
Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

A study of the Combination Problem:
dealing with multiple theories in SMT

solving

Tesis presentada para optar al t́ıtulo de
Licenciada en Ciencias de la Computación

Paula Chocrón

Director: Carlos Gustavo López Pombo

Buenos Aires, 2014

Un estudio del problema de Combinación: solu-

ciones a SMT módulo varias teoŕıas

Hoy en d́ıa, las aplicaciones de software son ubicuas en nuestras vidas, y sus fallas
pueden, en muchos casos, producir enormes pérdidas. Esto hace esencial el de-
sarrollo de métodos de análisis de sofware. Para esto, usualmente se asume que
se cuenta con una especificación formal del sistema a analizar; entonces es posible
verificar si cierta propiedad de interés se deduce de la especificación. La lógica es
frecuentemente utilizada como sistema formal para la especificación y verificación,
lo cual vuelve un problema crucial el decidir si una propiedad es satisfacible módulo
determinadas teoŕıas.

Un problema de satisfaccibilidad se expresa frecuentemente en una combinación de
varias teoŕıas, y un enfoque natural consiste en resolverlo combinando los proced-
imientos de decisión con los que se cuenta para cada una de las teoŕıas. En esta tesis
estudiamos el problema de combinación de procedimientos para teoŕıas de primer or-
den sobre signaturas que comparten śımbolos. Presentamos dos enfoques diferentes
para resolver este problema. En el primero, extendemos el método de combinación
clásico para teoŕıas sobre signaturas disjuntas de Nelson y Oppen al caso en el cual
sólo se comparten predicados unarios. Teoŕıas relevantes se pueden analizar desde
este marco, como por ejemplo la clase de teoŕıas de Löwenheim. El segundo enfoque
estudia un caso particular, en el cual el fragmento de signatura compartida resulta
de definir funciones que conectan elementos de dos teoŕıas sobre signaturas disjun-
tas. Un ejemplo clásico es el de las listas extendidas con una función de longitud
que las relaciona con la aritmética. Presentamos un procedimiento para resolver
este caso, y mostramos cómo se puede adaptarlo para considerar distintas clases de
teoŕıas y funciones.

Este trabajo fue parcialmente desarrollado durante una pasant́ıa en LORIA-INRIA,
bajo la supevisión de Pascal Fontaine y Christophe Ringeissen, a quienes agradece-
mos especialmente.

Palabras claves: Satisfactibilidad Módulo Teoŕıas, Análisis de Software, Modu-
laridad, Combinación de procedimientos de decisión.

i

A study of the Combination Problem: dealing

with multiple theories in SMT solving

Nowadays software artifacts are ubiquitous in our lives, and failures may, in many
cases, produce enormous losses, making essential the development of methods to
perform analysis over software. In order to do this, usually it is assumed that a
formal specification of the system is available. Then, it is possible to check whether
a certain property of interest follows from the specification. Logics have often been
used as formal systems suitable for the specification and verification of software
artifacts, making the problem of deciding if a property is satisfiable modulo some
background theory crucial in verification.

A satisfiability problem is very often expressed in a combination of theories, and a
natural approach consists in solving the problem by combining the decision proce-
dures available for the component theories. In this thesis, we study the problem of
combining decision procedures for first-order theories over signatures sharing sym-
bols. We present two different approaches. In the first one, we extend a classical
combination method by Nelson and Oppen for theories over disjoint signatures to
the case when only unary predicates are shared. Some well-know classes of theories
fit in our framework, for example the Löwenheim class. The secod approach focuses
on an specific case, in which the non-disjointness arises from defining functions con-
necting terms in two theories with disjoint signatures. A classical example is the
one of lists endowed with a lenght function that relates them with arithmetic. We
present a procedure to solve this case, and discuss how it should be adapted to
different classes of theories and functions.

This work was partially developed during an internship at LORIA-INRIA, under
the supervision of Pascal Fontaine and Christophe Ringeissen, to whom we thank
specially.

Keywords: Satisfiability Modulo Theories, Sofware Analysis, Modularity, Combi-
nation of Decision procedures.

ii

Contents

1 Introduction 1

2 Preliminaries 6

2.1 First-order Logic . 6

2.1.1 Many-sorted first-order logic 10

2.2 Absolutely free data structures . 11

2.2.1 Bridging Functions on Absolutely Free Data Structures . . . 12

2.3 Some decidable first order theories 13

2.4 Combination of Satisfiability Procedures 14

2.4.1 Disjoint Combination: The Nelson-Oppen procedure 16

3 Non-Disjointness via Unary Predicates 19

3.1 Gentle Theories Sharing Unary Predicates 20

3.2 Classes of gentle theories: The Löwenheim Class and the BSR Class 22

3.2.1 The Löwenheim Class . 22

3.2.2 The Bernays-Schönfinkel-Ramsey Class 24

3.3 Example: Non-Disjoint Combination of Order and Sets 24

3.4 Discussion . 25

4 Non-Disjointness via Bridging Functions 27

4.1 A procedure towards a disjoint problem 30

4.2 Bridging functions on absolutely-free data structures 32

4.3 Restricting to standard interpretations 36

4.3.1 Stable functions . 37

4.3.2 Non-stable functions . 41

iii

4.4 Applicability of this approach - A discussion 45

5 Conclusions and future work 48

1 Introduction

Nowadays, software artefacts are ubiquitous in our lives being an essential part
of home appliances, cars, mobile phones, and even in more critical activities like
aeronautics and health sciences. In this context software failures may produce
enormous losses, either economical or, in the worst case, in human lives, and the
satisfaction of certain standards of quality ensuring that certain errors do not occur
are a requirement when producing software for these critical activities. Software
analysis is an area of software engineering concerned with the application of rigorous
techniques in order to prove the absence of these errors in software pieces. To
perform analysis over software, usually it is assumed that a formal description of
the behaviour of the system, i.e. a specification, is available. Then, it is possible to
check whether a certain property of interest follows from the specification.

Logics have often been used as formal systems suitable for the specification of soft-
ware artefacts. Moreover, logical specifications, being formal, might contribute
towards the application of sound verification techniques. Several formalisms have
been developed to cope with these aspects and most of them are effective in de-
scribing some particular characteristics of software systems. Techniques applied to
these formal characterisations of software artefacts are usually referred to as formal
methods.

Formal methods are usually divided into two categories: heavyweight and lightweight.
These names refer to the amount of mathematical expertise needed during the pro-
cess of proving a given property. For many specification languages a lower degree
of involvement equates to a higher degree of automatization and, consequently,
to less certainty regarding the satisfaction of the property. Thus lightweight for-
mal methods, like Alloy [26], cannot usually be entirely trusted when dealing with
critical models. An alternative is the use of heavyweight formal methods, as for
instance semi-automatic theorem provers [35, 14, 33]. Theorem provers also exhibit
limitations, for instance, they require an expertise from the user that many times
discourages their use.

As we mentioned before, both lightweight and heavyweight formal methods rely
on the formal description of a system and the desired properties. The concepts of
satisfiability and validity of a formula are the basic elements regarding reasoning
in a logic. These ideas can already be found in Aristotle’s categorical propositions,

1

CHAPTER 1. INTRODUCTION 2

and the relationships between these concepts is explained through the square of op-
position. The interested reader is pointed to [19] for a detailed historical exposition
of the satisfiability problem.

The problem of determining if a formula is satisfiable can be expressed in different
ways and has different solutions depending on the logic. In the case of propositional
logic, the satisfiability problem has been largely studied with several implications in
mathematics and computer science. Named SAT it was proved to be decidable and
the first known example of an NP-complete problem [13]. There exist several, and
different, implementations of SAT-solvers [29, 24], software systems devoted to solve
instances of this problem. In first-order predicate logic, the general satisfiability
problem is undecidable and it was proved by Church and Turing in response to the
Entscheidungsproblem as stated by David Hilbert in 1928 [12]. Consequently, there
is no hope in finding an algorithm to determine whether a first-order sentence is
satisfiable or not. However, there exist decidable fragments of first-order predicate
logic. A typical example is C2, the fragment of first-order predicate logic with
two variables and the counting quantifiers ∃≤n and ∃≥n (“there exists at least
n” and “there exists at most n”, respectively). There exist several examples of
decidable first-order theories; this means that in some cases there exists a decision
procedure for testing satisfiability of a given formula depending on the axioms
considered in the theory.

Luckily for most applications we are not interested in deciding general satisfiability
of a first-order formula. More commonly, the problem reduces to find if a formula
is satisfiable under certain assumptions. For example, we usually do not want
to consider any possible interpretation of the symbols 0 and < that makes the
“x < 0” satisfiable; we only regard on an specific interpretation, for example linear
arithmetic.

The problem of determining if there exists an interpretation that satisfies a given
quantifier-free formula ϕ modulo some first order theories is called Satisfiability
Modulo Theories [6], and it is the base of the verification tools known as SMT-
solvers [7]. SMT-solvers are essentially constraint solvers used to determine the
validity of a formula under a certain set of axioms written in a logical language.
Thus, we can think of them as the tool support required to answer the question:
does the property ϕ hold for the system specified by the set of axioms Γ (this is
usually denoted as Γ |= ϕ).

The key aspect in the development of an SMT-solver is to consider a reasonable set
of decidable theories. There are many interesting theories meeting this condition
for which specialized reasoning methods provide a decision procedure. Examples
are: (1) The theory of equality (2) The theory of linear arithmetic (3) The theory
of linear arithmetic over reals (4) Recursively defined data structures. A deeper
explanation of each of these theories is given in Chapter 2.

The fact that these methods are theory-specific means that they fail to decide

CHAPTER 1. INTRODUCTION 3

satisfiability under combinations of theories. This introduces what is called the
Combination problem:

Given n theories T1, . . . Tn, is it possible to combine the available
decision procedures for them into a single decision procedure for the
satisfiability of a formula in the union theory T1 ∪ · · · ∪ Tn?

This problem is not simple; in fact, the combination of two decidable theories is
not necessarily decidable, (see [8]), so having procedures for some theories does
not mean having one for the combination. The need for decision procedures for
combinations of theories is especially critical in software verification applications.
Since the foundational work of Parnas [36, 37], practitioners build software artefacts
(and particularly software specifications) modularly, as it produces better quality
software description by profiting re-usability of modules and better separation of
concerns. A direct consequence of this is that one of the key problems to be solved
in SMT-solving is how to modularly apply ad-hoc decision procedures to partial
models in a way that conclusions drawn for them can be promoted to the theory
resulting from their composition.

The problem of combining decision procedures was addressed for the first time more
than 30 years ago by Nelson and Oppen in [30] and Shostak in [43]. In that work,
Nelson and Oppen proposed a general method for combining decision procedures
that is still used by actual SMT-solvers.

It was in [43] that Shostak proposed a more restricted method based on congruence
closure for combining the quantifier-free theory of equality with certain kind of
theories. His method is also used in several verification systems like ICS [17] and
PVS [35].

These two methods, specially Nelson and Oppen’s, are currently considered state-of-
the-art in combining decision procedures. However, they both make strong assump-
tions on the theories being combined. In its initial presentation, the Nelson-Oppen
combination method requires the theories in the combination to be: (1) signature-
disjoint and (2) stably infinite (to guarantee the existence of an infinite model).
These are strong limitations, and many recent advances aim to go beyond disjoint-
ness.

In this work we focus on combining theories over non-disjoint signatures. This
problem is much harder and evidence leads to suppose it is not possible to obtain
general decidability results for non-disjoint theories. However, it is possible to
combine decision procedures for theories whose signatures do not need to be disjoint
into a semi-decision procedure for the unsatisfiability of formulae modulo the union
of the theories. With the rewrite-based approach initiated in [4], the problem
reduces to proving the termination of this calculus in particular (combinations of)
theories. A general criteria has been proposed to get modular termination results

CHAPTER 1. INTRODUCTION 4

for superposition, when T1 and T2 are either disjoint [3] or non-disjoint [41].
As another example of a general approach to the problem, in [23], Ghilardi proposed
a very general model-theoretic combination framework to obtain a combination
method à la Nelson-Oppen when T1 and T2 are two compatible extensions of the
same shared theory T0 (satisfying some properties). This framework relies on an
application of the Robinson Joint Consistency Theorem (roughly speaking, the
union of theories is consistent if the intersection is complete). In this framework,
several requirements have to be satisfied but useful examples of shared theories T0

have been successfully studied, e.g. some significant fragments of arithmetic [23,
31, 32].

Due to the difficulty of generalization, and specially of finding concrete cases of
application that fulfil the requirements for general model-theoretic frameworks, the
research in obtaining concrete decision procedures for unions of theories has been
mostly focused in solving specific cases, for which the problem is easier. We here
explore two different approaches.

Overview of the document

The logical framework used in this document is first-order logic with equality. In
Section 4 we will need to introduce sorts, so we will use many-sorted first-order
logic as well. Definitions of these two systems and notations are given in Chapter 2.
In Section 2.3, we provide some examples of decidable first order theories that we
will use frequently, and we briefly discuss the methods their decision procedures
are based on. To conclude, in Section 2.4 we present the combination problem
in Satisfiability Modulo Theories. We prove the Combination Theorem, which is
essential for the rest of the sections, and the classical Nelson-Oppen’s procedure for
combining disjoint and stably infinite theories. In this chapter, we also introduce
some of the structures we will use often.

Chapters 3 and 4 contain the contributions of the thesis. We present two approaches
for solving particular cases of non-disjoint combination. In Chapter 3 we introduce
a framework to solve combination that extends Nelson and Oppen’s procedure in
the case when the signatures of the theories to be combined share only a finite
set of unary predicates. In this case, the cardinality constrains the theories must
satisfy in order to be combinable are more complicated than for disjoint signatures.
We extend the ideas for the disjoint case [18] to introduce a class of theories, called
P-gentle, that fulfil these requirements. This framework also extends beyond stably
infiniteness. In Section 3.2, we show that a major class of theories, the Löwenheim
class, is P-gentle, as well as the Bernays-Schönfinkel-Ramsey (BSR) class. Most of
this section are part of an article that is submitted to the conference IJCAR’14.

