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OPTIMIZACIÓN DE CONSULTAS RDF REFORMULADAS

El desarrollo de la Web Semántica y la creciente popularidad de su principal formato de
datos, RDF, trae aparejada la necesidad de técnicas eficientes y escalables de gestión de
datos para responder consultas RDF sobre grandes volúmenes de datos heterogéneos.

Una opción popular consiste en la traducción de consultas RDF en consultas SQL a ser
ejecutadas en los maduros y eficientes sistemas de gestión de bases de datos relacionales
tradicionales (RDBMS). Sin embargo, las bases de datos para Web Semántica plantean
retos espećıficos a las tecnoloǵıas clásicas de gestión de datos debido a la presencia de
datos impĺıcitos, a los cuales los RDBMS no tienen en cuenta durante la evaluación de
consultas. Para achicar la brecha entre las bases de datos de Web Semántica que contienen
datos impĺıcitos y la evaluación de consultas proporcionada por los RDBMS actuales, una
opción es reformular la consulta entrante para luego traducirla en una consulta SQL que,
al ser evaluada por el RDBMS, devuelve las respuestas completas .

Si bien este enfoque es conceptualmente suficiente para garantizar el eficaz proce-
samiento de las consultas de Web Semántica en un RDBMS, en la práctica aparecen
problemas significativos de rendimiento debido a la longitud sintáctica de las consultas
SQL que resultan de reformulación. Reconocidos y eficientes RDBMSs no son capaces
de optimizar eficientemente estas consultas. En algunos casos los RDBMSs simplemente
fallan al intentar responder estas consultas, mientras en otros casos se registran tiempos
de evaluación muy elevados [1].

En este trabajo, hemos identificado y explotado dos grados de libertad que pueden
ser aprovechados para realizar la evaluación de las consultas reformuladas de forma más
eficiente. En primer lugar, se enumeran un espectro de consultas alternativas equivalentes,
obtenidas mediante el agrupamiento de los átomos de la consulta original y la reformu-
lación de fragmentos (de átomos) de la consulta; las reformulaciones de los fragmentos
resultantes son env́ıadas en forma individual al RDBMS para su evaluación, para luego
realizar la operación de join entre los resultados intermedios a fines de obtener la respuesta
completa a la consulta original. En segundo lugar, SQL proporciona distintas alternativas
sintácticas para expresar este tipo de consultas (que consiste en subconsultas cuyos resul-
tados deben ser unidos); detectamos que esta elección sintáctica también permite mejoras
en el rendimiento. Diseñamos un modelo de costos que refleja el impacto de las decisiones
tomadas dentro de los dos grados de libertad descritos anteriormente. Basado en este mod-
elo de costos, proponemos distintos algoritmos heuŕısticos que, dada una consulta inicial
y las reglas semánticas que aplican en la base de datos (e implican los datos impĺıcitos),
realizan las elecciones necesarias en forma automática a fines de producir una consulta
SQL cuya evaluación genera la respuesta completa a la consulta de forma eficiente.

Por último, presentamos una amplia gama de experimentos basados en un DBMS
off-the-shelf, que dan soporte a los beneficios de los algoritmos propuestos.

Palabras claves: Procesamiento de consultas RDF, SPARQL, reformulación de con-
sultas, gestión de datos semánticos en la Web, optimización de consultas, algoritmos
heuŕısticos.
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OPTIMIZING REFORMULATED RDF QUERIES

The development of the Semantic Web and the increasing popularity of its main data
format RDF, efficient and scalable data management techniques are needed to handle
RDF query answering on large volumes of heterogeneous data. A popular option consists
thus of translating RDF queries into SQL queries to be handled by mature and efficient
relational database management systems (RDBMSs). However, Semantic Web databases
pose specific challenges to classical data management technologies through the presence
of implicit data, which RDBMS query evaluation fails to account for. To bridge the
gap between the Semantic Web databases containing implicit data and the simple query
evaluation provided by RDBMSs, one can reformulate the incoming query into an SQL
query which, when evaluated by the RDBMS, returns complete answers.

While this approach is conceptually sufficient to ensure efficient processing of Semantic
Web queries within RDBMSs, in practice it raises significant performance problems due to
the syntactic size of the SQL queries resulting from reformulation. It turns out that many
efficient RDBMSs are unable to efficiently optimize such queries. In some cases RDBMS
evaluation simply fails, while in other cases very high evaluation times are recorded [1].

In this work, we have identified and exploited two degrees of freedom that could be
exploited to make the evaluation of reformulated queries more efficient. First, we enumer-
ate a space of alternative equivalent queries, obtained by grouping atoms from the original
query and reformulating query fragments; the resulting reformulated fragments are sent
individually for evaluation to the RDBMS before joining their results to obtain the com-
plete query answer. Second, SQL provides alternative syntaxes for expressing such queries
(consisting of subqueries whose results must be joined); we found that this syntactic choice
leads to performance improvements, too. We have devised a cost model capturing the im-
pact of the choices made within the two freedom degrees described above. Based on this
cost model, we propose several heuristic algorithms which, given an initial query and the
semantic rules holding on the database (and entailing implicit data), automatically makes
the necessary choices in order to produce an SQL query whose evaluation computes the
query answers more efficiently.

Finally, we present an extensive experimental evaluation based on an off-the-shelf
DBMS, which validates the benefits of our proposed algorithms.

Keywords: RDF query answering, SPARQL, query reformulation, Semantic Web Data
Management, query optimization, heuristic algorithms.
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1. INTRODUCTION

The “Web of Data” vision behind the initial World Wide Web project has found its
most recent incarnation through the Semantic Web. More and more data sources are
being exported or produced as triples, using the Resource Description Format (or RDF, in
short) model standardized by the W3C [2]. To exploit this wealth of data, the SPARQL
query language has been defined [3].

An RDF dataset consists of both explicitly declared data, and of data implicitly present
into the database, due to semantic constraints that may hold on it. Such data is obtained
by a process termed entailment [2], whereas constraints are used to infer from the existing
base and the dataset constraints, all the possible consequences. A famous example includes
a dataset holding explicitly the fact that Socrates is a human, and on which the constraint
Any human is mortal has been stated to hold. Then, an implicit triple that entailment
produces is: Socrates is mortal. This example illustrates one of the most natural classes
of constraints (or entailment rules) that an RDF dataset may hold, while, as we discuss
later on, many more such rules exist.

Query answering in the presence of implicit data must take into account entailment, in
order to avoid returning incomplete answers [4]. Two query answering strategies have been
devised so far. First, saturation consists of making all implicit data explicit; subsequently,
query evaluation on the resultant database thus increased is sufficient to compute query
answers. In our example, this would amount to adding Socrates is mortal to the database.
A second strategy consists of reformulating the user queries based on the known constraints
before evaluating it. Observe that this strategy is applied on a per-query basis, as opposed
to saturation which can be applied once and for all on the database. In our example,
assuming that a query asks for all the mortals, reformulation would turn it into: find all
the mortals as well as all the humans. The second part of the query is added to reflect
the constraint that any answer to the human query is also an answer to the mortals one.
Observe that reformulation does not affect the database, but the query alone.

The trade-offs between saturation and reformulation are as follows. Saturation is
straightforward and easy to implement but requires storage space, computation time and
must be recomputed upon updates. Moreover, the recursive nature of entailment makes
saturation costly (in time and space) and the method not suitable for datasets with a
high rate of updates. Reformulation is robust upon updates and made at query runtime.
However, reformulated RDF queries may end up being syntactically very large unions of a
high number of conjunctive queries, while exhibiting numerous repeated sub-expressions.
This makes query evaluation very inefficient.

The increasing importance of Web data and in particular RDF raised interest within
the data management scientific community. Many techniques and algorithms have been
proposed in recent years for the processing of SPARQL queries, based on vertical par-
titioning [5], indexing [6], efficient join processing [7], query selectivity estimation (join
order optimization of triple patterns performed before query evaluation) [8], SPARQL
Multi-Query Optimization (or MQO, in short)-exploiting the possibility of reusing (shar-
ing) results of common subexpressions [9], RDF management systems and optimized triple
stores [10, 11, 12, 13], to name a few. However, these approaches does not take entailment
into account and as such, they return incomplete result in the presence of implicit data.
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2 1. Introduction

Recent work [4] introduced novel BGP query answering techniques for the DB frag-
ment of RDF, designed to work on top of any relational database management system
(RDBMS, in short), and studied saturation- and reformulation-based query answering for
this fragment. In particular, a novel reformulation algorithm is presented, but the perfor-
mance of the SQL queries resulting from the invocation of this algorithm still shows the
need for optimizations.

A careful analysis of the experimental evaluation performed in [4] highlighted two
opportunities to improve reformulated query performance:

1. Given that a reformulated query is a union of many conjunctive queries sharing some
common sub-expressions, one could imagine alternative forms of expressing the re-
formulated query, by pushing some of the union operators below some joins. Clearly,
there is a large search space for such equivalent ways to state a given reformulated
query.

2. Further, the expressive power of the SQL language enables many syntactically dif-
ferent ways to express each query statement thus obtained, and it turns out that the
choice among such SQL syntax options does have an impact on the performance of its
evaluation, even in recent well-optimized database systems. Thus, a reformulation
optimization approach is needed, based on performance (cost) considerations.

In this thesis, we introduce an effective cost model to compare candidate execution
plans and present techniques for optimizing RDF reformulated queries for answering Basic
Graph Pattern (or BGP, in short) queries within the database (DB) fragment of RDF.
In particular, we devise naive and efficient heuristic algorithms for BGP queries nodes
clusterization (with and without clusters overlapping) w.r.t. a given threshold over the
number of reformulations. We present also a näıve technique for clustered query execution
(against a RDBMS engine) and introduce optimization opportunities.

Our techniques are designed to be deployed on top of any RDBMS(-style) engine. Fur-
ther, the parametrization of the threshold in our clusterization algorithms makes them
easy to adapt, as the threshold may vary within different RDBMS engines.

To make this thesis self-contained, we provide in Chapter 2 all the necessary back-
ground in order to understand the problem we consider; in particular, we introduce RDF
data and queries, as well as the fundamental notions behind the optimization of the refor-
mulated queries which is the main topic of this work.

Contributions Our contributions can be summarized as follows.

1. We propose a novel and practical cost model for BGP queries taking into account
both, the number of results and the number of reformulations.

2. We introduce algorithms to find a clusterization that accelerates the execution for a
given BGP query.

3. We implemented the above algorithms and deployed them on top of PostgreSQL [14].
Extensive experiments with large RDF data performed on different RDF stores con-
firm the efficiency and effectiveness of our approach over the baseline techniques,
presented in previous work [1].
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4. We introduce techniques for improving the execution of clustered queries.

The thesis is organized as follows. Chapter 2 introduces RDF graphs and entail-
ment, BGP queries, SPARQL and query reformulation. Chapter 3 defines our cost model,
through whom Section 3.5 introduce BGP query clusterization algorithms. Clustered BGP
query execution techniques are presented in Section 3.6. These algorithms and techniques
are then experimentally compared and studied in Chapters 4 and 5. We discuss related
work in Chapter 6, then we conclude.
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2. PRELIMINARIES

2.1 Semantic Web

I have a dream for the Web [in which computers]
become capable of analyzing all the data on the Web. [15]

–Tim Berners-Lee

The “Web of Data” vision behind the initial World Wide Web project has found
its most recent incarnation through the Semantic Web. Unlike traditional knowledge-
representation systems, typically centralized [16], the Semantic Web is meant to be a world-
wide distributed architecture, where data and services easily interoperate, by publishing
semantic descriptions of Web resources.

The Semantic Web is an extension of the current World Wide Web, in which the
content is given structure, thus enabling a reliable way for the computers to process the
semantics and therefore manipulate the data in a meaningful way. This vision, however, is
not yet a reality in the current Web [17, 18], in which most content (currently dominated
by unstructured and semi-structured documents) is intended for humans to read [16]. As
stated in [18], given a particular need, it is difficult to find a resource that is appropriate
to it. Also, given a relevant resource, it is not easy to understand what it provides and
how to use it.

A key idea to solve such limitations, enabling the Semantic Web vision, is to also pub-
lish semantic descriptions of Web resources. These descriptions rely on logical assertions
that are used to relate resources to terms in predefined ontologies [18]. Therefore, a fun-
damental ingredient for the Semantic Web vision is the set of data models and formats for
describing items from both the physical and digital world, in a machine exploitable way,
providing semantics to applications that use them and facilitating interoperability.

The Semantic Web stack builds on the Resource Description Framework (or RDF, in
short) model standardized by the W3C [2]. The RDF Schema (or RDFS, in short) [19]
and the Web Ontology Language (or OWL, in short) [20] were proposed to enhance the
descriptive power of RDF data sets. More specifically, RDF provides a format to make
statements about resources (in particular Web resources) in the form of subject-predicate-
object expressions, while RDF Schema (which is a superset of RDF) and OWL (which in
turn is a superset of RDFS) provide ontological data models, to state semantic constraints
between the classes and the properties used.

The term ontology has been used in different disciplines multifariously. Each com-
munity co-opted the term for their own jargon. We use the term to refer to a formal
description that provides a shared understanding of a given domain, based on:

• a set of individuals (entities or objects),

• classes of individuals, and

• the relationships that exists between these individuals.

The logical statements on memberships of individuals and in classes or relationships
between individuals, form a base of facts, i.e., knowledge base.

5



6 2. Preliminaries

In a nutshell, current popularity and usage of ontologies in the Web is due to four
major reasons:

• Their flexible and natural way of structuring documents in multidimensional ways,
allowing to find relevant information through very large documents collections.

• The logical formal semantics of ontologies provide means of inference, enabling rea-
soning. Therefore, it is possible for an ontology to be interpreted and processed by
machines.

• Ontologies allow making concepts precise, improving Web search. For example,
when searching for the word “jaguar”, we could specialize the concept in an ontol-
ogy, car:jaguar, avoiding unwanted answers where the term is used with a different
meaning (like those referring to the animal with the same name); searching for the
concept country:USA, instead of the word “USA”, allow us to get also documents in
which synonyms (or translations), like “United States”, “United States of America”
or “Estados Unidos”, are used.

• Ontologies serve as local join between heterogeneous information sources. Moreover,
their inference potential helps to automatically integrate different data sources.

Despite the critics that have questioned its feasibility, the need for data integration
grew. The need for shared semantics and a “Web of Data” and information has been
increasing, with e-science being its major driver [17]. The amount of data being exported or
produced as triples using RDF has been expanding due to increased uptake of its principles
in scientific research, industry, government and other communities [21]. Today, we see RDF
datasets containing billions of triples (3-tuples). For example, the UniProt collection [22]
is a huge biological dataset which aims to provide all the UniProt protein sequence and
annotation data in RDF format, combining rich annotations from various other collections,
with a total of 845 million triples [7]. Further, the Semantic-Web community has addressed
a Billion Triples Challenge [23], using a heterogeneous collection that includes DBpedia [24]
and Freebase [25], with a total of more than 1.1 billion triples (taking around 88 GB in
N-Triples format) [7].

To exploit this wealth of data, the SPARQL query language has been defined [3];
subsequently, novel techniques and algorithms have been proposed for the processing of
SPARQL queries, based on vertical partitioning [5], indexing [6], efficient join process-
ing [7], view selection [26], RDF management systems and optimized triple stores [10, 11,
12, 13], to name a few.

2.2 Close World Assumption vs. Open World Assumption

Your assumptions are your windows on the world.
Scrub them off every once in a while, or the light won’t come in

–Isaac Asimov

Traditionally, database constraints can be interpreted in two ways [27]: under the
Closed World Assumption (CWA) or under the Open World Assumption (OWA). The
Close World Assumption states that any fact that is not present in the database is assumed
not to hold. Using this approach, if the set of database facts does not respect a constraint,



2.3. RDF and RDF Schema 7

then the database is inconsistent. For example, the CWA interpretation of a constraint
of the form R1 ⊆ R2 is: any tuple in the relation R1 must also be in the relation R2 in
the database, otherwise the database is inconsistent. On the contrary, under the Open
World Assumption, some facts may hold even though they are not in the database. For
instance, the OWA interpretation of the same example is: any tuple t in the relation R1 is
considered as also being in the relation R2 (t is propagated to R2 because of the inclusion
constraint) [1].

2.3 RDF and RDF Schema

The Semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation. [16]

–Tim Berners-Lee

RDF provides a simple language allowing to express facts about Web resources. A fact
describes some metadata of a resource, that is identified by a URI, as a triplet of the form
s p o. A triple states that the value of the property p for the subject s is the object o. In
a triplet, the subject and the property are URIs pointing to Web resources, whereas the
object may be either a URI or a literal representing a value.

Blank nodes are an essential feature of RDF, allowing to support unknown constants
or URIs. A blank node (a.k.a. anonymous resource) is a subject or object in an RDF
triplet that is not identified by a URI and is not a literal. Its referred by the notation :b,
where b is a local name that can be used in several triples for staging several properties
of the corresponding blank node [18]. An RDF graph may contain several blank nodes,
since many of them can co-exist within a graph. For example, we can use a blank node
:b0 to state that :b0 is a professor at the ComputerScienceDept, and teaches Databases,

while the number of students enrolled in the Databases class is an unspecified value :b1.

The database (DB) fragment of RDF Introduced in [1], the DB fragment extends

previously studied fragments of RDF [26, 28, 29] by adding support for blank nodes. More-
over, the authors analyzed and compared the two established techniques for handling RDF
entailment, namely saturation and reformulation.

Constructor Triple Relational notation

Class assertion s τ o o(s)
Property assertion s p o p(s, o)

Fig. 2.1: RDF statements.

Given a set of URIs U , a set of literals (constants) L, and a set of blank nodes (unknown
URIs or literals) B, such that U , B and L are pairwise disjoint, we say a triple is well-
formed when it satisfies (all) the following statements:

• its subject belongs to U ∪B;

• its property belongs to U ;
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• its object belongs to U ∪B ∪ L.

Notationally, we use s, p, o and :b in triples (possibly with subscripts) as placeholders.
That is, s stands for values in U ∪ B, p stands for values in U , o represents values
from U ∪ B ∪ L, and :b denotes values in B. Finally, we use strings between quotes
as in “string” to denote literals. The built-in property http://www.w3.org/1999/02/

22-rdf-syntax-ns#type, denoted τ from now on, is used to specify to which classes
a resource belongs (a form of resource typing). Figure 2.1 shows how to use triples to
describe resources.

Example 1 (Movies). The fact that Stanley Kubrick has directed Jack Nicholson in the
movie The Shining can be represented by the following triples:

〈doi0 hasName “Stanley Kubrick′′〉,
〈doi0 hasDirected doi1〉,
〈doi1 τ Movie〉,
〈doi1 hasName “The Shining′′〉,
〈doi2 hasStarred doi1〉,
〈doi2 hasName “Jack Nicholson′′〉

An alternative, and sometimes more intuitive, way to visualize and represent all the
triples information is using a graph, where there is a node for each (distinct) subject or
object, labeled with its value; a triplet is represented as a directed edge, labeled with the
property value, between the subject node and the object node.

〈doi0 τ Book〉,
〈doi0 hasT itle “Around the World in Eighty Days′′〉,
〈doi0 hasGender Novel〉,
〈doi0 publishedIn 1873〉,
〈 :b0 hasWritten doi0〉,
〈 :b0 hasName “Jules V erne′′〉,
〈 :b0 hasNationality “French′′〉

Subject Property Object

doi0 τ Book
doi0 hasT itle “Around the World in Eighty Days′′

doi0 hasGender Novel
doi0 publishedIn 1873
:b0 hasWritten doi0
:b0 hasName “Jules V erne′′

:b0 hasNationality “French′′

doi0

τBook

publishedIn

1873

hasGenderNovel

hasT itle

“Around the World in Eighty Days′′

:b0hasWritten hasName “Jules V erne′′

hasNationality

“French′′

Fig. 2.2: Alternative RDF representations

Example 2 (Alternative RDF representations). The Figure 2.2 presents three equiv-
alent representations. The graph characterizes a resource doi0 that belongs to the class
Book, whose title is “Around the World in Eighty Days”, was published in the year 1873,
and belongs to the gender Novel. The author of the book is the unknown resource :b0,
whose name is “Jules Verne”, while the nationality of :b0 is “French”.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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Constructor Triple Relational notation

Subclass constraint s ≺sc o s ⊆ o

Subproperty constraint s ≺sp o s ⊆ o

Domain typing constraint s ←↩d o Πdomain(s) ⊆ o

Range typing constraint s ↪→r o Πrange(s) ⊆ o

Fig. 2.3: RDFS statements

RDFS is an extension of RDF that enhances the descriptive power of an RDF dataset
trough the declaration of facts (constraints) in particular domains. An RDF Schema
specifies constraints on the individuals (classes) and the relations (properties) used in the
RDF triplets, enabling entailment (one of the most valuable features of the Semantic Web).
For instance, given a RDF dataset containing the fact that “Jules V erne′′ hasWritten
the Book “Around the World in Eighty Days′′, whereas an RDFS states that those who
wrote books are writers; the fact “Jules V erne′′ is a writer is implicitly present in the
dataset. Figure 2.3 shows the allowed constraints and how to express them. In this figure,
as we can see, s, o ∈ U ∪ B, while domain and range denote respectively the first and
second attribute of every property.

Animal

Amphibian

Frog Caecilians

Bird

Eagle Owl

Arthropod

Bee Butterfly

Mammal

Cat Dog

Reptile

Snake Alligator

Fig. 2.4: Animal class hierarchy.

Example 3 (Continued). For instance, the animal hierarchy characterized in Figure 2.4
and the properties hasSkeleton, hasEndoSkeleton, hasGestationT ime and hasFelineLeukemia
are represented by the RDF Schema shown in Figure 2.5.

〈Amphibian ≺sc Animal〉, 〈Butterfly ≺sc Arthropod〉,
〈Bird ≺sc Animal〉, 〈Cat ≺sc Mammal〉,
〈Arthropod ≺sc Animal〉, 〈Dog ≺sc Mammal〉,
〈Mammal ≺sc Animal〉, 〈Snake ≺sc Reptile〉,
〈Reptile ≺sc Animal〉, 〈Alligator ≺sc Reptile〉,
〈Frog ≺sc Amphibian〉, 〈hasSkeleton ←↩d Animal〉,
〈Caecilians ≺sc Amphibian〉, 〈hasEndoSkeleton ≺sp hasSkeleton〉,
〈Eagle ≺sc Bird〉, 〈hasGestationT ime ←↩d Mammal〉,
〈Owl ≺sc Bird〉, 〈hasFelineLeukemia ←↩d Cat〉
〈Bee ≺sc Arthropod〉,

Fig. 2.5: Animal RDF Schema.

One consistent difference between the Semantic Web and many data models for pro-
gramming languages is the CWA [30]. The RDF data model uses the OWA, therefore
constraints, such as the ones in Figure 2.3 are interpreted under the OWA instead of the
CWA. This may lead to added information [27], a key feature of RDF. Implicit triples
holds as part of the dataset, although they are not explicitly present in it.
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Example 4 (Movies continued). Consider an extension, using RDFS constraints, of
the triples set used in Example 1:

Data (facts) RDF Schema (constraints)

〈doi0 hasName “Stanley Kubrick′′〉, 〈hasName ←↩d Person〉,
〈doi0 hasDirected doi1〉, 〈hasName ↪→r rdfs:Literal〉,
〈doi1 τ Movie〉, 〈hasDirected ←↩d Director〉,
〈doi1 hasName “The Shining′′〉, 〈hasDirected ↪→r Movie〉,
〈doi2 hasStarred doi1〉, 〈hasStarred ←↩d Actor〉,
〈doi2 hasName “Jack Nicholson′′〉, 〈hasStarred ↪→r Movie〉,

〈Actor ≺sc Person〉,
〈Director ≺sc Person〉

The triples 〈doi2 τ Actor〉 and 〈doi0 τ Director〉 holds in the dataset because the pairs of
triples 〈doi2 hasStarred doi1〉, 〈hasStarred ←↩d Actor〉 and 〈doi0 hasDirected doi1〉,
〈hasDirected ←↩d Director〉 respectively, are present in the dataset. Moreover, the triples
〈doi2 τ Actor〉 and 〈doi0 τ Director〉 also holds in the dataset.

2.4 RDF entailment

Vision is the art of seeing what is invisible to others.
–Jonathan Swift

The W3C [31] refers as entailment to the RDF feature that allows modeling implicit
data. Implicit RDF triples (triples that are considered to hold beyond that are not ex-
plicitly present in the dataset) are derived based on the explicit set of RDF triples in the
dataset by applying the entailment rules. The process of applying an entailment rule, to
a given dataset, is known as immediate entailment and its denoted as `iRDF [1]. A triple
s p o is said to be entailed by a dataset D, denoted D `RDF s p o, if and only if there is a
sequence of immediate entailments that leads from D to s p o. Please note that implicit
triples entailed in previous steps are also taken into account during the single application
of an entailment rule.

Entailment rules are grouped by type. A first kind, known as simple entailment rules,
use blank nodes to produce generalizations. For example, using the dataset shown in
Example 4:

doi0 hasDirected doi1 `iRDF doi0 hasDirected :b

A second group of rules use a particular case of rule named se1 [31] that applies only
to literals, producing generalizations using blank nodes in the presence of literals. For
instance,

doi0 hasName “Stanley Kubrick′′ `iRDF doi0 hasName :b

The third kind of rules, known as RDF entailment rules, generates triples that type
properties and, similarly to the second group, produces generalizations using blank nodes
but in the presence of XML Literals:

doi2 hasStarred doi1 `iRDF hasStarred τ rdf :Property

Another group of rules, named RDFS rules, derives entailed triples from the constraints
in the schema and the semantics of built-in classes and properties, for instance:
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p1 ≺sp p2, p2 ≺sp p3 `iRDF p1 ≺sp p3

Finally, the last kind of entailment rules, the extensional ones, produces generalizations
that are described in the semantics of RDF but not covered by the RDFS rules. For
instance,

hasStarred ←↩d Actor,Actor≺scPerson `iRDF hasStarred ←↩d Person

Triple Entailed triple (`iRDF)

s τ o o ≺sc o

s p o p ≺sp p

Fig. 2.6: Schema triple entailment rules from a single instance-level triple.

Triple Entailed triple (`iRDF)

s1 ≺sc s2 s1 ≺sc s1

s1 ≺sc s2 s2 ≺sc s2

p1 ≺sp p2 p1 ≺sp p1

p1 ≺sp p2 p2 ≺sp p2

p ←↩d s p ≺sp p

p ←↩d s s ≺sc s

p ←↩d rdfs:Literal p ≺sp p

p ↪→r s p ≺sp p

p ↪→r s s ≺sc s

p ↪→r rdfs:Literal p ≺sp p

Fig. 2.7: Schema triple entailment rules from a single schema-level triple.

Rule name [31] Triple Entailed triple (`iRDF)

rdfs2 p ←↩d s, s1 p o1 s1 τ s

rdfs3 p ↪→r s, s1 p o1 o1 τ s

rdfs7 p1 ≺sp p2, s p1 o s p2 o

rdfs9 s1 ≺sc s2, s τ s1 s τ s2

Fig. 2.8: Instance triple entailment rules from instance and schema triples combined.

