
1

Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Master Thesis:

“Static Code Validation for Traits”

Author:

Aizcorbe, Juan Sebastian

LU: 83/98

Juansebastian.aizcorbe@gmail.com

Director:

Lic. Hernán Wilkinson

hernanwilkinson@gmail.com

Buenos Aires December 06Th of 2012

2

Resumen
Traits es un nuevo concepto en la programación orientada a objetos que extiende a la herencia
simple permitiendo compartir comportamiento entre clases utilizando composición.
Debido a tratarse de un nuevo modelo de programación, es necesario el estudio de sus distintas
características para detectar sus fortalezas y debilidades, como así también resulta necesario el
desarrollo de herramientas que ayuden en su introducción y utilización efectiva.
Entre las características a estudiar se encuentra la identificación de errores específicos del uso de
Traits y la factibilidad de detectarlos y corregirlos automáticamente por medio de una
herramienta.
Esta tesis identifica distintos tipos de errores específicos cuando se usan los Traits y los clasifica
según el elemento generador dicho tipo de error. Con ese estudio se logró también definir con
mayor rigurosidad las características sintácticas y semánticas de los elementos que conforman los
Traits.
También se presenta la implementación de una herramienta de chequeo estático de código
basada en Smalllint para detectar los errores específicos de Traits detallados en el trabajo de
investigación como así también cambios al ambiente de Pharo que mejoran la implementación de
este modelo.
Por último se presenta el análisis de los resultados de utilizar la herramienta de chequeo estático
de código en muestras reales de programas implementados utilizando Traits.

Abstract
Traits is a new concept on object-oriented programming which extends simple inheritance and lets
the programmer share behavior between classes using composition.
Since Traits is a new programming model, an analysis of its characteristics is needed to detect its
strengths and weaknesses. It is also needed to develop tools to help its addition and effective use.
One of Traits characteristics to study is the identification of errors generated by Traits use and the
feasibility of their detection and their correction using and automatic tool.
This thesis identifies several Traits specific error types and classifies them according to the Traits
element which generates the error. This study also achieves a more strict definition of the
syntactic and semantic characteristics of the Traits elements.
It also presents a tool implementation for static code checking based on Smalllint for detecting the
Traits errors described in the previous research and changes to Pharo to improve its Traits model
implementation.
Lastly, this thesis also presents an analysis of the static code checking tool use on real code
samples implemented using Traits.

3

Acknowledgements

4

Contents

1 Introduction .. 13

1.1 Thesis Outline .. 13

1.2 Traits .. 14

1.2.1 Trait Motivation .. 14

1.2.2 Traits Model .. 20

1.2.3 Conclusions about Traits ... 28

1.3 Code Analysis .. 30

1.3.1 Dynamic Code Analysis .. 30

1.3.2 Static Code Analysis ... 30

1.3.3 Dynamic vs. Static Code Analysis .. 30

1.3.4 Static Code Analysis Tools ... 30

2 Trait Error Typification and Automatic Trait Validation .. 32

3 Traits Error Types and Categorization ... 33

3.1 Categories and Sub Categories .. 34

3.1.1 Categories and Sub Categories Description .. 36

3.2 Traits Error Types .. 38

3.2.1 Error Type: Switched Message Aliasing .. 39

3.2.2 Error Type: Undefined Aliased Message .. 40

3.2.3 Error Type: Equals New and Old Message Name Aliasing.. 41

3.2.4 Error Type: Aliasing Collision .. 42

3.2.5 Error Type: Undefined Excluded Message ... 43

3.2.6 Error Type: Empty Trait Transformation Set .. 44

3.2.7 Error Type: Already Defined Alias Message ... 45

3.2.8 Error Type: Duplicated Alias Messages .. 46

5

3.2.9 Error Type: Excluded Alias Message ... 47

3.2.10 Error Type: Duplicated Trait Transformation Definition .. 48

3.2.11 Error Type: Invalid Message Exclusion Set ... 49

3.2.12 Error Type: Invalid Message Aliasing Set .. 50

3.2.13 Error Type: Chained Message Aliasing ... 51

3.2.14 Error Type: Unimplemented Self-Sent Message due Message Renaming 52

3.2.15 Error Type: Unimplemented Self-Sent Message due Message Exclusion 54

3.2.16 Error Type: Excluded and Not Provided Explicit Required Message 55

3.2.17 Error Type: Always Excluded Message ... 56

3.2.18 Error Type: Too Many Excluded Messages... 57

3.2.19 Error Type: Misplaced Meta-Level Instance Message Aliasing 58

3.2.20 Error type: Misplaced Meta-Level Instance Message Exclusion 59

3.2.21 Error Type: Misplaced Meta-Level Class Message Aliasing 60

3.2.22 Error Type: Misplaced Meta-Level Class Message Exclusion 61

3.2.23 Error Type: Trait Composition Conflict Method ... 62

3.2.24 Error Type: Trait Composition Conflict due Aliasing .. 63

3.2.25 Error Type: Unnecessary Message Exclusion ... 64

3.2.26 Error Type: Unnecessary Message Aliasing .. 65

3.2.27 Error Type: Override with Identical Method .. 66

3.2.28 Error Type: Overridden Aliasing ... 67

3.2.29 Error Type: Always Overridden Message ... 68

3.2.30 Error Type: Too Many Overridden Messages ... 69

3.2.31 Error Type: Unimplemented Required Message .. 70

3.2.32 Error Type: Hidden Implementation by Explicitly Required Message...................... 71

3.2.33 Error Type: Not Explicitly Declared Required Message .. 72

6

3.2.34 Error Type: Unused Required Message .. 73

3.2.35 Error Type: Super-Sent Message Lookup Bypasses Used Trait Composition Provided

Message ... 74

3.2.36 Error Type: Trait Method Super-Sends a Message .. 75

3.2.37 Error Type: Unused Trait .. 76

3.2.38 Error Type: Traits Names Don’t Start with T .. 77

4 Automatic Trait Error Detection Implementation... 78

4.1 Smalllint Description and Implementation ... 78

4.1.1 Smalllint Model ... 79

4.1.2 UI ... 80

4.2 Smalllint Extension for Traits Error Detection ... 86

4.2.1 Smalllint Limitations and Requirements ... 86

4.3 Smalllint Extension Implementation ... 86

4.3.1 Environments Must be Able to List Classes and Traits .. 86

4.3.2 Refactoring Scope Selection Browser Must Show Classes and Traits. 87

4.3.3 Smalllint Rule Checker Must be Able to Check Classes, Traits and Methods Defined

by Both Entities. .. 88

4.3.4 Smalllint Rules Must be Able to Check Classes, Traits and Methods Defined by Both

Entities. ... 89

4.3.5 Implement an Improved Smalllint Error Result Presentation Mechanism. 89

4.3.6 Implement a Traits Aspect Inspection Framework ... 95

4.4 Smalllint Traits Error Detection Rules Implementation .. 97

4.4.1 Switched Message Aliasing ... 98

4.4.2 Unimplemented Self-Sent Message due Message Renaming 99

4.4.3 Unimplemented Self-Sent Message due Message Exclusion 101

4.4.4 Misplaced Meta-Level Class Message Aliasing .. 103

7

4.4.5 Misplaced Meta-Level Class Message Exclusion ... 104

4.4.6 Trait Composition Conflict Method ... 105

4.4.7 Unnecessary Message Exclusion ... 106

4.4.8 Override with Identical Method .. 108

4.4.9 Unimplemented Required Message .. 110

4.4.10 Hidden Implementation by Explicitly Required Message 112

4.4.11 Not Explicitly Declared Required Message.. 114

4.4.12 Super-Sent Message Lookup Bypasses Used Trait Composition Provided Message

 ... 115

4.4.13 Trait Method Super-Sends a Messages ... 117

4.4.14 Unused Trait .. 118

5 Smalllint Traits Error Rules Use Results Analysis ... 119

6 Conclusions ... 122

7 Future Work .. 124

8 Bibliography and References... 125

8

List of Figures

Figure 1: The Squeak core Stream hierarchy.. 15

Figure 2: Stream class nextPutAll: implementation calling abstract nextPut: 15

Figure 3: Diamond Problem example on GUI framework ... 17

Figure 4: Limited compositional power of multiple inheritance examples 18

Figure 5: Dispersal of glue code due Mixins total ordering. ... 19

Figure 6: Traits examples with their provided and required messages .. 21

Figure 7: TDrawing trait definition example ... 21

Figure 8: Trait composition into a class and provided/required message solving example 22

Figure 9: Traits composition into a class code example ... 23

Figure 10: Composite traits and composition conflict resolution examples 24

Figure 11: TCircle trait definition code. .. 25

Figure 12: TColor implementing TEquality required messages .. 26

Figure 13: Conflict resolution through message aliasing and traits composition client message

reimplementation ... 26

Figure 14: Conflict resolution through message exclusion ... 26

Figure 15: Category and Sub Category hierarchy and the Traits error types included on them. 34

Figure 16: An example code showing a message aliasing mapping with the message order

switched. ... 39

Figure 17: Undefined aliased message example code. ... 40

Figure 18: An example code showing a trait provided message aliased to the same message name.

 ... 41

Figure 19: An example code showing a non-existing message aliased to the same message name.

