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Resumen 

 

Se desarrolló y calibró un método de clasificación de patrones atmosféricos aplicados 

sobre estaciones meteorológicas argentinas con el propósito de predecir eventos de 

precipitación diaria. La técnica de clasificación utilizada esta basada en el algoritmo de k-

medias y es aplicada a un conjunto de 17 variables atmosféricas tomadas del reanálisis ERA-

40 en el periodo 1979-1999. El conjunto de variables atmosféricas representa los diferentes 

componentes de la atmósfera, tanto dinámicos, térmicos, como de humedad. Diferentes tests 

son aplicados para, (i) optimizar el número de observaciones (patrones atmosféricos) por 

cluster, (ii) encontrar el tamaño del domino espacial de los patrones atmosféricos aplicados a 

las estaciones, y (iii) encontrar la cantidad de miembros del conjunto de simulaciones 

estocásticas. Todos los test de sensibilidad son comparados mediante el índice ROC skill 

score (RSS). Se encontró que el número de observaciones por cluster es óptimo para 

cantidades mayores a 39, además, que el tamaño de dominio espacial óptimo encontrado 

(~4°x4°), es mas cercano a representaciones locales que de escala sinóptica, debido 

seguramente al rol dominante de las componentes de humedad en la optimización de la 

función de transferencia. Efectivamente, cuando se reducen  el conjunto de variables a un 

subconjunto de variables sólo con componentes dinámicos, la capacidad predictiva del 

método se reduce significativamente, y al mismo tiempo el tamaño de dominio debe ser 

aumentado. Una posible mejora a nuestro método debería considerar entonces la utilización 

de diferentes tamaños de dominio entre las variables dinámicas y no dinámicas. Se observó 

que el número de miembros por conjunto de simulaciones debe ser siempre alrededor de dos a 

tres veces más grande que el número de observaciones promedio por cluster (infiriendo que al 

menos todos los patrones atmosféricos observados deben ser elegidos por algún miembro del  



  

   

conjunto). A pesar de que Argentina es un país con una gran variedad de climas  (desde 

tropical en el norte hasta de latitud media y alta en el sur), nuestros parámetros encontrados 

son validos sobre todo el país. Esto se debe al gran conjunto de variables consideradas para 

definir los patrones atmosféricos, a medida que el peso de cada una de las variables va 

variando sobre la función de transferencia de acuerdo al lugar geográfico. Se ha encontrado 

que la capacidad del método estadístico para predecir eventos de precipitación diaria es 

bastante homogénea en todo el país para diferentes cantidades de precipitación incluyendo la 

representación de eventos de precipitación extrema. 

Como último, se efectúa una comparación entre el método y diferentes modelos de 

downscaling climáticos regionales, para tres meses en particular, (Enero 1971, Noviembre 

1986 y Julio 1996) caracterizados por condiciones climáticas anómalas en la parte sur de la 

Cuenca del Plata, mostrando que tanto el conjunto de  modelos regionales como el método 

estadístico logran reproducir la frecuencia diaria de precipitación para los tres periodos, 

aunque la mayor parte de los modelos tienden a subestimar la frecuencia de días secos y 

extremos, y a sobreestimar la frecuencia de los días de poca lluvia a moderada. 

El método estadístico será próximamente aplicado sobre las estaciones meteorológicas de 

la Cuenca del Plata, para poder generar escenarios futuros de cambio climático. Dentro de las 

posibles mejoras al método se puede incluir la división en diferentes dominios de acuerdo al 

tipo de variable utilizada (dinámica y no dinámica) y una posible evolución temporal del 

patrón atmosférico (patrón atmosférico correspondiente al día de la predicción, más uno o 

más patrones atmosféricos correspondientes a los días previos para poder representar la 

evolución del estado atmosférico). 

 



  

   

Abstract 
 

A weather pattern clustering method is applied and calibrated to Argentinean daily weather 

stations in order to predict daily precipitation data. The clustering technique is based on k-

means and is applied to a set of 17 atmospheric variables from the ERA-40 reanalysis 

covering the period 1979-1999. The set of atmospheric variables represent the different 

components of the atmosphere (dynamical, thermal and moisture). Different sensitivity tests 

are applied (i) to optimize the number of observations (weather patterns) per cluster, (ii) the 

spatial domain size of the weather pattern around the station and (iii) the number of members 

of the stochastic ensembles. All the sensitivity tests are compared using the ROC skill score 

(RSS). First, we found the number of observations per cluster to be optimum for values larger 

than 39. Second, the spatial domain size (~ 4°x4°) was found to be closer to a local scale than 

to a synoptic scale, certainly due to a dominant role of the moisture components in the 

optimization of the transfer function. Indeed, when reducing the set of variables to the subset 

of dynamical variables, the predictive skill of the method is significantly reduced, but at the 

same time the domain size must be increased. A potential improvement of the method may 

therefore be to consider different domains for dynamical and non-dynamical variables. Third, 

the number of members per ensembles of simulations was estimated to be two to three times 

larger than the number of observations per cluster (meaning that at least all the observed 

weather patterns are selected by one member). Although Argentina is a country with a variety 

of climates (from tropical in the north to sub Antarctic in the south), our parameter 

optimization is found to be valid all over the country. This may be due to the large set of 

variables considered to define the weather patterns, as the actual weight of the variables in the 

transfer function certainly varies according to the location. The skill of the statistical method 



  

   

to predict daily precipitation is found to be relatively homogeneous all over the country for 

different thresholds of precipitation, including the representation of extreme events. Lastly, a 

comparison between different regional climate models and the statistical downscaling 

technique in simulating three months, (January 1971, November 1986 and July 1996) 

characterized by anomalous climate conditions in the southern La Plata Basin was performed, 

showing that the models’ ensemble and the statistical technique succeed in reproducing the 

overall observed frequency of daily precipitation for all periods, but most models tend to 

underestimate the frequency of dry and heavy precipitation days, and also tend to 

overestimate the frequency of light and middle precipitation events. The statistical method 

presented in this study will be applied in a near future to the La Plata Basin weather stations 

in order to provide climate change scenarios. Improvements of the method may include the 

selection of different domains according to the variables (dynamical and non-dynamical) and 

a temporal evolution of the weather pattern (day of the prediction and one to more previous 

days to represent the trajectory of the atmospheric states). 
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I. Introduction 

Throughout the last two decades the field of climate modelling has notably progressed. In 

particular, the performance of General Circulation Models (GCMs) has been significantly 

increasing. These models represent the behaviour of the different components of the 

atmosphere and ocean such as wind, temperature, humidity, from sea level up to 64 km height 

on discrete grid points covering the totality of the earth. Nowadays the models can simulate 

fairly well the large-scale features of climate but unfortunately, their coarse spatial resolution 

(typically in the range from 15,000 to 160,000 km ) leaves unresolved important sub-grid 

scale features such as clouds, small-scale thermodynamic interactions and topography, often 

leading to local and regional discrepancies between models and observations. In particular, it 

does not allow them to properly represent local daily variability and extreme events, crucial 

for local impact studies. Downscaling methodologies have been developed with the purpose 

of filling the resolution gap between GCMs and regional and local scale prediction needed for 

extreme event studies and impact assessment (see for instance Menendez et al. 2008). The 

aim of atmospheric downscaling is to use GCMs atmospheric variables as a starting point to 

obtain regional or local scale surface variables such as temperature and precipitation. 

Basically, downscaling methodologies can be divided into two main threads of investigation, 

dynamical and statistical. Dynamical downscaling (DDS) uses the information provided by 

GCMs as a boundary condition to generate a higher resolution regional model (RCMs) over 

the region of interest. This methodology allows adding important regional information to the 

model such as topography, soil moisture and, more generally, surface land use and land 

cover. On the other hand, statistical downscaling (SDS) seeks for a relationship (called 

transfer function) between observed local climatic variables and large-scale circulation 

variables of the GCMs. Statistical techniques have proven to be as successful as dynamical 

techniques, being also far less computationally expensive and simpler to develop (e.g. 
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Gutierrez et al.,2004; Hewitson, 2006). However, their major drawbacks are their tendency to 

underestimate extreme precipitation events, and their incapacity in predicting non-stationary 

behaviours in the transfer function (especially under climate and land-use/land-cover 

changing conditions). While the stationary issue is a real limitation of SDS application to 

climate change projections, new methods based on GCM weather pattern analysis can provide 

insights on its probability of occurrence (Vrac et al. 2007). Linear regression and stepwise 

regression are very popular among the SDS techniques, but they can only be used to predict 

variables that are not discreet, such as temperature, and are not suitable for daily precipitation 

since linearity assumption for stochastic variables is way too far from reality. For this reason, 

other SDS approaches have been developed, such as classification and regression trees 

(CART; Hughes et. al., 1993) and clustering techniques (k-means, Gutierrez et al., 2004; 

neural networks, (Hewitson, 2006); analogues and nearest-neighbours; (Mehrotra and 

Sharma, 2005). Data clustering is a non-linear technique that covers fields of statistical 

analysis, machine learning, data mining, patter recognition, neural networks, and fuzzy 

theory. Clustering techniques on SDS generate a partition of the data set into subsets called 

clusters, each cluster consisting of similar weather patterns linked with its daily rainfall 

values. The intuitive idea behind clustering is that precipitation occurring during a specific 

period of time (e.g. one day) with a particular weather pattern (which dimension has to be 

optimized) tends to be similar as to the precipitation observed another day that has a similar 

weather pattern. This concept was first explored by Lorenz (1969). It must be noticed that the 

performance of a classifier for downscaling depends on three factors: the amount of data 

available for training, the problem difficulty, and the generalization skill for prediction of the 

classifier. 

