product. According to this situation, the MTS that models the system with the

detail and knowledge that we have up to now is shown in Figure 2.1.

What is being modelled at this stage is the way the user can access the

15

CHAPTER 2. ANALYSIS OF EXISTING SEMANTICS 16

A: 0 B

M111

1x1

Mnn1

nxn

beep
menu1

τ

func1

τ

funcx1

τ

menu
n?

τ

func1

τ

funcxn

τ

Figure 2.1: A graphical representation of the MTS that models the system with
the detail and knowledge gathered at the first stage. The labels of the states
have no meaning and are used for reference only. The initial state of the system
is denoted with label 0.

functionalities of the equipment. How these functionalities work is below the level

of abstraction of this model and are consequently represented with τ transitions.

From the initial state there are n transitions labelled menu1 to menun each

one representing the selection of one menu entry by the user. These transitions

are either required or maybe, the former corresponding to the menu items that

must be in the final product and the latter corresponding to those whose inclusion

is still in doubt.

When an Mi state is reached, meaning that the user has selected the menu i,

a set of transitions func1 to funcxi become available. These transitions represent

the access to the functionalities that can be triggered from this menu item. If

the user triggers one of these, the system will carry out the associated task and

after finishing that task it will return to the initial state. As we have already

mentioned, since the details of how these tasks are performed is below the level

of abstraction of the model, they have been represented with τ transitions. If

the user has not selected any functionality after an elapsed time then an internal

timeout occurs, making the system leave the Mi state and return to the initial

state by doing a beep. This time out is an internal event and therefore not visible

CHAPTER 2. ANALYSIS OF EXISTING SEMANTICS 17

to the user, so again it has been modelled with a τ transition.

2.2 Strong Semantics

When considering LTS, strong semantics refers to the semantics given by strong

bisimulation. One of the particularities of this semantics is that it lacks a notion

of unobservable or internal action, i.e. τ -labelled transitions. Larsen has extended

this semantics over MTS [2].

Strong refinement of MTS captures the notion of elaboration of a partial

description into a more comprehensive one, in which some knowledge over the

maybe behaviour has been gained. It can be seen as being a “more defined

than” relation between two partial models. Intuitively, refinement in MTS is

about converting maybe transitions into required transitions or removing them

altogether: an MTS N refines M if N preserves all of the required and all of

the proscribed behaviours of M . Alternatively, an MTS N refines M if N can

simulate the required behaviour of M , and M can simulate the possible behaviour

of N .

Definition 2.2.1 (Strong Refinement). Let δ be the universe of all MTS. N is

a refinement of M , written M � N , if αM = αN and (M,N) is contained in

some refinement relation R ⊆ δ× δ for which the following holds for all ℓ ∈ Actτ :

1. (M
ℓ

−→r M ′)⇒(∃N ′ · N
ℓ

−→r N ′ ∧ (M ′, N ′) ∈ R)

2. (N
ℓ

−→p N ′)⇒(∃M ′ · M
ℓ

−→p M ′ ∧ (M ′, N ′) ∈ R)

Note that the second condition guarantees that if N has a required transition, M

has a maybe or a required transition, whereas if N has a maybe transition, then

M has a maybe transition – otherwise, the first condition is violated. Another

interesting thing to note is how similar is this definition to strong bisimulation

Def. 1.1.2.

Consider the MTS shown in Figure 2.1. If modellers decide to exclude menun

then the model that would represent that decision is the one shown in Fig-

CHAPTER 2. ANALYSIS OF EXISTING SEMANTICS 18

ure 2.2. According to strong semantics this latter model is a valid possible evo-

lution of the initial one since the MTS A is refined by the MTS B (A � B),

incorporating as new knowledge that the menun has been removed from the

functionalities of the system. The refinement relation between these models is

R = {(0, 0), (B,B), (M1,M1), (11, 11), . . . , (1x1
, 1x1

)}.

B:

0 B

M111

1x1

beep
menu1

τ

func1

τ

funcx1

τ

Figure 2.2: A possible evolution of the initial model where only menu1 is available
to the user.

Note that because the MTS B in Figure 2.2 has no maybe transitions can

be considered an LTS and we say that it is an implementation of the model in

Figure 2.1.

Definition 2.2.2 ((strong) implementation). We say that an LTS I = (SI , LI , ∆I , i0)

is a (strong) implementation of an MTS M = (SM , LM , ∆r
M , ∆p

M ,m0), written

M � I, if M � MI with MI = (SI , LI , ∆I , ∆I , i0). We also define the set of

implementations of M as I[M] = {I LTS | M � I}.

Considering that strong refinement is transitive [2] it is straightforward to

proof that M � M ′ implies I[M] ⊇ I[M ′]. Hence when a model is evolved

into a more refined one no new possible implementations for the system will

be added, in fact when a model is enriched with more requirements the set of

possible implementations can only be reduced. Another important result is that

the reciprocal of the previous property is also valid, I[M] ⊇ I[M ′] ⇒ M � M ′ [9].

A consequence of this is that when a modeller creates a new model to reflect

additional requirements that were gathered we can be sure that this model will be

accepted as a valid evolution of the previous model iff the set of implementations

of the new model is a subset of the implementations of the previous one.

A remarkable property of this refinement is that it preserves the branching

CHAPTER 2. ANALYSIS OF EXISTING SEMANTICS 19

structure of the refined model.

Strong refinement captures the notion of evolving a model by allowing de-

cisions to be taken regarding maybe transitions. However, in practice, model

elaboration can lead also to the necessity of extending the alphabet of the system

to describe behaviour aspects that previously had not been taking into account.

For example, in our case study we may eventually want to describe with a lower

level of abstraction how a particular function works. This can be seen in Fig-

ure 2.3 where the τ transition from state 1x1
to state 0 of the initial model has

been replaced by the secuence readList, showList. Once this has been done we

will need a way to ensure that the new model does in fact conform the previous

one. Since strong refinement requires the alphabets of the models being com-

pared to be equal we will need to check this using the concept of hiding, where

transitions with new symbols of the alphabet are replaced with tau transitions.