In Chapter 4, we present a different approach. There we focus on a special case
in which the non-disjointness arises from defining bridging functions between two

CHAPTER 1. INTRODUCTION 5

structures that belong to disjoint theories, say T1 and T2. Our aim is to reduce
the satisfiability problem in the theory that extends T1 ∪T2 with these functions to
the disjoint combination problem in T1 and T2. This framework is specially useful
when defining functions over data structures, for example the length over lists, a
frequent need in software specifications. In Section 4.1, we propose a procedure
that generalizes existent ones. In the following sections we show cases, analysing
the instantiation of the method for different classes of theories. In Section 4.4, we
discuss issues about applicability.

Finally, in Chapter 5, we draw some conclusions and discuss future work, both
improvements of what was done and possible lines for further research.

2 Preliminaries

We introduce here the logical framework and notations used throughout this work.
We assume familiarity with First-Order Logic, as we only fix notation and terminol-
ogy here. The interested reader is pointed to [16]. As an extension, we introduce
many-sorted First-Order Logic.

We later present some other definitions we will use frequently. Basic notions about
Abstract Data Structures and their axiomatization in First-Order Logic is assumed.
In the last section, we give a brief survey of methods for solving the disjoint Com-
bination Problem, namely Nelson-Oppen’s procedure. In this last section we also
include some definitions that are useful to approach this kind of problems.

2.1 First-order Logic

We introduce basic concepts of first-order logic with equality (FOL= for short). We
define the main syntactic and semantic concepts and fix the notation we will use.

Definition 1. A first-order signature is a tuple Σ = 〈C,F, P 〉, where:

- C is a countable set of constant symbols.

- F is a countably infinite set of function symbols. An arity r is associated to
each function symbol.

- P is a countably infinite set of predicate symbols. An arity r is associated to
each function symbol.

Definition 2. Given a signature Σ, Σ-terms are:

- the variables x ∈ V ,

- the constants c ∈ C, and

- f(t1, . . . tr), for each function symbol f ∈ F , if t1, . . . , tr are terms.

6

CHAPTER 2. PRELIMINARIES 7

Definition 3. Given a signature Σ, a Σ-atom is:

- an expression of the form p(t1, . . . , tr), where p ∈ P and t1, . . . , tr are terms
respectively or

- t = t′, for each pair t, t′ of terms is an atomic formula.

A flat atom is one that does not have chained applications of functions in the terms.

Σ-literals are Σ-atoms or expressions of the form ¬A, where A is a Σ-atom. A set
of Σ-literals is called a Σ-constraint.

Definition 4. Let V be an enumerable set of variables. The set of Σ-formulas over
V is defined recursively as follows:

- every Σ-atom is a Σ-formula;

- for each Σ-formula ψ, ¬ψ is a Σ-formula;

- for each Σ-formula ψ and each variable x ∈ V , (∀x)ψ, (∃x)ψ are Σ-formulas;

- for each Σ-formulas ψ1 and ψ2, (ψ1 ? ψ2) is a Σ-formula if ? ∈ {∧,∨,→}.

Whenever no ambiguity arises, we will assume an arbitrary but fixed set V of
variable symbols. Also, a pair of parentheses can be omitted when there is no
ambiguity. When Σ is irrelevant or clear from the context, we will simply omit it,
and refer to terms, atoms, literals, constraints and formulas.

Among all formulas, some forms are of special interest: a clause is a disjunction (∨)
of literals, and a conjunctive normal form is a conjunction (∧) of clauses. A dis-
junctive normal form is a disjunction (∨) of conjunctions (∧). Many proof methods
assume formulas are in some of these forms.

The set of variables of a formula (or term) ψ is the subset Var(ψ) of V used in
the formula (term). The set of free variables of a formula ψ is Free(ψ) defined
inductively on the structure of the formula:

- the free variables of an atom ψ are Var(ψ)

- the free variables of a Boolean combination of formulas is the union of the
free variables of the formulas in the combination,

- the free variables for ∃x.ψ and ∀x.ψ contains all free variables in ψ but x.

A formula is quantifier-free if it does not contain the symbols ∃ and ∀. A formula
(or term) ψ is ground if it does not contain any variable. Ground formulas are
always quantifier-free. A formula ψ is closed if it does not contain free variables.

CHAPTER 2. PRELIMINARIES 8

A formula is universal if it is of the form ∀x1 . . . ∀xn.ϕ where ϕ is quantifier-free.
It is always possible to transform a given formula into an equisatisfiable universal
formula, using Skolemization. We refer to [5] for Skolemization.

Two signatures are disjoint if they share no elements.

The following definitions concern the semantics of First-Order Logic.

Definition 5. An interpretation I for a first-order signature Σ = 〈C,F, P 〉 with
domain D over a set of variables V provides:

- an element I[x] ∈ D for every variable x ∈ V

- an element I[c] ∈ D for every constant c ∈ C

- a function I[f] : Dr → D for every function symbol f ∈ F of arity r ,

- a predicate I[p] ⊆ Dr for every predicate symbol p ∈ P of arity r,

The interpretation Ix1/d1,...,xn/dn for pairwise different variables x1, . . . , xn stands
for the interpretation that agrees with I, except that it interprets each variable xi
as di.

An interpretation I assigns a value I[t] in D to each term t. Similarly, I assigns
a truth-value I[ψ] to each formula ψ. An interpretation I is a model of formula ψ
(noted I |= ψ) if I[ψ] evaluates to true, and it is a model of the set of formulas T
(noted I |= T) if it is a model of every formula in T .

Definition 6. A formula ϕ is

- valid, if it evaluates to true under all interpretations;

- satisfiable, if it evaluates to true under some interpretation;

- unsatisfiable, if it evaluates to false under all interpretations.

A set {ϕ1, . . . , ϕn} of formulae is valid, satisfiable, unsatisfiable if so is the conjunc-
tion ϕ ∧ · · · ∧ ϕn. We say that two formulae ϕ and ψ are

- equivalent, if ϕ and ψ have the same truth-value under all interpretations;

- equisatisfiable, if ϕ is satisfiable if and only if so is ψ.

Let Ω be a signature and let I be an Ω-interpretation. For a subset Σ of Ω, we
denote with IΣ the Σ-interpretation obtained by restricting I to interpret only the
symbols in Σ.

Given an interpretation I on domain D, the restriction I ′ of I on D′ ⊆ D is the
unique interpretation on D′ such that I and I ′ interpret predicates, functions and
variables the same way on D′. An extension I ′ of I is an interpretation on a D′

domain including D such that I ′ restricted to D is exactly I.

CHAPTER 2. PRELIMINARIES 9

Definition 7. Let Σ be a signature, and let A and B be Σ-interpretations with
domains DA and DB. A map h : DA → DB is an isomorphism of A into B if the
following conditions hold

- h is bijective;

- h(A[x]) = B[x] for each variable x ∈ V ;

- h(A[f](a1, . . . , an)) = B[f](h(a1), . . . , h(an)),
for each n-ary function symbol f ∈ F and a1, . . . , an ∈ DA;

- (a1, . . . , an) ∈ A[p] if and only if (h(a1), . . . , h(an)) ∈ B[p], for each n-ary
predicate symbol p ∈ P and a1, . . . , an ∈ DA.

We write A ' B to indicate that there exists an isomorphism of A into B.

We finally introduce some definitions regarding theories.

Definition 8. Let Σ be a signature. A Σ-theory is any set of closed Σ-formulae.
Given a Σ-theory T , a T -interpretation is a Σ-interpretation I such that all Σ-
formulae in T evaluate to true under I.

Definition 9. Given a Σ-theory T , a Σ-formula ϕ is

- T -valid, if it evaluates to true under all T -interpretations;

- T -satisfiable, if it evaluates to true under some T -interpretation (this is the
same as T ∪ {ϕ} being satisfiable);

- T -unsatisfiable, if it evaluates to false under all T -interpretations.

T -validity, T -satisfiability, and T -unsatisfiability, T -equivalence and T -equisatisfiability
are straightforward extensions of the previous definitions.

A decision problem is a question in some formal system with a yes-or-no answer.
A problem of this kind is said to be decidable if there exists a procedure such that
for any input, it yields an answer in a finite number of computational steps. (see
Section 2.3 for examples).

Given a theory T , we can define several types of decision problems. In particular:

- the validity problem for T : decide, for each formula ϕ of the language, whether
or not ϕ is T -valid;

- the satisfiability problem for T : decide, for each formula ϕ of the language,
whether or not ϕ is T -satisfiable;

CHAPTER 2. PRELIMINARIES 10

The quantifier-free validity problem and the quantifier-free satisfiability problem
are equivalent, but restricting ϕ to be quantifier-free.

The cardinality of an interpretation is the cardinality of its domain D. In this work,
we will consider cardinalities in order to analyse if there exists an isomorphism
between two interpretations, and particularly between models of two theories. The
following version of the classical Löwenheim-Skolem theorem will be useful for this.
Details about this theorem and about cardinalities of interpretations can be found
in [10]:

Theorem 1. Let Σ be a signature and T a Σ-theory. If T has an infinite model,
then T has models of all infinite cardinalities.

This means that, if two theories have infinite models, they will for sure have models
of equal cardinality. If a theory has only finite models, then we must find two with
the same number of elements in order for an isomorphism to be possible.

2.1.1 Many-sorted first-order logic

In a computer science context, it is natural to think in term of different kind of
variables, usually known as types. In order to support this, we need to use a variant
of FOL=: many-sorted first-order logic. Contrary to standard first-order signatures,
in many-sorted first order ones the arguments of function and predicate symbols
may have different sorts, as well as variables. Many-sorted first-order logic can be
translated easily to unsorted first-order logic, and many results for unsorted first-
order logic can be transferred to many-sorted logic. We here give the basic ideas
on how to introduce sorts. For further detail on this kind of logic, we refer to [16].

Definition 10. A many-sorted first-order signature is a tuple Σ = 〈S,C, F, P 〉,
where:

- S is a countable non-empty set of sorts (or types);

- C is a countable set of constant symbols. A sort is associated to each constant.

- F is a countably infinite set of function symbols. An arity r and a sort
τ1, . . . , τr, τ , where r ≥ 1 and τ1 . . . τr, τ ∈ S, are associated to each func-
tion symbol.

- P is a countably infinite set of predicate symbols. An arity r and a sort
τ1, . . . , τn, where r ≥ 1 and τ1 . . . τn ∈ S, are associated to each predicate
symbol.

In many sorted logics, we are provided with an equality symbol and quantifiers
for each sort τ ∈ S, in addition to the classical operators ∧,∨,→,¬, and the
parenthesis.

CHAPTER 2. PRELIMINARIES 11

Terms are defined as in unsorted first-order logic, but considering the sorts. A vari-
able has its own sort, while a term built by applying a function f of sort τ1, . . . , τn, τ
to terms of sorts τ1, . . . , τn has sort τ . To extend the definition of atoms for this
kind of logic, we only need to take care of applying predicates to terms of the corre-
sponding sorts. Formulae are defined in the same way, and all the other definitions
are trivially extendible.

We also need to redefine the semantic part:

Definition 11. An interpretation I for a many-sorted first-order signature Σ, over
the set of variables

⋃
τ∈S Vτ provides:

- a non empty domain Dτ for each τ ∈ S,

- a function I[f] : Dτ1 × · · · ×Dτr → Dτ for every function symbol f of arity r
and sort τ1, . . . , τr, τ

- a predicate I[p] ⊆ Dτ1 ,× · · ·×, Dτr for every predicate symbol p of arity r and
sort τ1, . . . , τr,

- an element I[x] ∈ Dτ for every variable x ∈ Vτ .

- an element I[c] ∈ Dτ for every constant c of sort τ .

We let D =
⋃
τ∈S Dτ

All other definitions are similar to the ones for unsorted FOL.

2.2 Absolutely free data structures

Recursively defined data structures are ubiquitous in computer science, as they
abstract the idea of a container. This kind of structures are built with functions
called constructors, that adds elements of some sort to build a new structure from
another one. In this section we formally define a class of theories of recursively
defined data structures that satisfy that an element can be built in only one way
from the constructors. To this aim, we add a set of axioms representing injectivity,
acyclicity and disjointness of constructors. Similar definitions can be found in [45].
From now on, we will refer to Absolutely Free Data Structures as AFDS.

Let ΣS be a many-sorted signature with at least two sorts, struct and elem, and
the following elements:

- A certain number function symbols called ConsΣS
, or colloquially, construc-

tors. This can be of two kinds:

CHAPTER 2. PRELIMINARIES 12

* constants of sort struct. We will refer to these constructors as atomic
constructors.

* n-ary functions symbols that take as input (at least) a number of ele-
ments of sort struct and a number of sort elem and return an element
of sort struct.

- A certain number of function symbols, called selectors, which are axiomatized
by pattern matching over the constructors, having in the right side of the
definition only constructors and variables (they are not recursive).

- A certain number of function symbols, called defined functions, with arity
f : struct → struct, axiomatized by pattern matching over the constructors,
and defined recursively.

The ΣS-theory Tstruct contains the axiomatization of all the defined functions, defin-
ing them over ConsΣS

. We only consider constructors that are injective, acyclic,
and disjoint, by adding to Tstruct the theory AbsFreeΣS

, where

AbsFreeΣS
=

⋃
c∈ConsΣS

((Inj c) ∪ (Acycc)) ∪
⋃

c,d∈ConsΣS
,c 6=d

Disjoint(c, d), with

(Inj c) (∀x1, . . . , xn, y1, . . . , yn)

(
c (x1, . . . , xn) = c (y1, . . . , yn)→

n∧
i=1

xi = yi

)
(Acycc) (∀x1, . . . , xn, a) (c (x1, . . . , xn) 6= a) if a occurs in some xi(
Disjointc,d

)
(∀x1, . . . , xn, y1, . . . , yn) (c (x1, . . . , xn) 6= d (y1, . . . , yn))

Let us illustrate this theory with an example to which we will come back frequently:

TL: The theory of lists.

The signature of TL is the set of function symbols {nil : list, car : list→ elem, cdr :
list→ list, cons : elem× list→ list}. The axioms of TL are:

- car(cons(x, y)) = x

- cdr(cons(x, y)) = y

2.2.1 Bridging Functions on Absolutely Free Data Structures

In the following, we describe a way of relating an AFDS with elements of another
kind, with a class of recursively defined bridging functions.