An advantage of SDS based on classification is that it can handle missing data at weather 

station very well, making it suitable for Argentina where some stations have gaps of 
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information. As Hewitson and Crane (2006) pointed out, there is empirical evidence that no 

best statistical technique may exist and that the skill of the different approaches varies with 

the location and accuracy of the training GCM weather pattern data. This means that a 

statistical method is locally calibrated and valid. Our objective is to develop and calibrate a 

statistical downscaling method which will be used in future studies to project climate change 

scenarios in Argentina and in particular La Plata Basin. 

In this study, we analyze the strengths and weaknesses of a statistical method based on 

clustering techniques, using atmospheric variables from ERA-40 re-analysis and 

observational data from Argentine stations covering a wide range of climates. While specific 

variables may have different weights among the large region under study, our objective is to 

develop a tool, which will then be used for tropical, mid- or high-latitude stations. The study 

is organized as follows: Section 2 describes the atmospheric- and station data; Section 3 

introduces the general characteristics of the downscaling method; Section 4 discusses the 

model sensitivity to parameters such as the sensitivity to the clustering technique (we 

compared neural networks and k-means methods), the weather pattern domain size (optimal 

synoptic scale), the number of clusters (optimal number of observations per cluster) and the 

size of the ensemble when predicting daily precipitation (stability of the ensemble 

prediction); Section 5 discusses the daily precipitation simulation results at different sites of 

Argentina and Section 6 compares the results obtained with several dynamical downscaling 

regional models; Finally, conclusions are provided in section 7 together with some 

perspectives of improvement and application in the framework of the 2008-2012 CLARIS 

LPB European Project.  
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II. Data 

ECMWF data. The observational data used is the reanalysis ERA-40 dataset provided by 

the European Centre for Medium-Range Weather Forecasts (ECMWF). Reanalysis data is a 

global dataset describing the state of the atmosphere, which is constructed using a GCM that 

includes the assimilation of observational data. The reanalysis are the closest gridded 

representation of recent historical climate available. The regular grid resolution of ERA-40 is 

of 1.125° latitude x 1.125° longitude and the data consist of four atmospheric variables at 

different atmospheric levels per day (00:00, 06:00, 12:00, 18:00 h UTC) listed in Tables 1 

and 2. For further information about this variables see Appendix A: Atmospheric variables 

description. 

 

 

Table 1: ERA-40 reanalysis list of predictor variables utilized in this study. 

 

Variable Milibar level 

U component wind (U) 200,500,700,850 

V component wind (V) 200,500,700,850 

Relative humidity   (rh) 750,850 

Specific humidity   (q) 750,850 

Vertical velocity     (W) 500,700 

Geopotential           (Z) 500 

 

Table 2: ERA-40 two dimensional variables. 

 

Variable 

Total column water                        (tcw) 

Mean sea level pressure                 (msl) 

 

 

Given that weather station data are only available on a daily time step, only averaged 

atmospheric field daily values were considered. The ECMWF data used in the following 

cover the period starting in 1979 (the main reason of this choice is the assimilation of satellite 

data starting in that year, which provides more reliable data) and finalizing in year 1999, 
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representing a total of 7670 days. As in Cavazos (2000) and Cavazos and Hewitson (2005), 

the selection of ERA-40 atmospheric predictors for daily precipitation is based on the rationale 

that they must either be dynamical, or non-dynamical components (thermal or moisture). The 

dynamical components are captured by the wind fields (U, V at the four levels 200, 500, 700 and 

850mb), the geopotential height (Z) at 500mb, the vertical velocity (w) at 500mb (for subsidence 

and convection) and the mean sea-level pressure (msl). Finally, the moisture component is 

represented by the relative (rh) and specific (q) humidity at low-levels (850 and 700) and by the 

total column water (tcw). Although long, the list could also include other variables such the 500-

1000hPa thickness or convection indices. However, we found the system to be relatively stable 

for a large subset of the previous list, demonstrating that the method used in the following 

allows us to reduce the data space avoiding the redundancy of predictors, and that the list is 

exhaustive enough. 

 

Argentine weather station data. Daily precipitation time series at 39 Argentine stations 

covering the period 1959-2001 are used in this study. The Argentine stations analyzed are 

located all over the country and have been quality-controlled before entering the CLARIS1 

database. Figure 1 shows the stations used and Table 3 gives their name, latitude, longitude 

and the number of missing daily data over the 1979-1999 period. Stations were subject to 

statistical tests to check for artificial jumps, outliers and trends in the monthly series 

(Buishand, 1982). 

                                                
1
 For further information about CLARIS project see: http://www.claris-eu.org/ 
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 Figure 1: Map of the 39 Argentinean stations. Blue circles are stations used for model parameter estimations. 
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Table 3: List of Argentine stations.  

 

Station Name Longitude Latitude Station 

number 

Missing 

days 

'JUJUY AERO' 294.91 -24.38 87046 31 

'SALTA AERO' 294.51 -24.85 87047 0 

'LAS LOMITAS' 299.41 -24.7 87078 160 

'IGUAZU AERO' 305.53 -25.73 87097 28 

'SANTIAGO DEL ESTERO AERO' 295.7 -27.76 87129 0 

'FORMOSA AERO' 301.76 -26.2 87162 0 

'CORRIENTES AERO' 301.23 -27.45 87166 0 

'POSADAS AERO' 304.03 -27.36 87178 31 

'LA RIOJA AERO' 293.18 -29.38 87217 0 

'VILLA MARIA DEL RIO SECO' 296.31 -29.9 87244 103 

'CERES AERO' 298.05 -29.88 87257 0 

'PASO DE LOS LIBRES AERO' 302.85 -29.68 87289 0 

'SAN JUAN AERO II' 291.58 -31.56 87311 0 

'SAUCE VIEJO AERO' 299.18 -31.7 87371 31 

'PARANA AERO' 299.51 -31.78 87374 2 

'MONTE CASEROS AERO' 302.35 -30.26 87393 0 

'CONCORDIA AERO' 301.98 -31.3 87395 30 

'SAN MARTIN (MZA)' 291.58 -33.08 87416 158 

'MENDOZA AERO' 291.21 -32.83 87418 0 

'VILLA REYNOLDS AERO' 294.61 -33.73 87448 5 

'MARCOS JUAREZ AERO' 297.85 -32.7 87467 0 

'ROSARIO AERO' 299.21 -32.91 87480 1 

'GUALEGUAYCHU AERO' 301.38 -33 87497 0 

'MALARGUE AERO' 290.41 -35.5 87506 31 

'LABOULAYE AERO' 296.63 -34.13 87534 0 

'PEHUAJO AERO' 298.1 -35.86 87544 182 

'JUNIN AERO' 299.08 -34.55 87548 0 

'NUEVE DE JULIO' 299.11 -35.45 87550 20 

'EL PALOMAR AERO' 301.4 -34.6 87571 263 

'EZEIZA AERO' 301.46 -34.81 87576 0 

'SANTA ROSA AERO' 295.73 -36.56 87623 1 

'CORONEL SUAREZ AERO' 298.11 -37.43 87637 77 

'MAR DEL PLATA AERO' 302.41 -37.93 87692 31 

'NEUQUEN AERO' 291.86 -38.95 87715 2 

'ESQUEL AERO' 288.85 -42.93 87803 41 

'TRELEW AERO' 294.73 -43.2 87828 0 

'RIO GALLEGOS AERO' 290.71 -51.61 87925 31 

'PERGAMINO INTA' 299.45 -33.93 87484 0 

'PILAR' 296.11 -31.66 87349 0 
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III. The statistical downscaling model 

For the purpose of this study, a fully operational downscaling toolbox called CHAC 

was made. It was written in MATLAB language and works on version 7.1 or higher. It has 

been tested over windows XP, Mac OS and Linux operating systems. CHAC uses free license 

SOM toolbox (http://www.cis.hut.fi/projects/somtoolbox/) to operate with Self-Organizing 

Maps. It also uses the Statistical and Mapping toolbox from MATLAB. CHAC can be 

downloaded from http://sourceforge.neti/projects/chac.  

