
UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

REPRESENTACIONES MINIMALES DE GRAFOS DE

INTERVALOS UNITARIOS

Tesis presentada para optar al título de
Licenciado de la Universidad de Buenos Aires

en el área Ciencias de la Computación

Esteban Capillo

Director de tesis: Dr. Francisco Soulignac

Buenos Aires, 2014

Representaciones minimales de grafos de intervalos

unitarios

En esta tesis estudiamos el problema de decidir si, dado un modelo de intervalos
propios I y una longitud `, existe un modelo de intervalos unitario U de longitud `
equivalente a I cuyos extremos son enteros y satisfacen ciertas restricciones de separa-
ción. Como resultado de esta tesis, diseñamos un algoritmo que encuentra U en tiempo
cuadrático, en caso que sea posible. Más aún, cuando dicho modelo unitario no existe,
el algoritmo muestra una evidencia de este hecho. Asimismo, mostramos un algoritmo
que encuentra el mínimo valor de ` para el cual el problema tiene solución, que requiere
tiempo cuadrático. Por último, mostramos cómo puede aplicarse este algoritmo para en-
contrar los mínimos k y q tal que el grafo de intersección de I sea un subgrafo inducido
de P k

q .

Palabras clave: modelo de intervalos unitarios, representación mínima, restricciones
de separación, potencia de caminos.

Minimal representations of unit interval graphs

In this thesis we study the problem of deciding if, given a proper interval model I and
a length `, there exists a unit interval model U of length ` equivalent to I whose extremes
are integer and such that it satis�es certain separation constraints. Our main result is
an algorithm that �nds U in quadratic time, when it is possible. Moreover, when such
an unit interval model does not exist, the algorithm outputs some evidence about this
fact. We also show a quadratic time algorithm that �nds the minimum value of ` for
which the problem has a solution. Finally, we show how we can apply this algorithm to
�nd the minimum k and q such that the intersection graph of I is an induced subgraph
of P k

q .

Keywords: unit interval model, minimal representation, separation constraints, powers
of paths

Dedicated to Maria & Gelacio

iv

Contents

1 Introduction 1

1.1 Our contributions . 5
1.2 Review of the previous algorithms . 6
1.2.1 Pirlot's algorithm . 6
1.2.2 Mitas' algorithm . 7
1.2.3 Corneil et al. algorithm . 7
1.2.4 The UIG=PIG proof by Bogart and West 8
1.2.5 Gardi's UIG=PIG proof . 8
1.2.6 The algorithm by Lin et al. 9

2 Preliminaries 10

3 Minimal representations of unit interval graphs 13

3.1 Finding a representation with constraints 13
3.2 Finding the minimum interval length . 17
3.3 Short but not minimal models . 24
3.4 Powers of paths . 25

4 Conclusions and open problems 27

5 Bibliography 29

v

1 Introduction

Our goal in this thesis is to study the Minimal UIG Representation (MinUIG)
problem that consists in transforming a proper interval model into an equivalent unit
interval model whose intervals are of minimum length with integer extremes. An interval
model (IG) is simply a family I of open intervals on the real line. When no interval of I
is properly contained in another interval, I is said to be a proper interval model (PIG).
If, in addition, all the intervals have the same length, then I is a unit interval model
(UIG). Figure 1.1 shows examples of IG, PIG, and UIG models.

(a) a non-PIG IG model. (b) IG model with no equivalent PIG

(c) a PIG model equivalent to (a) (d) a UIG model equivalent to (a)

Figure 1.1 � Examples of IG, PIG and UIG models. Note that a PIG graph may admit

non-PIG models, as shown in (a) and (c).

Each IG model I can be associated with a graph that represents the intersection of
the intervals. The graph G(I) has one vertex v(I) for each I ∈ I, and two vertices v(I)
and v(I ′) of G(I) are adjacent if and only if I and I ′ have a nonempty intersection.
Model I is said to be a model or representation of G(I), while G(I) is said to admit
I. In general, a graph G admits zero or in�nite IG models (see Figures 1.1 and 1.2).
However, much of these models are �equivalent�, as they are obtained from each other
by rescaling or moving the intervals. Formally, two models I and I ′ are equivalent when
their extremes appear in the exact same order. By moving all the extremes of I by
in�nitesimal values, an equivalent IG model in which no two extremes coincide can be
obtained. Hence, as it is customary in the literature (e.g. [7]), we assume that all the
extremes of I are di�erent.

Two famous and well studied classes of graphs are de�ned according to the kinds of
interval models they admit. The class of interval graphs (IG) is formed by those graphs

1

1 Introduction

1

2

3

4

Figure 1.2 � Example of a graph admitting no IG models.

that admit at least one IG model. Similarly, proper interval graphs (PIG) are those
graphs that admit a PIG representation. Clearly, every PIG graph is an IG graph, but
the converse is not always true; the interval graph K1,3 admits no proper interval models
(see Figure 1.1 (b)). Thus, the problem of transforming an IG model into an equivalent
PIG model needs not have a solution. Similarly, the problem PIGtoUIG that asks for
a UIG model equivalent to an input PIG model I is feasible if and only if I is equivalent
to a UIG model. A priori, this needs not to be the case for every PIG model. However,
Roberts [14] proved that every PIG model is equivalent to a UIG model, i.e., PIGtoUIG
is well de�ned for every possible input. By Roberts' Theorem, the class of PIG graphs
is also referred to as the class of UIG graph.

Interval orders are strongly related to interval graphs. A partially ordered set (poset)
is a pair (X,<) such that < is an irre�exive, asymmetric and transitive relation on X.
Each interval model I is associated with a special poset P (I) = (X,<) where X has an
element x(I) for each I ∈ I, and x(s, t) < x(s′, t′) if and only if t < s′ for ever pair of open
intervals (s, t), (s′, t′) ∈ I1. That is, x(I) < x(I ′) when I appears completely to the left
of I ′ on the real line. Model I is said to be a model or representation of P (I), whereas
P (I) is said to admit I. The relation between interval graphs and interval orders is
quite obvious. There is an edge between v(I) and v(I ′) in G(I) if and only if x(I) and
x(I ′) are incomparable in P (I). In technical words, G(I) is the co-comparability graph
of P (I).

Semiorders are to UIG models what interval orders are to IG models. A semiorder
is an interval order P that admits an interval representation in which all intervals have
the same length. In other words, a semiorder is just an interval order P (I) represented
by a UIG model I. The seminal paper by Scott and Suppes [15] implies that P (I)
is a semiorder whenever I is a PIG model; this is somehow equivalent to Roberts'
theorem [14]. Thus, it makes sense to consider the MinSO problem whose purpose is
to �nd a UIG model with integer extremes that is of minimum length and represents
P (I), when the input is a PIG model I. The MinSO problem is just a restatement of
the MinUIG problem in terms of semiorders.

1For the sake of notation, we write x(s, t) instead of x((s, t)) for an interval (s, t).

2

1 Introduction

Several authors have considered the PIGtoUIG and MinUIG problems. In the
following section we review these algorithms in some detail. Before doing so, however,
we �nd it enlightening to review the history of these algorithms and the motivations
that led to them.

The treatment of the PIGtoUIG problem started with the seminal works by Scott
and Suppes [15] and Roberts [14]. Scott and Suppes de�ned the axioms of semiorders
and proved that a poset is a semiorder if and only if it contains no 2 + 2 and no 1 + 3
suborders. In graph theoretical terms, 2 + 2 and 1 + 3 are the equivalents of C4 and K1,3

graphs. Thus, any comparability graph with no induced C4's nor K1,3 are UIG graphs.
This fact was exploited by Roberts' to prove the equivalence between PIG graphs and
UIG graphs. These seminal results do not tell us how to transform a PIG model into a
UIG model; they just prove that this is possible.

In 1990, Pirlot considered theMinSO problem from a theoretical point of view in [13]
(see also [12]). In his original formulation, the extremes of the UIG model constructed
need not be integers. Instead, he considers the problem of �nding a UIG model in which
t and s′ are separated by a threshold ε ∈ R>0 for every interval (s, t) < (s′, t′). In
particular, he proves that all the extremes are integers when ε = 1 and every interval
starts as soon as possible. As a part of his article, Pirlot solves the PIGtoUIG problem,
showing when is it possible to transform a PIG model into a UIG model in such a way
that the intervals have length ` for some input ` ∈ N. When applied with ` = n,
the algorithm ends with success, and the corresponding UIG model is obtained. His
algorithm costs O(n3) time and O(n2) space.

Some years latter, in 1994, Mitas proposed a solution for the MinSO problem using
O(n) time and space [11] (see also [12]). As we shall see in Section 3.3, her algorithm
has a �aw and the interval length of the obtained UIG model is not always minimal.
Nevertheless, the algorithm correctly solves the PIGtoUIG model in O(n) time and
space, yielding a UIG model whose interval length is at most n.

