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Abstract

This work describes two new improvements made to CD++, a tool used to study, model
and simulate cellular models. The tool is an incomplete implementation of the Timed Cell-
DEVS formalismo The modifications described in this work remove some limitation
introduced in the previous implementation. These modifications allow the cells to use
multiple state variables and to use multiple ports for inter-cell communications. The
cellular model specification language has been extended to cover these cases. Thus, CD++
becomes a more powerful tool while getting closer to the implementation of the whole
Timed Cell-DEVS formalismo
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Abstracto

Este trabajo describe dos nuevas mejoras realizadas a CD++, una herramienta utilizada
para estudiar, modelar y simular modelos celulares. La herramienta es una implementación
incompleta del formalismo Timed Cell-DEVS. Las modificaciones des criptas en este
trabajo eliminan algunas de las limitaciones de la implementación anterior. Estas
modificaciones permiten a las celdas utilizar múltiples variables de estado y múltiples
puertos para la comunicación con otras celdas. El lenguaje de especificación de modelos
celulares fue extendido para cubrir estos casos. Así, CD++ deviene una herramienta más
poderosa mientras se acerca a una implementación completa de formalismo Timed Cell-
DEVS.
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1 Introduction

Simulation is a powerful tool for studying complex systems, with quite a range of uses,
from new system testing to physical phenomena understanding. The simulation process
starts with a problem to salve or understand. It rnight be the case of a train company trying
to develop a new strategy for cargo storage and railway tracks usage or a chernist trying to
understand a complex process of physical diffusion taking place inside a narrow tube
[TroOl]. The simulation process starts from the observation of a real system, Entities are
identified, and an abstract representation, a model, is constructed. Once the model is
constructed, ir needs to be executed. This is done by a simulator, which consists of a
computer system that executes the model's instructions to generate its behavior, To
complete the cycle, the results obtained are compared to those of the real system for model
validation. It is often the case that a modeler is only interested in a few aspects of the real
system. In such a case, an experimental frame captures the modeler's objectives and
defines the scope of the model.

Experimental Frame

Modellng
Relation

Simulatioo
Relation

Figure 1: The basic entities and their relationships [ZeiOO]

The basic entities are linked by two relations [ZeiOO]:

o modeling relation. Links the real system and model, defining how well the model
represents the system or entity being modeled. In general terms a model can be considered
valid if the data generated by the model agrees with the data produced by the real system in
an experimental frame of interest,

o simulation relation. Links the model and simulator. It represents how faithfully the
simulator is able to carry out the instructions of the model.

There exist at present quite a number of simulation techniques and paradigms. Among
these, the DEVS formalism provides a framework for the construction of hierarchical
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models in a modular manner, allowing for model reuse and reducing development time and
testing. In DEVS a model is specified as a black box with a state and duration for that
state. When the duration time for the state expires, an output event is sent, an internal
transition takes place and the model changes its current state. A change of state can also
occur when an external event is received. Then, a complete model is defined by describing
the set of states a model goes through, the internal and external transition functions, the
output function and the state duration function. DEVS models can be put together by
linking the outputs of a model to inputs of other models to form coupled models. Models
made out of only one component are called atornic.

DEVS not only proposes a framework for model construction, but also defines an
abstract simulation mechanism that is independent of the model itself. This mechanism is
high level description of how the simulation of DEVS models should be executed by a
simulator. Two kinds of simulators are defined, one for atornic and another one for
coupled models, this latter known as a eoordinator. These simulators progress through the
simulation by exchanging messages as described by the abstract simulation mechanism.

Timed Cell-DEVS [WaiOl] is a formalism based on DEVS for the simulation of cellular
models. A cellular automaton is a lattice of cells, each of which has a value and a local rule
that defines how to obtain a new value based on the current state of the cell and the values
of neighboring cells. Cells are updated synchronously all at the same time. Timed Cell-
DEVS defines a cell as a DEVS model and a cellular automaton as a coupled model, and
introduces a new way of defining the tirning of each cell which is more flexible than the
existing synchronous approach. In Timed Cell-DEVS each cell defines its own update
delay.

CD++ is a tool for the simulation of DEVS and Cell-DEVS models which has been used
to simula te a variety of models including: traffic, forest fires, ants and watershed simulation.
Simple models were easily handled by the tool, but lack of state variables and the inability
to create a number of neighbor ports showed up to be a problem when writing complex
models. As the workarounds used by the modelers required extra work from their side and
were time-consurning during the simulation, it was proposed to add these two capabilities
to CD++.

The aim of this work is to extend CD++ to allow the modeler to declare and use state
variables to store values inside the cell, and to declare and use multiple neighbor (inter-cell)
ports to communicate extra values to the neighbor cells. This modification will perrnit the
modelers to remove the workarounds, reducing the simulation times, and to reduce the
writing time for new complex models.

This work is organized as follows. Chapter 2 presents the DEVS and Timed Cell-DEVS
formalisms. In chapter 3, the previous implementation of CD++ is introduced. Chapter 4
presents the new structure of CD++ produced by the extension, and chapter 5 shows
some examples of the utilization of the new features. Finally the conclusions and future
work.
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2 The formalisms

2.1 The DEVS formalisms

Systems whose variables are discrete and the time advance is continuous are known as
DEDS - Discrete Events Dynamic Systems, as opposed to CVDS - Continuous
Variable Dynamic Systems [Wai96]. A simulation mechanism for DEDS systems
assumes that the system will only change its state at discrete time points upon the
occurrence of an evento An event is formally defined as a change of state that takes place at
a specific point r, in time, t; E R.

DEVS is a formalism for modeling and simulation of DEDS systems. It defines a way of
specifying systems whose states change upon the reception of an input event or the
expiration of a time delay. It also allows for hierarchical decomposition of the model by
defining a way to couple existing DEVS models.

The original DEVS model is a structure:

DEV5 = < X, Y, 5, (j ext r (j in" A, ta>
where

X is the set of externa! events

y is the set of output events

5 is the set of sequentia! states;

is the externa! state transition function;

where Q := { (s, e) I s E 5, O ~ e ~ ta(s) } and e is the elapsed time since the last
state transition.

is the interna! state transition function;

A :5-+ Y is the output function;

ta:5-+ R,,+ U 00 is the time aduance function;

The semantics for this definition are as follows. At any given time, a DEVS model is in a
state s E S and in the absence of external events, it will remain in that state for a period of
time as defined by ta(s). The ta(s) function can take any real value between O and oo, A state
for which ta(s) = O is called a transient state. On the other hand, if ta(s) = 00, the system
will stay in that state forever unless an external event is received. In such a case, s is called a
passive state. Transitions that occur due to the expiration of ta(s) are called internal
transitions. When an internal transition takes place, the system outputs the value A(S), and
changes to state (5;Js). A state transition can also happen when an external event occurs. In
this case, the new state is given by (j ea based on the input value, the current state and the
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elapsed time. Figure 2 illustrates this definition by specifying a model of a computer
processor using DEVS.

A computer processor can be specified as a DEVS model. A processor would have two
states: busy and available. So

s = { busy, available }

Jobs will constitute the set of input events and output events. A job arriving on an input
port will change the processor state to busy. Once the job has been processed it will be
sent as an output evento Jobs will be identified with natural numbers, hence

X=N

Y=N

Assurning no job arrives while the processor is busy and that the model keeps an internal
variable with the id of the job it is processing, then the external transition function is
defined as follows:

8 ea (x, e)
{

s = bu!)'
jobld = x

A job will occupy the processor during a randa m time with a given Poisson distribution, so
the time advance function is

fa ( busy ) = Poissont}
fa (available) = 00

If the processor is available, then it will remain in that state until an external event arrives.

When the processing time has expired, a state transition will take place. At this time, the
output function is called followed by the internal transition function. Continuing with our
description,

A( busy ) = jobld

8 ext (busy) = available

An internal transition from the available to busy state will never happen because available is
a passive state.

(a)

6 Alejandro López



x y

1 1 11s' == 6 esd (s.e.x)

,/.,
I
I
I,
\'•..

s s' = () '" (S)
• ta(s) ~,. ~. ,~ ....._,.. ...,.

A. S)

(b)
Figure 2: (a) Speciflcation ola computer processor using DEVS

(b) DEVS semantics

A eoupled model is a structure:

where

D is a set of components.

for each i E D,

M¡is a component with the constraint that
M¡ = < Xi' Y¡, Si! Oi ext Oi ¡n" ;ti! ta) is a DEVS model

for each i E D U { se!!},

I¡ is the set of influences of i.

for each J E I¡

Z¡.¡ is a function, the i - to -j output-input translation

seleet is a tie-breaker function.

I¡ is a subset of D U { se!!}, i is not in I¡,

select: subset of D ~ D

Extending CD++ Specification Language for Cell-DEVS Model Definition 7



such that for any non-empty subset E,

se/eet ( E) E E

A coupled model groups several DEVS models together into a compound model that can
be regarded, due to the closure property, as another DEVS model. This allows for
hierarchical model construction. A DEVS model that is not constructed as a coupled
model is known as an atomic model.

A coupled model can have its own input and output events, as defined by the X"q-and Y"q-
sets. Upon receiving an external event, the coupled model has to redirect the input to one
or more of its components. In addition, when a component produces an output, it has to
be mapped as another component's input or as an output of the coupled model itself. A1l
these input-output mappings are defined by the Z function.

When models are coupled together, ambiguity arises when there are more than one
component scheduled for an internal transition at the same time. The first model to make
its internal transition will produce an output that may be translated to an external event
being received by another component model that is already scheduled for an internal
transition at that time. But then, should this second model process the external transition
first with e = ta(s)? or is it the internal transition that should be executed first and then the
external transition with e = O?The way the DEVS formalism solves this problem is by the
use of the select function. Only one model of the group of imminent models will be allowed
to have e = O. The other imminent models will be divided into two groups: those that do
receive the external output from this model, and those that do noto The first group will
execute their external transitions functions with e = ta(s) and the second group will be
among the group of imminent models for the next simulation cycle, which may require
again the use of the select function to decide which model will execute first.

This tie-breaking approach is a potential source of errors since the serialization may not
reflect the correct system's behavior upon the occurrence of simultaneous events. In
addition, the serialization reduces the possibility of a speed up in a parallel environment.
For these reasons, the parallel DEVS formalism was revised giving place to the Parallel
DEVS formalism [WaiOO][TroOl].

2.2 Cellular Automata

Cellular Automata are used to describe real systems that can be represented as a cell space.
A cellular automaton is an infinite regular n-dimensional lattice whose cells can take one
finite value. The states in the lattice are updated according to a local rule in a simultaneous
and synchronous way. The cell states change in discrete time steps as dictated by a local
transition function using the present cell state and a finite set of nearby cells (called the
neighborhood of the cell).

8 Alejandro López
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Cell's Neighborhood

Figure 3: Sketch o/ a Ce/lular Automaton {Wai96j

When cellular auto mata are used to simulate complex systems, large amounts of
computarion rime are required, and the use of a fixed interval cliscrete rime base poses
restricrions in the precision of the model. The Timed Cell-DEVS formalism [WaiOl] tries
to solve these problems by using the DEVS paracligm to define a cell space where each cell
is defined as a DEVS atomic model. The goal is to build cliscrete event cell spaces,
improving their definirion by making the riming specificarion more expressive.

2.3 The Timed Cell-DEVS formalism

Cell-DEVS defines a cells as DEVS atomic models. A Cell-DEVS atomic model is defined
by [WaiOl]:

TDC = < X, Y, 1,J, e, E, delay, d, O;no 0e", 1:, A, D >

where

X

Y

1

S

e
E

deJay

d

s;

is a set of external input events;

is a set of external output events;

represents the model's modular interface;

is the set of sequenrial states for the cell;

is the set of the cell's state variables;

is the set of states for the input events;

is the type of delay: transport or inertial;

is the transport delay for the cell;

is the internal transirion funcrion;

Extencling CD++ Specificarion Language for Cell-DEVS Model Definition 9



is the external transition function;

is the local computation function;

is the output function; and

D is the state's duration function.

A cell uses a set of input values E to compute its future state, which is obtained by applying
the local computation function 't. A delay function is associated with each cell, deferring
the output of the new state to the neighbor cells. There are two types of delays: inertial
and transport delays. When a transport delay is used, the future value will be added to a
queue sorted by output time. Therefore, all previous values that were scheduled for output
but that have not yet been sent, will be kept. On the contrary, inertial delays use a
preemptive policy: any previous scheduled output value, unless the same as the new
computed one, will be deleted and the new one will be scheduled. This activation of the
local computation is carried by the 8cxr function.

e is defined [Wai02] as {s, phase, crqueue,cr}

where:
SE S,
phaseE {active, passive},
crqueue = {(v¡,<J¡), ... ,(vm,<Jm)lmE Nim c w r: \f(iE N,iE [l,m]),v¡E S /\<J¡E R; uoo},

<JER;uoo

After the basic behavior for a cell is defined, the complete cell space will be constructed by
building a coupled Cell-DEVS model:

GCC = < Xlist, Ylist, 1, X, Y, n, {/" ...,/.}, N, e, B, Z, select >

where

xu« is the input coupling list;

Ylist is the output coupling list;

represents the definition of the interface for the
modular model whose size is TI E N, TI < 00 ; pX is the
set of all input ports (r¡ neighbor ports + ¡f external
ports) and p is the set of all output ports t»
neighbor ports + ¡.I external ports);

x is the set of external input events;

y is the set of external output events;

n is the dimension of the cell space;
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is the number of cells in each of the dimensions;

N is the neighborhood set;

C is the cell space;

B is the set of border cells;

z is the translation function; and

select is the tie-breaking function for simultaneous events.

This specification defines a coupled model composed of an array of atomic cells. Each cell
is connected to the cells defined in the neighborhood, but as the cell space is finite, either
the borders are provided with a different neighborhood than the rest of the space, or they
are "wrapped", meaning that cells in one border are connected with those in the opposite
one. Finally, the Z function defines the internal and external coupling of cells in the model.
This function translates the outputs of m-th output port in cell C;j into values for the m-th
input port of cell Ckl• Each output port will correspond to one neighbor and each input
port will be associated with one cell in the inverse neighborhood.

