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Abstract

En los últimos tiempos se han desarrollado aplicaciones, denominadas SOLAP (por Spa-
tial OLAP), que integran Sistemas de Información Geográfica (GIS) y de Procesamiento
Anaĺıtico On-Line(OLAP), con el objetivo de explorar y analizar datos espaciales y al-
fanuméricos en forma conjunta. En la práctica, sin embargo, la información espacial y no
espacial está sujeta a cambios. Por ejemplo, las aplicaciones de uso catastral requieren
la capacidad de manejar situaciones en las que las parcelas se fusionan, se dividen o se
modifican. Estos tipos de cambio se denominan discretos, para distinguirlos de aquellos
que denotan movimiento continuo (ej: un auto que transita una autopista). Soportar estos
tipos de cambio requiere extender SOLAP de modo de soporte aplicaciones temporales. En
esta tesis presentaremos el diseño e implementación de un lenguaje de consulta espacio-
temporal llamado TPiet-QL, que soporta cambios discretos mediante una extensión de
Piet-QL, un lenguaje de consulta (no temporal) para SOLAP. TPiet-QL permite expre-
sar consultas integradas GIS-OLAP en un escenario en el que los objetos espaciales se
modifican a través del tiempo.

Keywords: GIS, OLAP, SOLAP, Piet-QL.
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Abstract

In recent years, applications integrating Geographic Information Systems (GIS) and On-
Line Analytical Processing (OLAP) have emerged, aimed at exploring and analyzing spatial
data. These applications have been called SOLAP (Spatial OLAP). In real-world SOLAP
applications, spatial and non-spatial data are subject to changes. For example, land use
or cadastral applications require the ability to handle situations where parcels are merged,
split, or updated. These kinds of changes have been called discrete, to distinguish them
from other kind of spatio-temporal data, denoted continuous motion (e.g., a car moving
in a highway). Therefore, SOLAP needs to be extended in order to support these kinds of
applications. In this thesis we present the design and implementation of a spatio-temporal
query language called TPiet-QL, that supports discrete changes, extending Piet-QL, a
query language for (non-temporal) SOLAP. TPiet-QL allows expressing integrated GIS-
OLAP queries in an scenario where spatial objects change across time.

Keywords: GIS, OLAP, SOLAP, Piet-QL.
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Chapter 1

Introduction

In Geographic Information Systems (GIS), spatial information is stored in thematic layers.
Spatial data are stored in suitable data structures, and associated attributes are usually
stored in conventional relational databases. Spatial data in different layers can be mapped
univocally to each other using a common frame of reference, like a coordinate system.
Layers can be overlayed to obtain an integrated spatial view. On the other hand, OLAP
(On-Line Analytical Processing)[13] provides a set of tools and algorithms that allow effi-
ciently querying multidimensional data repositories called Data Warehouses. OLAP data
is organized as a set of dimensions (organized as hierarchies) and fact tables, and can be
perceived as a data cube, where each cell contains a measure or set of aggregated measures
of interest. The problem of integrating OLAP-centric systems and GIS-centric systems,
has been called SOLAP[4]. One of the models proposed for SOLAP is denoted Piet[9]1, a
framework that integrates spatial, spatio-temporal, and non-spatial multidimensional data.

Spatial objects in thematic layers can be added, removed, split, merged, or their shape
may change. Tryfona and Jensen[21] classify spatio-temporal applications according to
the kind of changes, occurring in the spatial objects that these applications can support.
They make a difference between objects with continuous motion (e.g., a car moving in a
highway), objects with discrete changes (e.g, parcels changing boundaries), and objects
combining continuous motion and changing shapes, for instance, a storm or a stain in a
river.

The Piet framework and its corresponding query language Piet-QL assume that all
objects in a layer remain unchanged across time. In this thesis we present a temporal
extension to Piet-QL that supports discrete changes.

1A description and demo of Piet can be found at http://piet.exp.dc.uba.ar/piet.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Initial situation(left): land partition and land dimension hierarchy; situation
after merging P3 and P4 (right): changes in spatial objects and in the dimension hierarchy

1.1 Motivation and Contributions

A Motivating Example. Let us assume the following scenario about land property infor-
mation. In Figure 1.1 (left) we show four land parcels, P1 through P4. They may be
characterized, for example, by attributes like type of soil, depth of underground water
availability, and owner. The parcels are subject to change in shape, area, and in the value
of their attributes, and we consider them as composing a single GIS layer denoted Lland.
There is also non-spatial information stored in a conventional data warehouse. In par-
ticular, a dimension hierarchy denoted Land, which stores information related to parcels.
The bottom level of this dimension contains parcel identifiers (p1 through p4). These IDs
aggregate over a level denoted region, which, in turn, aggregates over a province level.
There is a mapping (not shown in the figure) defined between spatial objects in Lland and
members of the bottom level (parcelId) of the dimension Land. In this case, the mapping
is complete, but this is not mandatory. (The mapping associates each Pi object -a parcel-
the corresponding dimension level member pi). At a certain moment, the owner of P3,
acquires P4. Thus, parcels P3 and P4 are merged into a single one P3−4. Changes must
also be performed at the data warehouse, meaning that elements p3 and p4 are deleted
and p3−4 is added, along with the corresponding rollups to region r2. A mapping between
p3−4 and P3−4 is also defined. This is described on the right hand side of Figure 1.1. Some
time later, other changes may occur, e.g., P2 may grow if the owner decides to sell part of
P3−4 to the owner of P2. In a discrete changes scenario like this, we may want to know
the history of P3−4, the production of each existing parcel as of the year 2006, or to pose
queries like “Production by year per square mile for each parcel of land, for the parcels in
Montevideo”. Answering these kinds of queries requires extending non-temporal SOLAP
data models and query languages (like Piet-QL) with temporal capabilities.
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CHAPTER 1. INTRODUCTION

The main contribution of this thesis consists of a formal definition for syntax and
semantics of the temporal operators, predicates and functions that compose a temporal
query language for SOLAP, denoted TPiet-QL. We also show how the topological predicates
usually found in the GIS literature are modified to support temporal semantics, and discuss
the language expressiveness.

1.2 Thesis Organization

This document is organized as follows. After an overview of related work (Chapter 2 ),
we define the temporal data model (Chapter 3 ), and present the syntax and semantics of
TPiet-QL in Chapter 4. In Chapter 5, implementation details of the software components
are included and then we describe the datasets used in our case study and the transforma-
tion process developed to prepare this data, according to our data model (Chapter 6 ). We
also provide several queries over the datasets of our case study in order to get an insight
of the query language in Chapter 7, concluding in Chapter 8.

This thesis has been developed as part of the LACCIR2 project R1210LAC004 - Mon-
itoring Protected Areas using an OLAP-enabled Spatio-Temporal Geographic Information
System3. The main results of this thesis have been previously published in [5] and have
been presented in a technical session of the AMW20124.

2http://www.laccir.org
3http://www.fing.edu.uy/inco/proyectos/laccirPiet/
4http://www2.dcc.ufmg.br/eventos/amw2012/dokuwiki/doku.php
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Chapter 2

Related Work

Rivest et al.[17] introduced the concept of SOLAP (standing for Spatial OLAP), a paradigm
aimed at exploring spatial data by drilling on maps in a way analogous to what is performed
in OLAP with tables and charts. They describe the desirable features and operators a
SOLAP system should have.

Piet[9] is a formal model for SOLAP, where the integration between GIS and OLAP is
materialized through a function that maps elements in the data warehouse to elements in
the GIS layers. Piet comes equipped with a query language, Piet-QL [10], that supports
the operators proposed by the Open Geospatial Consortium1 for SQL, adding the necessary
syntax to integrate OLAP operations through MDX2. Piet-QL is designed to support four
basic kinds of queries: (a) GIS queries filtered using spatial conditions, like “Regions which
contain cities crossed by rivers”; (b) OLAP queries filtered using OLAP conditions, like
“Total sales of products in cities with sales higher than 5000 units”; (c) GIS queries filtered
using OLAP conditions, like “Name of the cities with total sales higher that 5000 units”;
(d) OLAP queries filtered by spatial conditions, like “Total sales in cities within 100 Km
from Montevideo”. Queries of type (c) and (d) characterize integrated GIS-OLAP queries.
Filtering is materialized through a predicate denoted IN. To give an idea of how a Piet-QL
query looks like, consider the following one: “Parcels crossed by the ‘Uruguay’ river, with
sales greater than 5000 units”.

SELECT GIS l.id

FROM land l, rivers lr

WHERE intersects(l,lr) AND lr.name = ‘Uruguay’

AND l IN (SELECT CUBE filter([Land].[Land parcelId].Members,

[Measures].[Parcel Sales] > 5000)

FROM [Sales])

1http://www.opengeospatial.org
2MDX is a query language initially proposed by Microsoft as part of the OLEDB for OLAP specifi-

cation, and later adopted as a standard by most OLAP vendors. See http://msdn2.microsoft.com/en-
us/library/ms145506.aspx.
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CHAPTER 2. RELATED WORK

Here, land and rivers represent two thematic layers containing spatial objects (the
parcel subdivision of a given region, and the rivers, respectively). The OLAP subquery
(identified with the keyword CUBE) is linked to the outer query by the predicate IN, and
returns a collection of identifiers of spatial objects.