Rule name [31] Triple Entailed triple (`iRDF)

rdfs5 p ≺sp p1, p1 ≺sp p2 p ≺sp p2

rdfs11 s ≺sc s1, s1 ≺sc s2 s ≺sc s2

ext1 p ←↩d s1, s1 ≺sc s p ←↩d s

ext2 p ↪→r s1, s1 ≺sc s p ↪→r s

ext3 p ≺sp p1, p1 ←↩d s p ←↩d s

ext4 p ≺sp p1, p1 ↪→r s p ↪→r s

Fig. 2.9: Schema triple entailment rules from two schema-level triples.

The first three sets of rules are not of a great interest for us since we consider it is more
interesting to know that doi0 hasAbbreviation “DL′′ than to know that some unknown
resource :b has the abbreviation “DL”. Similarly, the fact that Airline ≺sc Airline is
not very relevant for us. In this work we focus on a useful subset of the entailment rules
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specified by the W3C [31]. In particular, our approach consider the subset of instance-level
entailment rules shown in Figure 2.8, and the schema-level entailment rules characterized
in Figure 2.9. The set of rules described in Figure 2.8, produces instance RDF triples
when applied to a instance triple and a schema triple. The group of entailment rules
in Figure 2.9 generates schema triples (constraints) instead, using two schema triples as
input.
The complete set of entailment rules specified by the W3C [31] can be found in Appendix
B, Section 6. Moreover, Section 6 contains the RDF and RDFS axiomatic triples.

Dataset closure The closure of a dataset D, denoted D∞, is unique (up to blank node
renaming) and contains explicitly all the (implicit) triples that can be entailed from the
original dataset D.

Given a dataset D, its closure is defined as the fixed point function:

• D0 = D

• Dα = Dα−1 ∪ {s p o | Dα−1 `iRDF s p o}

Moreover, a triple s p o ∈ D∞ ⇐⇒ (s p o ∈ D) ∨ (D `RDF s p o); any triple
entailed by a dataset D will be entailed by its closure and vice versa: D `RDF s p o ⇐⇒
D∞ `RDF s p o. As entailment is specified within the RDF W3C standard [2], D and D∞

are equivalents, given that the semantic of a dataset is its closure.

Example 5 (Dataset closure). For instance, if we call D the dataset composed by the
Schema in Figure 2.5 and the data shown in Figure 2.10, its closure is defined as:

D0 = D
D1 = D0 ∪ {doi1 τ Cat, doi0 τ Mammal, doi0 hasSkeleton True, doi0 τ Animal, Frog ≺sc Animal, Caecilians ≺sc Animal,

Eagle ≺sc Animal,Owl ≺sc Animal,Bee ≺sc Animal,Butterfly ≺sc Animal, Cat ≺sc Animal,Dog ≺sc Animal,
Snake ≺sc Animal,Alligator ≺sc Animal, hasEndoSkeleton ←↩d Animal, hasGestationT ime ←↩d Animal,
hasFelineLeukemia ←↩d Mammal}

D2 = D1 ∪ {hasFelineLeukemia ←↩d Animal, doi1 τ Mammal, doi1 τ Animal}
D3 = D2 ∴ D∞ = D2

〈doi0 τ Cat〉,
〈doi0 hasEndoSkeleton True〉,
〈doi0 hasGestationT ime 63− 65days〉,
〈doi1 hasFelineLeukemia False〉,

Fig. 2.10: RDF dataset for Example 5

2.5 BGP queries and SPARQL

Getting information off the Internet is like taking a drink from a fire hydrant.
–Mitchell Kapor

Basic graph pattern (or BGP, in short) queries are a well-known subset of the W3C
SPARQL [3] query language for RDF, that corresponds to the familiar class of conjunctive
queries from relational databases. Subject of several works recently [1, 8, 26, 32], BGP
queries (a.k.a. SPARQL join queries) are the most used SPARQL queries in real-world [32].
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BGP queries are composed by a set of distinguished variables, the head, and a set of
triple patterns, the BGP. Each triple pattern has a subject, a property, and a object. Sub-
jects and properties can be URIs, blank nodes or variables, whereas objects can also be
literals. BGP queries can be characterized as Boolean (those with empty head) or non-
Boolean queries, and their expressions are of the form ASK WHERE G, and SELECT x̄ WHERE

G respectively, where G is a BGP and x̄ is a subset of the variables occurring in G.

Example 6 (BGP queries). As an example, the following Boolean BGP query returns
a positive answer (i.e., true) if there exists, in the dataset, a director that also starred the
movie, false otherwise.

q0() :- x hasDirected y, (0)
x hasStarred y (1)

Instead, the following non-Boolean query retrieves the actors that worked in a movie di-
rected by a French.

q1(x) :- x hasStarred y, (0)
w hasDirected y, (1)
w hasNationality “French′′ (2)

Finally, q2 retrieves the pairs of French actors and American directors that worked to-
gether.

q2(x,w) :- x hasStarred y, (0)
w hasDirected y, (1)
x hasNationality “French′′, (2)
w hasNationality “American′′ (3)

We can also characterize BGP queries as a directed graph, where subjects and objects
of the triples are represented by the vertices, labeled with their values (i.e., URIs, literals
and variables), whereas the predicates are represented by the edges, labeled with their
values. Figure 2.11 shows the illustrated representation of the queries in Example 6,
whereas Figure 2.12 illustrates well-known basic query patterns as the ones characterized
in recent works [9].

x y

hasDirected

hasStarred

x y

w“French′′

hasStarred

h
a
sD

ir
ec
te
d

hasNationality

x

y

w

“French′′

“American′′

has
Sta

rre
d

hasDirected

hasNationality

hasNationality

q0 q1 q2

Fig. 2.11: Graphical representation of BGP queries.

Alternatively, BGP queries can be represented as a non-directed graph that illustrate
the joins between triple patterns. Vertices represent the set triple patterns in the BGP,
and are labeled with their identifiers; there’s an edge between two vertices if there’s at
least one variable in common among them. Moreover, the edges could be labeled with
the set of shared variables. Figure 2.13 exhibits an illustrated representation of the triple
patterns and the joins between them for the queries in Example 6.
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s0

c0
c1 c0

c3

p0 p1 p2
p3

s0

s1 s2

c0 c1
p0 p1

p2 p1

s0 s1

c0

c1

p0

p1

p2

p3

Star Chain Circle

Fig. 2.12: Basic query patterns.

0 1 0

1

2

0 1

2 3

q0 q1 q2

Fig. 2.13: Illustration of queries triple patterns and joins among them.

Summarizing, querying RDF bears some similarity to querying relational data, how-
ever, there are quite a few discrepancies in the data model. First, an RDF dataset is
comprised of a unique, usually very large (surpassing in some case the billion triples
[22, 23]), set of triples, contrasting with traditional relational databases featuring tens
or even hundreds of relations with varying numbers of attributes. Moreover, classic rela-
tional databases provides the means to specify particular data structures trough the data
definition language (or DDL, in short).

Airlines Airline Id Name Abbreviation

1 “Delta Air Lines′′ “DL′′

2 “Aerolineas Argentinas′′ “AR′′

. . . . . . . . .
3 “Air France′′ “AF ′′

Airports Airport Id Name Code City

1 “Ministro P istarini International Airport′′ “EZE′′ “Buenos Aires′′

2 “Charles de Gaulle Airport′′ “CDG′′ “Paris′′

3 “John F. Kennedy International Airport′ “JFK ′′ “New Y ork′′

4 “San Paulo−Guarulhos International Airport′′ “GRU ′′ “San Pablo′′

. . . . . . . . . . . .
5 “Madrid−Barajas Airport′′ “MAD′′ “Madrid′

Flights F light Id Airline Id F light Number Orig. Airport Id Dest. Airport Id Departure T ime Est. Arrival T ime

1 3 “AF 394′′ 2 1 14/06/2013, 23.20 15/06/2013, 08.05
2 3 “AF 1400′′ 2 5 14/06/2013, 20.00 14/06/2013, 22.05
3 2 “AR 1132′′ 1 5 17/06/2013, 23.55 18/06/2013, 17.10
. . . . . . . . . . . . . . . . . . . . .
4 1 “DL 1164′′ 3 2 17/06/2013, 14.55 18/06/2013, 06.40

Fig. 2.14: The flights relational database

Example 7 (Flights running example). For instance, suppose we are about to model
flight schedules, including airplane company, origin and destination airport, departure
time and estimated arrival time. In traditional relational databases, the database schema
FLIGHTS for the database shown in Figure 2.14 is defined by:

FLIGHTS = {Airlines,Airports, F lights}

where the relations Airlines, Airports and Flights are composed by the following at-
tributes:
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Airlines = {Airline Id,Name,Abbreviation}
Airports = {Airport Id,Name,Code, City}
Flights = {Flight Id,Airline Id, F light Number,Origin Airport Id,

Destination Airport Id,Departure T ime,Estimated Arrival T ime}

Instead, the RDF dataset, shown in Figure 2.15, will be composed by a single large set
of triples (including information regarding l airports, k airlines, and n flights).

Subject Property Object

doi0 τ Airline
doi0 hasName “Delta Air Lines′′

doi0 hasAbbreviation “DL′′

doi1 τ Airline
doi1 hasName “Aerolineas Argentinas′′

doi1 hasAbbreviation “AR′′

. . . . . . . . .
doik τ Airline
doik hasName “Air France′′

doik hasAbbreviation “AF ′′

doik+1 τ Airport
doik+1 hasName “Ministro P istarini International Airport′′

doik+1 hasCode “EZE′′

doik+1 hasCity “Buenos Aires′′

doik+2 τ Airport
doik+2 hasName “Charles de Gaulle Airport′′

doik+2 hasCode “CDG′′

doik+2 hasCity “Paris′′

doik+3 τ Airport
doik+3 hasName “John F. Kennedy International Airport′′

doik+3 hasCode “JFK ′′

doik+3 hasCity “New Y ork′′

doik+4 τ Airport
doik+4 hasName “San Paulo−Guarulhos International Airport′′
doik+4 hasCode “GRU ′′

doik+4 hasCity “San Pablo′′

. . . . . . . . .
doik+l τ Airport
doik+l hasName “Madrid−Barajas Airport′′
doik+l hasCode “MAD′′

doik+l hasCity “Madrid′

doik+l+1 τ F light
doik+l+1 hasAirline doik
doik+l+1 hasF lightNumber “AF 394′′

doik+l+1 hasDepartureT ime 14/06/2013, 23.20
doik+l+1 hasEstimatedArrivalT ime 15/06/2013, 08.05
doik+l+1 hasOriginAirport doik+2

doik+l+1 hasDestinationAirport doik+1

doik+l+2 τ F light
doik+l+2 hasAirline doik
doik+l+2 hasF lightNumber “AF 1400′′

doik+l+2 hasDepartureT ime 14/06/2013, 20.00
doik+l+2 hasEstimatedArrivalT ime 14/06/2013, 22.05
doik+l+2 hasOriginAirport doik+2

doik+l+2 hasDestinationAirport doik+l

doik+l+3 τ F light
doik+l+3 hasAirline doi1
doik+l+3 hasF lightNumber “AR 1132′′

doik+l+3 hasDepartureT ime 17/06/2013, 23.55
doik+l+3 hasEstimatedArrivalT ime 18/06/2013, 17.10
doik+l+3 hasOriginAirport doik+1

doik+l+3 hasDestinationAirport doik+l

. . . . . . . . .
doik+l+n τ F light
doik+l+n hasAirline doi0
doik+l+n hasF lightNumber “DL 1164′′

doik+l+n hasDepartureT ime 17/06/2013, 14.55
doik+l+n hasEstimatedArrivalT ime 18/06/2013, 06.40
doik+l+n hasOriginAirport doik+3

doik+l+n hasDestinationAirport doik+2

Fig. 2.15: RDF flights dataset
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Second, RDF specification supports a form of incomplete information through blank
nodes, enabling us to refer and state facts about unknown literals or URIs using blank
nodes in the triples. Whereas in standard relational databases all attribute values must
be defined, either with constants or the special value NULL.

Example 8 (Flights continued). For instance, continuing with the example above, we
could state that there’s an unknown resource :b0 of type Airline, with abbreviation “TAM”
and name “TAM Linhas Aereas” for which there’s a flight from San Pablo to Buenos Aires
scheduled on the 19th of June, as shown in Figure 2.16.

〈 :b0 τ Airline〉,
〈 :b0 hasName “TAM Linhas Aereas′′〉,
〈 :b0 hasAbbreviation “TAM ′′〉,
〈doik+l+n+1 τ F light〉,
〈doik+l+n+1 hasAirline :b0〉,
〈doik+l+n+1 hasF lightNumber “TAM8018′′〉,
〈doik+l+n+1 hasDepartureT ime 19/06/2013, 14.25〉,
〈doik+l+n+1 hasEstimatedArrivalT ime 19/06/2013, 17.15〉,
〈doik+l+n+1 hasOriginAirport doik+4〉,
〈doik+l+n+1 hasDestinationAirport doik+1〉

Fig. 2.16: RDF extended flights dataset

On the other hand, classic relational databases cannot represent incomplete informa-
tion. Therefore, the flight cannot be represent in the database presented in Figure 2.14,
or, if the database constraints allows it, the flight can be represented using the special
value NULL in the airline attribute as its shown in Figure 2.17.

Flights F lightId AirlineId F light Number Orig. AirportId Dest. AirportId Departure T ime Est. Arrival T ime

1 3 “AF 394′′ 2 1 14/06/2013, 23.20 15/06/2013, 08.05
2 3 “AF 1400′′ 2 5 14/06/2013, 20.00 14/06/2013, 22.05
3 2 “AR 1132′′ 1 5 17/06/2013, 23.55 18/06/2013, 17.10
. . . . . . . . . . . . . . . . . . . . .
4 1 “DL 1164′′ 3 2 17/06/2013, 14.55 18/06/2013, 06.40
5 NULL “TAM 8018′′ 4 1 19/06/2013, 14.25 19/06/2013, 17.15

Fig. 2.17: Extended flights relational table

Finally, the RDF data model follows the Open World Assumption, in contrast with
typical relational databases that are under the CWA instead. Therefore, in traditional
relational databases all the data is explicit, while RDF implicit triples are considered to
be part of the dataset, even though they are not explicitly present in it. The main source of
implicit triples are the (domain) constraints specified in the RDF Schema (optional) [26].

Example 9 (Flights extended). For instance, if we extend the Example 7 as its shown in
Figure 2.18, using RDFS constraints, the fact stated by the (implicit) triple 〈doii τ Airline〉
(i = k+l+n+2, for readability) holds in the dataset because the triples 〈doii+2 hasAirline doii〉
and 〈hasAirline ↪→r Airline〉 are present in the dataset. Moreover, the facts 〈doii+1 τ Airport〉
and 〈 :b1 τ Airport〉 also holds in the dataset because the following triples are present:

〈doii+2 hasOriginAirport doii+1〉,
〈hasOriginAirport ↪→r Airport〉,
〈doii+2 hasDestinationAirport :b1〉,
〈hasDestinationAirport ↪→r Airport〉
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Data (facts) RDF Schema (constraints)

〈doik+l+n+2 hasName “American Airlines′′〉, 〈Airline ≺sc Company〉,
〈doik+l+n+3 hasName “BrusselsAirport′′〉, 〈hasAirline ←↩d Flight〉,
〈 :b1 hasName “London Heathrow Airport′′〉, 〈hasAirline ↪→r Airline〉,
〈doik+l+n+4 τ F light〉, 〈hasOriginAirport ←↩d Flight〉,
〈doik+l+n+4 hasAirline doik+l+n+2〉, 〈hasOriginAirport ↪→r Airport〉,
〈doik+l+n+4 hasF lightNumber “AA6399′′〉, 〈hasDestinationAirport ←↩d Flight〉,
〈doik+l+n+4 hasDepartureT ime 19/06/2013, 11.50〉, 〈hasDestinationAirport ↪→r Airport〉,
〈doik+l+n+4 hasEstimatedArrivalT ime 19/06/2013, 12.05〉,
〈doik+l+n+4 hasOriginAirport doik+l+n+3〉,
〈doik+l+n+4 hasDestinationAirport :b1〉

Fig. 2.18: RDF extended flights dataset

Figure 2.19 summarize in a tabular way, as a (large) triplet table, the RDF dataset of
the extended Example 9.

Notations Without loss of generality, in the following we will use the conjunctive query
notation q(x̄):- t1, . . . , tα for both ASK and SELECT queries (for Boolean queries, x̄ is empty).
We use x, y, and z (possibly with subscripts) to denote variables in queries. We denote by
VarBl(q) the set of variables and blank nodes occurring in the query q. The set of values
(URIs, blank nodes, literals) of a dataset D is denoted Val(D).

Query evaluation Given a query q and a dataset D, the evaluation of q against D is:

q(D) = {x̄µ | µ : VarBl(q)→ Val(D) is a total assignment s.t. (t1, . . . , tα)µ ⊆ D}

where for a given triple (or triple set) O, we denote by Oµ the result of replacing every
occurrence of a variable or blank node e ∈ VarBl(q) in O, by the value µ(e) ∈ Val(D). If
q is Boolean, the empty answer set encodes false, while the non-empty answer set made
of the empty tuple ∅µ = 〈〉 encodes true.

Notice that (normative) query evaluation treats the blank nodes in a query as non-
distinguished variables. That is, one could consider equivalently queries with blank nodes
or queries with non-distinguished variables.

Query answering It is important to keep in mind the distinction between query evalu-
ation and query answering. The evaluation of q against D only uses D’s explicit triples,
thus may lead to an incomplete answer set. The (complete) answer set of q against D is
obtained by the evaluation of q against the closure of D, denoted by q(D∞).

Example 10 (Query answering). Consider again the dataset used in example 9. The
following query asks for all the airports:

q(x):- x τ Airport

The evaluation of q against the data in Figure 2.19, q(D), leads to the incomplete an-
swer data set q(Ddata) = {doik+1, doik+2, doik+3, doik+4, . . . , doik+l}. The evaluation of
the same query q against the data and the schema shown in the same figure (i.e., the eval-
uation of the query against the closure of the dataset, q(D∞)) leads to the correct answer
(including the implicit triples): q(D∞) = {doik+1, doik+2, doik+3, doik+4, . . . , doik+l,
doik+l+n+3, :b1}.
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Data (facts)

Subject Property Object

doi0 τ Airline
doi0 hasName “Delta Air Lines′′

doi0 hasAbbreviation “DL′′

doi1 τ Airline
doi1 hasName “Aerolineas Argentinas′′

doi1 hasAbbreviation “AR′′

. . . . . . . . .
doik τ Airline
doik hasName “Air France′′

doik hasAbbreviation “AF ′′

doik+1 τ Airport
doik+1 hasName “Ministro P istarini International Airport′′

doik+1 hasCode “EZE′′

doik+1 hasCity “Buenos Aires′′

doik+2 τ Airport
doik+2 hasName “Charles de Gaulle Airport′′

doik+2 hasCode “CDG′′

doik+2 hasCity “Paris′′

doik+3 τ Airport
doik+3 hasName “John F. Kennedy International Airport′

doik+3 hasCode “JFK ′′

doik+3 hasCity “New Y ork′′

doik+4 τ Airport
doik+4 hasName “San Paulo−Guarulhos International Airport′′
doik+4 hasCode “GRU ′′

doik+4 hasCity “San Pablo′′

. . . . . . . . .
doik+l τ Airport
doik+l hasName “Madrid−Barajas Airport′′
doik+l hasCode “MAD′′

doik+l hasCity “Madrid′′

doik+l+1 τ F light
doik+l+1 hasAirline doik
doik+l+1 hasF lightNumber “AF 394′′

doik+l+1 hasDepartureT ime 14/06/2013, 23.20
doik+l+1 hasEstimatedArrivalT ime 15/06/2013, 08.05
doik+l+1 hasOriginAirport doik+2

doik+l+1 hasDestinationAirport doik+1

doik+l+2 τ F light
doik+l+2 hasAirline doik
doik+l+2 hasF lightNumber “AF 1400′′

doik+l+2 hasDepartureT ime 14/06/2013, 20.00
doik+l+2 hasEstimatedArrivalT ime 14/06/2013, 22.05
doik+l+2 hasOriginAirport doik+2

doik+l+2 hasDestinationAirport doik+l

. . . . . . . . .

doik+l+3 τ F light
doik+l+3 hasAirline doi1
doik+l+3 hasF lightNumber “AR 1132′′

doik+l+3 hasDepartureT ime 17/06/2013, 23.55
doik+l+3 hasEstimatedArrivalT ime 18/06/2013, 17.10
doik+l+3 hasOriginAirport doik+1

doik+l+3 hasDestinationAirport doik+l

. . . . . . . . .
doik+l+n τ F light
doik+l+n hasAirline doi0
doik+l+n hasF lightNumber “DL 1164′′

doik+l+n hasDepartureT ime 17/06/2013, 14.55
doik+l+n hasEstimatedArrivalT ime 18/06/2013, 06.40
doik+l+n hasOriginAirport doik+3

doik+l+n hasDestinationAirport doik+2

:b0 τ Airline
:b0 hasName “TAM Linhas Aereas′′

:b0 hasAbbreviation “TAM ′′

doik+l+n+1 τ F light
doik+l+n+1 hasAirline :b0
doik+l+n+1 hasF lightNumber “TAM8018′′

doik+l+n+1 hasDepartureT ime 19/06/2013, 14.25
doik+l+n+1 hasEstimatedArrivalT ime 19/06/2013, 17.15
doik+l+n+1 hasOriginAirport doik+4

doik+l+n+1 hasDestinationAirport doik+1

doik+l+n+2 hasName “American Airlines′′

doik+l+n+3 hasName “BrusselsAirport′′

:b1 hasName “London Heathrow Airport′′

doik+l+n+4 τ F light
doik+l+n+4 hasAirline doik+l+n+2

doik+l+n+4 hasF lightNumber “AA6399′′

doik+l+n+4 hasDepartureT ime 19/06/2013, 11.50
doik+l+n+4 hasEstimatedArrivalT ime 19/06/2013, 12.05
doik+l+n+4 hasOriginAirport doik+l+n+3

doik+l+n+4 hasDestinationAirport :b1

RDF Schema (constraints)

〈Airline ≺sc Company〉,
〈hasAirline ←↩d Flight〉,
〈hasAirline ↪→r Airline〉,
〈hasOriginAirport ←↩d Flight〉,
〈hasOriginAirport ↪→r Airport〉,
〈hasDestinationAirport ←↩d Flight〉,
〈hasDestinationAirport ↪→r Airport〉

Fig. 2.19: RDF extended flights dataset
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2.6 RDF and RDBMs

A generalization of the traditional relational tables with NULL values, called V-tables,
allows the use of variables in their tuples. Moreover, the use of the same variable in
different tuples of a V-table allows us to express joins on unknown values. Figure 2.20
shows an example of a V-table for the Ligue 1 (French Football League) 2013/2014 season
fixture.

Home Away Week

FC Nantes SC Bastia 1
LOSC Lille FC Lorient 1
Olympique Lyonnais x 1
y Paris Saint−Germain 1
. . . . . . . . .
x Stade Rennais FC 2
Paris Saint−Germain AC Ajaccio 2
z LOSC Lille 2
AS Monaco FC y 2
. . . . . . . . .
x y 4
. . . . . . . . .

Fig. 2.20: Example of a V-table.

Previous work [33] introduced a representation system for incomplete information re-
lational databases, based on V-Tables, that supports projection, positive selection, union,
join, and remaining of attributes. A key result on V-table querying is that standard rela-
tional evaluation (which sees variables in V-tables as constants) computes the exact answer
set of any conjunctive query [33]. Further, provides a possible way of answering conjunc-
tive queries against V-tables using standard relational database management systems (or
RDBMSs, in short).

RDF datasets turn out to be a special case of incomplete relational databases based
on V-tables. Therefore, using RDBMS evaluation, we can obtain complete answer sets to
BGP queries as follows:

Given a dataset D, we encode it into the V-table Triples(s, p, o) storing the triples
of D as tuples, in which blank nodes become variables. Then, given a BGP query
q(x̄):- s1 p1 o1, . . . , sn pn on, in which blank nodes have been equivalently replaced by
fresh non-distinguished variables, the SPARQL evaluation q(D) of q against D is obtained
by the relational evaluation of the conjunctive query:

q(x̄):-
∧n
i=1 Triples(si, pi, oi)

against the Triples table. Indeed, SPARQL and relational evaluations coincide with the
above encoding, as relational evaluation amounts to finding all the total assignments from
the variables of the query to the values (constants and variables) in the Triples table, so
that the query becomes a subset of that Triples table [1].
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Trough the two established techniques for handling RDF entailment, namely saturation
and reformulation, we can compute the answer set of q against D in the following ways:

• Saturation: evaluating q(x̄):-
∧n
i=1 Triples(si, pi, oi) against the Triples table con-

taining D∞ (the closure of D).

• Reformulation: evaluating q′(x̄):-
∧m
i=1 Triples(si, pi, oi) against the Triples table

containing D facts, where q′ is the reformulation of the query q w.r.t. D schema
(constraints).

{c1 ≺sc c2, s τ c1} ⊆ D
D = D ∪ {s τ c2}

(2.1)

{p ←↩d c, s p o} ⊆ D
D = D ∪ {s τ c} (2.2)

{p ↪→r c, s p o} ⊆ D
D = D ∪ {o τ c} (2.3)

{p1 ≺sp p2, s p1 o} ⊆ D
D = D ∪ {s p2 o} (2.4)

Fig. 2.21: Saturation rules for a dataset D.

Saturation-based query answering Given a dataset D, the closure of the dataset is
computed using the entailment rules shown in Figure2.21; then, the evaluation of every
query against the saturation leads to the complete answer set. This method is straight-
forward and easy to implement. Its disadvantages are that dataset saturation requires
computation time and storage space for all the entailed triples; moreover, the saturation
must be recomputed upon every update. Incremental algorithms for saturation mainte-
nance had been proposed in previous work [1]. However, the recursive nature of entailment
makes this process costly (in time and space) and this method not suitable for datasets
with a high rate of updates.
Table 2.1, extracted from the cited work [1], presents the characteristics of well-known
datasets and shows that saturation adds between 10% and 41% to the dataset size, while
multiset-based saturation (required for the incrementally maintaining the saturation tech-
nique presented by the authors) increase the size between 116% and 227%.

RDF Schema

RDF

RDF∞

query q

answer

Fig. 2.22: Saturation-based query answering overview.