A description of our statistical downscaling methodology main steps is shown on Figure 

2. It is based on the previous work made by Gutierrez et al. (2004). This methodology makes 

use of a clustering technique to connect atmospheric fields with time series of observed daily 

precipitation or temperature at local stations. The main stages are data pre-processing, 

followed by data classification, simulation, and finally, validation. In the following sub 

sections we will describe these stages and also compare two cluster algorithms and find the 

optimal parameters for the methodology. 
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Figure 2: CHAC method description. 
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III.a. Data pre-processing  

 The weather patterns matrix (Wp) is made of 7670 weather pattern vectors, where each 

vector represents the state of the atmosphere for a given day. This state is specified by the set 

of 17 ERA-40 variables, listed in tables 1 and 2, in the following way: Every coordinate of 

each weather pattern vector represents a grid point in the spatial domain of the set of 

atmospheric variables for a given day. Figure 3 shows an illustration of how the weather 

pattern matrix is created from spatial domains of 4x4 grid points for temperature at 850mb, 

relative humidity at 850mb and V wind component at 200mb, for the period 1979-1999. 

 

Figure 3: 7160 weather pattern vectors representing period 1979-1999 
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In a first step, Wp is normalized (all features have zero mean and unit variance) in order to 

prevent some atmospheric variables from dominating the following calculations.  

In a second step, a Principal Component Analysis (PCA) is performed over Wp. PCA is a 

well-known statistical linear technique used to compress data by reducing the vector space of 

the data set in such a way that there is a minimal loss of variance. The motivation for using 

this technique is the assumption that Wp contains redundant predictors that will not contribute 

significantly to the quality of the downscaling. PCA first calculates the correlation matrix Cnxn 
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of Wpmxn, with C being symmetric and having e1,…,en eigenvectors, and 1,…., n real 

eigenvalues. The elements Cit represent the covariance between the variables i and t of the 

original space:  

( )( )
ktktikiit

uxuxc =  ;  

kkii
xu =    ,     

kktt
xu =  

A transformation matrix Mnxn is then constructed as follows, each row of M is an 

eigenvector of C, and they are ordered in decreasing order according to the magnitude of their 

corresponding eigenvalue. The eigenvalue corresponds to the variance of Wp projected on the 

eigenvector associated. The coefficients of the elements of Wp projected on the new base are 

called principal components (PCsmxn).  

The matrix calculation to generate the PCs is, 

PCs =Wp.M
T

=

wp
11

... wp
1n

. ... .

. ... .

wpn1 ... wpmn
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This new coordinate representation of the data allows us to select the number of PCs that 

retain most of the variance, generally reducing the size of Wp matrix up to 90%. This 

reduction has numerous advantages. Representing the information in a compressed way with 

a minimal loss of information is important for a classifier task due to the curse of 

dimensionality: as dimensionality increases the data sample needed to fill the input space 

grows exponentially, making harder for a classifier to reach a good generalization 

performance if the same amount of data is available for classification. Also, an immediate 

reward in the reduction of the data space dimensions is the lower need in computer resources 

and a faster simulation speed.  
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III. b. Classification procedure 

In a third step, the remaining PCs of the weather patterns are classified. In the following, 

we will compare the performance of two often-used techniques: k-means (Gutierrez et al., 

2004) and the SOM (Self-Organizing Maps; Hewitson and Crane, 2006). While other 

methods (analogue and k-nearest neighbors) have also been implemented, we only discuss 

these two clustering methods, which gave the best results.  

 

III.b.1. K-means classification algorithm 

K-means is one of the clustering techniques most widely used. Its success is based on its 

simplicity and fast convergence speed, making it very appropriate for computer 

implementation. Lets assume we have a set of patterns, in particular it can be a weather 

patterns set X = {x1, x2,…,xm  | xi   R
n
 }, and a set of centroids C = {c1,c2,..,ck | ci   R

n
 }, then 

each cluster is defined as all xi  Ck such as Ck is the closest centroid to xi. The k-means 

technique assumes that the minimum sum of the intra-cluster variance is the best 

representation of the data and so attempts to minimize the squared error function Fe; 

      Fe=
=

k

i Cx

ij

ij

Cx
1

2

  

 A pseudocode of k-means algorithm is shown in Algorithm 1. The k-means algorithm 

starts by generating the positions of the initial centroids. The simplest method is to make a 

random selection over the set of input patterns. Then, an iterative adjustment of the centroids 

positions and reassignment of the patterns x belonging to them is made, until a performance 

criterion is achieved or a maximum number of iterations is reached. 

K-means can be sensitive to the initial random solution, and the search for the minimum 

intra cluster variance can be easily stuck in local minima, for that reason it is recommended to 
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repeat the algorithm several times using different initial random centroids, and to chose the 

solution with the minimum intra cluster variance. 

 

 

Algorithm 1. k-means algorithm 

 
Inputs 
 X = {x1,…,xm} 
 k : Number of clusters 
 
Outputs 
 C = {c1,…,ck} (cluster centroids) 
 m: I  C (cluster membership function) 
 
Procedure k-means 
 
 Set C to initial value (e. g. random selection of I ) 

 For each xj  X 

  m(xj) =   argmin  ( distance(ij,cq) ) 
   q  {1,.k} 

end 
While m has changed  
 For each j  {1, k} 

  Recompute Cj as the centroid of {xi | m(xi) = j} 
 End 

 For each xj  X 

  m(xj) =   argmin    ( distance(xj, cq) ) 
q  {1,k} 

End 
End 

Return C , m 
End 

 
 

There exists a wide range of distance measures to use in k-means squared error function 

Fe, we use the squared Euclidean distance, in which each centroid is the mean of the points 

inside its cluster. 
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III.b.2. SOM classification algorithm 

The other technique used in this study is Kohonen self-organizing feature map (SOM), 

sometimes also called topology-preserving map. It was created by Teuvo Kohonen in 1982, 

and is a clustering technique combined with topological preserving and data reduction 

ordered map properties. It forms part of the non-supervised learning neural network field, 

which is inspired by the human nervous system. The structure of a SOM consists of two 

layers (see Figure 4), which are called the input layer and the output (or representation) layer, 

with feed-forward connections from input to output and lateral connections between neurons 

in the output layer. The output layer has the shape of a two-dimensional lattice of neurons, 

but also one or higher dimensional layers can be used, though less common. Each neuron on 

the output layer has an associated weight vector in the output space. The goal of a SOM is to 

represent all points in the input space by points in the output space, preserving distance and 

proximity relationships as much as possible. 

Figure 4: Structure of a SOM 
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SOM training is more complex than k-means, the learning process consists in the 

systematic modification of the weight vectors of each neuron in response to input patterns 

until a stable configuration arises. Unlike other learning technique in neural networks, 

training a SOM requires no target vector, therefore it learns to classify, reduce dimension, and 

display similarities among the training data without any external supervision. In order to do 

this the training data for the SOM algorithm is presented in epochs, being each epoch a 

complete instance of the input database sorted randomly. 

The training algorithm of a SOM can be divided four important stages. 

1. Initialization 

The weight vectors of each neuron of the SOM are selected at random from the input 

database. 

2. Competition 

For each sample vector selected, all neurons in the SOM compute their respective 

values of discriminant functions. The neuron with the highest value is called de Best 

Matching Unit (BMU), and is declared the winner of the competition. There are 

numerous ways to determine the discriminant function, the most commonly used 

method being the Euclidean Distance and/or Cosine Distance 

3. Cooperation 

Once the winning neuron has been selected, a spatial location of neighborhood neurons 

will be exited to form part of the algorithm. This part of SOM training is 

neurobiologically inspired. The topological neighborhood is defined by a function hj,i 

which has to satisfy two specific requirements. 

• The topological neighborhood has to be symmetric around the winning neuron. 
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• The amplitude of the topological neighborhood hj,i decreases monotonically as 

the lateral distance dj,i increase, decaying to zero for dj,i ; this is a necessary 

condition for convergence. The lateral distance is defined in the output space of 

the SOM and in the case of a two-dimensional lattice it is defined as,                

dj,i = || rj – ri ||
2, where the discrete vector rj defines the position of exited neuron j 

and ri defines the discrete position of winning neuron i. Also The size of the 

topological neighborhood shrinks with time, a common choice for hj,i(x) is 

h j ,i = exp
d j ,i

2

2
2

 

 
 

 

 
 ,  being the parameter of the function that selects in which 

intensity the neighborhood function gets involved in the learning process. 