The Spatio-Temporal Relational data Model (STRM), introduced by Tryfona and
Hadzilacos[20], provides a set of constructs consisting in relations, layers, virtual layers,
object classes, and constraints, all with spatial and temporal extent, on top of wellknown
models. In this model, a layer is a set of geometric figures like points, lines, regions or
combinations of them, with associated values. The authors also define a layer algebra,
which, based on four operations over layers, provides a semantics to SOLAP. Many pro-
posals study moving object databases. SECONDO[11] is an extensible DBMS platform,
composed of three major components which can be used together or independently: (i)
the kernel, which offers query processing over a set of implemented algebras, each offering
some type constructors and operators, (ii) the optimizer, which implements the essential
part of an SQL-like language, and (iii) the graphical user interface which is extensible
by viewers for new data types. The Hermes system[15] provides the functionality needed
for handling two-dimensional objects that change location, shape and size. Both propos-
als support continuous motion, therefore we do not extend on commenting them. Other
spatio-temporal data models exist, like [23], [22] Pelekis et al.[16] gives a comprehensive
overview of spatio-temporal models. In spite of their ability to handle spatio-temporal
data, none of the models above (except Piet) are oriented towards addressing the problem
of integrating GIS, OLAP and Moving Object data.

13



Chapter 3

Spatio-Temporal Piet

In the temporal extension to Piet, denoted TPiet, each tuple in a relation is timestamped
with its validity interval. Time is introduced into Piet as a new sort (domain). Toman[19]
showed the equivalence between abstract and concrete temporal databases. The former
are point-based structures, independent from the database’s actual implementation. The
latter are efficient (interval-based) encodings of the abstract databases. The author also
shows that there is an efficient translation from abstract to concrete temporal databases.
Formally, given a set T , and “<” a discrete linear order without endpoints on T , the struc-
ture TP = (T ;<) is a Point-based Temporal Domain, where the elements in the carrier of T
model the individual time instants, and the linear order “<” models the time sequence. We
consider the set T to be N, standing for the natural numbers. For clarity of presentation,
we work with point-based temporal domains, although we use interval-based domains to
implement our ideas. In temporal databases, the concepts of valid and transaction times
refer to the instants when data are valid in the real world, and when data are recorded in
the database, respectively [18]. We assume valid time support in this thesis. Also, as usual
in temporal databases, a distinguished variable Now represents the (moving) current time
instant. We also need the following definition:

Definition 1. (Lifespan) The lifespan of a GIS layer L, denoted lifespan(L), is the
collection of all the time instants where the layer is valid. The lifespan of a set of layers
L, denoted lifespan(L) is the union of the lifespans of all the layers in L.

We assume that no structural changes occur at the GIS or at the data warehouses,
meaning that a layer containing polygons at its creation instant will contain polygons
throughout its lifespan. This assumption also implies that an OLAP dimension schema
remains unchanged throughout its lifespan, i.e., its attributes and levels do not change.
However, the spatial objects in the layers and the members of the OLAP dimensions can
change, and these changes may also impact the mapping functions.

14



CHAPTER 3. SPATIO-TEMPORAL PIET

3.1 Formal Data Model

We have the following sets: a set of layer names L, a set of attribute and dimension level
names A; a set D of OLAP dimension names, and a set G of geometry names. Each
element a of A has an associated set of values dom(a). We assume that G contains the
following elements (geometries): point, node, line, polyline, and polygon. Each geometry
G of G has an associated domain dom(G), composed of a set of geometry identifiers gid. In
other words, gid are identifiers of geometry instances (for example, polylines or polygons).
Also, each gid is associated with a list of coordinates that defines the geometric element.
We denote this list the extension of gid, ext(gid).

Definition 2 (Temporal GIS-OLAP Dimension Schema)
There is a set of layers L1, . . . , Lk ∈ L such that for each Li there is an associated kind of
geometry Gi ∈G (e.g. a layer can only contain points, polylines, or polygons, but it cannot
contain combinations of them). We denote H the (total) function defining this mapping,
with signature L → G. There is also a set of dimension schemas D defined as in Hurtado
and Mendelzon[12] where each dimension D ∈ D is a tuple of the form 〈dname,A,≤〉, such
that dname ∈ D, A ∈ A, is a set of dimension levels, and ≤ is a partial order between
levels. A set A of partial functions Att with signature A × D → L, maps attributes
in OLAP dimensions to layers (see Definition 3). We denote µ a dimension level in a
standard OLAP Time dimension, defined according with the granularity of the problem.
Elements in µ in the temporal domain.

A temporal GIS-OLAP dimension schema TGsch is the tuple 〈H,A,D,µ〉, where H, A
and D satisfy the following conditions: (a) A layer is created when the first object is added
to it, (b) H is constant throughout the lifespan of the GIS, (c) For each layer L ∈ L, the
function Att is defined only in lifespan(L), (d) The functions Att ∈ A do not change with
time, i.e., Att1 (parcelId, Land) will always return Lland, (e) The schema of the dimensions
in D is constant during the lifespan of the GIS.

According to this definition the lifespan of a layer is determined by the lifespan of its
objects. Associated with a dimension schema, we have a dimension instance.

Definition 3 (Temporal GIS-OLAP Dimension Instance) Let TGsch be a Temporal
GIS-OLAP dimension schema. A timestamped temporal GIS-OLAP dimension instance is
a tuple 〈TGsch, It, Atinst, Dt

inst〉, where: (a) It is a set of relations rtLi
such that each tuple

〈gi, ext(gi, t)〉 in rtLi
, represents the existence of an object gi (and its extension) in Li at

the instant t. (b) Associated with each function Att such as Att(A,D)= L, there is a set of
functions α ∈ Atinst with signature L × D × A × dom(A) × dom(µ) → dom(G), where A
∈ A, G is such that H(L) = G in TGsch (c)Dt

inst is a set of dimension instances, one for
each dimension schema D ∈ D in TGsch.

Definitions 2 and 3 assume that the attributes associated with each GIS layer are invari-
ant, i.e., if the polygons representing parcels in Lland have the same attributes throughout
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CHAPTER 3. SPATIO-TEMPORAL PIET

their lifespan, which is a reasonable assumption in practice. For instance, a designer may
define that a parcel has attributes associated with land use or land ownership, and in case
part of this information is missing, this will occur at the instance level, but the attributes
will still be present in the schema of the layer.

Example 1 : Consider two layers Lland and La, representing parcels and airports, re-
spectively. Then, and example of the set It in an interval-based temporal database is:

It = {rtLland
= {〈P1, ext(P1), {[0,5], [10,20], [40,Now ]}〉, . . . }, rtLa

= {〈A1, ext(A1),
{[0,5], [10,20], [40,Now ]}〉, 〈A2, ext(A2), {[10,20], [40,Now ]}〉, . . . }}

Analogously, for Atinst:
{[〈α(Lland, Land, parcelId, ‘p1’, [0,5] = P1〉, . . . , 〈α(Lland, Land, parcelId, ‘p1’, [10,20] =
P1〉. . . ]}

This expression indicates that, for instance, between instants 0 and 5, element ‘p1’ in
level parcelId in dimension Land, is mapped to a spatial element ‘P1’.

The fact tables are defined analogously to the non-temporal case.

3.2 Summary

In this chapter, the temporal data model was formally defined. We have presented the
notion of Lifespan, Temporal GIS-OLAP Dimension Schema and Temporal GIS-OLAP
Dimension Instance and we also provided an example that represents our proposal. These
formal definitions constitutes the formal basics for a temporal query language, TPiet-QL,
that we introduce next.
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Chapter 4

Query language

We now present a query language based on the formal data model we have previously
introduced in Chapter 3. Here we provide the syntax and semantics of the language and
some examples that illustrate its use.

4.1 Temporal Piet Data Structure

The data structure of the temporal extension to the Piet data model, is organized in: (a)
Application information. This is the data warehouse structure, and contains dimension and
fact tables. (b) GIS information. Corresponds to the data structure for the map layers.
Contains a table per layer. Temporal attributes FROM and TO indicate the interval
of validity of each object in a layer. (c) GIS-OLAP mapping information. These are the
data structures for storing the relationship between geometric and application information.
(Actually these structures store the α functions). Temporal attributes are also included
here. (d) There are also data structures to store precomputed information containing the
overlay of different layers. We do not discuss this issue in this thesis. The interested
reader is referred to [9]. The system supports the following changes, usually found in the
literature [15] (a study of the implementation of these operators is outside the scope of this
thesis): (a) Creation; (b) Update (e.g., a change in the object’s extension); (c) Deletion (in
the temporal sense, i.e., without losing the object’s history); (d) Reincarnation (an object
is deleted, and then re-created); (e) Split (an object generates two or more new ones);
(e) Merge (two or more objects are merged into a new one). As we expressed above, the
different states of spatial objects are materialized as usual in temporal databases, adding
two attributes (denoted FROM and TO) of temporal type, to each one of the tables in
the GIS-OLAP and GIS information parts. Let us briefly explain the semantics of the
update operators. When a new object is created at instant t1, say, in the layer Land (e.g.,
a new parcel is added), a tuple is inserted in the Land table, with the corresponding parcel
information. The attributes FROM and TO are set to t1 and the distinguished value Now,
respectively. Analogously, if this parcel, call it p1; is split into p2 and p3 at instant t2;
the tuple for p1 is deleted in the temporal database sense, that is, it is timestamped with
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CHAPTER 4. QUERY LANGUAGE

TO=t2 − 1 (i.e., an instant immediately before t2 in the object’s granularity); in addition,
two tuples are created for p2 and p3; with FROM=t2; and TO=Now. Later, at t4, two
parcels, p5 and p6 are merged into a single one, call it p56. The former two tuples are
deleted as before (i.e., timestamped with TO=t4-1), and p56 is created with FROM=t4 and
TO=Now. The update operation at instant t is equivalent to the deletion of a tuple (i.e.,
a timestamping with t-1), and the insertion, at instant t; of a new one (keeping the same
identifier). The reincarnation operator is analogous to an update, except for the fact that
the instants of deletion and insertion are not consecutive.

