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ABSTRACT

Model theoretic results such as Characterization and Definability give important informa-
tion about different logics. It is well known that the proofs of those results for several
modal logics have, somehow, the same ‘taste’. A general proof for most modal logics
below first order is still too ambitious. In this thesis we plan to isolate sufficient condi-
tions for the characterization and definability theorems to hold in a wide range of logics.
Along with these conditions we will prove that, whichever logic that meets them, satisfies
both theorems. Therefore, one could give an unifying proof for logics with already known
results. Moreover, one will be able to prove characterization and definability results for
logics that have not yet been investigated. In both cases, it is only needed to check that
a logic meets the requirements to automatically derive the desired results.

Keywords: logic, modal, characterization, definability, saturation.
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ABSTRACT EXTENDIDO

Para una amplia variedad de aplicaciones que usan la lógica como herramienta, la lógica
de primer orden es suficiente para resolver sus problemas de manera teórica. Sin embargo,
cuando se considera el comportamiento práctico de la lǵica de primer orden uno se encuen-
tra con varias complicaciones. Primero que nada, la lógica de primer orden es indecidible.
Esto quiere decir que no existe un algoritmo general para decidir si una fórmula arbitraria
es satisfacible. Segundo, en general la mayoŕıa de las aplicaciones que usan esta lógica no
aprovechan al máximo su poder. Por lo tanto, incluso cuando se trabaja con fragmentos
decidibles de primer orden, se puede estar pagando un precio excesivo por cualidades que
no serán utilizadas.

Las lógicas modales proposicionales ofrecen una alternativa a los lenguajes tradi-
cionales. Pueden ser pensadas como un conjunto de herramientas que permiten dise nar
lógicas espećıficamente construidas para una tarea en particular, posibilitando un control
fino en su expresividad. Más aún, las lógicas modales resultaron tener un buen com-
portamiento computacional que probó ser bastante robusto frente a extensiones. Estas
caracteŕısticas, entre otras, ubicaron a las lógicas modales como una alternativa atractiva
con respecto a los lenguajes clásicos como por ejemplo la lógica de primer orden.

En esta tesis trabajaremos con lógicas modales que son a lo sumo tan expresivas como
la lógica de primer orden. Informalmente, esto quiere decir que si uno puede expresar
una propiedad con una formula de dicha lógica modal entonces existe una manera de
expresar la misma propiedad en primer orden. En otras palabras, uno puede decir que si
una formula modal ϕ denota una propiedad dada entonces existe algún tipo de traducción
cuyo resultado es una fórmula de primer orden ϕt que denota la misma propiedad.

En ciencias de la computación, una bisimulación es, a grandes rasgos, una relación
binaria entre modelos que asocia aquellos que se comportan de la misma manera. Aśı, dos
modelos son bisimilares cuando no pueden ser distinguidos mutuamente por un observador.
La noción de bisimulación es ampliamente empleada en varias áreas como la lógica modal,
la teoŕıa de concurrencia, la teoŕıa de conjuntos, la verificación formal, etc.

La noción de bisimulación fue descubierta de manera independiente y relativamente
simultánea por van Benthem, en el contexto de teoŕıa de correspondencia modal; Milner
y Park, en teoŕıa de la concurrencia; y Forti y Honsell en teoŕıa de conjuntos sin axioma
de buena fundación. Estos últimos utilizan bisimulaciones para mostrar la equivalencia
de objetos con estructura infinita no-inductiva y garantizar aśı extensionalidad de los
modelos de su teoŕıa [FH83]. Van Benthem [vB76] obtiene la idea de bisimulación como
una generalización del concepto de p-morfismo entre modelos; con ella caracteriza a la
lógica modal básica como el fragmento de primer orden invariante bajo bisimulaciones
(lo que se conoce como Teorema de Caracterización de van Benthem). Milner y Park
fueron los que acuñaron el término bisimulación, técnica que utilizaron como herramienta
para probar la equivalencia de procesos concurrentes [Mil80, Par81]. En [San09] se da un
interesante panorama histórico del área.

La bisimulación es una herramienta crucial en el proceso de estudiar estructuras rela-
cionales y abre el camino para poder analizar formalmente caracterizaciones de la ex-
presividad de los lenguajes modales. Intuitivamente, fijada una lógica L, la noción de
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viii Abstract

bisimulación define cuándo dos modelos son indistinguibles para L (es decir, no existe una
fórmula de L que sea verdadera en un modelo y falsa en otro). Existe una gran variedad de
áreas en donde la bisimulación juega ahora un rol central: lógica modal [vB76], teoŕıa de
concurrencia [Par81], teoŕıa de conjuntos [FH83], verificación formal [COP00], generación
de lenguaje natural [AKS08], etc.

El teorema de caracterización de van Benthem para la lógica modal básica caracteriza
el fragmento de primer orden invariante bajo la definición de bisimulación. Informalmente,
puede ser enunciado de la siguiente manera.

Teorema. Una formula de primer orden α es equivalente a la traducción de una fórmula
de la lógica modal básica si y solo si α es invariante bajo bisimulaciones.

Ahora bien, desde un punto de vista lógico, no existe una única noción de bisimulación.
A cada lenguaje modal le corresponde una noción de bisimulación distinta (o, en el caso
de lógicas sub-booleanas, una simulación [KdR97, KdR99]).

En general, cada combinación de lógica y bisimulación tiene su demostración de un
teorema equivalente a la caracterización de van Benthem. Un problema esencial es que
no parece haber una demostración general y cada caso necesita una nueva prueba usando
herramientas ad-hoc.

El nacimiento del concepto de bisimulacion y la teoŕıa de correspondencia ayudó a
responder nuevas preguntas desde una perspectiva puramente de teoŕıa de modelos. Un
ejemplo es la caracterización de definibilidad en lógica modal. Informalmente decimos que
una clase de modelos es definible por un conjunto de formulas Γ si está compuesta por
exactamente todos los modelos donde Γ es válida. Una clase se dice definible por una
fórmula modal si es definible por un conjunto singleton.

Seŕıa interesante saber qué propiedades debeŕıa cumplir una clase de modelos para
ser definible ya ser por un conjunto de fórmulas o por única una fórmula modal. Esta
pregunta ya se ha enunciado y respondido para la lógica de primer orden. Para ese caso,
la respuesta está formulada en términos de isomorfismos potenciales. En cambio, en el
caso de las lógicas modales la noción de bisimulación juega un rol esencial. Para dar un
ejemplo citamos el siguiente resultado para la lógica modal básica [BdRV01].

Teorema. Una clase de modelos K es definible por una formula modal si y solo si K y K
están cerrados por bisimulaciones y ultraproductos.

Por el momento, no es necesario preocuparse por la definición formal de ‘ultrapro-
ductos’. Sólo es necesario saber que los ultraproductos son una construcción de modelos
(con oŕıgenes algebraicos) muy útiles. Inicialmente, dicha construcción llamó la atención
a los lógicos porque pod́ıa ser usada para dar una demostración puramente algebraica del
Teorema de Compacidad para primer orden. Para un desarrollo detallado sobre ultrapro-
ductos recomendamos la lectura de [Kei08].

Como con el teorema de caracterización, resultados de definibilidad similares al aqúı
presentado valen para una amplia variedad de lógicas modales. De la misma manera, cada
lógica tiene su propia demostración especialmente diseñada para ese caso en particular.

Claramente, resultados como los de Caracterización y Definibilidad nos sirven para
entender mejor una lógica. Es más, estos resultados también tienen un gran impacto en
aplicaciones prácticas de Ciencias de la Computación.
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Consideremos el siguiente problema: Supongamos que estamos interesados en realizar
model checking, esto quiere decir, dado el modelo de un sistema, verificar automáticamente
si el modelo cumple una cierta especificación. Supongamos también que la especificación
puede ser escrita como una fórmula de primer orden ϕ.

Siempre podemos usar herramientas de primer orden para verificar si el modelo satis-
face ϕ pero eso puede resultar, como ya hemos mencionado, en un alto costo en cuanto
a complejidad computacional. Uno podŕıa tratar de encontrar lógicas más ‘baratas’ que
puedan resolver el problema. Si la misma propiedad pudiera ser expresada en una lógica
modal entonces probablemente podŕıamos mejorar la performance del proceso drásticamente.

Discutamos un ejemplo concreto: Supongamos que los puntos del dominio de nuestro
modelo son diferentes estados en la ejecución de un programa. De esta manera, hay una
transición desde un punto a otro si es posible ejecutar una transformación del programa
que lo lleve del estado a al estado b. Pensando en el modelo de esta manera se puede ver
que los estados sin sucesores representan estados donde el programa ha finalizado.

Una propiedad deseable del modelo podŕıa ser que “en cada estado del programa se
debe poder ‘escapar’ del flujo de ejecución”. Esto quiere decir que todo punto debe poder
ver directamente a un estado sin sucesores. Esta propiedad puede ser verificada probando
que la formula de primer orden

ϕ(x) = ∃y.R(x, y)→ (∃z.R(x, z) ∧ ∀w.¬R(z, w))

sea válida en el modelo pero también puede ser verificada probando que la fórmula de la
lógica modal básica ψ = 3> → 32⊥ sea válida en el modelo. Como estas dos fórmulas
representan la misma propiedad (son equivalentes) podemos usar model checkers que
acepten fórmulas de la lógica modal básica como entrada para poder resolver nuestro
problema.

Aparte de ser mucho más ‘amigable’, la simple existencia de la fórmula ψ nos dice que
la propiedad en cuestión es invariante bajo bisimulaciones. Esta información nos brinda
un beneficio extra. Supongamos que el modelo es automaticamente generado a partir de
una porción de código. Si, por ejemplo, alimentamos al generador con el código de un
sistema operativo entero, el modelo resultante será muy grande.

No es el objetivo de esta tesis meterse en estos temas pero existen algoritmos eficientes
para minimizar el modelo automáticamente. Estos algoritmos preservan la verdad de las
fórmulas invariantes por bisimulación [Hop71, Gri73]. Por lo tanto, al tener una fórmula
modal que representa nuestra propiedad, uno podŕıa primero minimizar el modelo y hacer
model checking sobre el modelo resultante que será, muy probablemente, mucho más chico
que el original.

Por otra parte, supongamos que se quiere verificar si el modelo es ‘irreflexivo’. Esto
quiere decir, que ningun elemento está relacionado consigo mismo. Si interpretamos esta
propiedad en el escenario descripto anteriormente, la propiedad diŕıa que ningun estado
debe poder quedarse ‘colgado’ en si mismo.

Para este caso, incluso cuando la propiedad puede ser puesta a prueba verificando la
validez de la fórmula de primer orden ¬R(x, x), no existe ninguna fórmula de la lógica
modal básica que sea equivalente. Esto puede ser demostrado facilmente ya que la ‘ir-
reflexividad’ no es invariante bajo bisimulaciones. Es más, la lógica modal básica tiene
una propiedad llamada la ‘propiedad de modelo de árbol’ o tree model property. Esto
quiere decir que cualquier fórmula satisfacible es también satisfacible en un modelo que
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tiene forma de árbol. Como corolario surge que no existe ninguna fórmula de la lógica
modal básica que caracterice irreflexividad, antisimetŕıa ni intransitividad.

Es este el fin de la lógica modal? Estamos condenados a usar la lógica de primer
orden en este caso? Afortunadamente, la respuesta es no. Aunque la lógica modal
básica no pueda expresar esas propiedades, existen lógicas modales más ricas (que aún
se mantienen por debajo del poder expresivo de primer orden) que pueden hacerlo. Como
ejemplo, pueden usarse las lógicas h́ıbridas [BdRV01] y las menos conocidas Memory Log-
ics [AFFM08] que serán oportunamente introducidas.

En śıntesis, resultados de teoŕıa de modelos como los de Caracterización y Definibilidad
dan información importante sobre las distintas lógicas. Se sabe que las demostraciones
de estos resultados para las diferentes lógicas modales tienen, de algún modo, el mismo
‘sabor’. Una prueba general que cubra todas las lógicas modales por debajo de primer
orden es, por el momento, un plan demasiado ambicioso.

En esta tesis damos condiciones muy generales pero suficientes para que las propiedades
de Caracterización y Definibilidad valgan en una amplia gama de lógicas modales: cualquier
lógica modal que cumpla nuestras condiciones verificará las propiedades de Caracterización
y Definibilidad. El resultado se puede aplicar tanto a lógicas para las que se saben ciertas
las propiedades en cuestión, como a lógicas para las que se desconoćıa si estas propiedades
vaĺıan o no. En el primer caso, obtenemos demostraciones nuevas de resultados ya cono-
cidos (en particular, aplicamos nuestro esquema a las lógicas h́ıbridas con el operador @
y nominales). En el segundo caso, obtenemos resultados novedosos, aplicando nuestras
herramientas a las memory logics, una familia de lógicas modales con comportamiento
dinámico introducidas recientemente en el área.



1. INTRODUCTION

1.1 A bit of history

The first traces of modal logic go back to 1918 with the work of C. Lewis [Lew18]. In
this publication he enriched the propositional calculus with two operators to try to solve
some problems with material implication. In a modern notation these operators would be
2 and 3. Given a formula ϕ, then, 2ϕ was meant to be interpreted as “it is necessary
that ϕ” and 3ϕ as “it is possible that ϕ”. At this point (called the ‘syntactic era’) all the
work on Modal Logic was strictly syntactical, there was no model theory for it.

Later, during the end of 1950s and early 1960s (sometimes called the ‘classical era’) the
first ideas on modal logic semantics were born. The seminal work of Prior [Pri57] (with
tense logic) and Jónson and Tarski with boolean algebras with operators [JT51, JT52]
later gave birth to Kripke semantics for modal logics. Kripke’s work [Kri63a, Kri63b]
proposes a relational semantic for modal logic, that is, a suitable model to evaluate a
modal formula is just a set of worlds (or points) and relations among them.

With these semantics, many difficult problems (such as knowing whether two axiomatic
systems are equivalent) had now turned a lot easier. The emergence of cannonical models
and completeness results were predominant in this period which helped link the ancient
‘syntactic era’ with the new semantics. Although the research made in the ‘classical era’
was not syntactical, it was anyways syntactically driven. That is, relational semantics,
were used as a tool to analyze logics and prove syntactical results. Model theory, was not
playing a big role by itself.

The so-called ‘modern era’ goes from the 1970s to the present days. In this period,
modal logic started to be used to describe relational structures and not just as a mere tool.
The germ of modal logic also started to spread to other fields, as an example, computer
scientists started to use modal logics to reason about programs represented as relational
models. The first steps in this line of work were taken by Pratt [Pra79] with his work
on propositional dynamic logic (PDL). Computer scientists added new problems to the
already growing pool of questions. Complexity of the satisfiability problem for modal
logics started to be studied with the work of Ladner [Lad77] for normal logics and Ladner,
Fischer and Pratt [FL79, Pra79] for PDL.

The discovery of frame incompleteness results showed that there are classes of models
for which there is no possible axiomatization (Thomason [Tho72, Tho74] and Fine [Fin74]).
This shows that modal logics can’t be analyzed from a purely syntactical perspective.

Modal logic is not isolated from the rest of the world. During this period, the expressive
power of modal logics was put into question. Which logic is the best to describe certain
relational structures? Now that we know that different logics have different computational
complexities, which is the ‘cheapest’ logic that solves my problem? The power of these
logics could be compared between each other and also with respect to classical logics such
as first and second order logic.

The results brought to light by this period helped shift the view of modal logics as
‘intensional’ formalisms that were only able to talk about ‘modes of truth’ to a much
broader panorama, which constitutes the current way of looking at modal logics.

1



2 1. Introduction

1.2 Basic modal logic

It is now time to formally meet the modal logics we are going to work with and its
relational semantics. We start by defining the basic modal language BML. Because we
are interested in working with many modalities at the same time, the diamond (3) and
box (2) operators are going to turn into the operators 〈r〉 and [r], where r indicates the
modality we are working with. When we are in a case where there is a single modality, we
are going to use 3 and 2 again.

Definition 1.2.1 (Syntax). Suppose we have a set of propositional symbols prop =
{p1, p2, . . . } and a set of modality symbols rel = {r1, r2, . . . }. We assume that both sets
are pairwise disjoint and countable infinite. A specific choice of prop and rel is called
the signature of the language. We define the set of formulas of the basic modal language
over the signature 〈prop,rel〉 as:

ϕ ::= > | ⊥ | p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ | 〈r〉ϕ | [r]ϕ

where p ∈ prop, r ∈ rel and ϕ,ψ are formulas.

Of course this is not a minimal definition. One can fix an adequate set of primitive
boolean connectors (like ¬ and ∧) and define all the other boolean connectors in terms of
that primitive set. Also, as it will follow from the satisfaction definition we are going to
present below, diamond and box are dual operators, and therefore for all r ∈ rel, 〈r〉ϕ
can be defined as ¬[r]¬ϕ, and conversely, [r]ϕ is equivalent to ¬〈r〉¬ϕ. We are not going
to bother yet to pick a set of primitives operators, since it is not really important at this
point. When we do that, we will only have to worry about choosing a convenient set that
allows us to generate the whole language.

Now we formally define the models for the basic modal language. As we mention
before, Kripke semantics define models as graphs, and in fact, as directed graphs with
decorations.

Definition 1.2.2 (Kripke models). Let S = 〈prop,rel〉 be a signature. A Kripke model
M for S is a tuple 〈W, (Rr)r∈rel, V 〉 satisfying the following conditions:

(i) W , the domain, is a nonempty set whose elements are called points, but also, de-
pending on the context, states, worlds, times, etc.

(ii) Each Rr, an accessibility relation, is a binary relation on W .

(iii) V : prop→ P (W ), the valuation, is a labeling function that assigns to each propo-
sitional symbol p ∈ prop a subset of W . We can think of V (p) as the set of points
in M where p holds.

Given a model M and w ∈ |M|, we call 〈M, w〉 a pointed model.

Before moving on, let us see an example of a Kripke model, in order to clarify the
concept. In the following model we will give a graphical representation of the domain and
the relations of the model. A node represents an element in the domain and an edge from
w to w′ labeled as R means that wRw′.