Cell's connections

(2)

~T 1(S)=S d
Cell definition

Figure 4: Informal definition of a Cell-DEVS model [Wai98J

The select function serves the same purpose as in the original DEVS models: to tic-break
between imminent components.

The use of the select function introduces similar problems to those described for coupled
DEVS models: lack of parallelism exploitation and a probable inconsistency with the real
system. In addition, the timed Cell-DEVS was restricted to one input from each input port.
Such restriction do not allow [WaiOO]:

• zero-delay transitions
• external DEVS models sending two simultaneous events to the same cell.

Forbidding zero-delay transitions is too restrictive, and so is allowing only one event per
external model, specially after the Parallel DEVS formalism allowed a basic model to send

Extending CD++ Specification Language for Cell-DEVS Model Definition 11



more than one event at a time. These were enough reasons to revise Cell-DEVS and the
Parallel Cell-DEVS formalism was proposed. This latter formalism will not be described
here because it does not clirectly affect this work. Please refer to [WaiOO]and [Tro01] for
further information.
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3 Previous CD++ Architecture

The CD++ arehiteeture is based on the proposition made on [Wai97J. Even if the first
versions were somehow limited [Bar98], it continued evolving [Rod9ge] [Tro01].

The arehiteeture is briefly deseribed in this seetion. However, not al! the eomponents are
deseribed. The deseription will be provided only for the most important components or
those affeeted by this work. For more detailed information refer to [Rod9ge].

3. 1 Model hierarchy

Models describe the wanted behavior in a simulation. Atomic models are the basis for coupled
models whieh intereonneet atomie models ereating a larger model. All these models have
eommon eharaeteristies.
A few classes are used to ereate al! these objeets during a simulation [Rod9ge]. The abstraet
class Model is the root of this tree. Being an abstraet class, it eannot be used to instantiate
objeets.

Figure 5: Model hierarchy [Rod99cJ

Note: This version of CD++ does not support flat eoupled eell models. This faet made
this type of models beeome uninteresting for this work, and thus al! referenee to
them has been skipped.

3.1.1 Model
This is the basie abstract class, from whieh al! the models are subclasses. It is responsible
for:

• managing al! the input and output ports,
• knowing when the next event is scheduled,
• knowing its identifier and its parent model.

Extending CD++ Specifieation Language for Cell-DEVS Model Definition 13



3.1.2 Atomic
This abstract specialization of the model class represents the interface of an atomic model.
In addition to all the responsibilities inherited from model, it also provides the interfaces for:

• the initialization function,
• the internal and external transition functions,
• the output function,
• changing the model's state.

3.1.3 AtomicCell
A new abstraer class is a specialization of the Atomic class. It provides the interfaces for the
cells of a cellular model. Its responsibilities are:

• knowing the local computation function,
• the cell's neighborhood,
• the available ports,
• the cell's value.

When an instance of a non-abstraer subclass is created, this class will take care of notifying
the neighbor cells the cell's initial value. The neighborChange input port and out output port
are created. The rest of the input and output ports are created dynamically as needed.
These dynamic ports are stored in rwo lists named in and output. A local computation
function is associated to each input port, in order to allow the cell to have a different
behavior when a value arrives through a port.

3.1.4 TransportDelayCell
This is a non-abstraer subclass of AtomicCell. It represents the cells that use a transport
delay, by redefining the behavior internal transition, external transition and output
functions. The transport delay applies a FIFO policy to the events. Any new event will be
queued waiting to be executed latter.

3.1.5 InertialDelayCell
Another non-abstraer subclass of AtomicCell. It represents the cells that use an inertial delay,
by redefining the behavior internal transition, external transition and output functions.
When an event arrives, the cell evaluates its local computation function, getting a value and
a delay. If the remaining time for the next scheduled event is greater than 0, the value is
removed and the next event is re-scheduled with the new delay.

3.1.6 Coupled
This specialization of model represents a coupled model. It groups other models, which in
turn can be atomic or coupled, and creates a larger model by assembling the basic models.
Its is responsible for:

• having a list of basic models,
• providing the means to manage that listo

3.1.7 CoupledCell
This class is a specialization of the Coupled class, and represents a particular type of coupled
model: cellular coupled models. Its responsibilities are to know:

• the celllattice, its dimension and size,
• the type of delay and the default delay,
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• the type of border,
• the initial value for each cell,
• the default local computation function, and
• the zones with alternate behavior.

It is also responsible for the creation of the celllattice and linking the cells with each other.

3.2 Processor hierarchy

Processors' main responsibility is to provide the needed simulation mechanisms for models
to execure their behavior. The abstract root class Processor receives messages and
executes the corresponding actions.

Figure 6: Processor hierarchy [Rod99c]

Note: As already stated, this version of CD++ do es not support flat coupled cell models.
This fact made this type of models become uninteresting for this work, and thus all
reference to them has been skipped.

The class RootCoordinator is the root of the component tree in a simulation. Simulator
and Coordinator are the processors responsible for executing atomic and coupled models
respectively. CellCoordinator is a special coordinator dedicated to cell coupled models.

During the simulation, there is a relation 1-to-1 between models and processors: each
model has a unique processor exclusively dedicated. The relation between models and
processors is given by the pairs Atomic-Simulator, Coupled-Coordinator and CellCoupled-
CellCoordinator.

3.2.1 Processor
This class is the basic abstract class for processors and represents the simulation
mechanism used. It is responsible for:

• receiving messages of any type,
• knowing the associated model,
• knowing its parent processor, and
• sending the output messages to its parent processor.

Extending CD++ Specification Language for Cell-DEVS Model Definition lS



3.2.2 Simulator
This subclass is a specialization of the Processor class. It is capable of executing only atomic
models. Ir is charged of:

• forwarding the input messages to the atomic model, and
• sending to its parent processor the scheduled time for its associated atomic model's

next evento

3.2.3 Goordinator
Another specialization of Processor, this subclass is represents the simulation mechanism for
coupled models. It is responsible for:

• forwarding the initialization messages to all its children processors,
• forwarding the external and output messages to the corresponding influenced

processor, and
• forwarding the internal messages to the imminent processor.

3.2.4 RootCoordinator
This subclass is another specialization of Processor. It represents the root of the processor
tree from which the simulation starts. Only one instance can existo It is the only processor
which has no associated model, and it has special responsibilities:

• starting and stopping the simulation,
• managing the external events,
• output the received output messages, and
• inc:rement the time during the simulation.

3.2.5 GellCoordinator
As a specialization of the Coordinator class, this class coordinates cellular models. It is
charged of:

• selecting the imminent model,
• the management of the output messages to avoid duplicated messages being send

to the cells (because they only indicate the need of state recalculation), but
• not filtering an external value, as in any other model.

3.3 Model and Processor Administration

Models and processors used during the simulation are created when the model description
file is read, and destroyed when the simulation finishes. For models and processor to be
able to reference other models and processors, there must exist a mechanism capable of
getting a reference out of their name. This is the function of the administrators.

3.3.1 ProcessorAdmin
This class administers all the processors participating to the simulation. Because only one
instance of this class must exist, it must be know of all the components of the simulation.
This only instance is named JingleProcessorAdmin and it is responsible for:

• The creation of all the processors (root coordinator, simulators, coordinators and
cell coordinators), and

• It is capable of retrieving a processor from its identification.

16 Alejandro López



3.3.2 ModelAdmin
Similar to ProcessorAdmin, this class administers the models used in the simulation. Because
all the models have an associated processor, their creation happens simultaneously. Only
one instance of this class must existo It is publicly known and is named SingleModelAdm.

3.4 Message Passing

Message passing between processors is the basis for the simulation mechanism. There must
be as many different massage types as event types in the formalismo Also, each message
could carry information specific to the type of event it represents.

As the message passing mechanism is encapsulated, the message distribution policy can be
changed without impacting the rest of the modules. The currently chosen policy is PIFO,
as the sending of a message will happen only when the model finished processing the
previous one. This policy produces a sequential simulation.

Mcssagc

Model sender
Time msg"'imc

rnitMessa~ OucoueMcssaeer ~
Port dcst
Valuc valuc

:.
lntemafMessaee Rxtemallvlessaec Donelvlessaac

Port dcst Time
V.luc valuc ncxtf hangc

Figure 7: Message hierarchy [Rod99cJ

3.4.1 Message
This is the root abstract class for all messages. It is responsible for knowing the time of the
message and its sender.

3.4.2 InitMessage
This subclass of Message represents the message that the processors receive when the
simulation begins. It has no extra information.

3.4.3 InternalMessage
As a specialization of Message, this class indicates to the destination processor that the time
for an internal event has arrived. It corresponds to the * message in the DEVS formalismo

3.4.4 ExternalMessage
A subclass of Message that represents the arrival of an external evento It corresponds to the
X message in the DEVS formalism. In addition to the information provided by Message,
this class includes:

• the port of arrival, and
• the value.
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3.4.5 DoneMessage
This specialization of Message represents the message that a processor receives from one of
its child processors indicating the time for the child's next state change. It corresponds to
the Done message in the DEVS formalismo

3.4.6 OutputMessage
Another subclass of Message. This one represents the output messages. It corresponds to
the Y messages in the DEVS formalismo In addition to the information provided by its
superclass, it includes:

• the output port, and
• the value.

3.4.7 MessageAdm
This class does not represent a message, but the encapsulation of the message passing
mechanism. It manages the requests for sending messages between processors. Only one
instance exists, which is publicly known, and is named SingleMessageAdm. It works by
queuing the messages that processors want to send to other processors, until it is said to
send the messages.

3.5 Rule Evaluation Hierarchy

3.5.1 SyntaxNode
This abstract class describes a node of a rule's evaluation tree. Type checking is done in
tree itself because each construction knows the required type of its parameters. The tree is
constructed by the function yyparse, which is generated by yace from the grammar
specification.

Figure 8: Class hierarchy for lile Iree nodes representing the rules

This class includes the methods:
• evaluate: returns the result of the evaluation of the no de,
• checkType: checks the types of the node,
• name: returns the name of the node,
• print: show information about the node in the specified stream.
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3.5.2 SpecNode
This class is a specialization of SyntaxNode and represents a list of rules and includes
methods to add new rules and to look for a valid rule. A nade of this class implements the
local computation function and the method evaluate executes it.

3.5.3 RuleNode
This subclass of SyntaxNode represents a rule. It includes the expressions for the three parts
of the rule: value, delqy and condition. The method evaluate evaluates the expression which is
the condition of the function; the method value returns the result of the evaluation of the
expression in the ualue part of the rule; and the method del ay evaluates the subtree for the
delay parto

3.5.4 VarNode
This class a specialization of SyntaxNode is represents a reference to a neighbor ceU, defined
as an offset from the center of the neighborhood (the ceU whose local transition function is
being computed).

Note: The name of this class is out-dated. In the beginning the only available variables
in a rule's specification were the references to other ceUs. With N-CD++
[Rod99a] and this work, other variables were introduced. Those new variables
are not represented by this class, making its name incorrect, but it was decided
to keep the original name.

3.5.5 ConstantNode
This subclass of Syntax ode represents a constant value in a rule. The accepted types are
real, integer and three-state Booleans, although aU of them are mapped to the class Real.
When a reference ro a symbolic constant (t, J, ?, pi, light, etc) is found in a rule, it will be
converted to its numeric value before creating the ConstantNode object.

3.5.6 PortRefNode
This specialization of SyntaxNode represents a reference to an input port. When evaluated it
returns the last value arrived through that port. The pon must be one of the dynarnic ports
introduced by [Rod99c], those linked to the coupled model's input ports.

3.5.7 StringNode
Th1S class is a specialization of SyntaxNode that stores a character string and represents a
port name.

3.5.8 SendPortNode
This subclass of SyntaxNode is used to send a value through an output port. The port must
be one of the dynarnic ports introduced by [Rod99c], those linked to the coupled model's
output ports,

3.5.9 TimeNode
This is a specialization of JjntaxNode that represents the function time. Its evaluation
provides the simulation time.
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3.5.10 AbsCellPosNode
A subclass of SyntaxNode that represents the funetion cellpos which rerurns the part of the
position of the eell evaluating its local computation funetion.

3.5.11 CountNode
Another specialization of SyntaxNode, this one perrnits to count the number of neighbor
eells that have a particular value. It is used by TrueCount, FalseCount, UndefCount and
StateCount.

3.5.12 OpNode
This is a template of an abstraet subclass of .5YntaxNode. It represents the funetions that
take one or more arguments.

3.5.13 UnaryOpNode
This is a template abstraet subclass of OpNode that represents a funetion with exaetly one
argumento Its template parameters are the operation, the type of the rerurned value and the
type of the argument; and it has one member which is a pointer ro the syntax node that
represents the argumento

This class is used to instantiate specialized subclasses by instantiating the templa te
parameters, ereating in this way the classes for eaeh unary funetion available in the
language, sueh as not, even, odd, etc.

3.5.14 BinaryOpNode
This is a templa te abstraet subclass of OpNode that represents a funetion with exaetly two
arguments. Its templa te parameters are the operation, the type of the rerurned value and
the type of the arguments (all of them of the same type); and it has two members which are
pointers to the syntax node that represent eaeh argumento

This class is used to instantiate specialized subclasses by instantiating the template
parameters, ereating in this way the classes for eaeh binary funetion available in the
language, sueh as and, +, max, erc.

3.5.15 ThreeOpNode
This is a templa te abstraet subclass of OpNode that representS a funetion with exaetly three
arguments. Its templa te parameters are the operation, the type of the rerurned value and
the type of the arguments (all of them of the same type); and it has three members which
are pointers to the syntax node that represent eaeh argumento

This class is used to instantiate speeialized subclasses by instantiating the template
parameters, ereating in this way the class for the only funetion taking three arguments
available in the language: if.