In 1995, Corneil et al. [3] devised a simple method for the PIGtoUIG problem that
also runs in O(n) time and space. The main goal of [3] was to provide an e�cient
algorithm for the recognition of PIG graphs. Such algorithm outputs a PIG model that
is then transformed into a UIG model whose intervals have length exactly n. This last
step could have been solved by using Mitas' algorithm. We remark that Mitas' algorithm
is harder to prove than the one by Corneil et al., yet the length of the intervals is usually
lower than n.

In 1999, Bogart and West gave a simple proof of Roberts' PIG=UIG theorem. This
proof is quite short and elegant, as it was the main goal pursued by the authors. The
proof is constructive and it actually shows how to obtain a UIG model from an input
PIG model. However, the extremes of the model so obtained can be of an exponential
value in terms of n, thus the model occupies O(n2) space. The construction costs O(n2)

3

1 Introduction

operations, and each operation costs O(n) time in the worst scenario. Thus, O(n3) time
is required. In some sense, the algorithms proposed by Mitas and Corneil et al. also
provide us with corresponding not-so-short proofs of Roberts' PIG=UIG theorem.

In 2007, Gardi [6] described an equivalent version of Roberts' PIG=UIG theorem.
This theorem also tells us how to obtain a UIG model from an input PIG model. The
idea is quite similar to the one by Bogart and West, yet each interval is processed once.
Thus, the algorithm requires O(n) operations, but each operation costs O(n) time in the
worst case, as the extremes of the intervals could be exponential in terms of n. What it
is interesting to remark is that Gardi discusses the computational issues of his algorithm.
We remark the following statement in [6].

�the construction given [. . .] yields a linear-time and space algorithm [. . .].
This is more e�cient than the Bogart�West construction which computes a
unit interval model in O(n2) time [. . .].

However, these representations are not e�cient in the sense that the end-
points of the unit intervals are some arbitrary rationals which may have
denominators exponential in n. Only Corneil et al. have shown that their
breadth-�rst search recognition algorithm could be used to construct a unit
interval model in which each endpoint is rational, with denominator n and
numerator lower than n2. Thus, it would be interesting to �nd a linear-time
and space algorithm which computes directly (that is, without the use of
breadth-�rst search) [. . .].�

As we have seen, the algorithm by Corneil et al. was not the only linear time and
space algorithm to solve the PIGtoUIG problem whose output model have extremes
of length O(n). In fact, the algorithms by Pirlot and Mitas both solve the exact same
problem. In particular, Mitas' algorithm does it so in linear time; as she must �nd some
paths in a directed acyclic graph, her algorithm can be classi�ed as one that requires
the use of tree traversals. This shows an interesting fact: even though it is well known
that interval models are equivalent to interval orders, some researches focus their jobs
in graphs and others in orders and, sometimes, there is some ignorance about what has
been done in the other community2.

In 2009, Lin et al. [9] solved Gardi's problem by showing how to transform a PIG model
into a UIG model in O(n) time without using any tree-traversal algorithm. Instead,
their algorithm does two linear passes through the input PIG model. The UIG model
so obtained has length at most 2n in the worst case.

Finally, Costa [4] solve a problem related to the MinUIG problem. This problem,
called theMinPP, consists of �nding the minimum k and q such that G(I) is an induced

2Gardi's article was published in a journal that is well known for its excellence and in which every

manuscript is subject to at least two strict peer reviews.

4

1 Introduction

subgraph of the k-th power of a path with q vertices, for an input PIG model I. As
stated by Costa et al., their algorithm �nds the minimum feasible value k∗ and then,
for this �xed k∗, it �nds takes the minimum feasible value q. Note that, in principle, q
could be di�erent from the minimum value q∗ such that G(I) is an induced subgraph
of a power of a path with q∗ vertices. However, as proven by Pirlot [13], it matters
not the order in which the values k∗ and q∗ are found, i.e., q = q∗. With respect to its
complexity, the algorithm by Costa et al. requires O(n2) time and space.

To end this section we recall that, in few words, our goal is to study how to e�ciently
solve the MinUIG problem. That is, we must transform the intervals of I without
changing their intersections so that 1. all the intervals have the same length `, 2. the
extremes of all the intervals are integer, and 3. ` is minimized.

The above description of the MinUIG problem is somehow incomplete if we do not
state how the input and output of the problem looks like. A proper interval model I
can be represented by its sequence of extremes. By traversing the real line from −∞ to
∞ while writing an s for each beginning point and a t for each ending point, we obtain
a sequence with 2n symbols. This sequence is called the extreme sequence of I and
somehow identi�es I when the actual values of the extremes are not important. This
is the case for our problem, as the goal is to transform I by moving its extremes. For
this reason, we consider the extreme sequence of I as the actual input of the algorithm.
Working directly with the extreme sequence is, however, annoying. To avoid doing so is
that we de�ne the equivalence relation above. Note that two PIG models are equivalent
if and only if their extreme sequences are equal. As for the output of the problem, we
actually do require the positions of the extremes in the UIG model.

Observe that the input extreme sequence is encoded with only O(n) bits while the out-
put UIG model requires Ω(n log n) bits, as each extreme must be encoded with Ω(log n)
bits. This implies that no algorithm for theMinUIG and PIGtoUIG problems can run
in linear time. However, the extreme sequence is usually build from an input graph by
invoking the algorithm by Deng et al. [5] that outputs a PIG model requiring Θ(n log n)
bits. Thus, in the literature it is customary to assume that an input PIG model is en-
coded with Θ(n log n) bits that explains why the term �linear� is used. We continue this
tradition for the sake of exposition, i.e., we consider that an algorithm runs in O(f(n))
time when it applies O(f(n)) operations on integers encoded with O(log n) bits (see also
the discussion in [8]).

1.1 Our contributions

The main purpose of this thesis is to solve the MinUIG problem, by �xing Mitas'
algorithm. Unfortunately, the so obtained algorithm runs in O(n2) time. Besides giving a

5

1 Introduction

right solution for theMinUIG problem, we also translate some of the work done by Pirlot
and Mitas from the world of semiorders to that of interval graphs, providing alternative
proofs that we believe are simpler for those researchers in the graph community. We
think that doing this translation is important since, as we have already observed, those
researchers who work with either of these approaches sometimes ignore the work done
by the other party. This resulted in multiple attempts of solving an already solved �open
problem�.

We also believe that our algorithm is rather simple both to understand and to imple-
ment. In fact, the algorithm applies some well-known subrouting for solving di�erent
minimum path problems that are implemented in several libraries and programming lan-
guages. So, the work required to obtain an executable implementation is rather small.

Finally, we remark that not only we �x Mitas' algorithm, but we do so by considering
the more general problem in which each extreme is required to be separated from the
next extreme by an integer threshold. This allows us to solve the MinPP problem
easily. All we have to do is to apply our algorithm to the input model with the correct
separation parameters.

1.2 Review of the previous algorithms

In this section we brie�y review some of the algorithms we found in the literature related
to the topic of our work.

1.2.1 Pirlot's algorithm

Pirlot [13] studies the existence of minimal representations for semiorder. He proves
that there exists a UIG model where simultaneously (a) the interval length is minimum
among all the equivalent UIG models, (b) each interval starts as soon as possible, and
(c) every pair of non-intersecting intervals are separated by a threshold ε > 0. He also
shows that all the extremes are integer when ε = 1 which proves the existence of what
we call a minimal UIG model. As part of his work, he also shows an algorithm that
�nds a UIG model of any input semiorder, that we now review.

Pirlot represents a semiorder using a preference relation P and an indi�erence relation
I on a ground set A. Then, (P, I) is a semiorder if and only if there exists a real function
s and a nonnegative constant ` such that

• aPb if and only if s(a) ≥ s(b) + `+ 1, and

• aIb if and only if |s(a)− s(b)| < `

6

1 Introduction

for every a, b ∈ A. In other words, a is �preferred� over b when the interval of a appears
completely to the right of the interval of b, while a and b are �indi�erent� when their
corresponding intervals intersect.

To represent (P, I), Pirlot uses a digraph G with vertex set A in which a → b if
and only if either aPb or aIb. Note that this digraph has Θ(n2) edges; moreover, it
contains both arcs a → b and b → a when aIb because I is symmetric. Take a cycle
C = a1 → . . .→ aq → a1 in G. This cycle is composed by k edges in P of weight q + 1
and j edges in I of weight −q. By de�nition, s(ai) ≥ s(ai+1) + ` + 1 for every aiPai+1,
while |s(ai)− s(ai+1)| < ` for every aiIai+1. Thus, s(a1) ≥ s(a1) +k(`+ 1)− j` implying
that ` ≥ k

j−k . As this must happen for every cycle in G, it follows that

` ≥ max

{ |C ∩ P |
|C ∩ I| − |C ∩ P |

∣∣∣∣ C is cycle of G

}
.

Note that, by taking ` = n, the above equation is satis�ed. The algorithm then takes
n as the length of the intervals and �nds the position s(a) by solving the maximum
path problem with the Bellman-Ford algorithm on G, where each edge a→ b has weight
either q + 1 or −q according to whether aPb or aIb, respectively.