Reformulation-based query answering Given a query q and a dataset D, reformulate
(using the immediate entailment rules) q w.r.t. D schema into another query q′, such that
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Graph #Schema #Instance #Saturation Saturation increase (%) #Multiset Multiset increase (%)

Barton [34] 101 33, 912, 142 38, 969, 023 14.91 73, 551, 358 116.89

DBpedia [24] 5666 26, 988, 098 29, 861, 597 10.65 66, 029, 147 227.37

DBLP [35] 41 8, 424, 216 11, 882, 409 41.05 18, 699, 232 121.97

Tab. 2.1: Datasets and saturation characteristics [1].

the evaluation of q′ against D data, denoted q′(Ddata), is the complete answer set of
q against D (i.e., q(D∞)). The main advantage of this method is that its robust to
update, there is no need to (re)compute the closure of the dataset. In the other hand,
the reformulation is made at run time, often resulting in a more complex query than the
original one and with a costlier evaluation.

RDF Schema

query q query q′

answer

RDF

Fig. 2.23: Reformulation-based query answering overview.

In this work, we focus on reformulation-based query answering only for instance-level
queries. The following theorem, introduced in [4], shows that to answer such queries,
among the DB fragment’s rules shown in Figures 2.6–2.9, it suffices to consider only the
entailment rules in Figure 2.8. The proof strategy for Theorem 2.6.1 is based on the
original one [4] and adapted to the current work.

Theorem 2.6.1. [RDF triple entailment] [4] Let D be a dataset, t1 be a triple of the form
s τ o, and t2 be a triple of the form s p o. t1 ∈ D∝ (respectively, t2 ∈ D∝) iff there exists
a sequence of application of the rules in Figure 2.8 leading from D to t1 (respectively t2),
assuming that each entailment step relies on D and all triples previously entailed.

Proof.

⇐) The proof in this direction is trivial since the rules of Figure 2.8 are among the ones
that are used to define D∝.

⇒) Let us call a derivation of t any sequence of immediate entailment rules that produces
the entailed triple t, starting from D. Let us consider, without loss of generality, a
minimal derivation (i.e., in which removing a step of rule application does not allow
deriving t anymore). A derivation can be minimized by gradually removing steps
producing entailed triples that are not further reused in the entailment sequence of
t. We show for such a minimal derivation of an entailed triple t that any step using
a rule that is not in Figure 2.8 can be replaced by a sequence of steps using only
rules from Figure 2.8, leading to another derivation of t. Applying exhaustively the
above replacement on the minimization of obtained derivations obviously leads to a
derivation of t using the rules in Figure 2.8 only.

Consider a minimal derivation of t using the immediate entailment rule from Fig-
ure 2.8: s ≺sc o, s1 τ s `RDF s1 τ o While the triple s1 τ s is either in D or produced
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by a rule from Figure 2.8 (only the rules in Figure 2.8 produce such a triple), the triple
s ≺sc o may result from the triples {s ≺sc on, on ≺sc on−1, . . . , o1 ≺sc o} ⊆ D
and n applications of the rule s ≺sc o, o ≺sc o1 `RDF s ≺sc o1 from Figure 2.9
(only that rule produces triples of the form s ≺sc o). Observe that we do not have
to consider the rules from Figures 2.6 and 2.7 in a minimal derivation. It is therefore
easy to see that the application of s ≺sc o, s1 τ s `RDF s1 τ o in the derivation of
t can be replaced by the following sequence:
s ≺sc on, s1 τ s `RDF s1 τ on,
on ≺sc on−1, s1 τ on `RDF

s1 τ on−1,
. . . ,
o1 ≺sc o, s1 τ o1 `RDF s1 τ o

The rest of the proof is omitted as it amounts to show, similarly as above, that the
claim also holds for the three other immediate entailment rules of Figure 2.8.

2.7 Query reformulation

Let me reformulate the question

Given a query q and a dataset D, we want to reformulate q w.r.t. D schema into
another query q′, such that the evaluation of q′ against D data, denoted q′(Ddata), is
the complete answer set of q against D (i.e., q(D∞)). The Reformulate algorithm,
previously introduced in [26] and extended in [1], exhaustively applies the rules shown
in Figure 2.24, each of which defines a transformation of the form input

output . The input of a
transformation can be of the form 〈logical condition w.r.t. q〉 or 〈logical condition w.r.t. D,
logical condition w.r.t. q〉, while the output is a (new) query q′ based on the input query
q and the schema of dataset D. In general terms, each rule produces a new query (its
output) when the rule’s input conditions are satisfied, by some query (either the original
query q or a query q′ produced by a previous application of a rule) and, optionally, by the
schema of dataset D (depending on the form of the input of the rule). The reformulation
of the query q w.r.t. the dataset schema is the set of all the queries produced by applying
the rules.

2.7.1 Partially instantiated queries

Let q(x̄):- t1, . . . , tn be a query and σ be a mapping from a subset of the variables and
blank nodes of q, to some values (literals, URIs, or blank nodes).

Given a query q and a mapping σ, a partially instantiated query w.r.t. σ, denoted qσ,
is a query qσ(x̄σ):- (t1, . . . , tn)σ where the mapping σ has been applied both on q’s head
variables x̄ and on q’s body triple patterns. In the case of σ = ∅, qσ coincides with the
original (non-instantiated) query q. Observe that, in non-standard fashion, in partially
instantiated queries some distinguished (head) variables of qσ can be bound.

By allowing constants in the head, partially instantiated queries go outside the reach
of our definition of BGP queries. Accordingly, a slight extension is required to the notions
of BGP query evaluation and answer sets, introduced in Section 2.5 for graphs, as in [1].
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Given a partially instantiated query qσ(x̄σ):- (t1, . . . , tn)σ whose set of variables and
blank nodes is VarBl(qσ) and a dataset D whose set of values (literals, URIs and blank
nodes) is Val(D), the evaluation of qσ against D is:

qσ(D) = {(x̄σ)µ | µ : VarBl(qσ)→ Val(D) is a total assignment ((t1, . . . , tn)σ)µ ⊆ D}

The complete answer set of qσ against the dataset D is the evaluation of qσ against
D∝, denoted qσ(D∝).

2.7.2 Reformulation rules

〈s x o ∈ qσ〉
qσ∪ν={x→τ}

(2.5)

〈s p o ∈ D, s1 x o1 ∈ qσ〉
qσ∪ν={x→p}

(2.6)

〈p1 ≺sp p ∈ D, s x o ∈ qσ〉
qσ∪ν={x→p}

(2.7)

〈p ≺sp p1 ∈ D, s x o ∈ qσ〉
qσ∪ν={x→p}

(2.8)

〈s1 τ c ∈ D, s τ x ∈ qσ〉
qσ∪ν={x→c}

(2.9)

〈c1 ≺sc c ∈ D, s τ x ∈ qσ〉
qσ∪ν={x→c}

(2.10)

〈c ≺sc c1 ∈ D, s τ x ∈ qσ〉
qσ∪ν={x→c}

(2.11)

〈s1 ←↩d c ∈ D, s τ x ∈ qσ〉
qσ∪ν={x→c}

(2.12)

〈s1 ↪→r c ∈ D, s τ x ∈ qσ〉
qσ∪ν={x→c}

(2.13)

〈c1 ≺sc c ∈ D, s τ c ∈ qσ〉
qσ[s τ c/s τ c1]

(2.14)

〈p ←↩d c ∈ D, s τ c ∈ qσ〉
qσ[s τ c/s p x]

(2.15)

〈p ↪→r c ∈ D, s τ c ∈ qσ〉
qσ[s τ c/x p s]

(2.16)

〈p1 ≺sp p ∈ D, s p o ∈ qσ〉
qσ[s p o/s p1 o]

(2.17)

Fig. 2.24: Reformulation rules for a partially instantiated query qσ w.r.t. a dataset D.

The set of rules in Figure 2.24 can be divided in two groups. The first group, rules
(2.5)–(2.13), reformulate queries by binding one of their variables, either to the RDF built-
in property τ or to a class or property defined in the dataset. For instance, the rule (2.5)
states that if qσ contains a triple of the form s x o, i.e., having a variable in the property
position beyond the values in the subject and object positions, then a new query, qσ∪ν ,
binding the variable x to the RDF built-in property τ is created. Observe that if x was
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a distinguished variable in the original query, qσ, a head variable in the new query, qσ∪ν ,
will be bound after the rule application.

Consider rule (2.6) regarding some query qσ. If the dataset schema contains a triple
in which property p is defined, and a triple of the form s x o appears in qσ, then by this
rule a new query qσ∪ν where x is bound to the property p is created.

The RDFS axiomatics triples 〈rdfs:subPropertyOf rdfs:domain rdf :Property〉 and
〈rdfs:subPropertyOf rdfs:range rdf :Property〉 states that both the subject and the ob-
ject of ≺sp statements are properties. Therefore, they can be used to instantiate the
variables in the property position of a triple appearing in a query. Given a query qσ,
the rule (2.7) instantiate query variables appearing in the property position of a triple
contained in the query, to the value appearing in the object position of a ≺sp statement
that appears in the dataset schema. Similarly, if qσ contains a triple of the form s x o

and a ≺sp statement appears in D schema, the rule (2.8) creates a new query binding the
variable x to the value appearing in the subject position of the ≺sp statement.

Rules (2.9)–(2.13) instantiate the variable x in a query triple of the form s τ x. The
RDF meta-model specifies that the values of the τ property are classes. Therefore, the rules
bind x to D values of which it can be inferred that they are classes, i.e., those appearing
in specific positions of schema-level triples. For instance, the rule (2.9) says: if a triple of
the from s τ x, i.e., having any kind of subject, but having the RDF built-in property τ in
the property position and a variable in the object position, appears in qσ, and the dataset
schema contains a triple of the form s1 τ c, then create a new query that binds the variable
x with the class c. Similarly, the rules (2.10) and (2.11) instantiate query variables appear-
ing in the subject position to values appearing in a ≺sc statement content in D schema. In
this case, the RDFS axiomatics triples 〈rdfs:subClassOf rdfs:domain rdfs:Class〉 and
〈rdfs:subClassOf rdfs:range rdfs:Class〉, which states that both the subject and the
object of ≺sc statements are classes, allows the binding of query variables appearing in
the subject position of triples contained in the query. Finally, rules (2.12) and (2.13) binds
variables appearing in the object position of a triple of the form s τ x contained in the
query qσ, to the class appearing in the object position of a←↩d or ↪→r statement appearing
in the schema of dataset D.

The second group of rules (2.14)–(2.17) alter the query by replacing (denoted old
triple / new triple) one of its triples by another, using schema triples. Rule (2.14) exploits
≺sc statements contained in D schema: if the query qσ has a triple of the form s τ c,
i.e., seeks for instances of class c, and c1 is a subclass of c, then instances of c1 should
also be returned. Similarly, rules (2.15) and (2.16) uses ←↩d and ↪→r statements in the
schema, of the from p ←↩d c and p ↪→r c respectively to replace the triple p ←↩d c,
appearing in qσ, with the new triples s p x, in the case of rule (2.15), and x p s, in the
case of rule (2.16). Finally, rule (2.17) exploits ≺sp statements appearing in the schema
analogously to rule (2.14) exploits ≺sc statements. If a triple of the form s p o is contained
in the query qσ and p1 is a sub property of p, then the triples with property p should also
be returned.

Example 11 (Reformulation rules). Consider the DBLP dataset [35] and the query
q(x, y, z):- x y z asking for the triples of the dataset (including the entailed ones). We
show how some of the rules in Figure 2.24 can be used to reformulate q w.r.t. DBLP
schema.

(i) Using q as input for rule (2.5) produces the query:
q{y→τ}, i.e., q(x, τ, z):- x τ z.
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(ii) Using q{y→τ} as input for rule (2.12) can lead to:
q{y→τ,z→dblp:Document}, i.e., q(x, τ, dblp:Document):- x τ dblp:Document.

(iii) Finally, using q{y→τ,z→dblp:Document} as input for rule (2.14) can lead to:
q(x, τ, dblp:Document):- x τ dblp:Book.

2.7.3 Reformulation-based query answering

Reformulation-based query answering, as explained in Section 2.6, reformulates a given
query q w.r.t. the constraints defined in the RDF schema of the given dataset D into a
query q′ such that the evaluation of q′ against D data (or facts), denoted q′(Ddata), is the
complete answer set of q against D (i.e., q(D∞)). It is required that q′ (the reformulated
query) is equivalent to (or contained in) q (the original query) w.r.t. the constraints defined
in the dataset D; otherwise the evaluation of q′ might produce erroneous answers.

The query reformulation technique introduced in Sections 2.7.1 and 2.7.2, using the
previously introduced definitions of evaluation and of answer set of a query w.r.t. a dataset,
does not satisfy the requirement above. Moreover, the reason for which the requirement is
not meet is due to blank nodes. The problem, as pointed out in [4], is that a blank node
in a BGP query is a subject or object (might be both when appears in more than one
RDF triple of the query) that is not identified by a URI and is not a literal, i.e., a non-
distinguished variable; while in the context of the Reformulate algorithm a blank node
is distinguished from any other blank node, i.e., when the algorithm brings a particular
blank node by replacing a triple or binding a variable, it reference that singular blank
node in the dataset.

Example 12 (Erroneous answer). For example, consider now the dataset D in Fig-
ure 2.25 and the query q(x, y):- x τ y, whose reformulation (w.r.t. D) is presented in
Figure 2.26.

{doi0 τ :b0, doi0 hasT itle “Around the World in Eighty Days′′,
doi1 hasWritten doi0, doi1 hasName “Jules V erne′′, doi1 τ Person,

D = hasName ←↩d Person, hasName ↪→r rdfs:Literal, hasT itle ←↩d Writing,
hasT itle ↪→r rdfs:Literal, Writer ≺sc Person, hasWritten ←↩d Writer,
hasWritten ↪→r Writing, :b0 ≺sc Writing}

Fig. 2.25: RDF dataset D.

Reformulate0(q,D) = {q(x, y):- x τ y}
Reformulate1(q,D) = Reformulate0(q,D) ∪
{q(x, Person):- x τ Person, q(x,Writer):- x τ Writer,
q(x,Writing):- x τ Writing, q(x, :b0):- x τ :b0}

Reformulate2(q,D) = Reformulate1(q,D) ∪
{q(x, Person):- x τ Writer, q(x,Writer):- x hasWritten v,
q(x,Writing):- x hasT itle v, q(x,Writing):- v hasWritten x,
q(x,Writing):- x τ :b0, q(x, Person):- x hasName v}

Reformulate3(q,D) = Reformulate2(q,D)

Fig. 2.26: Reformulation of the query q(x, y):- x τ y w.r.t. the dataset D.

Observe that the evaluation of the query q(x,Writing):- x τ :b0 ∈ Reformulate(q,D)
against the dataset D, with the assignment µ = {x → doi1, :b0 → Person}, produce the
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erroneous answer 〈doi1 τ Writing〉. This is because using q(x,Writing):- x τ Writing ∈
Reformulate1(q,D) as input for rule (2.14), the Reformulate algorithm produces the
query q(x,Writing):- x τ :b0 with the sole purpose of finding writings, in particular of
the subclass :b0, values for the variable x.

In order to solve the issue detailed and exemplified above, the authors [4] introduced:

• Alternate notions of both, evaluation and answer set of a partially instantiated query,
against a database.

• A property showing the relation between standard and non-standard definitions of
query evaluation and answer set of queries.

• A novel technique for reformulation-based query answering technique.

Non-standard evaluation and answer set of a query against a database Unlike
the standard definitions introduced in Sections 2.5 and 2.7.1, the definitions introduced
here take into account blank nodes.

Given a query qσ(x̄σ):- (t1, . . . , tα)σ and a dataset D, the standard evaluation is based
on assignments of the variables and blank nodes of q to values in D into database values,
whereas the alternate definition binds only the query variables (leaving unchanged the
blank nodes as the URIs and literals).

Let Val(D) be the set of values (URIs, blank nodes, literals) of the dataset D, and let
Var(qσ) be the set of variables (no blank nodes) of q:

• The non-standard evaluation of qσ against D is defined as:

q̃σ(D) = {(x̄σ)µ | µ : Var(qσ)→ Val(D) is a total assignment s.t. ((t1, . . . , tα)σ)µ ⊆ D}.

• The non-standard answer set of qσ w.r.t. D is obtained by the non-standard evalu-
ation of qσ against D∝, denoted q̃σ(D∝).

Property 1, as stated before, presents the relation between standard and non-standard
definitions of query evaluation and answer set of queries.

Property 1. Let D be a database and qσ a (partially instantiated) query against D.

1. q̃σ(D) ⊆ qσ(D) and q̃σ(D∝) ⊆ qσ(D∝) hold.

2. If qσ does not contain blank nodes then q̃σ(D) = qσ(D) and
q̃σ(D∝) = qσ(D∝).

The property above follows directly from the fact that the assignments µ involved in
non-standard evaluations are defined only on the variables of q, which are a subset of the
ones allowed in standard evaluations (VarBl(q)).

Using the above notation of non-standard evaluation, Theorem 2.7.1 presents a novel
technique for reformulation-based query answering; the theorem and it proof can be found
in [4].

Theorem 2.7.1. Given a BGP query q without blank nodes and a dataset D whose schema
is S, the following holds:

q(D∝) =
⋃

q′
σ′∈Reformulate(q,S)

q̃′σ′(D).
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As stated in Section 2.5, query evaluation treats the blank nodes in a query as non-
distinguished variables. That is, one could consider equivalently queries with blank nodes
or queries with non-distinguished variables. Therefore, the assumption is made by the
authors [4] without loss of generality.

Observe that query reformulation w.r.t. S and non-standard evaluation of partially
instantiated queries allow computing the exact answer set, without saturating the dataset.

Example 13 (Continued). Now, consider again the query q(x, y):- x τ y and the dataset
D presented in Figure 2.25, both used in the Example 12. The correct and complete answer
set of q against the dataset D is:⋃
qσ∈Reformulate(q,S) q̃σ(D) = {〈doi0, :b0〉, 〈doi1,Person〉, 〈doi1,Writer〉, 〈doi0,Writing〉}

with S the schema of D.

In this thesis, non-standard query evaluation is applied when reformulation is used,
because we allow blank nodes in the database.

2.7.4 Reformulation algorithm

Given a BGP query q and a datasetD whose schema is S, the output of Reformulate(q,S)
is defined [1] as the fix-point Reformulate∞(q,D), where:

Reformulate0(q,S) = {q}
Reformulatek+1(q,S) = Reformulatek(q,S) ∪

{q′′σ′′ | ∃r ∈ [rules 2.5, . . . , 2.17] s.t. applying r on S
and some query q′σ′ ∈ Reformulatek(q,S)
yields the query q′′σ′′}

Observe that the fix point exist and is unique because Reformulate is monotone.
The reformulation algorithm uses the set of rules in Figure 2.24 in a backward-chaining

fashion [36]. The evaluate and saturate functions used in Algorithm 1 provide, respectively,
the standard query evaluation for plain RDF, and the saturation of a dataset w.r.t. an
RDF Schema (Figures 2.8 and 2.9).

More precisely, Algorithm 1 uses the original query q and the rules in Figure 2.24 to
generate new queries by a backward application of the rules on the atoms of the query.
Then, it applies the same procedure on the newly obtained queries and repeats this process
until no new queries can be constructed. Finally, the algorithm returns the union of the
generated queries (including the original one).
The inner loop of the algorithm (lines 5–17) consist of six if statements covering the
thirteen rules in Figure 2.24. The conditions of these statements represent the inputs of
the rules, whereas the consequents correspond to their outputs. The comment at the end of
each if statement indicates the subset of rules being applied. In each loop iteration, when
a query atom matches the condition of an if statement, the respective rule is triggered,
replacing the atom with the one that appears in the output of the rule. Thus, when the
condition of an if statement is satisfied and its body is executed, the rules related to
it are applied; an atom of the query is reformulated into another and therefore a new
conjunctive query is created. Note that some statements are related with multiple rules,
then creating multiple conjunctive queries when the condition of the statement is fulfilled.
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Algorithm 1: Reformulate(q,S)

Input : an RDF schema S and a conjunctive query q over S
Output: a union of conjunctive queries ucq such that for any dataset D:

evaluate(q, saturate(D,S)) = evaluate(ucq,D)
1 ucq ← {q}, ucq′ ← ∅
2 while ucq 6= ucq′ do
3 ucq′ ← ucq
4 foreach conjunctive query q′ ∈ ucq′ do
5 foreach atom g in q′ do
6 if g = 〈s, τ, c2〉 and c1 ≺sc c2 ∈ S then //rule (2.14)
7 ucq ← ucq ∪ {q′[g/〈s,τ,c1〉]}

8 if g = 〈s, p2, o〉 and p1 ≺sp p2 ∈ S then //rule (2.17)
9 ucq ← ucq ∪ {q′[g/〈s,p1,o〉]}

10 if g = 〈s, τ, c〉 and p ←↩d c ∈ S then //rule (2.15)
11 ucq ← ucq ∪ {q′[g/∃x 〈s,p,x〉]}

12 if g = 〈o, τ, c〉 and p ↪→r c ∈ S then //rule (2.16)
13 ucq ← ucq ∪ {q′[g/∃x 〈x,p,o〉]}

14 if g = 〈s, τ, x〉 and c1, c2 . . . , cn are all the classes in S then
//rules (2.9)–(2.13)

15 ucq ← ucq ∪
⋃n
i=1{(q′[g/〈s,τ,ci〉])σ=[x→ci]}

16 if g = 〈s, x, o〉 and p1, p2 . . . , pm are all the properties in S then
//rules (2.5)–(2.8)

17 ucq ← ucq ∪
⋃m
i=1{(q′[g/〈s,pi,o〉])σ=[x→pi]} ∪ {(q′[g/〈s,τ,o〉])σ=[x→τ ]}

18 return ucq

The rules (2.5)–(2.13) requires binding a variable x to a constant (literal or URI) ci, pi,
or τ ; a mapping σ is used then to bind all the occurrences of the variable x in the query.
Observe that some distinguished (head) variables of qσ might be bound as part of this
process, resulting in a partially instantiated query.

Theorem 2.7.2 shows that the reformulation algorithm terminates and provides an
upper bound for the size of its output. This theorem also exhibits that query reformulation
is polynomial in the size of the schema and exponential in the size of the query. The
theorem and its corresponding proof was introduce in [37] and then extended in [1] to
support a more expressive RDF fragment (the DB fragment). Observe that the complexity
shown below corresponds to the theorem extension in [1], as we are working with the DB
fragment; proof can be found in [1]. Moreover, Proposition 2.7.3, Theorem 2.7.4 and their
proofs (which are adapted to the set of rules used in the algorithm) where introduced in
previous work [37].

Theorem 2.7.2 (Termination of Reformulate(q,S)). [1, 37]
Given a BGP query q over an RDF schema S, the size (number of queries) of the output
of Reformulate(q,S) is in O((6 ∗#S2)n), with #S and n the sizes (number of triples) of
S and q respectively.
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Semantic relationship RDF Statement FOL notation

Class assertion s τ c c(s)
Property assertion s p o p(s, o))

Tab. 2.2: Semantic relationships expressible in RDF statements.

Semantic relationship RDFS statement FOL notation

Class inclusion c1 ≺sc c2 ∀x(c1(x)⇒ c2(x))
Property inclusion p1 ≺sp p2 ∀x∀y(p1(x, y)⇒ p2(x, y))
Domain typing of a property p←↩d c ∀x∀y(p(x, y)⇒ c(x))
Range typing of a property p ↪→r c ∀x∀y(p(x, y)⇒ c(y))

Tab. 2.3: Semantic relationships expressible in an RDF schema.

Proposition 2.7.3 (Complexity). [37]
The query reformulation is polynomial in the size of the schema and exponential in the
size of the query. The query answering against a dataset D is in LogSpace in the size
of D and exponential in the size of the query.

Proof. The complexity of the query reformulation follows readily from the proof of Theo-
rem 2.7.2. The complexity of query answering comes from the fact that the language can
be reduced to FOL, for which the given results have been proved [38].

Theorem 2.7.4 (Correctness of Algorithm 1). [37]
Let ucq be the output of Reformulate(q,S), for a given query q over an RDF schema
S. For any dataset D associated to S:

evaluate(q, saturate(D,S)) = evaluate(ucq,D)

Proof. To prove the correctness of the algorithm, it suffices to show that its sound and
complete.

Soundness In order to proof that Reformulate algorithm is sound we need to show

that for any t:

t ∈ evaluate(ucq,D)⇒ t ∈ evaluate(q, saturate(D,S)) (2.18)

Therefore we have two cases:

• t 6∈ evaluate(ucq,D): The proof in this case is trivial as per utterance
t 6∈ evaluate(ucq,D), therefore the antecedent of the conditional 2.18 is false and
accordingly the conditional itself is true.

• t ∈ evaluate(ucq,D): Given that t ∈ evaluate(ucq,D), then there’s a query qi ∈ ucq
such as t is an answer to qi. Moreover, as qi belongs to ucq, and being ucq the
output of our Reformulate algorithm we know, by construction, that qi is subsumed
by q w.r.t. S, i.e., evaluate(qi, saturate(D,S)) ⊆ evaluate(q, saturate(D,S)). Thus
t ∈ evaluate(q, saturate(D,S)).
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Completeness To prove that Algorithm 1 is complete we have to show that for any t:

t ∈ evaluate(q, saturate(D,S))⇒ t ∈ evaluate(ucq,D) (2.19)

As before, we have two cases. The trivial one in which the falsehood of the antecedent
makes the hole conditional true, and a second one (and more interesting) in which the
antecedent of the conditional, t ∈ evaluate(q, saturate(D,S)), is true. Let n be the size
(number of atoms) of the query q. Since t ∈ evaluate(q, saturate(D,S)) is true, t results
from the projection upon n triples t1, . . . , tn. Therefore we have to proof that any ti(1 ≤
i ≤ n) is also exhibited by a reformulation of the i-th atom of q. We will prove it by
induction on the number of applications of the saturation rules, described in Table 2.3.

Before we proceed with the proof by induction, as stated above, observe that the set
of rules, shown in Figure 2.24, covers all possible cases of query atoms. As described in
Section 2.5, the atoms in a query are triple patterns of the form 〈s p o〉, composed by
a subject, a property, and a object respectively. Subjects and properties can be URIs, or
variables, whereas objects can also be literals.

• When a triple pattern, that belongs to the query, is of the form s x o, i.e., having a
variable in the property position, rules (2.5)–(2.8) are triggered.

• If the atom is of the form s p o, i.e., having a URI specified in the property position,
rules (2.17) or (2.9)–(2.13) can apply, depending on whether the value of the p is the
built-in property τ or not, respectively.

• When the query contains a triple pattern of the form s τ c, i.e., having the built-in
property τ in the property position and a constant (literal or URI) in the object
position, the rules (2.14), (2.15) and (2.16) can be applied.

Thus, all possible cases of triple patterns belonging to a query are being treated.
We proceed now to prove the proposition 2.19 by induction on the number of applica-

tions of the saturation rules. Let α be the number of applications of the saturation rules
(shown in Table 2.3) applied in a forward-chaining fashion [2], needed for the triple ti to
be added in saturate(D,S), i.e., ti ∈ saturateα(D,S) ∧ ∀α−1

β=0ti 6∈ saturateα(D,S).
First, we will show that the free variables of the i-th atom of q that are bounded by

ti, are equally bounded by the evaluation of a reformulation of the i-th atom of q.