 

4.   Synaptic adaptation 

The synaptic adaptation mechanism is performed only on the exited neurons selected in 

the cooperative step. The synaptic adaptation modifies the weights of the selected 

neurons in such a way that the response of the winning neuron to the subsequent 

application of a similar input pattern is enhanced. 

The updated weight vector wj(n+1) at step n+1 is defined by, 

  wj(n+1) = wj(n) + (n)hj,i(x)(n)(x-wj(n)) 

Where  is the learning rate parameter (0 < <1), that defines how fast does the updated 

weight vector gets closer to its sample vector. If  is too high the learning process might 

not converge, whereas if it is too low it might get trapped in a metastable state: A 

configuration of the SOM in which it can not learn the statistical distribution of the 

input data. As a general rule  is monotonically decreasing in time, in this study  
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change rule is (t)= 0/(1+100t/T), where 0 is learning rate initial value, T is the 

training length in epochs and t is the time step.  

The SOM training has two well-defined phases, which are defined by the values of its 

training parameters, learning rate ( ) and neighborhood function (h). 

• Ordering phase:  In this phase the SOM reproduce the statistical distribution of 

the learned distribution in a quick way. The learning-rate parameter should 

begin in a high value, often 0.1 and decrease monotonically but remain above 

0.01. The neighborhood function hj,i(n) should include all neurons in the 

network centered on the winning neuron i and then shrink with time. 

• Convergence phase: In this phase the SOM learns the local distributions. The 

number of iterations should be greater than in the ordering phase, al least 500 

times the number of neurons in the network. The learning parameter should be 

small, in the order of 0.01, but never reach 0, and the neighborhood function 

hj,i(x) should contain only the closest neurons of a winning neuron, reducing 

eventually to one o even zero neighboring neurons.  

 

III.c. The simulation procedure 

At this stage, the classifier algorithm divides the database of weather patterns into clusters, 

with the restriction that every weather pattern belongs only to one specific cluster. Given that 

each daily weather pattern is associated to the precipitation value observed on that day, we 

can relate a precipitation distribution to each cluster.  

When making a simulation with new atmospheric weather patterns as an input, each 

weather pattern is projected onto the clusters by computing its distance to each of them. Only 

one cluster is selected (the one to which the distance is smallest). The simulated precipitation 



  

     18
 

value is selected randomly from the daily precipitation distribution of the selected cluster. If 

the weather pattern projected also belongs to the cluster, then the precipitation value 

associated to it is not chosen for simulating that day, in order to avoid over fitting. 

Considering the stochastic nature of the system, an ensemble of N simulations (a discussion 

on N is provided hereafter) is generated.  

 

III.d. The validation procedure 

A set of standard indices is used to validate the skill of our statistical model, one of which 

is the ROC curve (Relative Operating Characteristic). A ROC curve is obtained as follows. 

Let’s assume we have a stochastic prediction of size N produced over a specific period. Then 

N can be divided into two subsets, those when an event occurred and those when it does not, 

i.e. N=O + O´, see Table 4. 

 

Table 4: Definition of events such as used when computing the ROC index. 

Observations Warning No warning Total 

Event H M O 

Non Event FA CR  O´ 

Total W W´ N 

 

 Let H be the number of hits whenever an event occurred and a warning was issued, let FA 

be the False Alarm whenever a warning was issued, but no event occurred, let M be the 

number of missed events, which is the number of times that an event occurred but no warning 

was issued, and let CR be the number of correct rejections, which is the number of times that 

an event did not take place and no warning was made. Bearing this in mind, we can calculate 

the hit rate (number of occurred events well predicted) and false alarm rate (number of events 

predicted, which actually did not occur) as follows: 
O

H
HR =  and

´O

FA
FAR = . 
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Considering that the simulation is actually an ensemble of N simulations, a critical 

threshold Pcr (e.g. percentage of simulations presenting an event) is introduced and a warning 

is fired every time the number of simulations presenting an event exceeds this threshold. In 

this case, the hit and false alarm rates can be expressed as a function of Pcr in the following 

way, 

{ } ====
P

dPEPfEPHR Pcr )1/(1/Pr)(  

{ } ====
P

dPEPfEPFAR Pcr )0/(0/Pr)(  

where 
p  denotes forecast probabilities P>Pcr and )/( EPf is the conditional probability 

density function of probability forecasts (Kharin and Zwiers, 2003) 

Finally, the ROC curve is made by plotting the resulting hit rates versus false alarm rates 

as Pcr varies from 0 to 1. In every ROC curve, a forecast with no skill corresponds to the 

diagonal connecting the points (0,0) and (1,1), and a perfect forecast generates a ROC curve 

going through the points (0,0), (1,0) and (1,1). Furthermore, in a forecasting system with no 

skill, the hit-rate and false-alarm rate are equal, and in the case of perfect forecast, hit rate is 

equal to 1 and false alarm rate equals to 0. 

The index mostly used in the present study is the ROC skill score (RSS), which is based on 

the area under the ROC curve as follows: RSS= ( )5.02 area . Then, a no-skill forecast has 

a ROC area of 0.5 and a RSS equal to 0, and a perfect forecast has a ROC area of 1, and a 

RSS of 1. Moreover a forecast A is better than a forecast B, if the area under the ROC curve 

of A is greater than B i.e. if the RSS of A is larger than the one of B. As a final comment, to 

compare the skill of simulated distributions related to precipitation data, we will display PP-

plot and QQ-plots. 

PP-plot is built as follows. To each probability of the observed CDF, a certain wet or dry 

sequence length is associated. For such wet or dry sequence length, we can associate a 



  

     20
 

probability of the observed CDFs. Such probabilities are then plotted as a scatter plot. 

Cumulative probabilities are in the range 0-1. The straight line crossing both axes at zero 

represent a perfect fit. For each plot, we computed a mean algebraic error and the root-mean 

square of the model-data error misfit.  

 QQ-plot is built as follows. To each probability of the CDF (both observations and 

simulations have the same number of points, and thus the same bins of the CDF), we can 

associate a rainfall amount for observed or simulated series. The two series are then plotted as 

a scatter plot. Daily rainfall amounts are in the range 0.1-350mm. The straight line crossing 

both axes at zero represent a perfect fit. For each plot, we computed a mean algebraic error 

and the root-mean square of the model-data error misfit.  

 

 

 

IV. Model parameter choice 

In order to test the statistical model parameter choices (clustering technique, number of 

clusters, domain size, ensemble size), we evaluate the model skill in a subset of seven 

weather stations representative of very different climate conditions over Argentina (see blue 

circles in Figure 1). Formosa (Formosa Province) is located at the frontier between Argentina 

and Paraguay and present a near-tropical climate with very strong convection systems and a 

well-marked rainy season during the South American Monsoon (austral summer). Salta (Salta 

Province) is located in the northwest region of Argentina and is characterized by a dry 

climate. Pergamino (Buenos Aires Province) is in the core region of agriculture production in 

Argentina. Its annual mean precipitation exceeds 1000mm. Marcos Juarez (Cordoba 

Province) is a semi-arid region and an agricultural marginal region. However, the increase of 

precipitation during the last 30 years considerably favoured the growth of cereal crops in the 

area. Ezeiza (Buenos Aires Province) is an airport station very close to the Capital of 
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Argentina (Buenos Aires). The climate is influenced by convection during summer and by 

frontal activities. Monthly precipitation amounts are quite equally distributed during the year 

(Boulanger et al., 2005). Neuquén (Neuquén province) is very close to the Andes and located 

in a mid-latitude region strongly influenced by frontal activities. Rio Gallegos (Santa Cruz 

Province) is one of the stations located in the south of Argentina (near 50°S) and is 

representative of a mid-latitude climate. 

This subset of stations is analyzed in details to evaluate the sensitivity of the method to the 

location of the station and thus develop a method relatively skilful all over the country. For 

the sake of clarity (and number of figures), in the result section we mostly present averaged 

ROC scores among the 7 stations. 

 

Clustering technique and number of clusters.  Figure 5 displays the ROC score averaged 

between the 7 selected stations as a function of the number of clusters (actually expressed as 

the mean number of observations per cluster i.e. number of daily observations divided by the 

number of clusters) using two different clustering techniques (k-means in red and SOM in 

blue). Following Hewitson and Crane (2006), we selected a domain size on the order of 

1000km x 1000 km around each station to extract the atmospheric variables. Ensembles of 

100 simulations are performed to compute the RSS. It appears that the k-means mean curve is 

always higher than the SOM curve suggesting the k-means clustering technique is more 

effective in covering the data space than SOM. Indeed, the topological order imposed by the 

SOM method strongly limits the SOM clusters to explore low density regions of the data 

space (Fig. 6). This property can be also viewed on Fig. 7, in which a SOM lattice of 25x25 

was trained for Marcos Juarez in the period 1979-99 and shown in the 3 dimensional input 

space spanned by the first 3 PCs. Informally speaking, due to its topological order property 

the SOM tries to fill the statistical distribution of the weather patterns with the constraint of 
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being a two-dimensional sheet in a n-dimensional space. This behaviour affects the capacity 

of the SOM to explore the variance of the input data and therefore affects it generalization 

skill. Although a thorough work on the SOM parameters (not shown on this study) gets 

similar RSS than k-means, it affected significantly the topological order of the SOM. This 

reason, and moreover for the good results of the k -means technique, which is fast and easy to 

implement, lead us to select this method as the clustering method for downscaling..  