 ... 41

Figure 20: Example of multiple messages aliased to the same message name. 42

Figure 21: Example code of a message exclusion of an undefined message. 43

9

Figure 22: Empty message aliasing set example code. .. 44

Figure 23: Empty message exclusion set example code. .. 44

Figure 24: Example code showing a message aliasing defining an alias name which is already

defined in the transformed trait. .. 45

Figure 25: Example code showing the same message aliased to two different alias messages. 46

Figure 26: Example code shows an alias message which is excluded in the same trait

transformation. ... 47

Figure 27: Example code showing a message aliasing mapping defined twice on the same trait. . 48

Figure 28: Example code showing a message exclusion defined twice on the same trait. 48

Figure 29: Example code showing a message aliasing mapping in the message exclusion definition

set. ... 49

Figure 30: Example code showing a message selector in the message aliasing mapping set. 50

Figure 31: Example code showing a message aliasing trying to define an aliasing of an alias

message... 51

Figure 32: Example code showing a renamed message self-sent under its original name from a trait

composition use clause client defined message. .. 52

Figure 33: Example code showing a renamed message self-sent under its original name from

another trait in the trait composition use clause. ... 52

Figure 34: Example code showing a renamed message self-sent under its original name from the

same trait which originally defined the renamed message. ... 53

Figure 35: Example code showing a message exclusion of a self-sent message from a method

defined in the trait composition client. ... 54

Figure 36: Example code showing the message exclusion of an explicit required message

declaration, which is not provided by the trait composition client class nor its used trait

composition. .. 55

Figure 37: Example code showing a trait composition use clause which applies message exclusion

to all the provided messages of the transformed trait. .. 57

Figure 38: Example code showing a message aliasing of an instance message defined in the

metaClass definition.. 58

10

Figure 39: Example code showing a message exclusion of an instance message defined in the

metaClass definition.. 59

Figure 40: Example code showing an invalid message aliasing in the instance message side. This

message aliasing would be valid if it were applied to the class messages side used trait

composition. .. 60

Figure 41: Example code showing an invalid message exclusion in the instance messages side. This

message exclusion would be valid if it were applied to the class messages side used trait

composition. .. 61

Figure 42: Example code showing trait composition conflict methods not solved in the trait

composition client class. .. 62

Figure 43: Example code showing a trait composition conflict generated by a conflict between a

trait defined message and an alias message. ... 63

Figure 44: Example code of a message exclusion that does not solve any trait composition conflict.

 ... 64

Figure 45: Example code showing a message aliasing for which the alias message is not sent in any

trait composition client method. ... 65

Figure 46: Example code showing a class overriding with the same method one of its used trait

composition provided messages. .. 66

Figure 47: Example code showing a class overriding an alias message from its used trait

composition. .. 67

Figure 48: Example code showing a class overriding all the provided messages of a trait on its used

trait composition. .. 69

Figure 49: Example code showing a concrete class which does not provide all its used trait

composition required messages. ... 70

Figure 50: Example code showing a trait explicit required message declaration which “hides” a

valid message implementation defined at the superclass of the trait composition client class. 71

Figure 51: Example code showing a required message not explicitly declared. 72

Figure 52: Example code showing an explicit required message which is not actually required. 73

Figure 53: Example code showing a class super-sending a message for which the method lookup

bypasses the used trait composition provided message. .. 74

11

Figure 54: Example code showing TExampleTrait used by ExampleClass and defining a method

which super-sends a message. .. 75

Figure 55: Smalllint rules class hierarchy. ... 79

Figure 56: SmalllintChecker>>run message implementation. .. 80

Figure 57: FileBrowser browser class definition ... 81

Figure 58: FileBrowser method defining the file browser meta-graph .. 81

Figure 59: Class definitions for the concrete nodes representing File and Directory domain entities

 ... 82

Figure 60: DirectoryNode messages representing the transitions on the meta-model 82

Figure 61: A file domain concrete graph example. ... 83

Figure 62: Default concrete root node definition .. 83

Figure 63: Menu option for selecting a refactoring scope from a Class Browser. 83

Figure 64: Browser presenting the selected “Refactoring Scope”. ... 84

Figure 65: Browser menu options for runing “Code Critics”. .. 84

Figure 66: “Code Critics” (Smalllint) browser. ... 85

Figure 67: Smalllint browser meta-graph. .. 85

Figure 68: classesDo: evaluates aBlock on each class included in the BrowserEnvironment. 87

Figure 69: behaviorsDo: method for iterating on an environment’s behaviors (classes and traits). 87

Figure 70: ClassBrowser meta-graph definition and concrete node message transition

implementation. .. 87

Figure 71: New BehaviorBrowser based on the original ClassBrowser, but displaying all the

environment’s behaviors. .. 88

Figure 72: Enhanced SmalllintChecker which evaluates all the behaviors in the “Refactoring

Scope”. ... 88

Figure 73: Enhanced Smalllint browser is compatible with the original rule result presentation

schema. ... 89

Figure 74: Enhanced Smalllint browser rule result presentation. ... 90

12

Figure 75: Detailed description for an individual rule result in the lower panel. 90

Figure 76: Extended Smalllint browser meta-graph. .. 91

Figure 77: OmniBrowser concrete node classes representing each the Smalllint rules and result

nodes in the Smalllint browser. ... 91

Figure 78: Smalllint rule result set adapted to a tree like structure. .. 92

Figure 79: Path like representation of an individual “Switched Message Aliasing” rule result. 94

Figure 80: LintResultNodeBuilder chain for building adapted representations of rule

ExtendedTraitLintResult results. .. 94

Figure 81: Example code of a class containing positive results of “Switched Message Aliasing”

error. .. 94

Figure 82: Positive “Switched Message Aliasing” error rule results from example at figure 81. 94

Figure 83: Positive “Switched Message Aliasing” error rule result set adapted to be displayed by

the extended Smalllint browser. ... 95

Figure 84: Each trait entity mirror and the aspects protocols which each of them have to

implement. .. 96

Figure 85: Smalllint Traits error rules results chart. .. 120

13

1 Introduction
Traits is a new concept on object-oriented programming which lets the programmer define and
share behavior between classes using composition instead of inheritance. Traits face the
limitations of Single Inheritance and others inheritance mechanisms like Multiple Inheritance
[MIWeb] and Mixin Inheritance [MixWeb], extending the widespread and broadly accepted Single
Inheritance behavior sharing mechanism instead of replacing it [S/05].
With Traits, like with any new concept, it is important to identify errors, error types, and best
practices and also to develop tools which help the programmer fix or avoid errors when using
them. With a Traits error analysis and tools for detecting these errors will help to introduce Traits
use, to have a clearer view of Traits related concepts and to have a flatter learning curve.
Static Code Analysis tools are then useful in the error detection tools scope. These tools analyze
syntactic and semantic source code features to detect problems without any user interaction. The
importance of the automatic error detection tools is shown by the many main programming
languages have one or more of such tools [StAnWeb].
The objectives of this thesis are:

 The identification of errors and error types in the use of Traits.

 The classification of those traits errors and traits error types into categories and sub
categories.

 The development of an automatic static code checking tool for the programmer to detect
the previously identified traits errors and traits error types.

Smalllint is an automatic static code checking tool inspired on Lint, which is implemented in
several Smalltalk dialects. This tool defines a rule set, where each rule purpose is to detect a
specific error type. For detecting errors, each rule is evaluated receiving as argument the classes
or compiled methods to be checked. The static code checking tool to be developed in this thesis
will be based on Smalllint, which is included in the standard Pharo 1.0 image. Smalllint will be
extended to, in addition to classes and methods, let it check traits, used trait compositions and
Traits specific aspects.
This thesis is the complementary work of other Traits related works developed in our computer
science department [G/07] [AB/07], helping to the introduction of Traits, improving the available
tools and expanding the knowledge about using Traits as part of an Object Oriented Language.

1.1 Thesis Outline
This thesis is structured as follows:

Chapter 1 introduces the thesis background i.e. traits and code analysis models, its motivation and

its evaluation against other available alternatives. Chapter 2 states the thesis goals, justifying the

need to identify and typify Traits errors as well as the need to develop automatic tools to detect

them. Chapter 3 presents and describes the Traits error types and their categorization. Chapter 4

describes the Smalllint extension and the Traits error rules implementation. Chapter 5 presents

the results of running the adapted tool on several sample software projects. Concluding this work,

Chapter 6 and 7 present conclusions and future works based on the experience collected during

this thesis.

14

1.2 Traits
Traits is a new simple compositional model for structuring object-oriented programs. The purpose

of Traits is to decompose classes into reusable building blocks by providing first-class

representations of the different aspects (i.e. independent, but not necessarily cross cutting

concerns) of the behavior of a class [SDNB/03]. For example, the aspect of being comparable is a

concern of different entities like Numbers, Dates, Weights and others. Then, a shared trait

between those entities would be a block defining the aspect of being comparable. Following this

model, Traits enables a new programming style in which traits rather than classes are the primary

units of reuse [BLAC/04].

1.2.1 Trait Motivation

Inheritance is the fundamental reuse mechanism in object-oriented programming languages, its

most prominent variants are Single Inheritance, Multiple Inheritance and Mixins Inheritance.

Single Inheritance is widely accepted as the object-oriented paradigm sine qua non, but it is also

not expressive enough to factor out common features. To overcome Single Inheritance

limitations, language designers have proposed various forms of Multiple Inheritance, as well as

other mechanisms, such as Mixins that allow classes to be composed incrementally from sets of

features. However these inheritance schemas also suffer from conceptual and practical reusability

problems [DNSWB/06]. Following each inheritance schema and their limitations are described.

Single Inheritance
Inheritance in object-oriented languages is well established as an incremental modification

mechanism that can be highly effective at enabling behavior reuse between similar classes.

Unfortunately, Single Inheritance is inadequate for expressing classes that share features not

inherited from their (unique) common parents [DNSWB/06].

Examples of such limitations appear at Squeak Stream hierarchy:

15

Figure 1: The Squeak core Stream hierarchy [CDW/07].

This Stream class hierarchy, implemented using single inheritance has the following problems:

Messages Implemented Too High in the Hierarchy

A common technique to avoid code duplication consists on implementing a message in the

topmost common superclass of all classes which need this method. Even if efficient, this

technique corrupts the interface of classes which do not need this message implementation. For

example, Stream class defines nextPutAll: which calls nextPut:
Stream
nextPutAll: aCollection

aCollection do: [:v| self nextPut: v].