3.5.16 FourOpNode
This is a templa te abstraet subclass of OpNode that represents a funetion with exaetly four
arguments. Its ternplate parameters are the operation, the type of the rerurned value and
the type of the arguments (all of them of the same type); and it has four members whieh
are pointers to the syntax node that represent eaeh argumento
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This class is used to instantiate specialized subclasses by instantiating the template
parameters, creating in this way the class for the only function taking four arguments
available in the language: ifu.

3.5.17 Classes For Operations And Functions
These are the non-abstract classes derived from UnaryOpNode, BinaryOpNode, ThreeOpNode
and FouTDpNode. They are created by instantiating the templa te parameters of the
mentioned super-classes, and represem each operation or function available in the
language, such as not, and, if, ifu, etc.

3.5.18 Parser
This class is completely independent from the JyntaxNode hierarchy, but it is the class that
implements the parser. This is the reasons for studying it in this section.

To evaluate the rules their specification must be previously translated into an evaluation.
This class encapsulates the creation of the evaluation tree for the rules. This tree is created
by the cocle automatically generated by yace and is composed syntax nodes (instances of
subclasses of SyntaxNode).

This class has only one instance named SingleParser.

3.5.19 LocalTransAdmin
Similarly to Parser, this class is not a subclass of SyntaxNode but is very closely related to the
evaluation of the rules. That is the reason to study it here.

To evalúate the rules their specification must be previously translated into an evaluation
tree by the SingleParser object. As most of the cells have the same local computation
function, the generated tree is associated an identifier, and each cells stores the
corresponding identifier. This class provides the means of executing a function provided
the identifier.

There is only one instance of this class named SingleLocalTransAdmin.

3.6 Starting the simulation

3.6.1 ParallelMainSimulator
This class is the one that manages the simulator initialization. It is responsible for:

• creating the model tree (includes loading the cells),
• creating the processor tree,
• linking the models,
• providing the external events to the RootCoordinator,
• determination the finish simulation time, and
• starting the simulation using RootCorrdinatols run method.

There is only one instance of this class. In this case the single instance is managed
differently from the other cases. This class has a static method names Instance that returns
a reference to the only object of the class.
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4 New CD++ Architecture

4. 1 Overview

The previous implementation of CD++ had two main limitations: it had no support for
state variable, and the set of neighbor ports was fixed.

CD++ had no support for multiple state variables. To work around this prablem,
modelers needed to use extra planes in their cell space, and create as many new layers as
state variables they needed. For instance, when one state variable was needed in aplanar
cell space, the solution was to create a three-dimensional cell space with rwo planar layers.
The layer O (x, y, O)was used for the cell value, and the other layer (x, y, 1) to store in the
upper cell's value, the lower cell's state variable's value [AmeOO]. An example of this
technique can be seen in 5.2.1. One of the extensions presented in this work removes this
restriction. The user can still define multidimensional models representing different
phenomena, but each of the planes can include cells with multiple state variables,
permitting to define more complex phenomena.

The second limitation mentioned is the fixed set of neighbor ports. The neighbor ports
are the ports (for input and output) used to send values fram one cell to another, in a
coupled cell model. The previous implementation of CD+ + had only one port for input
and one for output. Both were automaticaliy created together with the cell. These ports
were referenced as neighborChange and out, for input and output respectively. Ir is important
to differentiate these ports fram those used to receive fram, or send to the exterior of the
cell coupled model. These latter ports are created automaticaliy in only those cells affected
by the arrival of external messages or by those supposed to send output messages.

Back to section 2.3, it can be said that the previous implementation had the following
limitations:

11 = 1

p( = neighborChange

p; = out

After this modification, the user can define which neighbor ports will be used in the model
and is no longer limited to only one.

4.2 Language Extensions

The first step in the way to add state variables and ports to CD++ is to be able to declare
them and later reference them in the rules. The specification language has been extended to
support this.

4.2.1 State Variables
In this section are described the extensions to the language required to declare and use the
state variables.
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4.2.1.1 Declaring State Variables
To be able to declare and initialize the state variables, three new keywords have been added
to the language: StateVariables, StateValues and lnitialVariablesValue. The first one
declares the list of state variable existing in every cell. The second one is the set of default
initial values for the states variables. And the last one, provides the name of a fije where the
initial values for some particular cells are stored.

StateVariables: pend temp vol
StateValues: 3.4 22 -5.2
InitialVariablesValue: initial.var

In this example three state variables are declared: pend, temp and vol. Except that in the file
initial.var other values are specified for a subset of cells, the state variables of every cell will
be initialized with the values 3.4, 22 Y-5.2 respectively.

The format for the initial values fije is quite simple. Each line references a unique cell,
followed by an "equal" sign (=) and the list of initial values for every state variable in the
cell. The initial values must be separated by, at least, one space character. The values will be
assigned to the state variables following the order in which they are lisred in the sentence
State Variables.

1

(0,0,1) = 2.8 21.5 -6.7
(2,3,7) = 6 20.1 8

The first line will assign to the variable pend of the cell (0,0,1) the value 2.8; to the variable
temp of the same cell, the value 21.5; and the value -6.7 to the variable vol of the same cell.
The second line will assign respectively the values 6, 20.1 and 8, to the variables pend, temp
and volin the cell (2,3,7).

4.2.1.2 Referencing state variables
The state variables can only be referenced frorn within the rules that define the cells'
behavior (local computation function). A variable is referenced by its name, as it was declared in
the StateVariables sentence, preceded by a dollar sign ($), frorn any part of a rule.

rule: (0,0,0) + $pend} 10 (0,0,0) > 4.5 and $vol < 22.3 } I

4.2.1.3 Assigning values to the state variables
The identifier ':=' is used to assign values to a state variable. Any expression returning a
numeric value can be placed on the right side of the assignation, but on the left side, there
can only be a reference to a state variable.

ContrariJy to what happens with the references, the assignations can only be placed in a
new part of the rules specifically created for this purpose.

<value> [ { <assignations> } 1 <delay> <condition>

The new part is optional, and if present, it must be enclosed between curly brackets. The
contents is a list of assignations, each one followed by a semi-colon.
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rule: { (0,0,0) + 1} {$temp:= $vol / 2; $pend:= (0,1,0); }
10 { (0,1,0) > 5.5 }

In the example, if the condition happens to be true, the variable temp will be assigned half
of vo/' s value, pend will be assigned the value of the neighbor cell (0,1,0), and vo!s value will
remain unmodified. This assignations are executed immediately, which means that they are
not delayed, as happens to the output value.

It is important to notice that the assignations are done from left to right. Because of this,
the two following rules are not equivalent.

rule: 5
rule: 5

$vol := 1; $temp := $vol;
$temp := $vol; $vol := 1;

10
10

t
t

After executing the first rule, both vol and temp will have the value 1. On the contrary, when
the second rule is executed, vol will have the value 1, but temp will have uol' s previous value.

4.2.2 Neighbor Ports
This section describes the extensions done to the language in arder to support the use of
multiple neighbor ports. In addition to how to declare and reference them, this section
include some extra modification needed to keep the language coherency.

4.2.2.1 Port Declaration
Only one keyword was added to the language: NeighborPorts. This keyword takes as its
argument a list of neighbor port names. Notice that only one keyword was added, but
there are rwo lists of ports (px and p). The input and output neighbor ports share the
names, making possible to calculate automatically the influences: an output por! from a ce!! wi!!
injluence exclusivefy the input por! with the same name in every cell in its neighborhood.

I NeighborPorts: alarm weight number

In this example three ports are declared and their names are a!arm, weight and number. All the
cells will have three input neighbor ports with these names and three more neighbor ports
with the same names but dedicated to output values. When a cell outputs a value through
one of these ports, it will be received by all its neighbor cells through their input ports with
the same name.

If this keyword is not present in the model description, then the simulator will work in
compatibility mode, behaving as the previous implementation.

4.2.2.2 Reading Values Arrived Through The Input Ports
A cell can read the value sent by one of its neighbors. To do so, it will be necessary to
specify which port the value must have arrived through.

Before this modification was done, because the only available input neighbor port was
neighborChange, there was no need to name it, it was enough to name the cell in which the
modeler was interested. Currently the modeler must name both the cell and port through
which the value must have arrived. The way to do it is to reference the cell in the same way
as before, but now the input port reference must follow, separated by a tilde (r-):
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I rule 1 100 { (O,l)-alarm != O }

4.2.2.3 Sending Values Through The Output Ports
An important modification has been done here. So far, a rule looked like this:

<value> [ <assignations> 1 <delay> <condition>

(Notice the assignations part introduced in 4.2.1.3).

The <ualue> part used to be an expression that evaluated to a single value which was sent
through the only output port. As there are currently many possible ports through which the
value can go out, the desired port will have to be specified. The way to express this output
functions is by "assigning" the values to the output neighbor ports. The new format for the
rules is now:

<port assignations> <assignations> 1 <delay> <condition>

Similarly to the assignations part, the <port jissignations> part of the rule must be
enclosed between curly brackets. In this case, the port is referenced preceded by the tilde
(-), but the cell reference should no be included.

As it can be necessary to output values through many ports at the same time, the
"assignation" can be used as many times as needed. Each one must be followed by a semi-
colon.

rule: { -alarm .- 1; -weight .- (O,-l)-weight; } 100
{ (O,l)-number > 50 }

Keep in mind that from now on, the <portassignations> part no longer evaluates to a
single value, but is a sequence of output operations.

The preexisting function sendt) is still available. This function sends values out of the
coupled model and not just out of the cell to its neighbors. Something similar happens with
the function portref() which reads values from outside the coupled model. Both these
functions can still be used and even mixed with the new ones.

rule: { -alarm := O; send(a1ert, 1); } 100
{ portref(alert) o and -alarm != O }

4.2.2.4 Collateral effects
As a result of this modification, some extra changes to the language were needed to keep it
coherent.

The most important change happened to the StateCount function. This function used to
take a value as its argument and returned the number of neighbor cells that had exported
that value through their out port. In other words, it counted the number of times the
argument arrived through the input neighbogChange from different neighbor cells. Because of
the many possible ports that a cell can now have, the function will now take a second
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argument which is the name of theport. If the second argument is not present, the function
will execute in compatibility mode and will consider that the port is out.

I rule: { -alarm := 1; } 100 { statecount(l, -alarm) >= 4 }

However, some functions kept their semantics intacto This is the case of the functions
TrueCount, FalseCount and UndefCount. The rational for these functions not accepting
a port name is that the changes needed implied a reorganization on the parser and the
dictionary internally used to recognize them, and because their behavior can be simply
emulated using the StateCount function. The following example show how to replace the
function UndefCount.

rule: { -alarm := 1; } 100 { statecount(?, -alarm) >= 7 }

Another important change is that a cell's initial value, however it is introduced in the
model, will affect all the cell's neighbor ports.

4.3 Modifications to the Simulation Mechanism

Even if both modification have a small common part, they are mainly separate. That is why
they are analyzed separately in this work, except for the common part which is described
first.

4.3.1 Cornrnon Modifications
A few modifications are used by both features. This sections describes these common
modifications. Please notice that this section does not cover the case of classes that were
affected by both improvements, but whose changes have nothing in common. These cases
are treated separately.

4.3.1.1 New Classes

4.3.1.1.1 LístNode

This class represents a node of the evaluation tree which is a list of syntax nodes. In
particular this no de represents the sequence of assignations that the modeler can now
express. The syntax nodes in this list can be assignations to state variables or assignations
to neighbor ports. Since the class has no restriction on the type of nodes it includes, as long
as they are SyntaxNodes, it is up to the user to check the types and how they are used.

const string name();
Real evaluate();
SyntaxNode *clone();
const TypeValue &type() const;
ostream &print(ostream &os);

class ListNode: public SyntaxNode
{
public:

ListNode() ;
-ListNode() ;
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bool checkType() const¡

void add(SyntaxNode *sn) ¡
list<PortValue> getPortValues() ¡

private:
typedef list<SyntaxNode *> SynNodeList¡

ListNode(SynNodeList &snl) ¡

SynNodeList NodeList¡
};

In addition to all the methods required by the abstract class SyntaxNode, from which this is
a subclass, two new methods are included. One of these methods is add, which is used to
add a new node to the front of the listoNote that this method describes the policy deciding
the order in which the assignation are done. If instead of adding the node in front of the
list, it would add it at the back, the assignations would be done from right to left.

The other new method is getPortValues, which is specially present for the port
assignations. Its functions is to provide the caller with a list of pairs port-value. PortValue
is a type defined specially for the ports extension and is described in 4.3.3.2.1. Briefly, it
includes a value and the name of the port through which it must be exported. The reason
for this method to exist is that the method evaluate is designed to return one value, and
not a list of assignations. In other classes, when there was need to execute some action, the
action was executed inside this method and simply returned O. This trick could not be used
here because the actions were executed immediately, but the port assignations (output of
the values) must be delayed. This new method provides the means for getting the results
early enough to use them internally for checking, but using them after the delay.

4.3.1.2 Modified Classes

4.3.1.2.1 Parser

#define VAR PREFIX '$'
#define PORT PREFIX

class Parser
{
private:

int analizeToken(string &token, bool &consumed,
string &text) ¡

int nextToken() ¡

void printToken(string &t, int tipo) ¡

This class is responsible for the lexical analysis of the model description file. The method
analizeToken is responsible for identifying tokens from a lexeme. It has been modified to
recognize, is addition to all the already recognized token, four new tokens:
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• a state variable,
• a port name,
• the assignation operation, and
• the end of an operation on a sequence.

The lexeme for the state variable token (STV AR_NAME) is a text string prefixed by the
character specified by the macro VAR_PREFIX. Sirnilarly, the PORT_NAME is a string
prefixed by the PORT_PREFIX. However, there is a remark to make at this point: port
names were already identified, but in very particular situations. For instances, in the
previous implementation, a text string was considered to be a port name only if it was the
first parameter of one of the two functions that used ports: send and portref. Currently,
both cases are identified and recognized as the same token. Finally, the lexeme ":=" is
recognized as the OP_ASSIGN token and the lexeme ";" is recognized as the token ;.