Consider an AFDS defined over ΣS by the theory AFDSΣS
and, on the other hand,

a sort t, different or not from the ones in ΣS , and a theory TT over a signature ΣT

CHAPTER 2. PRELIMINARIES 13

with the sort t. We consider an extension of the disjoint combination of AFDSΣS

and TT .
Let Σ = ΣS ∪ ΣT ∪ {f}, and Recf a Σ-theory defining a function f over the data
structure that returns elements of sort t. If x1, . . . , xn are struct variables, and
y1, . . . , ym are t-variables, the recursive definition of the functions is as follows:

Recf =

{
f(k) = fk
f(c(x1, . . . , xn, y1, . . . , ym)) = gc,f (f(x1), . . . , f(xn), y1, . . . , ym)

for each k constant in ConsΣS
and c functions of arity n+m in ConsΣS

, and gc,f

is a ΣT -function.

An example extending the Lists theory

We first let the sort t be Z+
0 , the theory of linear arithmetic over the non-negative

integers. We now define TLS , a theory of lists endowed with length. The many-
sorted signature of TLS is ΣL ∪ ΣZ , plus the function symbol l : lists → Z+

0 . The
theory TLS is the union of TL and Z+

0 , plus Recl:

- l(nil) = 0

- l(cons(a, y)) = l(y) + 1

2.3 Some decidable first order theories

A decidable theory T is a theory such that the T -satisfiability problem for sets of
literals in the language of T is decidable, this is, an algorithm can be written in
order to let a computer decide if a finite set of literals is T -satisfiable. We here show
some examples of decidable theories and explain briefly the existing methods.

- Equality with uninterpreted functions (TE): it is the empty theory with no
axioms, that is, TE = ∅. Of course, due to the undecidability of first-order
logic, the validity problem for TE is undecidable for quantifier free formulae.
However, Ackermann [1] proved that the quantifier-free validity problem for
TE is decidable. There exist efficient decision procedures based on congruence
closure.

- The theory of linear arithmetic (Z): Defined over the signature ΣZ = 〈+,−,≤〉
extended with a constant symbol cn for each integer n, it is the set of closed
formulas in Z that are true in the interpretation A whose domain A is the set
Z = {0,±1,±2, . . . } of integers, and interpreting the symbols in Z according
to their standard meaning over Z. This theory was proven decidable by Pres-
burger in 1929, using quantifier elimination [38]. This technique consists in

CHAPTER 2. PRELIMINARIES 14

converting a closed formula ϕ into a Z -equivalent closed formula ψ without
quantifiers, which can be effectively computed as it is a boolean combination
of ground atoms. However, if we add multiplication, we obtain an undecidable
theory [12]. 1

- The theory of linear arithmetic over reals (R): Defined over the same ΣZ ,
plus a constant cr for each rational number r ∈ Q. The theory is defined
analogously as for TZ , but for the meaning of symbols over R. The validity
problem for R can also be proved to be decidable using quantifier elimination
[20]. In this case, if we add the multiplication symbol × to ΣR , then the
validity problem for the resulting theory is decidable. This result was proved
by Tarski [48] using quantifier elimination.

- Recursively defined data structures. Recursively defined data structures are
defined over signatures which include function symbols called constructors,
and some other ones, for which there are axioms that define them. An example
of recursively defined data structures is the Absolutely Free Data Structures
presented in Section 2.2, with lists as a more specific example. There exist
general decision procedures for this kind of theories. For efficiency, theory-
specific methods are often used. To give an example, the problem of deciding
the satisfiability of conjunctions of literals under the theory of lists is solvable
in linear time [34].

- Löwenheim theories: finite sets of closed formulas in a relational language
containing only unary predicates, and no functions except constants). This
class is also known as first-order relational monadic logic. The decidability of
this first-order fragment was established by Leopold Löwenheim in 1915 [27].

2.4 Combination of Satisfiability Procedures

Until now, we have always defined decision problems under just one theory. How-
ever, in practice we often need to check satisfiability of a formula under more than
one theory. This is especially common when verifying software: specifications are
built using many different structures, each of them having its own theory.

Checking satisfiability under T1 and T2 would be as easy as checking it under T1 ∪
T2 if we had a general method, but unfortunately we do not. Recalling that we
use theory-specific methods to decide satisfiability, the question is whether we can
combine them to get a decision procedure for the union. If we know ϕ is satisfiable
under T1 and under T2, can we conclude it is for the union? Not in the general case.

For example, we could be interested in checking

ϕ : x− y 6= 0 ∧ x = f(a) ∧ y = f(b) ∧ a = b

1Notice that this makes Z+
0 also decidable.

CHAPTER 2. PRELIMINARIES 15

modulo Z ∪ TE . We can divide ϕ in two formulas, each of them corresponding to
one theory’s language, and check satisfiability separately. In this case, we have

- ϕZ : x− y 6= 0. It is satisfiable in Z, taking x 6= y

- ϕTE : x = f(a) ∧ y = f(b) ∧ a = b. It is satisfiable in the theory of equality,
taking x = y.

But clearly they are not satisfiable in the union of theories, as they require opposite
truth values for x = y.

The question is how we can deal with modularity in decision procedures. Having a
decision procedure P1 for a theory T1, and another one, P2, for a theory T2, when
and how can we obtain a decision procedure P for T1 ∪ T2? The following theorem
provides an answer to this question.

Theorem 2. (Combination Theorem)
Let Σ1 and Σ2 be signatures. Let Γi be a set of Σi-formulae and Vi = Var(Γi) for
i = 1, 2. Then Γ1 ∪ Γ2 is satisfiable if and only if there exists a Σ1-interpretation
A over V1 satisfying Γ1 and a Σ2-interpretation B over V2 satisfying Γ2 such that
AΣ1∩Σ2,V1∩V2 ' BΣ1∩Σ2,V1∩V2.

The proof of this theorem uses the isomorphism to build a model of Γ1 ∪ Γ2 from
one of each theory separately. Details can be found in [28].

Theorem 2 is useful to analyse the cases we are interested in. As the approach is
modular, we can suppose we have two theories, and solve the case for multiple ones
by applying the theorem repeatedly.

To explain how we can use this theorem to solve a satisfiability problem modulo a
number of theories, first let us introduce a definition.

Definition 12. Let Σ =
⋃n
i=1 Σi be a union of signatures. A pure literal, formula,

or term is one that has only symbols from one signature Σi, and variables.

We can also define purity for literals respecting sorts, for many-sorted signatures.
Let Σ be a many-sorted first-order signature with sorts S = {τ1, . . . , τn}. Then
a Σ-literal is pure if it contains only elements from one sort, that is, if it is an
equalities of τi-terms or variables, or a predicate applied to τi-terms or variables.
If a literal (or anything else) is not pure, it is called mixed. A set of literals is pure
if all the literals in it are pure, and from the same sort.

Notice that we can always translate a mixed set of literals to sets of pure literals
maintaining satisfiability. We introduce the procedure for separating sorts, of course
the one for signatures is equivalent considering each signature of a different sort.
The idea is to introduce fresh variables whenever a literal has terms of different

CHAPTER 2. PRELIMINARIES 16

sorts, in order to replace one of the terms. We later add an equality between the
new variable and the replaced term, which is also a pure literal. As an example,
consider t1 is a τ1-term, t2 is a τ2-term, and f is a τ1, τ2 function symbol. If we find
the literal f(t1) = t2, we can change it for f(x) = t2 (which fits in ϕτ2) and add
x = t1 (which fits in ϕτ1). A detailed explanation of a procedure like this (but for
an specific case) can be found in [51]. We will refer to this step as purification.

With this procedure in hand, we see that if we want to check satisfiability of ϕ under
T1 ∪ T2, we can always purify ϕ, dividing it into an equisatisfiable conjunction of
two pure formula: the Σ1-formula ϕ1, and the Σ2-formula ϕ2. Then we can use the
Combination Theorem applied to {ϕ1}∪T1 and {ϕ2}∪T2, provided the conditions
are met. This will depend on what the reduct of the models look like; that is, what
is shared by the signatures of both theories.

2.4.1 Disjoint Combination: The Nelson-Oppen procedure

When the signatures of the theories we want to combine are disjoint, that is, they
share only the equality and finitely many variables, we only need to prove there
exist models such that A∅,V1∩V2 ' B∅,V1∩V2 , in the nomenclature of Theorem 2.
The following theorem sets the conditions for this, but first let us introduce a
definition.

Definition 13. An arrangement Arr for a set of variable symbols S is a maximal
satisfiable set of equalities and inequalities a = b or a 6= b, with a, b ∈ S

Theorem 3. Let T1 and T2 be theories over the disjoint signatures Σ1 and Σ2

respectively. Let Li (i = 1, 2) be a set of literals in Σi, and call V the set of shared
variables between these sets. Then L1 ∪L2 is T1 ∪ T2-satisfiable if and only if there
exist an arrangement Arr of V, a cardinality k, and a Ti-model Mi of Arr∪Li with
cardinality k for i = 1, 2.

Proof. We prove the if and the only if direction.

- If direction: Let Mi be a model with domain Mi of Arr ∪ Li under Ti for
i = 1, 2. ThenMi is a model of Ti∪Li. As the signatures are disjoint, in order
to apply Theorem 2 we need to prove there exists an isomorphism between
MV1 and MV2 . We can define an isomorphism between the elements in V as
both models satisfy the arrangement Arr, and it can be extended to the entire
domains as they have the same cardinality. As the models with isomorphic
reducts exist, Theorem 2 can be used to obtain that, T1 ∪ L1 ∪ T2 ∪ L2 is
satisfiable, that is L1 ∪ L2 is T1 ∪ T2-satisfiable.

- Only if direction: If M is a T1 ∪ T2-model of L1 ∪ L2, then we can build
an arrangement Arr of V just by reproducing the equivalence relation in M.
Then Mi =MΣi is a Ti-model of Li ∪Arr for i = 1, 2.

CHAPTER 2. PRELIMINARIES 17

Following this idea, we can present the classical procedure developed by Nelson and
Oppen to solve the satisfiability problem for combinations of theories with disjoint
signatures. Before, we define a class of theories for which the cardinality assumption
of Theorem 3 holds.

Definition 14. A theory T is stably infinite if, whenever ϕ is T -satisfiable, ϕ is
satisfiable in an infinite model of T .

Nelson-Oppen procedure Let Ti be a stably infinite Σi-theory for i = 1, 2, and
Σ1 ∩ Σ2 = ∅. Let Σ = Σ1 ∪ Σ2, and let ϕ be a quantifier-free Σ-formula. The
following procedure checks satisfiability of ϕ under T1 ∪ T2.

1. Purify input by dividing ϕ into ϕ1 and ϕ2

2. Guess an arrangement Arr between the shared variables in ϕ1 and ϕ2.

3. Check satisfiability of ϕ1 ∪Arr modulo T1 and of ϕ2 ∪Arr modulo T2

- If they are both satisfiable, return satisfiable

- Otherwise return unsatisfiable

It is worth including a remark about the second step of the algorithm. We will
frequently use guessings of arrangements of predicates over a set of variables. This
means that if there exists a valuation of the predicate for each combination of
variables that makes the algorithm return sat, the procedure will find it. This
method can always be used safely if the we make finite guessings. In this case it is
guaranteed to terminate, as it is equivalent to trying all possible combinations.

Proof. On one side, if we can find a modelM of T1∪T2∪{ϕ}, then we consider the
equivalence relation for the shared variables in ϕ1 and ϕ2 to build an arrangement
Arr. Now, M must model T1 ∪ ϕ1 ∪Arr and T2 ∪ {ϕ2} ∪Arr as well.

For the other direction, Theorem 3 can be applied; if the procedure returns satisfiable,
then the second condition of the theorem holds, as there exist two models for the
theories agreeing in an equivalence relation for the shared variables. In addition, as
T1 and T2 are stably infinite, T1 ∪ {ϕ1} and T1 ∪ {ϕ2} both have infinite models.
Recalling the Löwenheim–Skolem theorem, we obtain that they are satisfiable in an
infinite model of any cardinality, so the first condition holds as well.

CHAPTER 2. PRELIMINARIES 18

Limitations Nelson-Oppen’s method imposes two conditions:

1. the theories have to be stably infinite

2. the signatures of both theories have to be disjoint

These are strong limitations, and many recent advances aim to go beyond disjoint-
ness and stable infiniteness.

In this work, we analyse specially how to deal with combinations of theories in
signatures sharing some symbols. If there are shared function or predicate sym-
bols, Nelson-Oppen procedure is not sufficient to decide if the conditions to apply
the Combination Theorem hold. In the following sections we discuss two different
approaches to this problem.

3 Non-Disjointness via Unary Predicates

As a first approach we will analyse how the Nelson-Oppen method can be extended
to consider theories where only certain symbols are shared. The Nelson-Oppen
combination method requires the theories in the combination to be (1) signature-
disjoint and (2) stably infinite. The efforts to go beyond these limitations should
not be opposed, as in both cases we know, from the Combination Theorem, that
we need to find out if there exists an isomorphism between the restrictions of two
models of the theories to the shared signature.

In the particular case of disjoint theories, the isomorphism can be obtained if the
domains of the models have the same cardinality, for instance infinite; several classes
of kind theories (shiny [49], polite [40], gentle [18]) have been introduced to enforce
a (same) domain cardinality on both sides of the combination. For extensions of
Nelson-Oppen to non-disjoint cases, e.g. in [42, 53], cardinality constraints also
arise. In this chapter, we focus on non-disjoint combinations for which the isomor-
phism can be simply constructed by satisfying some cardinality constraints.

The idea is to introduce a class of P-gentle theories, to combine theories sharing
a finite set of unary predicates symbols P. The notion of P-gentle theory extends
the one introduced for the disjoint case [18], where it was initially presented as a
tool to combine non-stably infinite disjoint theories.

Roughly speaking, a P-gentle theory has nice cardinality properties not only for
domains of models but also more locally for all Venn regions of shared unary pred-
icates. We introduce this notion and present a combination method for unions of
P-gentle theories sharing P in Section 3.1. The proposed method can also be used
to combine a P-gentle theory with another arbitrary theory for which we assume
the decidability of satisfiability problems with cardinality constraints (entailed by
the P-gentle theory). This is a natural extension of previous works on combining
non-stably infinite theories, in the straight line of combination methods à la Nelson-
Oppen. In Section 3.2, we show that all the theories in the Löwenheim class are
P-gentle. Our combination framework is a way to combine theories with sets. The
relation between (monadic) logic and sets is as old as logic itself, and this relation is
particularly clear for instance considering Aristotle Syllogisms. It is however useful
to again study monadic logic, and more particularly the Löwenheim class, specially
with the recent advances in combinations with non-disjoint and non-stably infinite

19

CHAPTER 3. NON-DISJOINTNESS VIA UNARY PREDICATES 20

theories. Theories in the BSR class are also P-gentle. For a detailed proof of this,
refer to the article where we expose the contributions in this chapter [11]. A sim-
ple example is given in Section 3.3, and in Section 3.4 we discuss limitations and
possibilities of extending the approach for theories sharing other symbols.