The training parameters for both SOM and k-means were as follows: 

SOM: Neuron initialization at random 

Parameters Ordering Phase Values Convergence Phase Values 

Initial Radius ( i) max(mapsize)/4 max(Final Radius,1) 

Final Radius ( f) Initial Radius/4 1 

Initial Learning Rate( ) 0.5 0.05 

Number of Epochs 100 1000 

Neighbourhood function Gaussian Gaussian 

 

K-means: Cluster initialization at random. 

Parameters Values 

Maximum number of iterations 100 

Number of repetitions of the algorithm 1 

  

In addition, regardless of the clustering technique, it is found that the ROC curve for 

precipitation occurrence or for different thresholds of precipitation (25%, 50% or 75% of the 

precipitation CDF) displays a similar shape mostly independent of the station under study. 

The optimal number of observations per cluster can be estimated to be between 20 and 50 

observations, although the decrease in the RSS value is very slow as the number of 

observations increases, and the differences are not highly significant in terms of daily 

precipitation simulations. The selected number of observations per cluster is 39 (equivalent to 

196 clusters for our dataset). This value is much smaller than the one (90) selected by 

Hewitson and Crane (2006), but as said above the RSS is not very different for 39 or 90 

observations per cluster. A final comparison over this two techniques is made on their speed, 



  

     23
 

Figure 8, shows the elapsed time of each technique over a set of different number mean 

observations per cluster. It shows that k-means is faster than SOM for mean observations per 

cluster lower than 45 and that it is slower for greater values than 45. It must be point out 

though that time cost may greatly depend on how the algorithms are implemented by each 

toolbox.   

 

 

 

Figure 5: RSS values averaged over the seven selected stations as a function of the mean number of 

observations per cluster. The blue curve represents results from the SOM classification, while the red curve 

represents results from the K-means classification. The RSS score is computed for four different criteria: 

(upper-left) wet/dry day; (upper-right) daily amount larger than the 25th percentile of the rainfall amount 

cumulative distribution function (CDF); (lower-left) daily amount larger than the 50th percentile; (lower-

right) daily amount larger than the 75th percentile. 
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Figure 6: Representation of the cluster nodes (blue stars) computed by the SOM (left) or K-means (right) 

technique) in the two-dimensional space of the first two principal components of the data space for the 

station Marcos Juarez in period 1990-1996. The green dots represent dry days, red circles represent wet 

days, and the size of the red circles is a function of the intensity of the daily rainfall.  

 

 

 

Figure 7: Representation of the SOM over the 3 dimensional space of the first three principal components 

of the weather patterns space for the station Marcos Juarez. In here, it can be noticed that SOM behaves like 

a 2 dimensional lattice trying to represent the 3 dimensional statistic distribution of the data space. 
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Figure 8: Plot of the clustering time in seconds for SOM and k-means for different number of initial 

clusters. The algorithms where performed over Ezeiza PCs database weather patterns matrix of size 

7670x43, representing period 1979-1999.  

 

 

Domain size. Given the previous result, at each of the seven stations, daily weather 

patterns are defined for different spatial domain sizes and then clustered. Ensembles of 200 

simulations are performed to compute the RSS scores. In the following, we will define 1x1 as 

the vertical at the grid point the closest to the weather station, 2x2 as the four nearest grid 

points to the station, 4x4 as the 16-grid point square including the 2x2 square, 6x6 as the 36-

grid point square including the 4x4 area, etc. In terms of spatial resolution, 1x1 is a profile, 

2x2 is a 1.125° size square, 4x4 is a 3.375° size square, 6x6 is a 5.625° size square etc.  Thus, 

we computed the RSS-averaged score from the RSS scores at all seven stations for four 

different RSS criteria (0.1mm/day, 25%, 50%, and 75% of the station CDF distribution). The 

results are displayed in Figure 9. While the RSS value is of similar amplitude for domains 

smaller than 6x6, the large domains (8x8 and larger) present decreasing RSS values. The RSS 

value of the vertical profile (1x1) is always found to be smaller than the 2x2, 4x4 or 6x6 
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domain sizes, meaning that local- to synoptic-scale information improves the relationship 

between atmospheric conditions and precipitation simulation at the weather station. 

 

Figure 9: ROC skill score (RSS) averaged over the seven selected stations as a function of the domain area 

around the station. The red curve represents results when using all the dynamical and non-dynamical 

variables. The blue curve represents results when using only dynamical variables. RSS is computed for four 

different criteria: (upper-left) wet/dry day; (upper-right) daily amount larger than the 25th percentile of the 

rainfall amount cumulative distribution function (CDF); (lower-left) daily amount larger than the 50th 

percentile; (lower-right) daily amount larger than the 75th percentile. 

 

 We finally decided to select a 4x4 domain size (3.375° x 3.375°). Therefore, our result 

highlights a very small-radius of atmospheric variability around the station suggesting a 
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strong role of moisture components in the weather pattern clustering. Indeed, if the 

atmospheric variables are only dynamical variables (blue curve in Figure 9), the optimum 

domain size is larger and extends up to 10x10 or 12x12 domain sizes highlighting the 

importance of larger scale patterns to define dynamical weather patterns. However, it is worth 

pointing out that the RSS values of the method, when based only on dynamical variables, are 

significantly smaller than the RSS values of the method when based on the dynamical and 

non-dynamical atmospheric variables. This suggests that even if the large-scale circulation is 

clearly a strong constraint on local precipitation, what defines ultimately the occurrence and 

amplitude is strongly related to non-dynamical local- and synoptic-scale processes. 

 

Ensemble size. Here we are interested in analyzing the sensitivity of the RSS calculation to 

the number of simulations of the ensemble, in order to reduce the computational time without 

losing predictive skill. In Figure 10, the RSS averaged between the 39 stations is displayed 

for different types of events (P>0.1mm/day, > 25%, 50% or 75% of the wet days 

distribution), for an ensemble size of 200 members. Briefly, it appears that the computation of 

the RSS converges for 100 simulations or more per ensemble. In fact, we found (for different 

experiments not shown here) that the convergence happens for a number of simulations 2 to 3 

times the average number of observations per cluster. This can easily be explained by the fact 

that the weather patterns have been selected at least twice in the ensemble. Therefore, we 

choose to do the simulations with all ensembles having 100 members, even if very small 

improvements (~0.01) in the RSS could be reached when doubling the number of simulations. 
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Figure 10: ROC skill score (RSS) averaged over the 39 stations as a function of the ensemble size, from 2 

to 200 simulations. RSS is computed for four different criteria: (upper-left) wet/dry day; (upper-right) daily 

amount larger than the 25th percentile of the rainfall amount cumulative distribution function (CDF); (lower-

left) daily amount larger than the 50th percentile; (lower-right) daily amount larger than the 75th percentile. 

 

 

 

 

V. Model skill in Argentina 

In order to evaluate the general skills of the method over the entire database, we defined 

four types of daily events at each station instead of defining precipitation events in terms of a 

threshold in mm/day identical for all stations. These events are wet days (amount larger than 

0.1mm/day) and precipitation amounts larger than 25%, 50% or 75% of the amount 
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distribution. These thresholds are proper to each station in order to compute the number of 

events predicted. Then the hit rates and false alarm rates are computed over all the stations in 

order to derive the ROC curve and the RSS. As displayed in Figure 11, whatever the 

threshold considered, the RSS is around 0.72 highlighting the good results of the statistical 

method for both low and large rainfall amounts.  

 

 

Figure 11: ROC curve computed from all the stations in the database. The ROC curve is computed for 

four different criteria: (upper-left) wet/dry day; (upper-right) daily amount larger than the 25th percentile of 

the rainfall amount cumulative distribution function (CDF); (lower-left) daily amount larger than the 50th 

percentile; (lower-right) daily amount larger than the 75th percentile. 