However, this refinement does not consider tau transitions as silent ones and

therefore the comparison result of these models will not be as expected. For the

stated reasons, in the case of the software development processes we are study-

ing, it is imperative to use an observational semantics, i.e. a semantics that in

some way considers tau transitions as silent ones. As far as we know weak refine-

ment [3] is the only observational semantics currently defined over MTS, and so

we will consider it in the following section.

C:

0 B

M111

1x1

2x1

beep
menu1

τ

func1

τ

funcx1
readList

showList

Figure 2.3: A model where the behaviour of functionality associated to funcx1

has been detailed.

CHAPTER 2. ANALYSIS OF EXISTING SEMANTICS 20

2.3 Weak Semantics

Weak MTS refinement also defined by Larsen [3] allows comparing the observable

behaviour of models while ignoring the possible differences that they may have in

terms of internal computation. In other words, this notion of refinement considers

τ -labelled transitions differently from other transitions. Weak MTS refinement

is this defined based on the definition of LTS weak bisimulation, as can be seen

in the following definition.

Definition 2.3.1 (Weak Refinement). N is a weak refinement of M , written

M �O N , if αM = αN and (M,N) is contained in some refinement relation

R ⊆ δ × δ for which the following holds for all ℓ ∈ Actτ :

1. (M
ℓ

−→r M ′)⇒(∃N ′ · N
ℓ̂

=⇒r N ′ ∧ (M ′, N ′) ∈ R)

2. (N
ℓ

−→p N ′)⇒(∃M ′ · M
ℓ̂

=⇒p M ′ ∧ (M ′, N ′) ∈ R)

It is worth noting that the relation between weak bisimulation and weak

refinement follows the same pattern used to extend strong bisimulation into a

refinement. Also, if a model N is a strong refinement of model M (M � N) then

N is also a weak refinement of M (M �O N). Finally, as with strong refinement,

a notion of (weak) implementation can be defined between MTSs and LTSs.

We now consider again the model C described in Figure 2.3. If we hide the

new actions and then use weak refinement to compare it with the initial model

A, it can be stated that C is a refinement of A being the refinement relation

R = {(0, 0), (B,B), (M1,M1), (11, 11), . . . , (1x1
, 1x1

), (0, 2x1
)}. Thus, as expected,

with this semantics the analysed model is an adequate evolution of the initial

one.

Having introduced weak semantics and shown one example of its applicability

we now analyse more closely its adequacy of to support a model elaboration.

Our analysis is based on one particular implementation of the MTS A, which

we present in Figure 2.4 and denote I. Considering weak semantics, since R =

{(0, 0), (B,B), (M1,M1), (11, 11), . . . , (1x1
, 1x1

)} is a refinement relation between

A and I, the following LTS is a possible implementation of the system:

CHAPTER 2. ANALYSIS OF EXISTING SEMANTICS 21

I:

0 B

M111

1x1

beep
menu1

τ

func1

τ

funcx1

τ

menun

Figure 2.4: A valid implementation of the initial model according to weak refine-
ment.

From the original model A (Figure 2.1), it is not decided if menun is to be

included in the final system, but if it were included we would expect all the

functionalities associated with this menu to be reachable by the user. However in

the implementation proposed above the user never has the possibility of selecting

functionalities func1 . . . funcxn after selecting menun. This breaks the intuition

behind the notion of implementation. The implementation shown above is not

satisfactory since it does not reflect the expected behaviour: if a menu is included,

all its associated functionality will be available to users. This example shows

that weak semantics does not seem to be adequate to support evolving software

modelling since it does not preserve the branching structure of the original model.

A more in depth analysis of this semantics allows us to gain some insight as

to why weak refinement leads to such unintuitive implementations. For this we

use an alternate (yet equivalent) standard definition of weak semantics. Weak

semantics can be thought of as simply applying strong semantics to the models

obtained from performing the transitive closure of tau transitions.

Definition 2.3.2 (Observational Graph). Given an MTS M = (S, L, ∆r, ∆p, s0),

the observational graph of M is the derived MTS Obs(M) = (S, L, ∆r
o, ∆

p
o, s0)

where ∆r
o, ∆

p
o are given by:

1. ∆r
o = {M

ℓ
−→ M ′|M

ℓ̂
=⇒r M ′}

2. ∆p
o = {M

ℓ
−→ M ′|M

ℓ̂
=⇒p M ′}

Property 2.3.3 (Weak Refinement). N is a weak refinement of M , written

CHAPTER 2. ANALYSIS OF EXISTING SEMANTICS 22

M �O N , if and only if Obs(M) � Obs(N).

We now revisit the case study with this alternative definition of weak se-

mantics. Consider the transitive closure of the model in Figure 2.1 depicted in

Figure 2.5. The transition labelled menun in Figure 2.1 gives rise to two different

maybe transitions in Figure 2.5, i.e. 0
menun−→ m Mn and 0

menun−→ m B. In obtaining

the implementation in Figure 2.4, we can consider that these two transitions were

refined inconsistently: 0
menun−→ m B became a valid behaviour while 0

menun−→ m Mn

became forbidden. These kind of “inconsistent” decisions that weak refinement

allows over different transitions in the closured model that were originated from

the same maybe transition are the cause for these unexpected implementations.

Obs(A): 0 B

M1

11

1x1

Mn

n1

nx1

beepτ τ

τ

τ

τ

τ

τ

τ

menu1

menu1

τ

func1

func1
· · ·

funcx1

τ

funcx1

τ

menu
n?
menun?

τ

func1

func1 · · · funcx
n

τ

funcxn

τ

Figure 2.5: A graphical representation of the observational graph of model in
Figure 2.1

Chapter 3

New Semantics

In the previous chapter we analyse the shortcomings of strong and weak semantics

for our modelling purposes. The former semantics does not distinguish observable

from unobservable actions and hence does not support elaboration when varying

the level of abstraction of partial models. The latter does not preserve branch-

ing behaviour adequately hence allowing implementations of partial models that

contradict the intuition users may have of partial models. In this chapter we first

explore the intuition we have for MTS semantics by analysing specific examples

and then formally define a novel semantics that captures this intuition.

3.1 Exploration

We have already settled that the new semantics should be an observational one

that also preserves the branching structure. In this section we present a series

of examples that will allow us to further clarify the behaviour we are looking for

in the new semantics. Each of the examples consists of a model M and a model

N and all of them fulfill the following condition: according to weak semantics N

is considered to be a refinement of M whereas according to strong semantics no

refinement relation can be defined between them. In each case we are going to

state whether we expect the new semantics to define or not a refinement relation

between the two models and explain the reasons that support this choice.