Other methods and functions needed to be updated to deal with the new tokens. They are
the method nextToken, charged of reading the next lexeme; and the function
printTokcn, charged of printing the debug information about the recognized tokens.

4.3.1.2.2 RuleNode

Real assign ();
list<PortValue> value();

class RuleNode: public SyntaxNode
{
public:

RuleNode(ListNode *v = NULL, ListNode *a = NULL,
SyntaxNode *d = NULL, SyntaxNode *be = NULL) ;

-RuleNode() ;

private:
ListNode *val, *asgn;
SyntaxNode *dly, *boolExp;

};

This class represents a rule in the description language. One member was added and one
member was modified. The val member, which represents the part value of the rule, was
modified to be a pointer to a list of nodes NodeList, instead of a pointer to a SyntaxNode as
it used to be. Even if there was no real need to change the type (because NodeList is a
subclass of SyntaxNode), it was done to help the compiler detect possible errors.

The new member in the class is named asgn, and represents the assignation part of the
rule. It is also a NodeList.

The constructor and destructor have been modified to cope with these two changes. The
method value was adapted to return the list of portname-value, instead of just a Real, and
the new method assign executes the assignations.

4.3.1.2.3 SpecNode

class SpecNode: public SyntaxNode
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};

{
public:

list<PortValue> value() const¡
Real evaluate() ¡

private:
list<PortValue> lastValue¡

The moclified method value and member lastValue existed already in this class. They used
to deal with Real values, but now they return a list of portname-value.

The most important change happened to the evaluate method. This method is the one
that executes the roles. It now executes the assignations just before evaluating the
<port jissignarions> part of the executed rule, but after having calculated the delay. The
only moclification related with the ports management is that now the lastValue member is
emptied instead of being reset to O.The rest of the work is done by the supporting classes.

4.3.1.3 Modifications to the grarnrnar
After having moclified the lexical analyzer, it was the turn for the grammar. The changes
are described using top-down approach. The whole grammar can be found in the
Appendix A.

4.3.1.3.1 Rule

Rule :
AssignResult Resultado ,{, BoolExp ,},
I AssignResult ,{, AssignSet ,}, Resultado ,{, BoolExp ,},

The new language rule format is recognized, but in a way that also accepts roles in the old
format, assuring the compatibility of the models.

Two changes can be seen:
• The <value> part is now an AssignResult and no longer a Resultado, and
• the optional AssignSet is introduced.

Two grammar rules were needed instead of just one to solve an ambiguity problem.

4.3.1.3.2 AssignResult

AssignResult :
Resultado
I ,{, PortSendSet ,},

This rule recognizes two sub-trees. The sub-tree PortSendSet is a list of output operations
through output ports. The sub-tree Resultado is only recognized for compatibility reasons.
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4.3.1.3.3 PortSendSet

PortSendSet :
/* Empty */
I PortSend PortSendSet¡

The list of outputs to neighbor ports can be empty or an output operation followed by a
list of outputs.

4.3.1.3.4 PortSend

PortSend :
SEND 1 (1 PORTNAME ',' RealExp 1) 1

I PORTNAME OP ASSIGN RealExp 1 ¡ 1

1.1,

An output operation can be either a send function with a port name and a value as
arguments, or a neighbor port assignation. Both cases must be finished by a semi-colon
(;).

Except for RealExp, all the components of the rule are basic token provided by the lexical
analyzer.

4.3.1.3.5 RealExp

I RealExp ,
IdRef

This rule was not affected itself, but it did one of its components: IdRef.

4.3.1.3.6 IdRef

IdRef :
CellRef OptPortName

This rule recognizes the references to identifiers. In particular references to cells (CellRef).
Now the cells can be followed by a reference to the port (OptPortName) whose value we
are interested in. Because the compatibility must be assured, this second part of the rule is
optional.

4.3.1.3.7 OptPortName

I OptportName ,
/* Empty */
I PORTNAME ¡

A reference to the port is just a token representing its name. However, as this rule is
optional, also an empty value is accepted.
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4.3.1.3.8 AssignSet

AssignSet :
/* Empty */
I Assign AssignSet

This rule is a component of the rule &l/e (4.3.1.3.1). It represents a list of assignacions to
state variables.
It can be empty or an assignation operation fol1owed by a list of assignations to state
variables.

4.3.1.3.9 Assign

I

Assign :
STVAR NAME OP ASSIGN RealExp ';'

This rule recognizes the operacion that assigns a value (Re alExp , 4.3.1.3.5) to a state
variable reference. Both STVAR_NAME and OP _ASSIGN are basic token recognized
by the lexical analyzer.

4.3.2 State Variables

4.3.2.1 Overview
From a high level point of view, the modificacions done to the simulator for it to be
capable of providing state variables are not really complex. A new class representing a set
of state variables and their values was created. An instance of this class is a member of the
state of each cel1.The classes AtomicCe/lState andAtomicCel/were modified to cope with this
new object. The modifications include new methods to get and set the values of the
variables, identified by their name.
In addition, the parser was modified to recognize the state variable references, new syntax
nodes were created to handle the assignacions in the evaluation tree, and some exiscing
syntax nodes were modified to deal with the new nodes.

4.3.2.2 New Classes
Some classes were created to add support for state variables to CD++. Those classes are
described in detail hereafter:

4.3.2.2.1 State Vars
This class was created to store a set of state variables and their values. An object of this
class is created empty, and the state variables are added to the set afterwards together with
their inicial values. The necessary methods to do this are part of the dass.

When the models are being loaded, an empty object of this class is created. Later on, the
state variables declared by the modeler are added to the seto At the same moment, the
default inicial values are assigned to the variables if the modeler provided them. If the
modeler did not provide the list of default inicial values, the undefinedvalue is used.

Once the set is created and initialized, the object is given to the object of the class
Coup/edCe/¡ Subsequently, it will done the object getcing copies that will assign to every cel1.
From this moment on, each cell will use its own independent object StateVars, even
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thought that all of them are idencical, containing the same state variables and inicial values,
but the values will evolve independently for each cell.

Before starcing the simulation, but still during the modelloading, if the modeler defined an
initial values file, these values will be assigned to the state variables in the corresponding
cells.

Once started the simulation, the state variables' values will be read and modified in each
cell according to the rules defining the local computation function.

An object of this class is the set of state variables (and their values) of a cell.

class StateVars : protected map<const string, Real>
{
public:

inline bool exist(const string& name) const¡
bool createVariable(const string& name,

Real& value = Real::tundef) ¡
Real &get(const string &name) const;
Real &set(const string &name, Real &newValue);
StateVars& operator=(const StateVars &src);
StateVars& setValues(const string &values);
string asString(void) const¡
inline void print(ostream& os) const;
void clear();

protected:
inline bool exist(int index) const;
const string& operator[] (int index) const;

private:
map<int, string> order;

};

Because it is a subclass of map<const string, Real>, the name of the state variable is used as
the key to access the values.

The default constructor will create an empty state variables seto The state variables will be
created subsequently by calling the method createVariable. In the case that the variable
already exists, this method returns False and the set is not modified. The method exist is
used to know whether a state variable exists and the methods get and set are used to
access the variables' values.

The private member order exists to keep a relation between the state variables and the order
in which they were created. Even thought that the state variables are referenced by their
name, there exists a case were they are accessed by the creation order: the method
setValues assigns a list of values to all the state variables in the object. This method is
called only during the simulator initialization when reading the values from the initial values
file.

For internal use of the method setValues, the method exist and the operator [ ] are
available. Both take an integer representing the index (creation order) of a state variables.
That is the reason why these functions are protected.
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Finally, the method c1ear is in charge of emptying the state variables set, and the operator
= copies in the self object (the object where the method is called), the object passed as
argumento

4.3.2.2.2 State VarNode
A subclass of SyntaxNode that represents the state variables references in the evaluation
tree. This class identifies a state variable referenced from a rule, to be able to evaluate it.

class StateVarNode: public SyntaxNode
{
public:

StateVarNode(const string &VarName);
-StateVarNode() ;
const string name();
Real evaluate();
SyntaxNode *clone();
const TypeValue &type() const;
ostream &print(ostream &os);
bool checkType() const;
const string &getVarName();

private:
string varName;

};

The most interesting methods of this class is evaluate, which returns the value of the
referenced state available; and getVarName, which return the name of the referenced state
variable. The rest of the methods are present by requirement of the super-class and have
the normal use.

4.3.2.2.3 AssignNode
Another subclass of SyntaxNode. This one represents an assignation of a numeric
expression to a state variable.

class AssignNode: public SyntaxNode
{
public:

AssignNode(SyntaxNode *var
SyntaxNode *val

-AssignNode() ;
const string name();
Real evaluate();
SyntaxNode *clone();
void var(SyntaxNode *v);
void val (SyntaxNode *v);
const TypeValue &type() const;
ostream &print( ostream &os );
bool checkType() const;

NULL,
NULL) ;

private:
SyntaxNode *variable;
SyntaxNode *value;

};
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Both the state variable reference and the numeric value must be SyntaxNodes. They can be
provided at creation time or later using the specific methods var and val. The method
evaluate executes the assignation of the value resulting from the evaluation of the value
syntax node member, to the state variable specified by the variable syntax node member.
As this method returns the assigned value, this allows for chaining and nesting of the
assignations.

4.3.2.2.4 AssignSetNode
This is not really a class but an instance of the ListNode class described in 4.3.1.1.1. This
instance is a list of assignations to state variables (AssignNode). Is the equivalent, in the
evaluation tree, to the assignationspart of a rule. ListNode's evaluate method evaluates, one
by one, the SyntaxNodes it includes. Because the included syntax node are, in this case,
assignations to state variables, evaluating this list will execute all the assignations.

4.3.2.3 Modified existing classes
This section describes the changes done to existing classes. In addition to the explanation
of those changes, an incomplete description of the class is presented. This incomplete
description includes only the methods and members affected by the changes.

4.3.2.3.1 ParallelMainSimulator

class ParallelMainSimulator
{
protected:

ParallelMainSimulator &loadCells(CoupledCell &, bool);
ParallelMainSimulator &loadStateVariables(CoupledCell &);

The method IoadCells is responsible for loading the cells of a cellular coupled model. It
has been modified to invoke, in addition to its other tasks, the new method
loadState Variables.

This new method is charged of interpreting the state-variables-specific part of the model
being loaded. It creates an empty set of state variables (StateVars object). If the model
declares state variables, they will be added to this object, and if general initial values are
provided for the state variables, those values will be assigned to the state variables added to
the object.

Once the object is initialized (state variables created and initial values set), the object is
passed to the coupled model. It is responsible for initializing each cell with this object.
Notice that if the model does not use state variables, this object will stay empty, but it will
still existoThis is the way in which the backwards compatibility is guarantee without using
code specific to that case.
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4.3.2.3.2 CoupledCell

class CoupledCell
{
public:

public Coupled

CoupledCell &setVariablesValue(const CellPosition &,
const char *);

CoupledCell &setVariablesValue(const string &,
const char *);

const StateVars &initialStateVars() const;
CoupledCell &initialStateVars(const StateVars &);

protected:
virtual void afterProcessorInitialize();

private:
Real initialValue;
StateVars initialVars;

} ;

This class has a member that specifies the initial value for each cell (initialValue). In a
similar way, there is a member specifying the initial values for state variables named
initialVars. This member is set by calling the new method initialStateVars, which is called
from the Para/lelMainSimulators loadCells method (see 4.3.2.3.1). There is second version
of initialState Vars which is used to get the object.

The method afterProcessorInitialize is called once the associated processor has been
initialized. This method initializes every cell and was modified to also create the state
variables by copying the initialStateVars member. To do so, it invokes AtomicCel!s
method variables. In this way, each cell will have its own state variables set, containing the
same variables with the same initial values, but now they become completely independent.

This class also provides the methods to set the values for all the state variable of a
particular cell. This is a set of method which accept different argument types, but they all
do the same job. These methods are named setVariablesValue and are used when special
initial values are provided for a particular cell (this are the values provided in the state-
variables initial-values file). As normal, they must be called once the state variables have
been created and initialized with the default initial values.

4.3.2.3.3 AtomicCell

class AtomicCell: public Atomic
{
public:

Real &variable(const string &name);
Real &variable(const string &name, Real &value)

protected:
StateVars &variables();
AtomicCell &variables(const StateVars &vars)

};
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Two protected methods called variables were added to this class. They are used to set and
get the cell's StateVars object representing the set of state variables. As the object is really
part of the cell's state, and it is stored in another object of class AtomicCellState, the
appropriated method is used to access the cell's state.

The public methods called variable are provided to set and get the value of one state
variable. The variables is referenced by its name and the method internally used the services
of the above-described method variables.

4.3.2.3.4 AtomicCellState

class AtomicCellState: public AtomicState
{
public:

StateVars variables;

As this class represent the cell's state, it is logical that this is the object that really stores the
StateVars object. A new member named variables was created for it.

4.3.3 Multiple neighbor Ports

4.3.3.1 Overview
Adding multiple neighbor ports was more complex than adding state variables. This part of
the modification can be divided into three subtasks.

4.3.3.1.1 Addition of New Ports to the Cells
Before this modification was implemented, each cell had only two neighbor ports. These
ports were named neighbotChange (for input) and out (for output). The latter port influencing
the former port in all the neighbor cells. This modification replaced these two ports by two
lists of ports and the list of influences were extended so that a port in a cell would
influence the port with the same name in all the neighbor cells.

Since the AtomicCe/1 class in the previous implementation included two ports as members,
one for input and one for output, there was no chance to use other ports for neighbor
communications. Nowadays, the two ports in the AtomicCe/1 class have been replaced by
two list of ports. These list are instances of the class PortList (this class already existed and
was used for the coupled model ports).