^aCollection

Figure 2: Stream class nextPutAll: implementation calling abstract nextPut: [CW/07].

The method nextPutAll: writes all elements of the parameter aCollection to the stream by

iterating over the collection and calling nextPut: for each element. The message nextPut: is

abstract and must be implemented in subclasses, and even if Stream defines methods to write to

the stream, some subclasses are used for read-only purposes, like ReadStream. Those classes

must then explicitly cancel the message implementations they do not need. This approach, even if

it was probably the best available solution in the first implementation, has some drawbacks.

Firstly, Stream class and its subclasses are corrupted with a number of message implementations

that are not available in the end. This situation makes more difficult understanding and/or

extending the hierarchy. To add a new subclass, a developer must analyze all of the messages

implemented in the superclass and cancel all the unwanted ones [CW/07].

16

Unused Superclass State

In the Stream hierarchy, FileStream class is a subclass of ReadWriteStream and an indirect

subclass of PositionableStream which is explicitly implemented to stream over collections (see

Figure 1). In this case, the instance variables collection, position and readLimit inherited from the

PositionableStream and writeLimit inherited from WriteStream are not used by FileStream nor

any of its subclasses [CDW/07].

Simulating Multiple Inheritance by Copying

ReadWriteStream is conceptually both a ReadStream and a WriteStream. However, Smalltalk is a

single inheritance based language, so ReadWriteStream has to choose between be implemented

as a subclass of ReadStream or a sublclass of WriteStream. The behavior from the other class has

to be copied, leading to code duplication and all of its related maintenance problems.

Squeak stream hierarchy designers decided to implement ReadWriteStream as a WriteStream

subclass, and then copy the methods related to reading from ReadStream.

One of the copied methods is next, which reads and returns the next element in the stream. This

leads to a strange situation where next is cancelled out in WriteStream (because it should not be

doing any reading), only to be reintroduced by ReadWriteStream. The reason for this particular

situation is the combination of next defined too high in the hierarchy and single inheritance

[CDW/07].

Reimplementation

Figure 1 shows that next: is implemented five times. Not a single implementation sends messages

to super which means that each class completely re-implements the method logic instead of

specializing it. This statement should be tempered because often in Squeak stream hierarchy,

messages override other messages to improve speed execution avoiding deep hierarchy searches

in the method lookup. However, a re-implemented message in nearly all of the classes in a

hierarchy implies the existence of inheritance hierarchy anomalies [CDW/07].

Multiple Inheritance

Multiple Inheritance enables a class to inherit features from more than one parent class, thus

providing the benefits of better code reuse and more flexible modeling. However, Multiple

Inheritance uses the notion of class in two contradictory roles, namely as the generator of

instances and as the smallest unit of code reuse. This causes the problems and limitations that will

be described next [SDNB/03].

Conflicting Features

One of the problems with Multiple Inheritance is the ambiguity that arises when conflicting

features are inherited along different paths. A particularly problematic situation is the “Diamond

Problem” (also known as “Fork-Join Inheritance”) that occurs when a class inherits from the same

base class via multiple paths. Since classes are instance generators, they need to provide some

17

minimal behaviour (e.g., implementations for messages =, hash, and asString), which is typically

enforced by making them inherit from a common root class (e.g., Object). However, this is

precisely what causes the conflicts when several classes are reused [SDNB/03].

Conflicting features can be conflicting message implementations or conflicting state variables.

Figure 3: Diamond Problem example on GUI framework [DiProblWeb].

In the context of GUI software development, Figure 3 shows, a Button class that inherits from

both Rectangle (for appearance) and Clickable (for functionality/input handling) classes, and both

classes inherit from the Object class. In this example, both Rectangle and Clickable implements

equals message. Considering this, in the case of an equals message sent to a Button instance,

there is no predefined criteria to decide which equals message implementation should be the

inherited one [DiProblWeb].

Whereas message implementation conflicts can be resolved relatively easily (e.g., by overriding),

conflicting state is more problematic. Even if the declarations are consistent, it is not clear

whether conflicting state should be inherited once or multiply [SDNB/03].

Accessing Overridden Features

Since identically named features can be inherited from different base classes, a single keyword

(e.g., super) is not enough to access inherited message implementations unambiguously. For

example, C++ forces to explicitly name the superclass to access an overridden message. This leads

to tangled class references in the source code and makes the code vulnerable to changes in the

architecture of the class hierarchy. Explicit superclass references are avoided in languages, such as

CLOS, that imposes a linear order on the superclasses. However, such a linearization often leads

to unexpected behavior and violates encapsulation, because it may change the parent-child

relationship among classes in the inheritance hierarchy [SDNB/03].

http://en.wikipedia.org/wiki/Software_development

18

Limited Compositional Power (Factoring Out Generic Wrappers)

Multiple Inheritance allows a class to reuse features from multiple base classes. But unlike Mixin

Inheritance, it does not allow writing a reusable entity that both uses and exports adapted forms

of messages implemented in unrelated classes.

Figure 4: Limited compositional power of multiple inheritance examples [SDNB/03].

Figure 4 illustrates multiple inheritance limited compositional power. Assume that class A

implements messages read and write that provide unsynchronized access to some data. If it

becomes necessary to synchronize access, it can create a class SyncA that inherits from A and

overrides the messages read and write so that they call the inherited implementation under

control of a lock (Figure 4 a).

Now supposing that class A is part of a framework including another class B, implementing read

and write messages, and that it is wanted to use the same technique to create a synchronized

version of B. Naturally, it is wanted to factor out the synchronization code so that it can be reused

in both SyncA and SyncB.

With Multiple Inheritance, the only way of sharing code among different classes is to inherit a

common superclass. This means that the synchronization code has to be moved into a class

SyncReadWrite that will become the superclass of both SyncA and SyncB (Figure 4 b). But a

superclass cannot explicitly refer to a message like read that a possible subclass inherits from

another superclass. It is possible to implicitly access such a message implementation, by calling an

abstract message using a self-send that will eventually be implemented in the subclass. However,

the whole point of this example is that unsynchronized reads are not and should not be available

in SyncA. Thus, SyncReadWrite class cannot access the read and write message implementation

provided by A and B, and it is not possible to factor out all the necessary synchronization code into

SyncReadWrite [SDNB/03].

Mixin Inheritance

A Mixin is an abstract subclass specification that may be applied to various parent classes to

extend them with the same set of features. Mixins allows the programmer to achieve better code

reuse than Single Inheritance while maintaining the simplicity of the inheritance operation.

19

However, although inheritance works well for extending a class with a single orthogonal mixin, it

does not work so well for extending a class from many mixins. The problem is that usually the

mixins do not quite fit together, i.e., their features may conflict, and that inheritance is not

expressive enough to solve such conflicts. Following several Mixins limitations are described

[SDNB/03]:

Total Ordering

Mixins composition is linear i.e. all the mixins used by a class must be inherited one at time.

Mixins composed after others override all the identically named features provided by previous

mixins. While trying to resolve conflicts by selecting features from different mixins, it may be

found that a suitable total order does not exist. As a consequence, with Mixins, the composite

entity does not control which mixins are composed. The way in which the individual features

override and extend one to another is imposed by the total ordering imposed on the mixins.

Obtaining the desired combination of features may require introducing glue code in new

intermediate mixins, or even modifying the component mixins [DNSWB/06].

Dispersal of Glue Code

Due to total ordering, the composite entity is not in full control of the way that the mixins are

composed: the conflict resolution code must be hardwired in the intermediate classes that are

created when the mixins are used, one at time. Obtaining the desired combination of features

may require modifying the mixins, introducing new mixins, or, sometimes, using the same mixin

twice.

Figure 5: Dispersal of glue code due Mixins total ordering.

Figure 5 illustrates a dispersal of glue code example where class MyRectangle uses two mixins

MColor and MBorder that both provide an asString message. In the mixins composition it can be

20

chosen which of them should come first, but it cannot be specified how the different

implementations of asString are glued together. This is because the mixins must be added one at

time: in Rectangle + MColor + MBorder can be accessed the behaviour of MBorder and the mixed

behaviour of Rectangle + MColor, but not the original behaviour of MColor and Rectangle. Thus,

if it is wanted to adapt how the implementations of asString are composed, the involved mixins

have to be modified [SDNB/03].

Fragile Hierarchies

Because of composition linearity and the limited means for solving conflicts, the use of multiple

mixins result in inheritance chains that are fragile regarding changes. Adding a new message

implementation to one of the mixins may silently override an identically named message of a

mixin that appears earlier in the chain. Furthermore, it may be impossible to re-establish the

original behaviour of the composite without adding or changing several mixins in the chain. This

problem is especially critical if one modifies a mixin that is used in many places across the class

hierarchy [SDNB/03].

1.2.2 Traits Model

This section introduces Traits model, its properties and its evaluation against the previously

presented behavior sharing mechanisms limitations which motivated Traits creation.

Defining Traits

A trait essential objective is to be a first-class collection of named methods. Methods in a trait

must be “pure behaviour”; they cannot directly reference any instance variables, although they

can do so indirectly. Traits differ from classes in that they do not define any kind of state, and

they rely on composition instead of inheritance as a behavior sharing mechanism.

Example:

In this example, some objects representing graphics are going to be constructed. Each graphical

object can be decomposed into two aspects: its geometry, and how it is drawn on a canvas. Both

aspects have been modeled by traits: TCircle trait which represents the geometry behavior and

the TDrawing trait which represents the drawing behavior.

Following each trait is presented in two columns, the left column lists the provided messages and

the right column lists the required messages.

21

Figure 6: Traits examples with their provided and required messages [SDNB/03].

Figure 6 presents TCircle and TDrawing traits:

 TCircle trait contains (or provides) messages such as area, bounds, circumference,

scaleBy:, =, <, and <= and requires messages center, center:, radius, and radius:, which

parameterize its behavior.