23

CHAPTER 3. NEW SEMANTICS 24

M1 : 0 1 2
τ? a ≡ N1 : 0 1

a? (3.1)

The models in this first example are weak equivalent and since there is no

branching in their structure we can state that they have the same branching

structure. For the previous reasons we would like these models to be considered

equivalent in the new semantics.

We will now add to both models a new required transition from the initial

state and we will analyse the impact of this addition on the relation between the

two models according to the desired behaviour for the new semantics.

M1 : 0 1 2

3

τ? a

b

6� N2 : 0 1

2

a?

b

(3.2)

In this case it can be seen that a valid implementation of N2 is (a+b). How-

ever, we do not want that implementation to be a valid one for M2 since intu-

itively this would not preserve the branching structure. If we look at model M2

we will realize that in order to take a we should always reach a state from where

a can be taken but b cannot. Thus, allowing (a+b) as a possible implementation

would violate the branching structure and so in the new semantics N2 should not

constitute a refinement of M2.

M3 : 0 1

2

3

τ?
a

b

6� N3 : 0

1

2

a?

b

(3.3)

CHAPTER 3. NEW SEMANTICS 25

In example 3.3 our intention with model M3 is to be describe that either the

system cannot take any observable transition or it can take both a and b (a+b).

On the other hand model N3 allows b as a possible implementation and hence

we do not want N3 to be a refinement of M3 in the new semantics.

M4 : 0 1

2

3
4

τ?
a

b
b?

� N4 : 0 1

2

a?

b

(3.4)

In example 3.4 model N4 allows for implementations with either one or two

branches. While a one branch implementation of N4 implies transition a has

been forbidden, a two branches implementation can be obtained by making a a

required transition. In both cases an equivalent model can be obtained from M4

if we forbid or require its τ transition respectively and therefore we can say that

the branching structure of M4 is preserved by N4.

It should be noted that the main difference between this example and the

previous one is that in this case after having taken the τ transition in model M4

one still has the possibility of taking b. Therefore, there is no such situation in

which a can be taken but b cannot. To sum up, since N4 is a weak refinement

of M4 and preserves its branching structure we would want our semantics to

consider this relationship as a refinement.

M5 : 0 1

2

3
4

τ?
a

b
b?

6� N5 : 0 1

2

a?

b?

(3.5)

The example shown in 3.5 is different from the one shown in 3.4 in that

transition b in model N5 is now a maybe transition. As a result this model

CHAPTER 3. NEW SEMANTICS 26

allows a as a possible implementation. However, as we have already analysed in

the previous two examples, model M5 has a structure such that if transition a

can be taken then transition b is also possible. For this reason we do not want

the new semantics to consider model N5 to be a refinement of model M5.

M6 : 0 1 2

3

4
5

τ τ?
a

b
b

6� N6 : 0 1

2

a?

b

(3.6)

Model M6 is different from models M4 and M5 in that it adds a new required

τ transition in such a way that any implementation that aims to preserve the

branching structure should have two branches. Therefore, b is not a valid imple-

mentation of this model. Since N6 accepts this implementation as a valid one,

we expect the new semantics to do not consider N6 as a refinement of M6.

Let’s consider now the following example:

M7 : 0 1 2

3

4

τ? τ?
a

b
� N7 : 0

1

2

a

b
(3.7)

Model N7 is a weak implementation of model M7 and since obviously the

latter preserves the structure of the former we would like the new semantics to

consider model N7 as an implementation of M7.

CHAPTER 3. NEW SEMANTICS 27

M8 : 0 1 2

3

4
5

τ? τ?
a

b
b?

� N8 : 0

1

2

a?

b
(3.8)

In order to study example 3.8 we will breakdown the analysis according to

the two possible set of implementations of model N8, i.e. according to whether

transition a in this model becomes required or forbidden.

If a is forbidden then the resulting implementation of N8 is also a valid imple-

mentation of M8. To attain this implementation of model M8 we should simply

define that the maybe transition τ between the initial state and state 1 in this

model becomes forbidden and the maybe transition b between the initial state

and state 5 becomes required.

On the other hand, if transition a is required then model N8 becomes the

same as model N7. As already explained in the previous example, we would

like this model to be considered a valid implementation of model M7 by the

new semantics. But, since even for strong semantics M7 is considered to be

a refinement of M8 achieved by forbidding in this latter model the b maybe

transition between the initial state and state 5, then by transitivity (which we

would expect to hold) we can say that this implementation of model N8 should

also be a valid implementation of model M8.

Therefore, since we expect both sets of implementations of N8 to be valid

implementations of M8 we can conclude that the expected behaviour of the new

semantics in this case should be to accept N8 as a refinement of M8.

Another way to analyse this example is by realizing that example 3.8 is very

similar to example 3.4, the only difference being that a maybe τ transition has

been added. Since the way this transition has been added is such that the branch-

ing structure remains the same we can simply apply a similar analysis that the

one performed for example 3.4 and again conclude that model N8 should be con-

CHAPTER 3. NEW SEMANTICS 28

sidered a refinement of model M8 according to the expected behaviour of the

new semantics.

M9 : 0 1 2

3

4
5 6

τ? τ?
a

b
b? c

6� N9 : 0

1

2

a?

b
(3.9)

Finally, consider example 3.9 where model N9 accepts (a+b) as a valid im-

plementation. If we analyse model M9 we will see that intuitively any valid

implementation of this model that includes transition a should also include the

possibility of taking transition c before. This is another example that depicts

how weak semantics allows for refinements that contradicts the intuitive idea

of elaboration of partial models since it does not preserve branching behaviour

adequately.

CHAPTER 3. NEW SEMANTICS 29

3.2 Definition

In this section we define a new semantics that has the desired properties of

both weak and strong semantics, i.e. an observational semantics that preserve

branching structure. To do this we consider a third equivalence over LTS called

branching equivalence which, as we have already seen in the background, can be

situated between strong and weak equivalences.