3.1 Gentle Theories Sharing Unary Predicates

First of all, we will introduce some useful definitions. Consider an interpretation
I on a language with unary predicates p1, . . . , pn and some elements D in the
domain of this interpretation. Every element d ∈ D belongs to a Venn region1

v(d) = v1 . . . vn ∈ {>,⊥}n where vi = I[pi](d). We denote by Dv ⊆ D the set of
elements of D in the Venn region v. Notice also that, for a language with n unary
predicates, there are 2n Venn regions.

Given an interpretation I, we will also denote by Dc the subset of elements in D
associated to constants by I. Naturally, Dc

v denotes the set of elements associated
to constants that are in the Venn region v.

From now on, we assume that P is a non-empty finite set of unary predicates. A
P-union of two theories T1 and T2 is a union sharing only P from the signature, in
addition to a set of variables and the equality.

Definition 15. A P-arrangement A for finite sets of constant symbols S and unary
predicates P is a maximal satisfiable set of equalities and inequalities a = b or a 6= b
and literals p(a) or ¬p(a), with a, b ∈ S, p ∈ P.

There are only a finite number of P-arrangements for given sets S and P.

Given a theory T whose signature includes P and a model of T on domain D,
the P-cardinality ~κ is the tuple of cardinalities of all Venn regions of P (κv will
denote the cardinality of the Venn region v). The following theorem, which is an
specialization of general combination lemmas in Section 2.4, states the completeness
of the combination procedure for P-unions of theories:

Theorem 4. Consider a P-union of theories T1 and T2 whose respective signatures
Σ1 and Σ2 share a finite set S of constants, and let L1 and L2 be sets of literals,
respectively in Σ1 and Σ2. Then L1 ∪ L2 is T1 ∪ T2-satisfiable if and only if there
exist a P-arrangement A for S and P, and a Ti-model Mi of A∪Li with the same
P-cardinality for i = 1, 2.

The spectrum of a theory T is the set of P-cardinalities of its models. The above
theorem can thus be restated as:

1Other works refer to this notion as the set of elements with a same 1-table, 1-type, or color.

CHAPTER 3. NON-DISJOINTNESS VIA UNARY PREDICATES 21

Corollary 1. The T1 ∪ T2-satisfiability problem for sets of literals is decidable if,
for any sets of literals L1 and L2 it is possible to decide if the intersection of the
spectrums of T1 ∪ A ∪ L1 and of T2 ∪ A ∪ L2 is non-empty.

To characterize the spectrum of the decidable classes considered in this chapter, we
introduce the notion of cardinality constraint. A finite cardinality constraint is sim-
ply a P-cardinality with only finite cardinalities. An infinite cardinality constraint
is given by a P-cardinality ~κ with only finite cardinalities and a non-empty set of
Venn regions V , and stands for all the P-cardinalities ~κ′ such that κ′v ≥ κv if v ∈ V ,
and κ′v = κv otherwise. The spectrum of a finite set of cardinality constraints is
the union of all P-cardinalities represented by each cardinality constraint. It is now
easy to define the class of theories we are interested in:

Definition 16. A theory T is P-gentle if for every set L of literals in the signature
of T , the spectrum of T ∪ L is the spectrum of a computable set of cardinality
constraints.

Notice that a P-gentle theory is (by definition) decidable. To relate the above notion
with the gentleness in the disjoint case [18], observe that if p is a unary predicate
symbol not occurring in the signature of the theory T , then T ∪ {(∀x)p(x)} is
{p}-gentle if and only if T is gentle.

If a theory is P-gentle, then it is P ′-gentle for any non-empty subset P ′ of P. It
is thus interesting to have P-gentleness for the largest possible P. Hence, when
P is not explicitly given for a theory, we assume that P denotes the set of unary
predicates symbols occurring in its signature. In the following sections we show
that the Löwenheim theories and the BSR theories are P-gentle.

The union of two P-gentle theories is decidable, as a corollary of the following
modularity result:

Theorem 5. The class of P-gentle theories is closed under P-union.

Proof. If we consider the P-union of two P-gentle theories with respective spec-
trums S1 and S2, then we can build some finite set of cardinality constraints whose
spectrum is S1 ∩ S2

Some very useful theories are not P-gentle, but in practical cases they can be
combined with P-gentle theories. To define more precisely the class of theories
T ′ that can be combined with a P-gentle one, let us introduce the T ′-satisfiability
problem with cardinality constraints: given a formula and a finite set of cardinality
constraints, the problem amounts to check whether the formula is satisfiable in a
model of T whose P-cardinality is in the spectrum of the cardinality constraints.
As a direct consequence of Corollary 1, T ∪ T ′-satisfiability is decidable if T is
P-gentle and T ′-satisfiability with cardinality constraints is decidable. This latter
requirement is satisfied by the theories we can usually find in SMT solvers. This

CHAPTER 3. NON-DISJOINTNESS VIA UNARY PREDICATES 22

gives the theoretical ground to add to the SMT solvers any number of P-gentle
theories sharing unary predicates.

It follows that the non-disjoint union (sharing unary predicates) of BSR and Löwen-
heim theories, with one decidable theory accepting further constraints of the form
(∀x)((¬)p1(x) ∧ · · · ∧ (¬)pn(x)) ⇒ (x = a1 ∨ · · · ∨ x = am) is decidable. For in-
stance, the guarded fragment with equality accepts such further constraints and
the superposition calculus provides a decision procedure [22]. Thus any theory in
the guarded fragment can be combined with Löwenheim and BSR theories sharing
unary predicates.

In the disjoint case, any decidable theory expressed as a finite set of first-order
axioms can be combined with a gentle theory [18]. Here this is not the case anymore.
Indeed, consider the theory ψ = ϕ ∨ ∃x p(x) where p does not occur in ϕ; any set
of literals is satisfiable in the theory ψ if and only if it is satisfiable in the theory of
equality. If the satisfiability problem of literals in the theory ϕ is undecidable, the
P-union of ψ and the Löwenheim theory ∀x¬p(x) will also be undecidable.

3.2 Classes of gentle theories: The Löwenheim Class
and the BSR Class

3.2.1 The Löwenheim Class

A Löwenheim theory is a finite set of closed formulas in a relational language con-
taining only unary predicates (and no functions except constants). This class is
also known as first-order relational monadic logic. Usually one distinguishes the
Löwenheim class with and without equality. The Löwenheim class has the finite
model property (and is thus decidable) even with equality. Full monadic logic
without equality, i.e. the class of finite theories over a signature containing symbols
(predicates and functions) of arity at most 1, also has the finite model property.
Considering monadic logic with equality, the class of finite theories over a signature
containing only unary predicates and just two unary functions is already undecid-
able. With only one unary function, however, the class remains decidable [9], but
does not have the finite model property anymore. Since the spectrum for this last
class is significantly more complicated [25] than for the Löwenheim class we will
here only focus on the Löwenheim class with equality (only classes with equality
are relevant in our context), that is, without functions. More can be found about
monadic first-order logic in [9, 15]. In particular, a weaker version of Corollary 2
(given below) can be found in [15].

Previously [18, 2], combining theories with non-stably infinite theories took advan-
tage of “pumping” lemmas, allowing — for many decidable fragments — to build
models of arbitrary large cardinalities. The following theorem is such a pumping
lemma, but it considers the cardinalities of the Venn regions and not only the global

CHAPTER 3. NON-DISJOINTNESS VIA UNARY PREDICATES 23

cardinality.

Lemma 1. Assume T is a Löwenheim theory with equality. Let q be the number of
variables in T . If there exists a model M on domain D with |Dv \Dc| ≥ q, then,
for each cardinality q′ ≥ q, there is a model extension or restriction M′ of M on
domain D′ such that |D′v \Dc| = q′ and D′v′ = Dv′ for all v′ 6= v.

Proof. Two interpretations I (on domain D) and I ′ (on domain D′) for a formula
ψ are similar if

- |(Dv ∩D′v) \Dc| ≥ q;

- Dv′ = D′v′ for each Venn region v′ distinct from v;

- I[a] = I ′[a] for each constant in ψ;

- I[x] = I ′[x] for each variable free in ψ.

Notice that M and M′ above are similar. We prove that, given a Löwenheim
formula ψ (or a set of formulas), two similar interpretations for ψ give the same
truth value to ψ and to each sub-formula of ψ. This will suffice to prove the lemma.

The proof is by induction on the structure of the (sub-)formula ψ. It is obvious
if ψ is atomic, since similar interpretations assign the same value to variables and
constants. If ψ is ¬ϕ1, ϕ1 ∨ϕ2, ϕ1 ∧ϕ2 or ϕ1 ⇒ ϕ2, the result holds if it also holds
for ϕ1 and ϕ2.

Assume I makes true the formula ψ = ∃xϕ(x). Then there exists some d ∈ D such
that Ix/d is a model of ϕ(x). If d ∈ D′, then I ′x/d is similar to Ix/d and, by the

induction hypothesis, it is a model of ϕ(x); I ′ is thus a model of ψ. If d /∈ D′, then
d ∈ Dv and |(Dv ∩D′v) \Dc| ≥ q. Furthermore, since the whole formula contains at
most q variables, ϕ(x) contains at most q−1 free variables besides x. Let x1, . . . , xm
be those variables. There exists some d′ ∈ (Dv ∩D′v) \Dc such that d′ 6= I[xi] for
all i ∈ {1, . . . ,m}. By structural induction, it is easy to show that Ix/d and Ix/d′
give the same truth value to ϕ(x). Furthermore Ix/d′ and I ′x/d′ are similar. I ′ is

thus a model of ψ. To summarize, if I is a model of ψ, I ′ is also a model of ψ. By
symmetry, if I ′ is a model of ψ, I is also a model of ψ. The proof for formulas of
the form ∀xϕ(x) is analogous.

The above lemma has the following consequence on the acceptable cardinalities for
the models of a Löwenheim theory:

Corollary 2. Assume T is a Löwenheim theory with equality with n distinct unary
predicates. Let r and q be respectively the number of constants and variables in T .
If T has a model of some cardinality κ strictly larger than r+ 2n max(0, q−1), then
T has models of each cardinality equal or larger than min(κ, r + q 2n).

CHAPTER 3. NON-DISJOINTNESS VIA UNARY PREDICATES 24

Proof. If a model with such a cardinality exists, then there are Venn regions v such
that |Dv \ Dc| ≥ q. Then the number of elements in these Venn regions can be
increased to any arbitrary larger cardinality, thanks to the previous Lemma. If
κ > r + q 2n, it means some Venn regions v are such that |Dv \ Dc| > q, and by
eliminating elements in such Venn regions (using again the previous Lemma), it is
possible to obtain a model of cardinality r + q 2n.

To conclude, Lemma 2 implies the decidability of Löwenheim theories, but also
directly entails the P-gentleness:

Theorem 6. Löwenheim theories on a signature with unary predicates in P are
P-gentle.

3.2.2 The Bernays-Schönfinkel-Ramsey Class

A Bernays-Schönfinkel-Ramsey (BSR for short) theory is a finite set of formulas
of the form ∃∗∀∗ϕ, where ϕ is a first-order formula which is function-free (but
constants are allowed) and quantifier-free. Bernays and Schönfinkel first proved
the decidability of this class without equality; Ramsey later proved that it remains
decidable with equality. More can be found about BSR theories in [9]. Ramsey also
gave some (less known) results about the spectrum of BSR theories [39].

BSR theories can be proved to be P-gentle. The idea of the proof is to show that,
for each Venn region, there is a computable number k such that if T has a model
of cardinality greater or equal to k, then it has a model of any cardinality larger
than k. This was already proved for the general cardinality of BSR theories in
[39, 18]. To show it for each Venn region, it is necessary to define very technical
instrumental notions and to prove a non-trivial extension of Ramsey’s Theorem.
This contribution can be found in detail in [11].

3.3 Example: Non-Disjoint Combination of Order and
Sets

To illustrate the kind of theories that can be handled in our framework, consider a
very simple yet informative example with a BSR theory defining an ordering < and
augmented with clauses connecting the ordering < and the sets p and q (we do not
distinguish sets and their related predicates):

T1 =


(∀x) ¬(x < x)
(∀x, y) (x < y ∧ y < z)⇒ x < z

(∀x, y) (p(x) ∧ ¬p(y))⇒ x < y
(∀x, y) (q(x) ∧ ¬q(y))⇒ x < y

CHAPTER 3. NON-DISJOINTNESS VIA UNARY PREDICATES 25

and a Löwenheim theory

T2 = {∀x. (p(x) ∧ q(x)) ≡ x = c}

stating that the intersection of the sets p and q is the singleton {c}.
The first theory imposes either p∩ q or p∩ q to be empty (we will assume that the
domain is non-empty and simplify the cardinality constraints accordingly). The
second theory obviously imposes the cardinality of p ∩ q to be exactly 1. Notice
that both theories are actually P-gentle. The following table collects the cardinality
constraints:

T1 T2

p ∩ q ≥ 0 ≥ 0 ≥ 0
p ∩ q 0 ≥ 0 ≥ 0
p ∩ q ≥ 0 0 ≥ 0
p ∩ q ≥ 0 ≥ 0 1

Assume now that we have two literals p(a), q(b) (these can again be considered as
a further non-disjoint theory). Since either p ∩ q or p ∩ q is empty, either a or b
belongs to the intersection p ∩ q. Hence, the set

T1 ∪ T2 ∪ {p(a), q(b), a 6= c, b 6= c}

is unsatisfiable.

As a final comment, there could be theories using directly the Venn cardinalities as
integer variables. Consider again T1 ∪ T2, one could imagine a further constraint in
another theory including linear arithmetic on integers that would state |p| > 1 and
|q| > 1. This would of course be unsatisfiable with T1 ∪ T2.