We now discuss the data warehouse side. One of the premises of our model is to
allow autonomous maintenance of warehouse and GIS information, i.e., that OLAP data
could be managed independently from the GIS information. There are at least two possible
situations: (a) The data warehouse and associated data cubes are the usual ones, where fact
tables are updated off-line (usually, only data insertion is allowed), and the dimensions are
static, i.e., the history of the dimension members and hierarchies is not kept, and only the
current state of the dimension data is available (i.e., the data warehouse is non-temporal).
(b) A temporal warehouse is available, i.e., dimensions are updated and their history is
preserved. One solution is to use the notion of slowly changing dimensions [13], where a
new dimension tuple is added when an update occurs (dimension tables are extended with
FROM/TO attributes). More sophisticated solutions can be found in the literature [7, 14].
Note that when the operations on the GIS side require creating new spatial objects (like in
the creation, split, and merge operations), the corresponding objects must be inserted in the
warehouse dimensions, also defining new mappings. However, when an update occurs (like
a change in an object’s shape) the object identifier does not change and no action needs
to be taken on the warehouse side. Note that the mentioned insertions can be performed
without impacting the warehouse or the mapping function, although this could produce
incomplete answers to some queries (the ones that involve accessing the warehouse), due to
the incomplete mapping (i.e., the object would only be in one of the parts of the system).

4.2 Temporal Functions and Predicates

Before introducing the query language, we discuss the functions it must support. We focus
on the temporality of spatial objects, since the temporal databases literature abound in
the treatment of temporal alphanumerical attributes.

Definition 4 (Spatio-temporal object). We denote by spatio-temporal object a tuple of
the form 〈objectId, geometry, attribute1,. . . , attributen, intervali〉 where geometry is the
geometric extension of the object, attributei are alphanumeric attributes, and ‘interval’ is
the interval of validity of the object, of the form [FROM, TO].

Note that in Definition 4, interval is a single interval. In temporal databases it is usual
to talk about temporal elements, i.e., sets of intervals. For simplicity of presentation, in
this thesis we work with single intervals instead of temporal elements. Also for simplicity
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we assume valid time, although bitemporal relations can be also supported. In what follows
we refer to spatio-temporal objects as ‘objects’ when this can be inferred from the context,
and denote G a collection of spatio-temporal objects. The basic constructs of the language
are spatio-temporal objects. Therefore, based on Allen’s interval set of predicates [1], we
specify the syntax and semantics of a collection of predicates over spatio-temporal objects,
intervals, and time instants.

• StartsBefore(g,t): G × T→ boolean: Given a spatio-temporal object and an in-
stant, returns True if t > g.FROM.

• BeginsAfter(g,t): G × T→ boolean: Given a spatio-temporal object and an instant,
returns True if t < g.FROM.

• FinishesAfter(g,t): G × T→ boolean: Given a spatio-temporal object and an
instant, returns True if t < g.TO.

• At(g,t): G × T→ boolean: Given a spatio-temporal object and an instant, returns
True if t ≤ g.FROM AND t ≥ g.TO.

• Before(g,〈t1, t2〉): G × T× T→ boolean: Given a spatio-temporal object and an
interval, returns True if g.TO < t1.

• After(g,〈t1, t2〉): G × T× T→ boolean: Given a spatio-temporal object and an
interval, returns True if t2 < g.FROM.

• During(g,〈t1, t2〉): G × T× T→ boolean: Given a spatio-temporal object and an
interval, returns True if t1 ≤ g.FROM AND t2 ≥ g.TO.

• Overlaps(g,〈t1, t2〉): G × T× T→ boolean: Given a spatio-temporal object and an
interval, returns True if (t1 < g.FROM AND t2 > g.FROM AND t2 < g.TO) OR (t1 >
g.FROM AND t2 > g.TO AND t1 < g.TO)

• Covers(g,〈t1, t2〉): G × T× T→ boolean: Given a spatio-temporal object and an
interval, returns True if t1 ≥ g.FROM AND t2 ≤ g.TO.

• Meets(g,〈t1, t2〉): G × T× T→ boolean: Given a spatio-temporal object and an
interval, returns True if t1 = g.TO OR t2 = g.FROM.

• Starts(g,〈t1, t2〉): G × T× T→ boolean: Given a spatio-temporal object and an
interval, returns True if (t1 = g.FROM AND t2 > g.TO) OR (t1 = g.FROM AND t2 <
g.TO)

• Finishes(g,〈t1, t2〉): G × T× T→ boolean: Given a spatio-temporal object and an
interval, returns True if (t1 < g.FROM AND t2 = g.TO) OR (t1 > g.FROM AND t2 =
g.TO)
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Note that DURING and COVERS represent the predicates X DURING Y in Allen’s alge-
bra. OVERLAPS represents X OVERLAPS Y and Y OVERLAPS X. The same applies to MEETS,
STARTS and FINISHES. BEFORE and AFTER represent X < Y and Y < X, respectively. We
also need the Coalesce function defined next.

Coalesce(G): The function returns a collection of spatio-temporal objects, where these
objects are obtained by merging into a single one all objects whose temporal intervals are
consecutive and that coincide in all other attributes. This is analogous to the well-known
coalesce function in temporal databases.

4.3 Spatio-temporal Joins

A key operation in any spatio-temporal query language is the join. Different kinds of tem-
poral joins have been proposed in the literature [18], and two main classes can be identified:
(a) Disjoint join; and (b) Overlap join. In the former, given n (timestamped) tuples, it is
not required that their time intervals overlap. In the latter, the time intervals must over-
lap and there are two possibilities: all the time intervals have at least one common time
instant, or they are joined in a chained fashion, e.g. t1.TO ≥ t2.FROM ∧ t2.TO ≥ t1.TO.
Disjoint joins provide more expressiveness to a query language than overlap joins, allowing
to query for asynchronous events (e.g., parcels owned by X before a region changed name).
Examples (following Allen [1]) are before-join(X,Y), and meet-join(X,Y), with condi-
tions X.TO ≥ Y.FROM and X.TO = Y.FROM, respectively. Analogously, the condition
for the (symmetric) overlap join is X.FROM < Y.TO ∧ Y.FROM < X.TO.

The joins above are denoted T-joins. When a T-join requires the equality of a collection
of non-temporal attributes specified as a predicate Pa, we say that we are in presence of a
GT-join (standing for generic temporal). That is, a GT-join corresponds to the expression
σPa∧overlap−join(X,Y )(X,Y). That means, given two tuples, the tuples in the result of a GT-
join will be the ones that have overlapping time intervals and verify the non-temporal
predicate Pa. In a spatio-tempoal setting we can implement the temporal joins using the
operators defined above. For example, if we have a layer denoted Parcels, a before-join
between two objects can be defined as:

SELECT p1

FROM Parcels p1, parcels p2

WHERE BEFORE (p1,p2.FROM) AND

p1.owner=‘Peter’ AND p2.owner =‘John’ and p1.id=p2.id

In this query we are asking for the parcels that Peter owned before John did. Below
we give more details on the language. Analogously, a meet join would be obtained by
replacing the predicate BEFORE(p1,p2.FROM) with MEETS(p1,p2.FROM).
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In the presence of spatio-temporal objects, the GT-join can be defined using the stan-
dard topological relationships in [8], like Touches(g1,g2) or Contains(g1,g2).

Consider two layers storing the histories of airports and cities:

Figure 4.1: A city and its airport (left); Interactions of a1 and c1 along their timelines
(right)

Figure 4.1 (left) shows two stages of city c1: one in the interval [0,50], and the other
in the interval [51,Now]. Airport a1 was first relocated at instant 100, and then, due to
the city expansion, it was relocated outside the new city limits. Figure 4.1 (right) shows
how the two objects a1 and c1 interact along their timelines: the airport is within the city
limits only in the intervals [51,100] and [101,200].