1.2.2 Mitas' algorithm

Mitas' [11] goal was to �nd the minimal representation of a semiorder with no equal
elements. Based on Pirlot's ideas, she represents the semiorder using a digraph that
contains a vertex for each interval, while directed edges indicate the separation among
the beginning points. However, instead of using a digraph with Θ(n2) edges, Mitas uses
a trimmed synthetic graph of a semiorder. Interestingly enough, the synthetic graph of a
semiorder was actually de�ned by Pirlot in [13] We use the term trimmed above because
Mitas removes some edges of the synthetic graph so as to remove all its cycles. This
allows her to compute the maximum distance from a initial vertex to all the remaining
vertices in O(n) time. These distances are then taken as the beginning points in the
output model. Unfortunately, she removes some essential edges while trimming that in
the end prevent her from �nding the minimum length (see Section 3.3).

1.2.3 Corneil et al. algorithm

Let I be a PIG model with intervals I1, I2, . . . , In, where Ii = (si, ti) and s1 < s2 <
. . . < sn. The idea of Corneil et al. is to build a special breath-�rst search (BFS) tree,
where the root corresponds to I1. This tree is used, in part, to check if the input graph
is actually a PIG graph. However, in this case we already know that the graph is PIG,

7

1 Introduction

thus the construction of the BFS tree can be simpli�ed as follows. For i = 2, . . . , n, let
PREV (Ii) be the interval whose ending point appears �rst from si. Let T be an ordered
tree with vertices v1, . . . , vn such that

• vi is the parent of vj if and only if Ii = PREV (Ij) and

• if vi and vj are siblings vertices then vi appears before vj if and only if i < j.

Tree T is a BFS tree of G from the vertex v1 that corresponds to I1. The algorithm
by Corneil et al. is really simple. Let `i be the level of vi in T , ki be the position of vi
in a postorder traversal of T , and de�ne ai = n`i + ki and bi = n(`i + 1) + ki. Then, the
model {(ai, bi) | 1 ≤ i ≤ n} is a UIG model equivalent to I [3].

It is not hard to compute all the values of PREV in O(n) time. Therefore, Corneil
et al. algorithm runs in O(n) time and space.

1.2.4 The UIG=PIG proof by Bogart and West

In their work, Bogart and West [1] show a simple constructive proof of the PIG=UIG
theorem. Suppose a PIG model {(si, ti) | 1 ≤ i ≤ n} is given, where s1 < . . . < sn.
At the i-th step of the algorithm, some section of the real line is stretched or shrunk in
such a way that the �rst i intervals have length 1. For i = 1, stretch or shrink the real
line in [s1, t1] so that t1 − s1 = 1. Note that this operation can a�ect not only (s1, t1)
but any other interval that intersects it. For step i+ 1, shrink or stretch [ti, ti+1] so that
si+1 − ti+1 = 1. The main observation is that this operation is always possible without
a�ecting the length of the previous intervals. At the end, a UIG model is obtained.

1.2.5 Gardi's UIG=PIG proof

Gardi's [6] idea is similar to that of Bogart and West, but he stretches or shrinks entire
maximal cliques at each step i, as follows. Again, suppose a PIG model {(si, ti) | 1 ≤
i ≤ n} is given, where s1 < . . . < sn. For i = 1, take the maximal clique including
the interval (s1, t1) and make each of its interval of length 1. This is obviously possible
without altering the order of the extremes. Then, for i+1, take the maximal clique Ci+1

that includes the �rst interval (sj, tj) not contained in C = C1 ∪ . . .∪Ci. Is not hard to
see that we can make the intervals in Ci+1 \C of length 1 without a�ecting the order of
the extremes.

8

1 Introduction

1.2.6 The algorithm by Lin et al.

The algorithm by Lin et al. [9] works by �separating� the extremes of the input interval
model I by means of successive insertion of new intervals, until the obtained model I∗
is that of a power of path. That is, I∗ represents the k-th power of the path with q
vertices, denoted by P k

q . It is not hard to see that U = {(2i, 2(i + k) + 1) | 1 ≤ i ≤ q}
is a UIG model representing P k

q , i.e., U is equivalent to I∗. The main property of the
separation is that I still appears within I∗. So, if we remove the intervals of I∗ added
during the separation from the corresponding unitary model U , we recover I but with
a unitary representation.

The main observation for the separation algorithm is that a extreme sequence repre-
sents P k

q if and only if it has the pattern s1 . . . sk+1t1sk+2t2 . . . sqtq−k . . . tq (the subindices
are written for the sake of exposition only). So, the separation algorithm works by in-
serting an ending point between consecutive beginning points in the middle and then
inserting beginning points between consecutive ending points in the middle in such a
way that, when the separation concludes, each beginning point in the middle is followed
by an ending point.

To describe the separation algorithm in more precise terms, suppose I = {(si, ti) |
1 ≤ i ≤ n} is given, where s1 < . . . < sn. The extremes in [t1, sn] are said to be middle
extremes. Traverse the extremes from left to right, and while there are not separated
middle ending points do:

1. Let ti be the leftmost non-separated middle ending point and (sj, tj) be the interval
such that sj precedes ti in I.

2. Insert in I a new interval (s, t), placing s immediately after ti and t immediately
after tj.

In the model so obtained there are no more pairs of middle consecutive ending points.
Now we repeat the procedure but this time for the beginning points while traversing
from right to left.

As described in this section, the algorithm takes O(n2) time, as it must insert all the
separating intervals. The actual implementation works in a virtual manner, by taking
account of the number of intervals that should be inserted, but it inserts none of them.
This is the reason why the algorithm costs O(n) time and O(n) space.

9

2 Preliminaries

A graph G is an ordered pair (V (G), E(G)) where V (G) is a �nite and nonempty set
and E(G) is a set of unordered pairs of di�erent vertices. The elements of V (G) are the
vertices of G while the elements or E(G) are its edges ; V (G) and E(G) are the vertex set
and edge set of G, respectively. The idea is to represent a symmetric relationship where
each vertex represents an abstract object and each edge represents a connection between
two objects. We write either vw or (v, w) to denote the edge between the vertices v and
w, regardless of whether it belongs to E or not. When vw ∈ E, we say that v and w are
adjacent, or that v is adjacent to w, or that v is a neighbor of w. Note that, for us, vi
cannot be adjacent to itself (i.e., G has no loops), while the edge vivj is the same as the
edge vjvi (i.e., G is undirected).

Let G be a graph. Any graph (V,E) such that V ⊆ V (G) and E ⊆ E(G) is a subgraph
of G. When E contains all the edges of G between the vertices in V , then (V,E) is an
induced subgraph of G. In such case, we also say that (V,E) is the subgraph of G induced
by V , and we write G[V] to denote this graph. For V ⊂ V (G), we write G\V to denote
the graph G[V (G) \ V], i.e., the graph that is obtained by removing all the vertices in
V .

A walk P in a graph G is a sequence of vertices v1, . . . , vp such that vi is adjacent to
vi+1 for every 1 ≤ i < p. We say that P goes from v1 to vp, v1 and vp being the �rst and
last vertices of P , respectively. For the sake of simplicity, we also consider each path a
sequence of edges, where each edge vivi+1 is an edge of P . The length of P is p− 1, i.e.,
the number of edges it contains. We say that P is a closed walk when v1 = vp, that P
is a path when vi 6= vj for every 1 ≤ i < j ≤ p, and that P is a cycle when it is a closed
walk and v1, . . . , vp−1 is a path. A graph G is connected when there is a path that goes
from v to w, for every v, w ∈ V (G).

In this thesis we also work with directed graphs. A digraph D is a pair (V (D), E(D))
where V (D) is a �nite and nonempty set and E(D) is a set of ordered pairs of di�erent
vertices. As with graphs, V (D) and E(D) are respectively the vertex and edge sets
of D, while their elements are the vertices and edges of D. Note that in this case, a
digraph represents a non-symmetric relationship. We write (v, w) to denote the edge
that goes from v to w, regardless of whether it belongs to E(D) or not. When we know
that (v, w) ∈ E(D), we simply write v → w to indicate this fact, while we write v 6→ w
when (v, w) 6∈ V (D). As with graphs, v and w are said to be adjacent, while v is the

10

2 Preliminaries

in-neighbor of w and w is the out-neighbor of v. Again, for us, digraphs cannot have
loops, i.e., v 6→ v for v ∈ V (D).

A walk P in a directed graph D is a sequence of vertices v1, . . . , vp such that vi → vi+1

for every 1 ≤ i < p. Path P goes from v1 to vp, v1 and vp being the �rst and last vertices
of P , respectively. For the sake of simplicity, we consider each path also a sequence of
edges, where each edge vi → vi+1 is an edge of P . We extend the terminology of paths
from graphs to digraphs, as follows. The length of P is p−1, i.e., the number of edges it
contains. When v1 = vp, we say that P is a closed walk. A path is a walk that contains no
repeated vertices, while a cycle is a closed walk whose �rst vertex is the unique repeated
vertex.

The underlying graph G(D) of a digraph D is the graph that is obtained by replacing
each edge of D with a non-oriented edge, i.e., the edge set of D is replaced by a set
of unordered pairs. A digraph D is strongly connected when there is a path that goes
from v to w, for every v, w ∈ V (G), while it is connected when its underlying graph is
connected. Clearly, every strongly connected digraph is connected.