Basis We are going to show now that the statement 2.19 holds for α = 0.

• If ti 6∈ D (i.e., ti 6∈ saturate0(D,S)), then the antecedent of the conditional if false
and therefore the statement as a hole is true.

• If ti ∈ D (i.e., ti is an explicit triple), therefore ti is also a triple for the evaluation
of the non-reformulated i-th atom of q.

Inductive step Assuming that the conditional 2.19 holds for α < k, we will show it also
holds for α = k.

Let assume ti is finally added to saturate(D,S) after the application of the first closure
rule on a triple tα−1. Then, tα−1 and ti are triples of the form 〈s1 τ c1〉 and 〈s1 τ c2〉,
respectively, where s1 is a URI, whereas c1 and c2 are URIs or literals. Using the induc-
tion hypothesis t ∈ evaluate(q, saturate(D,S)), and thus ti matches the i-th atom of q.
Therefore ti is of the form: 〈s τ c2〉, 〈s x c2〉, 〈s τ x〉 or 〈s x y〉.
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In the first case, we perform a reformulation of the i-th atom using the rule (2.14) and
we obtain the atom 〈s τ c1〉, which indeed returns s1 in the result, as if the triple ti ∈ D
(i.e., ti is stored in the dataset D). In the second case, we reformulate the query atom
with rules (2.5)–(2.8) and obtain (among others) the atom 〈s τ c2〉, which, after one more
reformulation using rule (2.14), results in the atom 〈s τ c1〉 that was treated by the first
case. In the third case, we apply the rules (2.9)–(2.13) and obtain an atom of the form
〈s τ c1〉. Therefore we also return s1 in the result. Finally, in the last case we apply
rules (2.5)–(2.8), and on the new atom 〈s τ y〉 we apply rules (2.9)–(2.13), and then fall
into the previous case.

Thus, for all four cases that can appear after applying the first saturation rule, we
have proved by induction that the conditional 2.19 holds. The rest of the proof is omitted
as it amounts to show, similarly as above, that the claim also holds for the three other
saturation rules.
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Example 14 (Query reformulation). Consider the DBLP dataset [35] and the query
q(x, y):- x τ y asking for all resources and the classes to which they belong. Figure 2.27
shows the reformulation of q w.r.t. the dataset schema, using the Reformulate algorithm.

Reformulate0(q,D) = {q(x, y):- x τ y}
Reformulate1(q,D) = Reformulate0(q,D) ∪
q(x, xs:int):- x τ xs:int, q(x, dblp:Www):- x τ dblp:Www,
q(x, dblp:Collection):- x τ dblp:Collection, q(x, dblp:Document):- x τ dblp:Document,
q(x, xs:string):- x τ xs:string, q(x, dblp:Series):- x τ dblp:Series,
q(x, dblp:Book):- x τ dblp:Book, q(x, dblp:Mastersthesis):- x τ dblp:Mastersthesis,
q(x, dblp:Publisher):- x τ dblp:Publisher, q(x, dblp:Phdthesis):- x τ dblp:Phdthesis,
q(x, dblp:Inproceedings):- x τ dblp:Inproceedings,
q(x, dblp:Proceedings):- x τ dblp:Proceedings, q(x, rdfs:Thing):- x τ rdfs:Thing,
q(x, dblp:Article):- x τ dblp:Article, q(x, dblp:Citation):- x τ dblp:Citation}

Reformulate2(q,D) = Reformulate1(q,D) ∪
q(x, xs:int):- v dblp:volume x, q(x, xs:int):- v dblp:year x,
q(x, dblp:Document):- x τ dblp:Proceedings, q(x, dblp:Document):- x τ dblp:Article,
q(x, dblp:Document):- x τ dblp:Www, q(x, dblp:Document):- x τ dblp:Collection,
q(x, dblp:Document):- x τ dblp:Series, q(x, dblp:Document):- x τ dblp:Book,
q(x, dblp:Document):- x τ dblp:Phdthesis, q(x, dblp:Document):- x τ dblp:Inproceedings,
q(x, dblp:Document):- x τ dblp:Mastersthesis, q(x, dblp:Document):- x dblp:crossref v,
q(x, dblp:Document):- x dblp:objectF ield v, q(x, dblp:Document):- x dblp:datatypeF ield v,
q(x, dblp:Document):- x dblp:cite v, q(x, dblp:Document):- v dblp:crossref x,
q(x, dblp:Document):- v dblp:cite x, q(x, xs:string):- v dblp:datatypeF ield x,
q(x, rdfs:Thing):- v dblp:ee x}

Reformulate3(q,D) = Reformulate2(q,D) ∪
q(x, dblp:Document):- x dblp:url v, q(x, dblp:Document):- x dblp:ee v,
q(x, dblp:Document):- x dblp:isbn v, q(x, dblp:Document):- x dblp:year v,
q(x, dblp:Document):- x dblp:month v, q(x, dblp:Document):- x dblp:number v,
q(x, dblp:Document):- x dblp:series v, q(x, dblp:Document):- x dblp:editor v,
q(x, dblp:Document):- x dblp:address v, q(x, dblp:Document):- x dblp:volume v,
q(x, dblp:Document):- x dblp:title v, q(x, dblp:Document):- x dblp:journal v,
q(x, dblp:Document):- x dblp:chapter v, q(x, dblp:Document):- x dblp:school v,
q(x, dblp:Document):- x dblp:cdrom v, q(x, dblp:Document):- x dblp:booktitle v,
q(x, dblp:Document):- x dblp:author v, q(x, dblp:Document):- x dblp:publisher v,
q(x, dblp:Document):- x dblp:note v, q(x, dblp:Document):- x dblp:pages v,
q(x, xs:string):- v dblp:isbn x, q(x, xs:string):- v dblp:year x,
q(x, xs:string):- v dblp:month x, q(x, xs:string):- v dblp:number x,
q(x, xs:string):- v dblp:series x, q(x, xs:string):- v dblp:editor x,
q(x, xs:string):- v dblp:address x, q(x, xs:string):- v dblp:volume x,
q(x, xs:string):- v dblp:title x, q(x, xs:string):- v dblp:journal x,
q(x, xs:string):- v dblp:chapter x, q(x, xs:string):- v dblp:school x,
q(x, xs:string):- v dblp:cdrom x, q(x, xs:string):- v dblp:booktitle x,
q(x, xs:string):- v dblp:author x, q(x, xs:string):- v dblp:publisher x,
q(x, xs:string):- v dblp:note x, q(x, xs:string):- v dblp:pages x}

Reformulate4(q,D) = Reformulate3(q,D)

Fig. 2.27: Sample reformulation of a query q w.r.t. the DBLP schema [35].
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3.1 Problem statement

As large join queries are an inherent characteristic of searching RDF data [13], reformu-
lated queries may be syntactically very large unions of conjunctive queries [1]. This makes
query evaluation very inefficient.
The size of the union of conjunctive queries, for a given query q, depends on the number
of its reformulations |q|r. By minimizing the number of reformulations of the queries we
hand to the database engine for evaluation, we aim to increase the efficiency of the overall
evaluation process.

Query evaluation method Given a query q, a method for evaluating it consists of:

1. finding a set of subqueries (or query clusters), each of which will be reformulated
by existing algorithms, into a union of conjunctive queries (or UCQ, in short). On
performance reasons, we consider that each subquery should be Cartesian-product
free, that is, the query graph of each subquery (cluster) must be connected;

2. combining the results of the cluster UCQs thus obtained, through join operations,
in order to obtain query results.

Clearly, there are many evaluation methods for a given query q:

• there are many ways in which a query could be decomposed into clusters;

• the SQL language provides many ways of writing “recombination” queries (that put
together the results of the clusters, in order to build the global query results);

• finally, the RDBMS in charge of evaluating all the SQL statements issued in order
to answer the original query, may have different alternatives of executing them.

Given that we aim at building an efficient processor of reformulated queries by relying
on the functionality of an RDBMS (as opposed to altering these functionalities), in this
work we explore the freedom degrees mentioned in the points 1. and 2. above and are
not concerned with the internals of the RDBMS optimization and query evaluation. An
advantage of this perspective is that our techniques can be applied on top of any RDBMS.

Goal The goal of this work is to investigate algorithms for choosing an efficient evaluation
method for a given query q, exploiting: (i) clustering alternatives, and (ii) SQL formulation
alternatives.

Execution model Given an evaluation method, executing the query according to this
method means:

33
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1. Let c1, c2, . . . , ck be the clusters selected out of q by the given evaluation
method.

2. Let cri be the reformulation of ci, 1 ≤ i ≤ k. (Each ci is reformulated using
the Reformulate algorithm presented in Section 2.7.4).

3. An SQL main query, in which cr1, c
r
2, . . . , c

r
k are subqueries and the joins

across them are the conditions, is sent to the RDBMS.

Example 15 (Evaluation alternatives for reformulated queries). Consider the fol-
lowing query against the real-life DBLP dataset [35]:

q(x) :- x τ dblp:Document, (0)
x dblp:objectF ield http://www.example.org/dblp/ (1)

0 1

Triple patterns #Reformulations

{0} 36

{1} 4

{0, 1} 144

Tab. 3.1: Query q and reformulations characteristics.

The given query q is composed by two atoms, namely (0) and (1), having 36 and 4
reformulations respectively. Hence, the query has 144 reformulations. Figures 3.1 and 3.2
presents the reformulations of the atoms of q, while Figure 3.3 shows the reformulations
of the query.

The SQL translation of atom (1), found in Listing 3.2, shows each of the four refor-
mulations (of q1) mapped into a conjunctive query, and SQL UNION operators combining
the result sets.

Listing 3.1 presents the SQL translation of atom (0) while Listing 3.2 presents the SQL
translation of atom (1). Finally, Figure 3.3 present q as a “main query“ joining the SQL
translations of its atoms. Observe that the main query joins the SQL translations of the
reformulations of the atoms of q, the subqueries with names q0 and q1 that corresponds to
the atoms (0) and (1) respectively. The join condition between the subqueries is given by
the variable in common between the atoms they represent.

For what concerns the SQL translation of the reformulated q as a whole, it is a union
of 144 conjunctive queries, shown in Listing 6.1 which is delegated in Section 6 of the
Appendix for readability. To illustrate the present discussion, Listing 3.4 depicts the first
5 of these 144 conjunctive queries. Both the full Listing 6.1 and its reduced version 3.4
illustrate the fact that when translated into a single SQL statement, the SQL query is quite
large (syntactically) and contains many repeated sub-expressions, which in practice led to
a significant increase in query evaluation time [1].
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{q0(x):- x τ dblp:Document, q0(x):- x τ dblp:Proceedings, q0(x):- x τ dblp:Article,
q0(x):- x τ dblp:Www, q0(x):- x τ dblp:Collection, q0(x):- x τ dblp:Series,
q0(x):- x τ dblp:Book, q0(x):- x τ dblp:Phdthesis, q0(x):- x τ dblp:Inproceedings,
q0(x):- x τ dblp:Mastersthesis, q0(x):- x dblp:crossref v, q0(x):- x dblp:objectF ield v,
q0(x):- x dblp:datatypeF ield v, q0(x):- x dblp:cite v, q0(x):- v dblp:crossref x,
q0(x):- v dblp:cite x, q0(x):- x dblp:url v, q0(x):- x dblp:ee v,
q0(x):- x dblp:isbn v, q0(x):- x dblp:year v, q0(x):- x dblp:month v,
q0(x):- x dblp:number v, q0(x):- x dblp:series v, q0(x):- x dblp:editor v,
q0(x):- x dblp:address v, q0(x):- x dblp:volume v, q0(x):- x dblp:title v,
q0(x):- x dblp:journal v, q0(x):- x dblp:chapter v, q0(x):- x dblp:school v,
q0(x):- x dblp:cdrom v, q0(x):- x dblp:booktitle v, q0(x):- x dblp:author v,
q0(x):- x dblp:publisher v, q0(x):- x dblp:note v, q0(x):- x dblp:pages v}

Fig. 3.1: Reformulations of the atom (0) w.r.t. DBLP [35].

{q1(x):- x dblp:objectF ield http://www.example.org/dblp/,
q1(x):- x dblp:url http://www.example.org/dblp/,
q1(x):- x dblp:ee http://www.example.org/dblp/,
q1(x):- x dblp:cite http://www.example.org/dblp/}

Fig. 3.2: Reformulations of the atom (1) w.r.t. DBLP [35].

{q(x):- x τ dblp:Document, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Proceedings, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Article, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Www, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Collection, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Series, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Book, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Phdthesis, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Inproceedings, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Mastersthesis, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:crossref v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:objectF ield v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:datatypeF ield v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:cite v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- v dblp:crossref x, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- v dblp:cite x, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x τ dblp:Document, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Document, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Document, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Proceedings, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Proceedings, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Proceedings, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Article, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Article, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Article, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Www, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Www, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Www, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Collection, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Collection, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Collection, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Series, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Series, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Series, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Book, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Book, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Book, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Phdthesis, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Phdthesis, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Phdthesis, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Inproceedings, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Inproceedings, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Inproceedings, x dblp:cite http://www.example.org/dblp/,
q(x):- x τ dblp:Mastersthesis, x dblp:url http://www.example.org/dblp/,
q(x):- x τ dblp:Mastersthesis, x dblp:ee http://www.example.org/dblp/,
q(x):- x τ dblp:Mastersthesis, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:crossref v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:crossref v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:crossref v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:url v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:ee v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:objectF ield v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:objectF ield v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:objectF ield v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:isbn v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:year v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:month v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:number v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:series v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:editor v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:address v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:volume v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:title v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:journal v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:chapter v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:school v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:cdrom v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:booktitle v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:author v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:publisher v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:note v, x dblp:objectF ield http://www.example.org/dblp/,
q(x):- x dblp:pages v, x dblp:objectF ield http://www.example.org/dblp/,

q(x):- x dblp:datatypeF ield v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:datatypeF ield v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:datatypeF ield v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:cite v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:cite v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:cite v, x dblp:cite http://www.example.org/dblp/,
q(x):- v dblp:crossref x, x dblp:url http://www.example.org/dblp/,
q(x):- v dblp:crossref x, x dblp:ee http://www.example.org/dblp/,
q(x):- v dblp:crossref x, x dblp:cite http://www.example.org/dblp/,
q(x):- v dblp:cite x, x dblp:url http://www.example.org/dblp/,
q(x):- v dblp:cite x, x dblp:ee http://www.example.org/dblp/,
q(x):- v dblp:cite x, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:url v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:url v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:url v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:ee v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:ee v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:ee v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:isbn v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:isbn v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:isbn v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:year v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:year v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:year v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:month v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:month v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:month v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:number v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:number v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:number v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:series v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:series v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:series v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:editor v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:editor v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:editor v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:address v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:address v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:address v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:volume v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:volume v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:volume v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:title v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:title v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:title v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:journal v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:journal v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:journal v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:chapter v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:chapter v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:chapter v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:school v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:school v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:school v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:cdrom v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:cdrom v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:cdrom v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:booktitle v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:booktitle v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:booktitle v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:author v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:author v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:author v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:publisher v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:publisher v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:publisher v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:note v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:note v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:note v, x dblp:cite http://www.example.org/dblp/,
q(x):- x dblp:pages v, x dblp:url http://www.example.org/dblp/,
q(x):- x dblp:pages v, x dblp:ee http://www.example.org/dblp/,
q(x):- x dblp:pages v, x dblp:cite http://www.example.org/dblp/}

Fig. 3.3: Reformulations of the query q w.r.t. DBLP [35].
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Listing 3.1: SQL translation of the reformulation of atom (0) w.r.t. DBLP [35].

1 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
2 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Document’
3 UNION
4 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
5 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Book’
6 UNION
7 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
8 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Mastersthesis’
9 UNION

10 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
11 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Www’
12 UNION
13 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
14 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Series’
15 UNION
16 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
17 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Collection’
18 UNION
19 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
20 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Phdthesis’
21 UNION
22 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
23 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article’
24 UNION
25 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
26 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Inproceedings’
27 UNION
28 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
29 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Proceedings’
30 UNION
31 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#datatypeField’
32 UNION
33 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#crossref’
34 UNION
35 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#objectField’
36 UNION
37 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cite’
38 UNION
39 SELECT DISTINCT p0.o AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#crossref’
40 UNION
41 SELECT DISTINCT p0.o AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cite’
42 UNION
43 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#series’
44 UNION
45 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#booktitle’
46 UNION
47 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#publisher’
48 UNION
49 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#number’
50 UNION
51 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#year’
52 UNION
53 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#note’
54 UNION
55 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#volume’
56 UNION
57 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#title’
58 UNION
59 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#chapter’
60 UNION
61 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#address’
62 UNION
63 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#pages’
64 UNION
65 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#author’
66 UNION
67 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#school’
68 UNION
69 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cdrom’
70 UNION
71 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#month’
72 UNION
73 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#journal’
74 UNION
75 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#isbn’
76 UNION
77 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#editor’
78 UNION
79 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#url’
80 UNION
81 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#ee’
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Listing 3.2: SQL translation of the reformulation of atom (1) w.r.t. DBLP [35].

1 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#objectField’
2 AND p0.o=’http://www.example.org/dblp/’
3 UNION
4 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cite’
5 AND p0.o=’http://www.example.org/dblp/’
6 UNION
7 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#ee’
8 AND p0.o=’http://www.example.org/dblp/’
9 UNION

10 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#url’
11 AND p0.o=’http://www.example.org/dblp/’
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Listing 3.3: SQL translation with subqueries of the reformulation of query q w.r.t. DBLP [35].

1 SELECT DISTINCT temp 0.x AS x FROM
2 (
3 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
4 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Document’
5 UNION
6 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
7 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Book’
8 UNION
9 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’

10 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Mastersthesis’
11 UNION
12 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
13 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Www’
14 UNION
15 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
16 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Series’
17 UNION
18 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
19 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Collection’
20 UNION
21 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
22 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Phdthesis’
23 UNION
24 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
25 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article’
26 UNION
27 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
28 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Inproceedings’
29 UNION
30 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
31 AND p0.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Proceedings’
32 UNION
33 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#datatypeField’
34 UNION
35 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#crossref’
36 UNION
37 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#objectField’
38 UNION
39 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cite’
40 UNION
41 SELECT DISTINCT p0.o AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#crossref’
42 UNION
43 SELECT DISTINCT p0.o AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cite’
44 UNION
45 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#series’
46 UNION
47 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#booktitle’
48 UNION
49 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#publisher’
50 UNION
51 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#number’
52 UNION
53 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#year’
54 UNION
55 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#note’
56 UNION
57 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#volume’
58 UNION
59 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#title’
60 UNION
61 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#chapter’
62 UNION
63 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#address’
64 UNION
65 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#pages’
66 UNION
67 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#author’
68 UNION
69 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#school’
70 UNION
71 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cdrom’
72 UNION
73 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#month’
74 UNION
75 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#journal’
76 UNION
77 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#isbn’
78 UNION
79 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#editor’
80 UNION
81 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#url’
82 UNION
83 SELECT DISTINCT p0.s AS x FROM triples AS p0 WHERE p0.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#ee’
84 ) AS temp 0,
85 (
86 SELECT DISTINCT p1.s AS x FROM triples AS p1 WHERE p1.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#objectField’
87 AND p1.o=’http://www.example.org/dblp/’
88 UNION
89 SELECT DISTINCT p1.s AS x FROM triples AS p1 WHERE p1.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cite’
90 AND p1.o=’http://www.example.org/dblp/’
91 UNION
92 SELECT DISTINCT p1.s AS x FROM triples AS p1 WHERE p1.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#ee’
93 AND p1.o=’http://www.example.org/dblp/’
94 UNION
95 SELECT DISTINCT p1.s AS x FROM triples AS p1 WHERE p1.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#url’
96 AND p1.o=’http://www.example.org/dblp/’
97 ) AS temp 1
98 WHERE temp 0.x = temp 1.x
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UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#e d i t o r ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#e d i t o r ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#pages ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#pages ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#pages ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION . . .

Fig. 3.4: Partial SQL translation of the reformulation of query q w.r.t. DBLP [35] (the full trans-
lation can be found in the Appendix).

The clusterization of the original query, q, and the consequent execution as a main
query joining the SQL translations of the reformulations of the clusters (of atoms) of q,
allows us to keep the number of reformulations contained while relying on the selectivity
of the atoms to reduce intermediate results.

Example 16 (Clusterization and atoms selectivity). For example, consider the
DBLP dataset [35] and the following query:

q(x, v) :- x dblp:datatypeF ield v, (0)
x purl:publisher “Springer′′, (1)
x τ dblp:Document (2)

1

0 2

Triple pattern #Reformulations #Results

0 19 2, 629, 667

1 1 4, 367

2 36 711, 174

Tab. 3.2: Query q and reformulations characteristics.

Observe that atom (1) has a single reformulation and 4.367 results (a few given that
the DBLP dataset contains 8, 424, 216 tuples). By clustering atom (1) with atom (0) and
executing the corresponding subquery (q1, illustrated below), the number of reformulations
holds (i.e., the number of reformulations of q1 is the same as that of atom (0) alone) while
the number of tuples resulting by the evaluation of q1 (30, 450) is significantly less.

Similarly, the clusterization of atom (1) with atom (2) and execution of the correspond-
ing query (q2, illustrated below) results in 4, 367 tuples, a significant reduction given that
the atom (2) alone matches 711, 174 tuples.
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q1(x, v) :- x dblp:datatypeF ield v, (0)
x purl:publisher “Springer′′ (1)

q2(x) x purl:publisher “Springer′′, (1)
x τ dblp:Document (2)

Moreover, this technique results in a lower number of reformulations and therefore a
(syntactically) shorter SQL query (with less complexity), decreasing the required evalua-
tion time. Further, there is a reduction in the number of times a common sub-expression
is evaluated, as shown in Example 15.

3.2 Solution overview

We address the described problem of optimizing reformulated RDF queries in a two-step
manner:

i) Introduce algorithms to find a clusterization that accelerates the execution for a
given BGP query.

ii) Introduce techniques for improving the execution of clustered queries.

First, we introduce in Section 3.4 a novel and practical cost model for BGP queries tak-
ing into account both the number of results and the number of reformulations. Second,
by using this cost model, we devise efficient heuristic algorithms for BGP queries nodes
clusterization (with and without clusters overlapping) found in Section 3.5. Moreover, we
use two different clusterization techniques namely partition and fragmentation.

Given a BGP query q, the partition of q is a division of its atoms into non-overlapping
and non-empty parts that cover all the atoms of q. The fragmentation of the same query q
is a division of its atoms into non-empty fragments that may have overlapping. Since the
efficiency of BGP query evaluation is directly related to both the number of results and
the number of reformulations, there are cases in which it becames more efficient to have
common atoms (with high selectivity and low reformulations) between the fragments.

Finally, in Section 3.6 we introduce a näıve algorithm and optimization opportunities
for clustered query execution (execute each subquery and the join(s) combining the sub-
queries).

Extensive experiments with large RDF data performed on different RDF stores, found
in Chapter 4, confirm the efficiency and effectiveness of our approach over the baseline
techniques, presented in previous work [1].

3.3 Eliminate duplicate queries

Given a conjunctive query q over a RDF Schema S corresponding to a dataset D, different
sequences of immediate entailment rules may result in equivalent output queries (queries
with the same atoms in different order, variable renaming, etc). Observe that the output
of Algorithm 1 is a union of conjunctive queries and hence, having two equivalent queries
in the union won’t add results (when evaluating the reformulated query) but it will add
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syntactic complexity and increase evaluation time. Therefore, to increase the efficiency of
the query evaluation it is desirable that the output of the Reformulate algorithm does
not have equivalent queries.

Example 17 (Equivalent queries during reformulation). Consider the following
query w.r.t. the DBLP dataset [35]:

q(x) :- x dblp:datatypeF ield y, (0)
x τ dblp:Document (1)

0 1

Tab. 3.3: Example query q.

The query q is composed of two atoms, namely (0) and (1), each of which have 19
and 36 reformulations respectively. Figures 3.5 and 3.6 presents the reformulations of the
atoms of q. The expected number of reformulations of the query q is then 684, being this
the multiplication of the number of reformulations of its atoms. However, the size of the
output of the Algorithm 1 applied to the query q and the RDF Schema S, corresponding
to the DBLP dataset, is 513 (a union of 513 conjunctive queries).

{q0(x):- x dblp:datatypeF ield y, q0(x):- x dblp:Series y,
q0(x):- x dblp:booktitle y, q0(x):- x dblp:Publisher y,
q0(x):- x dblp:number y, q0(x):- x dblp:year y,
q0(x):- x dblp:note y, q0(x):- x dblp:volume y,
q0(x):- x dblp:title y, q0(x):- x dblp:chapter y,
q0(x):- x dblp:address y, q0(x):- x dblp:pages y,
q0(x):- x dblp:author y, q0(x):- x dblp:school y,
q0(x):- x dblp:cdrom y, q0(x):- x dblp:month y,
q0(x):- x dblp:journal y, q0(x):- x dblp:isbn y,
q0(x):- x dblp:editor y}

Fig. 3.5: Reformulations of the atom (0) w.r.t. the DBLP dataset [35].

{q1(x):- x τ dblp:Document, q1(x):- x τ dblp:Proceedings, q1(x):- x τ dblp:Article,
q1(x):- x τ dblp:Www, q1(x):- x τ dblp:Collection, q1(x):- x τ dblp:Series,
q1(x):- x τ dblp:Book, q1(x):- x τ dblp:Phdthesis, q1(x):- x τ dblp:Inproceedings,
q1(x):- x τ dblp:Mastersthesis, q1(x):- x dblp:crossref v, q1(x):- x dblp:objectF ield v,
q1(x):- x dblp:datatypeF ield v, q1(x):- x dblp:cite v, q1(x):- v dblp:crossref x,
q1(x):- v dblp:cite x, q1(x):- x dblp:url v, q1(x):- x dblp:ee v,
q1(x):- x dblp:isbn v, q1(x):- x dblp:year v, q1(x):- x dblp:month v,
q1(x):- x dblp:number v, q1(x):- x dblp:series v, q1(x):- x dblp:editor v,
q1(x):- x dblp:address v, q1(x):- x dblp:volume v, q1(x):- x dblp:title v,
q1(x):- x dblp:journal v, q1(x):- x dblp:chapter v, q1(x):- x dblp:school v,
q1(x):- x dblp:cdrom v, q1(x):- x dblp:booktitle v, q1(x):- x dblp:author v,
q1(x):- x dblp:publisher v, q1(x):- x dblp:note v, q1(x):- x dblp:pages v}

Fig. 3.6: Reformulations of the atom (1) w.r.t. the DBLP dataset [35].

The difference is due to the fact that atoms (0) and (1) of q have some reformulations
in common (variable renames), and therefore some of the resulting conjunctive queries
are equivalent. Here we present a short list including some, but not all, of the pairs of
equivalent conjunctive queries resultant form applying the reformulation rules to q w.r.t. S:

• q(x):- x dblp:address y, x dblp:booktitle y and
q(x):- x dblp:booktitle y, x dblp:address y.
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• q(x):- x dblp:address y, x dblp:cdrom y and
q(x):- x dblp:cdrom y, x dblp:address y.