Each cell receives from the coupled model (its creator) a list with the names of the ports to
be created. From each name, two ports are created, one for input and one for output. As
both input and output ports share the same name, the port names are internally prefixed
in_ or »«: to differentiate them. In addition to these ports, the rwo default neighbotChange
and out ports are also created (which don't need to be prefixed). These two ports are
created for compatibility reasons, to support the old models, but nothing prevents the
modeler from using them as any other neighbor port.
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Figure 9: Structure o/ an atomic cell

Similarly to the historie ports, the new ports will generate Y messages and receive X
messages, and because the messages already included the port name, there is no need to
modify the message format.

The creation of the ports is done in AtomicCe/ls's method createNCPortsO. The coupled
model receives the list of port names from the Paralle/MainSimulator when the later calls
CoupledCell::createCe/lsO from its method loadCellsO.

4.3.3.1.2 Extended Neighborhood Values
In the previous implementation, each cell had an object belonging to the class
NeighborhoodValue, which was used to store the values arriving from the neighbor cells
through the input port neighborChange (the only port available at that moment). This class
used internally an object of type NeighborList, which was a map using a cell position as the
key to the value. This defined a table of <cell position, value>.

Now that the number of ports is no longer limited to one, only one value for each
neighbor cell is not enough. The cell must be capable of storing, for each neighbor cell, as
many values as neighbor ports the cells have. To achieve this, it is necessary to extend the
table used in the previous implementation to keep, not just one value, but a value for each
port. The extended table can now be seen as <cell position, <port name, value> >.

(-1,-1) (-1, O) (-1,1)

(0,-1) (O,O) (0,1)

(1,-1) (1, O) (1,1)

neighborChange

NeighborValues

(-1,-1) (-1,0) (-1,1)

(0,-1) (0,0) (0,1)

(1,-1) (1,0) (1,1)
port

port n

neighborChange
NeighborValues

(a) (b)
Figure 10: NeighborValues Structure: (a) In the previous implementation

(b) after the modification

Because of this, the class NeighborList was extended to store a map of port names and
values, instead of a single value. It was also necessary to update all the methods of this class
that accessed the values (either for reading or writing) so that they accept the port name as
parameter.
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4.3.3.1.3 Extra Messages
The message format and type was not modified. However, it is worth noticing that when
the new ports are used, the number of messages circulating between cells increases.

The default ports (neighbotChange and ou~ kept their historie function: they are still used for
adrninistrative communications with the coupled model, such as receiving and sending the
1, @, * and D messages, exactly in the same way it was done before.

When a cell's init function is executed, it used to send the cell's current value to the
coupled model in a Y message, followed by a D message indicating the end of the
operation. Now that many ports can be found in a cell, the init function will send a Y
message for each port in the cell, carrying the corresponding value; and concluding with
the D message to close the operation.

In a similar way, when the local transition function is executed, a cell will send one Y
message for each value being exported. The coupled model will convert those messages
into X messages and will deliver them to the cell's neighbors.

4.3.3.2 New Classes
Some classes were created to add support for multiple neighbor ports to CD++. Those
classes are described in detail hereafter:

4.3.3.2.1 PortValue

I typedef pa i rcst ri nq , Real> PortValue;

This class is used to store a port's name and a value, representing the value that must be
sent through the port after the delay. A list of these structures is returned by the execution
of a rule. When working in compatibility mode, the list will have only one structure
containing the value to be sent through the port (which can be no other than ou~.

4.3.3.2.2 SendNCPortNode

class SendNCPortNode: public SyntaxNode
{
public:

SendNCPortNode(SyntaxNode *x NULL, SyntaxNode *y
-SendNCPortNode() ;

NULL) ;

SyntaxNode *clone();
const string name();
Real evaluate();
const TypeValue &type() const;
bool checkType() const;
ostream &print(ostream &os);

PortValue getPortValue();

private:
string PortName();

SyntaxNode *portName;
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I SyntaxNode *portValue¡
};

This is a subclass of SyntaxNode representing a port assignation. When it is created, two
syntax no des must be provided: one for the port name and the other for the value. If the
node for the port name is NUll, then the default value will be used.

The method PortName returns a string with the name of the port. If at creation time no
name was provided, the returned name is that of the default port: out.

The method evaluate exists for compatibility reasons, because the abstract super-class
requires its existence. It only shows debug information, checks that the port exists, and
returns the value that will be sent through the port. The method that is interesting is
getPortValue. Tbis method returns a structure PortValue (see 4.3.3.2.1) with the port's
name and the value to be sent through it.

4.3.3.3 Modified Existing Classes
This section describes the changes done to existing classes. In addition to the explanation
of those changes, an incomplete description of the class is presented. This incomplete
description includes only the methods and members affected by the changes.

4.3.3.3.1 ParallelMainSimulator

} ¡

class ParallelMainSimulator
{
protected:

ParallelMainSimulator &loadCells(CoupledCell &, bool) ¡

The method loadCells is responsible for loading the cells of a cellular coupled modeL It
has been extended to read from the model description file the names of the neighbor ports.

It starts by creating an empty list of names, and inserts in the list every port name in the
modeL If the model does not use extra ports, as is the case for all the models not using the
new extensions, this list will be empty but it will existo This is the way in which the
backwards compatibility is guarantee without using code specific to that case.

This list is then passed to the CoupledCell object when calling the method createCells.

4.3.3.3.2 CoupledCell

CoupledCell &setCellValue(const CellPosition &,
const string &,
const Real &) ¡

class CoupledCell public Coupled
{
public:

CoupledCell &createCells(const CellPositionList &neighbors,
CellPartition *part,
list<string> NCPorts) ¡
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CoupledCell &setCellValue(const ModelId &,
const string &,
Value) ;

CoupledCell &setCellValue(const string &sCellPos,
const string &,
const Real &);

CoupledCell &setCellAllValues(const ModelId &, Value);
CoupledCell &setCellAllValues(const CellPosition &,

const Real &);
CoupledCell &setCellAllValues(const string &sCellPos,

const Real &);
};

The method createCells has been extended to take as parameter the list of the names of
the neighbor ports. After creating each cell, it will invoke AtomicCe/!s createNCPorts method
for the cell to create the ports; and will provide the list of names. Notice that the same list
is provided to each cell, this guarantees that every cell in the space will have the same ports.

Once the ceils and their neighbor ports are created, createCells wiil establish the influences
for each ceil:

• the port out will influence all the neighbor's neighborChange port, and
• the other output neighbor ports will influence the port will the same name in all the

neighbor cell.

All the existing methods named setCellValue have been improved to receive the port
name as a parameter. A new set of methods was created to be used during the initialization.
They are named setCellAllValues and set the same initial value for all the ceil's ports.

4.3.3.3.3 AtomicCeU

class AtomicCell: public Atomic
{
public:

static const string NCInPrefix;
static const string NCOutPrefix;

void createNCPorts(list<string> &portNames);
const Real &value(const string &port) const;

protected:
PortList &inNCPortList();
PortList &OutNCPortList();
list<string> &NCPorts();
bool isInNCPort(const string portName) const;
bool isOutNCPort(const string portName) const;
AtomicCell &setAllNCPortsValues(const Real &val);
string calculateInPort(string &portName);
string calculateOutPort(string &portName);

private:
bool addInputNCPort(string portName);
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bool addOutputNCPort(string portName);
const Port *getNCPortByName(const PortList &pl,

const string portName) const;

PortList Xports;
PortList Yports;
list<string> NCPortNames;

In this class, the ancient members neighborChange and out, which used to store the only
available neighbor ports, were replaced by two list of ports. Xports stores the input
neighbor ports and Yports the output neighbor ports. A third member was added. It is
named NCPortsNames and keeps the list of names of the ports. This list is provided as
an argument to the method createNCPorts. This method copies the list it received as
argument to the NCPortsNames member, and creates two ports for each name in the list,
one for input and one for output. To differentiate the input ports from the output ports,
their names are internally prefixed with the constants NCInPrefix and NCOutPrefix. In
addition to these ports, the default ports are also created: neighborChangeand out. In this way,
if an old model is being simulated, the list of names will be empty and the lists Xports and
Yports will only have these two ports respectively, guaranteeing the compatibility.

Two private methods have been added to create the neighbor ports. Their names are
addInputNCPorts and addOutputNCPort. These are the methods used from
createNCPorts to create the ports. As the PortList object identify the ports by their references
and not by their names, another private helper method was created to get a pointer to the
port reference from of a PortList, provided the port name. This method is named
getNCPortByName.

A few protected methods were created to manipulate the list of ports. The methods
inNCPortList and outNCPortList provide a reference to the list of ports Xports and
Yports, while a reference to the list of names is given by NCPorts. To check whether a port
belong to the list of input ports is used the method islnNCPort, and isOutNCPort is
used for the output ports. The function setAllNCPortsValues is used during the
initialization to set the initial vale for all the ports of the cell. And finally the methods
calculateInPort and calculateOutPort get a port name as argument and provide the
name of the port input or output port related to that name.

One of the most important changes is that the method value was extended to accept the
name of the port whose value is required.

4.3.3.3.4 NeighborhoodVaJue

class NeighborhoodValue
{
public:

typedef map<string, Real> CellPorts;
typedef map<CellPosition, CellPorts, les s < CellPosition > >

NeighborList;

NeighborhoodValue& create(const CoupledCell &coupled,
const CellPositionList &neighbors,
const CellPosition &center,
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const list<string> &ports) ¡
NeighborhoodValue &set(const string, const Real &) ¡
NeighborhoodValue &set(const NeighborPosition &n,

const string &port,
const Real &v) ¡

const Real &get(const NeighborPosition &n,
const string &port) const¡

const Real &get(const string &port) const¡

void print(ostream &os) ¡
};

This is probably the most affected class. It used to store a value for each neighbor cell. It
now stores n values for each neighbor cell, being n the number of neighbor ports that the
cells have. For further information on the reasons that motivated this change, please see
4.3.3.1.2.

The type NeighborList has been redefined store, for each neighbor cell, not just one
value, but the set of all their values. This type is a map that still uses the neighbor cell's
relative position as the key, but now the value is no longer a Real, but a CellPorts object.
This new type, CellPorts, is defined to be a map using the port names as key and to store a
Real value for each port. This means that from now, to get a value it will be necessary to
specify the neighbor cell and the port.

To deal with these changes, the constructor was extended to accept the list of port names.
It will create an entry in each cell for the default port neighborChange as well as for any port
in the listoAll of them will se assigned the UndifRealvalue.

In addition, the methods set and get have all been updated to accept the port name as
argument, and the print method to show correctly all the new the information.

4.3.3.3.5 TransportDeJayCeU

class TransportDelayCell: public AtomicCell
{
protected:

Model &initFunction() ¡
Model &externalFunction(const MessageBag &) ¡
Model &outputFunction(const CollectMessage &) ¡

Private:
const Real &firstQueuedValue() const¡
const string &firstQueuedPort() const¡

} ¡

In this class some if the methods associated to the reception of messages needed to be
modified. In general, these three methods were updated to no longer use just one value
representing the cell's state, but a list of pairs port-value. initFunction's behavior was
extended for it to queue a pair port-value containing every port in the cell and its value.
Sirnilarly, the outputFunction was updated to send a Y message for each pair port-value in
the queue. And finally, the method extemalFunction was adapted in the same way. It no
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longer uses one value representing the cell's state to determine whether it should be
exported, but now it uses the list of pairs port-value queued by the preceding methods.

The private methods firstQueuedValue was adapted to cope with TDCellState's new
structure, and the method firstQueuedPort was added to complete the set of methods to
access the information of the first queued value.

4.3.3.3.6 TDCellState

public AtomicCellStateclass TDCellState
{
public:

typedef pair< string, Real >
typedef pair< VTime, QueueValue >

QueueValue¡
QueueElement¡

Few changes suffered this class representing the state of a TransportDelcryCel1. The type
QueueElement used to be a pair including the value and its time to leave, representing an
element of the queue of values to be sent out. The value was replaced by a pair specifying
the value and its departure port. This latter pair is a new type named QueueValue. This
means that now a QueueElement has three components: the time to leave, the departure port
and the value.

4.3.3.3.7 InertialDelayCell
class InertialDelayCell: public AtomicCell
{
protected:

Model &initFunction() ¡
Model &internalFunction(const InternalMessage &) ¡
Model &externalFunction(const MessageBag &) ¡
Model &OutputFunction(const CollectMessage &) ¡

private:
Real futureValue(const string &) const¡
void futureValue(const string &, const Real &) ¡

Real actualValue(const string &) const¡
void actualValue(const string &, const Real &) ¡

};

This class included the means to set and get the current and future values of the cell. These
methods were respectively named actualValue and futureValue. These four functions
were extended to accept the name of the port.

This change induced changes in other methods of the class. initFunction will set the
current and future value for every port in the cell, outputFunction will send the value
through the corresponding port, and externalFunction was adapted to consider the port
when setting the cell's future values.
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4.3.3.3.8 IDCellState

class rDCellState public AtomicCellState
{
public:

map<string, Real> futureValue¡
map<string, Real> actualValue¡

This cells represents the state of a Inertia/DelqyCell. It had two values, the current and the
future value, respectively named actualValue and futureValue, both of class Real. These
members were modified to be each one a set of pairs port-value.

4.3.3.3.9 LocalTransAdmin

class LocalTransAdmin
{
public:

list<PortValue> evaluate(const string &,
const NeighborhoodValue &,
PortValues *,
VTime &delay,
VTime &actualtime,
VirtualPortList *,
Model *actualCell,
string portSource = 1111) ¡

const Real &cellValue(const NeighborPosition &,
const string PortName) ¡

};

Two modification happened to this class. The method cellValue now take the port name
as its second argument, and the method evaluate no longer returns a real but a list of
PortValue, representing all the values to be exported and their respective departure ports.
This list is obtained by the valuation of the local transition function (SpecNode).