3.4 Discussion

This approach to solving non-disjointness needs to take advantage of the properties
of the shared symbols in order to find a way to decide if the theories are combin-
able or not, regarding cardinality constraints. Therefore, allowed shared symbols
are very restricted. Our combination method is limited to shared unary predicates.
Unfortunately, the theoretical limitations are strong for a framework sharing predi-
cates with larger arities: for instance even the guarded fragment with two variables
and transitivity constraints is undecidable [21], although the guarded fragment (or
first-order logic with two variables) is decidable, and transitivity constraints can
be expressed in BSR. When considering a general shared binary predicate, the
restriction in the theories is that there exist a model for each of them in which
the “graphs” induced by the binary relation are isomorphic. This is much more
difficult to decide, and it seems not easy to find a general way of expressing the

CHAPTER 3. NON-DISJOINTNESS VIA UNARY PREDICATES 26

conditions that makes it true. For some specific topologies of relations, however,
the problem is easier. For example, the problem of combining theories with only
a shared dense order has been successfully solved [23, 28]. In that specific case,
there is again an implicit infiniteness argument that could be possibly expressed as
a form of extended gentleness, to reduce the isomorphism construction problem into
solving some appropriate extension of cardinality constraints. A clearly challenging
problem that deserves being explored is to identify an appropriate extended notion
of gentleness for some particular binary predicates.

When the shared signature includes function symbols, the outlook is even less
promising. New fundamental problems appear, since it is not possible to perform
a finite guess in the involved variables anymore, as we can apply a function an
arbitrary number of times. Therefore we may have to exchange infinitely many
literals between the theories to find if an isomorphism is possible. Briefly, we need
to check if the shared possible terms match. Suppose we have a shared unary func-
tion f and a variable x. It could happen that f(x) = x, or that f(f(x)) = x,
and so on, meaning that the arrangements are not finite anymore. This is exactly
why a Nelson-Oppen-like method for sharing functions is not guaranteed to always
terminate.

4 Non-Disjointness via Bridging Functions

Obtaining a general Nelson-Oppen-like combination method for the non-disjoint
case seems to be at least complicated. Some examples exist, as we mention in the
introduction, but they make use of very theoretical notions to define the framework,
and it becomes difficult to find examples of applications. For this reason, it is
worth exploring specific classes of non-disjoint combinations of theories that appear
frequently in software specification, and for which it would be useful to have a
procedure. In this section we analyse one of these cases.

We will study non-disjointness when it arises from connecting elements in one theory
with elements in another one via some functions, that we will call bridging functions.
Let T1 and T2 be two disjoint theories over many-sorted signatures with some sorts
τ1 and τ2 respectively, for which we have decision procedures. Suppose we define
some function from elements of sort τ1 to elements of sort τ2; now we have a theory
T , built from T1, T2 and the definition of the function. The question is if we
can reuse somehow the available decision procedures for T1 and T2 to build one
for T . This is a very commonly seen case, specially when bridging functions are
defined from a data structure to some other one, which is very usual in software
specifications. In this case, defining bridging functions is a natural way of extending
the data structure and relating it to other sorts. In this section we will use many-
sorted first-order logic, as we will allow the signatures to have other sorts besides
the ones that are connected by the function.

A new Combination Problem Let Σs and Σt be many-sorted first-order logic
signatures containing the sorts source and target respectively. Consider a Σs-
theory Ts and a Σt-theory Tt, which are disjoint.

Let us define a function f : source → target relating elements from both sorts.
This function is defined with some axioms, which are in the signature Σ = Σs ∪
Σt ∪ {f}. The theory containing the axioms that define f will be called Tf . Now
consider the Σ-theory T = Ts ∪ Tf ∪ Tt, that extends the previous two disjoint
theories with the definition of this new function.

To illustrate this bridging function idea, recall the functions over absolutely free
data structures that we presented in Section 2.2.1, and specifically the example of
length defined over lists. In this case, TL is the source theory and Z+

0 the target

27

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 28

one, and the two axioms defining the length conform Tf . TLS would be T , the
theory that results from the union of these three theories.

Suppose we have decision procedures for Ts and Tt respectively, and we want to
check satisfiability of a Σ-formula ϕ under T . We can express this as checking
satisfiability under Ts ∪ Tf , the source theory with the function definitions, and Tt
simultaneously.

If we call the shared variables V, the Combination Theorem states that the con-
junction will be satisfiable if we can find a model A of Ts∪Tf ∪ϕ and a model B of
Tt such that their reducts in the shared signature are isomorphic. Notice that the
signature of Ts ∪ Tf ∪ ϕ is Σ = Σs ∪ Σt ∪ {f}, and the signature of Tt is Σt. So we
need:

A(Σs∪Σt∪{f})∩Σt,V ' B(Σs∪{f})∩Σt,V

which is clearly

AΣt,Vtarget ' BΣt,Vtarget

since we know Σs and Σt are disjoint. In the variables, the shared part can be only
of sort target.

Since B is already a Σt-model, this is actually AΣt,Vtarget ' B Notice that this means
that it is enough to find a model of Tt that is also a model of the part of Ts∪Tf∪{ϕ}
modelled by AΣt,Vtarget . If we could isolate it this part, we could solve the problem
easily.

Our goal will be to “extract” the Σt part of Ts ∪ Tf ∪ϕ. Then, we will check satis-
fiability for this part under Tt; if it is satisfiable, then it clearly has an isomorphic
model to one of Tt. Our aim in the following sections will be to analyse when we
can divide Ts ∪ Tf ∪ {ϕ} into a Σs set of literals and a Σt set of literals preserving
global satisfiability.

A very simple approach: just replace. The difficulty of this problem depends
on many factors, for example, how f is defined. In some cases there exists a very
simple solution: as we are dealing with first order logic, we know f must appear
in ϕ applied to some term, so we can just find each occurrence of f and replace it
with the definition applied to that term.

This replacement procedure towards a disjoint problem is possible when the func-
tion f is defined over a variable in Ts. That is, Tf looks like f(x) = c(x), for
some expression c ∈ Σt. Sadly, this approach will not work for more complicated
definitions: we cannot simply replace when considering functions defined by cases,
or over some specific terms.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 29

We introduce a procedure that proves itself useful in this case. The idea is to
eliminate the function symbols, expressing all the information in them using just
Σs ∪ Σt. If we can do that maintaining satisfiability, we have reduced our problem
to a disjoint one, and any of the methods we know for this problem can be used.

Structure of this chapter In Section 4.1 we present a general approach to trans-
late a satisfiability problem under two theories connected by a bridging function into
the problems for those two theories. This procedure is incomplete, as each specific
class of theories will need its own adaptations, but it is useful as a general reference.
For this reason, correctness is not proven here.

In Section 4.2 we provide an adaptation of the procedure for the classes of theories
of Absolutely Free Data Structures that we introduced in 2.2 with a surjective
bridging function as we defined it in 2.2.1. Zarba presented procedures for checking
satisfiability of lists with length using just the procedure for arithmetic [52], as well
as for multisets with multiplicity [50]. These procedures were aimed to relax the
stably-infiniteness assumption in Nelson-Oppen procedure, as it is possible to use
it with, for example, multisets with a finite set of elements. We generalize these
approaches to consider general AFDSs. We use the AFDSs framework as is done in
[44], where Sofronie-Stokkermans uses a locality property to show that the definition
of the function connecting the theories can be eliminated. We show explicitly the
procedure to do this, which could be implemented in an SMT solver.

In his work, Zarba deletes completely the theory of the data structure, as he con-
siders it as just a container. In our approach we maintain it, making it possible
to extend it to richer theories where, for example, we define functions between the
data structure elements.

In Section 4.3.1, we consider the problem of restricting the models we are using to
the standard interpretation of the data structures. Sofronie-Stokkermans already
considers this problem, but her solution is very restrictive, as it discards the prob-
lematic cases in which cardinality problems might arise from not having enough
elements to build structures that must be different. We face exactly that problem
and find two solutions for different cases. In the first one, we consider a class of
bridging functions called stable, for which the problem is solved easily. We present
the extension of the procedure and the proof of correctness. This last one is made
for the theory of lists with length, and we discuss how to extend it. The second case
is for functions which are not stable. Here we present an algorithm which finds the
problematic cases and decides if they are or not satisfiable. Again, it is presented
for lists, and we clearly identify the theories for which we could extend it. This
algorithm simplifies notably the approach to solve cardinality problems presented
by [54].

In [46], the authors present a procedure to solve cardinality problems that is also
based on a procedure for reducing bridging functions, and that works in the same

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 30

classes of theories as ours. It is worth saying that we developed this section without
having notice of that article. In the conclusions, the authors suggest relations
between their work and the one in [44] should be studied; Section 4.3.1 can be seen
as an approach to that study.

Finally, in Section 4.4, we discuss the possibilities of application of our approach.
We face two practical problems; one is to consider non-surjective functions, and the
second one is how it could be applied modularly, which would be a very interesting
and desirable property for these kind of procedures.

4.1 A procedure towards a disjoint problem

In this section we describe a general combination procedure for two theories con-
nected via a bridging function. This procedure is aimed for cases when the function
is not defined over simple variables but in more complex ways. We here present the
general idea of the method; some parts will change with different classes of theories
and functions to ensure correctness.

Consider two disjoint theories Ts and Tt over the disjoint signatures Σs and Σt

containing the sorts source and target respectively, and a third theory T built
from them and the axioms defining a bridging function f : source→ target, over
Σ = Σs∪Σt∪{f}. We describe a decision procedure for checking the T -satisfiability
of a quantifier-free Σ-formula ϕ. We can restrict ourselves without loss of generality
to consider just conjunctions of literals. Indeed, as we can always translate a formula
into its disjunctive normal form, and then solve the satisfiability problem for each
disjunction separately.

First phase: Variable Abstraction and Partition The first phase of our
decision procedure takes as input a set of mixed literals ϕ , and converts it into
pure sets of flat literals. The output of the variable abstraction phase is a separated
equisatisfiable formula ϕs ∪ ϕt ∪ ϕf such that:

- ϕs contains only flat and pure Σs-literals. If Σs has many sorts τ1, . . . , τn,
we will have one ϕτi for each one (one of which will be source), with pure τi
literals, and ϕs =

⋃n
i=1 ϕτi .

- ϕt contains only flat Σt-literals. The same division by sorts holds here.

- ϕf contains only literals of the form u = f(x)

Note that flat literals can be obtained with a procedure similar to purification. The
idea in this step is to have a separate variable for each element of sort source that
is named in ϕ. That is, if we have the literal f(f(x)) = y, we will want to be able to
name f(f(x)) and f(x) separately, so we will replace it with f(x) = z and f(z) = y.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 31

We denote by Vτ the collection of τ -variables that either occur in ϕ or are generated
in this phase. For each source-variable x, generate a new t-variable fx.

Second phase: Decomposition In this phase, we build two sets of literals
Γsource and Γtarget.

We need to add in Γsource the information of equivalence between elements of sort
source. To do this, non-deterministically guess an arrangement Arr in Vsource, and
add it to Γsource.

In Γtarget, add the collection of literals obtained by replacing all literals in ϕs∪ϕf∪Γs
with the following formulae for x, y ∈ Vsource:

1. x = y → fx = fy

2. u = f(x)→ u = fx

3. for other literals, it will be defined later

This is the basic content of Γsource and Γtarget. For different classes of theories, it
may be necessary to add some other literals, which we will analyse in particular,
for the procedure to be correct.

Third phase: Check The check consists in:

1. checking ϕs ∪ Γsource for Ts-satisfiability

2. checking ϕt ∪ Γtarget for Tt-satisfiability

If both sets are satisfiable, ϕ is T -satisfiable.

The following step is to prove that the procedure is correct. The proof will of
course vary with each particular case, as Γsource and Γtarget will be different. Our
goal will be, in all cases, to prove that the algorithm returns sat if and only if ϕ is
T -satisfiable.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 32

4.2 Bridging functions on absolutely-free data struc-
tures

Our procedure will be specially useful when bridging functions are not defined over
variables, but over more complex constructions. A typical and extremely common
example of this is recursive definitions. This is the natural way of defining functions
over recursively defined data structures. We will focus in this specific case on
bridging functions, which are useful in software specifications. In this section, we
will work over the Absolutely Free Data Structures we defined in Section 2.2, when
they are extended with a bridging function defined recursively over them like in
Section 2.2.1 that connects them with another sort. We analyse how we can modify
the procedure described in Section 4.1 to make it produce a set of safe literals,
introducing some changes to the general procedure.

To simplify the analysis, we will suppose that the bridging function is surjective and
the theory of the AFDS contains only constructors and selectors; no recursively
defined functions. We will see how we can extend the procedure to relax these
conditions in Section 4.4.

The procedure for AFDSs

Let AFDSΣs be the theory for an Absolutely Free Data Structures (Section 2.2) over
a signature Σs with sorts struct and elem with no defined functions, Tt another
theory over a signature Σt of sort t, and T a theory built adding to AFDSΣs ∪ Tt
the axioms to define a surjective bridging function f : struct → t (Section 2.2.1).
In what follows we summarize the changes in each of the phases.

In the first phase, the original procedure will give us sets of pure literals ϕstruct,
ϕelem, ϕt and ϕf we need to restrict ϕstruct to a few specific kind of literals. We
will admit only literals of the form:

- x = y

- x 6= y

- x = k with k an atom constructor in ConsΣs

- x = c(x1, . . . , xn, a1, . . . , am), with c a function in ConsΣs

Notice that we are not allowing literals including the selectors that can exist on
an absolutely free data structure. This will simplify significantly the procedure.
However, we need to provide a way to eliminate them from ϕ. This can always be
done, as selectors are defined by pattern matching over the constructors, and in the
right part of the definition there are only constructors or variables. The procedure

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 33

to eliminate them should be executed when the literals are already separated and
flattened, and before adding the new variables for the function f in Γt, and would
consist in:

- Take a literal in which a selector sel(x) appears applied to some x.

- x must be a variable, as the literals are flattened. Then, for each definition of
sel over a constructed list c(x1, . . . , xn, a1, . . . , am), create a new set of literals
replacing sel(x) in the literal by the right side of the definition and adding
the new literal x = c(x1, . . . , xn, a1, . . . , am). This creates a new set of literals
for each definition, for which we will continue with the procedure. Again, we
will consider the original satisfiable if any of those are.

As another remark, we do not allow inequalities between a variable and a construc-
tor, but this can be easily enforced by introducing a fresh variable.