• q(x):- x dblp:author y, x dblp:cdrom y and
q(x):- x dblp:cdrom y, x dblp:author y.

• q(x):- x dblp:chapter y, x dblp:isbn y and
q(x):- x dblp:isbn y, x dblp:chapter y.

• q(x):- x dblp:datatypeF ield y, x dblp:editor y and
q(x):- x dblp:editor y, x dblp:datatypeF ield y.

In general, conjunctive queries equivalence is an NP-complete problem [27]. However,
in the context of the Reformulate algorithm we can take advantage of the facts that:

(i) All the conjunctive queries (produced by the algorithm trough the application of the
rules) have the same number of atoms and head terms.

(ii) The atoms can be safely ordered using a common scheme.

(iii) Variables have the same names at each given position.

Therefore, assuming these facts, we are able to avoid equivalent queries in the output of
our Reformulate algorithm. To do so, we implement a mechanism based on signatures:

• Triple pattern signature w.r.t. the conjunctive query it belongs to.

• Conjunctive query signature, which relies on the signatures of its atoms and the fact
that the atoms can be ordered in a canonical way.

The signature of a triple pattern in the conjunctive query is computed by a 11-tuple
consisting of:

• Aggregate hash over the literals of the triple pattern.

• Aggregate hash over the URIs of the triple pattern.

• 9 numbers accounting in how many s-s, s-p, s-o, p-s, p-p, p-o, o-s, o-p, o-o joins does
each variable of this triple pattern participate.

The signature of a conjunctive query is computed as the hash code of the list of head
constants (URIs and literals), the list of head variables, the list of signature of it triples
(in order) and the variables in the query.

Moreover, the SignedConjunctiveQueriesSet class uses the ConjunctiveQuerySignature
to answer if a given conjunctive query q is contained in the set or not, and to decide if a
conjunctive query should be added to the set when the add method is called (or another
query q2, with the same signature, is already present); the addAll method have the same
behavior with each of the conjunctive queries contained in the given collection.
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Algorithm 2: CQSignature(q)

Input : a conjunctive query q
Output: an int that represents the given query signature

1 triplePatternNames← [], triplePatternSignatures← []
2 foreach p ∈ q.getTriplePatterns() do
3 triplePatternNames.add(p.name)
4 triplePatternSignatures.put(p.name,TPSignature(p, q))

5 headConstants← []
6 foreach term ∈ q.getHead() do
7 if term.isConstant() then
8 headConstants.add(term)

9 variablesClusters = V ariablesClusters(q.getTriplePatterns())
10 headV ariables← []
11 foreach term ∈ q.getHead() do
12 if term.isV ariable() then
13 headV ariables.add(variablesClusters.getClusterIndex(term))

14 Canonize(headConstants, headV ariables, triplePatternNames,
triplePatternSignatures, variablesClusters)

15 return
HashCode(headConstants, headV ariables, triplePatternSignatures, variablesClusters)

Algorithm 2 begins by initializing two variables used to store the query triple patterns
names and their signatures, as empty lists (line 1), and proceeds to populate the lists,
respectively, with the name of the atoms of the query (maintaining the original order) and
the signatures of the atoms. The signature of a triple pattern w.r.t. the query to which it
belongs is a hash code built from:

• The constants (URIs and literals) appearing in the triple pattern.

• The joins among terms of the triple pattern.

• The joins between terms of the given triple pattern and other atoms of the query.

Second, the head constants (URIs and literals) are stored in a list (lines 5–8). Then, in
line 9, the variables appearing in the atoms of the query are clustered. We call cluster
here a class of equivalence for the variables, which allow us to compare the variables in
a query by their role. Variables are now seen not as a name nor a symbol but as the
positions they have in the triple patterns of the query and the joins they generate, within
a single or different atoms. Lines 10–13 stores in another variable a list with the variables
appearing in the head of the query. Observe that two queries that differ only in the names
of the variables will result in the same list of head variables, as the list includes not the
variables but their clusters.

Using the variables previously created, the query is canonized by the Canonize al-
gorithm and the hash code of the canonized query is finally returned. The Canonize
algorithm re-orders the atoms of the query by their signature, which involves updating
the reference to the atoms (positions in the query) and their terms in the variables stored
in memory.
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Example 18 (BGP query signature). For example, consider the queries q and q′ shown
below:

q(x) :- x τ dblp:Book, (0)
x purl:publisher “Springer′′ (1)

q′(y) :- y purl:publisher “Springer′′, (0)
y τ dblp:Book (1)

Observe that the head and atoms of q and q′ are equal (up to variables rename and
query atoms order).

(a) Using query q as input for Algorithm 2, first the following variables are set:

• triplePatternNames← [atom0, atom1];

• triplePatternSignatures← {atom0 : [379432498, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
atom1 : [−356503219, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]};

• headConstants← [];

• variablesClusters← [0, 3];

• headV ariables← [0].

Then, the canonize algorithm is invoked with these variables, and proceeds as follows:

(a) Re-order the atoms of the query by their signature. As atom (1) signature is less
that the signature of atom (0) (according to the compareTo method), atom (0)
and atom (1) exchange positions in the query.

q(x) :- x purl:publisher “Springer′′ (1)
x τ dblp:Book, (0)

(b) The references to the atoms and their terms (positions) are updated in the vari-
ables. In this case, the only variable that change is triplePatternNames:
triplePatternNames← [atom1, atom0].

Finally, 1400082051 is the returned signature for q.

(b) Using query q as input for Algorithm 2, first the following variables are set:

• triplePatternNames← [atom0, atom1];

• triplePatternSignatures← {atom0 : [379432498, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
atom1 : [−356503219, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]};

• headConstants← [];

• variablesClusters← [0, 3];

• headV ariables← [0].

Observe that the signatures of the triple patterns are equal (as expected). Therefore
when the canonize algorithm is invoked (with the variables above as arguments), no
re-order of the atoms is needed and thus no update of the variables either. Moreover,
the signature of q′ is equal to the signature of q (1400082051) as the variables have
the same values.
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The conjunctive query technique, as it is, in some particular cases can lead to false
negatives. As shown in Example 19, there are some cases in which two equivalent queries
have different signatures. Observe that false negatives do increase the size of the union of
conjunctive queries but do not lead to wrong answers, given that the queries are equivalent.
Moreover, the cases on which false negatives were detected are very particular.

Example 19 (False negative). Consider the query shown below:

q(w1, w2, w3, w4) :- x y w1 (0)
z y w2, (1)
x t w3, (2)
z t w4, (3)

Here all the triples have the signature [1408, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0].
Observe that ordering the triple patterns of the query in another way:

q(w1, w2, w3, w4) :- x y w1 (0)
x t w3, (2)
z y w2, (1)
z t w4, (3)

leads to a different signature because the variables clusters are different, beyond that
the queries are equivalent.

3.4 Cost model

The design of our cost model is motivated by the significant impact of the number of
reformulations on the performance of execution of reformulated BGP queries. Given a
RDF data set, a triple pattern ti has an estimated number of tuples |ti|t, for the data
set, that matches it, and an exact number of reformulations |ti|r. Moreover, given a BGP
query q(x̄):- t1, . . . , tn, we denote by |q|t the estimated number of tuples matching it, and
by |q|r its number of reformulations.

For the purposes of the cost model we assume that:

• The join cost is linear in the size of the inputs. Moreover, the cost a n-way join,
t1 on t2 on · · · on tn, is linear in the size of the inputs (

∑n
i=1 |ti|t).

• The cost of materialization is c1 ∗ |t|t, with c1 some constant and t a triple pattern.

• RDBMS will select for pipelining (not materialize) the subquery with largest result.

Given a triple pattern ti, we estimate its cost w.r.t. a RDF dataset as:

Cost(ti) = c0 + α|ti|t + β|ti|r

where c0 is the fixed overhead of connecting to SQL, and α and β are ponder factors for
the number of results and number of reformulations respectively.

Given a BGP query q(x̄):- t1, . . . , tn, the cost of q w.r.t. a RDF dataset is estimated
as:

Cost(q) = c0 + α| onn
k=1 ti|t + β| onn

k=1 ti|r +
∑n

k=1 |ti|t
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Given an RDF graph G and a clusterization G′ of G, the cost of evaluating G, through
the clusterization G′, can be calculated as the sum of the costs of evaluating each part
(subquery), g ∈ G′ plus the sum of the costs of joining the results of the parts, plus the
cost of materialize n− 1 subqueries:

Cost(G′) =
∑
g∈G′

Cost(g) +
∑
g∈G′
|g|t +

∑
g∈G′\gm

MaterializeCost(g)

where gm is the subquery which is picked for pipelining. We make the assumption that
this sub-query is the one having the largest estimated number of results.

3.4.1 Cardinality estimation

Notations For a triple atom t:

• dist(X, t) is the distinct number of values of the variable X appearing in t;

• min(X, t) is the minimum value of X occurring in t;

• max(X, t) is the maximum value of X occurring in t;

• |t| is the estimated number of tuples in t.

Assumptions For a triple atom t and variables X,Y of t, we make a set of assumptions:

Uniform distribution in the interval We assume that the values of X are uniformly dis-
tributed across the interval. Formally, this is:

P (X < xo) = (x0 −min(X, t))/(max(X, t)−min(X, t))

where P (α) is the probability that an event α happens. As customary, the probability
of the events we consider is defined as the number of cases where the event happens,
divided by the total number of possible cases, 0 ≤ P (α) ≤ 1.

Uniform distribution across distinct values We assume that the values of X are uniformly
distributed across the dist(X, t) distinct values, i.e.:

∀x1, x2 such that x1 ∈ πX(t), x2 ∈ πX(t), P (X = x1) = P (X = x2)

In other words, the probability that X takes a given value does not depend on that
value (of course, as long as the value does appear in t.X).

As a consequence, and given that there are dist(X, t) distinct values, for any value
x1 ∈ πX(t), we have P (X = x1) = 1/dist(X, t). Equivalently, for any value x1 ∈
πX(t), there are |t|/dist(X, t) tuples satisfying X = x1.

Uniform distribution of distinct values across the interval For two values x1, x2 ∈ πX(t)
that are consecutive (i.e., such that there does not exist an x3 ∈ πX(t) between x1

and x2), x2 − x1 = (max(X, t)−min(X, t))/dist(X, t).
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This assumption is a consequence of the two previous ones. It is proved as follows.
Let ε > 0 be a small constant. Then,

P ((x1− ε) ≤ X ≤ (x2− ε)) = (x2− ε−min(X, t)−x1 + ε+min(X, t))/(max(X, t)−
min(X, t)) =

(x2 − x1)/(max(X, t)−min(X, t)).

Thus, the probability of encountering an X value between x1 − ε and x2 − ε is
(x2 − x1)/(max(X, t) −min(X, t)). But in that interval, the only possible value of
X is x1, and we know that the probability P (X = x1) = 1/dist(X, t).

This leads to:

(x2 − x1)/(max(X, t)−min(X, t)) = 1/dist(X, t)

or, equivalently:

(x2 − x1) = (max(X, t)−min(X, t))/dist(X, t)

Independent distributions Let X,Y be two variables in t. Then, the distributions of X
and Y are independent, i.e.:

P (X = x0|Y = y0) = P (X = x0)

where P (X = x0|Y = y0) is, as usual, the probability that X = x0 once we know
that Y = y0. The assumption states that knowing the value of Y does not inform
us on the value of X.

Moreover, we also make an assumption when joining, say, expression e1 with e2 on e1.X =
e2.Y .

Facing values Assume that in a given interval [min,max], e1.X is determined to take n1

distinct values, and e2.Y is determined to take n2 distinct values, with n1 < n2.
Then, we consider that the distinct values of e1.X are all among the distinct values
of e2.Y .

This assumption is optimistic as it assumes that relations have facing (corresponding)
values in the columns on which they are joined.
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Estimating the parameters characterizing a join result Let t1, t2 be two triples
which join on t1.X = t2.Y . We estimate the number of tuples in the expression e =
t1 ./X=Y t2, as well as the other interesting parameters of e, as follows:

1. Compute [min./,max./] which is the intersection of the intervals

[min(X, t1),max(X, t1)] and [min(Y, t2),max(Y, t2)]

2. Compute the following ratio:

k1 = (max./ −min./)/(max(X, t1)−min(X, t1))

It is the ratio between the number of t1 tuples which have matches in t2, and the
number of all t1 tuples. Due to our assumptions, it is also the ratio between the
number of t1.X distinct values which have matches in t2, and the total number of
distinct values in t1.X.

3. Similarly, compute the ratio:

k2 = (max./ −min./)/(max(X, t2)−min(X, t2))

It is the ratio between the number of t2 tuples which have matches in t1, and the
number of all t2 tuples. It is also the ratio between the number of t2.Y distinct
values which have matches in t1, and the total number of t2.Y distinct values.

4. How many distinct values there will be in the result? By the “facing value” hypoth-
esis (which assumes that the values coincide “as much as possible”), we get:

k = min((dist(X, t1) ∗ k1), (dist(Y, t2) ∗ k2))

5. How many distinct tuples there will be in the result? For each of the k distinct
values of the join attribute, which correspond to matches between t1 and t2:

• t1 had |t1|/dist(X, t1) tuples

• t2 had |t2|/dist(Y, t2) tuples

Therefore, there will be

k ∗ |t1| ∗ |t2|/(dist(X, t1) ∗ dist(Y, t2))

tuples.
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In the large The previous section provided formulas for capturing the number of tuples
and distinct values in the result of one join over two query atoms. This generalizes as
follows:

• It may occur that the cardinality of joins computed at a given point can be smaller
than the number of distinct values on the column candidate for the next join. In
such a case, we simply replace the number of distinct values on the column by the
previous join’s cardinality.
For example, let 3 atoms be t1, t2 and t3, variable X belongs to t1 and t2 and Y
belongs to t2 and t3, then dist(Y, t2) := min(|t1 ./ t2|, dist(Y, t2))

• To extend to n atoms connected by n − 1 joins, apply this formula n − 1 times (of
course, each time on the result of the previous application).

• To extend to n atoms connected by more than n− 1 joins:

– pick n− 1 joins that connect the n atoms

– do as above (n atoms with n− 1 predicates connecting them)

– then, for each remaining predicate of the form Z = U :

∗ multiply the cardinality of the expression by P (Z = U), which can be
derived from the numbers of distinct values of Z, respectively, U in that
expression.

∗ update the number of distinct values in Z (respectively U), i.e., the one
with more distinct values will take the others number of distinct values.

3.4.2 Reformulations estimation

Theorem 2.7.2 shows that given a BGP query q and a dataset D whose RDF schema is
S, the size (number of queries) of the output of Reformulate(q,S) is in O((6 ∗#S2)n),
with #S and n the sizes (number of triples) of S and q respectively. However, in practice,
the size of a reformulated query is much smaller than the theoretical upper bound [1].
Therefore, the only way to get the exact number of reformulations of a given query q
w.r.t. a RDF schema S is to calculate Reformulate(q,S) and retrieve the size of the
output.

Given a BGP query q(x̄):- t1, . . . , tn and a RDF schema, there’s a relationship between
the number of reformulations of the query, |q|r, and the number of reformulations of the
atoms of q: |q|r ≤

∏n
i=1 |ti|r, i.e., the number of reformulations of the query has an

upper bound given by the multiplication of the number of reformulations of its atoms.
Moreover, the multiplication of the number of reformulations of the atoms of q(x̄) is also
a good estimator of |q|r in general.

Our Reformulate algorithm avoids equivalent queries in the output. Therefore, in
some cases |q|r might be smaller than

∏n
i=1 |ti|r; however since this is not the case in the

majority of the queries and, to avoid the execution of a fix point algorithm several times
for multiple queries containing a subset of a shared set of triples during the clusterization
algorithms presented in Section 3.5, we estimate |q|r as

∏n
i=1 |ti|r.
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3.5 BGP query clusterization

Divide and conquer.

Query reformulation is an established technique for handling RDF entailments and
had been subject of recent works [1, 37]. However, increases in the size of the reformu-
lated query usually lead to an increase in the execution time (of the reformulated query).
Therefore, this technique is not suitable for cases in which the size of the reformulated
query is very large [1]. Our approach aims to increase the efficiency of the query evaluation
by holding the number of reformulations bounded (when possible) w.r.t. a given threshold
(over the number of reformulations). The parametrization of the threshold makes it easy
to adapt, as the threshold may vary within different RDBMS engines.

Recall from Section 3.2, to do this we use BGP query clusterization. Moreover, we use
two different clusterization techniques namely partition and fragmentation. This section
presents our approach to find a clusterization given a dataset, a BGP query and a threshold
over the number of reformulations, using as basis our cost model.

We describe two different clusterization techniques namely partition, introduced in
Section 3.5.1, and fragmentation, described in Section 3.5.2. Given a BGP query, q, the
partition of q is a division of its atoms into non-overlapping and non-empty parts that
cover all the atoms of q; while the fragmentation of the same query q is a division of its
atoms into non-empty fragments that cover all the atoms of q and may overlap.

Section 3.5.3 presents a näıve algorithm for finding a partition of a given query, such
that the number of reformulations of the parts are bounded by a given threshold. Further-
more, Section 3.5.4 introduces an heuristic algorithm to find a partition for the query, such
that the number of reformulations of the parts are bounded, while Section 3.5.5 presents
variant, allowing overlapping query fragments.

3.5.1 BGP query partition

A partition of a given set S is a division of S into non-overlapping and non-empty subsets
of S which, together, covers all of S. More formally, a partition for a given set S is a
collection of disjoint subsets of S whose union is S. The number of partitions of an n-set
is called a Bell number, Bn [39]., whose formula is:

Bn+1 =
∑n

k=0

(
n
k

)
∗Bk, starting with B0 = 1.

Generating set partitioning is a well-known and studied problem that can be found in
articles like [40] and in multiple algorithms books such as [41, 42] to name a few.

BGP query partition resembles set partition since it can be seen as the partition of
the set of triple patterns (i.e., the BGP). A key difference between set partition and query
partition is that the first allows any subset of the given set to be a part, while in query
partition all the atoms in a part must be joined (directly or indirectly). Recall that
two atoms ti, tj(i 6= j) of a given query are joined when there is at least one variable in
common among them. Moreover, the number of partitions of a BGP query having n-atoms
is bounded by the number of partitions of an n-set, but in practice the size is smaller since
BGP queries are not a complete graph usually.

As the size of the reformulated BGP query has a strong impact on the execution time,
our first approach then is to find a partition for the given query.
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Definition 3.5.1. [BGP query partition] A BGP query partition C is a partition C =
{c1, c2, . . . , ck}, given a dataset D, a BGP query q and a threshold in the number of
reformulations t, such that:

• C is a partition for the atoms of q.

• For all ci ∈ C, |ci|r is bounded (≤) by t or the cluster contains only one triple
pattern tj with more than one reformulation (where |tj |r > t), and zero or more
atoms with a single reformulation. In other words, the cluster size is bounded by the
given threshold or its composed by one atom with more than t reformulations and
zero or more atoms with a single reformulation.

• All the atoms in a cluster are joined (directly or indirectly).

Theorem 3.5.1 shows that for a given query, the evaluation of the reformulated query
w.r.t. a dataset have the same answer set as the join(s) between the evaluation of the
reformulated atoms of the query w.r.t. the dataset. Moreover, Theorem 3.5.2 extends this
to partitions, and states that the evaluation of the reformulation of a given query w.r.t. a
dataset is equivalent to the join(s) between the evaluation of the clusters (contained in the
given partition) w.r.t. the dataset.

Theorem 3.5.1. Given a BGP query q(x̄):- t1, t2, . . . , tn and a dataset D whose RDF
schema is S, the following holds:

evaluate(Reformulate(q,S), D) = πx̄[evaluate(Reformulate(t1,S), D) on
evaluate(Reformulate(t2,S), D) on . . . on evaluate(Reformulate(tn,S), D)]

(3.1)

where the head of (the query inferred form) an atom ti are those variables contained either
in the head of q or in another atom tj (i 6= j).

Proof. The theorem directly follows from [1], where it is shown that for any query Q
against a database D whose RDF schema is S: evaluate(Reformulate(Q,S), D) =
evaluate(Q,Saturate(D)) holds. Indeed,

evaluate(Reformulate(q,S), D) = evaluate(q,Saturate(D)) =

πx̄[evaluate(t1,Saturate(D)) on evaluate(t2,Saturate(D)) on . . .

on evaluate(tn,Saturate(D))] = πx̄[evaluate(Reformulate(t1,S), D) on
evaluate(Reformulate(t2,S), D) on . . . on evaluate(Reformulate(tn,S), D)] holds.

Theorem 3.5.2. Given a BGP query q(x̄), a dataset D whose RDF schema is S and a
partition C = {c1, c2, . . . , ck}, the following holds:

evaluate(Reformulate(q,S), D) = πx̄[evaluate(Reformulate(c1,S), D) on
evaluate(Reformulate(c2,S), D) on . . . on evaluate(Reformulate(cn,S), D)]

(3.2)
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Proof.

evaluate(Reformulate(q,S), D) = evaluate(q,Saturate(D)) =

πx̄[evaluate(c1,Saturate(D)) on evaluate(c2,Saturate(D)) on . . .

on evaluate(cn,Saturate(D))] = πx̄[evaluate(Reformulate(c1,S), D) on
evaluate(Reformulate(c2,S), D) on . . . on evaluate(Reformulate(cn,S), D)]

Note that Theorems 3.5.1 and 3.5.2 consider queries without blank nodes. This as-
sumption is made without loss of generality since blank nodes act as (thus can be equiva-
lently replaced by) non-distinguished variables in BGP queries.

Example 20 (Query partition). For example, consider the DBLP dataset [35], the
query shown in Figure 3.7 and the threshold t = 20.

q(x, v) :- x dblp:datatypeF ield v, (0)
x purl:publisher “Springer′′, (1)
x τ dblp:Document (2)

1

0 2

Triple pattern #Reformulations #Results

0 19 2, 629, 667

1 1 4, 367

2 36 711, 174

Fig. 3.7: Query q and it characteristics.

Partition Clusters #Reformulations

(i) {0, 1, 2} 684

(ii) {0, 1}, {2} 55

(iii) {0}, {1, 2} 55

(iv) {0, 2}, {1} 684

(v) {0}, {1}, {2} 55

Fig. 3.8: Query partitions and their
#reformulations.

Figure 3.8 shows all the possible partitions (regardless the number of reformulations) for
the reformulations of the query q w.r.t. to D schema and the number of reformulations for
each one. Observe that the partitions (i) and (iv) are not valid since the parts {0, 1, 2} and
{0, 2} both have 684 reformulations, which is greater than the given threshold. Also note
that although all other three (valid) partitions have the same number of reformulations,
the partition (v) is less efficient since the single reformulation atom (1) is alone in a
cluster, which will lead to a subquery (adding extra cost) and does not take advantage of
the selectivity that atom (1) may add when its joined with other atoms.

The “best” partition will be selected by the use of our cost model, based on the inter-
mediate number of results of the subqueries, and the factors α and β.

(a) Using partition (ii):

(i) Cluster {0, 1} produces the subquery:

q0(x, v) :- x dblp:datatypeF ield v, (0)
x purl:publisher “Springer′′ (1)

matching 30, 450 tuples.

(ii) Cluster {2} produces the subquery:
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q1(x) x τ dblp:Document (2)

matching 711, 174 tuples.

(b) Using partition (iii):

(i) Cluster {0} produces the subquery:

q0(x, v) :- x dblp:datatypeF ield v (0)

matching 2, 629, 667 tuples.

(ii) Cluster {1, 2} produces the subquery:

q1(y) :- x purl:publisher “Springer′′, (1)
x τ dblp:Document (2)

matching 4, 367 tuples.

3.5.2 BGP query fragmentation

The relational database approach to execute a query that joins relations, is to select
the best order in which these relations should be joined in order to minimize the time
consumed. Under the cost model assumptions in Section 3.4, given a query Q = R on S on
T , executing the join of the 3 relations in some order will take less time than (R on S) on
(S on T ), or the join of any other combination of pairs of relations equivalent to Q.
Reformulated RDF queries introduce a new element to take into account, the number
of reformulations (given a query and a dataset). The execution time, and therefore the
execution plan, does not depend mostly on the number of results of each atom but also,
and usually with more incidence, on the number of reformulations of the atoms. It is thus
desirable then, for atoms with a single (or a few) reformulations and high selectivity to be
included in several clusters, since their selectivity will reduce the number of tuples resulting
from the subquery without incrementing (or not drastically) the number of reformulations
of the subquery.

Definition 3.5.2. [BGP query fragmentation] A BGP query fragmentation C is a parti-
tion C = {c1, c2, . . . , ck}, given a dataset D, a BGP query q and a threshold in the number
of reformulations t, such that:

• There are no empty clusters in C, i.e., ∀ci ∈ C(size(ci) > 0).

• The clusters in C are a subset of q atoms such that, together, covers all the atoms
of q. More formally:

⋃
ci∈C ci ≡ Body(q), where Body(q) is the set of triples patterns

of the query q.

• For all ci ∈ C, |ci|r is bounded (≤) by t or the cluster contains only one triple
pattern tj with more than one reformulation (where |tj |r > t), and zero or more
atoms with a single reformulation. In other words, the cluster size is bounded by the
given threshold or its composed by one atom with more than t reformulations and
zero or more atoms with a single reformulation.

• All the atoms in a cluster are joined (directly or indirectly).
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Theorem 3.3 states that the evaluation of the reformulation of a given query w.r.t. a
dataset is equivalent to the join(s) between the evaluation of the clusters (in the given frag-
mentation) w.r.t. the dataset. The proof is omitted as it is similar to the proof presented
for Theorem 3.5.2.

Theorem 3.5.3. Given a BGP query q(x̄), a dataset D whose RDF schema is S and a
fragmentation C = {c1, c2, . . . , ck}, the following holds:

evaluate(Reformulate(q,S), D) = πx̄[evaluate(Reformulate(c1,S), D) on
evaluate(Reformulate(c2,S), D) on . . . on evaluate(Reformulate(cn,S), D)]

(3.3)

Example 21 (Query fragmentation). Consider the query and the threshold given in
the Example 20. In that example we use the selectivity of the atoms to decide if atom (1)
should be clustered with atom (0) while atom (2) remains alone in a cluster, or the other
way around. As fragmentation allows overlapping fragments, atom (1) can be clustered
with atom (0) in one fragment and also with atom (2) in another fragment, as illustrated
in Figure 3.9.

1

0 2

Fig. 3.9: Fragmentation example.

The number of reformulations of this fragmentation is still 55. The difference with
Example 20 is in the intermediate number of results of the subqueries (corresponding to
the clusters). Using the fragments {0, 1} and {1, 2} results in subqueries matching 30, 450
and 4, 367 tuples respectively. Indeed, significantly less than the intermediate number of
results produced by the subqueries (corresponding to the partitions) in Example 20.