1.3. Model equivalence 3

Example 1.2.3. Consider the following model M = 〈W, (Rr)r∈rel, V 〉:

w1

R2

w2

w3

w4

p

p, q

q

R1

R1

R2

R2

R1

This model has a domain of four points, W = {w1, w2, w3, w4}. The signature in which
it is based on is 〈prop = {p, q},rel = {r1, r2}〉, that is, it has two modalities, r1 and r2,
and two propositional symbols, p and q. We explicitly indicate in the picture the places
where the propositional symbols hold. Translated to the valuation function V , that means
that V (p) = {w1, w3} and V (q) = {w2, w3}. Observe that at w4 no propositional symbol
holds.

Now we are ready to define the semantics for the basic modal language, since we already
have both the syntax and the structures the language is going to talk about. Recall that
modal logics describe Kripke structures from an internal perspective. This means that, in
contrast with first order logic in which formulas see models from some kind of omniscient
lookout point, modal formulas are evaluated at some particular point of the model.

Definition 1.2.4. Given the model M = 〈W, (Rr)r∈rel, V 〉 and w ∈ W , we inductively
define the notion of a formula ϕ being satisfied (or true) in M at the point w as follows:

M, w |= > always
M, w |= ⊥ never
M, w |= p iff w ∈ V (p) p ∈ prop
M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ
M, w |= ϕ→ ψ iff M, w 6|= ϕ or M, w |= ψ
M, w |= ϕ↔ ψ iff M, w |= ϕ if and only if M, w |= ψ
M, w |= 〈r〉ϕ iff there is a w′ such that wRrw

′ and M, w′ |= ϕ
M, w |= [r]ϕ iff for all w′ such that wRrw

′,M, w′ |= ϕ

Given a modelM, we say that ϕ is globally satisfied (or globally true) onM, and write
M |= ϕ, if for all points w in the domain of M we have that M, w |= ϕ. A formula ϕ is
universally valid if it is globally satisfied in all models, and in that case we write |= ϕ. A
formula ϕ is satisfied in a model M when there is a point in M where ϕ is true, and ϕ
is satisfiable if there is some point in some model at which it is satisfied. When working
with sets of formulas, these definitions are lifted in the expected way.

1.3 Model equivalence

Let M and M′ be two models for a logic L, and w and w′ be two points in M and M′
respectively. We say that w and w′ are L-equivalent (notation: w ≡L w′) if they make
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the same L-formulas true.1 This means that, although the models may be different, if we
look at w and w′ “through the glasses of the logic L” they are indistinguishable. Consider
now the following two models.

w

M1

v

M2

Fig. 1.1: The points w and v are BML equivalent.

Let us consider the basic modal language. Assuming that V (p) = ∅ in both models
for all p ∈ prop, is there a way to distinguish w from v in BML? That is, is there a basic
modal formula that is true at w and false at v? It doesn’t seem to be easy to find one. On
the other hand, if we can use first order logic this is quite straightforward: the formula
¬R(x, x) is true if we assign w to x, and false in the case of v.

Equivalence as a structural notion

One could pick two pointed models 〈M, w〉 and 〈N , v〉 and ask wether they are L-equivalent
for a given logic L without checking every possible formula. For example, in Figure 1.1,
we would like to know if there is a structural relationship between the models that makes
them equivalent for BML.

In classical first-order logic this relationship corresponds to potential isomorphisms,
which is defined as follows in [CK90].2

Definition 1.3.1 (Potential isomorphism). Let Mf and N f be first order models with
domains M and N respectively. A potential isomorphism betweenMf andN f is a relation
Z on the set of pairs of finite sequences 〈a1, . . . , an〉, 〈b1, . . . , bn〉 of elements of A and B
of the same length such that:

(i) ∅ Z ∅.
(ii) If 〈a1, . . . , an〉 Z 〈b1, . . . , bn〉 then (Mf , a1, . . . , an) and (N f , b1, . . . , bn) satisfy the

same atomic formulas.

(iii) If 〈a1, . . . , an〉 Z 〈b1, . . . , bn〉 then for all c ∈ M there exists d ∈ N such that
〈a1, . . . , an, c〉 Z 〈b1, . . . , bn, d〉 and vice versa.

We useMf ∼= N f to note that there exists a potential isomorphism betweenMf and N f .
Observe that potential isomorphism relations are symmetrical, that is, Mf ∼= N f if and
only if N f ∼=Mf .

Given two first-order models Mf ,N f if Mf ∼= N f then the models are indistin-
guishable by first-order logic [CK90, Proposition 2.4.4] (they are also called elementary
equivalent).

1 When the logic is clear from context we don’t add the subscript L.
2 In the literature, such as [CK90], potential isomorphism are sometimes called ‘partial isomorphism’

because they are formed of sequences of isomorphism with restricted domain.
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In the modal domain, take the basic modal logic as an example, the notion of bisimula-
tion between models gives a structural notion which implies that the models are equivalent
when looking through the glasses of basic modal logic [BdRV01, Section 2.2]. For a detailed
historical insight on bisimulation we recommend [San09].

Let’s take a look at the definition of bisimulation for the basic modal logic. We will
give the definition for the monomodal version of BML because its simplicity is suitable
for this introduction but all the definitions and results of this chapter also hold for the
multimodal case.

Definition 1.3.2 (Bisimulation for BML). A bisimulation between two BML models
M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 is a non-empty binary relation Z ⊆ W ×W ′ be-
tween their domains such that whenever wZw′ we have that:

Atomic harmony: w and w′ satisfy the same propositional symbols.
Forth: if wRv, then there exists a point v′ in M′ such that vZv′ and w′R′v′.
Back: if w′R′v′, then there exists a point v in M such that vZv′ and wRv.

If there is a bisimulation between two models M and M′ we say that M and M′ are
bisimilar and we write M↔M′. Moreover, we say that two points w ∈M and w′ ∈M′
are bisimilar if they are related by some bisimulation, and we write M, w ↔M′, w′. We
write w ↔w′ when the models are clear from context.

Returning to the modelsM1 andM2 we have just presented in Figure 1.1, it is easy to
see that M1, w ↔M2, v. The bisimulation would be as follows (the dotted line indicates
the pairs in the bisimulation relationship):

w v

Fig. 1.2: Bisimilar models.

The definition of bisimulation we just gave is specifically designed for the basic modal
logic, and thus the expected property is that satisfiability of formulas in the basic modal
logic is invariant under bisimulations as proved in [BdRV01].

Theorem 1.3.3. Let M and M′ be two Kripke models over the same signature. Then,
for every w ∈ M and w′ ∈ M′, if w ↔w′ then for every formula ϕ of BML, M, w |= ϕ if
and only if M′, w′ |= ϕ.

The aforementioned logics, namely BML and first order logic, have both negation
and disjuction in their languages and both “model equivalence” notions (bisimulation and
potential isomorphisms) are symmetrical. In many areas of computer science one finds
logical formalisms that lack some of the standard Boolean connectives ‘and’, ‘or’ and
‘not’. In particular, negation-free logics are widely used in areas as diverse as semantics of
programming and knowledge representation. In some applications, such as the generation
of referring expressions [AKS08], Boolean negation may be unnatural.
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Take now the basic sub-boolean modal logic, BML-, which is defined as BML but
doesn’t have negation nor the 2 modality. As the language is weaker, the notion of
model equivalence should change. Bisimulations, for example, are too strong for negation-
free logics because they preserve negation. In [BdRV01, Definition 2.77] we can find the
definition of the concept of simulation for negation-free logics. If there is a simulation from
M, w to N , v then every formula true at M, w is also true at N , v. The formal definition
is as follows.

Definition 1.3.4 (Simulation for BML-). A simulation between two modelsM = 〈W,R,
V 〉 and M′ = 〈W ′, R′, V ′〉 is a non-empty binary relation Z ⊆ W × W ′ between their
domains such that whenever wZw′ we have that:

Atomic condition: If w ∈ V (p) then w′ ∈ V (p) for all p ∈ prop.
Forth: if wRv, then there exists a point v′ in M′ such that vZv′ and w′R′v′.

If there is a simulation between two modelsM andM′ we writeM →M′. Moreover, we
say that two points w ∈M and w′ ∈M′ are similar if they are related by some simulation,
and we write M, w →M′, w′. We write w →w′ when the models are clear from context.

Observe that, in this case, half of the “Atomic harmony” condition has been removed.
Another point to be taken into account is that even though BML’s bisimulation is symmet-
rical, simulations need not to be. This notion is specially suited for BML- and preserves
every formula formed from ∧,∨ and 3. The following theorem states this formally.

Theorem 1.3.5. Let M and M′ be two Kripke models over the same signature. Then,
for every w ∈ M and w′ ∈ M′, if w →w′ then for every formula ϕ of BML-; M, w |= ϕ
implies M′, w′ |= ϕ.

As the notion of simulation is less restrictive than the notion of bisimulation it should
be no surprise to find models which are similar but not bisimilar. Take, for example, the
following two models.

w0
p

p, q

v0

p

p, q

p, r

M1 M2

Fig. 1.3: Similar but not bisimilar.

Again, the dashed lines indicate the pairs in the simulation relation. We can see, that
M1, w0 →M2, v0, on the other hand, there is no bisimulation linking them. To show this,
it is enough to exhibit a formula ϕ such that M2, v0 |= ϕ and M1, w0 6|= ϕ. In this case,
a possible formula is 3r.
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Equivalence as a game

These notions of model equivalence can also be presented using a more dynamic perspec-
tive, closer to a form of process equivalence. For example, the task of determining whether
two models are bisimilar can be recast in the form of an Ehrenfeucht-Fräıssé game [EFT84].

Let 〈M1, w1〉 and 〈M2, w2〉 be two pointed models. An Ehrenfeucht-Fräıssé game
for the basic modal logic is defined as follows. There are two players called Spoiler and
Duplicator. Intuitively, Spoiler tries to devise a property true in one model and false in
the other. Conversely, Duplicator tries to ‘copy’ the property from one model to the other
by imitating Spoiler’s movements.

The two players compare successive pairs, starting from (M1, w1) and (M2, w2). Du-
plicator immediately loses if w1 and w2 do not coincide in the propositional symbols.
Otherwise, the game starts, with the players moving alternatively. Spoiler always makes
the first move of the game. In a turn of the game, Spoiler starts by choosing in which
model he will make a move. After that, he chooses a point which is a successor of the
current w1 or w2, and Duplicator responds with a matching successor in the other model.
If the chosen points differ in the atomic propositions, Spoiler wins. If one player cannot
move, the other wins. Duplicator wins on infinite runs.

Note that with this definition, exactly one of Spoiler or Duplicator wins each game.
A strategy for Duplicator is a function that takes a valid state of the game (i.e. a pair
〈a, b〉 with a ∈ |M1| and b ∈ |M2|) and returns a possible next move for Duplicator.
A strategy for Spoiler is defined in the same way but note that the function should also
return the model in which Spoiler should make the move. We say that a player is following
a strategy σ when all his moves in a game comply with the answer of σ for every stage of
the game. A strategy is winning if the player following it necessarily wins the game, no
matter what his opponent plays. Given two pointed models 〈M1, w1〉 and 〈M2, w2〉 we
will write 〈M1, w1〉 :b 〈M2, w2〉 when Duplicator has a winning strategy for the game.

Intuitively, this game captures exactly the zigzag behavior of bisimulations, and the
atomic harmony condition. The two notions are equivalent, but depending on the context,
one can be more natural than the other.

Proposition 1.3.6. [GO05] Let 〈M1, w1〉 and 〈M2, w2〉 be two BML pointed models,
then 〈M1, w1〉 :b 〈M2, w2〉 if and only if 〈M1, w1〉 ↔〈M2, w2〉.

The perspective of model equivalence as a game is not restricted to the basic modal
logic. With minor modifications to this notion of game we can create a notion that is
suitable for BML-, for instance. An Ehrenfeucht-Fräıssé game for BML- is the same as
the game for the basic modal logic but spoiler can’t choose the model where he is playing.
That is, Spoiler starts playing in M1 and he won’t be able to change to M2.

Suppose that Spoiler and Duplicator start a game standing in (M1, w1) and (M2, w2)
respectively. If Duplicator has a winning strategy then M1, w1 →M2, w2. On the other
hand, if Spoiler has a winning strategy thenM1, w1 6→M2, w2. We will write 〈M1, w1〉 :s

〈M2, w2〉 when Duplicator has a winning strategy for the game. The following proposition
states the equivalence between BML- simulation and the game definition.

Proposition 1.3.7. Let 〈M1, w1〉 and 〈M2, w2〉 be two BML- pointed models, then
〈M1, w1〉 :s 〈M2, w2〉 if and only if 〈M1, w1〉 →〈M2, w2〉.

Summing up, simulations and bisimulations are very powerful tools to measure the
expressivity of a logic: they provide us with structural conditions on the models that char-
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acterizes the appropriate structure preserving morphisms. Since simulations are directly
linked to the expressivity of a given logic, there is not a unique notion of simulation. Here
we have just presented the notion of bisimulation for BML and simulation for BML-, but
for every logic we need to find a suitable definition, and this notion will reflect the logic’s
expressive power. In this sense, looking for the appropriate notion of model equivalence
allows us to learn about the logic we are working with.

1.4 Saturation

We have discussed a lot about model equivalence notions, in particular about simulations
and bisimulations, but we have been avoiding a fundamental question. Let’s focus on
bisimulations, we know that M, w ↔N , v implies M, w ≡ N , v. Does, in general, the
converse hold? That is, does M, w ≡ N , v imply M, w ↔ N , v? The answer is no.
Consider the following two models:

68 2 Models

. . . . . .
. . . . .

Fig. 2.5. Equivalent but not bisimilar.

transition systems (LTSs) are a standard way of thinking about computation: when

we traverse an LTS we build a sequence of state transitions — or to put it another

way, we compute. When are two LTSs computationally equivalent? More pre-

cisely, if we ignore practical issues (such as how long it takes to actually perform

a computation) when can two different LTSs be treated as freely exchangeable

(‘observationally equivalent’) black boxes? One natural answer is: when they are

bisimilar. Bisimulation turns out to be a very natural notion of equivalence for both

mathematical and computational investigations. For more on the history of bisim-

ulation and the connection with computer science, see the Notes.

Remark 2.22 (Bisimulation and First-Order Logic)According to Theorem 2.20

modal formulas cannot distinguish between bisimilar states or between bisimilar

models, even though these states or models may be quite different. It follows

that modal logic is very different from first-order logic, for arbitrary first-order

formulas are certainly not invariant under bisimulations. For example, the model

of Example 2.17 satisfies the formula

if we assign the state to the free variable . This formula says that there is a

diamond-shaped configuration of points, which is true of the point in , but

not of the state in . But as far as modal logic is concerned, and , being

bisimilar, are indistinguishable. In Section 2.4 we will start examining the links

between modal logic and first-order logic more systematically.

Now for a fundamental question: is the converse of Theorem 2.20 true? That is, if

two models are modally equivalent, must they be bisimilar? The answer is no.

Example 2.23 Consider the basic modal language. We may just as well work with

an empty set of proposition letters here. Define models and as in Figure 2.5,

where arrows denote -transitions. Each of and has, for each , a finite

branch of length ; the difference between the models is that, in addition, has an

infinite branch.

M1 M2

It can be shown that, although w and w′ satisfy the same BML formulas, there is no
possible bisimulation between them. Recall that in Section 1.3 we presented an alternative
interpretation of bisimulations as games. We will now use that notion to prove that these
models are not bisimilar.

Set a game between Duplicator and Spoiler with them starting at (M1, w) and (M2, w
′)

respectively. The first turn is for Spoiler. He chooses to stay in M2 and move to the
successor of w′ that lays in the infinite branch of the model. Now it is Duplicator’s turn,
he must move to a matching world in M1. As the atomic harmony condition is trivially
satisfied by any two pairs of these models, the only problem could arise if Spoiler makes
a move and Duplicator has no possible successors to move to. Duplicator has to choose a
branch inM1 and move to it. Suppose, without loss of generality, that Duplicator chooses
a branch with k nodes. You can easily see that, as there is no going back, if Spoiler carries
on moving in his infinite branch there will be a moment (after k moves) when Duplicator
hits the end of his branch in M1. In that moment Spoiler wins the match.

The strategy we’ve described guarantees that Spoiler will win no matter what Duplica-
tor chooses. Therefore, as Spoiler has a winning strategy the models are not bisimilar. In
fact, as Spoiler starts the game inM2 and never changes the model this argument proves
that M2, w

′ 6→M1, w which is a stronger result.
Do not panic. There are some classes of models where modal equivalence implies

bisimilarity. A very useful one is the class of ω-saturated models. In order to present this
class we need some previous definitions.

The following notions will be given in terms of first order models and not BML models
but this shouldn’t carry any problem. Later, in Section 4.2, we will see that there is a
straightforward formalization that lets us think of a model as a BML or first order model
interchangeably.
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Notation 1.4.1. We will use ϕ(x) to note first order formulas with at most one free
variable x this notation extends to sets Γ(x) as expected. The notation g[x 7→ w] denotes
a valuation g′ that is the same as g on every parameter except on x where g′(x) = w.
Given a first order formula ϕ(x) we will hereafter noteMf |= ϕ(x)[w] to meanMf , g[x 7→
w] |= ϕ(x). Observe that, as ϕ has only one free variable x the valuation will be irrelevant.
Given a model M we use |M| to denote the domain (or universe) of M.

Definition 1.4.2. A set of first order formulas with (at most) one free variable is called
a type. Given a model Mf we say that a type Γ(x) has a witness if there exists a state
w such that for every formula ϕ(x) ∈ Γ(x) we have Mf |= ϕ(x)[w]. A type is finitely
realizable if every finite subset has a witness.

Definition 1.4.3 (Expansion). Let Mf be a first order model with domain W . For
A ⊆ W , the expansion of F with A (noted F[A]) is obtained by extending F with new
constants a for every element a ∈ A. The model Mf

A is the same as Mf but interprets
the constants as expected.

We are now ready to define ω-saturation. Informally, it resembles some kind of ‘intra-
model’ compactness. That is, given a type Γ(x) if every finite subset is satisfied in (possibly
different) elements in Mf then there is a single element in Mf which satisfies the whole
set. Formally speaking the definition is as follows.