 TDrawing trait provides draw, refreshOn:, and refresh message implementations, and is

parameterized by bounds and drawOn: required messages.
Trait named: #TDrawing uses: {} Bounds

self requirement draw

ˆself drawOn: World canvas

refresh

ˆself refreshOn: World canvas

drawOn: aCanvas

self requirement
refreshOn: aCanvas

aCanvas form

deferUpdatesIn: self bounds

while: [self drawOn: aCanvas]

Figure 7: TDrawing trait definition example [SDNB/03].

Figure 7 shows TDrawing implementation source code. In the implementation, a required

message is declared by a method which self-sends requirement message (see drawOn: message

implementation).

Composing Classes from Traits

Traits are completely backward compatible with single inheritance and are used to achieve

structure and reusability within a class definition. This relationship is summarized with the

equation:

 Class = Superclass + State + Traits + Glue

Traits composition enjoys the flattening property. This property says that the semantics of a class

defined using Traits is exactly the same as that of a class constructed directly from all the non-

overridden message implementations provided by its used traits. This property enables the

possibility of viewing a class as a flat collection of message implementations or as a composition of

blocks with no change in its semantics.

22

Another property of trait composition is that the composition order is irrelevant, and hence

conflicting trait messages must be explicitly disambiguated. Conflicts between messages defined

in classes and messages defined by added traits are solved using the following two precedence

rules:

 Class messages take precedence over traits messages.

 Traits messages take precedence over superclass messages. This follows from the

flattening property, which states that traits messages behave as if they were defined in

the class itself.

Example:

Circle class is composed by TCircle and TDrawing traits. TDrawing>>bounds and

TDrawing>>drawOn: requirements are fulfilled by TCircle trait and Circle class. All the other

requirements are fulfilled by accessor messages implemented by Circle class.

Figure 8: Trait composition into a class and provided/required message solving example

[SDNB/03].

TDrawing trait requires bounds and drawOn: messages. TCircle trait provides a bounds message

implementation which already fulfils one of the requirements. Therefore, Circle class has to

23

provide only center, center:, radius, and radius: messages required by TCircle trait and drawOn:

message required by TDrawing trait.
Object subclass: #Circle

uses: TCirle + TDrawing

instanceVariableNames: ’center radius’

Initialize

center := 0@0.

radius := 50

center: aPoint

center := aPoint

center

ˆcenter
radius: aNumber

radius := aNumber
radius

ˆradius

drawOn: aCanvas

aCanvas fillOval: self bounds

color: Color black

Figure 9: Traits composition into a class code example [SDNB/03].

center, center:, radius, and radius: messages are simply accessor messages to two instance

variables. drawOn: message draws a circle on the canvas that is passed as the argument. In

addition, Circle class also implements an initialize message to initialize the two instance variables.

24

Composite Traits

In the same way that classes are composed of traits, traits can be composed of other traits.

Figure 10: Composite traits and composition conflict resolution examples [SNDB/03].

Unlike classes, most traits do not have to be complete, which means that it is not mandatory to

define all the messages that are required by their composing traits. Unsatisfied requirements of

composing traits simply become required messages of the composite trait. Again, the composition

order is not important and messages defined in the composite trait take precedence over the

messages implemented by its composing traits, and, in case of multiple levels of composition, the

flattening property remains valid.

25

Example

Figure 10 shows TCircle trait that contains two different aspects: namely comparison operators

and geometric functions. Figure 10 a) shows how TCircle is redefined as the composition of

TMagnitude and TGeometry traits in order to separate these aspects and improve the code reuse.

Also TMagnitude trait is specified as a nested trait; it uses TEquality trait which requires hash and

= messages, and provides ~= message. TMagnitude trait itself requires <, and provides messages

such as max:, <=, between: and:, and >=. Note that TMagnitude does not provide any of the

messages required by its composing trait TEquality, which means that these requirements are just

propagated as requirements of TMagnitude. Finally Figure 11 shows TCircle trait which is

composed from TMagnitude and TGeometry traits. TCircle defines the required messages =,

hash, and < for the trait TMagnitude. The first line of TCircle definition contains the trait

composition use clause, which defines the traits composing the trait being defined.

Trait Composition Conflict Resolution

A trait composition conflict arises if and only if two traits are composed providing identically

named messages that are not originated in the same trait. In particular, this means that if the

same message implementation (i.e. originated in the same trait) is obtained more than once via

different paths, no conflict is produced.

Trait composition conflict must be explicitly solved by implementing a message in the trait

composition client (can be a class or a trait). Trait composition also supports message exclusion,

which lets the programmer avoid a conflict before it occurs.

To grant access to conflicting messages, traits composition support message aliasing operation.

Message aliasing is used to make a trait message implementation available under another name;

this is particularly useful if the original name is excluded by a trait composition conflict.

Example

To draw colored circles, a circle must contain color behavior. Figure 10 b) shows TColor trait

definition, making reusable color behavior. This trait provides the usual color messages such as

red, green, saturation, etc. Because colors can also be tested for equality, TColor uses TEquality

trait, and implements the required messages = and hash as shown in Figure 12.

Trait named: #TCircle

uses: TMagnitude + Tgeometry

= other

^self radius = other radius

and: [self center = other center]

Hash

^self radius hash and: [self center

hash]

< other

^self radius < other radius

Figure 11: TCircle trait definition code.

26

Trait named: #TColor

uses: Tequality

Hash

^self rgb hash

= other

^self rgb = other rgb

Figure 12: TColor implementing TEquality required messages [SDNB/03].

Figure 10 c) shows that when TColor trait is added to Circle class, a composition conflict arises

because TColor and TCircle traits provide different implementations for = and hash messages.

Note that ~= messages does not give rise to a trait composition conflict because in both TCircle

and TColor traits the implementation is created in the same trait, namely TEquality.

To solve the composition conflicts, one option is to redefine the conflicting message in the

composition client. Figure 13 shows Circle class trait composition use clause, where circleHash

and circleEqual: alias messages are defined for TCircle>>hash and TCircle>>= messages, and

colorHash and colorEqual: alias messages are defined for TColor>>hash and TColor>> = messages.

Then, after having alternative and non-conflicting message names, class Circle is able to redefine =

and hash messages combining the original messages behavior.
Object subclass: #Circle

instanceVariableNames: 'center radius rgb'

uses: (TCircle @ {#circleHash -> #hash. #circleEqual: -> #=) +

 TDrawing +

 (TColor @ {#colorHash -> #hash. #colorEqual: -> #=)
Hash

^self circleHash bitXor: self

colorHash

= anObject

^(self circleEqual: anObject) and:

[self colorEqual: anObject]

Figure 13: Conflict resolution through message aliasing and traits composition client message

reimplementation [SNDB/03].

Alternatively, the composition conflict can be solved using only one of the conflicting messages
implementation. For doing it, all the other conflicting messages must be excluded. Figure 14
shows how excluding TColor>>= and hash from the used trait composition avoids the composition
conflict, providing Circle with TCircle>>= and hash message implementations [SNDB/03].
Object subclass: #Circle

instanceVariableNames: 'center radius rgb'

uses: TCircle + TDrawing + (TColor− {#=, #hash})

Figure 14: Conflict resolution through message exclusion [SNDB/03].

In this section are introduced the available trait transformations for handling traits provided
messages:

 Message Aliasing Transformation: A message aliasing transformation defines an alternative
message name for a trait provided message. A message aliasing transformation is defined as
TransformedTrait @ {listOfAliasing}, where TransformedTrait is the trait to be transformed
and {listOfAliasings} is a list of message aliasing mappings. The message aliasing mapping
syntax is #newMessageName -> #oldMessageName, where #oldMessageName is the
message name originally provided by the transformed trait, and #newMessageName is the
new message name for the original message.

 Message Exclusion Transformation: A message exclusion transformation removes a
message from the list of a trait provided messages. Message exclusion is defined as

27

TransformedTrait – {listOfExclusions}, where TransformedTrait is the trait to be
transformed and {listOfExclusions} is a list of message names to be excluded.

 Message Rename: This is not a real transformation, but could be considered a different
transformation by itself. A message rename happens when a trait provided message is
excluded and aliased at the same time. This is equivalent to changing the message name to
a new one.

Traits Evaluation

This chapter explains how Traits overcome Single, Multiple and Mixin Inheritance limitations

already described in the previous sections.

Single Inheritance

Traits does not replace Inheritance, it enables the definition of behaviour blocks that can be

composed in any place of a class hierarchy, promoting a new model of object oriented

programming. Under this new model, classes have the responsibility of instance creation, and

traits have the responsibility of being the smallest unit of code reuse. In this way, the limitations

of Single Inheritance can be bypassed using Traits, because the factored out behaviour can be

attached directly to the desired classes, avoiding any kind of code duplication, reimplementation,

or need to place it too high in the hierarchy.

Under Single Inheritance plus Traits Model, a class can be considered as:

Class = State + Traits + Glue Code

So, even if Traits is just about behaviour sharing, it tends to promote classes to define all its state

independently from its behaviour, giving a more flexible way to handle unused superclass state

problem [SDNB/03].

Multiple Inheritance

This section presents the evaluation of Traits against Multiple Inheritance limitations.

Conflicting Features

Since traits composition supports composing several traits in parallel, conflicting features are also

an issue. However, the problem is less serious with Traits. Traits cannot define state, so the

“Diamond Problem” does not arise. Although a class may obtain the same message

implementation from the same trait via multiple paths, these multiple copies do not give rise to a

composition conflict, and will therefore be unified [SDNB/02].

Accessing Overridden Features

With Traits, regarding to access overridden features, it was decided not to take approaches based

on naming the superclass/trait in the source code of the methods. Instead, it was decided to use a

simple form of message aliasing. This avoids both tangled class references in the source code and

28

code that is hard to understand and fragile with respect to changes. Message aliasing also allows

accessing conflicting messages under non conflicting message names [SDNB/02].