 

 Moreover, our method of computing events relative to a percentile of the rainfall amount 

distribution ensures that the RSS is indeed representing the skill of the method over all 

stations to simulate local rainfall amounts. Computing the RSS for events larger than for 
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example 10mm/day would, for a country like Argentina, reduce the evaluation of the model 

skills to wet regions.  In order to study climate impacts (especially on hydrology and 

agriculture), it is important that a weather generator or a statistical downscaling method 

reproduce different distributions such as the rainfall amount, the dry spell and the wet spell 

distributions. Figure 12 displays such comparisons using pp-plots and qq-plots. It is worth 

pointing out that, while the classification method is based on the entire dataset (i.e. the 

seasonal cycle is not explicitly separated before the classification), we made all plots by 

comparing observed and simulated monthly distributions at all stations allowing to evaluating 

the representation of the seasonal cycle by the method. Finally, considering that our 

simulations are ensembles of 100 simulations, we computed the simulated distributions as 

follows. First, for each month of each simulation of each station, we compute the dry 

sequence, wet sequence or rainfall amount CDF. Second, for each month and at each station, 

we average the CDFs between all the members of the ensemble before comparing to the 

observed monthly CDF. 

First, the method is found to represent fairly well the dry spell distributions for all 

probabilities (Fig. 12a) although it clearly underestimates the dry spell lengths longer than 40 

days by 30% to 50% (Fig. 12b). This bias is quite systematic in most of the weather 

generators (Wilks, 1999; Boulanger et al., 2007). A potential improvement of the method 

would be to take into account the weather pattern and precipitation history in the computation 

of the precipitation occurrence probability.  

Second, coherently with the previous point, the statistical model significantly 

overestimates (Fig. 12c) the short rainfall spells, while it underestimates very long wet spells 

(longer than 10 days; Fig. 12d). 
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Figure 12: (a: upper-left) PP-Plot of the dry sequences; (b: upper-right) QQ-Plot of the dry sequences; (c: 

middle-left) PP-plot of the wet sequences; (d: middle-right) QQ-plot of the wet sequences; (e: lower-left) PP-

plot of the rainfall amounts; (f: lower-right) QQ-plot of the rainfall amounts. All plots are computed 

comparing the distributions of all twelve months at all stations.  
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Third, rainfall amount distributions as displayed by Figures 12e-f seem to be fairly well 

simulated by the method confirming the skill of the method in simulating different amplitudes 

of rainfall events. Only in Figure 12f, it seems that the method does not reproduce very large 

specific daily rainfall events (larger than 200mm/day). This can actually be explained by the 

fact that all simulations over a specific year make use of a classification of weather patterns 

observed during all the period except this specific year. Therefore, very large individual 

events (not observed during the rest of the period) are unlikely to be simulated by the 

statistical method. When analyzing more closely the model sensitivity over different regions 

of Argentina, the RSS results at each station (Figure 13) confirm that the RSS values are very 

similar whatever the threshold suggesting that the statistical model skills are good either for 

low and large rainfall amounts. However, Figure 13 also displays regional differences. In 

particular, lower RSS values (0.55-0.6) are mainly observed near the Andes. We believe that 

such low scores can be explained by two reasons. First, these regions are quite dry, and thus 

small errors in precipitation occurrence or amounts (in terms of % of the distribution) can 

lead to lower scores. Second, the quality of the reanalysis can also be lower near the Andes, 

since its abrupt topography change is a clear challenge for atmospheric models. We believe 

that both reasons can lead to a transfer function not as skilful in relating weather patterns to 

local daily precipitation. In order to better describe such differences, in Figure 14 we display 

different daily precipitation time series with low RSS (Mendoza~0.6 and Rio Gallegos~0.5) 

or large RSS (Gualeguaychú on the Uruguay River ~0.75; and Marcos Juarez~0.70). At the 

first two stations, the 90-day filtered daily precipitation time series display very low 

precipitation amplitudes (lower than 4mm/day in Mendoza and 2mm/day in Rio Gallegos). In 

Mendoza, the seasonal cycle is quite strong and fairly well simulated by the model. However, 

the model fails in capturing some periods such as 1988, 1991, 1996 and 1998. 
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Figure 13: ROC skill score (RSS) at each station. RSS is computed for four different criteria: (upper-left) 

wet/dry day; (upper-right) daily amount larger than the 25th percentile of the rainfall amount cumulative 

distribution function (CDF); (lower-left) daily amount larger than the 50th percentile; (lower-right) daily 

amount larger than the 75th percentile 
 

In Rio Gallegos, the seasonal cycle is not well defined, and the interannual variability is large, 

the statistical model clearly fails in representing the observed variability and, instead, displays 

a relatively smooth annual and interannual variability. On the contrary, at Gualeguaychú and 

Marcos Juarez stations with larger rainfall amplitudes the statistical method captures fairly 

well their strong annual and interannual variability. It is worth pointing out that even if the 

method fails in simulating some specific large peaks (related to individual large events), the 

green and pink curves (10th and 90th percentiles) follow pretty well the observed blue curve 

demonstrating that the ensemble does not present too large a spread in its simulations.  
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Figure 14: Two-month filtered time series of observed daily precipitation (blue curve), of simulated ensemble 

median (red curve), of simulated ensemble 10th percentile (green curve) and of simulated ensemble 90th 

percentile (pink curve). From up to bottom, the time series correspond to Mendoza, Rio Gallegos, Gualeguaychú 

and Marcos Juarez. 
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VI. Comparison with dynamical downscaling 

VI. a. Dynamical models and period description  

 In order to compare the performance of our statistical model with the dynamical 

downscaling approach, we co-ordinated our efforts with the RCM groups within CLARIS. 

Three multi-model ensembles of simulations of particularly anomalous months in terms of 

precipitation in the southern La Plata Basin (January 1971, November 1986 and July 1996) 

were performed. The RCMs participating in this downscaling experiment are: MM5 (CIMA 

and UCH), RCA3 (CIMA and Rossby Centre/SMHI), REMO (MPI-M), PROMES (UCLM) 

and WRF (CIMA). LMDZ (LMD), an atmospheric GCM with variable grid spacing 

(stretched grid), run with high resolution over South America, also participates in these 

experiments. Concurrently, RCMs are being applied to study regional effects of global 

climate change in South America (Núñez et al., 2006; Marengo, 2007; Fuenzalida, 2007; 

Sörensson et al., 2007) and other regions. A short description of participating models is given 

in table 5. (Further information about the dynamical simulations models and the months of 

analysis presented here can be found in Menéndez et. al. 2008). The selection of the periods is 

based on in situ observational data studies for central and north-eastern Argentina (Bettolli et 

al., 2005; Barrucand et al., 2001).  All dynamical regional simulations were initialized and 

forced every 6h by large-scale atmospheric boundary conditions from the European Centre 

for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA40, Uppala et al., 

2005). All models were run with horizontal resolution of about 50 km over South America 

but varying vertical resolution. The five regional models' domains are somewhat different 

from model to model but share southern South America and surrounding oceans. 
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Table 5: Summary of grid configurations and parameterizations for the dynamical models used in the present 

study. 
 

 LMDZ MM5 RCA3 REMO PROMES WRF 

Reference Hourdin et 

al. (2006) 

Solman et 

al. (2007) 

Kjellström et 

al. (2005) 

Jacob (2001) Castro et al. 

(1993) 

http://www.m

mm.ucar.ed

u/wrf/users/d
ocs/arw_v2.

pdf 

Grid resolution 0.5° to 0.7° 50 km 50 km 0.5° 50 km 50 km 

Grid (lat*lon) 100x97 110x130 155x134 121x145 139x145 101x150 

Vertical levels 19 23 24 31 28 31 

Convection Emanuel 

(1993) 

Kain and 

Fritsch 

(1993) 

Kain and 

Fritsch 

(1993); 
Jones and 

Sanchez 
(2002) 

Tiedtke (1989), 

modifications 

after Nordeng 
(1994) 

Kain and 

Fritsch 

(1993) 

Grell and 

Devenyi 

(2002) 

Microphysics Bony and 

Emanuel 
(2001) 

Explicit 

moisture 
scheme 

(Hsie et al., 
1984) 

Rasch and 

Kristjansson 
(1998) 

 

Sundquist 

(1978) 

Hsie et al. 

(1984) 

Eta Ferrier 

(New ETA 
microphysic) 

scheme 

Radiation Morcrette 

(1991) 

Stephens 

(1978); 
Garand 

(1983) 

Savijärvi 

(1990); Sass 
et al. (1994); 

Räisänen et 
al. (2000) 

Morcrette et al. 

(1986); 
Giorgetta and 

Wild (1995) 

Stephens 

(1978); 
Garand 

(1983) 

Mlawer et al. 

(1997); 
Dudhia 

(1989) 

Land surface Krinner et al. 