The relational representations are given below:

cityId the geom . . . FROM TO
c1 g1 . . . 0 50
c1 g2 . . . 51 Now
c2 g3 . . . 0 30

airportId the geom . . . FROM TO
a1 g1 . . . 0 50
a1 g2 . . . 51 Now
. . . . . . . . . . . . . . .
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We can list the pairs city-airport such that an airport was within the city limits as an
GT-join, where the non-temporal predicate Contains is spatial:

σφ(Airports× Cities)
φ = contains(Airports.geom,Cities.geom) ∧ overlap− join(Airports, Cities)

The result would contain the tuples 〈a1, c1, 51, 100〉 and 〈a1, c1, 101, 200〉, representing
that between instants 51 and 100, a1 remained within the city limits of a1 (see Figure 4.1).

We could write a more concise version of this query using a spatio-temporal semantics
for the predicate Contains, where the predicate is evaluated only in the overlapping time
intervals. In practice, we believe that using the non-temporal semantics for the spatial
predicates is more flexible and does not require new definitions in a spatial GIS. Therefore,
we use this semantics in TPiet-QL, as we explain below.

4.4 The TPiet-QL Query Language

The discussion above set the basis for defining a temporal extension to Piet-QL.

SELECT GIS [[DISTINCT] SNAPSHOT]] list of attributes and/or functions

FROM [OVERLAP] T1 t1,...,Tn tn

WHERE Φ

Let us explain this syntax. The list of attributes in the SELECT clause (if necessary
distinguished by prefixing it by the name or alias of the corresponding table) and any of
the temporal or geometric functions specified in Tables 4.1 and 4.3 can be used. If any of
these functions are selected, an alias should be added to the query (this is mandatory).
Each tuple in the result set has an implicit valid interval, that corresponds to the Com-
monInterval function. Furthermore, the result set is automatically coalesced.

The optional SNAPSHOT clause can be used to project the CommonInterval over the
interval (-∞, ∞). Internally, a coalesce is applied previous to returning the valid interval.
Thus, duplicate tuples can be obtained in the result set. The DISTINCT reserved word is
an option to avoid obtaining this dupplication. The GIS reserved word is used by compat-
ibility with Piet-QL [10].

T1 through Tn represent thematic layers, t1 through tn range over the spatial or spa-
tiotemporal objects in these layers, and the ai’s represent attributes of these objects. Differ-
ent kinds of temporal joins have been proposed in the literature [18], and two main classes
can be identified:

• Overlap join: It is expressed by the clause FROM OVERLAP. Time intervals of the
objects must overlap. The language also allows the use of static objects in the join. In
this case, we consider that static objects have implicit validity interval (-∞,∞). The
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use of this clause is similar to adding, in the WHERE clause, several Overlaps temporal
predicates among all the temporal objects used in this join. Nevertheless, the use
of Overlap Join is not equivalent to using several Overlaps temporal predicates in
the WHERE clause, when using with the CommonInterval(), CMStart() and CMEnd()
temporal functions as explained in Table 1.

• Disjoint join: It is expressed by the clause FROM. This provides more expressiveness
to the query language than the Overlap Join, allowing to query for asynchronous
events. Typically, temporal predicates can be added in the WHERE clause to compare
temporal intervals.

Note that only table names can be used. No nested queries can be used in the FROM

clause.

CommonInterval() If Overlap Join is used, this function returns the
intersection of all valid object’s intervals that par-
ticipate in the FROM OVERLAP clause, considering
that static objects have infinity validity. When
Disjoint join is selected, it returns the valid inter-
val of the first spatio-temporal objects that appear
in the FROM clause, from left to right. If no spatio-
temporal objects appear, all the objects are static
and (-∞, ∞) interval is returned.

CMStart() Returns the first component of CommonInterval()
function.

CMEnd() Returns the last component of CommonInterval()
function.

Now() Returns the literal convention for representing ∞.
It is useful for checking if a spatio-temporal objects
is still in force.

current date Returns the current sysdate of the system. It is
invoked without parenthesis, like a variable.

Table 4.1: Temporal Functions over spatio-temporal joins
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Within(A,B),

ST Within(A,B)

Returns True if the geometry A is completely in-
side geometry B.

Contains(A,B),

ST Contains(A,B)

Returns True if and only if no points of B lie in the
exterior of A, and at least one point of the interior
of B lies in the interior of A.

Intersects(A,B),

ST Intersects(A,B)

Returns True if the Geometries “spatially inter-
sect” - (share any portion of space) and False if
they don’t (they are Disjoint).

Crosses(A,B),

ST Crosses(A,B)

Returns True if the supplied geometries have some,
but not all, interior points in common.

Touches(A,B),

ST Touches(A,B)

Returns True if the geometries have at least one
point in common, but their interiors do not inter-
sect.

Disjoint(A,B),

ST Disjoint(A,B)

Returns True if the Geometries do not “spatially
intersect” - if they do not share any space together.

Equals(A,B),

ST Equals(A,B)

Returns True if the given geometries represent the
same geometry. Directionality is ignored.

CoveredBy(A,B),

ST CoveredBy(A,B)

Returns True if no point in Geometry A is outside
Geometry B.

Overlaps(A,B),

ST Overlaps(A,B)

Returns True if the Geometries share space, are of
the same dimension, but are not completely con-
tained by each other.

Covers(A,B),

ST Covers(A,B)

Returns True if no point in Geometry B is outside
Geometry A.

OrderingEquals(A,B),

ST OrderingEquals(A,B)

Returns True the given geometries represent the
same geometry and points are in the same direc-
tional order.

IsClosed(A),

ST IsClosed(A)

Returns True if the LINESTRING’s start and end
points are coincident. For Polyhedral surface is
closed (volumetric).

IsEmpty(A),

ST IsEmpty(A)

Returns True if this Geometry is an empty geom-
etry.

Table 4.2: Geometric Predicates over geometries
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IsSimple(A),

ST IsSimple(A)

Returns True if this Geometry has no anomalous
geometric points, such as self intersection or self
tangency.

IsValid(A),

ST IsValid(A)

Returns True if the Geometry is well formed.

Table 4.2 (cont): Geometric Predicates over geometries.

The condition Φ is composed of conjunctions and disjunctions of functions and pred-
icates mentioned above. In this clause we add boolean expressions that can be built by
using nested AND, OR and NOT operators. The predicates can be:

• A subset of the Simple Features for SQL specification from the Open Geospatial
Consortium1 for geometric objects. For more details see Table 4.2 and Table 4.3.

• Temporal functions for recovering overlapped temporal intervals, shown in Table 4.1.

• Temporal predicates based on Allen’s interval set of predicates [1] for comparing
spatio-temporal objects, intervals and time instants. For more details see Table 4.3.

• Comparison predicates (=, <, ≤, >, ≥ and <>).

• A subset of the IN predicate [10] where it is allowed to nest several GIS queries and
only the more nested expression can be an OLAP query (e.g.: this query cannot
embed any other nested query). This restriction differs from the original Piet-QL
where any kind of nested combinations were allowed. We simplified this in TPiet-QL
since we put emphasis on temporal GIS queries by adding new temporal predicates.

Area(A),

ST Area(A)

Returns the area of the surface if it is a polygon
or multi-polygon.

Envelope(A),

ST Envelope(A)

Returns Returns a geometry representing the dou-
ble precision (float8) bounding box of the supplied
geometry.

Relate(A,B),

ST Relate(A,B)

Given two geometries A and B, returns a text
that represents intersections between the Interior,
Boundary and Exterior of A and B, according to
the DE-9IM matrix.

Table 4.3: Geometric Functions over geometries.

1http://www.opengeospatial.org
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Distance(A,B),

ST Distance(A,B)

Returns the 2-dimensional cartesian minimum dis-
tance (based on spatial ref) between two geome-
tries in projected units.

Intersection(A,B),

ST Intersection(A,B)

Returns a geometry that represents the shared por-
tion of geom A and geom B.

Difference(A,B),

ST Difference(A,B)

Returns a geometry that represents that part of
geometry A that does not intersect with geometry
B.

Union(A,B),

ST Union(A,B)

Returns a geometry that represents the point set
union of the Geometries.

Length(A),

ST Length(A)

Returns the 2d length of the geometry if it is a
linestring or multilinestring.

Dimension(A),

ST Dimension(A)

Returns the inherent dimension of this Geometry
object, which must be less than or equal to the
coordinate dimension.

Simplify(A),

ST Simplify(A)

Returns a “simplified” version of the given geom-
etry using the Douglas-Peucker algorithm.

Boundary(A),

ST Boundary(A)

Returns the closure of the combinatorial boundary
of this Geometry.

Box(A), ST Box(A) Returns a Polygon geometry representation of the
2D or 3D bounding box.

Centroid(A),

ST Centroid(A)

Returns the geometric center of a geometry.

Perimeter(A),

ST Perimeter(A)

Return the length measurement of the boundary
of an ST Surface or ST MultiSurface geometry.

X(A), ST X(A) Return the X coordinate of the point, or NULL if
not available. Input must be a point.

Y(A), ST Y(A) Return the X coordinate of the point, or NULL if
not available. Input must be a point.

Table 4.3 (cont): Geometric Functions over geometries.