Definition 1.4.4 (ω-saturation). A first order model Mf is called ω-saturated if for
every finite A ⊆ |Mf | the expansionMf

A has a witness for every type Γ(x) that is finitely
realizable in Mf

A.

In the beginning of this section we presented two models. One of them had branches
of increasing length, the other one was an exact copy of the first but with an extra
infinite branch. We have already seen that, in some sense, the first model was ‘lacking’
something that the second one had. The saturation that ω-saturated models have make
them complete in this sense. The following theorem is a very important result which gives
strength to the class of ω-saturated models.

Theorem 1.4.5 ([BdRV01]). Let 〈M, w〉 and 〈N , v〉 be two ω-saturated models,

If M, w ≡ N , v then M, w ↔ N , v.

Therefore, in the ω-saturated class, bisimulation and BML equivalence coincide. This
proof strongly uses the structural definition of bisimulations and thus we will not get into
this kind of detail until we need it in Chapter 5.

A particularly interesting fragment of the ω-saturated class is the finitely branching
fragment, that is, every world has only finitely many successors. Another different (and
more restrictive) example of ω-saturated class is the class of finite models.

To finish this section we want to say some final words about ω-saturated models. The
use of ω-saturated models will be crucial to prove the results in this thesis. Because of their
special properties one could think that these models are rather scarce but, fortunately,
they abound. Moreover, there is a standard way of, given an F-model Mf , construct an
ω-saturated model Mf

∗ such that Mf ≡F Mf
∗ . This theorem is stated as Theorem B.7

and proved in the Appendix.
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1.5 What this thesis is about

For a wide spectrum of applications, which use logic as a tool, first order logic is enough
to theoretically solve their problems. However, complications arise when we consider the
behavior of first order logic in practice. First of all, first order logic is undecidable, that
is, there is no algorithm to decide whether an arbitrary formula is a satisfiable. Second,
in general, most applications do not use the entire expressive power that first order gives.
Therefore, even when working in decidable fragments of first order logic, they may be
paying an excessive payload for things they will not be using.

Modal logics are very good at molding themselves to fit a particular purpose. If you
know what you need it is most likely that you can end up with a modal logic which
has exactly the required expressive power but with better properties than first order
logic in terms of complexity and decidability. For example, BML is decidable and has
a PSPACE-complete satisfiability problem.

Along this thesis we will work with logics that are less (or equally) expressive than first
order logic. Informally, this means that if one can express a property with a modal formula
then there is always some way to express the same property in first order. In other words,
one can say that if a modal formula ϕ denotes some property then there exists some kind
of translation to a first order formula ϕt which denotes the same property.

Johan van Benthem studied the connection between modal and first order logic [vB84].
One of his best known results in this area is the ‘Characterization Theorem’ which identifies
BML as the bisimulation-invariant fragment of first order logic. Informally, one can state
the theorem as follows.

Theorem. A first order formula α is equivalent to the translation of a BML formula if
and only if α is invariant under bisimulations.

Note that in this case the notion of bisimulation is that of BML. As we have said before,
every modal logic should have a potentially different notion of bisimulation. For example,
we have already seen the notion of simulation for BML-. Using this notion, Kurtonina and
de Rijke proved that BML- is the simulation-invariant fragment of first order logic.

BML is just the tip of the iceberg, there exist plenty of extensions of BML to suit
particular needs. Many modal logics admit a translation to first order logic and a char-
acterization of this kind has been given for some of them. One essential problem is that
there seems to be no general proof and every case needs a new ad-hoc proof.

The birth of the concept of bisimulation and correspondence theory helped answer new
questions from a purely model-theoretic perspective. One example is the characterization
of modal definability. Informally, we say that a class of models is definable by a set of
formulas Γ if it is composed of exactly all the models where Γ is valid. A class is definable
by a single formula if it is definable by a singleton set.

It would be interesting to know which properties should a class of models satisfy in
order to be defined by a modal formula or by a set of modal formulas. This question had
previously been stated and answered for classical first order logic [CK90]. Whereas the
answer for first order logic is presented in terms of potential isomorphisms, in the case of
modal logics, the notion of bisimulation plays an essential role. To uncover the panorama
we cite the following result for BML which can be found in [BdRV01].

Theorem. A class of models K is definable by means of a single BML formula if and only
if both K and K are closed under bisimulations and ultraproducts.
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Do not worry about what ‘ultraproducts’ means right now. They will be introduced
when needed. Just bear in mind that they are useful model construction tools (with
algebraic roots) which first caught the attention of logicians because they could be used
to give a purely algebraic proof of the Compactness Theorem for first order logic. For a
detailed survey on ultraproducts we recommend [Kei08].

As with the characterization theorem, definability results similar to the one presented
here also hold for a vast number of modal logics. Similarly, every logic has a proof that is
specially crafted for that case.

Clearly, characterization and definability results help us to better understand a logic.
Interestingly, these results also have a great impact in practical computer science.

Consider the following problem: Suppose you are into model checking, that is, given
a model of a system, test automatically whether this model meets a given specification.
Suppose that the specification can be written as a first-order formula ϕ.

You could always use first-order tools to check if the model satisfies ϕ but that can
result in a high complexity cost as we have already mentioned. One could try to see if
there are ‘cheaper’ logics that can be used to solve the problem. If we can express the
same property in some modal logic we may be able to drastically optimize the process.

Let’s discuss a concrete example. Suppose that the points in our domain model the
different states in the execution of a program and there is a transition from one point to
another if there is a possible transformation that brings state a into b. Thinking of the
model in this way would imply that states without successors (also called endpoints) are
states were the program has halted.

One possible property to be checked could be “every point should be able to imme-
diately ‘escape’ from the flow of execution”, meaning that, every point should be able to
directly see an endpoint. This property can be verified by checking that the first order
formula

ϕ(x) = ∃y.R(x, y)→ (∃z.R(x, z) ∧ ∀w.¬R(z, w))

is valid in the model but it can also be checked by verifying that the BML formula
ψ = 3> → 32⊥ is valid in the model. As we have an equivalent BML formula, we
can now use model checkers that accept BML formulas to solve our problem.

Apart from being more ‘user friendly’, the sole existence of the formula ψ tells us that
the property is invariant under bisimulations and this information bears an extra benefit.
Suppose that the model is automatically generated from a piece of code. If, for example,
we feed the generator with the code of an entire operating system, the resulting model
will be very large.

It is not the purpose of this thesis to get into this topic but there are (efficient)
algorithms to automatically minimize the model which preserve the truth of formulas
invariant under bisimulations [Hop71, Gri73]. Therefore one could first minimize the
model and then model check over the resulting model which will most likely be small with
respect to the original one.

On the other hand, suppose now that we want to check whether the model is ‘irreflex-
ive’, that is, no element is related with itself. If we interpret this property in the setting
described above, it would mean that no state has the possibility to ‘hang’ in itself.

For this case, although the property can be verified checking the validity of the first
order formula ¬R(x, x) in the model, there is no BML formula which does the job. This
can be shown easily because ‘irreflexivity’ is not invariant under bisimulations. Moreover,
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BML has the so-called tree model property which means that every formula satisfiable in
a model is also satisfiable in a model which is a tree. As a corollary we get that there is
no BML-formula characterizing irreflexivity, antisymmetry nor intransitivity.

Is this the end of modal logic? Are we condemned to use first-order logic in this case?
Fortunately, the answer is no. Although BML can’t express those properties, there are
richer logics (which still lay below first order) which can do the job. For example, Hybrid
Logics [BdRV01] and the less known Memory Logics [AFFM08] which will be introduced
later in this thesis.

To summarize, model theoretic results such as Characterization and Definability give
important information about different logics. It is well known that the proofs of those
results for several modal logics have, somehow, the same ‘taste’. A general proof for most
modal logics below first order is still too ambitious. In this thesis we plan to isolate
sufficient conditions for the characterization and definability theorems to hold in a wide
range of logics. Along with these conditions we will prove that, whichever logic that
meets them, satisfies both theorems. Therefore, one could give an unifying proof for logics
with already known results. Moreover, one will be able to prove characterization and
definability results for logics that have not yet been investigated. In both cases, it is only
needed to check that a logic meets the requirements to automatically derive the desired
results.



2. KNOWN RESULTS FOR BML

If we want to generalize a result we’d better understand how it works in specific cases.
This chapter is devoted to sketching the proof of some theorems for BML. This will be
helpful to identify the main ideas in their proofs and, with them in mind, get ready to
undertake a generalization.

2.1 Characterization

We have talked about van Benthem’s characterization theorem. We know that BML is
strictly less expressive than first order logc, therefore, there are some ‘statements’ that you
can make in first order logic which can’t be made in BML. Informally, the Characterization
Theorem identifies which first order formulas have an equivalent formula in the language
of BML. More formally it is stated as follows.

Theorem (van Benthem). A first order formula α(x) with at most one free variable is
equivalent to the translation of a BML formula if and only if α(x) is invariant under
bisimulations.

Some work is needed for this wording to be precise. First of all, we are comparing modal
formulas with first order formulas. Also, implicitly, when we talk about two formulas
being ‘equivalent’, we are evaluating them in some model. That’s a problem because BML

formulas are evaluated in Kripke models and first order formulas aren’t.
For us to be able to do such comparison between BML and first order logic we need

to define a formula translation and a way to interpret every BML model as a first order
model and vice-versa.

For this chapter we will set the signature for BML to be S = 〈prop,rel〉 with prop =
{p1, p2, . . . } and rel = {R} therefore we will use a single diamond. This restriction to
the unimodal case is only to make this introduction simpler. All these results also hold
for the multimodal case.

Definition 2.1.1 (Standard Translation). The Standard Translation function STx takes
a BML formula and returns a first order formula with at most one free variable x. It is
defined as follows.

STx(pi) = Pi(x) where pi ∈ prop
STx(¬ϕ) = ¬STx(ϕ)

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)
STx(3ϕ) = ∃y(xRy ∧ STy(ϕ)) where y is a fresh variable

We only define the translation for a basic (and adequate) connective set. It extends to the
full set of connectives as expected.

In this definition, we can already see that first order formulas include relations Pi and
R, this may give us a hint to define the first order signature. A first order signature is a
tuple 〈frel, fconst, ffunc〉 where frel is the set of relation symbols, fconst is the set
of constant symbols and ffunc is the set of function symbols. In our case we define the
first-order signature to be F = 〈{R,P1, P2, . . . }, ∅, ∅〉.

13
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Definition 2.1.2 (First order model). A first order model over the signature F is a tuple

Mf = 〈A, (RI)R∈frel, (f I)f∈ffunc, (cI)c∈fconst〉

where A is the (non empty) domain, each RI is the interpretation of the relation symbol
R, each f I is the interpretation for the function symbol f and each cI is the interpretation
for the constant symbol c.

In general we add a superscript or subscript f to first order models so it is easier to
distinguish them from modal models at first sight. We use e, w, v, . . . to refer to elements
of the domain of some model and g, h, . . . to refer to first order valuations.

The crucial point now is to see that there is a bijection between BML models over
the signature S and first order models over the signature F . Given a BML model
M = 〈W,R, V 〉 we can think of it as a first order model defined as

Mf = 〈W, {R,P1, P2, . . . }, ∅, ∅〉

where Pi = V (pi). With this definition one can easily see that, given a BML model M
and w ∈W ; M, w |= pi if and only if Mf |= Pi(x)[w].

On the other hand, observe that any first order model in this signature should be
of the form Mf = 〈W, {R,P1, P2, . . . }, ∅, ∅〉 and one can therefore build a BML model
analogously.

As it is usual in the literature, we will use, for this chapter only, the same model and
think of it as a BML or first order model as convenient. Now we can state the theorem
that links BML with first order.

Theorem 2.1.3 (Truth preservation). Let M be a BML model, w ∈ |M| and ϕ be a
BML formula,

M, w |= ϕ if and only if M |= STx(ϕ)[w].

This theorem states that for every BML formula there is a first order formula which is
true in exactly the same worlds, thus, they are equivalent. Now that we have this theorem
at hand it becomes clearer that we can compare formulas and models between BML and
first order logic.

The Characterization Theorem is stated in terms of ‘bisimulations’ and uses notions
we haven’t yet defined. To begin with, we copy the definition of BML bisimulation given
in Section 1.2.

Definition 2.1.4 (Bisimulation). A bisimulation between two models M = 〈W,R, V 〉
andM′ = 〈W ′, R′, V ′〉 is a non-empty binary relation Z ⊆W ×W ′ between their domains
such that whenever wZw′ we have that:

Atomic harmony: w and w′ satisfy the same propositional symbols.
Forth: if wRv, then there exists a point v′ in M′ such that vZv′ and w′R′v′.
Back: if w′R′v′, then there exists a point v in M such that vZv′ and wRv.

In particular, the theorem talks about first order formulas being bisimulation-invariant.
Van Benthem defines this concept as follows:
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Definition 2.1.5 (Bisimulation invariance). A first order formula α(x) is invariant for
bimulations if for all BML models M,N and w ∈ |M|, v ∈ |N | such that M, w ↔N , v
the following holds:

M |= α(x)[w] iff M |= α(x)[v].

Observe that, so far, we only know that BML formulas are invariant for bisimulations
and we don’t have a result regarding first order formulas. The result for BML formulas
was stated in Theorem 1.3.3. On the other hand, when talking about first order formulas,
some may be invariant for bisimulations and some others not. The set of formulas that are
invariant for bisimulations is exactly the one identified by the characterization theorem.

As an example, take the following two BML-bisimilar models. The first model is
a single reflexive point and the second one is isomorphic to 〈N, <〉.1 The dashed lines
represent the pairs in the bisimulation relation.

w M1

. . .w′ M2

Now take the first order formula ϕ(x) = R(x, x). This formula holds at an element of the
domain if and only if it is reflexive. It is clear that M1 |= ϕ(x)[w] and M2 6|= ϕ(x)[w′].
As there is a bisimulation w ↔w′, this two models serve as a proof that reflexivity is not
invariant under bisimulations.

This also means that there is no possible BML formula equivalent to ϕ(x). Suppose
that there exists a BML formula ψ whose translation is equivalent to ϕ. By Theorem 2.1.3
we have that M1, w |= ψ iff M1 |= ϕ(x)[w] and M2, w

′ |= ψ iff M2 |= ϕ(x)[w′]. We can
conclude that M1, w |= ψ and M2, w

′ 6|= ψ. This contradicts Theorem 4.2 because, as it
is a BML formula, ψ should be invariant under BML bisimulations.

We have proved that as ϕ(x) is not invariant under bisimulations it is not equivalent
to the translation of any BML formula. What we have done for one particular case, the
characterization theorem proves for an arbitrary first order formula. Moreover, it also
proves the converse. Now that we understand what we are trying to prove we are ready
to begin with the proof itself.

The proof of the Characterization Theorem

In this section we will skim through the proof of van Benthem’s Characterization Theorem.
It is not the goal of this section to give a detailed proof but to review the main ideas that
support it. For a detailed proof refer to [BdRV01, Section 2.6].

Theorem. A first order formula α(x) with at most one free variable is equivalent to the
translation of a BML formula if and only if α(x) is invariant under bisimulations.

1 Therefore BML can’t distinguish between a single reflexive point and the naturals. It is surprising
that, as weak as it is, BML is still useful in practice.



16 2. Known results for BML

Left to right. This direction is easy, we argue by contradiction. Suppose that α(x) is
equivalent to the translation of a BML formula ϕ and it is not invariant under bisimula-
tions. That is, there exist 〈M, w〉 and 〈N , v〉 such that M, w ↔N , v but M |= α(x)[w]
and N 6|= α(x)[v].

Using Theorem 2.1.3 we get that M, w |= ϕ and N , v 6|= ϕ. As we have a bisimu-
lation linking those points and ϕ is a BML formula this drives us to a contradiction to
Theorem 1.3.3. Absurd.

Right to left. All the magic is in the proof of this direction. Suppose that α(x) is invariant
under bisimulations. Define the ‘modal consecuences of α’ as follows.

MOC(α) = {STx(ϕ) : ϕ is a BML formula and α(x) |= STx(ϕ)}

It is trivial (by definition) that α(x) |= MOC(α). As MOC(α) is formed by the translation
of BML formulas, if we can show that MOC(α) |= α(x) then we are done. We first sketch
the proof for this statement and then carry on.

Suppose that MOC(α) |= α(x), by compactness of first order logic there exists a finite
subset ∆ ⊆MOC(α) such that ∆ |= α(x). We therefore have |=

∧
∆ ↔ α(x). As every

formula in ∆ is the translation of a BML formula and STx(ϕ∧ ψ) = STx(ϕ)∧ STx(ψ) we
can conclude that

∧
∆ is also the translation of some BML formula. Therefore we have

proved that α(x) is equivalent to the translation of a BML formula.
Hence, it all boils down to proving that MOC(α) |= α(x). Assume that an arbitrary

model satisfies M |= MOC(α)[w]; we need to show that M |= α(x)[w]. The proof goes
as follows (we now focus on the ideas and then provide more detailed steps):

1. We first ‘create’ a new model 〈N , v〉 such that M, w ≡ N , v and N , v |= α(x). We
would like to transfer the validity of α(x) in N , v to M, w.

2. Using standard model theoretic tools (that will be explained later) we construct,
for M, w and N , v, ω-saturated extensions M∗, w∗ and N ∗, v∗ which are elemen-
tary equivalent to their originators. That is, they have the same first-order the-
ory and they are ω-saturated. Observe that this implies M∗, w∗ ≡ N ∗, v∗ and
N ∗ |= α(x)[v∗].

3. Using Theorem 1.4.5 seen in Chapter 1, asM∗, w∗ ≡ N ∗, v∗ (and they are saturated)
we have that M∗, w∗ ↔N ∗, v∗.

4. Finally, as N ∗ |= α(x)[v∗] and α(x) is invariant under bisimulations we get that
M∗ |= α(x)[w∗]. As M∗ has the same first order theory that its originator we
conclude that M |= α(x)[w].

That’s it! Those are the main points to bear in mind. The whole idea is to make
a ‘detour’ through the class of first order ω-saturated models where bisimulation and
equivalence do coincide. We can now proceed with the dissection of each point.