(2005) 

Noah Land 

Surface 
Model (Chen 

and Dudhia 

2001) 

Samuelsson 

et al. (2006); 
Champeaux 

et al. (2005) 

Dümeniel and 

Todini (1992) 

Ducoudre et 

al. (1993) 

Noah land-

surface 
model (Chen 

and Dudhia, 

2001) 

Soil thermal 

layers 

11 3 5 5 7 4 

Soil moisture 

layers 

2 3 2 1 2 4 

 

Simulations were evaluated against both station data and high-resolution (0.5º) 

precipitation data compiled, respectively, by the CLARIS Work Package 3.2 and the Climatic 

Research Unit (CRU) of the University of East Anglia (New et al., 1999, 2000). The station 

dataset consists of daily values of precipitation for 39 Argentine weather stations north of 

39ºS.  

The results are presented for southern South America (50ºS, 20ºS, 85ºW, 35ºW) and for 

three smaller regions of particular interest for this project in central and north-eastern 
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Argentina that we refer to as North-Eastern Argentina (NEA, 24ºS, 29ºS, 55.5ºW, 61ºW), 

Southern Mesopotamia (SME, 29ºS, 34ºS, 56ºW, 62ºW) and Central-Eastern Argentina 

(CEA, 34ºS, 38.5ºS, 56ºW, 62.5ºW). These regions and the observational stations that are 

used for comparison with model results are presented in Figure 15. Note that all considered 

stations are located over relatively flat and low terrain.  

 

 

Figure 15: Regional domain showing the topographic field, the three subregions used to compute statistical 

measures and the location of meteorological stations used for comparison with models results. 
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VI.b.  Frequency distribution of the daily rainfall rates 

At this point an important question is the comparison of models’ results with daily station 

data and with the statistical downscaling technique. The targets are twofold: to explore the 

extent to which using a statistical downscaling technique improves the downscaling of the 

distribution of precipitation in intensity classes, and to explore how both techniques 

(dynamical and statistical downscaling) capture the heaviest rainfall days.  In order to answer 

the first issue, we made frequency diagrams of daily precipitation for each model, for the SDS 

and for the available observational data. For each individual model we count for each grid 

point in each sub-region (NEA, SME, CEA), the total number of days within each 

precipitation interval representing dry days or “drizzle” precipitation (0-1 mm/day) and light 

(1–5 mm/day), moderate (5–15 mm/day), strong (15–30 mm/day) and heavy (> 30 mm/day) 

precipitation days. Then we evaluate the mean frequency (in percentage) for the considered 

region during each analyzed period. The results are shown in figures 16-a, 16-b and 16-c, 

after averaging over models. The frequency distributions for the models are described by the 

median, the 25% and 75%, or quartile, values (half of the models lie between these two 

values) and the maximum and minimum values in the model ensemble. For the SDS and for 

the in situ data, the methodology is similar but we count for each station the number of days 

in each precipitation regime (we show the mean frequency for the considered region during 

each analyzed period).  
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Figure 16-a: Intermodel range of frequency of daily precipitation for the regions NEA, CME and CEA for 

January 1971.  For each grid point and each model, we count the total number of days within each precipitation 

interval. For each interval, the figure shows the minimum, maximum, median and 25 and 75% quartile values 

among the six models.  Blue lines represent observations from meteorological stations and the red lines represent 

the statistical downscaling results. 

 

 

 

 

 

Figure 16-b: As fig. 16-a, but for November 1986. 



  

     40
 

 

 

Figure 16-c: As fig. 16-a, but for July 1996. 

 

In general, the frequency distribution of daily rainfall rates according to the SDS follows 

the overall features of those observed over the three regions and during the three periods 

(Figs. 16-a, 16-b and 16-c). The dynamical models’ ensemble also seems to succeed in 

reproducing the overall observed frequency of daily precipitation for all regions and periods. 

At least, the observed frequency is often found within the min-max range of the ensemble and 

is at times found within the inter-quartile range. But we notice that most dynamical models 

tend to underestimate the frequency of dry days over NEA and overestimate the amount of 

light rainfall days in the three regions. As expected, the number of events in the higher 

intensity regimes tends to be under simulated by the models. During the first period (Fig. 16-

a), the SDS always gives a better estimate of the frequency of rainfall in each range of 

amounts than the models or the mean of the models. However, the differences between 

observations and SDS estimates in the frequency of heavy precipitation days are quite 

noticeable. During the second period (Fig. 16-b), it is striking in NEA that the SDS simulates 
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much better the observation probability of dry days. During the third period (Fig. 16-c), 

which was not characterized by heavy rainfalls, the differences between the dynamical and 

statistical results are low. Overall, and especially during the first and second periods, the 

statistical model overcomes the dynamical ensemble in representing all ranges of 

precipitation amounts. 

 

VI.c. Heavy rainfall comparison 

In order to provide a better quantification, Tables 6a-c compare the simulated heavy 

rainfall, as defined by the 1-day monthly maximum precipitation, with corresponding values 

from the statistical downscaling technique and with station observations. For each sub-region 

(NEA, CME, CEA), we consider the 1-day monthly maximum precipitation at each station, 

and then we found the minimum and maximum of these quantities. Each min-max interval 

represents the range of rainfall amounts corresponding to the heaviest rainfall day in the 

stations of each sub-region for the observations, the models and the statistical downscaling. 

 Given that the SDS simulation is actually an ensemble of 100 simulations, the 

methodology to compare SDS and individual dynamical models require some adjustments. 

Thus, the SDS results are computed in two different ways. For both ways, first the maximum 

value of each simulation of the ensemble at each station is computed. Second, in the first 

case, we compute the maximum and minimum values of these maxima at each station, while, 

in the second case, we compute the 90% and 10% percentiles of these maxima at each station. 

Finally, the minimum and maximum values among all stations are computed and displayed in 

Tables 6a-c. The second case (selection of 90% and 10% percentiles) is considered as the 

stochastic nature of the SDS ensemble implying that for a large number of simulations, the 

SDS will simulate all values of the precipitation distribution, although with a probability 

influenced by the weather patterns observed during the simulated period. Thus, as noted in 
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Tables 6a-c, the range of values computed in the first case always include the observations 

although these extreme values may have a very low probability of occurrence. When 

computing the 90% and 10% percentiles, the range of values is much similar to the 

observations although the maximum values are systematically larger than observations. 

Despite of this, given the objective of comparison between individual dynamical models, 

SDS and observations, it can be concluded that the SDS reproduces fairly well the 

observations. 

It is worth noting important remaining methodological issues related to comparing 

precipitation extremes from station observations with model grid-point values. In particular, 

care will have to be taken to assess the simulated precipitation extremes against station data 

because the level of variability in spatially averaged rainfall is not comparable to that of point 

rain-gauge observations. For example, a model that produces 24-hour precipitation events that 

are as large as found in station data would be somewhat suspect since local intensities 

measured by rain gauges should be greater than grid box mean intensities simulated by 

models (even in RCMs running at 50 km resolution).  

Table 6a: First period (January 1971). Range of 1-day monthly maximum precipitation for each sub-region 

(NEA, CME, CEA) as simulated by each model and from the statistical downscaling method (SDS) and station 

observations. SDS1 represents the results of the statistical model when computing first the maximum of each 

simulation of the ensemble at each station, second, the maximum and minimum of these maxima at each station 

and finally the minimum and maximum among all the stations. SDS2 represents the results of the statistical 

model when computing first the maximum of each simulation of the ensemble at each station, second, the 90% 

and 10% percentiles of these maxima at each station and finally the minimum and maximum among all the 

stations. Units: mm/d. 

 

JAN’71 NEA SME CEA 

 Min Max Min Max Min Max 

Observtions 43.6 67.4 59.9 151.6 11.3 128.1 

LMDZ 11.3 27.1 9.0 66.5 11.1 53.4 

MM5 14.8 55.2 3.9 28.2 4.2 32.6 

REMO 27.7 36.6 5.9 51.8 10.1 48.6 

RCA 21.1 44.5 16.4 46.8 12.0 29.3 

PROMES 36.0 49.7 34.0 84.9 6.25 48.1 

WRF 22.8 37.9 10.0 29.5 5.6 26.3 

SDS1 16.0 209.0 16.0 302.7 0.3 138.0 

SDS2 34.5 133.6 25.7 144.0 5.7 99.0 

 

 



  

     43
 

Table 6b: Same as Table 6a but for the second period (November 1986). 