As shown previously, the three equivalences on LTS are given by a symmetric

simulation relation, the difference between them is the way a transition on one

model is simulated by the other model. Figure 3.1 shows a graphical represen-

tation of how a transition is simulated in each of these three equivalences. We

have also shown strong and weak MTS refinement to be loosely based on the

corresponding LTS equivalences by having a slightly asymmetric bisimulation in

that every required transition in the less refined model must be simulated by the

refined model using only required transitions, and every possible transition in the

refined model must be simulated by possible transitions of the less refined model.

ℓ ℓ

(a)

ℓ ℓ̂

τ̂

(b)

ℓ ℓ̂

τ̂

τ̂

(c)

Figure 3.1: Depiction of how a transition is simulated in bisimulation: (a) strong;
(b) branching; (c) weak.

Unfortunately, LTS branching bisimulation cannot be adapted in a similar

way to produce an adequate MTS refinement. Consider the refinement from

applying to LTS branching equivalence a similar pattern as for LTS strong and

weak equivalence:

Definition 3.2.1 (Näıf branching refinement 1). N is a branching refinement of

M , written M �b1 N , if αM = αN and (M,N) is contained in some refinement

relation R ⊆ δ × δ for which the following holds for all ℓ ∈ Actτ :

CHAPTER 3. NEW SEMANTICS 30

0 1 2 3

4

τ? τ b
a �b1

0 1
b

Figure 3.2: Exampe of a refinement according Definition 3.2.1 where the branch-
ing structure of the less refined process is not preserved.

1. (M
ℓ

−→r M ′)⇒(∃N ′, N ′′ · N
τ

=⇒r N ′
ℓ̂

−→r N ′′ ∧ (M,N ′), (M ′, N ′′) ∈ R)

2. (N
ℓ

−→p N ′)⇒(∃M ′,M ′′ · M
τ

=⇒p M ′
ℓ̂

−→p M ′′ ∧ (M ′, N), (M ′′, N ′) ∈ R)

The above definition does not lead to an adequate refinement notion since

it does not preserve branching structure. The Figure 3.2 shows an example

of a model refining another model without preserving the branching structure;

R = {(0, 0), (2, 0), (3, 1)} is the relation that relates these models according to

the previous definition.

The reason why this definition does not preserve the branching structure is

that it does not guaranty that all intermediate states of M
τ

=⇒p M ′ are related

to N , as the stuttering lemma states for branching equivalence. To amend this

problem one could think it might be worth reinforcing this definition by explicitly

requiring stuttering to be preserved. The definition that would be obtained is

the following:

Definition 3.2.2 (Näıf 2 branching refinement). N is a branching refinement of

M , written M �b2 N , if αM = αN and (M,N) is contained in some refinement

relation R ⊆ δ × δ for which the following holds for all ℓ ∈ Actτ :

1. (M
ℓ

−→r M ′) ⇒ (∃N0, . . . , Nn, N ′ ·

Ni
τ

−→r Ni+1 ∀ 0 ≤ i < n ∧ Nn
ℓ̂

−→r N ′ ∧

N0 = N ∧ (M,Ni) ∈ R ∀ 0 ≤ i ≤ n ∧ (M ′, N ′) ∈ R)

2. (N
ℓ

−→p N ′) ⇒ (∃M0, . . . ,Mn,M ′ ·

Mi
τ

−→p Mi+1 ∀ 0 ≤ i < n ∧ Mn
ℓ̂

−→p M ′ ∧

M0 = M ∧ (Mi, N) ∈ R ∀ 0 ≤ i ≤ n ∧ (M ′, N ′) ∈ R)

CHAPTER 3. NEW SEMANTICS 31

This definition preserves branching structure since every intermediate state a

model goes through when simulating a transition on the other model is actually

related to the initial state of that transition. Intuitively, this means that none

of those intermediate states present more or less behaviour than the initial state.

In particular it solves the problem of Figure 3.2

However, this definition has another problem. If we consider the set of im-

plementations of M and N the fact that one is included in the other one does

not imply the existence of a refinement relation between them, i.e. Ib2[M] ⊇

Ib2[N] 6⇒ M �b2 N . Figure 3.3 shows an example of this case. While the two

models shown have the same set of possible implementations according to defin-

ition 3.2.2, there is no appropriate refinement relation for A2 �b2 A1. Because

of this, definition 3.2.2 is inappropriate since one could end up creating a model

that properly restricts the set of possible implementations defined by the previous

model but that could be not considered a valid evolution due to the inexistence

of a refinement relation between the two models.

0 1 2τ? a 6�b1 0 1a?

Figure 3.3: Two models that have the same set of implementations according
Definition 3.2.2 but one is not a refinement of the other according the same
definition.

To overcome these limitations, and recalling that a MTS semantics is com-

pletely defined by stating which are valid implementations for a model, we adapt

branching equivalence into a implementation relation instead of a refinement re-

lation. An associated notion of refinement comes naturally as N is a refinement

of M if all the implementations of N are implementations of M .

Definition 3.2.3 (Branching Implementation). Let ℘ be the universe of all LTS

and δ of all MTS. Let M a MTS, and I a LTS such that αM = αI, I is a branch-

ing implementation of M ,written M �b I , if and only if (M, I) is contained in

some implementation relation R ⊆ δ × ℘ for which the following holds for all

CHAPTER 3. NEW SEMANTICS 32

ℓ ∈ Actτ :

1. (M
ℓ

−→r M ′) ⇒ (∃ I0, . . . , In, I ′ ·

Ii
τ

−→ Ii+1 ∀ 0 ≤ i < n ∧ In
ℓ̂

−→ I ′ ∧

I0 = I ∧ (M, Ii) ∈ R ∀ 0 ≤ i ≤ n ∧ (M ′, I ′) ∈ R)

2. (I
ℓ

−→ I ′) ⇒ (∃M0, . . . ,Mn,M ′ ·

Mi
τ

−→p Mi+1 ∀ 0 ≤ i < n ∧ Mn
ℓ̂

−→p M ′ ∧

M0 = M ∧ (Mi, I) ∈ R ∀ 0 ≤ i ≤ n ∧ (M ′, I ′) ∈ R)

Clearly it can be observed that if this relation is restricted to LTS it coincides

with branching equivalence. It can also be easily proved that if M �b I and

I ≈b I ′ then M �b I ′, and so this novel implementation relation is a sound

extension of branching equivalence.