The semantics of the query is defined by the cartesian product of the geometric objects
in all the thematic layers in the FROM clause. If the OVERLAP keyword is specified, only the
tuples whose intervals overlap are considered, (ie., the tuples such that ∩ti.interval,i=1,n 6= ∅),
and the overlapping interval are included in the result, which is coalesced by default using
all the non-temporal attributes in the SELECT clause. The coalesce operation is defined as
follows. Given a collection of objects (G), for all objects that match their non-temporal
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attributes and whose temporal intervals are consecutive, Coalesce(G) constructs a single
spatio-temporal object composed by non-temporal attributes and the temporal union of
all the intervals.

We illustrate the semantics extending the city-airport example with a layer containing
parcels, described in the table below (on the right we show the distances between cities and
parcels during different time intervals, although this information is actually not recorded,
it must be computed):

parcelId the geom . . . FROM TO
p1 g1 . . . 10 20
p1 g2 . . . 21 40
p2 g3 . . . 30 50
p3 g4 . . . 40 100
. . . . . . . . . . . . . . .

cityId parcelId FROM TO distance
c1 p1 10 20 80
c1 p1 21 40 120
c1 p2 30 50 70
c1 p3 40 50 80
c1 p3 51 100 90

Consider a TPiet-QL query asking for pairs city-parcel such that the distance between
them is/was less than 100 Km. According to the usual semantics of a temporal join, this
query returns tuples of the form 〈pi, cj, Interval〉, where Interval is the temporal interval
when they where closer than 100 Km from each other.
The query reads in TPiet-QL:

SELECT GIS c, p

FROM OVERLAP Parcels p, Cities c

WHERE Distance(c.the geom, p.the geom) < 100

The result will be (note that this result is coalesced):

cityId parcelId FROM TO
c1 p1 10 20
c1 p2 30 50
c1 p3 40 100

The next example includes an OLAP subquery in the WHERE clause (technically, in
TPiet-QL this is called a GIS-OLAP query): We assume the existence of an external data
cube denoted Weather, with dimensions Geography and Time, and measure precipitation,
representing the precipitation per year.
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Query 1: Protected areas with a surface larger than 100 Ha in 1996, currently larger
than at that time, with a precipitation higher than 120 mm in 2010.

SELECT GIS p1.id

FROM pAreas p, pAreas p1

WHERE area(p) > area(p1) AND

COVERS(p,[1996,1996]) AND

COVERS(p1,[2012,2012]) AND

p1.id = p.id AND

p1.id IN(SELECT

CUBE filter([Geography].[Geography areaId].Members,

[Measures].[precipitation] > 120)

FROM [Weather]

SLICE [Time].[2010])

We can see the constructs of the formal language in the TPiet-QL expression above.
The main difference is that instead of using non-temporal functions over the extensions of
spatial objects, while area is applied over a geometry (e.g., ep), TPiet-QL uses temporal
functions over spatio-temporal objects (e.g., p).

4.5 TPiet-QL Syntax

We conclude this chapter presenting the complete TPiet-QL syntax. This syntax is for-
mally depicted in Listing 1.

This syntax uses the following atoms:

• FUNCTION STPQL$: any function in Table 4.1 and Table 4.3 or boolean predicate in
Table 4.2 and Table 4.3. Functions cannot be nested.

• LAYER$: references a layer in the GIS.

• LAYER ALIAS$: literal.

• NUMBER$: any non-negative Integer.

• GENERAL PREDICATE$: any General predicate (=, <, ≤, >, ≥). Operands can be
functions.

• GIS PREDICATE$: any predicate in Table 4.2 and Table 4.3.

• GIS ATTRIBUTE$: references an attribute associated to a layer.

• OLAP CUBE$: references an OLAP data cube.
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• OLAP MEMBER$: references a member in an OLAP data cube.

• OLAP LEVEL$: references a level in an OLAP data cube.

• FUNCTION O$: the OLAP function Filter and function with no arguments like Chil-
dren and Members.

Listing 1: TPiet-QL Syntax

query = SELECT GIS [[DISTINCT] SNAPSHOT] gislist fromclause g

[where clause g ] [LIMIT NUMBER$]

gislist = attribute path g [AS attribute g ] [, gislist ]

gislist = FUNCTION STPQL$ [AS attribute g ] [, gislist ]

gislist = [LAYER$.]∗ [, gislist ]

gislist = [LAYER ALIAS$.]∗ [, gislist ]

attribute path g = [LAYER$.] attribute g

attribute g = GIS ATTRIBUTE$

fromclause g = FROM [OVERLAP] tablelist

tablelist = LAYER$ [AS LAYER ALIAS$] [, tablelist ]

where clause g = WHERE gis filter

gis filter = gis predicate [AND gis filter ]

gis filter = gis predicate [OR gis filter ]

gis filter = NOT(gis filter )

gis filter = (gis filter )

gis predicate = GENERAL PREDICATE$

gis predicate = GIS PREDICATE$

gis predicate = attribute path g IN (single result subquery )

single result subquery = SELECT subq

subq = GIS [[DISTINCT] SNAPSHOT] gislist fromclause g

[where clause g ] [LIMIT NUMBER$]

subq = CUBE olaplist from clause o [sliceclause ]

olaplist = attribute path o [, olaplist ]

attribute path o = attribute o.attribute path o

attribute o = OLAP MEMBER$ | OLAP LEVEL$ | FUNCTION O$

from clause o = FROM OLAP CUBE$

sliceclause = SLICE slicefilterlist

slicefilterlist = attribute path [, slicefilterlist ]
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4.6 Summary

We have presented a query language, denoted TPiet-QL, which consists of a temporal
extension to the Piet data model and can express spatio-temporal integrated GIS-OLAP
queries in a natural an concise way. TPiet-QL supports the operators proposed by the Open
Geospatial Consortium for SQL. In addition, the syntax incorporates temporal functions
and predicates to integrate with OLAP operations through the OLAP standard MDX.
We gave detail of TPiet-QL syntax and semantics and provided some queries as example.
In Chapter 7, we will provide an extensive set of queries that shows the power of the
language and its main features.
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Implementation

For the implementation of the present thesis, based on the theory described above, a
TPiet-QL API has been designed and implemented. It can be embedded in the Java host
language and once a TPiet-QL query is executed, XML metadata and a temporary table
are generated, containing the result set. In this chapter we describe the implementation
details of this TPiet-QL API and the query engine.

5.1 TPiet-QL Engine and TPiet-QL Programmatic API

TPiet-QL engine was built using different software technologies which interact within each
other to accomplish the query parsing and execution at the back-end.

Figure 5.1: TPiet-QL: Components Diagram

31



CHAPTER 5. IMPLEMENTATION

The engine was developed by using the Java programming language V1.61. Data are
stored in a PostgreSQL V9.02 database with the Postgis V1.53 plug-in, which enables spa-
tial functionalities. Besides, the OLAP Server is Mondrian V3.24. The core Java classes
and their functionalities of TPiet-QL engine are depicted in Figure 5.2.

The overall architecture of this back-end and the components interaction are shown
through Sequence Diagram in Figure 5.3.

Figure 5.2: TPiet-QL: Classes Diagram

1http://www.oracle.com/technetwork/java/javase/overview/index-jsp-136246.html/
2http://www.postgresql.org/
3http://postgis.refractions.net/
4http://mondrian.pentaho.com/
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Figure 5.3: TPiet-QL: Sequence Diagram

5.2 TPiet-QL Query execution

Each time a TPiet-QL query is executed, the engine proceeds in two sequential steps. First
of all, it parses the query according to the syntax defined in Section 4.5 and identifies those
query parts which correspond to GIS and those which correspond to SOLAP with the goal
of transforming and preparing them for execution. More precisely, those query sections
that start with the SELECT GIS clause are translated into SQL with Postgis extension and
those that start with the SELECT CUBE clause are translated into MDX dialect. If during
this phase a parsing error is detected, a Java exception is returned to the invoker. Other-
wise, the second phase takes place. That is, TPiet-QL engine executes SQL parts in the
PostgreSQL database and the MDX expressions in the Mondrian OLAP engine. Finally,
it combines intermediate result sets and coalesces them.

The result set is composed of two parts: (a) an XML document that describes the
metadata; (b) a temporary table which contains the tuples with the resulting data. Typ-
ically, a client application connects to the engine in order to execute a TPiet-QL query.
The engine, according to what we have mentioned above, returns a Java exception or an
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XML document containing the metadata. If the execution was successful, it also gener-
ates a temporary table. Both, its name and its dynamic structure (i.e. which depends on
the query) are embedded in this XML document. The client application parses the XML
document because it contains all the information necessary about the execution.