NOV’86 NEA SME CEA 

 Min Max Min Max Min Max 

Observtions 36.4 119.8 39.6 105.2 7.5 78.0 

LMDZ 6.3 78.6 19.1 72.3 8.6 50.0 

MM5 63.8 127.7 9.7 82.8 3.9 32.0 

REMO 33.5 94.2 49.4 199.0 4.9 87.7 

RCA 17.1 37.2 16.9 66.6 6.9 42.2 

PROMES 34.9 53.9 10.1 52.1 9.8 30.7 

WRF 1.1 7.2 22.5 75.8 5.2 26.1 

SDS1 18.8 209.0 12.5 315.0 4.0 225.3 

SDS2 36.0 183.8 22.0 165.8 8.0 92.0 

 

Table 6c: Same as Table 6a, but for the third period (July 1996). 

JUL’96 NEA SME CEA 

 Min Max Min Max Min Max 

Observations 2.0 34.0 0.0 20.0 3.0 39.0 

LMDZ 1.4 6.4 2.0 23.8 3.7 25.7 

MM5 4.4 9.8 6.7 20.6 6.3 25.7 

REMO 1.3 4.2 3.7 67.5 2.7 61.6 

RCA 1.0 5.0 1.7 9.9 2.6 18.7 

PROMES 3.7 9.7 9.0 31.3 8.1 29.6 

WRF 1.3 6.0 8.3 28.1 3.9 19.1 

SDS1 0 89.5 0.0 66.4 0 95.1 

SDS2 0.5 73.0 0.0 31.0 0.0 74.0 

 

VII. Conclusion and perspectives 

Very few studies (e.g. Solman and Nuñez, 1999; Gutierrez et al., 2004) have developed 

and used statistical downscaling methods to predict daily precipitation at local scale (weather 

station) in South America. The present study is a contribution to fill this gap. We developed 

and calibrated a weather pattern clustering technique using the 1979-1999 ERA-40 

atmospheric reanalysis and a set of 39 quality-controlled weather stations in Argentina. The 

variety of climates observed in Argentina gives us the opportunity to develop a method valid 

either for the north of the country (tropical climate), for the south (mid- to high-latitude 

climate), for the west (near the Andes), for the east (Atlantic Ocean coast) and for the interior 

of the country.  

First, the method parameters were optimized based on the RSS: 
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(i) The clustering technique: A comparison between the k-means and the SOM (Self-

Organizing Map) clustering methods led to the conclusion that the SOM 

topological order reduced the possibility for the clusters to represent well all the 

data space (especially regions of low density) and therefore the generalization skill 

of the projection method. 

(ii) The number of clusters or average number of observations per cluster: The RSS 

was found to be optimum for an average number of observations per cluster larger 

than 39. For lower values, the generalization skill of the clustering analysis reduces 

significantly the RSS. For very large values, the same applies as too many weather 

states are mixed in a same cluster leading to a loss in predictive information. We 

decided to use 196 clusters equivalent to an average of 39 observations per cluster. 

(iii) The domain size: First (not shown), no significant sensitivity to the location was 

found in the computation of an optimum domain size to extract the atmospheric 

variables and thus to define the weather pattern. It was found that the optimum 

domain size was relatively small (~4° to 6° square around the station). Moreover, 

the same analysis reducing the atmospheric variables to dynamical only variables 

led to the conclusion that the optimum domain size depends on the atmospheric 

variables. Indeed, dynamical variables define an optimum transfer function if the 

domain size is larger (~10°) suggesting that our results with all variables together is 

strongly influenced by local- to synoptic-scale non-dynamical variables (moisture 

component). It also suggests that dynamical and non-dynamical variables should be 

defined onto different domains.  

(iv) Ensemble size: As any stochastic method, it is necessary to compute an ensemble 

of simulations. The RSS is found to converge rapidly to a maximum value when 

the number of simulations is larger than twice or thrice the average number of 



  

     45
 

observations per cluster. This result is coherent with the fact that, in such a case, 

for each day, the ensemble of simulated values does explore all the distribution of 

daily values in each cluster.  

With such an optimization of the statistical method, the skill was found to be relatively 

homogeneous all over the country despite some lower results near the Andes, probably due to 

a topography effect, which may affect the transfer function between ERA-40 reanalysis near-

Andes weather patterns and daily precipitation. The RSS for different criteria (wet/dry days, 

days with rainfall larger than the 25th, 50th or 75th percentiles of the rainfall amount CDF) is 

found to be relatively stable (around 0.72 for the entire database and for each criterion). More 

interestingly, while the method does not explicitly separate the seasonal cycle characteristics, 

the simulated monthly CDFs of wet spells, dry spells and rainfall amounts do compare fairly 

well to the observed CDFs. The major weakness of the method is its underestimation of either 

long dry or wet spells. Such a weakness is similar to other methods or to weather generators. 

Finally, the analysis of the observed and simulated time series allows concluding that the 

method has less skill in arid regions than in semi-arid or wet regions. Indeed, in arid regions, 

small errors in the simulation of the amplitude of rainfall events (defined as percentiles of the 

distribution) do strongly affect the statistical scores. In the opposite, in wetter regions, the 

regimes of precipitation (weak vs. large amplitude) and their variability (seasonal, 

interannual) are much better captured and simulated by the statistical method, furthermore, 

despite this actual performance we can see that the statistical model outperforms the 

dynamical model in representing all ranges of precipitation amounts, especially during the 

first and second periods showed is this study.  

The simulation of particular month-long cases characterized by extreme precipitation 

conditions in the southern La Plata Basin (January 1971, November 1986 and July 1996) 

showed that the statistical model outperforms the dynamical model in representing all ranges 
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of precipitation amounts, especially during the first and second periods, moreover, it 

outperforms rainfall frequency for all periods and range of precipitation. 

To conclude, the present method could be improved in the following ways. First, as we 

found that dynamical and non-dynamical variables relate to the local precipitation through 

weather patterns of different spatial sizes, an improvement would thus be to combine 

different spatial domains associated to the different types of variables (dynamical and non-

dynamical). Second, in this first version, during a simulation, a daily weather pattern is 

projected onto the clusters and only one “winning” cluster is considered (the one with the 

lowest distance). Then to simulate the precipitation, all observations belonging to the winning 

cluster are equally probable. The introduction of the weather pattern and/or precipitation 

history in conditioning the probability of each precipitation observation may improve our 

simulations, at least the simulations of long dry and wet spells. Last, it could be possible to 

relax the “winning” cluster condition by defining a probability function based on the distance 

to all the clusters. This “relaxation” complementary to the second possible improvement, may 

allow to better represent the probability of specific rainfall events and, in particular, extreme 

events. Such improvements will be tested in the framework of the CLARIS LPB Project 

(2008-2012) funded by the 7th Framework programme of the European Commission.  
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Appendix A: Atmospheric variables description 

Millibars(mb) 

Is a common measure of the air pressure, which is the weight of the column of air above a 

designated area. The average sea level pressure is 1010 mb. 

 

U, V, W wind speed component 

Wind speed is a term applied when talking about the movement of air from one place to 

the next. Technically, wind speed ws is given by, 

2 222
WVUws ++=  

Where U, V, and W are zonal, meridional, and vertical components of wind velocity. 

The terms zonal and meridional are used to describe directions on the globe. Zonal means 

"along a latitude circle" or "in the east-west direction"; while meridional means "along a 

meridian" or "in the north-south direction". For vector fields (such as wind speed), the zonal 

component (or x-coordinate) is denoted as U, while the meridional component (or y-

coordinate) is denoted as V. 

 

Mean sea level pressure (msl) 

Mean sea level pressure is the pressure at sea level or (when measured at a given elevation 

on land) the station pressure reduced to sea level assuming an isothermal layer at the station 

temperature. The reduction to sea level means that the normal range of fluctuations in 

pressure is the same for everyone. The pressures which are considered high pressure or low 

pressure do not depend on geographical location. This makes isobars on weather map 

meaningful and useful tools. 

 

Relative Humidity  

Relative humidity (r) is the ratio of the amount of water vapor actually in the air compared 

to the maximum amount of water vapor the air can hold at that particular temperature and 

pressure  

 

Specific Humidity 

It is the ratio of the weight of water vapor in a specified volume to weight of the air in that 

same volume. 
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Total Colum Water (tcw) 

It is a measure of the total amount of water in a column of air from ground pressure level 

to zero pressure level. 

 

 

Geopotential height 

Is a vertical coordinate referenced to Earth's mean sea level — an adjustment to geometric 

height (elevation above mean sea level) using the variation of gravity with latitude and 

elevation. Thus it can be considered a "gravity-adjusted height." One usually speaks of the 

geopotential height of a certain pressure level, which would correspond to the geopotential 

height necessary to reach the given pressure. At an elevation of h, the geopotential is defined 

as, =
h

dzzg
0

),(  where g( ,z) is the acceleration due to gravity,  is latitude, and z is the 

geometric elevation. Thus, it is the gravitational potential energy per unit mass at that level. 

The geopotential height is, 
0

g
Z g =  , where g0 is the standard gravity at mean sea level. 

 

.
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