For the first point we do the following. Define the set Γ as the translation of the BML

theory of M, w, formally speaking

Γ = {STx(ϕ) : ϕ is a BML formula and M |= STx(ϕ)[w]}.

We claim that Γ ∪ {α(x)} is satisfiable. Suppose not, by first order compactness there
is an unsatisfiable finite subset Γ0 ⊆ Γ ∪ {α(x)}. Observe that Γ0 = {α(x), γ1, . . . , γn}
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should include α(x). If it is unsatisfiable it means that |= α(x)→ ¬
∧
γi. Hence, ¬

∧
γi ∈

MOC(α) because it is a modal consequence of α(x). Remember that one of our hypothesis
was M |= MOC(α)[w] therefore M |= ¬

∧
γi but this is impossible since every formula

in Γ was true at M, w by definition. Absurd.
As Γ ∪ {α(x)} is satisfiable we can say that there exists a model N and an element

v ∈ |N | such that N |= Γ[v] and N |= α(x)[v].
For the next three points the explanation given above should suffice. For further details

we give the references where the theorems that we used are proved. For the second point
we use Theorem B.7 of the Appendix on M and N and conclude exactly what we need.
The theorems needed for the third point are already mentioned in the enumeration so
there is nothing to add. The last point is the grande finale where the validity of α(x) is
transfered over the bisimulation to end up in M, w.

Observe that this proof works for BML which is a logic that has negation and dis-
junction. For negation-free logics the proof needs to be changed a little and for logics
lacking disjunction the proof really changes a lot. In [KdR97] you can find proofs for these
languages.

In Chapter 3 we propose a framework to generalize this proof. Although the proof
developed in this chapter looks pretty simple, in every step it makes use of a lot of sup-
positions that we may not be aware of. In a general scenario we will be working with
an arbitrary translation, an arbitrary signature, an almost unknown model structure, etc.
Because of the amount of uncertainty that we will have, we will need to do more com-
plex detours to take the flux of the proof to some better known landscape. Be sure to
remember this proof when reading Chapter 3 and 4. Going back and forth may be useful
to understand the motivation for some definitions.

2.2 Definability

In Section 1.5 we presented a piece of one of the Definability results for BML. In this
section we start by defining the concepts needed to state the full result.

Notation 2.2.1. Let K be a class of models we write K to denote the complement of K
with respect to the class of all models. This notation will be used for both modal and first
order models.

Definition 2.2.2. Let K be a class of pointed BML models.

(i) K is definable by a set of formulas Γ if and only if for every 〈M, w〉 it holds that
M, w |= Γ if and only if 〈M, w〉 ∈ K.

(ii) K is definable by a single formula if it is definable by a singleton set.

Theorem 2.2.3. Let K be a class of BML models.

(i) K is definable by means of a set of BML formulas if and only if K is closed under
ultraproducts and bisimulations and K is closed under ultrapowers.

(ii) K is definable by means of a single BML formula if and only if both K and K are
closed under bisimulations and ultraproducts.
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As before, we have to define what the closure condition mean for this theorem to
make sense. We start by giving an informal introduction to ultraproducts. For this
section it is enough to think of ultraproducts as follows: Given a family of first order
models (Mi, wi)i∈I we can combine them and get a resulting model which is called the
ultraproduct.2 When every model in the family is the same we call the resulting model an
ultrapower.

This new model satisfies some nice properties that will be useful for us. We take one
of them from Appendix B to illustrate the idea.

Theorem. LetMf , w be the ultraproduct of (Mi, wi)i∈I and let Γ be a set of first order
formulas.

• If every Mi, wi |= Γ then M, w |= Γ.

• In the particular case of an ultrapower this implies that Mi, wi |= ϕ if and only if
M, w |= ϕ.

We are ready to define the closure under ultraproducts and ultrapowers. These defi-
nitions should only be used for the special case of BML. In the next sections we will need
to redefine these notions to have a broader reach.

Definition 2.2.4. A class K of pointed BML models is closed under ultraproducts if and
only if, for every family of BML models (Mi)i∈I with Mi ∈ K the ultraproduct of those
models also belongs to K. The closure under ultrapowers is defined as expected.

With respect to the closure under bisimulations, it is a lot easier to imagine what it
means. We define the notion of closure under bisimulations for the special case of BML

bisimulations.

Definition 2.2.5. Let K be a class of BML models, it is closed under bisimulations if
and only if the following holds: For every 〈M, w〉 ∈ K, if 〈N , v〉 is such thatM, w ↔N , v
then 〈N , v〉 ∈ K.

The proof of the Definability Theorem

In this section we give a sketch of the proofs for the right to left directions of the theorem.
A detailed version can be found in [BdRV01, Section 2.6].

Right to left of (i). Suppose that K is closed under ultraproducts and bisimulations and
K is closed under ultrapowers. The main ideas to prove this theorem are the following:

1. Propose a set Γ = ‘theory of K’ as a candidate set of formulas defining K. Every
model of K trivially makes Γ true. For Γ to define K we still need to prove the other
half, that is: If M, w |= Γ then 〈M, w〉 ∈ K.

2. Take any M, w |= Γ, we will get to a contradiction by assuming that 〈M, w〉 ∈ K.
We start by showing that there is a model 〈N , v〉 ∈ K such thatM, w ≡ N , v. Here
we will use that K is closed under ultraproducts.

2 Strictly speaking, there is also another ingredient which is called ‘ultrafilter’. Consult Appendix B for
further information on ultrafilters and ultraproducts. We recommend its lecture.
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3. As we did in the proof of the characterization theorem, we construct, for M, w and
N , v, ω-saturated extensions M∗, w∗ and N ∗, v∗ which are elementary equivalent
to their originators. That is, they have the same first-order theory and they are
ω-saturated. Observe, again, that this impliesM∗, w∗ ≡ N ∗, v∗ and N ∗ |= α(x)[v∗].

One important difference with respect to the proof of the characterization proof
is that here we use that K and K are closed under ultrapowers and conclude that
〈M∗, w∗〉 ∈ K and 〈N ∗, v∗〉 ∈ K.

4. Using Theorem 1.4.5 seen in Chapter 1, asM∗, w∗ ≡ N ∗, v∗ (and they are saturated)
we have that M∗, w∗ ↔N ∗, v∗.

5. Finally, as M∗, w∗ ↔N ∗, v∗ and K is closed under bisimulations then 〈N ∗, v∗〉 ∈ K.
Absurd, in point 3 we had said that 〈N ∗, v∗〉 ∈ K.

As seen before, one of the central tricks is the detour through ω-saturated models. The
details are as follows: In the first point the set should be defined as

Γ = {ϕ : for every model 〈A, u〉 in K; A, u |= ϕ}.

For the second point, let Σ = {ϕ :M, w |= ϕ} be the theory of 〈M, w〉. If we find a model
in K that models Σ then it will be BML equivalent to 〈M, w〉.

The proof in [BdRV01] hand-crafts an ultraproduct of models to make this step but
we will take a route which keeps us away from the inner works of ultraproducts. Suppose
that there is no such set in K making true all of Σ. By Theorem A.1 there exists a finite
subset Σ0 ⊆ Σ that is not satisfiable in K. Then ¬

∧
Σ0 would be true in K. In particular,

M, w 6|=
∧

Σ0. This is absurd because Σ0 is a subset of w’s theory.
Therefore, there exists a model 〈N , v〉 ∈ K such that N , v |= Σ which implies that

M, w ≡ N , v.
The third and fourth points are justified as in the characterization theorem and the

fifth point is self-explanatory.

Right to left of (ii). Suppose that both K and K are closed under bisimulations and ultra-
products. Using the first part of this theorem we know that there exist two sets Γ1,Γ2

respectively defining K and K. It is clear that their union should be unsatisfiable because
no model can be in K and K at the same time.

Using the compactness theorem, as Γ1∪Γ2 is unsatisfiable there must be a finite subset
Γ0 ⊆ Γ1 ∪ Γ2 which is unsatisfiable. Let Γ0 = {α1, . . . , αn, β1, . . . , βm} where αi ∈ Γ1 and
βj ∈ Γ2. As Γ0 is unsatisfiable we can say that |= α1 ∧ · · · ∧ αn → ¬(β1 ∧ · · · ∧ βm). We
show that it is exactly ϕ = α1 ∧ · · · ∧ αn that defines K.

Trivially every model in K satisfies ϕ. For the converse, take M, w |= α1 ∧ · · · ∧ αn,
then M, w 6|= β1 ∧ · · · ∧ βm therefore 〈M, w〉 /∈ K which means that 〈M, w〉 ∈ K.

To close this section we want to draw attention to one of the hypothesis in (ii): the need
for both classes to be closed under bisimulations. Observe that, as the bisimulation relation
is symmetric we could’ve just asked for either K or K to be closed under bisimulations and
that would’ve been enough. One can prove that K is closed under bisimulations if and
only if K is.

On the other hand, in the proof of (ii) from right to left, we strongly use that both
classes are closed under bisimulations to get two sets that define each of the classes. What
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would happen now if we were talking about simulations? As simulations are not necessarily
symmetrical we can’t be sure that K is closed under simulations if and only if K is. This
fault brings problems if we want to follow this same proof scheme.

In [KdR97, KR97] there are alternative proofs for this result for model equivalence
notions that aren’t symmetrical. None of them are general enough to fit the framework
that we will develop but both have proved of great inspiration for the results given in
Section 4.3.



3. THE GENERALIZED FRAMEWORK

In this chapter we set up a proper framework which will aid us to prove generalized results
for modal logics which lay (in terms of expressivity) below first order logic. We start by
stating in which sense our results pursue a generalization. We will focus on the following
two axes.

Arbitrary modal logic
We want to obtain characterization and definability results which hold for an arbitrary
modal logic. Due to the broad spectrum of different logics we still have to stop somewhere.
When we say ‘arbitrary’ we mean any modal logic with conjunction and disjunction (in-
terpreted as usual) which is interpreted over extensions of Kripke models.

These logics may come with different model equivalent notions. We want to be able to
derive results no matter what the simulation or bisimulation relation looks like. We will
only put constraints on the ‘arity’ of the relation, that is, it should link an element from
the domain of one model to an element of the domain of other model. It will later become
clear that this last generalization comes with a great price to pay: we know nothing about
the structural properties involved in this notion.

Relativization to a particular class of models
The results presented in Chapter 2 were stated with respect to the class of all models.
That is, BML is the fragment of first order formulas which are bisimulation invariant in
the class of all first models. Think of the following motivational example.

The ‘Basic Temporal Logic’ is a modal logic which is defined as follows: Its language
has the full boolean connective set and two modalities F and P which are often called
‘future’ and ‘past’. The classical perspective on this logic interprets it over Kripke models
defined as a tuple 〈W,R, V 〉 and its satisfaction definition is the following.

M, w |= Fϕ iff there is a v such that wRv and M, v |= ϕ
M, w |= Pϕ iff there is a v such that vRw and M, v |= ϕ

In the definition it is clear that the F modality looks forward in the relation R and the
P modality looks back on it, hence the names ‘future’ and ‘past’. Observe that the F
modality can be thought as a normal ‘diamond’ over the relation R but that is not possible
with the P modality.

An alternative interpretation is as follows. Interpret the logic over Kripke models which
are tuples 〈W,R1, R2, V 〉 where R1 = R−1

2 . With this restriction we can give a different
satisfaction definition for the modalities.

M, w |= Fϕ iff there is a v such that wR1v and M, v |= ϕ
M, w |= Pϕ iff there is a v such that wR2v and M, v |= ϕ

In this case, both modalities are simple ‘diamonds’ (which have been given fancy names
F and P ). Does a similar characterization theorem hold in this case? Which properties
should the restricted model class have for the characterization to hold? These are the kind
of questions that we will be adressing in the following chapters.

21
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When talking about definability we can think of relative definability as follows: Is the
class K definable with a BML formula given that we only consider models within class K’?
That is, is there a formula ϕ such that for every model in K’, M, w |= ϕ if and only if
〈M, w〉 ∈ K?

The results stated in Chapter 2 are valid for the special case where K’ is the class of all
models. In practice, depending on the domain of application, it is common to work with
restricted classes of models such as finite models, tree models, acyclic models, etc. We
want to know whether these restrictions give us extra information and turn classes that
were previously undefinable into definable classes. A relativized version of the definability
theorem should aid us in this quest.

3.1 Basic definitions

Definition 3.1.1 (Languages and formulas). We note L and F as the source and target
languages respectively. The source language is an extension of the language

P = 〈(pi)i∈N,∧,∨,>,⊥〉

which has infinitely many propositional variables, conjunction and the true and false
constants. The target language is a (countable) first-order language which may or may
not contain equality.

FORM(A) is the set of formulas of the language A and FORM(F1) is the subset of
FORM(F) with at most one free variable (and that variable is x).

During this thesis we will deal with source logics which are at most as expressive as
first order logic. If L is less or equally expressive than F we should be able to express in
F everything that is expressible in L. We have seen before that, for BML, there exists a
standard translation STx from BML to first order logic. In general we define a formula
translation as follows.

Definition 3.1.2 (Formula translation). A formula translation is a function

Tfx : FORM(L)→ FORM(F1)

that translates formulas from the source language L to the first-order language F. This
function is required to preserve conjunctions and disjunctions, that is, formally speaking:
Let ϕ1, ϕ2 ∈ FORM(L) and � ∈ {∧,∨} then for every first-order formula of the form
Tfx(ϕ1)� Tfx(ϕ2) there exists an L-formula ψ such that Tfx(ψ) ≡F Tfx(ϕ1)� Tfx(ϕ2).

As we saw before in the definition of BML’s standard translation, in general, formula
translations are defined homomorphically with respect to the boolean connectives.

Tfx(ϕ1 ∧ ϕ2) = Tfx(ϕ1) ∧ Tfx(ϕ2)
Tfx(ϕ1 ∨ ϕ2) = Tfx(ϕ1) ∨ Tfx(ϕ2)

Definition 3.1.3 (Models). We will be working with source logics that are interpreted
over variations of Kripke models.1 We define MODS(L) to be the class of all models of
the source logic and MODS(F) to be the class of all models of the target first-order logic.

1 Even propositional logic can be thought of as a modal logic without modal operators and restricted to
models with one single point.
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Sometimes we will use the notion of pointed models. A pointed model in the source logic
L is a model-world pair. We can see a pointed model as an L-model where the evaluation
point has been fixed. We define the class of pointed models for the source logic as

PMODS(L) = {〈M, w〉 :M∈ MODS(L) and w ∈ |M|}

Similarly, in the target logic F, we use Mf , g |= ϕ to note that a formula ϕ is true in
the model Mf under the valuation (or assignment) g.2 A pointed model of the target
logic F is a model-assignment pair. We can see a pointed model as an F-model where the
assignment function has been fixed.

Definition 3.1.4 (x-assignment). Let Mf be an F model. An x-assignment for Mf is a
function

g : {x} → |Mf |

which assigns an element for the variable x. It can be seen as a finite valuation specialized
to the variable x.

We will use the concept of x-assignment to define the class of first order pointed
models. This notion is a technical detail needed to make things work in Definition 3.1.6.
The problem and solution will become clear after that definition. We define the class of
pointed models for the target logic as

PMODS(F) = {〈Mf , g〉 :Mf ∈ MODS(F) and g is an x-assignment for Mf}

Observe that the formulas obtained through the translation defined in Definition 3.1.2
have at most one free variable and that variable is x. Therefore, if we want to evaluate
those formulas in a first order model Mf , an x-assignment g is enough for Mf , g |= ϕ(x)
to be well defined.

Notation 3.1.5. Let 〈Mf , g〉, 〈N f , h〉 ∈ PMODS(F). We writeMf , g ≡F N f , h to mean
that for every first order formula α(x); Mf , g |= α(x) if and only if N f , h |= α(x).

There’s one more thing to be taken into account, formulas from L and formulas from
F are not evaluated in the same models. The former are evaluated in Kripke models and
the later are evaluated in first-order models. This is the reason why we are not yet able
to compare ϕ with Tfx(ϕ).

We can think of models as ‘information bearers’, they represent some information rel-
ative to the world in a way that is compatible with some logic. Therefore, the information
is not in the model itself but somewhere else. We need to define some way to ‘look at’ this
information from different perspectives, one compatible with the source logic L and other
compatible with the target logic F. Following the same line we define a model translation
that ‘converts’ the information between the source and target logic.

Definition 3.1.6 (Model translation). Given a class of models K ⊆ PMODS(F), a model
translation is a biyective function

TK : PMODS(L)→ K

2 Observe that in this case g is a valuation and not a point of the domain.
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We write T instead of TK when the class of models is clear from the context. As an
abuse of notation we use T(M) when we are not interested in the associated assignment
and T

-1
(Af , g) for the preimage of 〈Af , g〉.

Returning to the need for x-assignments, note that if we allowed g to be a standard
assignment (i.e. g : fvar → |Mf |) in Definition 3.1.3 then for every pointed L-model
〈M, w〉 we would have many pointed F-model 〈Mf , gi〉 where gi(x) = w and the assign-
ment for the rest of the variables changes arbitrarily. Therefore, this could carry problems
at the moment of satisfying the suryectivity requirement.

As an exercise, suppose that the class of pointed models is defined with standard
assignments and try to define a model translation for BML. You will observe that there is
a cardinality problem.

When we proved the results for BML we did not use a model translation, at least not
explicitly. On the other hand, this translation was implicitly present when we gave an
informal way to ‘look at’ models from both a BML and a first order perspective. The
model translation function will serve us in this task. We are now ready to set proper
constraints on the translations.

Definition 3.1.7 (Truth preserving pair of translations). A pair of translations (Tfx,T)
is said to be truth-preserving if for all ϕ ∈ FORM(L) and all 〈M, w〉 ∈ PMODS(L)

M, w |= ϕ iff T(M, w) |= Tfx(ϕ)

Let’s fix (Tfx,TK) as our pair of truth-preserving translations for the rest of the thesis.
We will also want to translate formulas from L to F and then go back to L-formulas. As we
are not requiring Tfx to be injective this could lead to a problem. We make the following
claim.

Proposition 3.1.8. For any α, β such that Tfx(α) = Tfx(β) we have |=L α↔ β.