The reduction in the intermediate number of results leads to two main advantages that
ultimately increase the efficiency of the query:

• Reduction in the number of tuples being materialized, as all the subqueries but one
are materialized.

• Reduction in the size of the intermediate result sets being joined (the subqueries).

3.5.3 Naive threshold algorithm

Our näıve algorithm first generates all the partitions for the set of triple patterns contained
in the given query, which is analog to generate all the partitions for the set {1, . . . , n}
(where n is the size of the query) since each atom can be identified by an integer (its
position in the query). Then, those partitions that do not meet BGP query partition
requirements are removed (i.e., first those including non joined atoms, and then those
whose number of reformulations exceeds the given threshold and have more than one
atom with multiple reformulations). Finally, the cost of the remaining (valid) partitions
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is calculated using our cost model (previously described in Section 3.4) and the one with
minimum cost is returned as the output of the algorithm.

Observe that looping only once trough the generated set of partitions is enough. By
keeping in memory the best partition (up to the current iteration) and its cost (the min-
imum cost up to the current iteration), we iterate over the generated partitions and for
each of them:

1. Check if the partition meets the BGP partition requirements. If not, then just
continue with the next partition.

2. Calculate the cost of the partition using the given factors.

3. If the cost of the partition is less than the minimum cost known up to the current
iteration (or the first partition that reach the requirements), then update the best
partition and minimum cost variables.

Algorithm 3, presented below, uses the signature described in [41] to generate all the
partitions for the set {1, . . . , n}.

Algorithm 3: Naive Threshold Reduction Factor Algorithm (NTRFA)

Input : BGP query q, dataset D, # reformulations threshold t, # tuples factor α,
# reformulations factor β

Output: A partition partition for the BGP query q such that the number of
reformulations of the parts w.r.t. D schema is bounded by t (when is
possible)

1 bestPartition← ∅; minCost← NULL; S ← D.getSchema()
2 partitions← SetPartitions(q.size())
3 foreach partition in partitions do
4 if HasDisjoinedAtom(partition, q) then
5 continue

6 if Reformulations(partition, q,S) > t then
7 continue

8 cost← CalculateCostUsingFactors(q, partition,D, α, β)
9 if minCost == NULL or minCost > cost then

10 minCost← cost; bestPartition← partition

11 return bestPartition

First, the variables that will keep the best partition and its cost (the minimum one) are
initialized together with the RDF schema of the given dataset (line 1). Line 2 generates
all the partitions for the set {1, . . . , n}, where n is the number of atoms of the given query.
Lines 3–10 walk trough the partitions filtering those that do not reach the BGP query
partition requirements (if statements in lines 4 and 6); for those partitions that meet all
the requirements the cost is calculated (line 8) w.r.t. the given dataset. Finally, line 9
checks if the cost is less than the minimum (cost) up to the current iteration, or it is the
first partition that fulfill the BGP query partition requirements; if so, the best partition
and minimum cost variables are updated, respectively, with the partition in the current
iteration and its cost.
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Analysis of the algorithm The worst case is when the BGP of the given query is
a complete graph (i.e., there is a join between any pair of atoms of the query) and the
number of reformulations of all the possible parts of atoms are bounded by the given
threshold. If that is the case, then the cost is calculated for every possible partition.

Given a BGP query of size n, there are Bn possible partitions of the query atoms.
Therefore, the cost algorithm (which involves the Reformulate algorithm and the car-
dinality estimator, respectively, to estimate the number of reformulations and number of
results of the parts) is invoked Bn times. However, note that for the set of n-atoms of the
query there are

∑n
k=1

(
n
k

)
different parts that can appear in the partitions. Hence, by cal-

culating and keeping in memory the number of reformulations and the number of results
of all the possible parts, we can calculate the cost of all the possible partitions without
invoking the Reformulate algorithm nor the cardinality estimator twice for the same
part. Therefore, the Reformulate algorithm and the cardinality estimator are invoked,
in the worst case,

∑n
k=1

(
n
k

)
times each.

Theorem 2.7.2 states that the complexity of the Reformulate algorithm is in O((6 ∗
#S2)n), with #S and n the sizes (number of triples) of S and q respectively; while the
complexity of the cardinality estimator is in O(n) as the algorithm is linear w.r.t. the size
of the query. This assumes that statistics needed w.r.t. the given dataset are available in
memory.

Hence, the complexity of Algorithm 3 is O((
∑n

k=1

(
n
k

)
) ∗ ((6 ∗#S2)n + n)). However,

if we decide to approximate the number of reformulations of a query by the number of
reformulations of its atoms, we can reduce the complexity, to be O(n ∗ (6 ∗ #S2)n +
(
∑n

k=1

(
n
k

)
) ∗ (2 ∗ n)).
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3.5.4 Greedy threshold algorithm

A first idea was to ensure that no selected cluster has more than t reformulations, for a
given fixed threshold t. Based on this idea, Algorithm 4 greedily selects clusters of atoms
by “growing” subqueries from single atoms, until the cluster obtained by adding atoms
has more reformulations than t. Moreover, Algorithm 4 considers non-overlapping clusters
only (i.e., a partition), that is: any two different clusters will cover disjoint sets of atoms.

Algorithm 4: Greedy Threshold Reduction Factor Algorithm (GTRFA)

Input : BGP query q, dataset D, # reformulations threshold t, # tuples factor α,
# reformulations factor β

Output: A partition partition for the BGP query q such that the number of
reformulations of the parts w.r.t. D schema is bounded by t (when is
possible)

1 partition← ∅; S ← D.getSchema()
2 sortedNodes← SortNodesByCostUsingFactors(q.nodes(), D, α, β)
3 while sortedNodes 6= ∅ do
4 part← {sortedNodes.head()}
5 sortedNodes← sortedNodes.tail()
6 node = FilterByNeighborAndThreshold(part, sortedNodes, q,S, t)
7 while node 6= NULL do
8 sortedNodes← sortedNodes \ {node}
9 part← part ∪ {node}

10 node = FilterByNeighborAndThreshold(part, sortedNodes, q,S, t)
11 partition← partition ∪ {part}
12 return partition

First, the variable that keeps the (growing) partition is initialized as an empty set
while S is initialized with the RDF schema of the given dataset (line 1). Then, in line 2,
query atoms are sorted by their cost (w.r.t. the given dataset) using the given factors.
The SortNodesByCostUsingFactors algorithm calculates the cost of each atom w.r.t. the
dataset also relying on the α and β parameters of our cost model (introduced in Sec-
tion 3.4). Then, SortNodesByCostUsingFactors sorts the atoms incrementally by their
cost and return the ordered nodes.
Algorithm 4 has two nested loops. The main loop, between lines 3 and 11, incrementally
grows the BGP query partition by adding a new part in each iteration. The inner loop
(lines 7–10) grows a (currently being constructed) part from a single atom. Moreover,
lines 4 and 5 take the atom having the lower cost, which does not appear in a previously
created part, initializes a new part with it and removes it (the atom) from the sorted nodes
list. Lines 6–10 seek for atoms (one by one) with minimum cost such that:

• The atom is not included in a previously created or the current part (being con-
structed).

• The atom has a join with at least one atom of the current part.

• The number of reformulations of the current part to which is added the set {node}
is lower than or equal to the given threshold: |part ∪ {node}|r ≤ t.
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When no atom can be found which meets these requirements (the part cannot grow more),
the current part is added to the partition (line 11). This procedure continues until the list
of sorted nodes is empty.

Analysis of the algorithm Sorting the nodes by their cost using the given factors
requires the execution of the Reformulate algorithm and the cardinality estimator, and
sorting the nodes by cost after. Therefore, the SortNodesByCostUsingFactors algorithm,
invoked on line 2, is in O(n ∗ ((6 ∗#S2)n +n+ log(n))), with #S and n the sizes (number
of triples) of S and q respectively.

Observe that the outer loop will be executed, at most, n times since at least one atom
is removed from the list of sorted nodes at each iteration.

The algorithm FilterByNeighborAndThreshold is in O((n− k) ∗ (m+ (6 ∗#S2)m+1)),
with k and m being, respectively, the number of nodes already in the partition and the
size of the part being constructed (part). Observe that in the worst case all the remaining
n− k nodes will be analyzed and for each of them:

• The existence of at least one atom in the given part to which the node is joined will
be checked;

• The number of reformulations of |part ∪ {node}|r ≤ t will be calculated.

To check if a node and a part are connected, we are using a näıve algorithm that iterates
the atoms in the part and returns true when it finds one that is joined with the given node;
false is there’s no such atom. Therefore, the complexity could be slightly improved by the
use of a better method, but it would still be dominated by the fact that the Reformulate
algorithm is invoked n− k times in the worst case.

Note that there is a strong relation between the times the outer and the inner loop
are executed. The worst case of the inner loop is when all the nodes in the sorted nodes
list can be arranged in the same part; this is the best case for the outer join, since the list
of sorted nodes will be empty by the end of the first iteration. Hence, Algorithm 4 is in
O(n ∗ ((6 ∗#S2)n + n) +

∑n−1
i=1 (n − i) ∗ (i + (6 ∗#S2)i+1)). Once again, if we decide to

approximate the number of reformulations of a query by the number of reformulations of
its atoms, we can reduce the complexity, to be O(n ∗ (6 ∗#S2)n + n3).

3.5.5 Greedy threshold algorithm with overlapping fragments

Preliminary tests seem to show that in some cases efficient evaluation methods may involve
overlapping clusters, i.e., such that some query atoms appear in more than one cluster.
This happens especially when an atom is selective (returns few triples) and its reformula-
tion is not very large either. Accordingly, we have devised a three-phase algorithm, which
is a variant on Algorithm 4, extended to also allow overlapping query fragments.
The phases of Algorithm 5 can be summarized as:

i) Identify “bad nodes” (nodes with many reformulations).

ii) Mitigate “bad nodes” selectivity by creating a cluster for each of them and joining
with nodes with high selectivity and few reformulations.

iii) Group the remaining nodes (that are not included in any cluster yet) through the
fragmentation approach described in Section
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Algorithm 5: Greedy Overlapping Fragments Threshold Reduction Factor Algo-
rithm (GOFTRFA)

Input : BGP query q, dataset D, # reformulations threshold t, # tuples factor α,
# reformulations factor β

Output: A fragmentation fragmentation for the BGP query q
1 fragmentation← ∅; S ← D.getSchema()
2 badNodes← FilterByReformulationsThreshold(q.nodes(), D, t)
3 nodes← q.nodes() \ badNodes
4 sortedNodes← SortByCostUsingFactors(nodes,D, α, β)
5 foreach Node node ∈ badNodes do
6 fragmentation← fragmentation ∪ Extend(node,D, t, sortedNodes, α, β)

7 remainingNodes← nodes \ Flatten(fragmentation)
8 while remainingNodes 6= ∅ do
9 node← remainingNodes.head()

fragment← Extend(node,D, t, sortedNodes, α, β)
remainingNodes← remainingNodes \ fragment
fragmentation← fragmentation ∪ fragment

10 return fragmentation

Within Algorithm 5, first the variable that keeps the (growing) fragmentation is ini-
tialized as an empty set and S is initialized with the RDF schema of the given dataset
(line 1).

Second, the “bad nodes” (nodes with more reformulations than the given threshold)
are identified and separated from the rest in line 2.

Then, the other nodes (those with less reformulations than the given threshold) are
sorted by their cost (w.r.t. the given dataset) using the given factors in line 4. The SortN-
odesByCostUsingFactors algorithm calculates the cost of each atom w.r.t. the dataset
given using the factors also given as arguments by the use of our cost model (introduced
in Section 3.4). Then, it sorts the atoms incrementally by their cost and return the or-
dered nodes. Unlike Algorithm 4, the number of reformulations are not calculated by the
SortByCostUsingFactors algorithm, since they are already present in memory (from the
“bad nodes” identification).

Once the nodes with less reformulations than the threshold are sorted, the algorithm
iterates over the “bad nodes” creating a fragment for each of them and adding it to
the fragmentation. The algorithm Extend is used to grow a fragmentation starting from
an atom. This is performed by looping through the list of ordered nodes received as
argument and for each of them, if the node joins with at least one atom of the frag-
ment, then the cost of the fragment to which we add the atom is compared to the
cost of the fragment itself: CalculateCostUsingFactors(fragment ∪ {atom}, D, α, β ≤
CalculateCostUsingFactors(fragment,D, α, β)). If the cost is less or equal to the cost
of the fragment, then the atom is added to the fragment and the procedure continues with
the next atom in the sorted list of nodes. Otherwise the loop finalizes and the fragmenta-
tion is returned as it is.
Finally, those atoms that are not present in any fragment of the fragmentation are identi-
fied and one by one, analogously as was done with the “bad nodes”, a fragment is created
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and added to the fragmentation. Observe that unlike the list of “bad nodes”, in some
cases one fragment may include more than one of the “remaining nodes”.

Observe that unlike Algorithm 4, the number of reformulations of a cluster (having
more than one atom with multiple reformulations) may be over the given threshold since
the threshold t is used to identify “bad nodes”.

Analysis of the algorithm The algorithm FilterByReformulationsThreshold invokes the
Reformulate algorithm for each atom in the query and therefore is in O(n ∗ (6 ∗#S2)n),
with #S and n the sizes (number of triples) of S and q respectively.

The algorithm SortNodesByCostUsingFactors is similar to the one used in Algorithm 4.
However, as the number of reformulations for each atom of the query had been calculated
already in line 2, by keeping these in memory the order of SortNodesByCostUsingFactors
is in O(n ∗ (n+ log(n))).

Algorithm 5 is composed by two loops, each of which have the same body. The number
of iterations of one is directly related with the number of iterations of the other. In the
worst case, the body of the loops will be executed n times in total, whether it is executed
inside the first or the second loop. The body of the loops is composed by the algorithm
Extend which is in O(

∑m−1
i=1 (m − i) ∗ (r + (6 ∗#S2)r+i)), with m and r the sizes of the

sorted list of nodes and the cluster respectively. Therefore, the loops (together) are in
O(
∑n−1

i=1 (n− i) ∗ (i+ (6 ∗#S2)i)).
Hence, Algorithm 5 is in:

O(n ∗ ((6 ∗#S2)n + n) +
∑n−1

i=1 (n− i) ∗ (i+ (6 ∗#S2)i)).

If we decide to approximate the number of reformulations of a query by the number of
reformulations of its atoms, we can reduce the complexity, to be O(n ∗ (6 ∗#S2)n + n3).

GOFTRFA-TS Early experiments showed that Algorithm 5 often lead to (redundant)
single atom fragments. Experimental evaluation of the algorithm revealed that when no
“bad nodes” are detected (or “bad nodes” that are joined with the low cost atoms to
be precise), low cost atoms end up being clustered alone (as the cost of the single atom
fragment is usually less than clustering the atom together with any other node) and the
atom is also included in other clusters (because the low cost atom reduces the cost of the
cluster). This, as shown in Chapter 4, leads to performance deterioration. Therefore, an
slightly modification of the proposed algorithm was created to overcome this such cases.
Once the fragmentation is computed, a loop trough the fragments removes redundant
single atom fragments contained in the fragmentation.

Observe that the modification in the algorithm has no impact in the complexity.

GOFTRFA-ETS Experiments showed that the modification proposed above may also
lead to sub-optimal fragmentations as it often lead to (redundant) fragments (a generaliza-
tion of the problem described above). To overcome such cases we propose a modification
of the proposed algorithm that extend the one proposed before to redundant fragments
(instead of single atom redundant fragments). Once the fragmentation is computed, a loop
trough the fragments removes redundant fragments contained in the fragmentation. To do
so, first the fragments are sorted (increasingly) by size (number of atoms in the fragment);
then a loop trough the sorted fragments remove redundant ones (if all the atoms in the
fragment are contained in another fragment of the fragmentation, then the fragment is
removed from the fragmentation).
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Again, observe that the modification in the algorithm has no impact in the complexity.

3.6 Executing a clustered BGP query

Given a BGP query q, a dataset D and threshold t over the number of reformulations,
we already have techniques and algorithms to reformulate q (Section 2.7) and find a
clusterization bounded by t (Section 3.5). The next step is to execute the clustered BGP
query against the RDBMS.

This section introduce techniques for clustered query execution, that is: execute each
subquery and then the join(s) combining the subqueries. Given a BGP query q, and
a clusterization C for q, for non-overlapping clusters there will be a join between two
clusters, ci and cj (i 6= j), for each edge e in the original graph such that one of the nodes
connected by e is in ci and the other in cj . Moreover, multiple joins between a pair of
fragments will simplified as one join with multiple, conjuncted, conditions. In addition,
overlapping clusters will also have a join between two clusters, ci and cj (i 6= j), for each
node n such that n ∈ ci ∩ cj . Therefore, there may be many ways in which to execute the
join(s) combining the subqueries.
Section 3.6.1 introduce a näıve strategy that can be used to execute a clustered query,
while Section 3.6.2 presents some opportunities for optimizations.

3.6.1 Naive strategy

Given a BGP query q, and a clusterization that may have overlapping clusters C =
{c1, c2, . . . , cn}, a first approach to execute the join(s) combining the subqueries corre-
sponding to the clusters {q1, q2, . . . , qn}. is to add a join condition in the “the main
query” for each variable that appears in the head of two (or more) subqueries.
The head of the a subquery qi, will be the union of the inferred heads for the triple pat-
terns in the body of qi. Moreover, given a triple pattern tj = s p o, that belongs to the
body of qi, the inferred head corresponding to tj will be composed of:

• The variables of tj that are in the head of qi.

• The variables of tj that are present in another triple pattern, tk, that belongs to (the
body) qi, thus implementing a join between tj and tk.

Example 22 (Executing clustered query). Consider the following query:

q(w) :- x p1 y, (0)
y p2 w (1)
x p3 z (2)

and the clusterization C = {{0, 1}, {0, 2}}, illustrated below.

0

1 2

We show now how to execute the join(s) combining the subqueries.
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(i) The cluster containing the atoms (0) and (1) produces the subquery:

q0(x, y, w) :- x p1 y, (0)
y p2 w (1)

Observe that all the three variables (x, y, w) appearing in q0 must be in the head
since variables x and y appears in triple patterns of q1, while w is in the head of the
original query q.

(ii) The cluster containing the atoms (0) and (2) produces the subquery:

q1(x, y) :- x p1 y, (0)
x p3 z (2)

Note that in this case only the variables x and y are used in the head of the (sub)query
as they appear in triple patterns of q0; variable z is a non-distinguished variable that
does not appear in any other triple pattern (of other subqueries) nor in the head of
the original query, and therefore it is not contained in the head of q1.

(iii) Finally, using q1 and q2 as subqueries leads to a join using x and y as join variables.

[(x p1 y), (y p2 w)] onx,y [(x p1 y), (x p3 z)]

3.6.2 Optimizations

Observe that in some cases, the näıve strategy can be sub-optimal.
In the previous example, the joins on x and y, regarding the original query q, are

enforced by q1 and q0 respectively. Moreover, there is no need to use both x and y to
enforce the join (in the “the main query”) between the subqueries. Therefore, the use of
a minimal number of variables when executing the join(s) combining the subqueries (in
the “the main query”) may lead to subqueries with results of smaller size (entailing the
materialization of smaller intermediate result sets and join(s) of smaller relations) and a
faster “main query”.
The selection of variables that will be used to enforce the join(s) in the “the main query”
may be driven then by their selectivity (in those subqueries in which the variable appears),
shown in Example 23. Furthermore, an optimal selection of (head) variables for a sub-
query may also lead to a reduced number of reformulations, illustrated Example 24.

Queries characterization Observe that the optimization mentioned above is not pos-
sible for any BGP query. Given a BGP query q and a clusterization C = {c1, c2, . . . , cn}
for it, such that:

• Exists at least one cluster in C featuring all the atoms of q in which a variable x
appears;

• All the clusters in C are connected without using the variable x in the join condition
of all those clusters in which x appears.

The clustered query execution can be optimized as discussed above. Note that if
fragmentation is employed, some of the atoms may also belong to other clusters.
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Definition 3.6.1 (Connected clusters). Two clusters ci and ck are said to be connected
when there is (at least) a join between a triple pattern contained in ci and a triple pattern
contained in ck.

Theorem 3.6.1. Given a BGP query q(x̄):- t1, t2, . . . , tn and a clusterization
C = {c1, c2, . . . , cm} for it, such that:

• There is at least one cluster ci ∈ C containing any triple pattern t appearing in q
such that the variable x is contained in t.

• The clusters in C are connected by other variables than x.

The following holds:

evaluate(Reformulate(c1,S), D) on . . . on evaluate(Reformulate(cm,S), D) =

evaluate(Reformulate(c1,S), D) on(HeadVar(c1)∩HeadVar(c2))\{x} . . .

on(HeadVar(cm−1)∩HeadVar(cm))\{x} evaluate(Reformulate(cm,S), D)

(3.4)

where HeadVar are the variables contained in the head of the subquery (corresponding to
the cluster).

Proof. The claim directly follows from the fact that, for any ck, i 6= k:
evaluate(Reformulate(ci,S), D) on evaluate(Reformulate(ck,S), D)
= evaluate(Reformulate(ci,S), D) on evaluate(Reformulate(c′k ∪ c′′k,S), D)
= evaluate(Reformulate(ci,S), D) on evaluate(Reformulate(c′k,S), D) on
evaluate(Reformulate(c′′k,S), D) by theorems 3.5.2 and 3.5.3.
= evaluate(Reformulate(ci,S), D) on\{x} evaluate(Reformulate(c′k,S), D) on\{x}
evaluate(Reformulate(c′′k,S), D) since the first atom is contained in the second one, and
since the third atom does not contain x.
= evaluate(Reformulate(ci,S), D) on\{x} (evaluate(Reformulate(c′k,S), D) on
evaluate(Reformulate(c′′k,S), D)) since the third atom does not contain x.
= evaluate(Reformulate(ci,S), D) on\{x} evaluate(Reformulate(c′k ∪ c′′k,S), D)
= evaluate(Reformulate(ci,S), D) on\{x} evaluate(Reformulate(ck,S), D).

Example 23 (Continued). Consider the query and the clusterization given in Exam-
ple 22. The following executions of the clustered query produce the same results:

(a) Using x to enforce the join condition between the subqueries:

(i) Cluster {0, 1} produces the subquery:

q0(x,w) :- x p1 y, (0)
y p2 w (1)

(ii) Cluster {0, 2} produces the subquery:

q1(x) :- x p1 y, (0)
x p3 z (2)

(iii) Finally, using x to join the subqueries q1 and q2, leads to “the main query”:

[(x p1 y), (y p2 w)] onx [(x p1 y), (x p3 z)]
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(b) Using y to enforce the join condition between the subqueries:

(i) Cluster {0, 1} produces the subquery:

q0(y, w) :- x p1 y, (0)
y p2 w (1)

(ii) Cluster {0, 2} produces the subquery:

q1(y) :- x p1 y, (0)
x p3 z (2)

(iii) Finally, using y to join the subqueries q1 and q2, leads to “the main query”:

[(x p1 y), (y p2 w)] ony [(x p1 y), (x p3 z)]

As pointed in Section 3.1, the impact of one triple pattern in another atom of a given
subquery (or query) does not depend only on the selectivity estimation (of the atoms),
which is less accurate with increasing BGP graph size and heterogeneity [7], but also in the
number of reformulations both (atoms) have in common and the variables being selected
(head). Observe that the query clusterization and clustered query execution processes are
related. Continuing with the example above, the decision of which variable (x or y) is used
to enforce the join among the subqueries will also make that variable no longer necessary
in the head of both subqueries (q0 and q1). Hence, the decision (related to clustered query
execution) will have an impact on the process of query clusterization, since the removal of
a variable from the head of a query might result in changes to both the number of results
and the number of reformulations of the subquery.

Example 24 (Continued). Consider the clustered query executions shown in Exam-
ple 23, and the following query:

q(w) :- x dblp:datatypeF ield y, (0)
y dblp:datatypeF ield w (1)
x τ z (2)

Triple pattern #Reformulations #Results

0 19 2, 629, 667

1 19 2, 629, 667

2 62 1, 248, 889

with 22, 382 reformulations.

(a) Using x and y to enforce the join condition between the subqueries:

(i) Cluster {0, 1} produces the subquery:

q0(x, y, w) :- x dblp:datatypeF ield y, (0)
y dblp:datatypeF ield w (1)

with 361 reformulations.

(ii) Cluster {0, 2} produces the subquery:
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q1(x, y) :- x dblp:datatypeF ield y, (0)
x τ z (2)

with 1, 178 reformulations.

(b) Using x to enforce the join condition between the subqueries:

(i) Cluster {0, 1} produces the subquery:

q0(x,w) :- x dblp:datatypeF ield y, (0)
y dblp:datatypeF ield w (1)

with 361 reformulations.

(ii) Cluster {0, 2} produces the subquery:

q1(x) :- x dblp:datatypeF ield y, (0)
x τ z (2)

with 1, 007 reformulations.

(c) Using y to enforce the join condition between the subqueries:

(i) Cluster {0, 1} produces the subquery:

q0(y, w) :- x dblp:datatypeF ield y, (0)
y dblp:datatypeF ield w (1)

with 361 reformulations.

(ii) Cluster {0, 2} produces the subquery:

q1(y) :- x dblp:datatypeF ield y, (0)
x τ z (2)

with 1, 178 reformulations.

Observe that using x and y to enforce the join(s) in the “the main query” produces
subqueries with 361 and 1, 178 reformulations.

Using only x show a decrease in the number of reformulations of q1 (the subquery for
the cluster {0, 2}), while using y have no differences in the number of reformulations of
the subqueries.

Clearly, improving the clustered query execution capability to consider the number of
reformulations of the clusters (besides the number of results) when selecting the (head)
variables may further speed up the evaluation of subqueries, and therefore “the main
query” (the reformulated query).

3.7 Clustered queries and RDBMs

Consider the execution model introduced in Section 3.1. Given a dataset D, a BGP query
q and a clusterization C for it, there are several syntactic ways of writing in SQL the main
query joining the subqueries (which corresponds to the reformulations of the clusters in
C). We considered two different techniques to write the main query :

(i) Defining each subquery using Common Table Expressions (or CTEs, in short) and
use them in the main query. CTEs can be thought of as defining temporary tables
that exist just for the duration of processing one query [43].
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(ii) Defining each subquery in the FROM clause of the main query.

Example 25 (Subqueries execution). Consider now the query shown in Figure 3.10
and the clusterization C = {{0}, {1}}. We show the SQL translation of q (using the given
clusterization) defining the subqueries with CTEs in Listing 3.4, and in the FROM clause
in Listing 3.5.

q(x) :- x τ dblp:Article, (0)
x dblp:objectF ield http://www.example.org/dblp/ (1)

0 1

Triple patterns #Reformulations

{0} 1

{1} 4

Fig. 3.10: Query q and reformulations characteristics.

Listing 3.4: SQL translation defining the subqueries with CTEs of q w.r.t. the clusterization C.