A weighing of digraph D is a function f : E(D)→ R that assigns a weight f(e) to each
edge e ∈ E(D). For any walk P , we write f(P) =

∑
vi→vj∈P f(vi → vj), and we say that

f(P) is the f -weight of P . The f -distance between two vertices v and w, denoted by
df (v, w), is the maximum among the f -weights of the walks that go from v to w. Note
that the f -distance is not well de�ned when either there is no walk from v to w or the
f -weights of the walks between v and w are unbounded, in such case, df (v, w) =∞. To
avoid having unbounded distances, we de�ne the path f -distance from v to w, denoted
by d∗f (v, w), to be the maximum among the weights of the paths that go from v to w. It
is well known that df (v, w) <∞ for every v, w if and only if no cycle of D has positive
weight [2]. In such case, df = d∗f . For the sake of notation, we drop the subscript f from
df and d∗f when f is clear from context.

An interval (IG) model is a set I = {I1, . . . In} of open intervals in R. An interval
model is a proper interval (PIG) model when no interval properly contains another, while
it is a unit interval (UIG) model when all the intervals have the same length. We write
Ii = (si, ti), where si and ti are the extremes of Ii; si and ti are the beginning and ending
points of Ii, respectively. The extremes of I is the set of all the extremes of the intervals
in I. As it is common practice, we assume all the extremes of I are di�erent, as it does
not a�ect the interval graph de�ned by I (cf. below). Two extremes e1e2 of I are said
to be consecutive when e2 appears immediately after e1 in a left to right traversal of I;
note that the order is important, e2e1 is not consecutive when e1e2 is consecutive. The
reverse of I is {(−ti,−si) | (si, ti) ∈ I}; that is, the reverse of I is the model that we
obtain by mirroring all the intervals. Traversing I from left to right and placing an s
for each beginning point and a t for each ending point we obtain the extreme sequence

11

2 Preliminaries

of I. Clearly, two non-equal models can have the same extreme sequence, in such case
we say these models are equivalent.

For any interval model I, the interval (IG) graph of I is the graph G(I) that has
one vertex vi for each 1 ≤ i ≤ n such that vivj ∈ E(G) if and only if Ii ∩ Ij 6= ∅ for
every 1 ≤ i < j ≤ n. When I is a proper (resp. unit) interval model, the graph G(I)
is a proper (resp. unit) interval (PIG, resp. UIG) graph. We say that I represents or
is a model of G(I), while G(I) admits I. It is not hard to see that the reverse of I
also represents G(I). Similarly, every two equivalent models represent the same interval
graph. It is well known that every PIG model admits exactly two PIG models up to
equivalence, one the reverse of the other [14]. Also, Roberts [14] proved that every
PIG model is equivalent to some UIG model; this property is known as the PIG=UIG
theorem.

Theorem 1 ([14]). Every PIG model is equivalent to some UIG model.

We say that ` is the length of a UIG model I to mean that all the intervals of I have
length `. Pirlot [13] de�ned a UIG model I = {(si, si + `) | 1 ≤ i ≤ n} as minimal
when

• ` ≤ `′, and

• si ≤ s′i

for every equivalent UIG model I ′ = {(s′i, s′i+`′) | 1 ≤ i ≤ n}. The main theorem in [13]
strengthens the PIG=UIG theorem by stating that every UIG model is equivalent to a
minimal UIG model.

Theorem 2 ([13]). Every UIG model is equivalent to a minimal UIG model.

The k-th power of a graph G is the graph Gk = (V (G), Ek) where Ek is the set of
edges vivj such that there is a path from vi to vj of length at most k in G. The path
graph Pq is the graph with q vertices v1, . . . , vq where vi is adjacent to vi+1 for every
1 ≤ i < q. The k-th power of path P k

q is simply the k-th power of the path graph Pq.
Every UIG graph is an induced subgraph of a power of a path, and vice versa [10].

Theorem 3 ([10]). A graph is a UIG graph if and only if it is an induced subgraph of
a power of a path.

In an analogy to Pirlot's de�nition, we say that P k
q is a minimal extension of I when

G(I) is an induced subgraph of P k
q and:

• k ≤ j, and

• q ≤ r

for every P j
r such that G(I) is an induced subgraph of P j

r .

12

3 Minimal representations of unit

interval graphs

In this chapter we study the problem of �nding a minimal UIG model equivalent to
an input PIG model. We begin with Section 3.1, where we de�ne what the length
constraints of a UIG model are, that allow us to generalize the synthetic representation
given by Pirlot [13]. We show necessary and su�cient conditions for a PIG model I to
be equivalent to a UIG model of length ` satisfying such constraints, when ` is given.
As a consequence, we obtain an O(n2) time algorithm for �nding such an UIG model
when I and ` are given as input.

In Section 3.2 we devise an O(n2) time algorithm that actually �nds the minimum
possible value of ` such that I is equivalent to a UIG model of length ` that satis�es the
required separations constraints. Combining this algorithm with the one in Section 3.1,
an O(n2) time algorithm that outputs a minimal UIG model equivalent to I is obtained.
In Section 3.3 we discuss the algorithm given by Mitas [11], and we show that, although
the algorithm �nds a UIG model equivalent to I, such a model is not necessarily minimal
as claimed. Finally, in Section 3.4 we apply our algorithm in order to �nd a minimal
extension of I. We believe our algorithm is conceptually simpler than the one in [4] that
also runs in O(n2) time.

3.1 Finding a representation with constraints

In this section we study the problem of �nding a UIG model I of a PIG graph that
has a given length ` and satis�es certain separation constraints. To describe the length
and separation constraints, we use a quadruple L = (`, ν, η, σ), where ` is a natural
number and η, ν, and σ are functions in {1, . . . , n} → N. We say that an interval model
I = {(si, ti) | 1 ≤ i ≤ n} is an L-UIG model when I is a UIG model of length ` such
that:

• sj ≥ ti + ν(i) whenever tisj are consecutive in I,
• tj ≥ si + η(i) whenever sitj are consecutive in I, and
• si+1 ≥ si + σ(i) for every 1 ≤ i < n.

13

3 Minimal representations of unit interval graphs

The quadruple L is referred to as the length constraints of I. Figure 3.1 shows L-UIG
models for di�erent length constraints L. Using our new terminology, the purpose of
this section is to �nd an L-UIG model equivalent to a PIG model I, when both I and
L are given as input.

0 81 93 115 1312 2015 2317 2522 31

(a) An (`, ν, η, σ)-UIG model for ` = 8, ν = 1, η = 1, and σ(1) = 1, σ(2) = 2,
σ(3) = 1, σ(4) = 4, σ(5) = 2, σ(6) = 2, σ1(7) = 4.

0 124 168 2014 2618 3023 3524 36

(b) An (`, ν, η, σ)-UIG model for ` = 12, ν = 2, η = 2 and σ = 1.

Figure 3.1 � Two models satisfying di�erent L-constraints. Intuitively, ` indicates the

length of the intervals; ν(i) is the minimum space that must follow ti before the next extreme

sj can appear; η(i) is the minimum space that must follow si before the next extreme tj
can appear; and σ(i) is the minimum separation between si (or ti) and the next beginning

(or ending) point si+1 (or ti+1).

The main tool of this section is a weighing function of a variation of the synthetic
graph de�ned by Pirlot [13]. The synthetic graph of I, or simply the synthesis of I, is
the digraph S(I) with vertex set {vi | 1 ≤ i ≤ n} such that:

(i) vi → vj if and only if tisj are consecutive in I
(ii) vi → vj if and only if sitj are consecutive in I
(iii) vi → vi+1 if and only if 1 ≤ i < n.

Figure 3.2 shows an example of the synthesis for the PIG model in Figure 3.1(a). Fol-
lowing Pirlot, we refer to the edges of type (i) and (ii) respectively as noses and hollows,
while type (iii) edges are referred to as steps. For the sake of notation, we omit the
parameter I from S(I) when no ambiguities arise. It should be noted that every pair
of equivalent models have isomorphic synthetic graphs.

For a length constraints L, the L-weighing of S is the function L such that:

14

3 Minimal representations of unit interval graphs

• L(vi → vj) = `+ ν(i) for every nose vi → vj

• L(vi → vj) = −`+ η(i) for every hollow vi → vj, and

• L(vi → vi+1) = σ(i) for every step vi → vi+1.

The overloaded notation for L is intentional, and it indicates how the constraints L
impose a weighing L. Figure 3.2 shows the L-weighing of S.

1 2 3 4

5 6 7

8

1 2 1

4

2 2

4

ℓ
+
1

ℓ
+
1

ℓ
+
1

−ℓ+ 1

−
ℓ+

1

−ℓ+ 1

−
ℓ+

1

Figure 3.2 � The synthesis of the model in Figure 3.1(a). The value inside each edge

vi → vj corresponds to L(vi → vj) for the length constraints L given in Figure 3.1(a).