Limited Compositional Power

Like Mixins, Traits can explicitly refer to a messages implemented by the superclass of the class

that uses the trait. Considering this, the presented “Limited Compositional Power” problem

(Figure 4) can be solved by implementing the synchronization messages read, write, acquireLock,

and releaseLock in a reusable trait. This trait is then used in both SyncA and SyncB classes, which

do not need to implement any message other than accessors for the lock variable [SDNB/02].

Mixin Inheritance

This section presents the evaluation of Traits against Mixin Inheritance limitations.

Total Ordering

Trait composition is symmetric and does not impose total ordering, but it can express ordering by

means of nesting. In addition, trait composition can be combined with inheritance which allows a

wide variety of partially ordered compositions [SDNB/02].

Dispersal of Glue Code

When traits are combined, the glue code is always located in the combining entity, reflecting the

idea that the superordinate entity is responsible of plugging together the components that

implement its aspects. This property nicely separates the glue code from the code that

implements the different aspects. This makes a class easier to understand, even if it is composed

from many different components [SDNB/02].

Fragile Hierarchies

Since traits are designed to be used in many different classes, robustness with respect to change

has been a leading principle in designing trait composition. In particular, Traits require every

message conflict to be explicitly solved. The consequence is that solving conflicts require some

extra work, but it is also that the behaviour of the composite is what the programmer expects.

In addition, any problem caused by changes to a trait is limited to the direct user of that trait,

whether that is a class or a composite trait. This is because the trait client always controls how the

components are plugged together. With Traits, change is localized: a single change in a

component requires at most one compensating change in each direct user of the component in

order to re-establish the original behavior [SDNB/02].

1.2.3 Conclusions about Traits

Traits is proposed as the primitive unit of code reuse, using composition instead inheritance as

mechanism of behaviour sharing. Traits extends Single Inheritance and offers a behaviour sharing

model that overcome limitations of different variants of inheritance but without losing any of the

desired Single Inheritance properties.

29

Traits model has the following properties:

 Two responsibilities are clearly separated: traits are purely units of reuse, and classes are

generators of instances.

 Traits specify no state (do not have internal collaborators), so the only conflict that can

arise when combining traits is a message name composition conflict. Such a conflict can

be solved by overriding or by message exclusion.

 Traits are simple software components that both provide and require messages (required

messages are those ones that are used, but not implemented by a trait).

 Classes are composed of traits. In the composition process trait composition conflicts

must be explicitly solved, and traits required messages can possibly be provided.

 Traits can be inlined, a process that is called “flattening”: the fact that a message is

implemented in a trait does not affect its semantics i.e. it is the same to implement a

message in a trait than directly on its clients (its clients can be either traits or classes).

 Problems with Multiple Inheritance disappear with Traits, because Traits do not rely on the

inheritance hierarchy.

 Problems with Mixins also disappear, because Traits impose no composition order.

[DNSWB/06].

30

1.3 Code Analysis
Code Analysis is the process of (semi)automatically analyzing the behavior of computer programs.

The two main approaches in code analysis are static and dynamic code analysis. Some of the most

important code analysis applications are program correctness and program optimization

[CodAnWeb].

1.3.1 Dynamic Code Analysis

Dynamic code (or program) analysis implies the execution of the code, in a real or virtual

processor. To make dynamic code analysis effective, the target program must be executed with

enough test inputs to produce interesting behavior. The dynamic code analysis is focused on

analyzing the behavior of a program; regardless on which component generates the behavior (or

misbehaviour). It is worth to note that the user should usually define tests inputs to execute an

effective analysis of the code (there are tools like code coverage that helps programmer to

produce effective test input sets for the analyzed code) [DynCodAnWeb].

1.3.2 Static Code Analysis

Static code analysis is the analysis of code that is performed without actually executing the code.

The complexity of the analysis performed by tools varies from those ones that only consider the

behavior of individual statements and declarations, to those ones that include the complete

source code of a program in their analysis. Uses of the information obtained from the analysis vary

from highlighting possible coding errors (e.g., the Lint tool) to formal methods that mathematically

prove properties about a given program (e.g., the behavior matches its specification). The static

code analysis is based on language properties, like its syntax and/or its semantics (e.g.

denotational semantics, axiomatic semantics, operational semantics, and abstract interpretation)

[StCodAnWeb].

1.3.3 Dynamic vs. Static Code Analysis

This thesis puts the focus on full automatic tools to detect trait related typified errors. The

mentioned goal and the need of applying code analysis to Traits related elements leads to select

the technique of Static code analysis. It also should be noted that, since static code analysis is

based on language features, it can analyze already existing programs focusing on specific traits

related errors. Static code analysis will be able to perform an effective analysis, even in situations

where there is not enough information to perform an effective dynamic code analysis e.g. when

there is lack of knowledge about the program behavior and/or lack of input sets for running

dynamic tests.

1.3.4 Static Code Analysis Tools

The first automatic static code analysis tool was Lint, released to the public in the seventh version

(V7) of the UNIX operating system in 1979. This tool detects syntactically correct code, but which

could have portability problems moving to different compilers, wasteful or error prone

31

constructions which nevertheless are, strictly speaking, legal. Some of the issues analyzed by Lint,

are undecidable problems (e.g. deciding whether exit is ever called is equivalent to solve the

“halting problem”). Due this problem, most of the Lint algorithms are a compromise, being

possible to miss some errors and also flagging false positive results [J/77].

Currently, Lint is the generic name applied to static code analysis tools for detecting errors and

suspicious construction on code of a given programming language.

Many of the most important programming languages use Lint like static code analysis tools. Some

examples of this are: JLint on Java, Splint on C/C++, SmallLint on Smalltalk and many others

[StAnWeb].

32

2 Trait Error Typification and Automatic Trait Validation
This thesis tackles the identification of Traits related errors, their typification and categorization

depending on which Traits aspect or characteristic is involved in the error occurrence, and the

adaptation of a static code analysis tool for detecting the identified errors on programs code.

Traits is a new behavior sharing mechanism different than inheritance. As any new construction,

its use can introduce new kinds of errors, which should be identified and typified to be detected

when Traits are used. For an error to be a Traits related error, it has to be produced by a Traits

specific aspect e.g. a trait composition clause, a message exclusion transformation or any other

Traits aspect.

Error groups or categories can be identified by using the Trait characteristic which produces the

error as the common denominator identifying each group. Identifying Traits error types and

categories is a necessary step for adapting static code analysis tools to detect them.

Currently, implementations of Traits are available in Smalltalk dialects like Squeak and Pharo. On

these programming languages, an important static code analysis tool is Smalllint which is not

capable of analyzing and detecting Traits related errors. One possible reason for this is that there

is not a Traits related error typification available yet, and because the flattening property, classes

composed with traits can be considered as standalone classes. Because of these issues, the static

code analysis tools can work on composed classes as usual, without considering the composition

of traits on them.

The traits error typification means an extension of Traits knowledge because it implies the study of

possible use cases and variations, considers syntactic and semantic aspects of Traits and also sets a

starting point to detect problems and weak points on Traits use. Thus, it enables the development

of new, more useful and reliable Traits versions. Categorizing traits error types depending on

which Traits aspect or characteristic produces an error is useful, since it groups the error types

with unambiguous criteria and sets a more abstract perspective on Traits errors (i.e. you do not

have to remember all the individual errors types, but just remember a few more abstract Traits

error categories). This classification eases the detection of non-analyzed Traits aspects and the

definition of new Traits error categories. It also helps to extend the Traits error categories by

adding new non-typified Traits errors, since analyzing a Traits error category aspect narrows the

Traits error domain under study.

This proposed definition of Traits error types and categories implicitly define the Traits aspects

associated with each Traits error category and their relevance on error generation, helping thus to

acquire Traits related concepts, like message exclusion, traits composition and others.

A static code analysis tool (i.e. Smalllint) adapted to check Traits related errors will help on Traits

introduction, use and use correctness, which is especially useful for new programmers. This kind

of tool will help to avoid unnecessary and preventable errors, to the introduction of best practices

and to refactor already existing programs using Traits.

33

3 Traits Error Types and Categorization
This chapter shows the identified Traits error types and categories. Each Traits error type defines a

specific problem on Traits use. A Traits error type could be a proper error which is wrong under

any possible scenario, or a warning for those errors that could be perfectly valid and correct uses

in some scenarios, but still not recommended.

The categories group Traits error types by the Traits aspect or characteristic where the error is

generated, like in the trait composition clause, in a trait transformation, in the trait use by a class

or by other trait or any other aspect.

Section 3.1 shows the Traits error category and sub category hierarchy, and the included Traits

error types. Next, all the Categories and Sub Categories are listed, including their respective

descriptions.

Section 3.2 lists all the identified Traits error types, including the Category/Sub Category to which

each of them belongs, its trait error description and an example of the error.

34

3.1 Categories and Sub Categories
All the identified errors in this thesis are specific to Traits, i.e. there is a Traits aspect where the

error is generated. All the identified Traits error types can be organized in an unambiguous

manner considering the Traits aspect where the error is produced. Next in this section the

Category/Sub Category organization for the identified Traits error types is presented.