1 WITH
2 temp 0 AS (
3 SELECT DISTINCT s FROM triples AS p1 WHERE p1.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
4 AND p1.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article’),
5 temp 1 AS (
6 SELECT DISTINCT s FROM triples AS p2 WHERE p2.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#objectField’
7 AND p2.o=’http://www.example.org/dblp/’
8 UNION
9 SELECT DISTINCT s FROM triples AS p2 WHERE p2.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cite’

10 AND p2.o=’http://www.example.org/dblp/’
11 UNION
12 SELECT DISTINCT s FROM triples AS p2 WHERE p2.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#ee’
13 AND p2.o=’http://www.example.org/dblp/’
14 UNION
15 SELECT DISTINCT s FROM triples AS p2 WHERE p2.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#url’
16 AND p2.o=’http://www.example.org/dblp/’)
17 SELECT DISTINCT temp 0.s AS att 1 FROM temp 0, temp 1 WHERE temp 1.s=temp 0.s

Listing 3.5: SQL translation defining the subqueries in the FROM clause of q w.r.t. the clusteri-
zation C.

1 SELECT DISTINCT temp 0.s AS x FROM
2 (SELECT DISTINCT s FROM triples AS p1 WHERE p1.p=’http://www.w3.org/1999/02/22−rdf−syntax−ns#type’
3 AND p1.o=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article’) AS temp 0,
4 (SELECT DISTINCT s FROM triples AS p2 WHERE p2.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#objectField’
5 AND p2.o=’http://www.example.org/dblp/’
6 UNION
7 SELECT DISTINCT s FROM triples AS p2 WHERE p2.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#cite’
8 AND p2.o=’http://www.example.org/dblp/’
9 UNION

10 SELECT DISTINCT s FROM triples AS p2 WHERE p2.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#ee’
11 AND p2.o=’http://www.example.org/dblp/’
12 UNION
13 SELECT DISTINCT s FROM triples AS p2 WHERE p2.p=’http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#url’
14 AND p2.o=’http://www.example.org/dblp/’) AS temp 1
15 WHERE temp 1.s=temp 0.s

Preliminary tests seem to show that in most cases defining the subqueries in the FROM
clause of the main query is more efficient than using CTEs.



4. EXPERIMENTAL EVALUATION

This chapter presents a variety of experiments done during our research that lead to, and
support our approach. Several well-known RDF dataset were used during this experimen-
tation stage, including DBpedia [24] and DBLP [35]. Section 4.2 presents some insides
regarding the preparation of the datasets in order to be used in the experiments.

Schema-level triples are kept in memory, while instance-level triples are stored in a
Triple(s, p, o) table, indexed by all permutations of the (s, p, o) columns, leading a total
of 6 indexes. Our indexing choice is inspired by [6] and [13] to give the RDBMS efficient
query evaluation opportunities.

Previous works [4, 6, 13] have used dictionary encoding when storing a RDF dataset,
to avoid storing repeated times and joining string-encoded RDF attributes. As the exper-
iments shows the use of this technique tends to increase the efficiency of query evaluation
against RDBMS and decrease the size of both, the tables and indexes used to store the
instance-level triples. Section 4.3 presents experiments regarding the impact of dictionary-
encoding storage in both the sizes of the tables and indexes, and query execution time.

Finally, Section 4.4 shows the results of executing clustered BGP queries and compare
them to BGP query reformulation execution, using it as baseline.

4.1 Settings

This section introduce general specifications regarding the equipment and common settings
used during the measurements; the particulars of each experiment, will be introduced when
necessary.

All our algorithms are fully implemented in JavaTM7 [44] and deployed them on top
of PostgreSQL [14], version 8.5 (using standard default settings) as the database back-
end for its reputation as a (free) efficient platform that has been used in several related
works [4, 6, 26]. All measured times are averaged over 5 executions, since no major
variations were detected between the different executions.

As in [4, 6, 13, 26], for efficiency we stored the data in a dictionary-encoded Triples(s, p, o)
table, using a unique integer for each distinct value (URIs and literals) in the s, p and
o positions of the dataset. The encoded Triples table is indexed by all the possible
combinations of the three columns (i.e., a total of six indexes). Moreover, the encoding
dictionary was stored as a separate table indexed both by the integer dictionary code and
by the encoded value (URI or literal).

As part of the set up for each experiment, the VACUUM ANALYZE command is exe-
cuted before the experiment starts, to reclaim storage occupied by dead tuples. Moreover,
before measuring each query we warm up the database cache by executing the query once.
Queries whose evaluation requires more than 3 hours were interrupted and duly pointed
out in the experiments.

Hardware The PostgreSQL [14] server ran on a 8-core Intel Xeon (E5506) 2.13 GHz
machine with 16GB RAM, running Mandriva Linux release 2010.0 (Official).
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4.2 Datasets preparation

The datasets used during the experiments are available in multiple formats, including RDF.
However, most of them are stored as N-Triples [45] and sometimes include annotations.
Therefore, data transformation is needed in order to import the datasets into the triples
table. We converted and polish the datasets into a format that can be imported into the
RDBMS engine through a program implemented in Bash [46], that make use of the Raptor
RDF Syntax Library [47], the AWK utility and regular expressions. Once the dump is
transformed, we import the resultant (Tab Separated Values) file using the PostgreSQL
COPY command (copy data between a file and a table). Moreover, an utility implemented
in Java [44] creates the dictionary table and encode the triples table.

4.3 Dictionary-encoded Triples table

We now present experiments on the impact of using a dictionary-encoded Triples table on
both, the size of the database (Section 4.3.1), and the execution time of the reformulated
BGP queries (Section 4.3.2). Early results, and previous works [4, 6, 13, 26], motivated
the use of a dictionary-encoded Triples table, as stated above, to store the data and ran
the rest of the experiments.

4.3.1 Dictionary encoding and DB size

Database size reduction is one of the dictionary-encoding key advantages. Figure 4.1
presents the sizes of the tables, respectively, indexes corresponding to the DBLP [35]
dataset (this dataset consists of 8, 424, 216 triples). We incrementally loaded the DBLP [35]
dataset into the RDBMS engine (an eighth, a quarter, half and the complete dataset) and
measure the size of the database at each stage. Moreover, we stored the dataset in two
different ways:

• Plain: the triples of the dataset are stored as tuples in a table Triples(s, p, o), using
triple column indexes (i.e., a total of six indexes with all the possible combinations
of the three columns).

• Encoded: a unique integer is assigned to each different value in the dataset, and these
pairs are stored in a table Dictionary(key, value), using one index for the keys and
another for the values. Each RDF triple is encoded using the dictionary into a triple
of integer values, that are stores as tuples in a table Triples(s, p, o), using triple
column indexes (i.e., a total of six indexes with all the possible combinations of the
three columns).

Figure 4.2 illustrates the sizes of the tables and indexes comprising the database for
the DBLP [35] and DBpedia [24] (ontology info box) datasets.

Figures 4.1 and 4.2 also illustrate the important space occupancy of RDF indexes,
confirming the initial reports made in [6].
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Fig. 4.1: Database size for the DBLP dataset.

Fig. 4.2: Database size for the DBLP and DBpedia (info box) datasets.
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4.3.2 Dictionary encoding and query execution time

Dictionary encoding is used not only to diminish the space occupancy but also to decrease
the evaluation time of BGP queries. Figures 4.3 and 4.4 illustrate two queries, their
characteristics, and the evaluation time of the reformulated query against both dictionary-
encoded and non-encoded Triples tables.

Figure 4.3 presents a single atom query with many reformulations, while Figure 4.4
introduces a complex query with six atoms and a dense BGP.

Finally, Chart 4.5 shows that in both cases the execution of the query against the
dictionary-encoded Triples table is (considerably) more efficient than the execution of
the queries against the non-encoded Triples table.

q1(x, y) :- x τ y (0) 0
Triple pattern #Reformulations #Tuples

0 73 1, 977, 010

Fig. 4.3: Query q1 and its characteristics.

q101(u, z) :- x dblp:editor y, (0)
y foaf :name z, (1)
x purl:title u, (2)
x dblp:datatypeF ield v, (3)
x purl:publisher “Springer”, (4)
x τ dblp:Document (5)

Triple pattern #Reformulations #Tuples

0 1 14, 645

1 1 446, 964

2 1 716, 647

3 19 2, 629, 667

4 1 4, 367

5 36 711, 174

0 1

2

3

4

5

Fig. 4.4: Query q101 and its characteristics.

Fig. 4.5: Execution time of queries q2 and q101 against plain and dictionary-encoded Triples table.
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4.4 Clustered queries and RDBMs

This section studies query evaluation performance for the two techniques introduced in
Section 3.7, used to translate a clustered BGP query into an SQL main query joining
the subqueries (which corresponds to the reformulations of the clusters) in order to be
executed in a RDBMS engine. The execution time of the reformulated queries is also
included in the experiment as a baseline.

We hand-picked a set of queries for the DBLP dataset with different characteristics.
The queries and their characteristics are detailed in Figures 4.6- 4.17.

Finally, Figure 4.18 summarize the query execution time (in milliseconds) for all the
queries.

Two-atom queries First, we introduce three variations of a two-atoms BGP query using
the built-in property τ and the DBLP [35] class dblp:Document. The queries are listed
in Figures 4.6–4.8. The difference between q2 and q102 lies in the fact that the subject
variable of q2 is x whereas in q102 it is y. Query q104 can be seen as a generalization of
q2 since it states that the type of x is an unknown z as opposed to dblp:Document in
q2. Figures 4.6–4.8 show that the number of reformulations and the number of matching
tuples for the atoms of the queries vary between these three queries.

The query evaluation times at the bottom of Figures 4.6–4.8 demonstrate that clus-
tered BGP query execution are more than 6 times faster than BGP query reformulation
execution, due to the (wide) decrease in the number of reformulations of the executed
query (achieved by clustering the atoms separately).

q2(x, y) :- x τ dblp:Document, (0)
x dblp:datatypeF ield y (1)

0 1

Triple pattern #Reformulations #Tuples

0 36 711, 174

1 19 2, 629, 667

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1} 684 2, 629, 667 242, 018

{0}, {1} 55 2, 629, 667 42, 800 35, 890

Fig. 4.6: Query q2: query syntax, query graph and statistics (top), possible decompositions (cen-
ter), and evaluation performance for these decompositions (bottom).
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q102(x, y) :- y τ dblp:Document, (0)
x dblp:datatypeF ield y (1)

0 1

Triple pattern #Reformulations #Tuples

0 36 711, 174

1 19 2, 629, 667

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1} 684 4, 898 227, 712

{0}, {1} 55 4, 898 36, 600 37, 680

Fig. 4.7: Query q102: query syntax, query graph and statistics (top), possible decompositions (cen-
ter), and evaluation performance for these decompositions (bottom).

q104(x, y, z) :- x τ z, (0)
x dblp:datatypeF ield y (1)

0 1

Triple pattern #Reformulations #Tuples

0 73 1, 977, 010

1 19 2, 629, 667

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1} 1, 387 5, 259, 462 595, 376

{0}, {1} 92 5, 259, 462 72, 082 66, 061

Fig. 4.8: Query q104: query syntax, query graph and statistics (top), possible decompositions (cen-
ter), and evaluation performance for these decompositions (bottom).
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Figures 4.9–4.11 present three new variations of a two-atom query. Thus, q3 and q107

differ in the property value of their second triple, while q108 is a generalization of q3 in that
q108 does not constrain the property value in the second triple. The experiments show
that clustering atoms with few reformulations and high selectivity (e.g., the first atom in
q3 and q108), with many-reformulations, not very selective atoms, is more efficient than
evaluating selective atoms separately.

Moreover, as shown in the evaluation performance chart of q107 (Figure 4.10), while it
is generally profitable to add a highly selective atom to a cluster, the benefit of doing so
diminishes as the number of reformulations of that atom grows. In such cases, it is better
to leave the highly selective, many-reformulations atom alone in its cluster (while it may
still be clustered with others in the future, if its high selectivity gets to offset the risk due
to the many reformulations). In the case of query q107, leaving this atom alone leads to
important reductions (by a factor of more than 12) in the number of reformulations of the
query fragment sent to the RDBMS for evaluation.

q3(x) :- x τ dblp:Document, (0)
x dblp:objectF ield http://www.example.org/dblp/ (1)

Triple pattern #Reformulations #Tuples

0 36 711, 174

1 4 8, 212

0 1

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1} 144 8, 212 911

{0}, {1} 40 8, 212 18, 562 17, 691

Fig. 4.9: Query q3: query syntax, query graph and statistics (top), possible decompositions (cen-
ter), and evaluation performance for these decompositions (bottom).
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q107(x) :- x τ dblp:Document, (0)
x dblp:datatypeF ield http://www.example.org/dblp/ (1)

Triple pattern #Reformulations #Tuples

0 36 711, 174

1 19 0

0 1

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1} 684 0 20, 162

{0}, {1} 55 0 17, 565 16, 169

Fig. 4.10: Query q107: query syntax, query graph and statistics (top), possible decompositions
(center), and evaluation performance for these decompositions (bottom).

q108(x, y) :- x τ dblp:Document, (0)
x dblp:objectF ield y (1)

0 1

Triple pattern #Reformulations #Tuples

0 36 711, 174

1 4 8, 212

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1} 144 8, 212 7, 554

{0}, {1} 40 8, 212 19, 040 16, 506

Fig. 4.11: Query q108: query syntax, query graph and statistics (top), possible decompositions
(center), and evaluation performance for these decompositions (bottom).
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Three-atom query Consider now the three-atom query illustrated in Figure 4.12. Our
experiment shows that a cluster including both atoms (0) and (1) should be avoided, as
the number of reformulations is exceedingly high.

The evaluation performance chart also shows that in this case, using one cluster for
each atom is less efficient than reformulating the whole query. This is because the one-
atom clustering fails to take advantage of the high selectivity of atom (2) or the fact
that it has a single reformulation. Finally, by exploiting the high selectivity and single
reformulation of atom (2) using it in both clusters, BGP query fragmentation execution
is more than 16 times faster than the BGP query reformulation execution (or any of the
other two strategies).

q4(x, y) :- x dblp:datatypeF ield y, (0)
x purl:publisher “Springer′′, (1)
x τ dblp:Document (2)

1

0 2

Triple pattern #Reformulations #Tuples

0 19 2, 629, 667

1 1 4, 367

2 36 711, 174

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1, 2} 684 30, 450 16, 999

{0}, {1}, {2} 56 30, 450 36, 870 32, 974

{0, 1}, {2} 55 30, 450 18, 888 18, 182

{0}, {1, 2} 55 30, 450 15, 996 14, 960

{0, 2}, {1} 685 30, 450 237, 218 262, 914

{0, 1}, {1, 2} 55 30, 450 1, 025 1, 050

{1}, {0, 1}, {1, 2} 56 30, 450 1, 383 29, 622

Fig. 4.12: Query q4: query syntax, query graph and statistics (top), possible decompositions (cen-
ter), and evaluation performance for these decompositions (bottom).
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Four-atom query Figure 4.13 presents a query composed by a highly selective atoms
with 19 reformulations, and three single-reformulation atoms with a high number of match-
ing tuples. As expected, the reformulation of the BGP query (i.e., clustering all the atoms
together) is (much) more efficient than other clusterizations since atom (0) gives a high
selectivity while the other atoms do not increase the number of reformulations of the
evaluated query.

q7(y, u, t) :- x dblp:objectF ield http://www.example.org/dblp/, (0)
x purl:title y (1)
x purl:creator u (2)
x purl:date t (3)

Triple pattern #Reformulations #Tuples

0 4 8, 212

1 1 716, 647

2 1 1, 688, 043

3 1 716, 434

0 1

2 3

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1, 2, 3} 4 19, 576 324

{0}, {1}, {2}, {3} 7 19, 576 14, 527 12, 008

{0}, {1, 2, 3} 5 19, 576 21, 229 20, 318

{0, 1}, {0, 2}, {0, 3} 12 19, 576 462 416

Fig. 4.13: Query q7: query syntax, query graph and statistics (top), possible decompositions (cen-
ter), and evaluation performance for these decompositions (bottom).
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Six-atom query, many-reformulation atoms Query q101, shown in Figure 4.14, is
composed by six atoms and have a dense BGP. In this case, clusterizations that do not put
atoms (3) and (5) in the same cluster are much more efficient; avoiding this combination
keeps the number of query reformulations under control. To ease interpretation of the
results, Figure 4.14 also provides the number of reformulations and of tuples matching
each cluster, in the clusterizations studied in our experiments.

As shown in the evaluation performance chart, several BGP partition and BGP frag-
mentation choices lead to faster execution (up to 314 times) than the execution of the query
reformulated as a whole. Observe that the high selectivity of the single reformulated atom
(4) makes a big differences when it appears in a cluster.
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q101(u, z) :- x dblp:editor y, (0)
y foaf :name z, (1)
x purl:title u, (2)
x dblp:datatypeF ield v, (3)
x purl:publisher “Springer”, (4)
x τ dblp:Document (5)

Triple pattern #Reformulations #Tuples

0 1 14, 645

1 1 446, 964

2 1 716, 647

3 19 2, 629, 667

4 1 4, 367

5 36 711, 174

0 1

2

3

4

5

Clusterization Clusters #Reformu- #Tuples Reformula- CTE FROM
lations tion exec. subqueries clause

time (ms) subqueries

(i) {0, 1, 2, 3, 4, 5} 513 9, 562 593, 804

(ii) {0, 1, 2, 3}, {4, 5} 55 9, 562 4, 138 4, 055

(iii) {2, 3, 4}, {0, 1, 5} 55 9, 562 7, 441 5, 794

(iv) {0, 1, 2, 3, 4}, {0, 1, 2, 5} 55 9, 562 13, 987 13, 774

(v) {0, 2, 3, 4}, {0, 1, 2, 5} 55 9, 562 8, 606 8, 662

(vi) {0, 1, 2, 3, 4}, {0, 5} 55 9, 562 9, 783 8, 100

(vii) {0, 1, 2, 3, 4}, {5} 55 9, 562 22, 462 22, 618

(viii) {0, 1, 2, 3}, {2, 4, 5} 55 9, 562 5, 577 13, 545

(ix) {0, 1, 2, 3, 4}, {4, 5} 55 9, 562 5, 173 5, 110

(x) {0, 1, 2, 4}, {3, 4}, {4, 5} 56 9, 562 1, 891 1, 552

(xi) {3, 4}, {0, 1, 2, 5} 55 9, 562 12, 378 6, 522

(xii) {2, 3, 4}, {0, 1, 2, 5} 55 9, 562 7, 010 12, 055

(xiii) {2, 3, 4}, {0, 1, 4, 5} 55 9, 562 4, 207 7, 296

(xiv) {0, 1, 2, 4}, {3}, {5} 56 9, 562 31, 689 32, 508

(xv) {0, 1, 2, 4, 5}, {3} 55 9, 562 19, 808 21, 904

(xvi) {0, 1}, {0, 4}, {2, 4}, {3, 4}, {4, 5} 58 9, 562 1, 596 18, 149

Cluster #Reformulations #Tuples

{0, 1, 2, 3} 19 14, 694

{4, 5} 36 4, 367

{2, 3, 4} 19 4, 370

{0, 1, 5} 36 14, 674

{0, 1, 2, 5} 36 14, 694

{0, 2, 3, 4} 19 9, 539

{0, 1, 2, 3, 4} 19 9, 562

{0, 5} 36 14, 645

{2, 4, 5} 36 4, 370

{0, 1, 2, 4} 1 9, 562

{3, 4} 19 4, 367

{0, 1, 4, 5} 36 9, 559

{0, 1, 2, 4, 5} 36 9, 562

{0, 1} 1 14, 674

{0, 4} 1 9, 536

{2, 4} 1 4, 370

Fig. 4.14: Query q101: query syntax, query graph and statistics (top), possible decompositions
(center), and evaluation performance for these decompositions and their clusters (bot-
tom).
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Four-atom chain query Figure 4.15 presents a query having two single-reformulation
atoms with high selectivity, each of which is connected to an atom with a high number of
reformulations (73); the latter two atoms are connected among them. Experiments show
the execution of a clusterization such that each of the atoms with 73 reformulations is
clustered separately (with a corresponding highly selective, single reformulation atom) is
more than 227 times faster than reformulating the whole BGP query.

q110(x, y, z) :- x τ z, (0)
y τ z, (1)
x purl:publisher “Springer′′, (2)
y purl:publisher “Morgan Kaufmann′′ (3)

Triple pattern #Reformulations #Tuples

0 73 1, 977, 010

1 73 1, 977, 010

2 1 4, 367

3 1 39

0 1

2 3

Clusters #Reformulations #Tuples
Reformulation

exec. time (ms)
CTE subqueries
exec. time (ms)

FROM clause subqueries
exec. time (ms)

{0, 1, 2, 3} 1, 721 203, 462 438, 498

{0}, {1}, {2}, {3} 148 203, 462 71, 977 69, 376

{0, 2}, {1, 3} 146 203, 462 1, 924 1, 528

Fig. 4.15: Query q110: query syntax, query graph and statistics (top), possible decompositions
(center), and evaluation performance for these decompositions and their clusters (bot-
tom).

Once again, keeping a tab on the number of reformulations while using atom selectivity
to reduce the number of intermediate subquery (cluster) results, improves BGP query
execution efficiency.
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When BGP reformulation fails During our experiments we encountered some BGP
queries whose evaluation, due to the high number of reformulations, is simply unfeasible.
In some of the cases the number of reformulations is so high that the Reformulate
algorithm takes hours or even cannot conclude due to an “out of memory” exception.
Beyond the fact that the “maximum Java heap size” can be set, this problem is intrinsic
to BGP query reformulation. For any given “maximum Java heap size”, there is always
a BGP query such that the number of reformulations is high enough to require more
memory.

We also experienced cases in which the SQL translation of the reformulated query is
syntactically so large that an org.postgresql.util.PSQLException is raised” “The SQL
statement could not be executed: ERROR: stack depth limit exceeded”. Once again, be-
yond the given hint (Hint: Increase the configuration parameter ‘‘max stack depth’’,

currently 2048kB, after ensuring the platform’s stack depth limit is adequate.), this
error is intrinsic to the very large syntactically size of the reformulated queries. For any
given max stack depth, there is a BGP query such that the SQL translation of the query
reformulation exceed the limit.

Finally, there are some cases in which the reformulations, beyond being tens of thou-
sands, can be calculated and the SQL translation executed. However, the query requires
many hours of evaluation making its execution unfeasible.

Here we present two such queries. As illustrated in the evaluation performance charts,
the execution of the clustered queries is not only feasible but also done in a couple of
seconds.
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q111(z, v, u, w, t) :- x τ dblp:Document, (0)
y τ dblp:Document, (1)
x dblp:objectF ield u, (2)
y dblp:objectF ield t, (3)
x purl:creator z, (4)
y purl:creator z (5)
x purl:publisher “Springer′′, (6)
y purl:publisher “Morgan Kaufmann′′ (7)

Triple pattern #Reformulations #Tuples

0 36 711, 174

1 36 711, 174

2 4 8, 212

3 4 8, 212

4 1 1, 688, 043

5 1 1, 688, 043

6 1 4, 367

7 1 39

0 1

2 3

4 5

6 7

Clusterization Clusters #Reformu- #Tuples Reformula- CTE FROM
lations tion exec. subqueries clause

time (ms) subqueries

(i) {0, 1, 2, 3, 4, 5, 6, 7} 20, 736 ∗ ∗
(ii) {0, 4, 6}, {2, 4, 6}, {1, 5, 7}, {3, 5, 7} 80 0 1, 034 127

(iii) {0, 2, 4, 6}, {1, 3, 5, 7} 288 0 4, 096 1, 789

(iv) {3, 4, 5, 6, 7}, {0}, {1}, {2} 80 0 34, 814 33, 509

(v) {0, 6}, {1, 7}, {2, 6}, {3, 7}, {4, 6}, {5, 7} 82 0 893 137

(vi) {0, 6}, {1, 7}, {2, 6}, {3, 7}, {2, 4, 6}, {5, 7} 85 0 674 174

(vii) {0, 6}, {1, 7}, {3, 7}, {2, 4, 6}, {5, 7} 81 0 856 60

(viii) {2, 3, 4, 5, 6, 7}, {0}, {1} 81 0 37, 650 40, 352

(ix) {1, 2, 3, 4, 5, 6, 7}, {0} 612 0 30, 790 31, 257

∗: The query execution was interrupted after running for three hours.

Fig. 4.16: Query q111: query syntax, query graph and statistics (top), possible decompositions
(center), and evaluation performance for these decompositions and their clusters (bot-
tom).
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q106(z, v, u, w, t) :- x τ v, (0)
y τ w, (1)
x dblp:datatypeF ield u, (2)
y dblp:datatypeF ield t, (3)
x purl:creator z, (4)
y purl:creator z (5)
x purl:title r, (6)
y purl:title s, (7)
x purl:publisher “Springer′′, (8)
y purl:publisher “Morgan Kaufmann′′ (9)

Triple pattern #Reformulations #Tuples

0 73 1, 977, 010

1 73 1, 977, 010

2 19 2, 629, 667

3 19 2, 629, 667

4 1 1, 688, 043

5 1 1, 688, 043

6 1 716, 647

7 1 716, 647

8 1 4, 367

9 1 39

0 12 3

4 5

6 78 9

Clusterization Clusters #Reformu- #Tuples Reformula- CTE FROM
lations tion exec. subqueries clause

time (ms) subqueries

(i) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 1, 923, 769 ∗ ∗
(ii) {0, 4, 6, 8}, {2, 4, 6, 8}, {1, 5, 7, 9}, {3, 5, 7, 9} 184 80 2, 878 2, 811

(iii) {1, 5, 7, 9}, {3}, {0, 4, 6, 8}, {2} 184 80 32, 529 31, 112

(iv) {1}, {3, 5, 7, 9}, {0}, {2, 4, 6, 8} 184 80 73, 388 71, 886

(v) {1, 5, 7, 9}, {3, 5, 7, 9}, {0, 4, 6, 8}, {2, 8} 184 80 2, 825 2, 814

(vi) {1, 5, 7, 9}, {3, 5, 7, 9}, {0, 8}, {2, 4, 6, 8} 184 80 2, 346 2, 468

(vii) {1, 5, 7, 9}, {3, 9}, {0, 4, 6, 8}, {2, 4, 6, 8} 184 80 3, 020 3, 029

(viii) {1, 9}, {3, 5, 7, 9}, {0, 4, 6, 8}, {2, 4, 6, 8} 184 80 3, 026 2, 532

(ix) {1, 5, 9}, {3, 7, 9}, {0, 4, 6, 8}, {2, 4, 6, 8} 184 80 2, 956 3, 017

(x) {1, 7, 9}, {3, 5, 9}, {0, 4, 6, 8}, {2, 4, 6, 8} 184 80 2, 554 3, 426

(xi) {1, 5, 7, 9}, {3, 5, 7, 9}, {0, 4, 8}, {2, 6, 8} 184 80 2, 815 2, 824

(xii) {1, 5, 7, 9}, {3, 5, 7, 9}, {0, 6, 8}, {2, 4, 8} 184 80 2, 381 2, 828

(xiii) {1, 7, 9}, {3, 5, 9}, {0, 6, 8}, {2, 4, 8} 184 80 3, 280 2, 717

(xiv) {0, 2, 4, 6, 8}, {1, 3, 5, 7, 9} 2, 774 80 44, 715 56, 464

(xv) {4, 5, 6, 7, 8, 9}, {0}, {1}, {2}, {3} 185 80 106, 369 89, 579

(xvi) {0, 4, 5, 6, 7, 8, 9}, {1}, {2}, {3} 184 80 760, 22 69, 182

(xvii) {0, 2, 4, 5, 6, 7, 8, 9}, {1, 3} 80 636, 152 750, 097

(xviii) {0, 8}, {1, 9}, {2, 8}, {3, 9}, {6, 8}, {7, 9}, {4, 8}, {5, 9} 189 80 2, 404 1, 736

Cluster #Reformulations #Tuples

{0, 4, 6, 8} 73 1, 368

{2, 4, 6, 8} 19 2, 530

{1, 5, 7, 9} 73 110

{3, 5, 7, 9} 19 110

{2, 8} 19 30, 450

{0, 8} 73 8, 734

{3, 9} 19 92

{1, 9} 73 78

{1, 5, 9} 73 110

{3, 7, 9} 19 92

{1, 7, 9} 73 78

{3, 5, 9} 19 110

{0, 4, 8} 73 1, 364

{2, 6, 8} 19 30, 472

{0, 6, 8} 73 8, 740

{2, 4, 8} 19 2, 514

{0, 2, 4, 6, 8} 1, 387 5, 056

{1, 3, 5, 7, 9} 1, 387 220

∗: Given the very high number of reformulations of q106 the reformulate algorithm could
not finished the query reformulation, an java.lang.OutOfMemoryError Exception raised.
Moreover, during our experiments we also experienced that queries with too many refor-
mulations may also generate an org.postgresql.util.PSQLException Exception: “The SQL
statement could not be executed: ERROR: stack depth limit exceeded”. Beyond the given
hint (Hint: Increase the configuration parameter “max stack depth” (currently 2048kB),
after ensuring the platform’s stack depth limit is adequate.), the error is intrinsic to the
very large syntactically size of the reformulated queries.