In this way we have defined a new semantics over MTS that extends branching

equivalence.

Chapter 4

Tool Support

In the previous chapters we analysed weak and strong semantics for MTS and

presented a new semantics for these models. Those three semantics determine

operationally the conformity between an MTS and its implementations. This

is achieved by checking the existence of a relation between the states of both

models that satisfies certain bisimulation. Given two models, the task of manually

determining if an implementation relation between them exists can be laborious

and error-prone. Moreover, for models with more than a few states it becomes

almost impracticable. For this reason we have developed a software tool that

allows the user to verify if a given LTS is an implementation of a certain MTS

according to the previous three semantics. Furthermore, this tool can also be

used to check if a refinement relation exists between two MTS models according

to weak, strong or näıf 2 branching semantics. The algorithm used to calculate

the different relations is a fixed point algorithm that starts with the Cartesian

product of the states and iteratively eliminates from it the pairs that are not

valid according to the required bisimulation. In this chapter we introduce a tool

we have developed1 along with the fixed point algorithm used.

1It can be downloaded from http://www.doc.ic.ac.uk/∼fdario/MTSTool/MTSChecker.zip

33

CHAPTER 4. TOOL SUPPORT 34

4.1 Fix Point Algorithm

In this section we give a formal definition of a function over the domain of binary

relations between models and we demonstrate that by applying this function it-

eratively it converges. Moreover, we demonstrate that if a branching implemen-

tation relation exists between models then the fix point to which the function

converges is actually a branching implementation relation.

Definition 4.1.1. Let ℘ be the universe of all LTS, δ of all MTS. F : P(δ×℘) →

P(δ × ℘) is defined by:

F(R) = {< M, I >∈ R | ∀(ℓ,M ′)((M
ℓ

−→r M ′) ⇒ FS(M,M ′, I, ℓ, R)) ∧

∧ ∀(ℓ, I ′)((I
ℓ

−→ I ′) ⇒ BS(M, I, I ′, ℓ, R)) }

where:

FS(M,M ′, I, ℓ, R) ≡ ∃(I0, . . . , In, I ′) (Ii
τ

−→ Ii+1 ∀ 0 ≤ i < n ∧ In
ℓ̂

−→ I ′ ∧

∧ I0 = I ∧ (M, Ii) ∈ R ∀ 0 ≤ i ≤ n ∧ (M ′, I ′) ∈ R)

BS(M, I, I ′, ℓ, R) ≡ ∃(M0, . . . ,Mn,M ′) (Mi
τ

−→p Mi+1 ∀ 0 ≤ i < n ∧ Mn
ℓ̂

−→p M ′ ∧

∧ M0 = M ∧ (Mi, I) ∈ R ∀ 0 ≤ i ≤ n ∧ (M ′, I ′) ∈ R)

Theorem 4.1.2. Let be R,P ⊆ δ × ℘ such as R is branching implementation

relation. If R ⊆ P then R ⊆ F(P)

Definition 4.1.3. Let A be an LTS (MTS) we define the “reachability” set of A

as Reach(A) = { A′ | ∃w ∈ Act∗τ · A
w

−→ A′ }

Remark 4.1.4. Reach(A) is a finite set by definition of LTS (MTS).

Theorem 4.1.5. Let M be an MTS and I an LTS, and R0, R1, . . . ⊆ δ×℘ given

by R0 = Reach(M)×Reach(I) and Ri+1 = F(Ri). Then there exists j such that:

1. Rj = Ri ∀i > j

CHAPTER 4. TOOL SUPPORT 35

2. < M, I >∈ Rj iff M �b I

Proof.

1. On the one hand, the sequence (R)i is monotonically decreasing since by

definition of F we know that Ri+1 ⊆ Ri for every i. On the other hand,

Reach(M) and Reach(I) are finite and consequently the relation R0 is

finite. Therefore, there exists j from which the sequence converges. Note

that j is less than or equal to the cardinalility of R0.

2. ⇒) By definition of sequence (R)i we know that Rj+1 = F(Rj). Based

on 1. we also know that Rj+1 = Rj. Consequently, Rj+1 = F(Rj+1), which

is equivalent to:

Rj+1 = {< M, I >∈ Rj+1 | ∀(ℓ,M ′)((M
ℓ

−→r M ′) ⇒ FS(M,M ′, I, ℓ, Rj+1)) ∧

∧ ∀(ℓ, I ′)((I
ℓ

−→ I ′) ⇒ BS(M, I, I ′, ℓ, Rj+1)) }

Since FS and BS corresponde to conditions 1 and 2 in Definition 3.2.3,

respectively, then Rj+1 is a branching implementation relation. Finally, if

< M, I >∈ Rj = Rj+1 then M �b I

⇐) If M �b I then a branching implementation relation R such that <

M, I >∈ R exists. Without loss of generality we can assume that R ⊆

Reach(M) × Reach(I) = R0. Therefore, based on Theorem 4.1.2 we can

say that R ⊆ Ri for every i. In particular R ⊆ Rj and since < M, I >∈ R

we conclude that < M, I >∈ Rj

Proof. theorem 4.1.2

If R 6⊆ F(P) then there exists < M, I >∈ R such that < M, I >6∈ F(P). By

definition of F at least one of the following predicates must be false:

CHAPTER 4. TOOL SUPPORT 36

1. ∀(ℓ,M ′)((M
ℓ

−→r M ′) ⇒ FS(M,M ′, I, ℓ, R))

2. ∀(ℓ, I ′)((I
ℓ

−→ I ′) ⇒ BS(M, I, I ′, ℓ, R))

Suppose predicate 1 is false. Then there exists ℓ,M ′ such that M
ℓ

−→r M ′

holds and FS(M,M ′, I, ℓ, R) is false. Since < M, I >∈ R and M
ℓ

−→r M ′

holds, using Definition 3.2.3 we get that: ∃(I0, . . . , In, I ′)(Ii
τ

−→ Ii+1 ∀ 0 ≤ i <

n ∧ In
ℓ̂

−→ I ′ ∧

I0 = I ∧ (M, Ii) ∈ R ∀ 0 ≤ i ≤ n ∧ (M ′, I ′) ∈ R) holds. But this expression is

exactly FS(M,M ′, I, ℓ, R) hence we reach an absurd, so predicate 1 must be true.