The L-weighing of S has an intuitive interpretation. Suppose tisj are consecutive in
an L-UIG model I = {(si, ti) | 1 ≤ i ≤ n}. By de�nition, sj ≥ ti + ν(i), thus sj appears
at distance at least `+ν(i) from si. In S there is a nose from vi → vj and, by de�nition,
L(vi → vj) is precisely ` + ν(i). Similar conditions apply to hollows and steps. So,
in other words, the L-weighing correctly models the minimum separation between the
beginning points of any L-UIG model equivalent to I.
The main theorem of this section states that I is equivalent to an L-UIG model if

and only if ` is large enough so as to ful�ll all the restrictions imposed by ν, η and
σ. One such L-model can be obtained by looking at the L-distances in S. With that
purpose in mind, we de�ne a special UIG model for each S and L; the UIG model
UL(I) = {(sui , tui) | 1 ≤ i ≤ n} is such that:

• sui = dL(v1, vi)

• tui = si + `.

15

3 Minimal representations of unit interval graphs

when dL = d∗L, and it is unde�ned otherwise. Note that d∗L(v1, vi) is well de�ned for
every 1 ≤ i ≤ n because the path v1, v2, . . . , vi exists. Figure 3.3 shows U(10,ν1,η1,σ1) for
the model in Figure 3.1(a). The following theorem shows that I is equivalent to an
L-UIG model if and only if UL is well de�ned.

0 101 113 135 1514 2416 2618 2825 35

Figure 3.3 � UL(I) for the model in Figure 3.1(a) with L = (10, ν, η, σ), where ν, η,
and σ are as in Figure 3.1(a).

Theorem 4. Let I be a PIG model and L be some length constraints of it. Then, the
following statements are equivalent.

(i) I is equivalent to an L-UIG model.

(ii) S contains no cycles of positive L-weight.

(iii) UL(I) is equivalent to I.

Proof. Let I = {(si, ti) | 1 ≤ i ≤ n} and consider each implication.

(i) ⇒ (ii). Let C = w1, . . . , wk, w1 = wk+1 be a cycle of maximum L-weight in S and
(s(wi), t(wi)) be the interval represented by wi in an L-UIG model equivalent ot I. Recall
that, by de�nition, s(wi+1) ≥ s(wi) + L(wi → wi+1) for every 1 ≤ i ≤ k as explained
above. Then, by induction, s(w1) ≥ s(w1) +

∑k
i=1 L(wi → wi+1) = s(w1) + L(C).

(ii) ⇒ (iii). By hypothesis, S has no cycles of positive length, thus dL = d∗L and, so,
UL(I) is well de�ned. Call sui , t

u
i to the extremes of U = UL(I) as in its de�nition. Note

that it su�ces to show that any two consecutive extremes of I appear in the same order
in U . Then, only three cases are required:

Case 1: si, si+1 or ti, ti+1 are consecutive in I. Since vi → vi+1 is a step of S with
L(vi → vi+1) = σ(i) > 0, it follows that sui = dL(v1, vi) < dL(v1, vi+1) = sui+1.

Case 2: tisj are consecutive in I. Then, vi → vj is a nose of S with L(vi → vj) = `+ν(i),
thus suj = dL(v1, vj) ≥ dL(v1, vi) + `+ ν(i) = sui + `+ ν(i) = tui + ν(i) > tui .

Case 3: sitj are consecutive in I. Then, vi → vj is a hollow of S with L(vi → vj) =
−`+ η(i), thus tuj = suj + ` = dL(v1, vj) + ` ≥ dL(v1, vi) + η(i) = sui + η(i) > sui .

16

3 Minimal representations of unit interval graphs

(iii) ⇒ (i). We show that UL(I) is an L-UIG model. Note that, since UL(I) is
equivalent to I, then it must be well de�ned.

Case 1: If sisi+1 are consecutive in I then dL(v1, vi+1) ≥ dL(v1, vi) + σ(i), hence sui+1 ≥
sui + σ(i) when sui , s

u
i+1 are consecutive in UL(I).

Case 2: If tisj are consecutive in I then dL(v1, vj) ≥ dL(v1, vi) + ` + ν(i), hence suj ≥
sui + `+ ν(i) = tui + ν(i) when tui s

u
j are consecutive in UL.

Case 3: If sitj are consecutive in I then dL(v1, vj) ≥ dL(v1, vi) − ` + η(i), hence tuj =
suj + ` ≥ sui + η(i) when sui t

u
j consecutive in UL.

And this is the de�nition of an L-UIG model.

Theorem 4 yields an O(n2) time algorithm to determine if I is equivalent to an L-UIG
model. Just build the synthesis S weighed with L and apply the Bellman-Ford algorithm
on it so as to �nd d∗L(v1, vi) for every 1 ≤ i ≤ n. If Bellman-Ford fails, then S has a cycle
of positive L-weight and, hence, I has no equivalent model satisfying the constraints.
Otherwise, we can build UL(I) in O(n) time by following the de�nition. Since S has
only O(n) edges, the total time required is O(n2).

3.2 Finding the minimum interval length

In this section we are interested in �nding the minimum value `∗ such that I is equivalent
to an (`∗, ν, η, σ)-UIG model, when ν, η and σ are given as input. In other words, by
Theorem 4, we ought to �nd the minimum `∗ such that S(I) has no cycles with positive
L∗-weight, for L∗ = (`∗, ν, η, σ). Note that, by Theorem 4, UL∗(I) would be a model
equivalent to I, while I is equivalent to no (`, ν, η, σ)-UIG model for ` < `∗.

A rough idea on how to �nd `∗ is as follows. Let L = (`, ν, η, σ). Clearly, the L-weight
of any cycle in S depends on the four parameters `, ν, η, σ. In this section ν, η, and σ
are given as the input of our algorithm, while ` is an indeterminate whose optimum value
we should compute. So, we �nd convenient to think of the L-weight of a given cycle
as function on `. Of course, to guarantee that all the cycles of S have a non-positive
L-weight, it su�ces to show that the L-weight of one cycle C of maximum L-weight is at
most 0. So, we can write an equation asking the L-weight of C to be 0; then by solving
this equation with ` as its unique indeterminate value, we obtain `∗

To analyze how the L-weight of a cycle look like, we use the pictorial representation
of I in which all the intervals are drawn according to their row (or height). This idea
was �rst used by Mitas [11]. Let I = {(si, ti) | 1 ≤ i ≤ n} with s1 < . . . < sn, and

17

3 Minimal representations of unit interval graphs

r = 0 r = 1 r = 2 r = 3

Figure 3.4 � Row values for a UIG model.

recall that S has a vertex vi representing (si, ti). The row of vi is given by the function
r : V (S) −→ N such that:

r(vi) =

{
0 if t1 > si

1 + r(vj) otherwise

where tj is the rightmost ending point before si. Figure 3.4 shows an example of the row
values in a UIG model. Note that, as the picture shows, the intervals appear in columns
according to their corresponding values of r. Hence, r gives as an idea of how far to the
right the intervals appear from the leftmost interval. We can compute r in O(n) time
with a left to right traversal as follows: start setting r = 0 until t1 is found, then assign
r = 1 until ti is found for t1si consecutive . . . and so on.

The reason why r is called the row function has to do with an idea of Mitas [11],
who organizes the vertices in a matricial picture (see Figure 3.8). In this picture, all the
vertices with the same r value appear in the same row of the matrix, while the vertices
in the same row are drawn from left to right as they appear in the model. (Mitas uses
a trimmed synthetic graph, and she imposes some other conditions in the picture; see
Section 3.3.)

It is not hard to see by de�nition that if vi → vj is a nose, then r(vj) = r(vi) + 1. In
other words, any time a nose is traversed in any walk P of S, the value of r is increased
by 1. On the other hand, if vj → vi is a hollow, then either r(vi) = r(vj) − 1 or
r(vi) = r(vj). That is, each hollow either decreases by 1 or leaves constant the value
of r when is traversed in P . Finally, if vi → vj is a step, then either r(vj) = r(vi) + 1
or r(vi) = r(vj). So steps either increase by 1 or leave constant the value of r for P .
The hollows that leave constant the value of r are said to be π-hollows, while the steps
that increase the value of r are said to be π-steps. In general, we refer to π-steps and
π-hollows as π-edges.

Recall that our goal is to �nd those cycles of S with maximum L-weight. The row
function provides us with some important information about the cycles of S; when S is
traversed one vertex at a time, the row of the next vertex either remains the same, or
increases by one, or decreases by one. Since a cycle is a walk from a vertex to itself,
the number of times the row is increased must equal the number of times the row is
decreased. Thus, immediately, we see that the number of hollows must be at least the

18

3 Minimal representations of unit interval graphs

number of noses plus π-steps. To see how much more hollows a cycle can have, we study
how many π-edges does a cycle have. The next lemma shows that every cycle must have
at least one π-edge; here S−(I) is obtained from S(I) by removing all its π-edges. As
usual, we do not write the parameter I of S− when it is clear from context.

Lemma 5 (see also [11]). For every PIG model I, there are no cycles in S−(I).