Category Sub Category Error Type

Transformations Traits Transformation

Consistency

Switched Message Aliasing

Undefined Aliased Message

Equals New and Old Message Name Aliasing

Aliasing Collision

Undefined Excluded Message

Empty Trait Transformation Set

Already Defined Alias Message

Duplicated Alias Messages

Excluded Alias Message

Duplicated Trait Transformation Definition

Invalid Message Exclusion Set

Invalid Message Aliasing Set

Chained Message Aliasing

Message Rename Unimplemented Self-Sent Message due Message Renaming

Message Exclusion Unimplemented Self-Sent Message due Message Exclusion

Excluded and Not Provided Explicit Required Message

Always Excluded Message

Too Many Excluded Messages

Trait Transformation Meta-level

Error

Misplaced Meta-level Instance Message Aliasing

Misplaced Meta-level Instance Message Exclusion

Misplaced Meta-level Class Message Aliasing

Misplaced Meta-level Class Message Exclusion

Composition Trait Composition Conflict Trait Composition Conflict Method

Trait Composition Conflict due Aliasing

Unnecessary Trait

Transformation

Unnecessary Message Exclusion

Unnecessary Message Aliasing

Traits Use Message Overriding Override with Identical Method

Overridden Aliasing

Always Overridden Message

Too Many Overridden Messages

Required Messages Unimplemented Required Messages

Hidden Implementation by Explicitly Required Message

Not Explicitly Declared Required Message

Unused Required Message

Super Sent Messages Super-Sent Message Lookup Bypasses Used Trait Composition

Provided Message

Trait Method Super-Sends a Message

Best Practices Trait Definition and Use Unused Trait

Traits Names doesn’t Start with T

Figure 15: Category and Sub Category hierarchy and the Traits error types included on them.

35

A category is defined by the Traits aspect where the Traits error is produced, and a sub category is

defined by an aspect of its parent category. The Traits error types are included in the category/sub

category corresponding to the aspect where the error is produced.

36

3.1.1 Categories and Sub Categories Description

This section introduces the categories and sub categories that classify the identified Traits error

types. Each Category is named as “Category: Category Name” and each Sub Category as “Sub

Category: Sub Category Name”.

Category: Transformations

Description: These errors happen when a trait transformation is applied to a single trait in a trait

composition use clause.

Sub Category: Traits Transformation Consistency

Description: These errors occurs when a trait transformation is defined without following the

operation preconditions, like applying message aliasing on non-existing messages, or defining a

trait transformation clause which does not follow the expected syntax.

Sub Category: Message Rename

Description: These errors are related to the use of a message rename in the trait composition use

clause.

Sub Category: Message Exclusion

Description: These errors are related to the use of message exclusion in the trait composition use

clause.

Sub Category: Trait Transformation Meta-level Error

Description: These errors occur when a trait transformation suitable for an instance message is

applied to a class message or vice versa i.e. applying a trait transformation valid for a trait to its

classTrait or applying a trait transformation valid for a classTrait to its corresponding trait.

Category: Composition

Description: These errors are produced in a trait composition use clause because trait composition

conflicts or unnecessary use of trait transformations.

Sub Category: Trait Composition Conflict

Description: These errors occur when a trait composition use clause defines a trait composition

conflict, i.e. two traits or trait transformations in the trait composition use clause provides the

same message to the trait composition and its trait composition client does not solve it, resulting

on a trait composition conflict message provided to the trait composition client.

37

Sub Category: Unnecessary Trait Transformation

Description: These errors occur when an unnecessary trait transformation is applied on the trait

composition use clause.

Category: Traits Use

Description: These errors are related to the way that trait compositions are used by their trait

composition clients.

Sub Category: Message Overriding

Description: These errors occur when a trait composition client overrides a trait composition

provided message.

Sub Category: Required Messages

Description: These errors are related to the used trait composition implicit or explicit required

messages.

Sub Category: Super-Sent Messages

Description: These errors are related to super-sent messages from or to trait composition

provided messages.

Category: Best Practices

Description: It is a heterogeneous error category which includes Traits related community

practices and recommendations.

Sub Category: Trait Definition and Use

Description: These errors are related with trait definition and general use.

38

3.2 Traits Error Types
This section lists all the identified traits error types. Each Traits error type description indicates its

category and sub category, its Traits error type definition, and usually a code example showing an

occurrence of the described error.

39

3.2.1 Error Type: Switched Message Aliasing

Category: Transformations

Sub Category: Traits Transformation Consistency

Error Type Definition: This traits error happens when a message aliasing is applied to a trait, but

switching the message order in the message aliasing mapping i.e. the message aliasing mapping is

defined as messageOld -> messageNew instead of the expected messageNew -> messageOld

syntax. When this happens, it is an attempt to map an undefined message (messageNew is not

defined in the trait since it should be a new message name) to an already existing trait message

(messageOld is the trait provided message expected to be aliased). This error could be considered

an “Undefined Aliased Message” and/or an “Already Defined Alias Message” error, but when both

errors happen together they configure a new trait error type.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m1 -> #m2}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 16: An example code showing a message aliasing mapping with the message order

switched.

In this example, ExampleClass defines the aliasing mapping m1 -> m2 on TExampleTrait, but

ExampleTrait does not define m2 message at all. In this case, if the message aliasing mapping

were defined as m2 -> m1 (i.e. switching the message aliasing mapping order) it would be a valid

mapping. We could infer that the programmer really wanted to define the valid mapping but

switched the right mapped messages order.

40

3.2.2 Error Type: Undefined Aliased Message

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a message aliasing mapping newMessage -

> oldMessage is applied to a trait that does not define oldMessage. This means that there is an

attempt to define a message aliasing for a non-existing message.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m3 -> #m2}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 17: Undefined aliased message example code.

In this example, ExampleClass defines a message aliasing mapping m3 -> m2 for TExampleTrait,

this means m3 is an alias for m2, but TExampleTrait does not define any m2 message.

41

3.2.3 Error Type: Equals New and Old Message Name Aliasing

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a message aliasing mapping aMessage ->

aMessage is defined in a trait composition use clause. In this case the alias and the aliased

message are the same message, making this message aliasing transformation a null result

operation. This error type overlaps “Undefined Aliased Message” when the aliased message is not

defined by the trait, and overlaps “Already Defined Alias Message” when the aliased message is

defined by it.

Currently, Pharo Smalltalk Traits implementation avoids this Traits error type occurrence.

Examples:

1)
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m1 -> #m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 18: An example code showing a trait provided message aliased to the same message name.

In this example, ExampleClass defines a message aliasing transformation from m1 to m1. Despite

of TExampleTrait defines m1, the alias message is the same as the original one, making this a null

transformation.

2)
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m2 -> #m2}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 19: An example code showing a non-existing message aliased to the same message name.

This example is similar to the example 1) with the difference that the aliased message is not

defined by TExampleTrait.

42

3.2.4 Error Type: Aliasing Collision

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when, in a trait composition use clause, there are

two message aliasing mappings aliasMessage -> originalMessage1 and aliasMessage ->

originalMessage2 defining the same alias message for two different messages. These two

messages aliased to the same alias message name is a trait error since it is not clear which

message implementation method should be evaluated in case of receiving aliasMessage.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {(#m3 -> #m1)

(#m3 -> #m2)}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage

m2

^self anotherMessage

Figure 20: Example of multiple messages aliased to the same message name.

In this example, ExampleClass defines the message aliasing mappings m3 -> m1 and m3 -> m2

applied to TExampleTrait. Because of it, m3 is an alias for both m1 and m2 which is an

inconsistent message aliasing mapping definition since an alias message should refer to just one

aliased message.

43

3.2.5 Error Type: Undefined Excluded Message

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait composition use clause, there is a

message exclusion for a message not defined in the transformed trait. This trait transformation

has no effect on the transformed trait and adds unnecessary complexity to the trait composition

use clause.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait – {#m2}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 21: Example code of a message exclusion of an undefined message.

In this example, ExampleClass defines a message exclusion for m2 on TExampleTrait, which does

not define the excluded message.

44

3.2.6 Error Type: Empty Trait Transformation Set

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait composition use clause includes a

trait transformation with an empty trait transformation set. If the transformation set is empty it

will have no effect on the transformed trait, adding unnecessary complexity to the trait

composition use clause.

Examples:

1)
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ { }

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 22: Empty message aliasing set example code.

In this example, ExampleClass defines an empty message aliasing mapping set for TExampleTrait.

2)
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait - { }

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 23: Empty message exclusion set example code.

In this example, ExampleClass defines an empty message exclusion set for TExampleTrait.

45

3.2.7 Error Type: Already Defined Alias Message

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait composition use clause defines a

message aliasing mapping newMessage -> oldMessage but the transformed trait defines

newMessage too. In this case, it is not clear if the message implementation for newMessage will

be the method associated with the trait defined newMessage message or with the aliased

oldMessage.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m2 -> #m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m2

^self anotherMessage

Figure 24: Example code showing a message aliasing defining an alias name which is already

defined in the transformed trait.

In this example, ExampleClass defines the message aliasing mapping m2 -> m1 applied to

TExampleTrait which already defines m2 message. Thus, it is not clear if the implementation for

m2 at ExampleClass will be TExampleTrait>>m1 or TExampleTrait>>m2 method.

46

3.2.8 Error Type: Duplicated Alias Messages

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait transformation defines two message

aliasing mappings newMessage1 -> oldMessage and newMessage2 -> oldMessage i.e. it defines

two different alias messages for the same aliased message. Strictly speaking, this is not a trait

error, but having two alias messages with the same implementation is a suspicious issue to

consider.

Example:
Trait named: #TExampleTrait1 uses: {} Object subclass: #ExampleClass

uses: TExampleTrait1 @ {(#m2 ->

#m1)(#m3 -> #m1)} – {#m1} +

TExampleTrait2

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Trait named: #TExampleTrait2 uses: {}

m1

^self anotherMessage

Figure 25: Example code showing the same message aliased to two different alias messages.

In this example, ExampleClass used trait composition defines two message aliasing mappings m2 -

> m1 and m3 ->m1 applied to TExampleTrait1 and excludes m1 message from the trait

composition, avoiding a trait composition conflict with m1 provided by TExampleTrait2. If the

intention was aliasing TExampleTrait1>>m1 message to avoid losing its associated method at

ExampleClass, it would be enough with defining just one message aliasing mapping.