Fig. 4.17: Query q106: query syntax, query graph and statistics (top), possible decompositions
(center), and evaluation performance for these decompositions and their clusters (bot-
tom).
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Figure 4.18 summarizes the evaluation performance of all the queries in Figures 4.6-
4.17. Observe that the reformulation execution time is missing for queries q111 and q106

since the reformulation of the queries could not be evaluated.

Fig. 4.18: Queries evaluation performance summary (using the known clusterization having pro-
vided the best performance).

4.5 Experimenting with our proposed algorithms

In this section, we describe a set of experiments we performed with the algorithms pre-
viously introduced in the thesis, namely: the greedy threshold reduction factor algorithm
(GTRFA, Section 3.5.4), the greedy overlapping fragments threshold reduction Factor Al-
gorithm (GOFTRFA, Section 3.5.5) and its optimized variant GOFTRFA-TS outlined
in the same section. For what concerns the naive threshold reduction factor algorithm
(NTRFA, Section 3.5.3), as explained when introducing the algorithm, we do not ex-
pect it to be competitive with the other ones and therefore its implementation has been
postponed and thus no experiments with it are described here.

For our experiments, we considered the same queries as have been presented in the
previous experiments. We are interested in two main metrics:

• the efficiency of each algorithm, that is, its running time;

• the effectiveness, that is, how well the algorithm performs in recommending cluster-
izations that indeed lead to a fast evaluation of the reformulated query.

Further, we have examined the impact of the values taken by the parameters charac-
terizing the algorithms, which we recall below:

The # tuples factor α is a coefficient used to ponder the number of results returned by
the evaluation of a cluster, in the cost estimation assigned to a given clustering;
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The # reformulations factor β similarly is a coefficient used to ponder the number of re-
formulations of a cluster, in the cost estimation assigned to a given clustering;

The reformulations threshold t is the number of reformulations not to be exceeded by a
given cluster (when possible).

Throughout our experiments, we assigned the following values to these parameters:

• α = 10;

• β ∈ {1, 100.000};

• t ∈ {10, 100, 1.000, 1.500}

The reason why α was constant is that we were interested in observing the relative
impact of α and β in the clusterization cost factor, and to this effect, it sufficed to vary β.
Further, the values for t were inspired from the behavior of interesting queries on real-life
data set we experimented with.

4.5.1 Algorithm GTRFA

Fig. 4.19: GTRFA running time for t = 10, β = 1, α = 10.

Figure 4.19 depicts the running time of Algorithm GTRFA for the the parameter
configuration t = 10, β = 1, α = 10. The figure depicts the time taken by the algorithm
in order to: obtain the statistics necessary for estimating the number of results of various
clusters, reformulate clusters to compute the number of reformulations of each, and the
other steps of the algorithm itself as depicted in Algorithm 4. We found that the latter
was negligible, and less than 10 ms in all cases. (This remark holds for the remainder of
the experiments with our algorithms.)
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Figure 4.19 shows that overall, the algorithm running time is acceptable and never
more than three seconds, for small queries such as q2 (two atoms) up to relatively large
queries such as q106 (ten atoms). Observe that the statistics are currently gathered through
SQL queries against a statistics database; this could be significantly sped up by relying
on more efficient data statistics structures, for instance in memory.

Further, we examined the clusterizations recommended by the algorithm for all the
queries considered, to see how efficient their evaluation was.

Fig. 4.20: GTRFA queries evaluation performance summary for t = 10, β = {1, 100.000}, α = 10.

In most cases, we found that the recommended clustering was much more efficient than
plain reformulation.

In a minority of cases, however, we found that reformulation may turn out to perform
better than the recommended choice. This is related to the value of the t threshold: in
some cases, if one query atom has (slightly) more than t reformulations, the algorithm will
never cluster it together with another atom having more than one reformulation (in order
for the possible cluster thus formed, not to go beyond the t threshold); however, of the
other atom has a small number of reformulations, the clusterization thus avoided could
have been an efficient one. This is exactly the case of query q3, whose detailed analysis is
provided in Figure 4.9.
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Fig. 4.21: GTRFA queries evaluation performance summary for t = 100, β = {1, 100.000}, α = 10.

Fig. 4.22: GTRFA queries evaluation performance summary for t = 1.000, β = {1, 100.000}, α =
10.
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4.5.2 Algorithm GOFTRFA

Figures 4.23- 4.28 illustrate the performance of the clusterizations recommended by the
algorithm for some of the queries considered (q2-q4). Unlike Algorithm 4 (mostly guided
by the threshold), experiments shown (as expected) that the values of α and β have a
bigger incidence in the recommended clusterization.

Fig. 4.23: GOFTRFA queries evaluation performance summary for t = 10, β = 1, α = 10.

Fig. 4.24: GOFTRFA queries evaluation performance summary for t = 10, β = 100.000, α = 10.
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Fig. 4.25: GOFTRFA queries evaluation performance summary for t = 100, β = 1, α = 10.

Fig. 4.26: GOFTRFA queries evaluation performance summary for t = 100, β = 100.000, α = 10.
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Fig. 4.27: GOFTRFA queries evaluation performance summary for t = 1.000, β = 1, α = 10.

Fig. 4.28: GOFTRFA queries evaluation performance summary for t = 1.000, β = 100.000, α = 10.

In most cases, we found that the recommended clusterization was much more efficient
than plain reformulation, and typically either the best clustering we could manually pro-
duce (among those shown previously in this experimental study), or better than those.

Observe that in many cases Algorithm 5 recommends a single cluster containing all the
atoms (plain reformulation) when this is more performant (according to the cost function
and the input arguments).
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4.5.3 Algorithm GOFTRFA-TS

As pointed in Section 3.5.5, early experiments showed that Algorithm 5 may lead to
sub-optimal fragmentations as it often lead to (redundant) fragments (q4 and q111) and
modifications were proposed.

Figures 4.29- 4.30 illustrate the performance of the clusterizations recommended by the
algorithm for some of the queries considered (q4-q106). Two-atoms queries q2-q108 are not
considered because the recommended clusterizations are the same given by Algorithm 5.

Fig. 4.29: GOFTRFA-TS queries evaluation performance summary for t = {10, 100, 1.000}, β =
1, α = 10.

Fig. 4.30: GOFTRFA-TS queries evaluation performance summary for t = {10, 100, 1.000}, β =
100.000, α = 10.
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4.5.4 Summary

Finally, Figure 4.31 summarizes the performance of the clusterizations recommended by
the algorithms for all the queries in Figures 4.6- 4.17. Observe that the reformulation
execution time is missing for queries q111 and q106 since the reformulation of the queries
could not be evaluated.

Fig. 4.31: Queries evaluation performance summary (using the known clusterization having pro-
vided the best performance).

Figure 4.31 shows that in most cases the recommended clusterization was much more
efficient than plain reformulation, and typically either the best clustering we could man-
ually produce (among those shown previously in this experimental study), or better than
those.

Overall, Algorithm 5 (GOFTRFA) and its variations usually proved to lead to equal
or more performant clusterizations than Algorithm 4 (GTRFA).

4.6 Experiment conclusion

Given a dataset and a BGP query, our experiments in Section 4.4 have shown that in
some cases the use of a main query joining the SQL translation of the reformulated atoms
is more efficient than using CTEs (Common Table Expressions) and joining those in the
main query and vice versa in others. Opposed to what one would suppose, the two differ-
ent syntactic ways of writing the query lead in some cases to big performance differences
(this is the case of q4, q101 and q111, with some clusterizations).

The relational database approach to execute a query that joins relations, is to select
the best order in which these relations should be joined in order to minimize the time
consumed. Given a query Q = R on S on T , executing the join of the 3 relations in
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some order will take less time than (R on S) on (S on T ), or the join of any other com-
bination of pairs of relations equivalent to Q. This observation leads us to considering
non-overlapping clustering of queries. Reformulated BGP queries introduce a new element
to take into account, i.e., the number of reformulations. The execution time, and therefore
the execution plan, does not depend mainly on the number of results of each atom but
also (and oftentimes more strongly) on the number of reformulations of the atoms. It is
desirable, then, to include in several clusters atoms with one (or a few) reformulations and
high selectivity, since it will reduce the intermediate number of results produced by the
subquery without incrementing (or not drastically) the number of reformulations.

Our experiments in Section 4.4, comparing the two clusterization methods introduced
in Section 3.2, shows that fragmentation increases efficiency w.r.t. partition when the
query contains atoms with few reformulations and high selectivity (which are included in
multiple fragments).

Section 4.5 shows that in most cases the clusterization recommended by our algorithms
was much more efficient than plain reformulation, and typically either the best clustering
we could manually produce (among those shown previously in this experimental study),
or better than those. Experiments also shown that the arguments given (α, β and the
threshold) have an important incidence in the recommended clusterization and therefore
must be carefully selected.

Experimentation with real-life datasets shows that the number of tuples matching a
triple pattern is in the thousands (and even tens and hundreds of thousands) while the
number of reformulations of the same triple pattern usually are well below the hundred.
Therefore, for the sake of increase the weight of the number of reformulations when cal-
culating the cost, the factor β have to be much greater than the factor α.



5. CONCLUSION

This thesis is placed at the junction of two main classes of systems and algorithms.

Databases and in particular relational database management systems (RDBMSs) have
been designed and thoroughly optimized in order to make them provide good and
reliable performance when evaluating queries. The cornerstone of such efficient sys-
tems is the ability to optimize or rewrite queries into equivalent expressions which
return the same results as the original query, regardless of the database they are
evaluated upon. To make such equivalence reasoning possible (and efficient), strong
simplifications have been typically consented to the expressive power of the query
language, and of the constraints known to hold on the database. Thus, it can be
(broadly) stated that databases traded quite an amount of expressive power in ex-
change for efficiency.

Knowledge bases have, in contrast, focused on (very) expressive languages for describing
data and the constraints which hold on it. While numerous works have explored
the tractability frontier in terms of features of the constraint language, work still
remains to be done in order to implement scalable systems that would run efficiently
on data sets sizes typically handled by databases. Thus, knowledge management
has (broadly speaking) favored expressive power at the expense of efficiency and
performance robustness.

A particular class of applications requiring knowledge management tools and tech-
niques originates in the Semantic Web: heterogeneous Web data is represented in RDF,
and endowed with constraints expressed in one of the many languages available. In our
work, we have considered RDF Schema constraints. To help address the query evalua-
tion needs brought by RDF interogation languages such as SPARQL, many works au-
thored especially since 2007 have proposed taking advantage of databases and in particu-
lar RDBMSs, which have been heavily optimized for joins. While SPARQL queries pose
unique challenges (they tend to be syntactically very large self-join queries over a single
table etc.), properly tuned and engineered relational databases have been able to cope
reasonably well with the issues raised by query evaluation, ignoring schema and semantic
constraints. This can be seen as fitting in an RDBMS, the part of the Semantic Web data
management problem that could easily fit – and disregarding the rest.

Once semantic constraints are taken into account, two main methods can be used to
reflect their impact on query answering. First, one could attempt to derive all consequences
of the constraints, or, equivalently in our context, to compute all the entailed or derived
triples, and store them in the database next to the explicit data. This approach is also
termed saturation. Once this is done, query answering is reduced to query evaluation
and the facilities provided by an RDBMS (possibly one which has been best tuned to the
needs of RDF queries) are sufficient. Alternatively, one can leave the database unchanged
and reformulate queries asked against the data, so that the reformulated query, when
evaluated (through standard RDBMS techniques) against the database, return the same
answer as if the original query was evaluated on the saturated database. (We stress that
query reformulation does not actually require to saturate the database.)
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The trade-offs between the two are easy to see. Saturation increases the size of the
database, and may require complex computations to maintain when the schema and/or the
data change. In contrast, reformulation sometimes produces syntactically large queries,
which may raise performance issues to database systems, even to efficient ones. This
is because the complexity of query optimization is determined by the syntactic query
complexity, and RDF queries are unusually large from an RDBMS perspective, where
typical applications feature few relations, each with many attributes; this contrasts with
the RDF setting of “narrow” relations of around three attributes.

The starting point of this thesis is the observation driven from the recent research [1]
that reformulated query evaluation with an RDBMS remains relatively expensive even
after intelligent indexes have been properly implemented in the database. Our goal has
thus been to investigate which alternatives exist with respect to the method of evaluating
such reformulated queries, and we have identified two main dimensions among which
choices can be made:

1. First, we have considered different ways of clustering a query into sub-queries, such
that each sub-query is reformulated and evaluated individually, before joining the
results of all sub-queries. We have explored both query clusterizations which amount
to partitions of the set of query atoms, and fragmentations with overlapping sets of
atoms. Interestingly, we have observed that clusterizations with and without overlap
can lead to performance gains of up to three orders of magnitude!

2. Second, we have exploited alternatives provided by modern SQL for expressing the
relatively complex queries which result from reformulation. While in principle it
could have been hoped that performance would not be impacted by the syntax
used to specify the query, we have noted that in practice, the syntax does make a
difference, not as strong as the query clusterization strategy, but a significant one
nonetheless.

Thus, a first contribution of this thesis is to highlight the existence of this space of
alternatives and to experimentally validate their interest through extensive experiments on
real-life Semantic Web data sets. We also demonstrate that while partition-based strategies
would seem intuitively more efficient (since they do not evaluate any query atom more
than once), in practice, overlapping query fragments may lead to better performance, since
a highly selective, few-reformulations atom should be joined (evaluated together) with
several large-result atoms in order to diminish the number of results without increasing
significantly the number of reformulations of the resulting sub-query.

The second contribution of the thesis consists of heuristic algorithms for recommending
query clusterization strategies that are likely to provide the most important performance
gains to the process of evaluating queries through reformulation. These algorithms exploit
statistic information about the database and the schema, such as the number of triples that
are likely to match a given sub-query, or the number of reformulations that it may have, in
order to identify intelligent clusterization strategies. Our experiments have shown that our
algorithms succeed in automatically identifying high-performance clusterization strategies,
thus making good profit of the clusterization search space we identified. Moreover, fine
tuning of the algorithms parameters (α, β and t) results in more efficient clusterizations.

Our experiments also shown that Algorithm 5 generally produce more efficient clus-
terizations than Algorithm 4.
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Our approach and algorithms were conceived and deployed as standalone Java-based
modules working on top of an off-the-shelf RDBMS, in particular the popular and efficient
open source PostgreSQL system. Thus, we view the results of our thesis as a contribu-
tion towards bridging the gap between expressive models for Web data management and
the powerful RDBMS tools which do not currently support the semantic needs of such
applications.
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6. RELATED WORK

To the best of our knowledge, the problem we are considering has only been addressed
so far in [48], where the authors only consider the choice of evaluating all unions before
any join. As we shown in the sequel, this is just one point in the search space that we
consider. In contrast, our heuristic algorithms may make more complex choices, where
some but not all the unions entailed by reformulations are pushed under joins, depending
on the number of reformulations of each term as well as the number of triples matching
the term.

As pointed out in Section 4.5.1, the statistics are currently gathered through SQL
queries against a statistics database. The implementation of more efficient (in memory)
data statistics structures may significantly sped up the query clusterization algorithms.

In this thesis we have tried various α, β and t (threshold reformulations). Moreover,
aiming to strengthen the contribution, it is interesting to study how (and how much) can
we automatically tune these parameters so that we get the best clusterization.

Linear programming had been successfully used solving optimization problems sub-
ject to constraints. The proposal of a model for the clusterization problem, and use of
optimizers and LP solvers such as Gurobi [49] is subject to future research.

The harnessing of the opportunities presented in Section 3.6.2 for optimizing the exe-
cution of a clustered BGP query and study of the implications with respect to the clus-
terization techniques is also an interesting subject that might improve, even more, the
efficacy of the BGP query evaluation.
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APPENDIX B

RDF and RDFS vocabulary

RDF vocabulary [31]

rdf :type
rdf :Property
rdf :XMLLiteral
rdf :nil
rdf :List
rdf :Statement
rdf :subject
rdf :predicate
rdf :object
rdf :first
rdf :rest
rdf :Seq
rdf :Bag
rdf :Alt
rdf : 1
rdf : 2
. . .
rdf :value

RDFS vocabulary [31]

rdfs:domain
rdfs:range
rdfs:Resource
rdfs:Literal
rdfs:Datatype
rdfs:Class
rdfs:subClassOf
rdfs:subPropertyOf
rdfs:member
rdfs:Container
rdfs:ContainerMembershipProperty
rdfs:comment
rdfs:seeAlso
rdfs:isDefinedBy
rdfs:label

RDF and RDFS axiomatic triples

RDF axiomatic triples [31]

〈τ τ rdf :Property〉
〈rdf :subject τ rdf :Property〉
〈rdf :property τ rdf :Property〉
〈rdf :object τ rdf :Property〉
〈rdf :first τ rdf :Property〉
〈rdf :rest τ rdf :Property〉
〈rdf :value τ rdf :Property〉
〈rdf : 1 τ rdf :Property〉
〈rdf : 2 τ rdf :Property〉
. . .
〈rdf :nil τ rdf :List〉

RDFS axiomatic triples [31]

〈rdf :type rdfs:domain rdfs:Resource〉
〈rdfs:domain rdfs:domain rdf :Property〉
〈rdfs:range rdfs:domain rdf :Property〉
〈rdfs:subPropertyOf rdfs:domain rdf :Property〉
〈rdfs:subClassOf rdfs:domain rdfs:Class〉
〈rdf :subject rdfs:domain rdf :Statement〉
〈rdf :predicate rdfs:domain rdf :Statement〉
〈rdf :object rdfs:domain rdf :Statement〉
〈rdfs:member rdfs:domain rdfs:Resource〉
〈rdf :first rdfs:domain rdf :List〉
〈rdf :rest rdfs:domain rdf :List〉
〈rdfs:seeAlso rdfs:domain rdfs:Resource〉
〈rdfs:isDefinedBy rdfs:domain rdfs:Resource〉
〈rdfs:comment rdfs:domain rdfs:Resource〉
〈rdfs:label rdfs:domain rdfs:Resource〉
〈rdf :value rdfs:domain rdfs:Resource〉
〈rdf :Alt rdfs:subClassOf rdfs:Container〉
〈rdf :Bag rdfs:subClassOf rdfs:Container〉
〈rdf :Seq rdfs:subClassOf rdfs:Container〉
〈rdfs:ContainerMembershipProperty rdfs:subClassOf rdf :Property〉

〈rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso〉

〈rdf :XMLLiteral rdf :type rdfs:Datatype〉
〈rdf :XMLLiteral rdfs:subClassOf rdfs:Literal〉
〈rdfs:Datatype rdfs:subClassOf rdfs:Class〉

〈rdf :type rdfs:range rdfs:Class〉
〈rdfs:domain rdfs:range rdfs:Class〉
〈rdfs:range rdfs:range rdfs:Class〉
〈rdfs:subPropertyOf rdfs:range rdf :Property〉
〈rdfs:subClassOf rdfs:range rdfs:Class〉
〈rdf :subject rdfs:range rdfs:Resource〉
〈rdf :predicate rdfs:range rdfs:Resource〉
〈rdf :object rdfs:range rdfs:Resource〉
〈rdfs:range rdfs:member rdfs:rangerdfs:Resource〉
〈rdf :first rdfs:range rdfs:Resource〉
〈rdf :rest rdfs:range rdf :List〉
〈rdfs:seeAlso rdfs:range rdfs:Resource〉
〈rdfs:isDefinedBy rdfs:range rdfs:Resource〉
〈rdfs:comment rdfs:range rdfs:Literal〉
〈rdfs:label rdfs:range rdfs:Literal〉
〈rdf :value rdfs:range rdfs:Resource〉

〈rdf :1 rdf :type rdfs:ContainerMembershipProperty〉
〈rdf :1 rdfs:domain rdfs:Resource〉
〈rdf :1 rdfs:range rdfs:Resource〉
〈rdf :2 rdf :type rdfs:ContainerMembershipProperty〉
〈rdf :2 rdfs:domain rdfs:Resource〉
〈rdf :2 rdfs:range rdfs:Resource〉
. . .
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Entailment rules

Simple entailment rules
Rule name [31] Triples Entailed triple (`iRDF)

se1 s p o s p :b, where :b identifies a blank node allocated to s by rule se1 or se2

se2 s p o :b p o, where :b identifies a blank node allocated to s by rule se1 or se2

Literal entailment rules
Rule name [31] Triples Entailed triple (`iRDF)

lg s p o s p :b, where :b identifies a blank node allocated to the literal s by this rule

gl s p :b s p o, where :b identifies a blank node allocated to o by rule lg

RDF entailment rules
Rule name [31] Triples Entailed triple (`iRDF)

rdf1 s p o p τ rdf :Property

rdf2 s p o, o τ rdf :XMLLiteral :b τ rdf :XMLLiteral, where :b identifies a blank node allocated to o by rule lg

RDFS entailment rules
Rule name [31] Triples Entailed triple (`iRDF)

rdfs1 s p o, o p rdf :Literal :b τ rdf :Literal, where :b identifies a blank node allocated to o by rule lg

rdfs2 p ←↩d s, s1 p o1 s1 τ s

rdfs3 p ↪→r s, s1 p o1 o1 τ s

rdfs4a s p o s τ rdfs:Resource

rdfs4b s p o o τ rdfs:Resource

rdfs5 p ≺sp p1, p1 ≺sp p2 p ≺sp p2

rdfs6 s τ rdf :Property s ≺sp s

rdfs7 p1 ≺sp p2, s p1 o s p2 o

rdfs8 s τ rdfs:Class s ≺sc rdfs:Resource

rdfs9 s1 ≺sc s2, s τ s1 s τ s2

rdfs10 s τ rdfs:Class s ≺sc s

rdfs11 s ≺sc s1, s1 ≺sc s2 s ≺sc s2

rdfs12 s τ rdfs:ContainerMembershipProperty s ≺sp rdfs:member

rdfs13 s τ rdfs:Datatype s ≺sc rdfs:Literal

Extensional RDFS entailment rules
Rule name [31] Triples Entailed triple (`iRDF)

ext1 p ←↩d s1, s1 ≺sc s p ←↩d s

ext2 p ↪→r s1, s1 ≺sc s p ↪→r s

ext3 p ≺sp p1, p1 ←↩d s p ←↩d s

ext4 p ≺sp p1, p1 ↪→r s p ↪→r s

ext5 τ ≺sp p, p ←↩d p1 rdfs:Resource ≺sc p1

ext6 ≺sc ≺sp p, p ←↩d p1 rdfs:Class ≺sc p1

ext7 ≺sp ≺sp p, p ←↩d p1 rdfs:Property ≺sc p1

ext8 ≺sc ≺sp p1, p ↪→r p1 rdfs:Class ≺sc p1

ext9 ≺sp ≺sp p1, p ↪→r p1 rdfs:Property ≺sc p1
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APPENDIX C

SQL translation of reformulated queries

SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’
AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Document ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Inproceed ings ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Phdthes i s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#A r t i c l e ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#C o l l e c t i o n ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Www’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Proceed ings ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#S e r i e s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Book ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Mas t e r s the s i s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c r o s s r e f ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#datatypeFie ld ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . o AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . o=p1 . s

UNION
SELECT DISTINCT p0 . o AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c r o s s r e f ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . o=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Document ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Document ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Document ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s
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UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Inproceed ings ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Inproceed ings ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Inproceed ings ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Phdthes i s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Phdthes i s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Phdthes i s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#A r t i c l e ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#A r t i c l e ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#A r t i c l e ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#C o l l e c t i o n ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#C o l l e c t i o n ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#C o l l e c t i o n ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Www’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Www’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Www’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Proceed ings ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Proceed ings ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Proceed ings ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#S e r i e s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s
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UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#S e r i e s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#S e r i e s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Book ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Book ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Book ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Mas t e r s the s i s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Mas t e r s the s i s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ’

AND p0 . o=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#Mas t e r s the s i s ’
AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c r o s s r e f ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c r o s s r e f ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c r o s s r e f ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#isbn ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#author ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#s e r i e s ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#volume ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#schoo l ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#p u b l i s h e r ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#b o o k t i t l e ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s
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UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#note ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#t i t l e ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#chapter ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#year ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#month ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#j o u r n a l ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#e d i t o r ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#pages ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s
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SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#number ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s
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AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s
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AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#datatypeFie ld ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#datatypeFie ld ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#datatypeFie ld ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#o b j e c t F i e l d ’
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AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#pages ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#number ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#number ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#number ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#address ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#address ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#address ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#cdrom ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#cdrom ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#cdrom ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#c i t e ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p0 . s=p1 . s

UNION
SELECT DISTINCT p0 . s AS a t t 1 FROM t r i p l e s AS p0 , t r i p l e s AS p1 WHERE p0 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#u r l ’

AND p1 . p=’ http :// sw . d e r i . org /˜ aharth /2004/07/ dblp / dblp . owl#ee ’
AND p1 . o=’ http ://www. example . org / dblp / ’
AND p1 . s=p0 . s

Fig. 6.1: SQL translation of the reformulation of query q w.r.t. DBLP [35].
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