In the second phase, we compute Γstruct and Γt as in the procedure and then add
in Γt the following replacements for the k atomic constructors in ConsΣs and c
functions in ConsΣs :

- x = k → fx = fk

- x = c(x1, . . . , xn, a1, . . . , am)→ fx = gc,f (fx1 , . . . , fxn , a1, . . . , am)

Correctness of the extended procedure

We will show the procedure extended like this returns sat if and only if ϕ is satis-
fiable modulo T . To that aim, let us introduce two lemmas.

Lemma 2. Let ϕ = ϕelem ∪ ϕstruct ∪ ϕt ∪ ϕf be a set of literals in separate form.
The procedure computes Γstruct and Γt such that if:

- ϕstruct ∪ ϕelem ∪ Γstruct is AFDSΣs-satisfiable

- ϕt ∪ Γt is Tt-satisfiable

then ϕ is T -satisfiable.

Proof. Let A be a AFDSΣs-interpretation satisfying ϕstruct ∪ ϕelem ∪ Γstruct, and
let B be a Tt-interpretation satisfying ϕt ∪ Γt.
We now define an interpretationM. First, we specify the domains. We let Melem =
Aelem and Mt = B.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 34

Mstruct will be built by adding one element for each struct-variables appearing in
the formula, plus the ones built from those with the constructors in ConsΣS

and
the elements in Melem, considering the equivalence relations that are implied by
ϕstruct. More formally, consider L =

⋃
n≥0 Ln, where Li is defined recursively as

follows:

L0 = {lx : x ∈ Vstruct} ∪ {k : k is an atomic constructor in ConsΣs}
Ln+1 = Ln ∪ {c(x1, . . . , xn, a1, . . . , am) : x1, . . . , xn,∈ Ln, a1, . . . , am ∈ Velem}

then Mstruct is the quotient of L by the weakest equivalence relation implied from
the axioms in ϕstruct. We consider the following interpretation in M:

- for each t-variable u ∈ Vt, M[u] = B[u]

- for each elem-variable a ∈ Velem, M[a] = A[a]

- for each struct-variable x ∈ Vstruct, M[x] = [[x]] 1.

- the interpretation inM of the symbols in Σs is the same as the one in A, and
similarly with the symbols in Σt and B.

- The interpretation of the function f is defined recursively over the elements
in Mstruct as follows:

* If the equivalence class has an element x ∈ Vstruct, then M[f](M[x]) =
B[fx].

* If it does not, then the equivalence class must consist of just one con-
structed element, as AbsFreeΣS

ensures all elements built with the con-
structors are different. Let t1, . . . , tn be terms such that there exist
d1, . . . , dn ∈Mstruct such that M[f](M[ti]) = di, then
M[f](c(t1, . . . , tn, a1, . . . , am)) =M[gc,f](d1, . . . , dn, a1, . . . , am)

Now we need to show that M satisfies ϕt ∪ ϕelem ∪ ϕstruct ∪ ϕf ∪ T . ϕt ∪ ϕelem is
clearly satisfied, as it was already satisfied by A and B and we preserved these in-
terpretations. ϕstruct must be satisfied as we enforced the right equivalence relation
in the universe.

We need to prove M |= T . M |= Ts and M |= Tt are trivially deduced from the
definitions of the symbols in their signatures. It remains to prove that the function
M[f] satisfies the axioms in Recf . This is done by separating constructed terms
depending on how we defined the function for them.

- Terms which share an equivalence relation with one or more elements in L0

that are associated with a variable x ∈ Vstruct. For this variable, we added to
Γstruct one of the following literals :

1[[x]] denotes the equivalence class of x

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 35

* fx = fk if the term is an atomic constructor

* fx = gc,f (f(t1), . . . , f(tn)) if it is built from f(t1), . . . , f(tn).

This is satisfied by B, and since M[f(x)] = B[fx] the axiom is valid.

- Terms which do not share an equivalence class with an element in L0. In
those cases, we defined M[f] by resorting to the definition deduced from the
recursive axioms, so they must hold.

Lemma 3. Let ϕ = ϕelem ∪ϕstruct ∪ϕt ∪ϕf be a conjunction of literals in separate
form. If ϕ is T -satisfiable, then the procedure computes Γstruct and Γt such that if:

(a) ϕstruct ∪ ϕelem ∪ Γstruct is AFDSΣs-satisfiable

(b) ϕt ∪ Γt is Tt-satisfiable.

Proof. Let M be a T -interpretation satisfying ϕ. We define an arrangement Arr
to add in Γstruct as follows:

x = y ∈ Arr if and only if M[x] =M[y] for each x, y ∈ Vstruct

Clearly, property (a) holds since M satisfies ϕstruct, ϕelem and AFDSΣs , and by
construction also the arrangement.
To check the validity of (b), notice that M satisfies ϕt. In addition, since the
variables fx do not occur in ϕ, we can safely modifyM by lettingM[fx] = f(M[x])
for each x ∈ Vstruct. The modifiedM satisfies Tt and inspecting the replacements in
the decomposition phase (Section 4.1), it is easy to verify it also satisfies all literals
in Γt.

Theorem 7. The described procedure returns sat if and only if ϕ is T -satisfiable.

Proof. It follows from Lemmas 2 and 3 and considering the guessing of the right
arrangement.

An example with lists

Recall the theory TLS of lists enlarged with a length function we defined in Section
2.2.1, and suppose we want to check TLS-satisfiability of the formula ϕ : x =
cons(a, cons(b, z)) ∧ l(x) + 1 = l(z).

1. Variable Abstraction and Partition ϕ will be divided in:

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 36

- ϕlist : y = cons(b, z) ∧ x = cons(a, y)

- ϕelem : true

- ϕz : c+ 1 = d

- ϕl : l(x) = c ∧ l(z) = d, where c and d are new constants.

2. Decomposition We create the variables lx, ly and lz, and set:

- Γlist. We need to guess an arrangement between the list variables. Let
us choose the one in which they are all different, so we will add to Γlist
the set of literals: {x 6= y, y 6= z, z 6= x} . This is the only relation that
is satisfiable together with ϕlist, so it is the only choice that may lead to
satisfiability.

- Γz. After performing the replacements, we will have the set of literals:
{ly = lz + 1, lx = ly + 1, lx = c, lz = d}.

3. Check

- We check ϕlist ∪ ϕelem ∪ Γlist under TL. It is satisfiable.

- We check ϕz ∪ Γz under Z+
0 . It is not satisfiable.

We conclude ϕ is not satisfiable under TLS .

4.3 Restricting to standard interpretations

The algorithm we presented can lead to some strange situations. Indeed, consider
ϕ : l(x) = 0 ∧ l(y) = 0 ∧ x 6= y. After phases 1 and 2, we have:

- ϕlist = {x 6= y}

- Γlist = {x 6= y}

- ϕz = {lx = 0, ly = 0}

- Γz = {lx ≥ 0, ly ≥ 0}

Clearly ϕlist ∪ Γlist is satisfiable under TL, and ϕz ∪ Γz is satisfiable under Z+
0 , so

we should that conclude ϕ is satisfiable under TLS . It is, in fact, in our theory of
lists, where nothing prevents us from having two different lists of length zero.

We could, however be interested in considering just standard models of lists, mean-
ing only the interpretations we are used to having one zero length list (nil), and all
the other ones built from that one by adding elements. This extends to other data
structures.

In order to formalize this notion, we need to find the way to ensure that all lists
in the universe of a model of our theory will be equal to a list built with the

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 37

constructors. As usual, a model can be seen as an homomorphism between the
term algebra and another structure of the same algebraic type. We are looking for
this homomorphism to be surjective; all elements are related to one in the term
algebra. Considering the axioms in AbsFree, we know it will also be injective, so
we conclude the models we look for are isomorphic to the term algebra for the lists.
For the theory of Absolutely Free Data Structures (2.2), we can add the following
axiom:

(∀x : struct)
∨
c ((∃t̄ : struct, ā : elem) x = c(t̄, ā)) ∨

∨
k (x = k)

with c a function in ConsΣs , k an atomic constructor in ConsΣs , and t̄, ā vectors
of the length corresponding to the arity.

That is, every element must be built with the constructors. We will call this sentence
the extensionality axiom, and the theory of Absolutely Free Data Structures with
this axiom will be denoted as AFDSe. From now on, we will consider our decision
procedures for data structures are for this theory.

Notice that changing the theory makes the procedure incorrect. Under this assump-
tion, fixing the case in the example only requires to ensure we will assign the value
0 to only one integer variable (modulo equivalence).

Let us consider the following formula: l(x) = 1 ∧ l(y) = 1 ∧ x = y, and a theory
of elements admitting only models whose carrier is a singleton set. The formula
should not be satisfiable. Notice that it is the theory of elements which prevents us
from building suitable models.

A good starting point is to analyse when a cardinality problem might arise for lists.
The problem appears when we do not have enough elements to build different lists.
Consider a set of lists which are all distinct pairwise. In this case, if we can assign
a different length variable to each of them, the problem is solved, as even with
one element we will be able to build them. The difficult case is when the length
variables for them cannot be all different, because of constraints in the arithmetic
part. In this case, the length must be large enough as to be able to build them all.
For example, if we have four different lists of equal length, and only two elements,
they must have at least length two to be constructable.

We will analyse in which cases and how we can deal with this new difficulty.

4.3.1 Stable functions

As a first approach, we will consider a case when all the cardinality constraints can
be expressed easily in the target theory, so we can add them and see if they are
satisfiable. To this aim, let us define a new class of functions.

Definition 17. A function is stable if all elements in the image have a preimage
of equal cardinality, except maybe for some previously defined elements. When

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 38

considering bridging functions over term-constructed algebras, these constants which
may not satisfy the condition are the image of the atomic constructors. This is, if
f is function with domain D and image I, over an absolutely free data structure
with atomic constructors k1, . . . , kn, and P (a) = {x ∈ D|f(x) = a}, f is stable if
P (a) has the same cardinality for each a ∈ D, except maybe for f(k1), . . . , f(kn).

Extension of the procedure for AFDSe with stable functions

Let AFDSΣs be an AFDSe theory over signature Σs with sorts struct and elem,
Tt another theory over a signature Σt with sort t, and T a theory built adding
to AFDSΣs ∪ Tt the axioms to define a surjective and stable bridging function
f : struct → r. We will show how to extend the procedure in Section 4.2 to
compute Γstruct and Γt that make the procedure correct.

The changes take place in the second phase. We start with Γstruct and Γt as com-
puted in the procedure for AFDSs, and add some new elements.

On one side, we will need to know which elements are atoms and which are not. To
this aim, we guess a new unary relation Ki(x) on Vstruct for each atom constructor
ki. For each one of these relations, we will add to Γstruct the following set of literals:

{x = ki|x ∈ Vstruct,Ki(x)} ∪ {x 6= ki|x ∈ Vstruct,¬Ki(x)}

For Γt, the replacements are the same as before but now we also need to provide
information about the cardinality of the preimages. This is translated as how many
of the added fx variables can be equal. For example, if we know a function is
bijective, we do not want the arithmetic part to assign the same value to fx and fy
if x 6= y, as this would never match with the source part. We have two cases:

- If the function has infinite preimage, there is nothing to do.

- If it has a preimage of constant cardinality k, we do:

1. Identify sets of lists which are different pairwise. We can do this by
finding the equivalence classes in our arrangement of lists Arr and taking
one representative from each one, as these lists are for sure different with
each other.

2. Add to the target part a predicate saying these variables can be equal in
groups of at most k elements. This can always be done, as it is expressible
in first order logic. It will, however, inevitably introduce disjunctions,
so we will have to divide the problem into many ones and continue the
procedure for each of them.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 39

Correctness of the extended procedure

Let us consider T eL and T eLS , the theories of lists and lists with length but seen as
an AFDSe, that is, with extensionality. We will prove correctness of the extended
procedure for the theory T eLS and discuss a generalization later. Our aim is to prove
that the procedure returns sat if and only if ϕ is satisfiable in T eLS , that is, if it has
a standad model. We will, again, introduce two lemmas.

We will use the same notation as in the examples with lists, where:

- Γstruct and ϕstruct are Γlist and ϕlist

- Γt and ϕt are Γz and ϕz

- AFDSΣs is T eL

- Tt is Z+
0

Lemma 4. Let ϕ = ϕelem ∪ ϕlist ∪ ϕz ∪ ϕl be a conjunction of literals in separate
form. If the procedure computes Γlist and Γz such that if:

(a) ϕlist ∪ ϕelem ∪ Γlist is T eL-satisfiable

(b) ϕz ∪ Γz is satisfiable in Z+
0 .

then ϕ is satisfiable in T eLS.

Proof. Let A be a TL-interpretation satisfying ϕL = ϕlist ∪ϕelem ∪Γlist, which will
be isomorphic to the standard interpretation for lists. Z+

0 stands for the integers.
We will build an interpretation M satisfying ϕ.

We need to fix the interpretation for l, and a value for each variable in Vlist, Velem, Vz.
For Velem and Vz, these will be the ones in A and in Z+

0 . We will do something
different for Vlist, but first let us interpret l over the universe of lists, in the standard
way.

Now we can interpret the list variables. Let x be a variable in Vlist, and k be
the interpretation for lx in the arithmetic part. We claim that we can choose an
interpretation for x in such a way thatM[l](x) = k, without losing the satisfiability
in the list part.

First, recall that ϕlist only has literals of the form:

- x = cons(a, y)

- x = nil

- x = y

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 40

- x 6= y

Now we will order the values of the length variables in the arithmetic part (the lx
variables) increasingly, and we will prove that we can assign values to each of them
in the same order.

- Base case: consider any x ∈ Vlist such that lx = 0 in the interpretation. We
claim we can always choose x = nil maintaining satisfiability. If we cannot,
one of the following happens:

* The literal x = cons(a, y) appears in ϕlist. This is not possible, as
analysing the translations we can see there would be a literal saying
lx = ly + 1 in Γz.

* The literal x = y appears in ϕlist, and ly 6= 0. This is also not possible,
lx = ly should appear in Γz.

* The literal x 6= y appears in ϕlist, and ly = 0. But recall that we have
made a guess for the list variables equal to nil and the ones that are not,
and translated this to the arithmetic part. So this case is not possible
either.