Proof. Suppose that 6|=L α ↔ β, then we have a model M and a point w such that
M, w |= α andM, w 6|= β. Then by definition of truth-preservation of the translations we
get T(M, w) |= Tfx(α) and T(M, w) 6|= Tfx(β). Absurd.

We will use this proposition to make a simplification. First define the equivalence
relation ϕ ∼ ψ iff |=L ϕ ↔ ψ. Regarding L-formulas, we can always take the equiva-
lence classes defined by the quotient set of L-formulas by ∼ and for each class choose a
representative to work with.

To simplify the proofs in this thesis, and without loss of generality, we will assume
that we are working with the set of formulas defined above. All of our proofs should
also work with the original set of formulas but they would require excessive detours and
justifications. In this setting we will be working up to formula equivalence and we will
assume that our formula translation Tfx is injective.

Definition 3.1.9. Let K ⊆ MODS(L), M be an L-model and w ∈ |M|. We define the
theory of a pointed model, model and class of models as follows

Th(M, w) = {ϕ :M, w |= ϕ}
Th(M) = {ϕ :M |= ϕ}
Th(K) = {ϕ : ∀M ∈ K it holds that M |= ϕ}
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Given two L-pointed models 〈M, w〉 and 〈N , v〉 we say that the pointed models are
modally equivalent (noted M, w ≡L N , v) when Th(M, w) = Th(N , v). We say that two
models (not pointed) are modally equivalent (notedM≡L N ) when Th(M) = Th(N ). We
write M, w vL N , v when Th(M, w) ⊆ Th(N , v) and M vL N when Th(M) ⊆ Th(N ).
All these definitions can be similarly defined for the target logic F and we will assume
them defined.

The framework defined in this section will allow us to transfer results between the
source and target logics. As an example we prove compactness for L under some special
closure conditions (which will be addressed later).

Lemma 3.1.10 (L is compact). If L has a pair of truth-preserving translations (Tfx,TK)
and K is closed under ultraproducts then L is compact.

Proof. Let Γ be a set of L-formulas and suppose that any finite set of Γ is L-satisfiable.
We will show that Γ is L-satisfiable.

Take any finite ∆f ⊆ Tfx(Γ), we want to see that it is satisfiable in K. As our formula
translation is injective we have a set ∆ ⊆ Γ such that ∆ = Tf−1

x (∆f ). Observe that ∆ is
finite because Tfx is injective. By hypothesis there exists 〈M, w〉 such that M, w |= ∆
because ∆ is a finite subset of Γ. Hence, by truth-preservation, T(M, w) |= ∆f and
T(M, w) ∈ K.

By Theorem A.1 we conclude that there exists a model 〈N f , g〉 in the class K such
that N f , g |= Tfx(Γ). As the translations are truth preserving we get T

-1
(N f , g) |= Γ.

3.2 General model equivalence

In Chapter 1 of this thesis we introduced the general idea of model equivalence and, in
particular the notions of simulation and bisimulation for some specific logics (namely BML-

and BML). We want the framework we are developing to be able to handle several types
of model equivalence relations.

Restricting ourselves to the definition of simulation and bisimulation we can see that,
the latter can be seen as a special case of the first where there is a symmetrical atomic
condition and a ‘back’ clause. Looking at their common properties we can say that they
both agree in the following points:

(i) They relate a point in one model with a point in the other model. Thus, given M
and N , if Z is such relation then Z ⊆ |M| × |N |.

(ii) They imply some kind of modal theory transfer. In the case of simulations, if wZv
then M, w v N , v. On the other hand, bisimulations imply full modal equivalence:
if wZv then M, w ≡ N , v.

(iii) For every (bi)simulation between M and N , the models’ structure doesn’t change.
That is why the notion of (bi)simulation always links points from M to points of
N . We will have to make a small change here to be able to handle (bi)simulations
in dynamic logics.3

Following this analysis, given a source logic L, we will give a meta-definition for model
equivalence notions. That is, we will not define a relation but give the conditions that

3 Logics where the modal operators may change the model.
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a valid model equivalence notion should satisfy. Any simulation or bisimulation relation
satisfying the next definition fits into our framework.

As an abuse of language, we call it L-simulation. We use this name because it reminds
us of the properties that simulation relation defined for BML- satisfies but it is not the
same. As it will be clear from the definition, we don’t impose any structural constraint.

Definition 3.2.1 (L-simulation). Given two L modelsM andN we define an L-simulation
to be a non-empty relation Z ⊆ PMODS(L)× PMODS(L) with the following constraint

If 〈M, w〉Z〈N , v〉 then M, w vL N , v

We write M, w →L N , v to indicate that there exists a simulation between w and v and
M →L N to indicate that there exists a point w ∈ |M| such thatM, w →L N , v for some
v ∈ |N |. We write w →L v when the models are clear from context.

Note that the simulation definition for BML- satisfies the above definition with minor
changes. The only difference is that we have to take into account the ‘model’ component
of the simulation relation. It can be re-defined as follows.

Example 3.2.2. A BML- simulation is a non-empty binary relation between pointed
models such that whenever 〈M, w〉Z〈N , v〉 we have that:

Atomic condition: If w ∈ VM(p) then v ∈ V N (p) for all p ∈ prop.
Forth: if wR1w

′, then there exists a point v′ inN such that vR2v
′ and 〈M, w′〉Z〈N , v′〉.

When thinking about BML’s bisimulation, it may seem that this definition is missing
something. We know that ifM, w andN , v are related by a bisimulation thenM, w ≡ N , v
but the above definition only guarantees M, w v N , v. Don’t worry about that now, it
will become clear in the next section that this condition is enough for what we need.
Observe, also, that a bisimulation is a special case of Definition 3.2.1 where the relation
is symmetric.

We want to stress that this definition of L-simulation does not cover all possible types
of model equivalences and it isn’t suitable for all types of modal languages. One exam-
ple where this notion is not adequate is when the language doesn’t have disjuction nor
negation. Let M and N be two models, the right notion of simulation for this language
links sets of points from M to a point of N . As we have defined our possible languages
in Section 3.1 this will not be a problem because we always have disjunction in our source
language. For more information about model theory on disjunction-free languages refer
to [KdR97].

3.3 Saturation

We have seen that, in general, modal equivalence does not imply bisimilarity. It is also the
case with BML-’s simulation that, in general M, w →N , v does not imply M, w v N , v.
This problem recurs with most model equivalence notions found in the literature.

We have stated that in the class of ω-saturated models, BML equivalence implies
bisimulation. For this framework we need to define a similar notion which fits the logics
we will be working with. Let’s formally define the general condition that we’re pursuing
so we can focus on it.
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Definition 3.3.1 (Hennessy-Milner Property). Let K be a class of L-pointed models, we
say that K has the Hennessy-Milner property if for every two L-models 〈M, w〉 and 〈N , v〉
in K, whenever M, w vL N , v we have M, w →L N , v.

This definition should be interpreted as the converse of the L-simulation (Defini-
tion 3.2.1) requirement and will be the definition of Hennessy-Milner class used in our
framework.

Is this definition general enough to cover the cases we have been talking about? We
know that if we fix L as BML and the simulation relation as BML’s bisimulation we have
that M, w ≡L N , v implies M, w ↔L N , v but the definition above seems to impose a
stronger constraint. We only have M, w vL N , v as hypothesis and we should conclude
the same thesis. We make the following statement that explains why there is no problem
with this.

Proposition 3.3.2. If L has negation then M, w vL N , v if and only if M, w ≡L N , v.

As BML has negation, the seemingly weak hypothesis turns strong enough to prove
the result in that particular case. The special case regarding saturation for BML is nicely
covered in [BdRV01].

Regarding ω-saturation, the definition given in Definition 1.4.4 is in terms of first order
models. In that moment, as we were looking at BML and first order models as if they
were the same, that gave us no problems.

In this chapter we want to make an explicit differentiation between L-models and
F-models. To make our proofs simpler we choose the following definition for ω-saturated
L-models.

Definition 3.3.3. We say that an L-model M is ω-saturated if and only if T(M) is.

For details on ω-saturation, classical results can be found in [CK90]. Also, in Marco
Hollenberg’s thesis [Hol98], he extensively investigates Hennessy-Milner classes.
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4.1 Adequate pair

In Chapter 3, while developing the framework, we explained the objectives we are pur-
suing when doing a generalization. In the following definition we will make explicit the
requirements for the theorems in this chapter to hold for an arbitrary logic L and with
respect to a class of models K.

Definition 4.1.1 (Adequate pair). A logic L and a class of models K ⊆ PMODS(F) is
said to be an adequate pair if they fulfill the following requirements

1. K is closed under ultraproducts (Definition 4.1.2).

2. There exist truth-preserving translations Tfx, TK (Definition 3.1.7).

3. There exists an L-simulation notion (Definition 3.2.1).

4. The class of ω-saturated L-models should have the Hennessy-Milner property with
respect to L-simulations (Definitions 1.4.4 and 3.3.1).

We need to formally define the closure under ultraproducts and ultrapowers used above,
as the ones given in Chapter 2 were specifically crafted for BML.

Definition 4.1.2 (Closure under ultraproducts). A class K ⊆ MODS(F) is said to be
closed under ultraproducts if, let Mf

i be a family of F-models in K and let U be an
ultrafilter, the ultraproduct

∏
UM

f
i is also in K. A more sophisticated definition is needeed

for first-order pointed models.
A class K ⊆ PMODS(F) is said to be closed under ultraproducts if, let 〈Mf

i , gi〉 be a
family of F-pointed models and let U be an ultrafilter. Let the

∏
UM

f
i be the ultraproduct

of the models then 〈
∏

UM
f
i , g
∗
i 〉 ∈ K for every g∗i defined as g∗i (x) = λz.gi(x) for all x.1

Definition 4.1.3 (Closure under ultrapowers). A class K of F-models is said to be closed
under ultrapowers if it is closed under ultraproducts where every Mf

i is the same model.
A similar definition can be given for pointed models.

Why are we requiring K to be closed under ultraproducts? We could have asked for
more, such as K being definable by a first order formula, which implies closure under
ultraproducts. We could’ve also tried to impose no restriction over K.

We decided to require K to be closed under ultraproducts because it is the weakest
condition that lets us use the relativized version of the first order compactness theorem
(stated and proved in the appendix as Theorem A.1). In particular, all first-order definable
classes and the class of ‘all models’ will always fit in an adequate pair.

The second item in Definition 4.1.1 makes sure that L is less or equally expressive than
first order and that there is some way to compare between the formulas and models of
both logics.

In the same way, the third item only asks for the definition of a simulation notion
which is essential to develop the model theory of L. All the results will be stated in terms
of that L-simulation notion.

1 For a formal definition of the lambda notation refer to [Bar85].
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With enough practice, points one to three can be easily checked by just ‘looking at’ L.
It is only when we get to the last item that we face the strongest requirement. This points
says that the class of ω-saturated L-models should have the Hennessy-Milner property.

In Chapter 2 we mentioned that the class of ω-saturated BML models had the Hennessy-
Milner property with respect to BML bisimulations (although in that moment we didn’t
call it ‘Hennessy-Milner’ yet). The proof of that result makes a link between the seman-
tics of BML and the structure of the BML bisimulation. Therefore, it makes use of the
structural definition of the BML bisimulation.

So far, given a logic L, we are looking at L-simulations as black boxes. All we know is
that w →L v implies w vL v. We don’t know which structural properties it imposes. This
is the reason why we still need this item to be proved for the results to work.

We think that there’s still much work to be done to weaken this last requirement and
we will give our opinion on directions for further work in the conclusions.

4.2 Characterization

One of the central notions in the characterization theorem for BML was that of bisimula-
tion invariance. Recall that bisimulations are defined between BML models but the notion
of bisimulation invariance is defined for first order formulas.

Definition. A first order formula α(x) is invariant for BML bimulations if for all BML

models M,N and w ∈ |M|, v ∈ |N | such that M, w ↔N , v the following holds:

M |= α(x)[w] iff N |= α(x)[v].

When working with BML, this difference made no problem to us because we didn’t
really distinguish between BML and first order models. It is time for us to give an
invariance definition that fits our framework and there is an important decision to be
made.

The property of ‘invariance’ is thought for first order formulas and the notion of L-
simulation is defined between L models. We have to options: The first one is to call a first
order formula α(x) ‘invariant for L-simulations’ if, for every two L modelsM, w and N , v
such that M, w →L N , v whenever α(x) holds in T(M, w) it should hold in T(N , v). In
this case we are ‘mixing’ the models through the translation.

The other option is to ‘lift’ the L-simulation notion to F models and define a simulation
relation →F. In this case we could just say that a first order formula α(x) is ‘invariant
for L-simulations’ if, for every two F models Mf , g and N f , h such that Mf , g →F N f , h
whenever α(x) holds in Mf , g it should hold in N f , h.

The advantage of the first option is that there’s no need for new definitions; in contrast,
the second one would require a formalization for the ‘lifting’ to be defined along with the
model translation. On the other hand, it would be nice to be able to check two F models
for ‘model equivalence’ as we can do with L.

In this thesis we choose the first option because it is the most direct one in this setting.
Observe that, in particular, the first option can be seen as a special case of the second one
when the following ‘canonical lifting’ is defined.

Mf , g →F N f , h iff T
-1

(Mf , g) →L T
-1

(N f , h)

Again, the problem with this definition is that it bears no structural information regarding
model equivalence between first order models. It is just another detour.
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Definition 4.2.1 (L-simulation K-invariance). Let 〈L,K〉 be an adequate pair. A formula
α(x) of F1 is K-invariant for L-simulations if for all L-modelsM,N and w ∈ |M|, v ∈ |N |:
If M, w →L N , v and T(M, w) |= α(x) then T(N , v) |= α(x).

Before stating the characterization theorem let’s see the importance and role of the
class of models K in these definitions. What happens to formula equivalence when we
change the class of models? As a motivating example we will work with a first-order
formula ϕ = ∀x.R(x, x) which holds in a model if and only if R is a reflexive relation.

In the class of all models it is obvious that 6|= ϕ (ϕ is not valid) because we can come
up with some models where R is not reflexive. Given that “reflexivity” is not expressible
in basic modal logic, we can conclude that ϕ is not equivalent to the translation of any
basic modal formula.

Definition 4.2.2 (K-equivalence). Let K ⊆ MODS(F) and ϕ,ψ ∈ FORM(F). We say
that ϕ and ψ are K-equivalent if and only if |=K ϕ↔ ψ.

Let’s now restrict the class of models, let K be the class of reflexive models. Now
|=K ϕ because it is valid in every model of the class. In this setting there is a basic modal
formula whose translation is K-equivalent to ϕ. Take ψ = > we have |=K STx(ψ) ↔ ϕ
because |=K > ↔ ϕ. What happened here is that, restricting our class of models the
number of valid formulas has grown and with them the number of “formulas equivalent
to a translation”.

Something similar occurs with L-simulation invariance. Again, we have seen that in
the class of all models we can have two bisimilar models where one has a reflexive relation
and the other doesn’t. Therefore “reflexivity” is not invariant under bisimulations.

If we change the class of models to the class of reflexive models we see that now
the property becomes invariant over bisimulations. This happens because it is trivially
invariant all over K. It is nice to observe that the concepts of invariance and equivalence
are very closely related to each other when we change the class of models we are working
with.

Theorem 4.2.3 (Characterization). Given an adequate pair 〈L,K〉 then

A formula α(x) of F1

is K-equivalent to the translation of an L-formula iff
α(x) is K-invariant for L-simulations.

Left to right. Suppose α(x) is K-equivalent to the translation of an L-formula ϕ. We want
to see that it is invariant over L-simulations. This is a consequence of the invariance of
L-formulas over L-simulations. Suppose we have M, w →N , v and T(M, w) |= α(x) but
T(N , v) 6|= α(x). As |=K α(x)↔ Tfx(ϕ) and the translations are truth-preserving it must
hold that M, w |= ϕ and N , v 6|= ϕ. But this is a contradiction because L-formulas are
invariant under L-simulations and we have a simulation linking those points.

Right to left. Suppose α(x) is K-invariant for L-simulations, we want to see that it is K-
equivalent to the translation of an L-formula. Consider the following set of consecuences

SLC(α) = {Tfx(ϕ) : ϕ is an L-formula and α(x) |=K Tfx(ϕ)}.

We will prove that if SLC(α) |=K α(x) we are done.
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Proposition 4.2.4. If SLC(α) |=K α(x) then α(x) is K-equivalent to the translation of
an L-formula.

Proof. Suppose SLC(α) |=K α(x), by relative compactness (Theorem A.1) there is a finite
set ∆ ⊆ SLC(α) such that ∆ |=K α(x), therefore |=K

∧
∆→ α(x). Trivially (by definition)

we have that |=K α(x) →
∧

∆ so we can conclude |=K α(x) ↔
∧

∆. As every β ∈ ∆ is
the translation of an L-formula and the translation preserves conjunction then

∧
∆ is also

the translation of some modal formula.

Lemma 4.2.5. SLC(α) |=K α(x).

Proof. Suppose that T(M, w) |= SLC(α). We have to show that T(M, w) |= α(x). Define
NThw(x) as

NThw(x) = {¬Tfx(ϕ) : ϕ is an L-formula and M, w 6|= ϕ}

Observe that, if L has negation then NThw(x) will be the translation of w’s modal theory
and every model of NThw(x) will be modally equivalent to w. If L doesn’t have negation
we will only preserve formulas that are not true in w. This definition fits for both cases.
Now define the set

Σ(x) = {α(x)} ∪ NThw(x).

We will see that Σ(x) has a model in K.

Proposition 4.2.6. Σ(x) has model in K.

Proof. Let’s suppose that there is no model in K for Σ(x) and use the contrapositive of
Theorem A.1. We can conclude that there must be a finite subset {α(x),¬δ1, . . . ,¬δn} ⊆
Σ(x) with ¬δi ∈ NThw(x) which doesn’t have model in K. Note that this set should
include α(x), otherwise it would have a had model, namely T(M, w).