Figure 5.4: TPiet-QL: Activity Diagram

Finally, this table can be queried to achieve the proposed goal, e.g. show the result
set over a map. The following XML schema, shown in Listing 2, describes the metadata
returned by the engine to a client application:
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Listing 2: XML Schema for Resultset

<?xmlversion=‘1.0’encoding=‘UTF-8’?>

<xs:schemaxmlns:xs=‘http://www.w3.org/2001/XMLSchema’

elementFormDefault=‘qualified’>

<xs:element name=‘query’>

<xs:complexType>

<xs:sequence>

<xs:element ref=‘status’/>

<xs:element ref=‘additionalinfo’/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=‘status’>

<xs:complexType>

<xs:sequence>

<xs:element name=‘code’ type=‘xs:long’/>

<xs:element name=‘severity’ type=‘xs:string’/>

<xs:element name=‘message’ type=‘xs:string’/>

<xs:elementname=‘date’ type=‘xs:string’/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=‘additionalinfo’>

<xs:complexType>

<xs:sequence>

<xs:element ref=‘performance’/>

<xs:element ref=‘results’/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=‘performance’>

<xs:complexType>

<xs:sequence>

<xs:element ref=‘parse elapsed’/>

<xs:element ref=‘query elapsed’/>

</xs:sequence>

</xs:complexType>

</xs:element>
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<xs:element name=‘parse elapsed’>

<xs:complexType>

<xs:simpleContent>

<xs:extension base=‘xs:string’>

<xs:attribute name=‘unit’ use=‘required’ type=‘xs:string’/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name=‘query elapsed’>

<xs:complexType>

<xs:simpleContent>

<xs:extension base=‘xs:string’>

<xs:attribute name=‘unit’ use=‘required’ type=‘xs:string’/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:element name=‘results’>

<xs:complexType>

<xs:sequence>

<xs:element ref=‘description’/>

<xs:element ref=‘table’/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=‘description’ type=‘xs:string’/>

<xs:element name=‘table’>

<xs:complexType>

<xs:sequence minOccurs=‘0’>

<xs:element name=‘name’ type=‘xs:string’/>

<xs:element name=‘rows’ type=‘xs:long’/>

<xs:element ref=‘columns’/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=‘columns’>

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs=‘unbounded’ ref=‘column’/>
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</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=‘column’>

<xs:complexType>

<xs:attribute name=‘alias’ use=‘optional’ type=‘xs:string’/>

<xs:attribute name=‘original name’ use=‘optional’

type=‘xs:string’/>

<xs:attribute name=‘temp name’ use=‘optional’ type=‘xs:string’/>

<xs:attribute name=‘type’ use=‘optional’ type=‘xs:optional’/>

</xs:complexType>

</xs:element>

</xs:schema>

5.3 Summary

In this chapter we have described the architecture of the solution starting from a conceptual
vision, and then describing the specific architecture finally implemented. Also included is
a description of the software components that are part of query engine implementation.
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Case Study

In the following chapter, we describe all the datasets we have prepared and used as scenario
for our case study, based on real data with three types of information: Static GIS (that
does not change over time), Temporal GIS (which evolves over time) and SOLAP data
cubes.

6.1 Protected Areas

The International Union for Conservation of Nature (IUCN)1 defines a protected area as
“...is a clearly defined geographical space, recognized, dedicated and managed, through
legal or other effective means, to achieve the long term conservation of nature with asso-
ciated ecosystem services and cultural values.”2. The World Database on Protected Areas
(WDPA)3 is a joint venture between the United Nations Environment Programme and the
IUCN, and constitutes the largest assembly of data on the world’s terrestrial and marine
protected areas (PAs), containing 147.897 protected areas as of July 2010, with records
for every country in the world. Those efforts needs sophisticated strategies and tools for
effectively managing and monitoring of PAs, contributing to decision making support.

In particular, in Uruguay, the national law #17234 creates the National Protected Area
System (NPAS) and defines it as the collection of natural areas of any kind (i.e., sea, land,
etc.) in the nation’s territory, that, due to their environmental, historical, cultural, or nat-
ural values, deserve to be preserved as national heritage, even if they have been modified
by human actions. Clearly, the protected areas will evolve in time, as new areas will be
added to the system and management plans are implemented, at the national and global
level. Also, new information will be added at any time, and this should be supported by
an appropriate information system. In addition, the status of the protected areas must be
monitored (for instance, water quality, species diversity), and we would like to be able to
analyze this temporal information in a user-friendly web-enabled interface.

1http://www.iucn.org/
2http://www.iucn.org/about/work/programmes/pa/pa what/
3http://www.wdpa.org/
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6.2 Datasets

As we have seen in previous chapters, TPiet-QL is a query language that allows querying
in a same expression: Static GIS, Temporal GIS and SOLAP data cubes. We next describe
all the datasets we have selected to illustrate the use of TPiet-QL.

6.2.1 Static GIS

The Normalized Difference Vegetation Index (NDVI) aims at measuring the live green
vegetation in areas remotely sensed. Baeza et al.[3] classify ecosystems of Uruguay on the
basis of three attributes derived from the seasonal curve of the NDVI using two decades of
images of satellites. According to this work, Uruguay contains six Functional Ecosystem
Types (TFEs), i.e. Ac2, Bf4, Ce11, Db11, Ed4, Fa2 and anomalous values (V Anom).
They can be visualized in Figure 6.1. Table 6.1 shows nominal and numeric values of these
TFEs, stored in tipo func and grid code attributes, respectively.

Figure 6.1: Functional Ecosystem Types Static Map

tipo func grid code

Ac2 33

Bf4 36

Ce11 23

Db11 4

Ed4 30

Fa2 10

V Anom 3

No Data 0

Table 6.1: Functional Ecosystem Types nominal and numeric values

Arballo and Cravino[2] classify Uruguay into ten Ornito ecological zones, whose names
are shown in Table 6.2. Figure 6.2 displays the Uruguay map divided into geo-referenced
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spatial objects, each one belonging to a unique Ornito ecological zone. Both maps were
published in geographical coordinated projection (spherical longitude/latitude) and down-
loaded from the Dirección Nacional de Medio Ambiente de Uruguay Website4. In order to
analyze this information in a unified spatial view we carried out the transformation to the
Universal Transverse Mercator System (UTM x/y coordinates).

Figure 6.2: Ornito ecological Static Map of Uruguay

Name

Bañados

Bosques con influencia de Mata

Esteros y ambientes de transición psamófilos o dulceacúıcolas

Matorral y bosque serrano Espinal o vegetación de parque

Palmar butiá

Palmar yatay

Pradera

Sabana esteparia serrana

Selvas y bosques ribereños

Selvas y quebradas subtropicales

Table 6.2: Names of the ornito geo zones in Uruguay.

Finally, for our examples, we use a map that contains the administrative division of
Uruguay into 19 departments whose IDs and names are shown in Table 6.3. Figure 6.3
depicts an Uruguayan map, geometrically divided into its departments.

From now on, we consider these three static layers for our queries, named TFE, orni-
togeo, and departament, respectively.

4http://www.dinama.gub.uy/geonetwork/srv/es/main.home
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Figure 6.3: Administrative Division Static Map

• TFE table contains 508 tuples. The attributes we will use are ‘tipo func’ and ‘geom’.
Its geometry is Polygon type.

• Ornitogeo table contains 108 tuples. The attributes we will use are ‘unidad’ (the
name of an Ornito ecological zone) and ‘geom’. Its geometry is Multi-polygon type.

• Department contains 19 tuples. The attributes we will use are ‘name’ and ‘geom’.
Its geometry is Multi-polygon type, since Uruguayan geography contains islands.

6.2.2 Temporal GIS

The real data we used was provided by the ‘Sistema Nacional de Areas Protegidas de
Uruguay’. The data provided correspond to 13 snapshots in the period of time from Au-
gust 2008 to April 2011: Aug-2008, Sep-2008, Nov-2008, Jun-2009, Jul-2009, Sep-2009,
Oct-2009, Dec-2009, Jan-2010, Feb-2010, May-2010, Jul-2010 and Apr-2011. Originally,
16 PAs (Protected Areas) had been defined and by April 2011 this number increased up to
twenty. Those data have been experimenting changes not only in the values of the proper-
ties but also in the geometries. Implicitly, each consecutive pair of these snapshots defines
a valid time interval. With all this information, we have processed these files and created
a unique table, called ‘Area’. A PA is characterized by several user-defined attributes (e.g.
‘ID’, ‘nombre’, ‘ĺımites’, ‘est avance’, ‘decreto’, etc.) plus the time interval (‘from’ and ‘to’
attributes) when this information was valid. In the table Area, each PA contains as many
tuples as its different valid time intervals. The ID attribute of a PA is the only invariant
one. If a PA, whose geometry is a polygon, it is divided into two, and a new tuple is gener-
ated with the same previous user-defined information but a multi-polygon shape instead.
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id name

1 Artigas

2 Canelones

3 Cerro Largo

4 Colonia

5 Durazno

6 Flores

7 Florida

8 Lavalleja

9 Maldonado

10 Montevideo

11 Paysandú

12 Ŕıo Negro

13 Rivera

14 Rocha

15 Salto

16 San José

17 Soriano

18 Tacuarembó

19 Treinta y Tres

Table 6.3: Deparment names of Uruguay

Figure 6.4 depicts a portion of how the evolution of PAs is stored in the database
(table named Area). The special attributes ‘from’ and ‘to’ timestamp the valid interval
of each PA. In the first stage, our Extract Transformation Load (ETL) process generated
in the database a unique table of PAs with 231 tuples. If two time intervals exist for a
single PA this means that at least one attribute differs in values, otherwise these tuples
are coalesced. For example, the second, third and fourth tuples do not differ in anything
except their time intervals which are consecutive. Thus, in the second state these tuples
with intervals [2008-09-01, 2008-10-31], [2008-11-01, 2009-05-31] and [2009-06-01, 2009-06-
30] have been coalesced into only one tuple with interval [2008-09-01, 2009-06-30]. More
precisely, in the second stage, our ETL coalesced tuples and we obtained 68 tuples, as
shown in Figure 6.5.
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Figure 6.4: Table Area generated by ETL first stage

Figure 6.5: Colaesced table Area generated by ETL second stage

6.2.3 SOLAP Cube

We built a Weather SOLAP data cube using real information downloaded from Instituto
Nacional de Estadistica in Uruguay5.