4.3.3.3.10 VarNode

class VarNode: public SyntaxNode
{
public:

VarNode( nTupla nt, string pName "" ) i

string &port(void) ¡
VarNode &port(string pName) ¡

};

This class represents a node for a reference to a cell's port. The constructor now accepts
the name of the port as argumento If it is not provided, it will default to "', (the empty
string).
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Two methods were also added. Their name is port and they are used to set and get the port
name after the creation of the node. When the store port name is "", the port used will be
out. This perrnits defining the default port in this class without having to care for that kind
of details in the grammar description.

4.3.3.3.11 CountNode

class CountNode: public SyntaxNode
{
public:

CountNode(const Real &v, StringNode *p
CountNode(SyntaxNode *s, StringNode *p

NULL) ;
NULL) ;

Real evaluate();

private:
StringNode *portName;

};

This class represents a node for the funccion StateCount of the language. As it was already
said in 4.2.2.4, this funccion was extended to accept a port name as a parameter; and so was
this class.

The constructors now accepts as argument a StringNode representing the name of the port.
If it is not provided, it will default to the StringNode with the empty string as value (""). The
method evaluate has been modified to take into account the new argumento When the
port name is "", the port used will be neighborChange. This allows for defming the default
port in this class without having to care for that kind of details in the grammar description.

4.4 Modifications to drawlog

drawlog is an external applicacion used to generate a visual representation of the simulation.
It takes as its input the log files generated by CD++. Because having multiple neighbor
ports generates new output messages in the log files, it was necessary to update drawlog, to
be able to deal with them. A new opcional parameter was added to this tool: -n<port>.

$ drawlog -h
drawlog -[?hmtclwpOn)

where:
? Show this message
h Show this message
m Specify file containing the model (.ma)
t Initial time
i Time interval (After the initial time, draw after every time interval)
e Specify the coupled model to draw
1 Log file containing the output generated by SIMU
w Width (in characters) used to represent numeric values
p Precision used to represent numeric values (in characters)
O Don't print the zero value
f Only cell values on a specified slice in 3D models
n Specify the neighbor port to show (default: out)

If it is not present, drawlog will behave in compacibility mode, drawing the changes
exported by the port out of the cells. When it is present, it takes as argument the name of
the port to draw.

Extending CD++ Specification Language for Cell-DEVS Model Definicion 45



5 Application Examples

This section shows some examples of models that where adapted to use the new
capabilities of CD++. The full code of those examples can be found in the appendixes,
while in this section there are only the code extracts necessary to understand how those
conversion were achieved.

5. 1 Generic Comparison - Life Game

For a generic comparison it was decided to use the Life Game, a model that needed very
few modifications to use CD++ new capabilities.

Five examples were tested:

o Original: the unmodified model using the unmodified simulator,
o Compatible: the unmodified model using the new simulator,
O State Variables: the model modified to use state variables using the new simulator,
O Default ports: the model modified to use explicitly the default neighbor ports, and
O Non-default ports: the model modified to use non-default neighbor ports.

All the test cases had cell spaces of 21 x 21 cells and started with the same initial state. All
these simulations were executed three times on the same computer with no external loado
The model descriptions can be found in Appendix C - Life Game.

What was observed in these tests was the results of the simulation, which were requested to
be equivalents; the duration of the simulations; and the percentage of CPU usage. To
normalize the results and verify their equivalence, the log files were processed by drawlog:
equiualent result sbould produce tbe same "visualization. JJ As expected, all the test produced the
same "visualization."

The following table show the results from the test runs. Each cell shows the simulation
duration expressed in seconds, and the CPU load expressed as a percentage .

•

9.61

• 6.70
• •.. • ~ 9.95

9.22

10.00

A comparison of these values can be seen in the following graphs. The first one shows the
simulation durations and the second one shows the percentage of CPU loado
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From these results, it can be concluded that the original simulator performs better than the
new one. As strange as it can seem, it is natural: with the new capabilities came an increased
overhead. Between the Onginal test and the Compatible test, the overhead increased about
45%, but also it must be noticed that the Life Game simulation did not need the new
capabilities and their usage was force in an unnatural way.

5.2 State variables - Fire Spread

The currcnt version of the Fire Spread model [AieOl] does not use state variables because
they were not available at the moment of its writing. Instead it uses a three-dimensional cell
space. Two dimensions are used to represent the field where the fire spreads, whilst the
third one is used for technical reasons: the need to keep two values in each cell. As it was
impossible to have more than one value in a cell, the modelers stacked cells to store one
value in each one, and adapted the model to treat them as if they were just one cell. As of
today, the cell space used is of n x m x 2, where n x m is the dimension of the simulated
field. The lower layer of cells is used to store the temperature and the higher layer to store the
ignition time. The models can be seen in Appenclix B - Fire Spread.

5.2.1 Model Conversion
Using the new simulator, which supports multiple state variables, this trick is not longer
needed. The temperature is stored as the cell's value and the ignition time in a state variable. In
the new model this variable is named ti because it is the name that the original modelers
used to reference this value in the higher layer of cells. The temperature is stored in the cell's
value because it must be passed to the neighbor cells, while the ti value is only used
internally to the cell. In this way, now the model has only two climensions.
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The first step was to add the state variable ti, to remove the higher layer of cells and to
replace all the references to this layer by references to the state variable. In a simpler model
this could have been enough, but it was not the case here. A problem appeared when
converting the tules "Burning" and "ti". These are the original tules:

%Burning
rule : { #macro(burning) } 1 { cellpos(2) = O ANO ( ( (0,0,.0) >
#macro(burning) ANO (0,0,0) > 333 ) OR ( #macro(burning) >
(0,0,0) ANO (0,0,0) >= 573) ) ANO (0,0,0) != 209 }

%ti
rule : { time / 100 } 1 { cellpos (2)
(0,0,0) = 1.0 }

1 ANO (O,O, -1) >= 573 ANO

The "ti" rule is applied only to the higher layer, while the "burning" rule is applied to the
lower layer. To make this happen the conditions include a clause specifying to which layer
they apply. This clause is cellpos (2)=x, which disappeared when the references to the
higher layer were removed:

%Burning
rule : { #macro(burning) } 1 { ( ( (0,0) > #macro(burning) ANO
(0,0) > 333 ) OR ( #macro(burning) > (0,0) ANO (0,0) >= 573 ) )

ANO (0,0) != 209 }

%ti
rul e : { (O ,O) } { $ ti. - time / 100; } 1 { (O ,O ) >= 573 ANO $ti
= 1. O }

The problem now is that in some cases, both conditions can be true at the same time. For
instance, when $ti = 1.0, (0,0) >=573 and #macro(burning) > (0,0).

To solve this problem, the rule "burning" was factorized into two simpler tules, eliminating
the OR operation:

%Burning
rule {#macro(burning)

rule {#macro(burning)

1 (0,0) > #macro(burning) ANO
(0,0) > 333 ANO (0,0) != 209
#macro(burning) > (0,0) ANO
(0,0) >= 573 ANO (0,0) != 209

1

Now, it is possible to see that in both tules it is requested that (0,0) != 209. But it is also
requested that (0,0) is higher than a value which is higher than 209. Then:

(0,0) > 333 ~ (0,0) -:¡:. 209

(0,0) ~ 573 ~ (0,0) -:¡:. 209

From this can be concluded that (0,0) != 209 is a redundant request, and so it was
removed.

%Burning
rule : { #macro(burning) } 1 { (0,0) > #macro(burning) ANO
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(0,0) > 333 }
rule {#macro(burning)} 1 { #macro(burning) > (0,0) AND

(0,0) >= 573 }

This removal is not mandatory. The model will behave the same if keep this condition is
kept, but removing it will simplify the following operations.

Now, the rule "ti" only overlaps with the second part of the rule "burning", so they were
merged. This generated three rules that replace the previous two:

%Burning and ti
rule { #macro(burning) 1 { (O, O) > #macro(burning) AND

(O, O) > 333 }
rule { #macro(burning) 1

{ #macro(burning) > (O, O) AND (O, O) >= 573 AND
$ti != 1.0 }

rule { #macro(burning) } { $ti .- time / 100; } 1
{ #macro(burning) > (O, O) AND (O, O) >= 573 AND

$ti = 1.0 }
rule { #macro(burning) } { $ti .- time / 100; } 1

{ #macro(burning) < (O, O) AND (O, O) >= 573 AND
$ti = 1.0 }

The third and fourth part of the rule modify ti's value when(O,O) >= 573 and $ti = 1.0, as
requested by the original rule ti, regardless of the value of #macro(burning).

The second and third part set #macro(burning) as the cell's new value when (0,0) >= 573
and #macro(burning) > (0,0), as requested by the original rule "burning".

However, after these modifications, the first and fourth part overlap when $ti = 1.0
because (0,0) ~ 573 ~ (0,0) > 333. This means that the first part's condition must be
restricted to prevent this collision to happen:

%Burning
rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND

(0,0) > 333 AND
((0,0) < 573 OR $ti != 1.0)

1
> (0,0) AND (0,0) >= 573 AND

rule #macro(burning)
#macro(burning)
$ti != 1.O }
#macro(burning)
#macro(burning)
$ti = 1. O }
#macro(burning)
#macro(burning)
$ti = 1. O }

} { $ti .- time / 100; } 1
> (O, O) AND (O, O) >= 573 AND

} { $ti .- time / 100; } 1
< (O, O) AND (O, O) >= 573 AND

rule

rule

Now the first rule's condition is true only when (OJO) < 573 or$ti 1= 1.0, which makes the
fourth rule's condition falseo

However, this new model is far from being "optimal" in its execution. To shorten the
execution time, the number of rules can be reduced and the clauses in the rules' condition
can be reordered.
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To reduce the number of rules, some of them can be merged. For instance the following
rules are very similar:

rule : #macro(burning) 1
#macro(burning) > (O,O) AND (O,O) >= 573 AND
$ti 1= 1.0 }

rule #macro(burning) } { $ti .- time / 100; } 1
#macro(burning) > (O,O) AND (O,O) >= 573 AND
$ti = 1.0 }

It can be seen that they only differ in the required value for $ti, and in the assignation (or
not) of a new value to $ti. These two rules can be merged in just one rule that will assign
the new value to $ti depending on $tz's original value:

rule : { #macro(burning) }
{ $ti := if($ti = 1.0, time / 100, $ti); } 1
{ (0,0) >= 573 AND #macro(burning) >= (0,0) }

For the second step it will be used the fact that CD++ is capable of using short-cut
evaluation (in the same style as the C programming language). When the left expression of
an and operation evaluates to false, the whole operation will evaluate to fa/se, so it is useless
to evaluate the right expression. Similarly, when the left expression of an or operation
evaluates to trae, the whole operation will evaluate to true, and so there is no need to
evaluate the right expression of the operation.

By simply reordering the operations and their parameter in the rules' condition, a lot of
execution time can be saved. The trick is to make execute first the simplest conditions,
while leaving to the end the more complex ones. Moving to the left the simplest operation
will make the deal.

%Unburned
rule: { #macro(unburned) } 1 { (0,0) != 209 AND (0,0) < 573 AND

time <= 20 OR
#macro(unburned) > (0,0) )

%Burning and ti
rule : { #macro(burning) } 1 { (0,0) > 333 AND

( (O ,O) < 573 OR $ti! = 1. O ) AND
(0,0) > #macro(burning) }

rule #macro(burning) }
{ $ti: = if ($ti = 1. O, time / 1 OO, $ti); } 1
{ (0,0) >= 573 AND #macro(burning) >= (0,0) }

#macro (burning) } { $ti := time / 100; } 1
{ $ti = 1.0 AND (0,0) >= 573 AND

#macro(burning) < (0,0) }

rule

%Burned
rul e : { 2 O9 } 100 { (O ,O) != 2 O9 AND (O ,O) < = 333 AND

(0,0) > #macro(burning) }
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5.2.2 Comparison
This section compares the three models' performance. All of them were executed with the
same initial values and until the simulation finished by itself.

The first great difference is the visualization of the results using the tool drawlog. The
original model shows the information for both layers:

Line : 1 - Time: 00:00:00.000
O 1 2 3 4 5 O 1 2 3 4 5

+------------------------+ +------------------------+
01 300 300 300 300 300 3001 01 O O O O O 01
11 300 600 600 300 300 3001 11 O 1 1 O O 01
21 300 600 600 300 300 3001 21 O 1 1 O O 01
31 300 300 300 300 300 3001 31 O O O O O 01
41 300 300 300 300 300 3001 41 O O O O O 01
51 300 300 300 300 300 3001 51 O O O O O 01

+------------------------+ +------------------------+

While the new models using state variables only show one layer, the only one existing

+------------------------+
01 300 300 300 300 300 3001
11 300 600 600 300 300 3001
21 300 600 600 300 300 3001
31 300 300 300 300 300 3001
41 300 300 300 300 300 3001
51 300 300 300 300 300 3001

+------------------------+

Line : 1 - Time: 00:00:00.000
01234 5

For this comparison, four examples were tested:

a Original: the unmodified model using the unmodified simulator,
a Compatible: the unmodified model using the new simulator,
a State Variables: the model modified to use state variables, and
a Optimized: the optimized model modified to use state variables.

All the test cases had cell spaces of 6 x 6 cells and started with the same initial state. All
these simulations were executed three times on the same computer with no externalload.
What was observed in these tests was the duration of the simulations and the percentage of
CPU usage.

The following table shows the results from the test runs. Each cell shows the simulation
duration expressed in seconds, and the CPU load expressed as a percentage .