Observe that, for every model Af ∈ K, as Af 6|= {α(x),¬δ1, . . . ,¬δn} then Af |=
α(x)→ ¬(¬δ1 ∧ · · · ∧ ¬δn). This means that α(x)→ (δ1 ∨ · · · ∨ δn) is valid in K, therefore
α(x) |=K δ1 ∨ · · · ∨ δn. If δ1 ∨ · · · ∨ δn is a K-consecuence of α(x) then, as the formula
translation preserves disjunction, δ1∨· · ·∨δn ∈ SLC(α). But, as T(M, w) |= SLC(α) then
T(M, w) |= δ1 ∨ · · · ∨ δn. This is absurd because T(M, w) 6|= δi for every i.

As Σ(x) is satisfiable in K we have a modelN and an element v such that T(N , v) |= Σ(x).
We make the following proposition.

Proposition 4.2.7. N , v vL M, w.

Proof. Take the contrapositive. Suppose that M, w 6|= ϕ then ¬Tfx(ϕ) ∈ NThw(x) and
because NThw(x) ⊆ Σ(x) we can state that T(N , v) |= ¬Tfx(ϕ) which implies that
T(N , v) 6|= Tfx(ϕ). By truth-preservation of the translations we get N , v 6|= ϕ.

We will need to link T(M, w) and T(N , v) in a way that lets us transfer the validity
of α(x) from the second model to the first one. The next lemma will come handy.

Lemma 4.2.8 (Big Detour Lemma). Let α(x) ∈ FORM(F1) be L-bisimulation K-invariant,
if N , v vL M, w and T(N , v) |= α(x) then T(M, w) |= α(x).
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Proof. We define some names to avoid cumbersome notation in this proof. We add a
subscript f to the first-order translations of L models, we add a superscript + to first-
order saturated models and a superscript ∗ to modal saturated models.

Applying Theorem A.3 to M, w and N , v (with M1 = M2 = MODS(L)) we build up
new models. The theorem explicitly states the relationship among them, we will use this
result to prove this lemma. Hereafter we will use the same notation as in Theorem A.3.

The following diagram helps to illustrate the actual situation along with the relation-
ship between the various models. Think of it as a cube. The front face represents the
models from the source language and the back face has the models from the first-order
language.

Nf , gv N+
f , g

+
v

N , v N ∗, v∗

Mf , gw M+
f , g

+
w

M, w M∗, w∗

≡L

vL

≡L

→/v
T T

T T

≡F

≡F

Fig. 4.1: Directions for the detour.

With this new notation the Big Detour Lemma can be restated as follows: Let α(x)
be an L-bisimulation K-invariant F-formula, if N , v vL M, w and Nf , gv |= α(x) then
Mf , gw |= α(x).

Using a simple diagram chase argument we can see that, as Nf , gv |= α(x) and N+
f , g

+
v

is elementary equivalent to Nf , gv, then N+
f , g

+
v |= α(x). Because α(x) is invariant under

L-simulations and N ∗, v∗ →L M∗, w∗ we know thatM+
f , g

+
w |= α(x). Again by elementary

equivalence we conclude that Mf , gw |= α(x) which is what we wanted to prove.

Applying this lemma toM, w and N , v and having transfered the validity of α(x) from
T(N , v) to T(M, w) we can conclude that SLC(α) |= α(x). With this final affirmation we
have just proved the right-to-left direction of the characterization result.
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4.3 Definability

The study of class definability is not new. There exist, for example, several results for first
order logic regarding the definability of classes of models. In that case, a class of models
that is definable by means of a set of first order formulas is called elementary and those
that can be defined by means of a single formula are called basic elementary classes.

To develop the theory of this section we will use a relativized version of the concept of
first order definability. It is defined as follows.

Definition 4.3.1 (C-elementary class). Let C ⊆ MODS(F).

1. A class K ⊆ C is called C-elementary (noted C-EC∆) if there exists a set of first
order formulas Γ such that for all Mf ∈ C it occurs that Mf |= Γ iff Mf ∈ K.2

2. A class K ⊆ C is called basic C-elementary (noted C-EC) if there exists a first order
formula ϕ such that for all Mf ∈ C it occurs that Mf |= ϕ iff Mf ∈ K.

Definition 4.3.2 (Elementary class). Let K ⊆ MODS(F).

1. K is called elementary (noted EC∆) if it is C-elementary for C = MODS(F).

2. K is called basic elementary (noted EC) if it is basic C-elementary for C = MODS(F).

On the modal side, we will use pointed models for a smoother proof. We need some
further definitions before stating the main theorem of this section. The concept of ‘defin-
ability’ in the source logic is given analogously to the one of the target logic.

Definition 4.3.3 (Definability). A class M ⊆ PMODS(L) is said to be definable by a
set of formulas if there exists a set Γ of L-formulas such that 〈M, w〉 ∈ M if and only if
M, w |= Γ.

Definition 4.3.4 (Closure under simulations). A class M ⊆ PMODS(L) is said to be
closed under simulations if, whenever 〈M, w〉 ∈ M, and 〈N , v〉 is an L-pointed model such
that M, w →L N , v then 〈N , v〉 ∈ M.

As in first order and BML, we distinguish between two types of classes. Those that
can be defined by a set of formulas and those that can be defined by a single formula.
Here we state the first theorem and then carry on with the second one.

Theorem 4.3.5 (Definability by a set). Given an adequate pair 〈L,K〉 and a class of
pointed models M ⊆ PMODS(L), the following are equivalent

(i) M is definable by a set of L-formulas.

(ii) M is closed under L-simulations, T(M) is closed under ultraproducts and T(M) is
closed under ultrapowers.

From i to ii. Suppose that M is defined by the set Γ of L-formulas.

1. Suppose now that there is a model 〈M, w〉 ∈ M such that M, w →N , v for some
pointed model N , v. As 〈M, w〉 ∈ M it must occur that M, w |= Γ. By simulation
preservation we have N , v |= Γ therefore 〈N , v〉 ∈ M. Therefore M is closed under
L-simulations.

2 A C-EC∆ class can be seen as the intersection of C-EC classes. The ∆ in the notation comes from
the german word Durchschnitt which means ‘cross-section’ and makes reference to this fact.
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2. To see that T(M) is closed under ultraproducts take a family of models 〈Mf
i , gi〉 ∈

T(M). Because everyMf
i , gi is in T(M) we have thatMf

i , gi |= Tfx(Γ) for all i. Let
Mf =

∏
DM

f
i be an ultraproduct of those models, by [CK90, Theorem 4.1.9] we

have thatMf , g∗i |= Tfx(Γ) for g∗i (x) = λz.gi(x). Therefore 〈Mf , g∗i 〉 ∈ T(M). Thus,
the class is closed under ultraproducts.3

3. We still have to check that T(M) is closed under ultrapowers. Take 〈Mf , g〉 ∈ T(M),
by definition Mf , g 6|= Tfx(Γ). Let Mf

∗ =
∏

DMf be an ultrapower of Mf , by
[CK90, Corollary 4.1.10] the ultrapower is elementary equivalent to the original
model. Hence, let h(x) = λz.g(x) be the canonical mapping, Mf

∗ , h 6|= Tfx(Γ). This
means that 〈Mf

∗ , h〉 ∈ T(M) and therefore the class is closed under ultrapowers.

From ii to i. Suppose M is closed under L-simulations, T(M) is closed under ultraproducts
and T(M) is closed under ultrapowers. Define the set Γ = Th(M). Trivially M |= Γ, we
still have to show that if M, w |= Γ then 〈M, w〉 ∈ M. Define the following set

NThw(x) = {¬Tfx(ϕ) : ϕ is an L-formula and M, w 6|= ϕ}

Let’s see that NThw(x) is finitely satisfiable in T(M). Suppose not, there is a finite subset
Σ0 ⊆ NThw(x) such that Σ0 = {¬σ1, . . . ,¬σn} is not satisfiable in T(M). That means
that the formula ψ = ¬(¬σ1 ∧ · · · ∧ ¬σn) is valid in T(M). Observe that ψ is equivalent
to ψ′ = σ1 ∨ · · · ∨ σn. As the formula translation preserves disjunction and truth there
exists an L-formula ψ∗ such that ψ′ ≡F Tfx(ψ∗). Hence Tfx(ψ∗) is valid in T(M) and
therefore ψ∗ ∈ Γ. This is absurd because it is obvious that M, w 6|= ψ∗ and by hipothesis
M, w |= Γ.

Having proved that every subset of NThw(x) is satisfiable, by relative compactness,
there is a model 〈N , v〉 ∈ M such that T(N , v) |= NThw(x). We have already proved (in
Proposition 4.2.7) that these models satisfy N , v vL M, w.

Suppose that 〈M, w〉 ∈ M, using Theorem A.3 (with M1 = M and M2 = M) we can
conclude that there exist models 〈N ∗, v∗〉 ∈ M and 〈M∗, w∗〉 ∈ M such that N ∗, v∗ →L

M∗, w∗. As M is closed under simulations then 〈M, w〉 ∈ M. Absurd, therefore 〈M, w〉
must be in M.

Notation 4.3.6. Let 〈Mf , g〉, 〈N f , h〉 ∈ PMODS(F) we write Mf , g ∼= N f , h to mean
that there exists a potential isomorphism I betweenMf and N f such that 〈a〉I〈b〉 where
a = g(x) and b = h(x). That is, there is a potential isomorphism that links the elements
assigned by g and h.

Definition 4.3.7 (C-closure under potential isomorphisms). Let C ⊆ MODS(F). A class
K ⊆ C is C-closed under potential isomorphisms if for every Mf ∈ K and N f ∈ C such
that Mf ∼= N f then N f ∈ K.

The definition for pointed models is similar. Let C ⊆ PMODS(F). A class K ⊆ C is
C-closed under potential isomorphisms if for every 〈Mf , g〉 ∈ K and 〈N f , h〉 ∈ C such that
Mf , g ∼= N f , h then 〈N f , h〉 ∈ K.

Lemma 4.3.8. Let M ⊆ PMODS(L). If M is closed under L-simulations and both
TK(M) and TK(M) are closed under ultrapowers then TK(M) and TK(M) are K-closed under
potential isomorphisms.

3 This application is a corollary of The Fundamental Theorem of Ultraproducts. This same application
can be seen in the proof of Theorem’s 4.1.12 in the same book.
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Proof for T(M). Suppose that T(M) is not K-closed under potential isomorphisms. This
means that there exist models 〈Mf , g〉 ∈ T(M) and 〈N f , h〉 ∈ T(M) such that Mf , g ∼=
N f , h. Recall that K \T(M) = T(M). For a smoother proof, call their modal counterparts
M, w and N , v respectively. Therefore 〈M, w〉 ∈ M and 〈N , v〉 /∈ M.

As Mf , g ∼= N f , h we know by [CK90, Proposition 2.4.4] that Mf , g |= ϕ(x) if and
only if N f , h |= ϕ(x). In particular they have the same modal theory, M, w ≡L N , v. As
this implies that M, w vL N , v we can use Theorem A.3 (instantiating with K1 = T(M),
K2 = T(M) and M, N interchanged) and get models 〈M∗, w∗〉 ∈ M and 〈N ∗, v∗〉 ∈ M
such that M∗, w∗ →L N ∗, v∗.

Knowing that M∗, w∗ →L N ∗, v∗ and that M is closed under simulations we conclude
that 〈N ∗, v∗〉 ∈ M. This is absurd because it contradicts 〈N ∗, v∗〉 ∈ M. Hence TK(M) is
K-closed under potential isomorphisms.

Proof for T(M). To see that T(M) is K-closed under potential isomorphisms we argue by
contradicction. Suppose not, then there exist 〈Mf , g〉 ∈ T(M) and 〈N f , h〉 ∈ K\T(M) such
that Mf , g ∼= N f , h. As 〈N f , h〉 ∈ K \ T(M) this means that 〈N f , h〉 ∈ T(M). We have
just proved that T(M) is K-closed under potential isomorphism then, as Mf , g ∼= N f , h,
we conclude that 〈Mf , g〉 ∈ T(M) which contradicts our hypothesis.4 Absurd.

Theorem 4.3.9 (Definability by a single formula). Given an adequate pair 〈L,K〉, and a
class of models M ⊆ MODS(L), the following are equivalent

(i). M is definable by a single L-formula.

(ii). M is closed under L-simulations and both T(M) and T(M) are closed under ultra-
products.

From i to ii. Suppose M is definable by a single L-formula ϕ.

1. Let’s see that T(M) and T(M) are closed under ultraproducts. Recall that M is
definable by a single L-formula ϕ. Take the class of first order models defined by
Tfx(ϕ) and call it Me. Observe that Me can be expressed as the disjunct union
Me = T(M) ∪M′ between the translation of M and some other models that do not
fall in K. Therefore T(M) = Me ∩K = MODS(¬Tfx(ϕ))∩K. The following diagram
helps illustrate the different classes. The box represents the class of all F models, K
is the class with an irregular border and Me is the oval.

4 Here we use the symmetry of the potential isomorphism relation.
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Using Theorem 4.3.5, as M is defined by the singleton set T = {ϕ}, T(M) is closed
under ultraproducts. To see that T(M) is closed under ultraproducts proceed as
follows.

(a) As K is closed under ultraproducts then, any ultraproduct from K must reside
in K. In particular, any ultraproduct from T(M) must reside in K.

(b) As Me is defined by ¬Tfx(ϕ), it is closed under ultraproducts [CK90, Corol-
lary 6.1.16]. This means that any ultraproduct from Me must reside in Me, in
particular, any ultraproduct from T(M) must reside in Me.

From (a) and (b) we can conclude that any ultraproduct from T(M) must be in
K ∩Me = T(M).

2. Using Theorem 4.3.5, as M is defined by the singleton set T = {ϕ} we can be sure
that M is closed under L-simulations.

From ii to i. Suppose that M is closed under L-simulations and both T(M) and T(M) are
closed under ultraproducts. Using Theorem 4.3.5 we have a set of formulas Γ defining M.
By Lemma 4.3.8 T(M) and T(M) are K-closed under potential isomorphisms. Now we use
the relativized version of first order’s definability result, Theorem A.2, and conclude that
there is a first order formula α(x) such that for every 〈Mf , g〉 ∈ K; Mf , g |= α(x) if and
only if 〈Mf , g〉 ∈ T(M).

As M is closed under L-simulations then α is K-invariant for L-simulations. Using the
Characterization Theorem (Theorem 4.2.3) we can conclude that α(x) is K-equivalent to
the translation of a modal formula ϕ. Therefore there exists ϕ that defines M.





5. APPLICATIONS

In this chapter we will use the results that we have developed in the previous chapters and
derive the characterization and definability theorems for particular cases of modal logics.

5.1 Memory Logics

Memory logics are a novel family of modal logics introduced in [AFFM08]. They allow to
model dynamic behavior through explicit memory operators that change the evaluating
structure. This proposal introduces a framework for studying the notion of state in a
more general way, without bounding the analysis to any fixed domain (like knowledge
change, time flow, linguistics contexts, etc.). Most of the work that has been done in this
direction implicitly adds some specific native behavior in the “dynamic component”. The
approach presented in this paper wants to study some of the dynamic capabilities of the
above mentioned approaches from a more abstract point of view, and analyze the different
aspects of this family in terms of logic properties.

This family of logics present several “memory operators” that can be considered mod-
ularly. We first present the syntax, signature and models for a broad set of operators and
then analyze different possible combinations which form interesting logics.

It is important to note that there are no Characterization and Definability results
known for this family of logics at this moment. Therefore, the results obtained through
the use of the framework that we’ve developed will be original. We present the results for
the unimodal case but it can be easily generalized for the multi-modal case.

Definition 5.1.1 (Signatures). Let prop = {p1, p2, . . . } (the propositional symbols) be a
countable infinite set of symbols and rel = {r} (the relational symbols) be disjoint. The
source signature is defined to be S = 〈prop,rel〉.

Let fprop = {P1, P2, . . . } (the propositional predicates) and frel = {R} (the rela-
tional predicates) The target first-order signature is defined to be T = 〈fprop ∪ frel, ∅, ∅〉
with equality.

Definition 5.1.2 (Syntax). The syntax of the Memory Logics family over a given signa-
ture 〈prop,rel〉 is defined as an extension of the propositional calculus with the following
operators:

ϕ ::= · · · | ©k | ©rϕ | ©eϕ | ©fϕ | 〈r〉ϕ | 〈〈r〉〉ϕ

where r ∈ rel. We define the dual of 〈〈r〉〉 in the usual way: for all r ∈ rel, [[r]]ϕ can be
defined as ¬〈〈r〉〉¬ϕ. We usually call these operators ‘known’, ‘remember’, ‘erase’, ‘forget’
and ‘double diamond’. Every logic of this family will be required to have at least the ©r
and ©k operators and can have any combination of the other operators.

Observe that, defined this way, in the family of memory logics one has two types of
diamonds: the ‘single’ diamond of BML and the ‘double diamond’. The semantic of the
first is defined as usual and the later will be defined shortly.

The family of memory logics that we will be working with are all evaluated in an
extension of Kripke models with a set that we call the ‘memory’ of the model. It is
defined as follows, along with its first-order equivalent.
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Definition 5.1.3 (Models). A model for the source language over the signature S is a
tuple M = 〈W,R, V, S〉 satisfying

(i) W is a nonempty set,

(ii) R ⊆W ×W is a binary relation over W ,

(iii) V : prop→ P (W ) is a valuation function, and

(iv) S ⊆W is the memory of the model.

An F-model for the target language is a tuple Mt = 〈W t, Rt, (P t
i )i∈fprop,K〉 where

(i) W t is a nonempty set,

(ii) K ⊆W ,

(iii) Rt ⊆W t ×W t is a binary relation over W t, and

(iv) (P t
i )i∈fprop are unary relations over W t.

Notation 5.1.4. In the rest of this section the following notation will be useful. Let
M = 〈W,R, V, S〉 be a model, w ∈W , and S′ ⊆W then we define

M[+w] = 〈W,R, V, S ∪ {w}〉
M[−w] = 〈W,R, V, S \ {w}〉
M[+S′] = 〈W,R, V, S ∪ S′〉
M[−S′] = 〈W,R, V, S \ S′〉
M[∗] = 〈W,R, V, ∅〉.

We usually write M[w] instead of M[+w].