- Inductive step. Let k > 0. By the induction hypothesis, there are lists for all
x′ such that lx′ < k. We will show that we can find a list for any x such that
lx = k. Let use analyse all the possible problematic cases:

* The literal x = cons(a, y) appears in ϕlist, and ly /∈ [0, k−1]. This is not
possible, as lx = ly + 1 appears in Γz.

* The literal x = nil appears in ϕlist. This is not possible, as lx = 0
appears in Γz.

* The literal x = y appears in ϕlist, and ly 6= k. This is also not possible,
lx = ly should appear in Γz.

* The literal x 6= y appears in ϕlist, and ly = k, but we do not have enough
elements to build different lists of length k for x and y. In the case of a
stable function with a finite number of preimages, this cannot happen,
as we already added the restrictions to have only as many equal length
variables as possible. In the case of a stable function with infinitely many
preimages, we can easily find finitely many distinct lists having the same
length.

Then we can conclude that ϕ can be satisfied in T eLS .

Lemma 5. Let ϕ = ϕelem ∪ ϕlist ∪ ϕz ∪ ϕl be a conjunction of literals in separate
form. If ϕ is satisfiable in T eLS, then the procedure computes Γlist and Γz such that:

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 41

(a) ϕlist ∪ ϕelem ∪ Γlist is T eL-satisfiable

(b) ϕz ∪ Γz is satisfiable in Z+
0 .

Proof. If ϕ is satisfied in standard interpretation of T eLS , then we can build Γlist and
Γz in such a way that (a) and (b) hold, following the reasoning in Lemma 3.

We have proved Lemmas 4 and 5 only for the theory of lists for simplicity. This
proof can be extended to other Absolutely Free Data Structures in a simple way,
considering that ϕstruct always has literals of the same form. There is one assump-
tion in the proof that the new data structure should also meet. It should be possible
to order the values of sort t in such a way that it also fixes an order in the preim-
age of the bridging function. That is, if t1 < t2, then the data structures in the
preimage of t1 are structurally less complex than the ones in the preimage of t2.
This is a strong requirement, although it is not difficult to find cases like this in
data structures. The general proof without this restriction is left for future work.

Theorem 8. The described procedure returns sat if and only if the input is T eLS-
satisfiable.

Proof. It follows from Lemmas 4 and 5 and considering the guessing of the right
arrangement.

Applications and examples

Examples of stable functions are not difficult to find. For example, the length
for lists over a stably infinite theory of elements is stable, as there are infinitely
(countable) many lists for each length, except for zero. This includes, for example,
lists of integers. Lists over a theory of elements admitting only one element (chains
of an element) makes length also stable, as there is only one list for each length.
Any bijective function follows this last case.

4.3.2 Non-stable functions

Although we can find examples of stable functions, this is not always the case, as
functions with preimages of different cardinalities are extremely common. Consider
for example the inorder function mapping trees to lists; depending on the length
of the lists, we will have more or less trees that are mapped to it. We can also
consider length for lists with a theory of elements admitting only models with a
domain of cardinality 2. In this case, there is no easy way to add information to Γt
to solve the cardinality problems.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 42

In this section we present an algorithm for solving cardinality problems for functions
that might not be stable. The idea is to find the model for the target theory that
imposes the least cardinality restrictions in the source theory. We present the
algorithm for lists, and then discuss when and how it can be extended for other
structures.

The algorithm for lists

The following algorithm finds sets of different lists with equal length, which is the
problematic case, and it decides if it is possible to build all of them. If it is not
possible, it returns unsat. This algorithm should be executed after the procedure
in Section 4.2 computed Γlist and Γz, and add literals with them. We assume that
the original procedure returns sat, this is, that the computed Γlist and Γz make
each part of the formula satisfiable under the corresponding theory. If this is not
the case, we return unsat directly.

1. Identify the set of lists which are all different pairwise. This can be done using
Arr (the arrangement of lists guessed in the second step of our procedure),
and taking one representative from each equivalence class.

2. Guess an equivalence relation between the length variables for the lists in
this set. For each equivalence class of length variables, choose one as a class
representative, and call it leni. LEN will be the set of all leni, and ci the
cardinality of each class cardinality.

3. If ci = 0 for each i, return sat, as there are no different lists with equal
length. If not, add to Γlist the formula to check if the theory of elements
admits models with at least two different elements. If it is not the case, it
will be unsat, as there is no way to satisfy two different list with equal length
with only one element.

4. Find the largest values the leni variables can take. To do this, let P (leni) :
leni > log2(ci). If this property holds for a length variable, the lists are long
enough to be built from 2 elements. Guess an arrangement on the truth value
of P (leni), for each leni ∈ LEN .

5. Let LEN ′ = {leni ∈ LEN |¬P (leni)}. If LEN ′ = ∅, return sat. If not, find
the largest possible value for the variables in it, by performing a countdown
in the sum. Let k =

∑
leni∈LEN ′ log2(ci).

Add to Γz the constraint
∑

leni∈LEN ′ leni = k. If it is not satisfiable, decrease
k in one, and check again. Repeat the process until a satisfiable constraint is
found 2.

2This will happen eventually, as we have guessed that this variables have lengths lower than
log2(ci).

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 43

6. When the first satisfiable k is obtained, guess a combination of length values
in LEN ′ that satisfies it.

7. Let dx be the value for the variable lx in the model for ϕz ∪ Γz, for all length
variables. Then add to Γlist the formula x = cons(a1, cons(a2, . . . , cons(adx , nil) . . .)).
If ϕlist ∪ ϕelem ∪ Γlist is T eL-satisfiable, return sat. If satisfiability is not ob-
tained for any of these cases, return unsat.

Correctness of the procedure with the algorithm

In what follows, we will prove that, for a scenario in which cardinality problems
can arise, the procedure in 4.2 complemented with this algorithm is correct.

Lemma 6. Suppose we want to check ϕ under T eLS. If the algorithm returns sat,
then ϕ is T eLS-satisfiable.

Proof. We suppose the procedure for AFDSs in Section 4.2 returned sat, because
if not the algorithm returns unsat. Then, because of Lemma 2, it computed Γlist
and Γz, such that:

- ϕlist ∪ ϕelem ∪ Γlist is T eL-satisfiable

- ϕz ∪ Γz is satisfiable in Z+
0 .

The algorithm returns sat in two steps:

- In step 3, if all the sets of different lists with equal lengths are empty. But
then there are no cardinality problems, so we can trust the correctness of
procedure in sec. 4.2.

- In step 7, after the translation of each length value to the lists, if ϕlist∪ϕelem∪
Γlist is T eL-satisfiable. But then, let A be the T eL-interpretation that satisfies
it. Z+

0 stands for the integers. To build an interpretationM satisfying ϕ, we
can directly consider A and Z+

0 as universes, and the interpretations given by
A for Vlist and Velem and the symbols in ΣL, and the interpretations in Z+

0 .
The function l will be interpreted following exactly its definition.
Defined this way, M satisfies T eLS ∪ ϕlist ∪ ϕelem ∪ ϕz. To see it also satisfies
ϕl (the original literals involving the function l), notice the length for each
variable x ∈ Vlist is exactly lx, as this is enforced by the translation in step
7. Considering that each nameable list is associated to a variable and the
translations performed, it is clear that M |= ϕl.

Lemma 7. Suppose we want to check ϕ under T eLS. If the algorithm returns unsat,
then ϕ is unsatisfiable under T eLS.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 44

Proof. We suppose the procedure for AFDSs in Section 4.2 returned sat, because
if not the algorithm returns unsat directly so the proof is trivial considering the
previous lemmas. Then, because of Lemma 2, it computed Γlist and Γz, such that:

- ϕlist ∪ ϕelem ∪ Γlist is TL-satisfiable

- ϕz ∪ Γz is satisfiable in Z+
0 .

We need to prove that, if the additions to Γlist and Γz in the algorithm made it
return unsat, it is because there are not enough elements to build the lists. We
assume we made the right guesses. The algorithm returns unsat in two cases:

- In step 3, if the theory of elements admits only one element and there are
different lists with equal length. This means there are not enough lists, so ϕ
cannot be satisfiable.

- In step 7, if we found a satisfiable value of k that does not leads to any
configuration satisfiable in the lists. Suppose this is the case, but there exists
a modelM of T eLS∪ϕ. Consider the quotient of the carrier ofM as outputted
from the algorithm, and the representatives which would be in LEN ′; those
for who P does not hold. Let k′ be the sum of the lengths of these lists inM,
and let us compare it with k. If k′ ≥ k, the algorithm should have found the
right combination of lists that is satisfied by M and returned sat, which it
did not, so it is an absurd. On the other hand, it cannot be k′ < k, as if there
are elements to build a combination that sums k′, there should be enough
elements to build a combination of lists that sums k, and we do not, as we
obtained unsat. Therefore, there cannot exist a model of T eLS ∪ ϕ because
there is no possible value for this k′.

Theorem 9. The algorithm returns sat if and only if the input is T eLS-satisfiable.

Proof. It follows directly from Lemmas 6 and 7 and from Theorem 7 for the cor-
rectness of the procedure in Section 4.2.

We have presented the algorithm only for lists. It can be adapted easily to other
structures, but the assumptions we made on the theory should be considered. In
short, these are:

- The value of the bridging function must depend on the structure and not on
the elements.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 45

- Reverse translation must be possible. Given a value of the target sort a, its
preimage must be finite and computable modulo the elements inside the struc-
ture. This means that we need to be able to obtain the set of the applications
of constructors for which the application of the bridging function f returns.
We need this in order to perform step 7. If there is more than one element in
the preimage, then we will consider each possibility separately.

- Monotonicity in the elements of the preimage. There must be a computable
order in the target elements, such that, if a > b, then the preimage of a has
more elements than the preimage of b.

- There must be a bound. We need to be able to compute some a such that
if f(x) = a, then there are sufficiently many instantiations of x if the theory
of elements admits models with carriers greater than some constant. In the
lists, this bound is the logarithm for models with at least two elements.

4.4 Applicability of this approach - A discussion

We have shown how to apply our procedure for some different classes of theories
and functions. However, these classes are still very restrictive. For example, we are
working with surjective functions defined over absolutely free data structures which
are themselves a very particular case of recursive data structure. In addition, we
are always considering we have only one bridging function defined.

In this section, we analyse how to extend the procedures we introduced in the
previous sections to take into account some of these different possibilities. Some
others remain as future work, as we will detail in Chapter 5.

Dealing with non-surjective functions

We have been always working with surjective bridging functions. This has an im-
portant advantage: the model in the target theory can associate variables to any
element, as they all have a preimage. This is not always the case, and for a non-
surjective function we will need to restrict the interpretation to ensure all elements
are images of something in the source. We will be able to do this when the subset of
the image is expressible in the target theory. That is, when there exists a predicate
p ∈ P such that p(c) iff (∃x : source)f(x) = c. If we have this predicate, all we
need to do is to add to Γt a set of literals bound(ϕ) = {P (fx)|x ∈ Vstruct}.

Admitting other functions in the source theory

Until now, our AFDS had no functions besides constructors and selectors. This is
not always the case; it may be interesting to apply the same procedure for theories

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 46

extended with the definition of some other function. The question is then if the
procedure remains correct when adding these extra elements.

We now consider how to adapt the procedures we presented to AFDSs with defined
functions, which are defined recursively by pattern matching in the constructors.

The first thing we need to take in account is what we can deduce in the target
theory from these functions. We need to be able to express the relation of these
functions with the bridging function as axioms in Γt. To this aim, if we want to
include the function g : struct→ struct, there must exist a function h in Σt which
“mocks” the implications of g over the bridging theory f . This is, if we have the
literal x = g(y1, . . . , yn) in ϕstruct, we will translate it in Γt as fx = h(fy1 , . . . , fyn).
For example,

- For the function reverse in lists with length, the length of a list must be
equal to the length of its reverse. So if x = reverse(y), then fx = fy.

- For concatenation in lists with length, it should be x = y++z =⇒ fx =
fy + fz

Once we have identified this mocking function (if it exists), we need to translate all
literals containing the defined function to Γt, and then perform the procedure as
usual.

Modularity

One of the main reasons to use this reducing-to-disjoint approach is that it can
be applied modularly. If we have several theories with bridging functions between
them, we would like to be able to apply the procedure repeatedly and obtain many
disjoint theories. In this section we study different situations under which the
decision procedure can be modularized.

Several source theories to one target theory The approach works modularly
in this case; we can apply it for each source theory once at a time, obtaining several
disjoint problems.

This is a common scenario. For example, we can imagine having different data
structures, defined by theories over disjoint signatures, with bridging “measure”
functions to arithmetic (lists with length, trees with height, multisets with number
of occurrences). In that case, the functions can be dealed with one by one.

For example, suppose we have TLS , the theory of lists with length, and TTH , the
trees with height, together. Then we can apply the procedure and obtain a disjoint
problem between TL (the theory of lists) and TTH . By applying it again, we can
also reduce this last one to the problem between the theory of trees and arithmetic,
solving everything separately.

CHAPTER 4. NON-DISJOINTNESS VIA BRIDGING FUNCTIONS 47

One source theory to several target theories This case is not as simple as
the previous one, because of the implicit information that each of the functions can
add to the target theory. For example, consider trees with number of nodes (to
arithmetic) and inorder (to lists). These functions have different target theories,
but are related, as a tree that has a certain inorder list has its number of nodes
determined. This case can be solved if we have a “mocking” function between the
target theories, making explicit these relations. In the example we have just seen,
we should use the length for lists, and add in Γlist the information obtained from the
number of nodes and vice versa in Γz. Notice that this would make the target theory
a disjoint one (lists with length), but then we can apply the procedure modularly.

One source to one target, several functions In this case it is also necessary
to consider the relations between the functions. If they are completely disjoint and
do not impose restrictions to each other, we can apply the procedure in parallel,
creating variables for each of the functions and translating the axioms. If they are
not, we need to be able to express the conditions in the target Γ. For example,
for trees with height and number of nodes, we should encode the maximum and
minimum number of nodes for a tree of a certain height in the arithmetic.

5 Conclusions and future work

We studied two different approaches to the non-disjoint combination of theories and
provided procedures to solve the satisfiability problem on combinations of theories
for certain cases. In the first one, we introduced a notion of P-gentleness which is
well-suited for combining theories sharing (besides constants and the equality) only
unary predicates in a set P. We proved that the Löwenheim theories are P-gentle;
BSR theories also are.