Using the same reasoning we get that predicate 2 must be true, and consequently

we prove that R ⊆ F(P).

At this point we have proved the feasibility of using a fixed point algorithm

to obtain a branching implementation relation. This can be proved in a similar

way also for the other bisimulations discussed in the previous chapters. For

the particular case of LTS equivalence relations more efficient algorithms are

known [10, 11]. However, this is not the case for implementation or refinement

relations.

4.2 Implementation

The software tool has been implemented using Java 5.

The main objective of the development was to generate a tool that allows the

user to compare the relation between models according to different semantics.

Since it is meant to be a research tool that contributes to the assessment of

semantics’ definitions, the emphasis was on flexibility to include new semantics

as required rather than being on performance. The key algorithm implemented

is a fixed point algorithm used to calculate the different bisimulation relations.

This algorithm receives as a parameter the bisimulation rules that should be

considered. In order to express the complexity of this algorithm for the different

CHAPTER 4. TOOL SUPPORT 37

semantics we will denote the amount of states of the largest model as n. Then, the

spacial complexity is O(n2) for any semantics while the time complexity is in the

worst case O(n5∗log(n)) for strong, O(n6∗log(n)) for weak, and O(n4∗n!∗log(n))

for branching semantics.

The main additional algorithms that have been implemented and their corre-

sponding complexity are the following:

• An algorithm that calculates the clausure by τ transitions for weak bisim-

ulation, its complexity being polynomial.

• A DFS algorithm that finds all paths of the form (
τ

−→)∗
ℓ̂

−→ for branching

bisimulation. In this case, the worst case complexity is factorial since the

quantity of those paths is bounded by the factorial of the number of states.

In order to represent the models in such a way that could be interpreted by the

software tool, a language called FSP has been adopted. This language has a well

defined semantics for LTS and is used by Labelled Transition System Analyser

(LTSA) tool [12]. In the following section we introduce this language in more

detail and explain how it has been extended to also express MTS.

4.2.1 FSP

FSP stands for Finite State Processes. It is a simple process algebra notation

with a semantics in terms of LTS introduced by Magee et al [12]. It has has been

designed to textually specify LTS in a consice way.

A process written in FSP is given by an expression consisting of composition

operators, processes and actions. While process’ names begin with an uppercase

letter, actions’ names start with a lowercase letter. A process is defined by one

or more local processes separated by commas, and the end of the definition is

marked with a full stop.

We will now define the basic operators using the following notation: x and

y denote actions while P and Q denote processes. In addition, we include an

CHAPTER 4. TOOL SUPPORT 38

example for each of the operators. For a full description of FSP syntax and

semantics refer to [12].

• Primitive Process ‘‘STOP’’: FSP has the primitive local process STOP

that is a process that cannot engage in any action.

A = STOP. A:

• Action Prefix ‘‘->’’: (x -> P) describes a process that initially en-

gages in the action x an then behaves exactly as described by P.

A = (a -> STOP). A: a

• Choice ‘‘|’’: (x -> P | y -> Q) describes a process which initially

engages in either action x or y. If the first action is taken then the sub-

sequent behaviour is described by P while if the second action is taken Q

describes the subsequent behaviour.

A = (a -> STOP | b -> STOP). A:

a

b

• Recursion: the behaviour of a process can be defined recursively. The

recursion may be directly in terms of the process being defined, or indirectly

in terms of other processes.

A = (a -> B), B = (b -> A). A:
a

b

In order to be able to define also MTSs we have developed an extension

to FSP. The idea is to allow the use of question marks in such a way that if

CHAPTER 4. TOOL SUPPORT 39

an action’s name includes at least one question mark then the corresponding

transition should be interpreted as a maybe one. Otherwise, the action represents

a required transition.

The events of the MTS model are obtained by removing from the action’s

name all occurrences of the question mark symbol. For example, (readLevel?

-> STOP) represents a maybe transition through the readLevel event and can

also be written using the following notation: (read?Level -> STOP). The

decision of allowing the inclusion of question marks in any part of the action’s

name apart from the first symbol is due to the fact that some advanced FSP

operators generate actions with suffixes. Therefore, it is not possible to guarantee

that if a question mark is included in the name it will be its last symbol.

Following there is an example of a simple MTS described by an FSP expres-

sion.

A = (a?1 -> STOP | a2 -> STOP). A:

a1?

a2

4.2.2 User Guide

The interaction with the software tool is through the command line. In order

to invoke the application it is necessary to pass as arguments the name of the

file where all models are defined and the name of the file that states the pairs of

those models that have to be checked. The following is an example of the syntax

used to invoke the tool:

Figure 4.1: userGuide/commandLine

java −j a r MTSChecker . j a r example . f sp example . qu e r i e s

The models are defined in a text file using FSP notation. These files can be

created either with any text editor or by using the LTSA version provided along

CHAPTER 4. TOOL SUPPORT 40

with the tool. This version has been specially modified in order to handle the

extended FSP syntax which allows for question marks.

Figure 4.2: Example of an FSP input file.

M 02 = (b? −> STOP | tau ? −> a −> STOP) .

N 02 = (b −> STOP | a? −> STOP) .

I 02 01 = (a −> STOP | b −> STOP) .

The queries file is also a text file but with the following format: each line

consists of the names of two models separated by a space. The system interprets

each of those lines as a query to check if the second model is a refinement or an

implementation of the first one depending on the former model being an MTS or

an LTS respectively. In either case the software tool tests the relation between

those models according to the applicable semantics as already described. In order

to allow for comments the system ignores every line starting with a % character.

Figure 4.3: Example of a queries input files.

%∗∗

% Example 2

%∗∗

M 02 N 02

M 02 I 02 01

N 02 I 02 01

Finally, we show the output obtained when running the application using the

example input files.

Figure 4.4: Output for the example input files.