Definition 5.1.5 (Semantics). Given a model M = 〈W,R, V, S〉 and w ∈ W , we extend
the propositional part of the semantics presented in Definition 1.2.4 with the following
rules:

M, w |=©k iff w ∈ S
M, w |=©rϕ iff M[w], w |= ϕ
M, w |=©fϕ iff M[−w], w |= ϕ
M, w |=©eϕ iff M[∗], w |= ϕ
M, w |= 〈r〉ϕ iff ∃w′ ∈W,wRw′ and M, w′ |= ϕ.
M, w |= 〈〈r〉〉ϕ iff ∃w′ ∈W,wRw′ and M[w], w′ |= ϕ.

Observe that the double diamond acts as a normal diamond but it always remembers
the current state before moving. Hence, it can be thought as if the formula were leaving
a trace while being evaluated in the model.

Definition 5.1.6 (Formula translation). We will not give an explicit translation for these
logics, as we will not use it explicitly. We know there exists a translation to F1

= because,
in [AFFM08], there is an explicit translation from memory logics to HL and there is a
translation fromHL to F1

= given in [BvBW06]. This translation preserves both conjunction
and disjunction as needed. Let’s call it Tfx : FORM(S)→ FORM(T ).

Definition 5.1.7 (Model translation). Let K be the class of all models for the signature
T . LetM = 〈W,R, V, S〉 andMt = 〈W t, Rt, (P t

i )i∈fprop,K〉. Define the model translation
TK(M, w) = 〈Mt, gt〉 to be the function induced by the following equations
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W t = W
P t

i = V (pi)
K = S
Rt = R

gt(x) = w

The simulation notion for a logic of this family allows a very modular definition. Let
∼ be a binary relation between memory pointed models. So ∼ relates tuples 〈M,m〉 with
〈N , n〉.

A simulation for a memory logic L can be defined imposing restrictions to ∼ depending
on the operators that L has. In the following table we summarize the restrictions associated
with each operator. We write SM to refer to the memory of the model M. R1

r is used to
denote a relation in M and R2

r is used to denote a relation in N .

always (nontriv) ∼ is not empty.
always (agree) If 〈M,m〉 ∼ 〈N , n〉, thenm and nmake the same propositional

variables true.
©k (kagree) If 〈M,m〉 ∼ 〈N , n〉, then m ∈ SM if and only if n ∈ SN .
©r (remember) If 〈M,m〉 ∼ 〈N , n〉, then 〈M[m],m〉 ∼ 〈N [n], n〉.
©f (forget) If 〈M,m〉 ∼ 〈N , n〉, then 〈M[−m],m〉 ∼ 〈N [−n], n〉.
©e (erase) If 〈M,m〉 ∼ 〈N , n〉, then 〈M[∗],m〉 ∼ 〈N [∗], n〉.
〈r〉 (forth) If 〈M,m〉 ∼ 〈N , n〉 and R1

r(m,m′), then there exists n′ ∈ |N |
such that R2

r(n, n′) and 〈M,m′〉 ∼ 〈N , n′〉.
(back) If 〈M,m〉 ∼ 〈N , n〉 and R2

r(n, n′), then there exists m′ ∈ |M|
such that R1

r(m,m′) and 〈M,m′〉 ∼ 〈N , n′〉.
〈〈r〉〉 (mforth) If 〈M,m〉 ∼ 〈N , n〉 and R1

r(m,m′), then there exists n′ ∈ |N |
such that R2

r(n, n′) and 〈M[m],m′〉 ∼ 〈N [n], n′〉.
(mback) If 〈M,m〉 ∼ 〈N , n〉 and R2

r(n, n′), then there exists m′ ∈ |M|
such that R1

r(m,m′) and 〈M[m],m′〉 ∼ 〈N [n], n′〉.

Fig. 5.1: Operator restrictions for a modular memory simulation definition.

Definition 5.1.8 (Memory simulation). From now on, given a memory logic L, we will
refer as ‘the simulation for L’ to the simulation defined by the sum of the necessary
conditions of Figure 5.1 for the operators in L.

Observe that, as every memory logic has negation, the simulation notion for memory
logics will be symmetrical. Therefore we will use the bisimulation symbol ↔ to note
memory simulations.

Example 5.1.9. To give some examples of possible memory logics we cite the following
ones which are named in [Mer09].

ML(〈r〉) = {©r ,©k , 〈r〉}
ML(〈〈r〉〉) = {©r ,©k , 〈〈r〉〉}
ML(〈r〉,©f ) = {©r ,©k ,©f , 〈r〉}
ML(〈〈r〉〉,©f ) = {©r ,©k ,©f , 〈〈r〉〉}
ML(〈r〉,©e ) = {©r ,©k ,©e , 〈r〉}
ML(〈〈r〉〉,©e ) = {©r ,©k ,©e , 〈〈r〉〉}
ML(〈r〉,©f ,©e ) = {©r ,©k ,©f ,©e , 〈r〉}
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It is clear from the satisfaction definition of each operator that these logics have different
capabilities. A detailed insight on the expressive power of these logics can be found in the
aforementioned PhD. thesis.

Theorem 5.1.10. Let L be a memory logic, let 〈M, w〉 and 〈N , v〉 be two memory models.
If 〈M, w〉 ↔L 〈N , v〉 then 〈M, w〉 ≡L 〈N , v〉.

Proof. Part of the proof can be found in [Mer09], it can be easily extended to he full set
of operators. We will not present this proof here as it exceeds the focus of this thesis.

Before starting with the proof of the main theorem of this section we will prove some
lemmas that will be useful. The model may change during the evaluation of a formula. For
our special case, it will be enough to prove that adding a state to the memory preserves
ω-saturation.

Lemma 5.1.11. IfM is ω-saturated thenM[+A] is ω-saturated too for all finite A ⊆ |M|.

Proof. The proof of this lemma can be found in [Mer09, Lemma 5.2.2].

Lemma 5.1.12. Let M = 〈W,R, . . .〉 be a ω-saturated Kripke model whose translation
preserves the structure of the domain and the relations, that is, T(M) = 〈W,R, . . .〉 where
R ⊆W ×W .

Let Σ be a set of modal formulas and w ∈W . If every finite subset ∆ ⊆ Σ satisfies
M, v∆ |= ∆ where v∆ is an R-successor of w then there exists v, an R-successor of w, such
that M, v |= Σ.

Proof. Recall that the definition of ω-saturation lets us extend the first order language
with a constant a for each element a ∈W . Define Σ∗ = {Rwx} ∪ Tfx(Σ).

If we show that Σ∗ is satisfiable in some pointed model T(M, v) it is clear that Σ will
be satisfiable in a successor of w. This is because the domain and relations of M and
T(M) are the same and if T(M) |= Rwx[a] this means that a is a successor of w. The
rest of the proof will focus on proving that Σ∗ is satisfiable in the pointed model T(M, v).

Take a finite subset Σ0 ⊆ Σ∗. Observe that this set should satisfy the following
inclusion Σ0 ⊆ {Rwx, σ1, . . . , σn} with σi ∈ Tfx(Σ). Therefore, if we show that this bigger
set is satisfiable, it will also be the case with Σ0.

By hypothesis, every finite subset of Σ is satisfiable in a successor of w. Take the finite
subset ∆ such that Tfx(∆) = {σ1, . . . , σn}. This ∆ is satisfiable in some successor v∆ which
means that R(w, v∆). We can conclude that T(M, v∆) |= Rwx and T(M, v∆) |= Tfx(∆).

We have taken an arbitrary finite subset of Σ∗ and shown that it is satisfiable. By
ω-saturation we can conclude that the set Σ∗ is also satisfiable.

To be able to derive the characterization and definability results using the frame-
work developed in the previous chapters we need to prove that, for every memory logic
L, the class of ω-saturated models has the Hennessy-Milner property with respect to
L-simulations. Each logic will have its own definition of simulation with the proper re-
strictions listed above.

As we want to consider all the possible logics from the family of memory logics we
will need to prove that, given two models 〈M, w〉 and 〈N , v〉 such that 〈M, w〉 ≡L 〈N , v〉
we can construct an L-simulation between them. We will do this by considering every
possible operator and show that we can construct a simulation that satisfies the constraints
associated for that operator.
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Theorem 5.1.13. Let L be a memory logic, the class of ω-saturated models has the
Hennessy-Milner property with respect to L-simulations.

Proof. Given two ω-saturated models M, N it suffices to give an L-simulation between
them. We propose the binary relation ∼ defined as

〈M, w〉 ∼ 〈N , v〉 iff M, w ≡L N , v

Suppose that 〈M, w〉 ∼ 〈N , v〉. We first show that this relation satisfies the (nontriv) and
(agree) restrictions which apply for every combination of operators, then we will undertake
the proof for each special operator.

Basic restrictions. We can see that if we are given two equivalent worlds in two dif-
ferent models then, by definition, the relation will have at least one element and therefore
(nontriv) will be satisfied. Also, the definition of the relation implies that w and v make
true the same propositional variables and therefore (agree) is satisfied.

Restrictions for ©k . We need to show that w is known inM if and only if v is known in
N . The proof goes through easily using the satisfaction definition of the known operator

w ∈ SM ⇐⇒ M, w |=©k ⇐⇒ N , v |=©k ⇐⇒ v ∈ SN .

The first and last implications are because of the semantics of ©k , the implication in the
middle is because of L-equivalence between w and v. This proves that (kagree) is satisfied.

Restrictions for ©r . As we suppose that 〈M, w〉 ∼ 〈N , v〉 then for every ϕ we have

M, w |= ϕ ⇐⇒ N , v |= ϕ

so, given a formula ψ we can instantiate the equivalence and get

M, w |=©rψ ⇐⇒ N , v |=©rψ

which by satisfaction definition holds precisely when

M[+w], w |= ψ ⇐⇒ N [+v], v |= ψ

that means that those two states are equivalent and we can conclude (by def. of ∼) that

〈M[w], w〉 ∼ 〈N [v], v〉

This proves that (remember) is satisfied.

Restrictions for ©f . As in the last paragraph, for every ϕ we have

M, w |= ϕ ⇐⇒ N , v |= ϕ

so, given a formula ψ we can instantiate the equivalence and get

M, w |=©fψ ⇐⇒ N , v |=©fψ

which by satisfaction definition holds precisely when

M[−w], w |= ψ ⇐⇒ N [−v], v |= ψ

that means that those two states are equivalent and we can conclude (by def. of ∼) that

〈M[−w], w〉 ∼ 〈N [−v], v〉

This proves that (forget) is satisfied.
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Restrictions for ©e . We proceed as usual, for every ϕ we have

M, w |= ϕ ⇐⇒ N , v |= ϕ

so, given a formula ψ we can instantiate the equivalence and get

M, w |=©eψ ⇐⇒ N , v |=©eψ

which by satisfaction definition holds precisely when

M[∗], w |= ψ ⇐⇒ N [∗], v |= ψ

that means that those two states are equivalent and we can conclude (by def. of ∼) that

〈M[∗], w〉 ∼ 〈N [∗], v〉

This proves that (erase) is satisfied.

Restrictions for 〈r〉. As we have 〈M, w〉 ∼ 〈N , v〉 then M, w ≡ N , v. Suppose that
w′ is a successor of w. Let Σ be the set of all the formulas true at M, w′. For every finite
subset ∆ ⊆ Σ we have M, w′ |=

∧
∆ and therefore M, w |= 3

∧
∆. By L-equivalence we

have N , v |= 3
∧

∆ which means that for every ∆ we have a v-succesor which satisfies it.
By Lemma 5.1.12 we can conclude that there exists v′ a v-succesor so that N , v′ |= Σ.

As M, w′ and N , v′ make the same formulas true then they are L-equivalent and by
definition they will be related by the simulation. We conclude that 〈M, w′〉 ∼ 〈N , v′〉.
This proves that (forth) is satisfied. The proof for (back) is similar but switching the
models.

An alternative proof of this lemma, which uses a notion called m-saturation, can be
found in [BdRV01].

Restrictions for 〈〈r〉〉. As we have 〈M, w〉 ∼ 〈N , v〉 then for every ϕ we have

M, w |= ϕ ⇐⇒ N , v |= ϕ

therefore if, given an arbitrary ψ we instantiate ϕ =©rψ we get1

M,m |=©rψ ⇐⇒ N , n |=©rψ

which, by satisfaction definition holds exactly when

M[m],m |= ψ ⇐⇒ N [n], n |= ψ (5.1)

Observe that equation 5.1 implies thatM[m],m ≡L N [n], n. Using Lemma 5.1.11 we also
know that 〈M[m],m〉 and 〈N [n], n〉 are both ω-saturated.

Suppose that w′ is a successor of w. Let Σ be the set of all the formulas true
at M[w], w′. For every finite subset ∆ ⊆ Σ we have M[w], w′ |=

∧
∆ and therefore

M[w], w |= 〈〈r〉〉
∧

∆. By L-equivalence we have N [v], v |= 〈〈r〉〉
∧

∆ which means that for

1 We can use ‘remember’ here because we required that every memory logic should have it. Without
this requirement we would’ve been able to use only 〈〈r〉〉.
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every ∆ we have a v-succesor which satisfies it. By Lemma 5.1.12 we can conclude that
there exists v′ a v-succesor so that N [v], v′ |= Σ.

As M[w], w′ and N [n], v′ make the same formulas true then they are L-equivalent
and by definition they will be related by the simulation. This proves that (mforth) is
satisfied because 〈M[w], w′〉 ∼ 〈N [v], v′〉. The proof for (mback) is similar but switching
the models.

After analyzing all the possible operators we have shown that, for every case, the
L-simulation relation will satisfied the required constraints. This proves that given two
ω-saturated L-equivalent models we are able to construct an L-simulation between them.
Therefore, the ω-saturated class of models has the Hennessy-Milner property with respect
to L-simulations.

Corollary 5.1.14. The definitions given above, along with Theorem 5.1.13, prove that
the pair 〈L,K〉 is an adequate pair for every memory logic L. Therefore, the Characteri-
zation and Definability theorems (4.2.3, 4.3.5 and 4.3.9) hold for this family of logics. In
particular, these theorems hold for the logics in Example 5.1.9.

5.2 Hybrid Logics

Hybrid Logics augment modal logics with machinery for describing and reasoning about
identity, which is a crucial in many settings. The notion of identity comes with the
introduction of ‘nominals’ and operators to reason about them. In spirit, nominals work
mostly as propositional variables but they have the particularity of being true in at most
one point. We start by defining the signatures for these logics.

Definition 5.2.1 (Signatures). Let prop = {p1, p2, . . . } (the propositional symbols),
nom = {i1, i2, . . . } (the nominal symbols) and rel = {r1, r2, . . . } (the relational symbols)
be disjoint, countable infinite sets of symbols. The source signature is defined to be
S = 〈prop,rel,nom〉.

Let fprop = {P1, P2, . . . } (the propositional predicates), frel = {R1, R2, . . . } (the
relational predicates) and fconst = {c1, c2, . . . } (the constants). The target first-order
signature is defined to be T = 〈fprop ∪ frel, fconst, ∅〉 with equality.

In this thesis we will (re)prove the characterization and definability theorem for a
small family of hybrid logics. We will only consider the cases which extend BML with
nominals and possibly the @ operator. There exist other hybrid important logics such as,
for example, the ones which include the downarrow binder ↓. Results for these logics are
nicely developed in [BvBW06, Chapter 12].

Definition 5.2.2 (Syntax). The syntax of the Hybrid Logic family over a given signature
〈prop,rel,nom〉 is defined as an extension of the propositional calculus with the following
operators:

ϕ ::= · · · | i | @iϕ | 〈r〉ϕ

where i ∈ nom and r ∈ rel. We define the dual of 〈r〉 in the usual way.

Definition 5.2.3 (Models). A hybrid model for the source language is a tuple

M = 〈W, (Rr)r∈rel, V,G〉

which satisfies
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(i) W is a nonempty set,

(ii) Rr ⊆W ×W are binary relations over W ,

(iii) V : prop→ P (W ) is a valuation function, and

(iv) G : nom→W is an assignment for the nominals.2

An F-model for the target language is a tuple

Mt = 〈W t, (Rt
r)r∈frel, (P t

i )i∈fprop, (cti)i∈fconst〉

which satisfies

(i) W t is a nonempty set,

(ii) Rt
r ⊆W t ×W t are binary relations over W t,

(iii) (P t
i )i∈fprop are unary relations over W t, and

(iv) cti are constants.

Definition 5.2.4 (Semantics). Given a model M = 〈W,R, V,G〉 and w ∈ W , we extend
the semantics presented in Definition 1.2.4 (BML semantics) with the following rules:

M, w |= i iff w = i
M, w |= @iϕ iff M, G(i) |= ϕ

Observe that the satisfaction definition for the nominals acts as an identity checker
and the @-operator lets us ‘jump’ to an identified world.

Definition 5.2.5 (Formula translation). A formula translation that meets our require-
ments is given in [BdRV01, BvBW06]. We will not give the explicit definition because we
will not need to use it.

Definition 5.2.6 (Model translation). Let K be the class of all first order models over
the target signature T . Let M = 〈W, (Rr)r∈rel, V,G〉 and

Mt = 〈W t, (Rt
r)r∈frel, (P t

i )i∈fprop, (cti)i∈fconst〉.

Define the model translation TK(M, w) = 〈Mt, gt〉 to be the function induced by the
following equations

W t = W
P t

i = V (pi) for pi ∈ prop
cti = G(i) for i ∈ nom
Rt

i = Ri

gt(x) = w

As with memory logics, the small family of hybrid logics that we will analyze also
allows a modular simulation definition. Let ∼ be a binary relation between hybrid pointed
models. A simulation for a hybrid logic L can be defined imposing restrictions to ∼
depending on the operators that L has. It is important to stress that every hybrid logic
should have nominals. In the following table we summarize the restrictions associated with
each operator. We write G1 for the nominal assignment of M and G2 for the nominal
assignment of N .

2 In the literature one can find an equivalent definition where V : prop ∪ nom → P (W ) and G doesn’t
exist. In this case we should add V (i) = |1| for all i ∈ nom as a restriction. It is easy to see that this two
definitions are equivalent.
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nominals (nagree) If 〈M,m〉 ∼ 〈N , n〉, then G1(i) = m if and only if
G2(i) = n for all i ∈ nom.