Proof. Let P = w1, . . . , wk be a path in S− such that wk is the only vertex in P with
r(w1) = r(wk) = r0. Each vertex wi corresponds to some vertex vf(i) in S−, for a
function f ; we prove by induction on k that f(1) ≤ f(k), where equality holds if and
only if k = 1. The base case k = 1 is trivial. For the base case k = 2, in which P has just
one edge, note that such an edge must leave r constant. In S− there are no π-hollows,
thus w1 → w2 is a step and, by de�nition, f(2) = f(1)+1. For the inductive case k > 2,
recall that |r(wi) − r(wi+1)| ≤ 1 for every 1 ≤ i < k. Hence r(w2) = r(wk−1) = r0 ± 1
and only two cases need to be analyzed.

Case 1: w1 → w2 is a nose and wk−1 → wk is a hollow. As there is a path from w2 to
wk−1, we know by inductive hypothesis that f(2) ≤ f(k − 1). This means that
sf(2) ≤ sf(k−1) where si is the beginning point of the interval of I that corresponds
to vi (1 ≤ i ≤ n). By de�nition we also know that tf(1) < sf(2) and sf(k−1) < tf(k),
hence f(1) < f(k).

Case 2: w1 → w2 is a hollow and wk−1 → wk is a nose. Again, by inductive hypothesis,
f(2) ≤ f(k − 1) and tf(2) < tf(k−1) while, by de�nition, sf(1) < tf(2) and tf(k−1) <
sf(k).

Note that any closed walk W from vi to vj can be decomposed into paths P1, . . . , Pj
such that the �rst and last vertices of each Pi are the only vertices with row r0, for some
r0. Then, by induction, i < j.

By the lemma above, every cycle of S has at least one π-edge. In the following we
prove that, in fact, every cycle contains exactly one π-edge. Consequently, we can state
that every cycle contains exactly one more hollow than noses (cf. below). For this we
need a second function c : V (S−) → N, called the column function, such that c(v1) = 0
and

c(vi) = max

c(vj), c(vk) + 1, c(vi−1) + 1

∣∣∣∣∣∣
vj → vi is a nose of S−,
vk → vi is a hollow of S−, and
vi−1 → vi is a step of S−.

 .

A nose vj → vi (resp. hollow vk → vi, step vi−1 → vi) needs not exist in S
−; in such a

case, c(vj) (resp. c(vk) + 1, c(vi−1) + 1) is not taken into account in the above de�nition
of c(vi). Note that c is well de�ned because S− has no cycles by Lemma 5; thus, c can
be easily computed with the algorithmic technique of dynamic programming. Figure 3.5

19

3 Minimal representations of unit interval graphs

c=0

c=1

c=2

c=3

c=4

Figure 3.5 � Column values for the UIG model of Figure 3.4

shows the values of c for the model in Figure 3.4. Even though Mitas does not use the
term column, her pictorial description of I consists of putting each vi in a matrix, where
vi occupies the entry at row r(vi) and column c(vi) (see Figure 3.8). Is for this reason
that we chose the term column for this function.

It is easy to see by de�nition that, when traversing any path P of S−, the vertex w
that follows u has c(w) ≥ c(u), where equality happens only when u → w is a nose.
This fact is fundamental in the geometrical argument of the next lemma that proves
that �crossing� paths in the pictorial draw of S− share a common vertex. For the next
lemma, let C−(v) = min{c(w) | r(w) = r(v)} and C+(v) = max{c(w) | r(w) = r(v)} for
every v ∈ V (S−). That is, C−(v) and C+(v) are the minimum and maximum columns
for the row that v occupies

Lemma 6. Let P = u1, . . . , uj and Q = w1, . . . , wk be paths in S
− such that

• r(w1) ≤ r(u1), and r(wk) ≥ r(uj),

• c(u1) = C−(u1), and C(w1) = C−(w1), and

• c(uj) = C+(uj), and c(wk) = C+(wk).

Then, some vertex of S− belongs to both paths.

Proof. Having de�ned r and c we can relate both, by thinking of the pair (c(v) +
εr(v), r(v)) (for a small enough ε) as the coordinate of the vertex v in the plane, for
every v ∈ S−. Call Gr(P) to the graph of the continuous function that result from join-
ing the coordinates of ui and ui+1 (1 ≤ i < j) with a straight line. Note that Gr(P) is
well de�ned as a function on R→ R because c(ui+1)+εr(ui+1) > c(ui)+εr(ui) for every
1 ≤ i < j (see Figure 3.6). Analogously, Gr(Q) is the graph of the continuous function
that result from joining the coordinates of wi and wi+1 (1 ≤ i < k) with a straight line.
So, Gr(P) goes from (c(u1) + εr(u1), r(u1)) to (c(uj) + εr(uj), r(uj)) and Gr(Q) goes
from (c(w1) + εr(w1), r(w1)) to (c(wk) + εr(wk), r(wk)). Since r(ui+1) = r(ui) ± 1 for
every i = 1, . . . , j−1, then Gr(P) and Gr(Q) must intersect according to the hypothesis
of the lemma.

Let x be the leftmost intersection point, and suppose x is not the coordinate of some
vertex in S−. Then, there exist ua and wb such that x belongs to the line segments of
Gr(P) and Gr(Q) corresponding to (ua, ua+1) and (wb, wb+1), respectively. Recall once

20

3 Minimal representations of unit interval graphs

b 1 b 2 b 3

b 4 b 5

b 6 b 7 b 8 b 9

b 10 b 11

r

c

Figure 3.6 � The representation in the plane by the coordinates of Lemma 6 for the

model in Figure 3.5. Paths P and Q intersect at v5.

again that r(ua+1) is either r(ua) or r(ua)±1, while r(wb+1) ∈ {r(wb), r(wb)±1}. Then,
the only possibility is that r(ua+1) = r(ua) + 1 and r(wb) = r(wb+1) + 1 (see Figure 3.7).
Moreover, ua = vi, wb+1 = vi+1, wb = vj, and ua+1 = vj+1. Therefore, since S

− contains
no π-steps, we obtain that ua → ua+1 is a nose, while wb → wb+1 is a hollow. But
this is impossible because tisj+1 and sjti+1 would be consecutive, while ti < ti+1 and
sj < sj+1.

Lemma 7. Every cycle C in S(I) contains exactly one π-edge.

Proof. By Lemma 5 we know that C contains at least one π-edge. Suppose that it
contains at least two and let wk → u1 be the π-edge such that r(u1) > r(vj) for every
π-edge vi → vj in C. Then, C contains two paths P = u1, . . . , uj and W = w1, . . . , wk
that contain no π-edges and such that uj → uj+1 and w0 → w1 are π-edges (perhaps
uj+1 = w1 and w0 = uj). Moreover, since r(uj) equals either r(uj+1) (when uj → uj+1

is a π-hollow) or r(uj+1) − 1 (when uj → uj+1 is a π-step), then r(uj) ≤ r(u1). Then,
since r(wk) equals either r(u1) or r(u1) − 1, we conclude that r(uj) ≤ r(wk). That is,
we are under hypothesis of Lemma 6, and so C has a repeated vertex which contradicts
the fact that C is a cycle.

Now we know that every cycle C in S(I) if formed by a path P = w1, . . . , wp in S
−

plus a π-edge wp → w1. Such a path P is said to be a hollow p-ending path or step

21

3 Minimal representations of unit interval graphs

b ua

b
ua+1

b
wb

b
wb+1

r

c

Figure 3.7 � Paths P and Q intersecting at some point x that does not correspond to

the coordinate of a vertex in S−.

p-ending path of S− according to whether wp → w1 is a hollow or step, respectively. Let
L0 be the length constraints (0, ν, η, σ), and

• U = {i | vi → vj is a nose of P},
• D = {i | vi → vj is a non-π hollow of P},
• T = {i | vi → vj is a non-π step of P}.

Note that, since every nose increases r by 1, every non-π-hollow decreases r by 1, and
every non-π-step preserves r, it follows that 1. |U | = |D| if vp → v1 is a hollow, and 2.
|U | + 1 = |D| if vp → v1 is a step. Then, if vp → v1 is a hollow, we obtain that the
L-weight of C is

L(C) =L(P)− `+ η(p)

=
∑
i∈U

(`+ ν(i)) +
∑
i∈D

(−`+ η(i)) +
∑
i∈T

σ(i)− `+ η(p)

=
∑
i∈U

ν(i) +
∑
i∈D

η(i) +
∑
i∈T

σ(i)− `+ η(p)

=L0(P)− `+ η(p) (3.1)

Similarly, if vp → v1 is a nose, then

L(C) = L(P)− `+ σ(p) = L0(P)− `+ σ(p) (3.2)

22

3 Minimal representations of unit interval graphs

Then, by (3.1) and (3.2), the minimum possible value of ` such that |C| ≤ 0 for every
cycle C is

`∗ = max

{
max{L0(P) + η(p) | P is a hollow p-ending path of S−},
max{L0(P) + σ(p) | P is a step p-ending path of S−}

}
(3.3)

We remark that the length constraint L0 above is only used for the sake of exposition.
The fact that L(P) = L0(P) implied by (3.1) and (3.2) is actually showing that L(P)
depends not on the value of `. Indeed, each nose vi → vj has L0-weight ν(i), each hollow
vi → vj has L0-weight η(i), and every step vi → vi+1 has L0-weight σ(i).