Connected Compiler Factory

Compiled : N 02

Compiled : I 02 01

Compiled : M 02

M 02 − N 02 check ing f o r re f inement

Strong : f a l s e time : 59 (mseg)

CHAPTER 4. TOOL SUPPORT 41

Naive Branching : f a l s e time : 18 (mseg)

Weak : t rue time : 3 (mseg)

M 02 − I 0 2 01 check ing f o r implementation

Strong : f a l s e time : 8 (mseg)

Branching : f a l s e time : 1 (mseg)

Weak : t rue time : 2 (mseg)

N 02 − I 0 2 01 check ing f o r implementation

Strong : t rue time : 0 (mseg)

Branching : t rue time : 5 (mseg)

Weak : t rue time : 0 (mseg)

Chapter 5

Validation

In section 3.1 we explored the behaviour desired for a new MTS semantics based

on the analysis of a series of examples. Furthermore, in section 3.2 we formally

defined a new MTS semantics by providing an implementation notion. In this

chapter we validate that semantics by assessing if it complies with the expected

behaviour for the examples analysed in section 3.1 and for the case study. In order

to do so we should bear in mind that according to the definition of branching

semantics N is a refinement of M iff every implementation of N is also an

implementation of M. Since the set of possible implementations is infinite, the

strategy to validate the definition will be the following:

• Firstly, we examine the results achieved for all the examples for which

intuitively we do not consider model Ni to be a refinement of model Mi,

i.e. Mi �O Ni but Mi 6�b Ni. We demonstrate that the defined semantics

matches the expected behaviour by showing a counterexample consisting of

a model Ii that is actually an implementation of model Ni but not of Mi

according to the newly defined branching semantics.

• Secondly, we study the examples we do consider to be valid refinements, i.e.

Mi �b Ni. Due to the infinite set of possible implementations, in order to

validate that every implementation of Ni is also an implementation of Mi,

we analyse the results for at least one member of each of the equivalence

classes of the implementations set of Ni given by branching equivalence.

42

CHAPTER 5. VALIDATION 43

To further complete the validation we have also included for each example

an LTS model that is not a valid branching implementation of Mi and

therefore it should not be a valid branching implementation of Ni either.

All these tests1 have been performed using the software tool already described

in the previous chapter. The results are shown in the following tables, where True

(False) in a cell indicates whether the model in that row is (is not) a branching

implementation of the model in the corresponding column.

Table 5.1: Validating that N do not refine M

M2 : 0 1 2

3

τ? a

b

N2 : 0 1

2

a?

b

I21
: 0 1

2

a

b

False True

M3 : 0 1

2

3

τ?
a

b

N3 : 0

1

2

a?

b

I31
: 0 1

b False True

M5 : 0 1

2

3
4

τ?
a

b
b?

N5 : 0 1

2

a?

b?

I51
: 0 1

a False True

1These tests are defined in exploration.fsp and exploration.queries files which can be down-
loaded from http://www.doc.ic.ac.uk/∼fdario/MTSTool/

CHAPTER 5. VALIDATION 44

M6 : 0 1 2

3

4
5

τ τ?
a

b
b

N6 : 0 1

2

a?

b

I61
: 0 1

b False True

M9 : 0 1 2

3

4
5 6

τ? τ?
a

b
b? c

N9 : 0

1

2

a?

b

I91
: 0

1

2

a

b
False True

Table 5.2: Validating that N refines M

M1 : 0 1 2
τ? a N1 : 0 1

a?

I11
: 0 True True

I12
: 0 1 2 3

τ a τ True True

I13
:

0 1 2 3

4 5

τ a τ

τ

a

True True

I14
:

0 1 2 3

4 5

τ a τ

τ
a

False False

CHAPTER 5. VALIDATION 45

M4 : 0 1

2

3
4

τ?
a

b
b?

N4 : 0 1

2

a?

b

I41
:

0

2

b True True

I42
:

0 1

2

a

b True True

I43
:

0 1 2

3

τ a

b False False

M7 : 0 1 2

3

4

τ? τ?
a

b
N7 : 0

1

2

a

b

I71
: 0

1

2

a

b
True True

I72
: 0 1

2

3

τ
a

b
True True

I73
: 0 1

a False False

All the above results show that the new semantics defined matches its ex-

pected behaviour. We have also validated the new semantics using the case

study testing if it rejects the undesired implementation depicted in Figure 2.4 as

a valid implementation of the initial model shown in Figure 2.1. The result was

that branching refinement rejects that implementation as we expected.

Chapter 6

Conclusions

6.1 Summary of Contributions

In this work we have analysed from an incremental software modelling point of

view the applicability of the existing implementation notions for MTS. Based on

our analysis we have concluded that from this perspective these implementation

notions are not adequate.

To address the limitations of existing semantics, we have studied the required

characteristics for a satisfactory semantics and formally defined a new semantics

for MTS with the desired characteristics given by a novel notion of implementa-

tion.

The new semantics has a correspondence with branching bisimulation[4] over

LTS in a similar way Larsen’s semantics informally correspond to strong and

weak bisimulation over LTS. We have shown that the natural generalization of

the branching bisimulation does not lead to an appropriate notion of refinement

over MTS.

Finally, we have developed a software tool to verify refinement and implemen-

tation notions analysed in this work. We have extended FSP language adding to

it the notion of maybe and required transition in order to describe MTS.

46

CHAPTER 6. CONCLUSIONS 47

6.2 Related Work

A number of formalisms exist which allow explicit modelling of lack of informa-

tion. Partial Kripke structures [13] and Kripke Modal Transition Systems [14]extend

Kripke structures to support propositions in states to be one of three values (true,

false, and unkown). In our work, states in themselves do not have any seman-

tics, we focus only on observable system behaviour as described by the labelled

transitions between states, hence we build on models in the labelled transition

systems [15] style.

Our definition of Modal Transition Systems is essentially that proposed by

Larsen et al. [16]. However, in [16] all MTS have the same alphabet, the universe

of all labels, while we extend the definition of MTSs to include a communication

alphabet in line with [12]. Making the communication alphabet allows scoping

models and capturing the fact that system components may control and monitor

different sets of events [17].

Numerous extensions of MTS exist such as Mixed Transition Systems [18]

and disjunctive modal transition systems [19]. The semantics we proposed could

be studied for these formalisms too. We believe that existing weak and strong

refinement notions in these settings will suffer from the same shortcomings as

MTSs. A slightly different approach to modelling unknown behaviour is taken

in [20, 21]. In [20] Partial Labelled Transition Systems, each state is associated

with a set of actions that are explicitly proscribed from happening. Extended

Transition Systems[21] also associate a set of actions with each state, but in

this case it models the actions for which the state has been fully described.