. . . ...U~ ~ LIol:WI r!I w:IU
Il' • lkmID • • HmiIn Il' • llmIB l.' • .lmm

.mmmlll 66.42 74 67.94 72 66.13 75 66.83 73.67

• .~.. 86.53 80 86.69 80 87.19 80 86.80 80.00
~~~ 84.03 81 84.78 80 84.88 80 84.56 80.33
Ile. .. 63.80 75 64.60 74 64.07 75 64.16 74.67
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A comparison of these values can be seen in the following graphs. The first one shows the
simulation durations and the second one shows the percentage of CPU loado
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Figure 13: Comparison of the durations for Fire Spread using State Variables
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Figure 14: Comparison 01 the CPU loads for Fire Spread using State Variables
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It can be concluded from these results that the original simulator performed better that the
new simulator for the compatible model and the un-optimized model using state variables,
but in comparison with the Lift Games results (see 5.1), this time the increase was just 9%.

On the contrary, the optimized model performed slighrly better than the original simulator.
The reason for this is that, this model has half of the cells than the original model (one
layer was removed by using state variables), and because of the optimizations.

In conclusion, models using multiple state variables take as much time to simulate as the
previous simulator; but now models are more natural because there is no need for an
inexplicable second layer of cells, which increases the ease of writing, reading and
maintaining; and use less resources (such as memory and fue descriptors), because there are
half of the cells to manage.

5.3 Multiple neighbor Ports - Fire Spread

As explained in 5.2, the Fire Spread model stacked cell layers to simulate the storage of
multiple values in one cell. Using multiple neighbor ports can also solve this problem.
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5.3.1 Model Conversion
The conversion from the original Fire Spread model to the one using neighbor ports is very
similar to the conversion to use state variables exposed in 5.2.1. Because of this, the
conversion will not be explained step by step, but only the specific differences.

In this case, two orts are declared: tem and ti.
neighborports: temp ti

The port temp exports the cell's temperature (the old lower layer), while the port ti exports
the ignition time (the higher layer).

The rules generated are equivalent to those used in the state variables model, but instead
they use ports:

%Unburned
rule : { -temp := #macro(unburned); } 1

{ «(#macro(unburned)) > (O,O)-temp OR time <= 20 ) AND
(O,O)-temp < 573 AND (O,O)-temp != 209 AND
(O,O)-temp > O }

%Burning and ti
rule : { -temp := #macro(burning); } 1

{ (O,O)-temp > #macro(burning) AND
(O,O)-temp > 333 AND
(O,O)-temp < 573 OR (O,O)-ti != 1.0)

rule {-temp:= #macro(burning); } 1
{ #macro(burning) >= (O,O)-temp AND

(O,O)-temp >= 573 AND (O,O)-ti != 1.0 }
rule {-temp:= #macro(burning); -ti := time / 100; } 1

{ #macro(burning) >= (O,O)-temp AND
(O,O)-temp >= 573 AND (O,O)-ti = 1.0 }

rule {-temp:= #macro(burning); -ti := time / 100; } 1
{ #macro(burning) < (O,O)-temp AND

(O,O)-temp >= 573 AND (O,O)-ti = 1.0 }

%Burned
rule : { -temp .- 209; } 100 { (O,O)-temp > #macro(burning) AND

(O,O)-temp <= 333 AND
(O,O)-temp != 209 AND
(O,O)-temp > O }

%Stay Burned or constant
rule : { } 1 { t }

As the inicial value for both ports is the same and this model needs different values, it was
solved by assigning inicial value that will never appear during the simulation and adding two
rules that generate the real inicial state when the cell has this special values.

The special values are -1 and -2. Thus the inicial value for the ports is -land the cells that
start with a different inicial value will have -2.

initialValue : -1
initialCellsValue init.val
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The contents of the file init.val are:

1("') .-2(2,1) = -2
(1,2) = -2
(2,2) = -2

And the rules to generate the real initial state from this values are:

%initialization
rule {-temp:= 300; -ti := O; } 1

{ (O,O)-temp = -1 and (O,O)-ti -1
rule {-temp:= 600; -ti := 1; } 1

{ (O,O)-temp = -2 and (O,O)-ti -2

These rules are placed in the last places to minimize their interference counting on the fact
that CD++ evaluates the rules in order.

This model can be optimized in a way similar to that used for the state variables model.
These are the rules after the optimization.

%Unburned
rule : { -temp := #macro(unburned); } 1

{ (O,O)-temp > O AND (O,O)-temp != 209 AND
(O,O)-temp < 573 AND
(time <= 20 OR (#macro(unburned» > (O,O)-temp ) }

%Burning and ti
rule : { -temp := #macro(burning); } 1

{ (O,O)-temp > 333 AND
( (O,O)-temp < 573 OR (O,O)-ti != 1.0 ) AND
(O,O)-temp > #macro(burning) }

rule -temp := #macro(burning);
-ti := if( (O,O)-ti = 1.0, time / 100, (O,O)-ti); } 1
(O,O)-temp >= 573 AND #macro(burning) >= (O,O)-temp }

rule -temp := #macro(burning); -ti := time / 100; } 1
(O,O)-ti = 1.0 AND (O,O)-temp >= 573 AND
#macro(burning) < (O,O)-temp }

%Burned
rule : { -temp := 209; } 100 { (O,O)-temp != 209 AND

(O,O)-temp > O AND
(O,O)-temp <= 333 AND
(O,O)-temp > #macro(burning)

5.3.2 Comparison
This section compares the three models' performance. All of them were executed with the
same initial values and until the simulation finished by itself.
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For this comparison, four examples were tested:

o Original: the unmodified model using the unmodified simulator,
o Compatible: the unmodified model using the new simulator,
o Ports: the model modified to use neighbor ports, and
O Optimized: the optimized model modified to use neighbor ports.

All the test cases had cell spaces of 6 x 6 cells and started with the same initial state. All
these simulations were executed three times on the same computer with no externalload.
What was observed in these tests was the duration of the simulations and the percentage of
CPU usage. The Compatible model is the same as for the state variables example. It was re-
used here to easy the comparison.

The following table shows the results from the test runs. Each cell shows the simulation
duration expressed in seconds, and the CPU load expressed as a percentage .

ll' '.!.i.mu . .~ U&!.U fY I.I&!D

JI • 1kmID JI • lk!EIl ¡ll • lkmtD • lkmO
l[elmM'r;lL lf 66.42 74 67.94 72 66.13 75 66.83 73.67., • 86.53 80 86.69 80 87.19 80 86.80 80.00
~nmm " 81.30 79 81.11 80 80.90 80 80.10 79.67
~ 65.41 73 63.04 76 64.92 73 64.46 74.00

A comparison of these values can be seen in the following graphs. The first one shows the
simulation durations and the second one shows the percentage of CPU loado
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Figure 15: Comparison 01 the durations for Fire Spread using Neighbor Ports
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Figure 16: Comparison 01 the CPU loads for Fire Spread using Neighbor Ports
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It can be concluded from these results that, in a similar way to what happened with the
state variables, the original simulator performed better that the new simulator for the
compatible model and the un-optimized model using neighbor ports. In this case the
increase in duration was about 9%.

Again, the optimized model performed slightly better than the original simulator. The
reason for this is that, this model has half of the cells than the original model (one layer was
removed by using state variables), and because of the optimizations.

As with the state variables, models using multiple neighbor ports take as much time to
simulate as the previous simulator; but now models are more natural because there is no
need for an inexplicable second layer of cells, which increases the ease of writing, reading
and maintaining; and use less resources (such as memory and file descriptors), because
there are half of the cells to manage.
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6 Conclusions And Future Work

The new implementation of CD++ was presented. Ibis implementation includes two new
features that were missing so faroThese features are state variables and multiple neighbor ports.
To achieve this, the state of the cells was extended to include a set of state variables and
their values, and the only value arriving from neighbor cells was replaced by a set of values
arriving through different ports.

These new features add great power to the specification language, and thus to the
simulator; simplifying the modeling task. But with every improvement there is always a
price to be paid. The price is an increased overhead required for the management of these
features, making the simulations longer. It was also shown that when the model is
optimized, this overhead can be nullified and even inversed, but this means that modelers
will have to pay more attention to model optimization.

Nevertheless, the models can now be written more clearly, without the need of tricks like
extra layers of cells; and their simulation consume less memory and file descriptors (than
those models with extra celllayers), which allow for larger cell spaces to be simulated.

There are a few ropics were CD++ can be improved:

• Allow all the neighbor ports to be initialized with different values. Nowadays, all
the neighbor ports of a cell are initialized with the same value. Removing this
limitation will simplify the modeler's work.

• After its first version, CD++ suffered many modifications and improvements,
most of which the developers could not even dream of. Some of these
improvement made obsolete some parts of the code that were good enough for the
old versions. For instance, the lexical analyzer (which was designed to recognize a
very reduced and strict language) is today imposing too many restrictions to the
extensions of the language.

• Go on improving CD++ getting every day closer to the whole formalismo

Extending CD++ Specification Language for Cell-DEVS Model Definition 57



7 Appendix A - Grarnrnar

RuleList = Rule I Rule RuleList

Rule AssignResult Result { BoolExp }
I AssignResult { AssignSet } Result { BoolExp }

AssignResult = Result I { PortSendSet }

Result = Constant I UNDEF I { RealExp }

BoolExp BOOL I (BoolExp) I RealRelExp I NOT BoolExp
BoolExp BOOL_OP

RealRelExp RealExp REL_OP RealExp
COND REAL FUNC ( RealExp

IdRef I ( RealExp I RealExp OPER RealExpRealExp

IdRef CellRef OptPortName I Constant I Function
UNDEF I PORTREF ( PORTNAME )
SEND ( PORTNAME , RealExp )
CELLPOS ( RealExp ) I STVAR NAME

OptPortName = /* Empty */ - PORTNAME

AssignSet = /* Empty */ I Assign AssignSet

Assign = STVAR_NAME ASSIGN_OP RealExp ;

PortSendSet = /* Empty */ I PortSend PortSendSet

PortSend SEND ( PORTNAME , RealExp ) ;
- PORTNAME ASSIGN_OP RealExp

Constant INT I REAL I CONSTFUNC

Function COUNT
STATECOUNT ( RealExp OptParamPort
UNARY_FUNC ( RealExp )
BINARY_FUNC ( RealExp , RealExp
WITHOUT PARAM FUNC TIME- - -WITHOUT PARAM FUNC RANDOM- - -UNARY_FUNC_RANDOM ( RealExp )
BINARY_FUNC_RANDOM ( RealExp , RealExp )
COND3 FUNC ( BoolExp , RealExp , RealExp
COND4 FUNC ( BoolExp , RealExp , RealExp , RealExp )

OptParamPort = /* Empty */ I ' - PORTNAME

CellRef = ( Tuple

Tuple = INT , INT Rest_nTuple
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Rest_nTuple = , INT Rest_nTuple I )

fBOOL = t ?

REL OP = 1= < >= <=>

BOOL OP = and I or impxor eqv

ASSIGN OP :=

OPER = + * /

INT = [SIGN] DIGIT {DIGIT}

REAL INT [SIGN] {DIGIT} . DIGIT {DIGIT}

SIGN +

DIGIT = O 1 I 2 I 3 141 5 I 6 I 7 I 8 I 9

PORTNAME = thisPort STRING

STVAR NAME = $ STRING

STRING LETTER {LETTER}

LETTER a I b I c l.·. I z I A I B I c l··· I Z

CONSTFUNC pi I e I inf I grav I accel I light I planck
avogadro I faraday I rydberg I euler_gamma
bohr_radius I boltzmann I bohr_magneton I golden
catalan I amu I electron_charge I ideal_gas
stefan_boltzmann I proton_mass I electron mass
neutron_mass I pem

WITHOUT PARAM FUNC truecount I falsecount I undefcount
time I random I randomSign

UNARY FUNC = abs I acos I acosh I asin I asinh latan I atanh
I cos I sec I sech I exp I cosh I fact I fractional
I In I log I round I cotan I cosec I cosech I sign
I sin I sinh I statecount I sqrt I tan I tanh
I trunc I truncUpper I poisson I exponential
I randlnt I chi I asec I acotan I asech I acosech
I nextPrime I radToDeg I degToRad I nth-prime