Climatic information was provided by the ‘Dirección Nacional de Meteoroloǵıa’. The
Weather cube contains two measures: median temperature (in Celsius degrees) and pre-
cipitation (in l/m2), summarized by weather stations in different cities and months, cor-
responding to the period [2009, 2010]. Thus, the Weather cube was modeled with the
following two dimensions:

5http://www.ine.gub.uy/biblioteca/anuario2011/Anuario 2011.pdf
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• Time Dimension. It contains the following level hierarchy: month → year → All

• Spatial Dimension. It has non-geometric objects, i.e. the spatial levels contain text
(name of the cities and states). It contains the level hierarchy: city → department
→ All.

6.3 Summary

We have presented a case study were we have integrated real data of Static GIS (Functional
Ecosystem Types, Ornito-geo zones and Deparment names of Uruguay), Temporal GIS
(PAs: 13 snapshots in the period of time from August 2008 to April 2011) and SOLAP
data cube (Median temperature and Precipitation in [2009, 2010]). In Chapter 7, we will
show how our proposal can be applied, by developing different TPiet-QL queries that mix
all kind of mentioned objects.
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TPiet-QL By Example

In this chapter we show different kinds of queries in order to have an overview of TPiet-QL.
These queries are also available through the website1.

7.1 Querying Spatio-Temporal Objects

TPiet-QL is specifically designed to use predicates over spatio-temporal objects, intervals,
and instants. In order to get some insight of the language and user interface, we propose
some examples. We will use the objects in table Area, i.e. PAs.

Query 1: PAs at a specific date - Show PAs that existed on July 5, 2009 with the
following information at the time: ID, the geom, est avance and time interval.

SELECT GIS SNAPSHOT id, est_avance, the_geom,

commoninterval() AS interval

FROM area

WHERE at(area, ‘2009-07-05’)

Note that although we explicitly recover the commoninterval() for the objects that sat-
isfy the condition, we use the snapshot clause for assuring that the information is being
displayed in only one map. The result set contains only 18 of the 20 PAs existent at that
moment, since the other two were created later as we can see in Figure 7.1.

We can also query without SNAPSHOT to obtain this information:

SELECT GIS id, est_avance, the_geom,

commoninterval() AS interval

FROM area

WHERE at(area, ‘2009-07-05’)

1http://www.fing.edu.uy/inco/proyectos/laccirPiet/stpietqlweb/
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Figure 7.1: Query 1 - PAs at a specific date

Nevertheless, the information is always visualized in a temporal partition. For example,
the PAs with ID 1 and 3 existed at that moment, their valid intervals were [2009-07-01,
2009-08-31] and [2009-07-01, 2999-12-31], respectively. That is, to assure that we see all
the information over only one map, we have to configure the user interface with as many
Months per Map as months passed since the smallest ‘from’ of these intervals. In order to
avoid this, it is more practical to use the SNAPSHOT clause.

Query 2: Approximating PAs by MBRs - For each current PA, show its minimum
bounded box, its shape and its progress status.

SELECT GIS SNAPSHOT the_geom, envelope(the_geom) AS MBR,

the_geom, est_avance, nombre

FROM area

WHERE to = Now()

Note that if it is not necessary to visualize the exact geometry of a PA it is better to
simplify its shape, for example replacing its geometry by a rectangle. In several situations,
browsers are not capable of displaying complex geometries. In our dataset the number
of points of the polygons of PAs range from 35 to 2890. Problems can appear when the
browsers need to display many of these complex polygons altogether (note that for visual-
izing all the PAs that evolved throughout time the browser might manage 39892 points).
Figure 7.2 shows Query 2 resultset.
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Figure 7.2: Query 2 - Approximating PAs by MBRs

Query 3: Proximity - Show PAs that coexisted (overlapped in time) and were very
close at each other, suggesting that they can be eventually extended and merged into a single
one, or grouped together for administrative purposes.

SELECT GIS a1.ID, a2.ID, a1.nombre, a2.nombre,

commoninterval() as interval, a1.the_geom, a2.the_geom,

distance(a1.the_geom, a2.the_geom) as dist

FROM OVERLAP area AS a1, area AS a2

WHERE a1.id < a2.id

AND distance(a1.the_geom, a2.the_geom) < 500

In this query, we need to use the Overlap Join, since we are interested in temporal
coexistence. Moreover, we want to see both close geometries (distance less than 500 m)
in the same map for distance comparison. Each time we use the geometry data type in a
SELECT clause, a new layer is created in the map. Here we have two geometries: a1.the
geom and a2.the geom, so we have two layers for visualizing. We can choose different colors
for each of them as we can see in Figure 7.3. Finally, during the first period (left map)
only two pairs of PAs satisfied the queries. From the second period, three red/green 26
pairs of PAs are displayed, i.e. PAs (6, 22), (20, 37) and (3, 12). The first two are adjacent
(distance 0), the latter are very close (distance 421 m).
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Figure 7.3: Query 3 - Proximity

7.2 Querying Spatio-Temporal Objects and Static Ob-

jects

We show now how to mix spatio-temporal objects with static objects in our language.
TPiet-QL engine detects that a layer is static if its underlying table does not contain the
special ‘to’ and ‘from’ attributes. Moreover, these attributes cannot be explicitly used in
the filter (WHERE) clause. Nevertheless, when using a static GIS layer l in TPiet-QL, its
lifespan matches with an open time interval, i.e. L(l)=(-∞,∞), which means that is always
valid. Thus, the semantics is straightforward.

If we mix temporal and static objects only temporal ones are consider for calculating
their temporal overlapping, since (-∞,∞) is the identity interval for the intersection opera-
tor. If an expression only contains static objects, ‘to’ and ‘from’ attributes cannot be used,
but instead the CommonInterval(), CMStart() and CMEnd() functions can be selected.
TPiet-QL engine translates -∞ and ∞ values to very small and big numbers, respectively.
By default, those values are 1000 and 2999, but can be changed in the configuration file.
Now, we will list some queries that use not only Area, but static objects in Department,
TFE and ornitogeo tables.

Query 4: Departments and their PAs - For each department (name and geometry)
show the information of its current PAs, expressed in the form (ID, name, geometry) only
in one map.

SELECT GIS SNAPSHOT name AS deptname, geom AS deptgeom, ID, the_geom,

area.nombre, commoninterval() as interval

FROM OVERLAP area, department

WHERE to = Now() AND intersects(geom, the_geom)

48



CHAPTER 7. TPIET-QL BY EXAMPLE

Only 15 of the 21 departments contain PAs as shown in Figure 7.4

Figure 7.4: Query 4 - Departments and their PAs

Query 5: PAs fully contained in one TFE - For each PA that is totally contained
in one of the size TFEs, show its exact geometry, ID and name joint with the type and
geometry of the corresponding TFE.

SELECT GIS the_geom, ID, nombre, tipo_func, TFE.geom

FROM area, TFE

WHERE contains(geom, the_geom)

The result set can be visualized in Figure 7.5. We have hidden the Uruguay Map for
better visualizing. We zoomed first and second maps to show that in the latter a new PA
appeared (ID= 22) and then its corresponding TFE is also displayed with it.
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Figure 7.5: Query 5 - PAs fully contained in one TFE

Query 6: Huge departments with at least one specific ornitogeo zones - Show
huge departments, with surface at least 640 Km2, such that intersects at least one of these
two ornitogeo zones: Sabana esteparia serrana o Pradera

SELECT GIS d.geom, d.name, o.geom, o.unidad,

commoninterval() as interval

FROM OVERLAP department AS d , ornitogeo AS o

WHERE Area(o.geom) > 640000000 AND

intersects(o.geom, d.geom) AND

(o.unidad = ‘Sabana esteparia serrana’ OR o.unidad = ‘Pradera’)

Figure 7.6: Query 6 - Huge departments with at least one specific ornitogeo zones

The result set can be visualized in Figure 7.6. Only two PAs satisfied this condition.
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7.3 Querying Static Objects, Spatio-Temporal Objects

and SOLAP cubes

Now we will get more involved and show TPiet-QL that mix all kind of objects, i.e. static
objects, spatio-temporal ones and spatial entities that belong to SOLAP cubes.

Query 7: PAs, departments and precipitation - Show PAs and the name of the
department that contains them, only for departments which had a accumulated precipitation
not exceeding the limit of 2800 l/m2.