Our combination method is limited to shared unary predicates, and the extension
for other arities seems complicated for theoretical reasons. A possible direction for
research is to identify particular predicates or classes of predicates for which the
problem can be solved, and analyse how the topology of the predicates impacts in
the complexity of the problem.

Also in future works, the reduction approach (BSR theories can be simplified to a
subset of Löwenheim) may be useful as a simplification procedure for sets of formulas
that can be seen as non-disjoint (sharing unary predicates only) combinations of
BSR or Löwenheim theories and an arbitrary first-order theory: this would not
provide a decision procedure, but refutational completeness can be preserved.

The results here are certainly too combinatorially expensive to be directly applica-
ble. However, this work paves the theoretical grounds for mandatory further works
that would make such combinations practical. There are important incentives since
the BSR and Löwenheim fragments are quite expressive: for instance, it is possible
to extend the language of SMT solvers with sets and cardinalities. Many formal
methods are based on logic languages with sets. Expressive decision procedures
(even if they are not efficient) including e.g. sets and cardinalities will help proving
the often small but many verification conditions stemming from these applications.

In Chapter 4, we presented another approach, in which we reduce the problem of
deciding satisfiability over two disjoint theories connected with a bridging function
to the satisfiability problem of each of the theories. Our results are for the theory
of Absolutely Free Data Structures that we introduced in the Preliminaries section.
A clear direction to explore is the possibility of extending these ideas to other data
structures, in which we do not assume that equal structures can be constructed in
only one way. This is an interesting problem as many well known data structures

48

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 49

do not fit in the Absolutely Free Data Structures framework, like for example sets.
Ideas of how to delete functions over sets were given in [51] and [47]; we leave
for future work to develop a framework for more general theories. Ideas of how
to go beyond Absolutely Free Data Structures are given in [44]. This work needs
to be extended, but the framework Sofronie-Stokkermans proposes (algebras built
with constructors that satisfy only commutativity, associativity, idempotence and
nilpotence) could be a good initial point from where we could study more general
data structures, relating them with the work in this thesis.

Also as future work, it would be interesting to consider bridging functions over
Absolutely Free Data Structures defined in other ways than by simple recursion.
For example, we could consider conditional definitions like:

Recf =



f(k) = kf

f(c(x1, . . . , xn, y1, . . . , ym)) =


gc,f1 (f(x1), . . . , f(xn), y1, . . . , ym)

if p1(x1, . . . , xn, y1, . . . , ym)

gc,fk (f(x1), . . . , f(xn), y1, . . . , ym)
if pk(x1, . . . , xn, y1, . . . , ym)

where p1, . . . , pk are predicates in ΣS . This would introduce a new difficulty for
translating the functions.

We gave one general procedure for Absolutely Free Data Structures, and proved
it works in the case when we are not restricted to consider only standard models.
We saw that this latter case introduces a new difficulty, as cardinality problems can
arise when we do not have enough elements to build the lists, and our procedure did
not provide a way to express that in the target theory. In fact, these constraints are
difficult to translate, as in the general case we do not know the cardinality of our
models. We studied solutions for two cases; in one we can express the restrictions
directly because the functions have nice cardinality properties, and in the second
one we need to perform an algorithm to check if the constraints are satisfiable. The
proof for the first case and the algorithm in the second one are presented for the
particular theory of lists with length and we explain for which theories generalization
is easy. This generalization should be formalized. It would also be interesting to
go beyond these restrictions and find a framework to solve cardinality issues in a
general way.

In the last section of this chapter we discussed some extensions of the procedure
to relax conditions we imposed before. These ideas need to be formalized and ex-
tended, since they are crucial in order to be able to actually apply these procedures
in an SMT solver. It is specially necessary to study in depth how to accept other
functions defined over the data structure, as this is what makes the source theory
interesting. We should also provide a formal framework to approach modularity,
which is one of the most interesting features of this kind of procedures, and of spe-
cial relevance for software specification.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 50

In order to make these procedures applicable it would also be necessary to improve
their efficiency, as they are currently too combinatorially expensive; ways of making
the guessings smarter should definitely be explored. An interesting idea towards
more efficient algorithms is to consider also a deductive approach, in which we first
extract information that is implicit in ϕ to decrease the number of cases to test.
This is specially suitable for applications in SMT, as they already perform this kind
of methods, so the machinery is available. The implementation of these procedures
in an SMT solver and the necessary study of how to integrate them is definitely
interesting future work.

Finally, a long-term objective would be to analyse the relations between our two
approaches; the one extending Nelson-Oppen procedure and the one for bridging
functions. Although they seem to refer to different situations, there are similarities,
particularly in that they both deal with cardinality constraints. Finding a unified
theoretical framework to express these problems and a way to solve them uniformly
would be a challenging but definitely interesting task.

Bibliography

[1] W. Ackermann. Solvable Cases of the Decision Problem. North-Holland Pub-
lishing Company, 1954.

[2] C. Areces and P. Fontaine. Combining theories: The Ackerman and Guarded
fragments. volume 6989, pages 40–54. Springer, 2011.

[3] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-
based satisfiability procedures. ACM Trans. Comput. Log., 10(1), 2009.

[4] A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfi-
ability procedures. Inf. Comput., 183(2):140–164, 2003.

[5] M. Baaz, U. Egly, and A. Leitsch. Normal form transformations. In J. A.
Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 5, pages 273–333. Elsevier Science B.V., 2001.

[6] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo
theories. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 185, chapter 26, pages 825–885. IOS Press,
Feb. 2009.

[7] L. D. Bjørner. Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

[8] M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decid-
ability and undecidability results for nelson-oppen and rewrite-based decision
procedures. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd In-
ternational Joint Conference on Auto mated Reasoning (IJCAR 2006), volume
4130 of Lecture Notes in Computer Science, page 513–527. Springer.

[9] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Per-
spectives in Mathematical Logic. Springer-Verlag, Berlin, 1997.

[10] C. Chang and H. Keisler. Model Theory. Studies in Logic and the Foundations
of Mathematics. Elsevier Science, 1990.

51

BIBLIOGRAPHY 52

[11] P. Chocrón, P. Fontaine, and C. Ringeissen. A gentle non-disjoint combination
of satisfiability procedures.

[12] A. Church. A note on the Entscheidungsproblem. J. Symb. Log., 1(1):40–41,
1936.

[13] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[14] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-
mohring, and B. Werner. The coq proof assistant user’s guide (version 5.8).
Technical Report 154, INRIA, Rocquencourt, France, 1993.

[15] B. Dreben and W. D. Goldfarb. The Decision Problem: Solvable Classes of
Quantificational Formulas. Addison-Wesley, Reading, Massachusetts, 1979.

[16] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, Inc.,
Orlando, Florida, 1972.

[17] J.-C. Filliâtre, S. Owre, H. Rue*B, and N. Shankar. Ics: Integrated canonizer
and solver? In G. Berry, H. Comon, and A. Finkel, editors, Computer Aided
Verification, volume 2102 of Lecture Notes in Computer Science, pages 246–
249. Springer Berlin Heidelberg, 2001.

[18] P. Fontaine. Combinations of theories for decidable fragments of first-order
logic. In Frontiers of Combining Systems, 7th International Symposium, Fro-
CoS 2009, Trento, Italy, September 16-18, 2009. Proceedings, volume 5749 of
Lecture Notes in Computer Science, pages 263–278. Springer, 2009.

[19] J. Franco and J. Martin. A history of satisfiability. In A. Biere, M. Heule,
H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability. IOS Press,
2009.

[20] J. L. K. G. Kreisel. Elements of Mathematical Logic. Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Company, 1967.

[21] H. Ganzinger, C. Meyer, and M. Veanes. The two-variable guarded fragment
with transitive relations. pages 24–34. IEEE Computer Society, 1999.

[22] H. Ganzinger and H. D. Nivelle. A superposition decision procedure for the
guarded fragment with equality. In In Proc. LICS’99, pages 295–303. IEEE
Computer Society Press, 1999.

[23] S. Ghilardi. Model-theoretic methods in combined constraint satisfiability.
Journal of Automated Reasoning, 33(3-4):221–249, 2004.

[24] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver. Discrete
Appl. Math., 155(12):1549–1561, June 2007.

BIBLIOGRAPHY 53

[25] Y. Gurevich and S. Shelah. Spectra of monadic second-order formulas with one
unary function. In LICS ’03: Proceedings of the 18th Annual IEEE Symposium
on Logic in Computer Science, pages 291–300, Washington, DC, USA, 2003.
IEEE Computer Society.

[26] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology, 11(2):256–290, 2002.

[27] L. Löwenheim. Über möglichkeiten im relativkalkül. Mathematische Annalen,
76(4):447–470, 1915.

[28] Z. Manna and C. G. Zarba. Combining decision procedures. In Formal Methods
at the Crossroads. From Panacea to Foundational Support, 10th Anniversary
Colloquium of UNU/IIST, Revised Papers, volume 2757 of Lecture Notes in
Computer Science, pages 381–422. Springer, 2003.

[29] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat-solver. In Proceedings of the 38th Annual Design
Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001.
ACM.

[30] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 2(1):245–257,
1979.

[31] E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combinable extensions of
abelian groups. In R. A. Schmidt, editor, Automated Deduction - CADE-22,
22nd International Conference on Automated Deduction, Montreal, Canada,
August 2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer
Science, pages 51–66. Springer, 2009.

[32] E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combining satisfiability proce-
dures for unions of theories with a shared counting operator. Fundam. Inform.,
105(1-2):163–187, 2010.

[33] T. Nipkow, L. Paulson, and M. Eenzel. Isabelle/HOL – A proof assistant
for higher-order logic, volume 2283 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany, 2002.

[34] D. C. Oppen. Reasoning about recursively defined data structures. Journal of
the Association for Computing Machinery, 3(27):403–411, 1980.

[35] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. pages 411–414.

[36] D. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972. See also [?].

BIBLIOGRAPHY 54

[37] D. L. Parnas. Designing software for ease of extension and contraction. In
Proceedings of the 3rd International Conference on Software Engineering, ICSE
’78, pages 264–277, Piscataway, NJ, USA, 1978. IEEE Press.

[38] M. Presburger. Uber die vollst ndigkeit eines gewissen systems der arith-
metik a ganzer zahlen, in welchen die addition als einzige operation hervortritt.
Comptes Rendus du Premier Congrès des Mathèmaticienes des Pays Slaves,
pages 92–101, 1929.

[39] F. P. Ramsey. On a Problem of Formal Logic. Proceedings of the London
Mathematical Society, 30:264–286, 1930.

[40] S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with
nonstably infinite theories using many-sorted logic. In B. Gramlich, editor,
Frontiers of Combining Systems, 5th International Workshop, FroCoS 2005,
Vienna, Austria, September 19-21, 2005, Proceedings, volume 3717 of Lecture
Notes in Computer Science, pages 48–64. Springer, 2005.

[41] C. Ringeissen and V. Senni. Modular termination and combinability for super-
position modulo counter arithmetic. volume 6989 of Lecture Notes in Computer
Science, pages 211–226. Springer, 2011.

[42] C. Ringeissen and C. Tinelli. Unions of non-disjoint theories and combina-
tions of satisfiability procedures. Theoretical Computer Science, 290(1):291–
353, Jan. 2003.

[43] R. E. Shostak. Deciding combination of theories. Journal of the Association
for Computing Machinery, 1(31):1–12, 1984.

[44] V. Sofronie-Stokkermans. Locality results for certain extensions of theories
with bridging functions. In R. A. Schmidt, editor, Automated Deduction -
CADE-22, Proceedings, volume 5663 of Lecture Notes in Computer Science,
pages 67–83. Springer, 2009.

[45] V. Sofronie-Stokkermans. On combinations of local theory extensions. In
Programming Logics - Essays in Memory of Harald Ganzinger, volume 7797 of
Lecture Notes in Computer Science, pages 392–413. Springer, 2013.

[46] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data
types with abstractions. SIGPLAN Not., 45(1):199–210, Jan. 2010.

[47] P. Suter, R. Steiger, and V. Kuncak. Sets with cardinality constraints in
satisfiability modulo theories. In R. Jhala and D. Schmidt, editors, Verification,
Model Checking, and Abstract Interpretation, volume 6538 of Lecture Notes in
Computer Science, pages 403–418. Springer Berlin Heidelberg, 2011.

[48] A. Tarski. A decision method for elementary algebra and geometry. University
of California Press, pages 92–101, 1951.

BIBLIOGRAPHY 55

[49] C. Tinelli and C. G. Zarba. Combining nonstably infinite theories. Journal of
Automated Reasoning, 34(3):209–238, Apr. 2005.

[50] C. Zarba. Combining multisets with integers. In A. Voronkov, editor, Au-
tomated Deduction—CADE-18, volume 2392 of Lecture Notes in Computer
Science, pages 363–376. Springer Berlin Heidelberg, 2002.

[51] C. Zarba. Combining sets with integers. In A. Armando, editor, Frontiers of
Combining Systems, volume 2309 of Lecture Notes in Computer Science, pages
103–116. Springer Berlin Heidelberg, 2002.

[52] C. G. Zarba. Combining lists with integers. In International Joint Conference
on Automated Reasoning (Short Papers), Technical Report DII 11/01, pages
170–179. University of, 2001.

[53] C. G. Zarba. Combining sets with cardinals. J. Autom. Reasoning, 34(1):1–29,
2005.

[54] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras
with integer constraints. Inf. Comput., (10):1526–1574.

	Introduction
	Preliminaries
	First-order Logic
	Many-sorted first-order logic

	Absolutely free data structures
	Bridging Functions on Absolutely Free Data Structures

	Some decidable first order theories
	Combination of Satisfiability Procedures
	Disjoint Combination: The Nelson-Oppen procedure

	Non-Disjointness via Unary Predicates
	Gentle Theories Sharing Unary Predicates
	Classes of gentle theories: The Löwenheim Class and the BSR Class
	 The Löwenheim Class
	The Bernays-Schönfinkel-Ramsey Class

	Example: Non-Disjoint Combination of Order and Sets
	Discussion

	Non-Disjointness via Bridging Functions
	A procedure towards a disjoint problem
	Bridging functions on absolutely-free data structures
	Restricting to standard interpretations
	Stable functions
	Non-stable functions

	Applicability of this approach - A discussion

	Conclusions and future work