47

3.2.9 Error Type: Excluded Alias Message

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait composition use clause applies to the

same trait a message aliasing mapping newMessage -> oldMessage and a message exclusion on

newMessage i.e. a message exclusion removes an alias message. Defining these transformations

have no effect since the added alias message is removed by the message exclusion, adding

unnecessary complexity to the trait composition use clause.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m2 -> #m1} –

{#m2}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 26: Example code shows an alias message which is excluded in the same trait

transformation.

In this example, ExampleClass trait composition use clause applies to TExampleTrait a message

aliasing mapping m2 -> m1 and a message exclusion for m2, which is provided by the message

aliasing. It would be same result using TExampleTrait with no trait transformations applied at all.

48

3.2.10 Error Type: Duplicated Trait Transformation Definition

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait composition use clause defines a

duplicated trait transformation applied to the same trait. Defining the same trait transformation

more than one time has no difference than defining the transformation only once.

Currently Pharo Smalltalk Traits implementation avoids this Traits error type occurrence.

Examples:

1)
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {(#m2 ->

#m1)(#m2 -> #m1)}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 27: Example code showing a message aliasing mapping defined twice on the same trait.

In this example, ExampleClass defines the message aliasing mapping m2 -> m1 applied to

TExampleTrait two times.

2)
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait - {#m1.#m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 28: Example code showing a message exclusion defined twice on the same trait.

In this example, ExampleClass defines the message exclusion for m1 applied to TExampleTrait two

times.

49

3.2.11 Error Type: Invalid Message Exclusion Set

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait composition use clause defines a

message exclusion set containing a message aliasing mapping. The message exclusion set must

contain message selectors. Containing any other kind of entity is an error because it does not

represent a message selector to be excluded. One possible reason for this error is that the

programmer was actually trying to define a message aliasing instead of a message exclusion.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait - {#m2 -> #m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 29: Example code showing a message aliasing mapping in the message exclusion definition

set.

In this example, ExampleClass defines a message exclusion set including m2 -> m1 message
aliasing mapping instead of containing just message selectors to be excluded.

50

3.2.12 Error Type: Invalid Message Aliasing Set

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait composition use clause defines a

message aliasing mapping set containing a message selector. The message aliasing mapping set

must contain message aliasing mappings. Containing any other kind of entity is an error because

it does not represent a message aliasing mapping. One possible reason of this error is that the

programmer was actually trying to define a message exclusion instead of an message aliasing.

Currently Pharo Smalltalk Traits implementation avoids this Traits error type occurrence.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 30: Example code showing a message selector in the message aliasing mapping set.

In this example, ExampleClass defines a message aliasing mapping set including m1 instead of
containing a valid message aliasing mapping.

51

3.2.13 Error Type: Chained Message Aliasing

Category: Transformations.

Sub Category: Traits Transformation Consistency.

Error Type Definition: This traits error happens when a trait composition use clause defines two

message aliasing mappings: newMessage1 -> oldMessage and newMessage2 -> newMessage1

i.e. a message aliasing is applied to an alias message. A message aliasing must be applied to a

trait provided message, since the objective of defining a message aliasing is enabling to have the

aliased message implementation under the alias message name. The expected result of a chained

(or transitive) message aliasing can be obtained defining all the steps in the message aliasing

chain as aliases of the original message (in this example the defined message aliasing mappings

should be newMessage1 -> oldMessage and newMessage2 -> oldMessage). Nevertheless this

workaround is not recommended since it would be a “Duplicated Alias Messages” trait error.

Currently Pharo Smalltalk Traits implementation avoids this Traits error type occurrence.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait - {(#m2 ->

#m1)(#m3 -> #m2)}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Figure 31: Example code showing a message aliasing trying to define an aliasing of an alias

message.

In this example, ExampleClass defines a message aliasing mapping chain from m1 to m2 and m3.

This is done with the message aliasing mappings m2 -> m1 and m3 -> m2. The result is m2 and m3

messages with the same m1 message implementation. That result can be obtained by defining

m2 -> m1 and m3 -> m1 message aliasing mappings instead of the actually defined ones.

52

3.2.14 Error Type: Unimplemented Self-Sent Message due Message

Renaming

Category: Transformations.

Sub Category: Message Rename.

Error Type Definition: This traits error happens when a method available at a trait composition

client self-sends a message provided by one of the traits in its used trait composition, but the self-

sent message is renamed and is not provided by the used trait composition. As a result of the

message rename the trait composition client self-sends an unimplemented message (the self-sent

message is actually implemented, but not available under its original name). This error is more

severe if the trait composition client is a concrete class, since an abstract class or a trait can be not

complete.

Examples:

There are three different scenarios for this error:

1)
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m2->#m1} –

{#m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

testMessage

^self m1

Figure 32: Example code showing a renamed message self-sent under its original name from a trait

composition use clause client defined message.

In this example, ExampleClass implements testMessage message which self-sends m1 message.

TExampleTrait implements m1 message, but is not available for ExampleClass, since ExampleClass

trait composition use clause renames it.

2)
Trait named: #TExampleTrait1 uses: {} Object subclass: #ExampleClass

uses:

TExampleTrait1 @ {#m3->#m1} – {#m1} +

TExampleTrait2 – {#m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

Trait named: #TExampleTrait2 uses: {}

m2

^self m1.

m1

self requiredMethod

testMessage

^doSomething

Figure 33: Example code showing a renamed message self-sent under its original name from

another trait in the trait composition use clause.

In this example, TExampleTrait2 implements m2 message which self-sends m1 message.

TExampleTrait1 implements m1 message, but is not available at ExampleClass since its trait

composition use clause renames it.

53

3)
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait @ {#m3->#m1} –

{#m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m2

^self m1

Figure 34: Example code showing a renamed message self-sent under its original name from the

same trait which originally defined the renamed message.

In this example, TExampleTrait implements m2 message which self-sends m1 message.

TExampleTrait also implements m1 message, but is not available at ExampleClass since its trait

composition use clause renames it.

Note that m1 is not, and cannot be explicitly declared as a TExampleTrait required message, since

it already defines a valid m1 message implementation. This scenario is important in a recursive

message implementation, since the self-sending method will be available under the alias message,

but the self-sent message will still be the excluded aliased message. This scenario is the main

reason to make different this trait error type form “Unimplemented Self-Sent Message due

Message Exclusion” where the error is produced by message exclusion without a message aliasing,

and because of that, the recursive method error will not happen.

54

3.2.15 Error Type: Unimplemented Self-Sent Message due Message

Exclusion

Category: Transformations.

Sub Category: Message Exclusion.

Error Type Definition: This traits error happens when a method available at a trait composition

client self-sends a message which is not available because a message exclusion excludes it from

the used trait composition provided messages. This trait error is similar to “Unimplemented Self-

Sent Message due Message Renaming”. Because of this, the three possible scenarios and the

severity consideration for “Unimplemented Self-Sent Message due Message Renaming” can be

applied to this trait error type. The difference between both trait error types is that in this trait

error type the excluded message is not available under the alias message name in the trait

composition client, and because of it the recursive message renaming error cannot happen.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait – {#m1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m2

self anotherMessage

m3

^self m1

Figure 35: Example code showing a message exclusion of a self-sent message from a method

defined in the trait composition client.

In this example, TExampleTrait defines m1 message, and ExampleClass>>m3 self-sends m1, but

TExampleTrait does not provide m1 since m1 was excluded in ExampleClass trait composition use

clause.

55

3.2.16 Error Type: Excluded and Not Provided Explicit Required

Message

Category: Transformations.

Sub Category: Message Exclusion.

Error Type Definition: This traits error happens when a concrete class trait composition use clause

excludes an explicit required message declaration from one of its composed traits, but the

required message is not provided by the rest of the trait composition nor by the used trait

composition client (through direct definition or inherited). This trait error only applies when the

trait composition client is a concrete class, because traits and abstract classes do not have to be

complete.

As a best practice recommendation, an explicit required message declaration should not be

excluded unless it were provided by the trait composition or its client.

Example:
Trait named: #TExampleTrait1 uses: {} Object subclass: #ExampleClass

uses: TExampleTrait1 – {#m1} +

TExampleTrait2

instanceVariableNames: ''

classVariableNames: ''

m1

^self requirement.

m2

^self m1

Trait named: #TExampleTrait2 uses: {} m4

^self m2 m3

self anotherMessage

Figure 36: Example code showing the message exclusion of an explicit required message

declaration, which is not provided by the trait composition client class nor its used trait

composition.

In this example, TExampleTrait defines m1 as an explicit required message. ExampleClass

excludes m1 message on its used trait composition, which is not provided by TExampleTrait2 nor

by ExampleClass. In this way, m1 is still a required message, but the explicit required message

declaration is missing at ExampleClass making the detection of the missing required message

more difficult.

56

3.2.17 Error Type: Always Excluded Message

Category: Transformations.

Sub Category: Message Exclusion.

Error Type Definition: This traits error happens when a trait ExampleTrait provides a message

exampleMessage which is excluded in every use of ExampleTrait in a trait composition use clause.

If exampleMessage is always excluded, it could show that exampleMessage should not be

included into ExampleTrait provided messages.

57

3.2.18 Error Type: Too Many Excluded Messages

Category: Transformations.

Sub Category: Message Exclusion.

Error Type Definition: This traits error happens when all or most of the messages provided by an

ExampleTrait trait are excluded in a used trait composition. When this happen it is an evidence

against using ExampleTrait in that trait composition use clause, or maybe a reason for refactoring

ExampleTrait and obtain a new trait which provides just the needed messages.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait – {#m1.#m2.#m3:}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m2

self anotherMessage

m3: anObject

^anObject add: self m1

Figure 37: Example code showing a trait composition use clause which applies message exclusion

to all the provided messages of the transformed trait.

In this example, ExampleClass uses TExampleTrait on its trait composition use clause, but excludes

all the TExampleTrait provided messages. It would be preferable to exclude TExampleTrait from

the used trait composition.