I acotanh CtoF I CtoK I KtoC I KtoF I FtoC I FtoK

BINARY FUNC comb I logn I max I min I power I remainder
root I beta I gamma I lcm I gcd I normal I f
uniform I binomial I rectToPolar_r I hip I
rectToPolar_angle I polarToRect_x I polarToRect_y

COND REAL FUNC = even I odd I islnt I isPrime I isUndefined
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8 Appendix B - Fire Spread

8.1 Original

#include(rules.inc)

[top]
components ForestFire

[ForestFire]
type : cell
dim : (6,6,2)
delay : transport
defaultDelayTime : 1000
border : nowrapped
neighbors ForestFire(-l,O,O)
neighbors ForestFire(l,O,O)
neighbors ForestFire(O,O,O)
neighbors ForestFire(O,O,-l)
initialValue : 300.0
initialCellsValue : init.val
localTransition : FireBehavior

ForestFire(O,-l,O)
ForestFire(O,l,O)

ForestFire(O,O,l)

[FireBehavior]
%Unburned
rule : { #macro(unburned) } 1

{ cellpos(2) = ° and
( #macro(unburned) > (0,0,0) OR time <= 20 ) AND

(0,0,0) < 573 AND (0,0,0) != 209 }

%ti
rule { time I lOa} 1 { cellpos(2) = 1 AND

(O,O, -1) >= 573 AND (O,O,O) 1.° }
%Burning
rule : { #macro(burning) } 1

{ cellpos(2) = ° AND
( ( (0,0,0) > #macro(burning) AND(O,O,O) > 333 ) OR

( #macro(burning) > (0,0,0) AND (0,0,0) >= 573 )) AND
(0,0,0) != 209 }

%Burned
rule : { 209 } 100 { cellpos (2) = ° AND

(0,0,0) > #macro(burning) AND
(0,0,0) <= 333 AND (0,0,0) != 209 }

%Stay Burned or constant
rule : { (0,0,0) } 1 { t

60 Alejandro López



And these are the macros used in this model, which are declared in the file rules.inc.

#BeginMacro(unburned)
( 0.98689 * (0,0,0)
+ 0.0031 * (0,-1,0)
+ 0.0031 * (0,1,0)
+ 0.0031 * (1,0,0)
+ 0.0031 * (-1,0,0)
+ 0.213 )
#EndMacro

#BeginMacro(burning)
( 0.98689 * (0,0,0)
+ 0.0031 * (0,-1,0)
+ 0.0031 * (0,1,0)
+ 0.0031 * (1,0,0)
+ 0.0031 * (-1,0,0)
+ 2. 74 * exp ( -° .19 * ( ( time + 1 ) / 1°° - (° , ° , 1) ) )
+ 0.213 )
#EndMacro
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8.2 State Variables

#include(rules.inc)

[topl
components ForestFire

[ForestFirel
type : cell
dim : (6,6)
delay : transport
defaultDelayTime : 1000
border : nowrapped
neighbors : ForestFire(-l,O) ForestFire(O,-l) ForestFire(l,O)
neighbors : ForestFire(O,l) ForestFire(O,O)
initialValue : 300
initialCellsValue : init.val
stateVariables: ti
stateValues: o
initialVariablesValue: var.val
localTransition : FireBehavior

[FireBehaviorl
%Unburned
rule : { #macro(unburned) } 1 { ( #macro(unburned) > (0,0) OR

time <= 20 ) AND
(0,0) < 573 AND
(0,0) != 209 }

%Burning and ti
rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND

(0,0) > 333 AND
( (O, O) < 573 OR $ti 1= 1. O )

1 { #macro(burning) >= (0,0) AND
(O,O) >= 573 AND $U 1= 1.0 }

} { $ti := time / 100; } 1
>= (0,0) AND (0,0) >= 573 AND

rule { #macro(burning)

{
{

{
{

{ $ti := time / 100; } 1
(0,0) AND (0,0) >= 573 AND

rule #macro(burning)
#macro(burning)
$ti = 1.0 }
#macro(burning)
#macro(burning) <
$U = 1. O }

rule

%Burned
rule : { 209 } 100 { (0,0) > #macro(burning) AND

(0,0) <= 333 AND (0,0) != 209

%Stay Burned or constant
rule : { (0,0) } 1 { t }
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The macros have also been moclified.

#BeginMacro(unburned)
( 0.98689 * (0,0)
+ 0.0031 * (0,-1)
+ 0.0031 * (0,1)
+ 0.0031 * (1,0)
+ 0.0031 * (-1,0)
+ 0.213 )
#EndMacro

#BeginMacro(burning)
( 0.98689 * (0,0)
+ 0.0031 * (0,-1)
+ 0.0031 * (0,1)
+ 0.0031 * (1,0)
+ 0.0031 * (-1,0)
+ 2.74 * exp ( -O .19 * ( ( time + 1 ) / 100 - $ti ) )
+ 0.213 )
#EndMacro
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8.3 State Variables Optimized

#include(rules.inc)

ltop l
components ForestFire

[ForestFirel
type : cell
dim : (6,6)
delay : transport
defaultDelayTime : 1000
border : nowrapped
neighbors : ForestFire(-l,O) ForestFire(O,-l) ForestFire(l,O)
neighbors : ForestFire(O,l) ForestFire(O,O)
initialValue : 300
initialCellsValue : init.val
localTransition : FireBehavior
stateVariables: ti
stateValues: o
initialVariablesValue: var.val

[FireBehaviorl
%Unburned
rule: { #macro(unburned) } 1 { (0,0) != 209 AND (0,0) < 573 AND

time <= 20 OR
#macro(unburned) > (0,0) )

%Burning and ti
rule : { #macro(burning) } 1 { (0,0) > 333 AND

( (O ,O) < 573 OR $ ti I= 1.O ) AND
(0,0) > #macro(burning) }

rule #macro(burning) }
{ $ti := if($ti = 1.0, time / 100, $ti); } 1
{ (0,0) >= 573 AND #macro(burning) >= (0,0) }

#macro(burning) } { $ti := time / 100; } 1
{ $ti = 1.0 AND (O,O) >= 573 AND

#macro(burning) < (0,0) }

rule

%Burned
rule: { 209 } 100 { (0,0) != 209 AND (0,0) <= 333 AND

(0,0) > #macro(burning) }

%Stay Burned or constant
rule : { (0,0) } 1 { t }

The macros have not been affected by this optimization. This means that they are the same
macros exposed in 8.2.
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8.4 Neighbor Porls

#include(rules.inc)

[top]
components ForestFire

[ForestFire]
type : cell
dim : (6,6)
delay : transport
defaultDelayTime : 1000
border : nowrapped
neighbors : ForestFire(-l,O) ForestFire(O,-l) ForestFire(l,O)
neighbors : ForestFire(O,l) ForestFire(O,O)
initialValue : -1
initialCellsValue : init.val
neighborports: temp ti
localTransition : FireBehavior

[FireBehavior]
%Unburned
rule : { -temp := #macro(unburned); } 1

{ ((#macro(unburned)) > (O,O)-temp OR time <= 20 ) AND
(O,O)-temp < 573 AND (O,O)-temp != 209 AND
(O,O)-temp > O }

%Burning and ti
rule : { -temp .- #macro(burning); } 1

{ (O,O)-temp > #macro(burning) AND
(O,O)-temp > 333 AND
(O,O)-temp < 573 OR (O,O)-ti != 1.O)

rule { -temp .- #macro(burning); } 1
{ #macro(burning) >= (O,O)-temp AND

(O,O)-temp >= 573 AND (O,O)-ti != 1.0 }
rule { -temp .- #macro(burning); -ti .- time / 100; } 1

{ #macro(burning) >= (O,O)-temp AND
(O,O)-temp >= 573 AND (O,O)-ti = 1.0 }

rule { -temp .- #macro(burning); -ti := time / 100; } 1
{ #macro(burning) < (O,O)-temp AND

(O,O)-temp >= 573 AND (O,O)-ti = 1.0 }

%Burned
rule : { -temp := 209; } 100 { (O,O)-temp > #macro(burning) AND

(O,O)-temp <= 333 AND
(O,O)-temp != 209 AND
(O,O)-temp > O }

%initialization
rule {-temp:= 300; -ti := O; } 1

{ (O,O)-temp = -1 and (O,O)-ti -1
rule {-temp:= 600; -ti := 1; } 1

{ (O,O)-temp = -2 and (O,O)-ti -2

%Stay Burned or constant
rule : { } 1 { t }
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The macros have also been modified

#BeginMacro(unburned)
( 0.98689 * (O,O)-temp
+ O. O O 31 * (0, -1) - temp
+ 0.0031 * (O,l)-temp
+ 0.0031 * (l,O)-temp
+ 0.0031 * (-l,O)-temp
+ 0.213 )
#EndMacro

#BeginMacro(burning)
( 0.98689 * (O,O)-temp
+ 0.0031 * (0, -1) -temp
+ 0.0031 * (O,l)-temp
+ 0.0031 * (1, O) -temp
+ 0.0031 * (-l,O)-temp
+ 2.74 * exp ( -0.19 * ( ( time + 1) /100 - (O,O)-ti ) )
+ 0.213 )
#EndMacro
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8.5 Neighbor Porls Optimized

#include(rules.inc)

[topl
components ForestFire

[ForestFirel
type : cell
dim : (6,6)
delay : transport
defaultOelayTime : 1000
border : nowrapped
neighbors : ForestFire(-l,O) ForestFire(O,-l) ForestFire(l,O)
neighbors : ForestFire(O,l) ForestFire(O,O)
initialValue : -1
initialCellsValue : init.val
neighborports: temp ti
localTransition : FireBehavior

[FireBehaviorl
%Unburned
rule : { -temp := #macro(unburned); } 1

{ (O,O)-temp > O ANO (O,O)-temp != 209 ANO
(O,O)-temp < 573 ANO
(time <= 20 OR (#macro(unburned)) > (O,O)-temp ) }

%Burning and ti
rule : { -temp := #macro(burning); } 1

{ (O,O)-temp > 333 ANO
( (O,O)-temp < 573 OR (O,O)-ti != 1.0 ) ANO
(O,O)-temp > #macro(burning) }

rule -temp := #macro(burning);
-ti := if( (O,O)-ti = 1.0, time / 100, (O,O)-ti); } 1
(O,O)-temp >= 573 ANO #macro(burning) >= (O,O)-temp }

rule -temp := #macro(burning); -ti := time / 100; } 1
(O,O)-ti = 1.0 ANO (O,O)-temp >= 573 ANO
#macro(burning) < (O,O)-temp }

%Burned
rule: { -temp := 209; } 100 { (O,O)-temp != 209 ANO

(O,O)-temp > O ANO
(O,O)-temp <= 333 ANO
(O,O)-temp > #macro(burning)

%initialization
rule {-temp:= 300; -ti := O; } 1

{ (O,O)-temp = -1 and (O,O)-ti -1
rule {-temp:= 600; -ti := 1; } 1

{ (O,O)-temp = -2 and (O,O)-ti -2

%Stay Burned or constant
rule : { } 1 { t }

The same macros exposed in 8.4 are used in the model.
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9 Appendix e - Life Game

9.1 Original And Compatibility

[lifeJ
type : cell
width : 21
height : 21
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors life(-l,-l)
neighbors : life(O,-l)
neighbors : life(l,-l)
initialvalue : o
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
localtransition

[topJ
components life

[conrad-ruleJ
rule 1 100 { (0,0)
rule o 100 { (0,0)
rul e 1 100 { (O ,O)
rul e O 100 { (O ,O)

life(-l,O) life(-l,l)
life(O,O) life(O,l)
life(l,O) life(l,l)

4 000011100000000000000
5 000011100010000000000
6 000011100110000000000
10 000000000111000000000
11 000000000111000100000
12 000000000111001100000
14 000000000000001110000
15 000000000000001110001
16 000000000000001110011
conrad-rule

1 and (truecount = 3 or truecount 4)
1 and (truecount < 3 or truecount > 4)
O and truecount = 3 }
O and truecount != 3 }
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9.2 State Variables

[life]
type : cell
width : 21
height : 21
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors life(-l,-l)
neighbors : life(O,-l)
neighbors : life(l,-l)
initialvalue : o
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
localtransition
statevariables:
statevalues: o
initialvariablesvalue:

[conrad-rule]
rule { $value } { $value := 1; } 100

{ $value = 1 and (truecount = 3 or truecount 4)
rule { $value } { $value := o; } 100

{ $value = 1 and (truecount < 3 or truecount > 4)
rule { $value } { $value := 1; } 100

{ $value = o and truecount = 3 }
rule { $value } { $value .- O; } 100

{ $value = O and truecount != 3 }

[top]
components life

life(-l,O) life(-l,l)
life(O,O) life(O,l)
life(l,O) life(l,l)

4 000011100000000000000
5 000011100010000000000
6 000011100110000000000
10 000000000111000000000
11 000000000111000100000
12 000000000111001100000
14 000000000000001110000
15 000000000000001110001
16 000000000000001110011
conrad-rule

value

life.stvalues
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This model uses the following inicial values (life.stvars file):

(4,4)=1
(4,5)=1
(4,6)=1
(5,4)=1
(5,5)=1
(5,6)=1
(6,4)=1
(6,5)=1
(6,6)=1
(5,10)=1
(6,9)=1
(6,10)=1
(10,9)=1
(10,10)=1
(10,11)=1
(11,9)=1
(11,10)=1
(11,11) =1
(12,9)=1
(12,10)=1
(12,11)=1
(10,15)=1
(11,14) =1
(11,15)=1
(14,14) =1
(14,15)=1
(14,16)=1
(15,14)=1
(15,15)=1
(15,16)=1
(16,14)=1
(16,15)=1
(16,16)=1
(15,20)=1
(16,19)=1
(16,20)=1
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9.3 Default Porls

[life]
type : cell
width : 21
height : 21
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors life(-l,-l)
neighbors : life(O,-l)
neighbors : life(l,-l)
initialvalue : O
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
localtransition

lt opl
components life

life(-l,O) life(-l,l)
life(O,O) life(O,l)
life(l,O) life(l,l)

4 000011100000000000000
5 000011100010000000000
6 000011100110000000000
10 000000000111000000000
11 000000000111000100000
12 000000000111001100000
14 000000000000001110000
15 000000000000001110001
16 000000000000001110011
conrad-rule

[conrad-rule]
rule { -out .- 1; 100 { (O,O)-neighborChange = 1 and

(truecount = 3 or truecount = 4)
rule { -out := O; 100 { (O,O)-neighborChange = 1 and

(truecount < 3 or truecount > 4)
rule { -out := 1; 100 { (O,O)-neighborChange O and

truecount = 3 }
rule { -out .- O; 100 { (O,O)-neighborChange O and

truecount != 3 }
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9.4 Non-default Porls

[life]
type : cell
width : 21
height : 21
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors life(-l,-l)
neighbors : life(O,-l)
neighbors : life(l,-l)
initialvalue : O
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
initialrowvalue
localtransition
neighborports

[top]
components life

life(-l,O) life(-l,l)
life(O,O) life(O,l)
life(l,O) life(l,l)

4 000011100000000000000
5 000011100010000000000
6 000011100110000000000
10 000000000111000000000
11 000000000111000100000
12 000000000111001100000
14 000000000000001110000
15 000000000000001110001
16 000000000000001110011
conrad-rule

va1ue

[conrad-rule]
rule : { -va1ue .- 1; } 100

{ (0,0)-va1ue = 1 and (statecount(l, -va1ue) 3 or
statecount(l, -va1ue) 4) }

rule { -va1ue .- O; } 100
{ (0,0)-va1ue = 1 and (statecount(l, -va1ue) < 3 or

statecount(l, -va1ue) > 4) }
rule { -va1ue .- 1; } 100

{ (0,0)-va1ue = ° and statecount(l, -va1ue) = 3 }
rule { -va1ue .- O; } 100

{ (0,0)-va1ue = ° and statecount(l, -va1ue) 1= 3 }
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