The relation between these models and MTS, and in particular, our notion of

refinement has yet to be studied.

Related work regarding refinement and simulation has been discussed exten-

sively throughout the work. Our notions of branching refinement and branching

implementation are heavily inspired on that of branching bisimulation, although

as shown, the extension of branching bisimulation from LTS to MTS cannot be

done straightforwardly. Numerous other refinement notions exist, both for LTS

(such as trace, failures [7], testing [8] and action-refinement [22]) and for other

CHAPTER 6. CONCLUSIONS 48

state-based modelling formalisms such as kripke structures. We have also com-

pared extensively the notion of refinement we propose with respect to strong [2]

and weak refinement [3] over MTS.

6.3 Future work

Our research objective is the development of practical and effective techniques

with tool support for the elaboration of comprehensive behaviour models in a

context where total information is not available, such as iterative and incremen-

tal software development processes. As already discussed, MTS can be used to

facilitate the elaboration of such models. In particular, we believe that they can

provide the rigorous underpinning descriptions require in order to help analyse,

correct, elaborate and refine behaviour specifications.

Although MTS have been studied extensively they have yet to be studied in

the context of model elaboration and more generally in software engineering. In

this work we have analysed the existing semantics and define a new semantics

we believe is adequate for our purposes. This lays the foundations for our long

term research goal.

The current definition allows us to characterize the refinement notion be-

tween models in a declarative way. Consequently, the derivation of an algorithm

for refinement verification is a difficult task since it would imply obtaining all the

implementations of one model and checking their conformity against the other

one. Being our intention the development of a tool set that supports MTS analy-

sis, having such algorithm becomes indispensable. In order to do so in the near

future we expect to obtain an operational definition for branching refinement

which will allow us to start working towards the design of the desired algorithm.

On the other hand, we expect to work on improving the efficiency of the

algorithm for verifying branching implementation. We believe that there exists

a polynomial solution for this problem. As a first step in this direction will

be to research the possibility of extending the existing polynomial algorithms

for checking branching bisimulation between LTS [10, 23]. In addition, the other

CHAPTER 6. CONCLUSIONS 49

topic we except to research in this direction is the development of algorithms that

provide diagnostic information to the modeller when an implementation does not

conform a partial model. This information will help the modeller to understand

and correct the implementation (or the partial model).

Finally, we intend to apply the ideas discussed in this work to a real case

study in order to validate them and gain feedback to drive future research.

Bibliography

[1] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the

art and future directions. ACM Comput. Surv., 28(4):626–643, 1996.

[2] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In LICS,

pages 203–210. IEEE Computer Society, 1988.

[3] Hans Hüttel and Kim Guldstrand Larsen. The use of static constructs in a

modal process logic. In Albert R. Meyer and Michael A. Taitslin, editors,

Logic at Botik, volume 363 of Lecture Notes in Computer Science, pages

163–180. Springer, 1989.

[4] Rob J. van Gabbeek and W. Peter Weijland. Branching time and abstraction

in bisimulation semantics. J. ACM, 43(3):555–600, 1996.

[5] Rob J. van Glabbeek. What is branching time semantics and why to use it?

pages 469–479, 2001.

[6] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism

and concurrency. J. ACM, 32(1):137–161, 1985.

[7] Steve Schneider and S. A. Schneider. Concurrent and Real Time Systems:

The CSP Approach. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[8] Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisimu-

lation equivalence. Formal Asp. Comput., 5(1):1–20, 1993.

[9] Michael Huth. Refinement is complete for implementations. Formal Asp.

Comput., 17(2):113–137, 2005.

50

BIBLIOGRAPHY 51

[10] Jan Friso Groote and Frits W. Vaandrager. An efficient algorithm for

branching bisimulation and stuttering equivalence. In Mike Paterson, editor,

ICALP, volume 443 of Lecture Notes in Computer Science, pages 626–638.

Springer, 1990.

[11] Agostino Dovier, Carla Piazza, and Alberto Policriti. A fast bisimulation

algorithm. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV,

volume 2102 of Lecture Notes in Computer Science, pages 79–90. Springer,

2001.

[12] Jeff Magee and Jeff Kramer. Concurrency: state models & Java programs.

John Wiley & Sons, Inc., New York, NY, USA, 1999.

[13] G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with 3-

Valued Temporal Logics”. In CAV’99, volume 1633 of LNCS, pages 274–287,

1999.

[14] M. Huth. “Model-Checking Modal Transition Systems Using Kripke Struc-

tures”. In Proceedings of Third International Workshop on Verification,

Model-Checking, and Abstract Interpretation, Venice, Italy, January 2002.

[15] Robert M. Keller. Formal verification of parallel programs. Commun. ACM,

19(7):371–384, 1976.

[16] K.G. Larsen and B. Thomsen. “A Modal Process Logic”. In LICS’88, pages

203–210, 1988.

[17] Michael Jackson. Software requirements & specifications: a lexicon of prac-

tice, principles and prejudices. ACM Press/Addison-Wesley Publishing Co.,

New York, NY, USA, 1995.

[18] Dennis Dams. Abstract Interpretation and Partition Refinement for Model

Checking. PhD thesis, Eindhoven University of Technology, The Netherlands,

July 1996.

[19] K. Larsen and L. Xinxin. “Equation Solving Using Modal Transition Sys-

tems”. In 5th Annual IEEE Symposium on Logic in Computer Science, pages

108–117, 1990.

BIBLIOGRAPHY 52

[20] S. Uchitel, J. Kramer, and J. Magee. “Behaviour Model Elaboration using

Partial Labelled Transition Systems”. In ESEC/FSE’03, pages 19–27, 2003.

[21] Robin Milner. A modal characterisation of observable machine-behaviour.

In CAAP ’81: Proceedings of the 6th Colloquium on Trees in Algebra and

Programming, pages 25–34, London, UK, 1981. Springer-Verlag.

[22] R. Gorrieri and A. Rensink. Action refinement. Technical report, 1999.

[23] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Characteriz-

ing finite kripke structures in propositional temporal logic. Theor. Comput.

Sci., 59:115–131, 1988.