@ (nom) If G1(i) = w and G2(i) = v for some i ∈ nom then
〈M, w〉 ∼ 〈N , v〉.

Fig. 5.2: Operator restrictions for a modular hybrid simulation definition.

Definition 5.2.7 (Hybrid simulation). From now on, given a hybrid logic L, we will refer
as ‘the simulation for L’ to the simulation defined by the sum of the necessary conditions
of Figure 5.2 for the operators in L and the (nontriv) and (agree).

Theorem 5.2.8. Let L be a hybrid logic defined as in Definition 5.2.2, let 〈M, w〉 and
〈N , v〉 be two hybrid models. If 〈M, w〉 ↔L 〈N , v〉 then 〈M, w〉 ≡L 〈N , v〉.

Proof. The proof of this theorem can be found in [BvBW06].

In the following theorem we will prove that the ω-saturated class of models has the
Hennessy-Milner property with respect to the simulations for the following hybrid logics.

HL = {nominals, 〈r〉}
HL(@) = {nominals, 〈r〉,@}

We will achieve this by showning that, given two equivalent pointed hybrid models, we
can construct a simulation between them.

Theorem 5.2.9. Let L be a hybrid logic as in Definition 5.2.2, the class of ω-saturated
models has the Hennessy-Milner property with respect to L-simulations.

Proof. Given two ω-saturated models M, N it suffices to give an L-simulation between
them. We propose the binary relation ∼ defined as

〈M, w〉 ∼ 〈N , v〉 iff M, w ≡L N , v

Suppose that 〈M, w〉 ∼ 〈N , v〉. The proof for the (nontriv), (agree), (forth) and (back)
restrictions are the same as for memory logics (see Theorem 5.1.13). We prove the restric-
tions for nominals and the @ operator.

Restrictions for nominals. This proof goes through using the satisfaction definition
for the nominals. Remember that the nominals can only be true in one world.

GM(i) = w ⇐⇒ M, w |= i ⇐⇒ N , v |= i ⇐⇒ GN (i) = v

the first and last implications are because of the semantics of nominal satisfaction and the
implication in the middle is because of the L-equivalence between 〈M, w〉 and 〈N , v〉.

Restrictions for @. Suppose that G1(i) = w and G2(i) = v. As the relation is non-
empty we can always get two equivalent worlds a ∈ |M| and b ∈ |N |. Then we have

M, a |= ϕ iff N , b |= ϕ

for all ϕ. Given an arbitrary formula ψ we can instantiate ϕ = @iψ thus obtaining

M, a |= @iψ iff N , b |= @iψ
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which by semantic definition means that

M, G1(i) |= ψ iff N , G2(i) |= ψ.

By hypothesis we can replace G1(i) and G2(i) and get

M, w |= ψ iff N , v |= ψ

therefore M, w ≡L N , v and by definition 〈M, w〉 ∼ 〈N , v〉.
After analyzing all the possible operators we have shown that, for every case, the

L-simulation relation will satisfy the required constraints. This proves that given two
ω-saturated L-equivalent models we are able to construct an L-simulation between them.
Therefore, the ω-saturated class of models has the Hennessy-Milner property with respect
to L-simulations.

Corollary 5.2.10. The definitions given above, along with Theorem 5.2.9, prove that the
pair 〈L,K〉 is an adequate pair for every hybrid logic L. Therefore, the Characterization
and Definability theorems (4.2.3, 4.3.5 and 4.3.9) hold for this family of logics.
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When developing a notion of simulation for a given logic L we need to be sure that we
end up with the adequate notion. This means that it should exactly characterize model
equivalence. If we prove that

If 〈M, w〉 ∼L 〈N , v〉 then M, w vL N , v (6.1)

we have the half of the work done but the notion could still be wrong. Suppose that, for
example, we say that the right notion of simulation for BML- is the bisimulation notion
of BML. It is obvious that we will be able to prove (6.1) but we are not working with the
right notion of simulation: is is too strong for BML-.

In the process of finding the right simulation notion, candidates are often checked
‘against’ finite or finitely branching models. In those cases, one expects to be able to
prove the converse of (6.1). As we have seen, these classes of models are special cases of
ω-saturated models. In the development of this thesis we arrive to the conclusion that
if we can prove the converse of (6.1) for any ω-saturated model then we can, with little
work, derive the Characterization and Definability theorems. This observation stresses
the important relationship of ω-saturated models and the right simulation notion for a
given logic.

When we defined the notion of adequate pair in Definition 4.1.1 we explained the
strength of the Hennessy-Milner requirement. One would expect that a true generalization
of the Characterization and Definability theorem doesn’t require the proof of a lemma.
Instead, it should give a series of easily checkable properties that a logic should satisfy.

In sake of trying to give a result that could handle a broad spectrum of simulation
notions we faced a big problem: we had no information regarding the structural properties
of a simulation. In the applications chapter we saw that this information was essential to
prove that ω-saturated models had the Hennesy-Milner property.

We think that an important line of work lies in the effort of trying to prove the
Hennessy-Milner property without much information about the simulation notion. In
future work we plan to integrate the results of this thesis with an approach similar to the
one presented in [AG10], where coinductive model semantics are given.

Recall that in the beginning of Chapter 3 we presented two equivalent definitions of
the ‘Basic Temporal Logic’. The classical one had custom made modalities F and P
and the alternative view considered them as normal diamonds over a restricted class of
models. The work done by Areces and Goŕın in [AG10] generalizes this idea for (almost)
any modality which can be defined with the pattern of the diamond operator (∀∃).

From our perspective, the most important point of their work is that, by restricting
the class of models, we get a unique notion of model equivalence for every logic that fits in
their framework. The right simulation notion turns to be the same as BML’s bisimulation.

As far as we know, to the moment, there was no direct way to prove Characterization
and Definability results using the framework developed in [AG10]. The problem laid in
the restriction applied to the class of models, there is no classical proof which takes this
kind of restrictions into account. With the results developed in this thesis it should be
easy to prove a more general result using their framework.
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Good as it is, the framework developed in [AG10] has its limits. Not every modality
can be expressed with the pattern of a diamond. For example, there exists an extension of
basic temporal logic which adds the Since and Until operators [BvBW06]. This operators
don’t respect the pattern of the definition of a normal diamond and therefore don’t fit in
the framework.

We think that one of the most exciting ways to continue this work is to try to expand
the framework developed by Areces and Goŕın to support more types of operators. This
would allow us to give a ‘canonical’ simulation notion for a broader set of logics and
therefore be able to prove the Hennessy-Milner property for them.

This line of work definitely looks as a promising path to give an automatic derivation
of the Characterization and Definability theorems for a greater set of modal logics.



APPENDIX A: AUXILIARY RESULTS

Theorem A.1 (First order compactness relative to a class of models). Let C be a class
of first-order models which is closed under ultraproducts and let Σ be a set of first order
formulas. If every finite set ∆ ⊆ Σ has a model in C then there is a model in C for Σ.

Proof. LetMf
i be a model for each finite subset ∆i ⊆ Σ, algebraic proofs of the compact-

ness theorem [Kei08, Theorem 4.3] show that the ultraproduct of the modelsM =
∏

UM
f
i

satisfies M |= Σ.1 As each Mf
i is in C and C is closed under ultraproducts we conclude

that M∈ C.

Theorem A.2 (First order definability relative to a class of models). Let C be a class of
first-order models which is closed under ultraproducts and let K ⊆ C.

(i) K is a C-elementary class (noted C-EC∆) if and only if K is closed under ultra-
products, K is C-closed under potential isomorphisms and K ∩ C is closed under
ultrapowers.

(ii) K is a basic C-elementary class (noted C-EC) if and only if both K and K ∩ C are
closed under ultraproducts and C-closed under potential isomorphisms.

Proof. Left to right directions are left to the reader. Let’s prove right-to-left directions.

(i) Let C be a class of first-order models which is closed under ultraproducts, let K ⊆ C be
such that K is closed under ultraproducts, K is C-closed under potential isomorphisms
and K ∩ C is closed under ultrapowers.

Let Γ = {ϕ : |=K ϕ}, we show that Γ defines K. For the easy part, take a model
Mf ∈ K. By definition of Γ we have that Mf |= Γ.

For the hard part, let Mf ∈ C be such that Mf |= Γ. Define the first order theory
of the model Mf as

Σ = {ϕ : ϕ is a sentence and Mf |= ϕ}.

Let’s see that there is a model for Σ which lays in K. Suppose not, by Theorem A.1
there is a finite subset Σ0 = {σ1, . . . , σn} of Σ which is unsatisfiable in K. Hence,
|=K ¬(σ1 ∧ · · · ∧ σn) which means that ¬(σ1 ∧ · · · ∧ σn) ∈ Γ. As Mf |= Γ we arrive
to an absurd. We have proved that there exists N f ∈ K such that N f |= Σ.

By [CK90, Theorem 6.1.15], Mf ≡F N f if and only if there exist ultrapowers Mf
∗

and N f
∗ such thatMf

∗ ∼= N f
∗ . Because K is closed under ultraproducts, in particular

it is closed under ultrapowers, therefore, N f
∗ ∈ K. As both classes are closed under

ultrapowers, Mf and Mf
∗ belong to the same class. Last but not least, as K is

C-closed under potential isomorphisms and Mf
∗ ∼= N f

∗ then Mf
∗ ∈ K. Finally we

conclude that Mf ∈ K.

1 With a suitable ultrafilter U .

51



52 Appendix

(ii) Let C be a class of first-order models which is closed under ultraproducts, let K ⊆ C
be such that both K and K ∩ C are closed under ultraproducts and C-closed under
potential isomorphisms.

By (i) we know there exist two sets Γ,Γc respectively defining K and K∩C. Observe
that the union Γ ∪ Γc is not satisfiable in C. By Theorem A.1 there exists a finite
subset Σ0 ⊆ Γ ∪ Γc which is unsatisfiable in C. Call Σ0 = {α1, . . . , αn, β1, . . . , βm}
with αi ∈ Γ and βj ∈ Γc. As Σ0 is unsatisfiable in C this means that |=C α1 ∧ · · · ∧
αn → ¬(β1 ∧ · · · ∧ βm). Let’s see that it is exactly ϕ = α1 ∧ · · · ∧ αn that defines K.

Let Mf ∈ C. If Mf ∈ K then trivially Mf |= ϕ. Suppose Mf |= ϕ then Mf 6|=
β1 ∧ · · · ∧βm thereforeMf 6|= Γc henceMf /∈ K∩C. We conclude thatMf ∈ K.

Theorem A.3. Let 〈L,K〉 be an adequate pair and let M1,M2 ⊆ MODS(L) be two classes
such that T(M1) and T(M2) are closed under ultrapowers. Let M ∈ M1 and N ∈ M2 be
two L-models such that for some w ∈ |M|, v ∈ |N | they satisfy N , v vL M, w then there
exist models M∗ ∈ M1 and N ∗ ∈ M2 and elements w∗ ∈ |M∗|, v∗ ∈ |N ∗| such that

1. T(M, w) ≡F T(M∗, w∗) and T(N , v) ≡F T(N ∗, v∗)
Their translations are pairwise elementary equivalent.

2. M, w ≡L M∗, w∗ and N , v ≡L N ∗, v∗
They are pairwise equivalent.

3. N ∗, v∗ →L M∗, w∗
There is a simulation from N ∗, v∗ to M∗, w∗.

Proof. We define some names for the models which we will be working on before starting
with the proof. Call Mf , gw = T(M, w) and Nf , gv = T(N , v). Take M+

f ,N
+
f to be

ω-saturated ultrapowers of Mf and Nf (their existance is proved in Theorem B.7). As
the classes are closed under ultrapowers the saturated models are in the same class as
their originators.

By [CK90, Corollary 4.1.13] we have an elementary embedding d : |Mf | → |M+
f |. Let

g+
w be an assignment for M+

f such that g+
w (x) = d(gw(x)). Take the modal preimage of

M+
f , g

+
w and call itM∗, w∗ = T

-1
(M+

f , g
+
w ). We make the same process and assign similar

names to models and points deriving from N .

1. As a corollary of [CK90, Corollary 4.1.13], as there is an elementary embedding, we
have that Mf , gw ≡F M+

f , g
+
w . The same proof works with Nf and N+

f .

2. Following the last point, we can conclude, through the translations’ truth-preservation,
that M, w ≡L M∗, w∗. The same proof works with N , v and N ∗, v∗. Corollary:
N ∗, v∗ vL M∗, w∗.

3. As both M+
f and N+

f are ω-saturated, by definition of adequate pair, that implies
that they have the Hennesy-Milner property. Therefore, because we’ve just proved
that N ∗, v∗ vL M∗, w∗ we can conclude that N ∗, v∗ →L M∗, w∗.



APPENDIX B: FILTERS AND ULTRAPRODUCTS

The ultraproduct construction is a uniform method of building models of first order the-
ories which has applications in many areas of mathematics. It is attractive because it is
algebraic in nature, but preserves all properties expressible in first order logic. In this sec-
tion we will make a brief summary of the tools presented in [Kei08] with some additional
notes that may guide the reader. Unless explicitly stated the proofs can be checked in the
publication that we’ve just mentioned.

Definition B.1 (Filter, proper filter, ultrafilter). Let I be a non-empty set.
A filter U over I is a set of subsets of I such that:

(i) I ∈ U .

(ii) U is closed under supersets; if X ∈ U and X ⊆ Y then Y ∈ U .

(iii) U is closed under finite intersections; if X ∈ U and Y ∈ U then X ∩ Y ∈ U .

A proper filter over I is a filter U over I such that:

(iv) ∅ /∈ U .

An ultrafilter over I is a proper filter U over I such that:

(v) For each X ⊆ I exactly one of X, I\X belongs to U .

Theorem B.2 (Ultrafilter Theorem, Tarski). Every proper filter over the set I can be
extended to an ultrafilter over I.

We first define the ultraproduct operation on sets. Let U be an ultrafilter over I, and
for each i ∈ I let Ai be a non-empty set. The ultraproduct

∏
U Ai is obtained by first

taking the cartesian product C =
∏

i∈I Ai. Observe that C is the set of all functions f
such that for each i ∈ I, f(i) ∈ Ai. We continue by identifying elements which are equal
for U -almost all i ∈ I. The formal definition is as follows.

Definition B.3 (U -equivalence). Let U be an ultrafilter over I. Two elements f, g of
the cartesian product

∏
i∈I Ai are said to be U -equivalent, noted f =U g, if the set

{i : f(i) = g(i)} belongs to U . The U -equivalence class of f is the set fU = {g : f =U g}.

Definition B.4 (Ultraproduct of sets). Let U be an ultrafilter over I, the ultraproduct of
sets

∏
U Ai is defined as the set of U -equivalence classes∏

U

Ai = {fU : f ∈
∏
i∈I

Ai}.

An ultrapower of sets of A modulo U is defined as the ultraproduct
∏

U A =
∏

U Ai where
Ai = A for each i ∈ I. The natural or cannonical embedding is the mapping d : A→

∏
U Ai

such that d(a) is the U -equivalence class of the constant function with value a. That is
d(a) = (λx.a)U .
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We now introduce the ultraproduct operation on first order structures. For each i ∈ I,
let Mf

i be a first order model with universe set Ai. Briefly, the ultraproduct of models∏
UM

f
i is the unique first order model with universe

∏
U Ai such that each basic formula

holds in the ultraproduct if and only if it holds in
∏

UM
f
i for U -almost all i. Here is the

formal definition.

Definition B.5 (Ultraproduct of models). Let U be an ultrafilter over I, and let Mf
i be

a familiy of L-structures with universe set Ai. The ultraproduct of models
∏

UM
f
i is the

unique model Mf such that:2

(i) The universe of Mf is M =
∏

U Ai.

(ii) For each atomic formula ϕ(x1, . . . , xk) which has at most one symbol from the vo-
cabulary L, and each f1, . . . , fk ∈

∏
i∈I Ai,

Mf |= ϕ(f1U , . . . , fkU ) iff {i :Mf
i |= ϕ(f1(i), . . . , fk(i))} ∈ U.

Using the properties of ultrafilters one can check that such structure is unique and thus
well-defined. Similarly, the ultrapower of models of the modelMf modulo U is defined as
the ultraproduct

∏
UMf =

∏
UM

f
i where Mf

i =Mf for each i ∈ I.
Finally we present the theorem of  Loś which makes ultraproducts useful in model

theory. It shows that each formula holds in the ultraproduct if and only if it holds in∏
UM

f
i for U -almost all i. Observe that in this case there is no restriction to basic

formulas as before in Definition B.5.

Theorem B.6 (Fundamental theorem of Ultraproducts,  Loś). Let U be an ultrafilter over
I, and let Mf

i be a family of L-structures for each i ∈ I. For each formula ϕ(x1, . . . , xk),
and each f1, . . . , fk ∈

∏
i∈I Ai, we have∏

U

Mf
i |= ϕ(f1U , . . . , fkU ) iff {i :Mf

i |= ϕ(f1(i), . . . , fk(i))} ∈ U.

Corollary B.1. For each set of first-order sentences Γ, and family of models Mf
i . If

Mf
i |= Γ for all i ∈ I then

∏
UM

f
i |= Γ.

Corollary B.2 ([BdRV01, Corollary A.21]). Let
∏

UMf be an ultrapower of Mf , the
diagonal mapping d(a) = (λx.a)U is an elementary embedding. That is, for any first order
formula ϕ(x1, . . . , xk) and a1, . . . , ak ∈Mf

Mf |= ϕ(a1, . . . , ak) if and only if
∏
U

Mf |= ϕ(d(a1), . . . , d(ak)).

Using this results we can state an important theorem, the existence of elementary
equivalent ω-saturated ultrapowers.

Theorem B.7. Let F be countable andMf be an F model then there exists an ω-saturated
ultrapower

∏
UMf such that Mf ≡F

∏
UMf .

Proof. Follows from a direct combination of [Kei08, Theorem 5.6] and Corollary B.2.

2 The definition found in [Kei08] has a mistake in point (ii). The subscript of A is missing in the set
definition after the ‘iff’, it should be Ai.
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