SELECT GIS the_geom, ID, nombre, department.name

FROM area, department

WHERE contains(department.geom, the_geom)

AND department.name IN

(SELECT CUBE filter([Geography].[Department].Members,

[Measures].[Precipitation] < 2800)

FROM [Weather] )

Figure 7.7: Query 7 - PAs, departments and precipitation

If we would executed only the first part of the query, i.e. without restricting the GIS
results by a SOLAP cube, 6 departments would be returned: Cerro Largo, Lavalleja,
Paysandú, Rı́o Negro, Rocha and Treinta y Tres. The nested SOLAP query, which calcu-
lates departments summarizing precipitation with values less than 2800 l/m2, showed the
following results: Colonia (2,286.30 ml), Maldonado (2,283.60 ml), Paysandu (2,796.10
ml), Rocha (2,626.40 ml), Salto (2,781.60 ml) and Treinta y Tres (2,582.50 ml).
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Finally, PAs contained by departments that satisfy the SOLAP condition are those
which are contained in Paysandú, Rocha and Treinta y Tres. Notice that Rı́o Negro,
Lavalleja and Cerro Largo were not recovered since they only satisfied the GIS condition.
Same criteria is applied with Maldonado, Colonia and Salto, since they were not recovered
because they only satisfied the SOLAP condition. Figure 7.7 depicts the result set.

Query 8: PAa changed their shape with a buffer around within department
with specific precipitation - Show PAs, throughout time, whose new geometry contains
the previous one or viceversa. Exclude such geometries that are the same (strict case of
containment). Restrict to those PAs that intersects some department with accumulative
precipitation was greater than 550 ml during period from second semester of year 2009 and
first semester of year 2010.

The query can be expressed in either of these two syntax (ST Contains is the inverse
of ST Within):

Syntax 1:

SELECT GIS a1.id, a1.nombre, area(a1.the_geom) as area1,

area(a2.the_geom) as area2,

a1.the_geom, a2.the_geom

FROM area AS a1, area AS a2, department

WHERE a1.id = a2.id

AND NOT ( StartsBefore(a2, a1.to) )

AND st_within(a2.the_geom, a1.the_geom)

AND NOT ( st_equals(a1.the_geom, a2.the_geom ) )

AND st_intersects(geom, a2.the_geom)

AND department.name IN

(SELECT CUBE Filter([Geography].[Department].Members,

Precipitation < 800)

FROM [Weather]

SLICE {[TimeDimension].[Semester].[S2-2009],

[TimeDimension].[Semester].[S1-2010]})
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Syntax 2:

SELECT GIS a1.id, a1.nombre, area(a1.the_geom) as area1,

area(a2.the_geom) as area2,

a1.the_geom, a2.the_geom

FROM area AS a1, area AS a2, department

WHERE a1.id = a2.id

AND NOT ( StartsBefore(a2, a1.to) )

AND st_contains(a1.the_geom, a2.the_geom)

AND NOT ( st_equals(a1.the_geom, a2.the_geom ) )

AND st_intersects(geom, a2.the_geom)

AND department.name IN

(SELECT CUBE Filter([Geography].[Department].Members,

Precipitation < 800)

FROM [Weather]

SLICE {[TimeDimension].[Semester].[S2-2009],

[TimeDimension].[Semester].[S1-2010]})

Figure 7.8: Query 8: PAa changed their shape with a buffer around within department
with specific precipitation

The SOLAP cube returns the following departments: Cerro Largo, Colonia, Flores,
Maldonado, Rocha and Tacuarembó. The only PA that satisfies the GIS condition is Paso
Centurión which intersects the Cerro Largo department. Figure 7.8 shows the result set.
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Query 9: Recently created PAs within specific climatic changes - Recently
created PAs, i.e. created since 2010, that interact with departments whose average of
temperature considering firsts semesters and seconds semesters show a decrease that range
from (18.7, ∞) to (-∞, 15) Celsius degree. Show them with a buffer around of 5 Km (show
also the exact geometry) grouped by semesters.

SELECT GIS a1.id, a1.nombre,

buffer(a1.the_geom, 5000) as buffer, a1.the_geom

FROM area as a1, department

WHERE NOT (a1.id IN

(SELECT GIS a2.id

FROM area AS a2

WHERE startsbefore(a2, ‘2010-01-01 00:00:00’))

)

AND st_intersects(geom, the_geom)

AND department.name IN

(SELECT CUBE Filter([Geography].[Department].Members,

Temperature < 15)

FROM [Weather]

SLICE {[TimeDimension].[Semester].[S2-2009],

[TimeDimension].[Semester].[S2-2010]}

)

AND department.name IN

(SELECT CUBE Filter([Geography].[Department].Members,

Temperature > 18.7)

FROM [Weather]

SLICE {[TimeDimension].[Semester].[S1-2009],

[TimeDimension].[Semester].[S1-2010]})

First SOLAP query returns only Rocha department. The second SOLAP query returns
all departments except Canelones, Flores, Florida, Lavalleja and Soriano. Thus, only
Rocha experimented this climatic change. PAs whose IDs are 22 and 67 are the only ones
that appeared since 2010. Moreover the former intersects Rocha department and the latter
Artigas. We obtain only the PA with ID 22 in the result set. We can see that its name
changed thoughout this year. More precisely, during the first semester was named ‘Parque
Nacional y Reserva de Fauna y Flora El Potrerillo de Santa Teresa’ and during the second
Semester ‘Potrerillo de Santa Teresa’.

54



CHAPTER 7. TPIET-QL BY EXAMPLE

Figure 7.9: Query 9: Recently created PAs within specific climatic changes

7.4 Summary

We have developed different TPiet-QL queries that were designed to use predicates over
spatio-temporal objects, intervals, and instants. Then, we showed how to integrate those
spatio-temporal objects with static objects in our language, finishing with some examples
that model how TPiet-QL interacts with a mix of the three kind of objects mentioned
before: static objects, spatio-temporal ones and spatial entities that belong to SOLAP
cubes.
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Conclusion and Open Research
Directions

TPiet, a spatio-temporal OLAP was proposed based on Piet data model. The extension of
its architecture required several technological enhancements to support discrete changes.
Protected areas were taken as the case study and a world-real dataset was used; it was
obtained from the collaborative work with National Protected Area System of Uruguay.
Moreover, because of our data model flexibility, is able of mixing temporal, static infor-
mation and OLAP data cubes in the same framework, we have enriched the case study
with ecosystem data, ornito-ecological zones, administrative division of the country and
climatic environment information, all of them obtained from real public data. Besides the
data model, a powerful query language which manages spatial and temporal capabilities,
offering the possibility of restricting temporal GIS queries with SOLAP conditions, was
proposed and developed.

The TPiet-QL programmatic API was implemented and was included in the LAC-
CIR1 project R1210LAC004 - Monitoring Protected Areas using an OLAP-enabled Spatio-
Temporal Geographic Information System2, as part of the Web Graphic Interface3 (A
Graphic Interface designed with the aim of helping analysts to compare temporal data
evolution). Many technical problems were faced at project start-up, one of the biggest
being the dynamic visualization of geographic information, in the form of a SQL query
result, run from a web-browser. Our first approach pointed to MapServer4, a popular
platform for building web mapping applications. MapServer is mainly based on a configu-
ration file called mapfile, that contains the data source, map styling and server directives.
In order to integrate it with PostGIS, the accessed table, the column with spatial data
and the selection conditions must be specified separately in the mapfile. The results are
automatically displayed by MapServer, with no possibility of formatting nor editing them
beyond the available features through the mapfile. We built a prototype that accomplished

1http://www.laccir.org
2http://www.fing.edu.uy/inco/proyectos/laccirPiet/
3http://www.fing.edu.uy/inco/proyectos/laccirPiet/stpietqlweb/
4http://mapserver.org
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the objective of showing dynamic geometric query results, by building an ad-hoc mapfile
on the fly for each executed query. This required a query string manipulation to fit the
mapfile format. We also analyzed another GIS system for web applications called Open-
Layers5, a javascript library with no server-side dependencies, which met our needs in a
simpler way. OpenLayers allowed the segregation of query execution and the result dis-
playing, fitting better with our requirements. By simply converting the SQL query result
into JSON format, we could send it to OpenLayers and display all the information in
HTML elements, gaining more control on the processing steps, along with an easier way
to display the related information. So we put our efforts in developing a pilot with this
technology. Once finished, we were able to select OpenLayers to build the final solution
for the project. A direction for future work is related to the visualization of features that
are totally overlapped in the same layer and remain inaccessible. A possible solution is
to add capabilities to move the overlapped layers under user requirements forwards and
backwards, allowing the layer with the desired information move up to front. Another
solution consists of displaying inside the same popup window not only the information of
the top layer, but also the information of all overlapped layers, i.e. a row for each layer
clicked directly or indirectly.

The support of raster data in the language, and a study of how TPiet-QL can be used to
allow the definition of constraints, along the lines of [21], [6] (the STRM model commented
in Chapter 1 includes a language to define spatio-temporal integrity constraints), is an
open problem that still needs to be investigated.

Given the relatively small number of protected areas at this time, the prototype is able
to run in reasonable execution times, showing real data. However, larger amounts of data
will require more sophisticated query processing and optimization. This constitutes the
next steps of our future work.

5http://openlayers.org
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[9] Leticia I. Gómez, Sophie Haesevoets, Bart Kuijpers, and Alejandro A. Vaisman. Spa-
tial aggregation: Data model and implementation. Inf. Syst., 34(6):551–576, 2009.
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