Equation (3.3) proves that there is always a minimum length `∗ for every L-constraint
in which ` is an indeterminate value. The algorithm to �nd `∗ is quite simple; it su�ces to
�nd L0(P)+η(p) and L0(P)+σ(p) for every hollow and step p-ending path, respectively.
Since S− is acyclic, we can �nd the weights of both p-ending paths in O(n) time for every
wp. Then, taking into account that O(n) such paths exist, the algorithm requires O(n2)
time.

Finally, once `∗ is found, we can compute U∗ = UL∗ in O(n2) using Theorem 4, where
L∗ = (`∗, ν, η, σ). We claim that U∗ = {(s∗i , t∗i) | 1 ≤ i ≤ n} is minimal in the sense
de�ned by Pirlot in [13]. To see why, suppose I = {(si, ti) | 1 ≤ i ≤ n} is an L-UIG
model for some ` ≥ `∗, and consider some i ∈ {1, . . . , n}. We saw in Section 3.1 that
si ≥ dL(v1, vi). Observe that if P is a path from v1 to vi in S with L(P) = dL(v1, vi),
then, by Lemma 5, the number of noses u in P must be greater than or equal to the
number of hollows d in P . Consequently,

si ≥ dL(v1, vi) = `(u− d) + L0(P);

as this equation holds also for L∗, we conclude that s
∗
i ≤ si. That is,

(i) `∗ ≤ `, and

(ii) s∗i ≤ si

for every L-UIG model I equivalent U∗. Conditions (i) and (ii) are exactly the same as
in Pirlot's de�nition of minimal models. Thus, it makes sense to say that I is a minimal
L-UIG model when it satis�es (i) and (ii) for every equivalent L-UIG model. The main
theorem of this thesis then follows.

Theorem 8. Every PIG model is equivalent to a minimal L-UIG model for every length
constraints L in which ` is an indeterminate. Moreover, such a model is equal to U(`∗,ν,η,σ),
where `∗ is as in (3.3), and it can be obtained in O(n2) time.

23

3 Minimal representations of unit interval graphs

3.3 Short but not minimal models

In [11], Mitas represents the synthetic graph S−(I) in a matricial form as in Figure 3.8.
In this picture each vertex represents a vertex vi of S that is drawn occupying the
coordinate (r(vi), c(vi)) of the plane (as in Lemma 6), while each edge corresponds to a
nose (vertical solid arrows) or a non-π hollow (diagonal dashed arrows). (We can think
that the missing steps are implicit.)

1 2 3

4 5 6 7 8

9 10 11 12 13 14

15 16 17 18 19

20 21 22

Figure 3.8 � Mitas matricial representation of the synthesis of a reduced PIG model

(semiorder).

Mitas' goal is to �nd a minimal UIG model U equivalent to I with no separation
constraints for the extremes of U , except those that are required for U to be equivalent
to I. In other words, Mitas considers only the case in which σ = η = ν = 11. Moreover,
Mitas requires the input model I to be reduced. This means that either si and si+1 or ti
and ti+1 are not consecutive in I for every 1 ≤ i ≤ n. In terms of the synthetic graph,
this means that there is either a nose or hollow going from vi and a nose or hollow ending
at vi. This is the reason why Mitas does not draw the step edges, as they are redundant
for this problem.

Mitas asserts that the minimum length ` needed to represent I with length constraints
L = (`, 1, 1, 1) is ` = max{dL(v1, vj)−dL(v1, vi) | r(vi) = r(vj)}+1, where dL is calculated
on S−. For the example in Figure 3.8 this length is ` = dL(v1, v19) − dL(v1, v15) =
d(v1, v22) − d(v1, v20) = 15. But we can see in Figure 3.9 that I can be represented
with a shorter model U of length d = 13. In fact, the path from v9 to v14 of length 12
(regardless the value of `, recall (3.1)) has maximum L-weight among the hollow ending
paths, while the path from v15 to v14 of length 9 has maximum L-weight among the step
ending paths. Since η = 1, (3.3) guaranties that U is a minimal model.

1Actually, Mitas works with closed intervals and di�erent intervals of I could share the same extreme.

This is not important, though, as it is only a matter of output. The input for both problems are

equivalent and the outputs are in a one-to-one correspondence. Thus, the counterexample of this

section disproves this case as well.

24

3 Minimal representations of unit interval graphs

0

13

2

15

4

17

14

27

16

29

18

31

20

33

22

35

28

41

32

45

34

47

36

49

38

51

40

53

44

57

50

63

52

65

54

67

56

69

59

71

68

81

70

83

Figure 3.9 � Reduced interval model of length 13.

The problem with the previous approach is that a path of length max{d(v1, vj) −
d(v1, vi)} from vi to vj could not exist. Mitas claims this to be true in Theorem 5 of [11]
and, under the assumption that this is true, the proposed value is correct. In [12] there
is a review of Mitas' algorithm that neither addresses this problem. We remark that,
despite this problem, Mitas algorithm outputs a UIG model equivalent to I with length
` < n.

3.4 Powers of paths

Say that a UIG model U is odd when its length ` is odd and every beginning point is
even. It is not hard to see that every PIG model I is equivalent to an odd UIG model.
Indeed, by Theorem 1, I is equivalent to a UIG model U ′ = {(si, si + `) | 1 ≤ i ≤ n}
for some length `. Clearly, the model U = {(2si, 2(si + `) + 1 | 1 ≤ i ≤ n} is odd and
equivalent to U . In this section we apply the synthetic graph of I so as to �nd the odd
UIG model equivalent to I with minimum interval length.

The reason for studying this particular problem has to do with the induced subgraphs
of powers of paths. Recall that, in an analogy to Pirlot's de�nition for minimal UIG
models, we refer to P k

q as the minimal extension of I when G(I) is an induced subgraph
of P k

q and:

• k ≤ j, and

• q ≤ r

for every P j
r such that G(I) is an induced subgraph of P j

r .

25

3 Minimal representations of unit interval graphs

Clearly, P k
q is a UIG graph for any value of q and k, as it is the graph represented by

the odd UIG model Pkq = {(2i, 2(i + k) + 1) | 1 ≤ i ≤ q}. In particular, note that the
interval length of Pkq is minimum among all the odd UIG models that represent P k

q . By
de�nition, every subset U of Pkq is an odd UIG model. Conversely, every odd UIG model
is a subset of Pkq , for some appropriate values of q and k, because every even p ∈ N is a
beginning point of some interval in Pkq . Thus, every PIG graph is an induced subgraph
of a power of a path; this fact was �rst noted in [10]. Furthermore, the problem of
�nding the minimal extension of I corresponds to the problem of �nding the minimum
odd UIG model U equivalent to I.
In [4], Costa et al. developed an O(n2) time algorithm to obtain the minimal extension

of a PIG model I. Their algorithm explicitly stores all the vertices of P k
q , and it is

not easy to follow. We can solve the problem in O(n2) time by simply observing that
U = UL(I) is an odd model equivalent to I (see Theorem 9 below), for L = (`, ν = 1, η =
1, σ = 2), where ` is taken as in (3.3). Then, since si+1− si ≥ σ = 2 and sn ≥ dL(v1, vn)
in every odd model equivalent to I, the model U so obtained represents the minimal
extension P k

q of I.

Theorem 9. If I is a PIG model, then UL(I) is an odd UIG model for L = (`∗, ν =
1, η = 1, σ = 2), where `∗ is taken as in (3.3).

Proof. By de�nition, we have to prove that `∗ is odd and every beginning point of
U = UL(I) is even.

To prove that `∗ is odd, consider any cycle C = w1, . . . , wq, w1 of maximum L-weight,
and let u, d, and e be its number of noses, hollows, and steps, respectively. Recall
that u = d − 1, as it was shown while deriving (3.1) and 3.2. Hence, 0 = L(C) =
−`∗ + 2(u+ e) + 1 and `∗ is odd as desired.

To see that every beginning point of U is even, just recall that every nose has weight
`∗ + 1, every hollow has weight 1 − `∗ and every step has weight 2. Then, since `∗ is
odd, it follows that all the edges of S have even L-weight, thus every path has an even
L-weight. Then, since every beginning point is a the L-distance of two vertices in S, the
result follows.

One nice consequence of Theorem 9 is that it certi�es that a minimal extension P k
q of

I always exists. In [4], the authors constantly state that they �nd the minimum k and
then, for this �xed k , they �nd the minimum q. In fact, by Theorem 8, it matters not
in which order they are found, and it is for this reason that we refer to the output in [4]
as a minimal extension.

26

4 Conclusions and open problems

In this work we solved the problem of �nding a UIG model with integer extremes and
minimum interval length that is equivalent to an input PIG model I. Moreover, the
model so obtained satis�es a set of separation constraints that are also given as input.
To solve this problem, we developed an algorithm that decides if there exists a model
satisfying a quadruple L of length constraints. This algorithm works by querying if
the synthetic graph of I has a cycle of positive L-weight. Then, we devise a second
algorithm that �nds the minimum feasible length `, again exploiting the synthetic graph
structure. We think that this solution can be extended so as to solve the more general
problem of �nding a unit circular-arc (UCA) model with integer extremes and minimum
length when a proper circular-arc (PCA) model is given as input. Circular-arc models
and graphs are the generalization of interval models and graphs, where the real line is
replaced by a circle. That is, two vertices of a circular-arc graph are adjacent if and only
if their corresponding arcs on the circle intersect. As it happens with interval graphs,
PCA graphs are obtained when no arc is properly contained in other arcs, while UCA
graphs are obtained when all the arcs have the same length. That is, CA is to IG what
PIG is to PCA and UIG is to UCA. As we said, PIG is a subclass of PCA; indeed, any
PIG model can be embedded in a su�ciently large circle. Because of this, it makes sense
to de�ne synthetic graphs for PCA models so as to impose the separation constraints
that its arc must satisfy in order to be a UCA model. The major inconvenient about
this approach is that some PCA models admit no equivalent UCA models. Thus, for
this approach to work, the recognition problem for UCA graphs must be solved in this
framework.

Problem 1. Give an algorithm to �nd a UCA model of minimum length equivalent to
an input PCA model, if such a model exists.

Our algorithm that �nds the minimum `∗ such that I is equivalent to a UIG model of
length `∗ requires O(n2) time. The question that naturally arises is if this problem can
be solved in linear time. To �nd `∗, our algorithm �nds the maximum weight path of
the synthetic graph that goes from the leftmost vertex in row r to the rightmost vertex
in row r, for every row r. In fact, all we need is the maximum of such paths. Maybe it
is possible to �nd the corresponding row more e�ciently. A related problem is how to
build the model of length `∗ in o(n

2) time once `∗ has been found.

27

4 Conclusions and open problems

Problem 2. Design an o(n2) time algorithm to �nd the minimum value `∗ such that
an input PIG model is equivalent to a UIG model with integer extremes and interval
length `∗.

Problem 3. Give an o(n2) time algorithm that, given a length `, outputs a PIG model
with integer extremes and interval length `, if such a model exists.

Another thing that came to our minds while writing this thesis is how the constraints
rules can vary to generate other problems similar to the one in hand. In this document
we require each beginning point to be separated from the next one at least by a given
distance. This is expressed in terms of some natural functions σ, ν and η. It makes sense
to consider, also, the problem where some separation constraints are given by equalities
as well. Then, we could express that some beginning points must be separated from the
next beginning point by exactly a given distance, while others must be separated by at
least or at most some given distance. Another example is to consider general rules for
separation: each pair of extremes must be separated by exactly (at most) some given
distance. In this case, a solution needs not exist.

Problem 4. Study di�erent sets of rules for the separation constraints.

Finally, in this thesis we work with interval models in which no pair of extremes
share the same point. Under this constraint, it is not important if intervals are open
or closed. In other works (e.g Mitas [11]) the authors allow representations with over-
lapping extremes. In this case, you must choose between open and closed intervals
representations.

Remark 1. All the algorithms work when the extremes of the output model are not
restricted to be di�erent. All we need to do is to adapt the values of constraints imposed
by σ, ν, and η, depending on whether the intervals are all open or all closed.

28

5 Bibliography

[1] Kenneth P. Bogart and Douglas B. West. A short proof that �proper = unit�.
Discrete Math., 201(1-3):21�23, 1999. ISSN 0012-365X.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
Introduction to algorithms. MIT Press, Cambridge, MA, third edition, 2009. ISBN
978-0-262-03384-8.

[3] Derek G. Corneil, Hiryoung Kim, Sridhar Natarajan, Stephan Olariu, and Alan P.
Sprague. Simple linear time recognition of unit interval graphs. Inform. Process.
Lett., 55(2):99�104, 1995. ISSN 0020-0190. doi: 10.1016/0020-0190(95)00046-F.
URL http://dx.doi.org/10.1016/0020-0190(95)00046-F.

[4] Vítor Costa, Simone Dantas, David Sanko�, and Ximing Xu. Gene clusters as
intersections of powers of paths. J. Braz. Comput. Soc., 18(2):129�136, 2012. ISSN
0104-6500. doi: 10.1007/s13173-012-0064-8. URL http://dx.doi.org/10.1007/

s13173-012-0064-8.

[5] Xiaotie Deng, Pavol Hell, and Jing Huang. Linear-time representation algorithms
for proper circular-arc graphs and proper interval graphs. SIAM J. Comput., 25
(2):390�403, 1996. ISSN 0097-5397. doi: 10.1137/S0097539792269095. URL http:

//dx.doi.org/10.1137/S0097539792269095.

[6] Frédéric Gardi. The Roberts characterization of proper and unit interval graphs.
Discrete Math., 307(22):2906�2908, 2007. ISSN 0012-365X.

[7] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57
of Annals of Discrete Mathematics. Elsevier Science B.V., Amsterdam, second
edition, 2004. ISBN 0-444-51530-5. With a foreword by Claude Berge.

[8] Min Chih Lin, Francisco J. Soulignac, and Jayme L. Szwarc�ter. A simple linear
time algorithm for the isomorphism problem on proper circular-arc graphs. In
Algorithm theory�SWAT 2008, volume 5124 of Lecture Notes in Comput. Sci.,
pages 355�366. Springer, Berlin, 2008. doi: 10.1007/978-3-540-69903-3_32. URL
http://dx.doi.org/10.1007/978-3-540-69903-3_32.

29

http://dx.doi.org/10.1016/0020-0190(95)00046-F
http://dx.doi.org/10.1007/s13173-012-0064-8
http://dx.doi.org/10.1007/s13173-012-0064-8
http://dx.doi.org/10.1137/S0097539792269095
http://dx.doi.org/10.1137/S0097539792269095
http://dx.doi.org/10.1007/978-3-540-69903-3_32

5 Bibliography

[9] Min Chih Lin, Francisco J. Soulignac, and Jayme L. Szwarc�ter. Short models
for unit interval graphs. In LAGOS'09�V Latin-American Algorithms, Graphs
and Optimization Symposium, volume 35 of Electron. Notes Discrete Math., pages
247�255. Elsevier Sci. B. V., Amsterdam, 2009.

[10] Min Chih Lin, Dieter Rautenbach, Francisco Juan Soulignac, and Jayme Luiz
Szwarc�ter. Powers of cycles, powers of paths, and distance graphs. Discrete Ap-
plied Mathematics, 159(7):621 � 627, 2011. ISSN 0166-218X. doi: DOI:10.1016/
j.dam.2010.03.012. URL http://www.sciencedirect.com/science/article/

B6TYW-4YX0BGM-2/2/2dbfafd2caf6e3a6bd4da025fef9cd69. Graphs, Algorithms,
and Their Applications � in Honor of Martin Charles Golumbic on the Occasion of
His 60th Birthday.

[11] Jutta Mitas. Minimal representation of semiorders with intervals of same length.
In Vincent Bouchitté and Michel Morvan, editors, Orders, algorithms, and applica-
tions (Lyon, 1994), volume 831 of Lecture Notes in Comput. Sci., pages 162�175.
Springer, Berlin, 1994.

[12] M. Pirlot and Ph. Vincke. Semiorders, volume 36 of Theory and Decision Li-
brary. Series B: Mathematical and Statistical Methods. Kluwer Academic Publishers
Group, Dordrecht, 1997. ISBN 0-7923-4617-3. Properties, representations, applica-
tions.

[13] Marc Pirlot. Minimal representation of a semiorder. Theory and Decision, 28(2):
109�141, 1990. ISSN 0040-5833. doi: 10.1007/BF00160932. URL http://dx.doi.

org/10.1007/BF00160932.

[14] Fred S. Roberts. Indi�erence graphs. In Proof Techniques in Graph Theory (Proc.
Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), pages 139�146.
Academic Press, New York, 1969.

[15] Dana Scott and Patrick Suppes. Foundational aspects of theories of measurement.
J. Symb. Logic, 23:113�128, 1958. ISSN 0022-4812.

30

http://www.sciencedirect.com/science/article/B6TYW-4YX0BGM-2/2/2dbfafd2caf6e3a6bd4da025fef9cd69
http://www.sciencedirect.com/science/article/B6TYW-4YX0BGM-2/2/2dbfafd2caf6e3a6bd4da025fef9cd69
http://dx.doi.org/10.1007/BF00160932
http://dx.doi.org/10.1007/BF00160932

	Introduction
	Our contributions
	Review of the previous algorithms
	Pirlot's algorithm
	Mitas' algorithm
	Corneil et al. algorithm
	The UIG=PIG proof by Bogart and West
	Gardi's UIG=PIG proof
	The algorithm by Lin et al.

	Preliminaries
	Minimal representations of unit interval graphs
	Finding a representation with constraints
	Finding the minimum interval length
	Short but not minimal models
	Powers of paths

	Conclusions and open problems
	Bibliography