58

3.2.19 Error Type: Misplaced Meta-Level Instance Message Aliasing

Category: Transformations.

Sub Category: Trait Transformation Meta-level Error.

Error Type Definition: This traits error happens when a message aliasing applied in the class

messages side is invalid, but it would be valid if it were applied to the instance messages side.

More formally, A meta-behavior (can be a metaClass or classTrait i.e. the class messages side of a

behavior definition) defines on its used trait composition a message aliasing applied to a classTrait

which does not contain the aliased message, but the classTrait’s trait, used in the corresponding

behavior trait composition use clause (i.e. in the instance messages side) defines the message to

be aliased.

Note that this traits error happens when there is an “Undefined Aliased Message” for a classTrait

in a class messages side trait composition use clause, but the message aliasing actually applies to

the corresponding classTrait’s trait in the instance messages side trait composition use clause.

Also note that the message aliasing should apply to the corresponding classTrait’s trait and it does

not care if the message aliasing applies to another trait.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

TExampleTrait classTrait uses: {} #ExampleClass class

uses: (TExampleTrait classTrait) @

{#m2 -> #m1}

instanceVariableNames: ''

mc1

^self somethingToDo

Figure 38: Example code showing a message aliasing of an instance message defined in the

metaClass definition.

In this example, ExampleClass trait composition use clause includes TExampleTrait, and

symmetrically, ExampleClass class metaClass uses TExampleTrait classTrait on its used trait

composition. In ExampleClass class metaclass trait composition use clause, m2 -> m1 message

aliasing mapping is applied to TExampleTrait classTrait, which does not define m1 required

message. Nevertheless m2 -> m1 would fit if it were applied to TExampleTrait in ExampleClass

trait composition use clause.

59

3.2.20 Error type: Misplaced Meta-Level Instance Message Exclusion

Category: Transformations.

Sub Category: Trait Transformation Meta-level Error.

Error Type Definition: This traits error happens when a message exclusion applied in the class

messages side is invalid, but it would be valid if it were applied to the instance messages side.

More formally, A meta-behavior (can be a metaClass or classTrait i.e. the class messages side of a

behavior definition) defines on its used trait composition a message exclusion applied to a

classTrait which does not contain the excluded message, but the classTrait’s trait, used in the

corresponding behavior trait composition use clause (i.e. in the instance messages side) defines

the message to be excluded.

Note that this traits error happens when there is an “Undefined Excluded Message” for a classTrait

in a class messages side trait composition use clause, but the message exclusion actually applies to

the corresponding classTrait’s trait in the instance messages side trait composition use clause.

Also note that the message exclusion should apply to the corresponding classTrait’s trait and it

does not care if the message exclusion applies to another trait.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

TExampleTrait classTrait uses: {} #ExampleClass class

uses: (TExampleTrait classTrait) -

{#m1}

instanceVariableNames: ''

mc1

^self somethingToDo

Figure 39: Example code showing a message exclusion of an instance message defined in the

metaClass definition.

In this example, ExampleClass trait composition use clause includes TExampleTrait, and

symmetrically, ExampleClass class metaClass uses TExampleTrait classTrait on its used trait

composition. In ExampleClass class metaClass trait composition use clause, the message exclusion

for m1 is applied to TExampleTrait classTrait, which does not define the m1 required message.

Nevertheless the message exclusion for m1 would fit if it were applied to TExampleTrait in

ExampleClass trait composition use clause.

60

3.2.21 Error Type: Misplaced Meta-Level Class Message Aliasing

Category: Transformations.

Sub Category: Trait Transformation Meta-level Error.

Error Type Definition: This traits error happens when a message aliasing defined for a trait in a

behavior’s used trait composition is not valid because the transformed trait does not include the

message to be aliased, but the message to be aliased is defined in the corresponding transformed

trait’s classTrait used in the behavior’s meta-behavior used trait composition (the meta-behavior

of a behavior is the corresponding classTrait of a trait of the metaClass of a class). In a simpler

way, an undefined message aliasing defined in the instance messages side would be valid if it

were defined in the class messages side.

Note this traits error happens when an undefined message aliasing in a used trait composition

becomes valid if it were applied to the trait classTrait, which must be used in the meta-behavior

trait composition use clause.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait@{#m2 -> #mc1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

TExampleTrait classTrait uses: {} #ExampleClass class

uses: TExampleTrait classTrait

instanceVariableNames: ''

mc1

^self somethingToDo

Figure 40: Example code showing an invalid message aliasing in the instance message side. This

message aliasing would be valid if it were applied to the class messages side used trait

composition.

In this example, ExampleClass used trait composition includes TExampleTrait, and symmetrically,

ExampleClass class metaClass uses TExampleTrait classTrait on its used trait composition. In

ExampleClass used trait composition, m2 -> mc1 message aliasing mapping is applied to

TExampleTrait, which does not define the mc1 required message. However m2 -> mc1 would fit if

it were applied to TExampleTrait classTrait in ExampleClass class metaClass used trait

composition.

61

3.2.22 Error Type: Misplaced Meta-Level Class Message Exclusion

Category: Transformations.

Sub Category: Trait Transformation Meta-level Error.

Error Type Definition: This traits error happens when a message exclusion defined for a trait in a

used trait composition is not valid because the transformed trait does not include the message to

be excluded, but the message to be excluded is defined in the corresponding transformed trait’s

classTrait in the trait composition client meta-behavior trait composition use clause (the meta-

behavior of a behavior is the corresponding classTrait of a trait or the metaClass of a class). In a

simpler way, an undefined message exclusion defined in the instance messages side would be valid

if it were defined in the class messages side.

Note this traits error happens when an undefined message exclusion in a used trait composition

becomes valid if it were applied to the trait classTrait, which must be used in the meta-behavior

used trait composition.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait-{#mc1}

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

TExampleTrait classTrait uses: {} #ExampleClass class

uses: TExampleTrait classTrait

instanceVariableNames: ''

mc1

^self somethingToDo

Figure 41: Example code showing an invalid message exclusion in the instance messages side. This

message exclusion would be valid if it were applied to the class messages side used trait

composition.

In this example, ExampleClass used trait composition includes TExampleTrait, and symmetrically,

ExampleClass class metaClass uses TExampleTrait classTrait on its used trait composition. In

ExampleClass trait composition use clause, the mc1 message exclusion is applied to

TExampleTrait, which does not define the mc1 required message. However the message exclusion

for mc1 would fit if it were applied to TExampleTrait classTrait in ExampleClass class metaClass

used trait composition.

62

3.2.23 Error Type: Trait Composition Conflict Method

Category: Composition.

Sub Category: Trait Composition Conflict.

Error Type Definition: This traits error happens when a trait composition client has a trait

composition conflict method as one of its messages implementation. This method is automatically

generated when a trait composition conflict is defined on a trait composition use clause and the

conflicting message is not redefined by the trait composition client. A trait composition conflict

method can also appear with a conflict free trait composition use clause when a previously existing

trait composition conflict has been solved, but the already generated trait composition conflict

method was not removed from the trait composition client.

Example:
Trait named: #TExampleTrait1 uses: {} Object subclass: #ExampleClass

uses: TExampleTrait1 + TExampleTrait2

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m2

^self m1

Trait named: #TExampleTrait2 uses: {} m2

self traitConflict

m2

self anotherMessage

m4

self traitConflict

Figure 42: Example code showing trait composition conflict methods not solved in the trait

composition client class.

In this example, ExampleClass trait composition use clause composes TExampleTrait1 and

TExampleTrait2 which conflict on m2 message. This composition conflict generates m2 trait

composition conflict method available on ExampleClass. There is another trait composition

conflict method on ExampleClass>>m4, but which is not related with any trait composition conflict

at its used trait composition. This could be product of an already fixed trait composition conflict in

the trait composition use clause or be a method explicitly defined by the programmer.

63

3.2.24 Error Type: Trait Composition Conflict due Aliasing

Category: Composition.

Sub Category: Trait Composition Conflict.

Error Type Definition: This traits error happens when, in a trait composition conflict, at least one

of the conflicting messages is an alias message.

Example:
Trait named: #TExampleTrait1 uses: {} Object subclass: #ExampleClass

uses: TExampleTrait1@{#m3 -> #m1} +

TExampleTrait2

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m2

^self m1

Trait named: #TExampleTrait2 uses: {}

m3

self anotherMessage

Figure 43: Example code showing a trait composition conflict generated by a conflict between a

trait defined message and an alias message.

In this example, ExampleClass composes TExampleTrait2 which provides m3 message and a trait

transformation of TExampleTrait1 which also provides m3 message through message aliasing.

Since ExampleClass does not redefine m3, a trait composition conflict method is defined on

ExampleClass>>m3 because of both m3 messages provided at ExampleClass used trait

composition.

64

3.2.25 Error Type: Unnecessary Message Exclusion

Category: Composition.

Sub Category: Unnecessary Trait Transformation.

Error Type Definition: This traits error happens when a message exclusion is defined in a trait

composition use clause in a way that if it were not defined, no trait composition conflict would

happen i.e. the message exclusion is unnecessary since its goal is to avoid trait composition

conflicts, and it does not prevent any composition conflict.

Example:
Trait named: #TExampleTrait1 uses: {} Object subclass: #ExampleClass

uses: TExampleTrait1 - {#m1} +

TExampleTrait2

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m2

^self m1

Trait named: #TExampleTrait2 uses: {}

m3

self anotherMessage

Figure 44: Example code of a message exclusion that does not solve any trait composition conflict.

In this example, ExampleClass defines a message exclusion for m1 on TExampleTrait1. If no

message exclusion were applied, no trait composition conflict would happen since TExampleTrait2

does not provide m1 message.

65

3.2.26 Error Type: Unnecessary Message Aliasing

Category: Composition.

Sub Category: Unnecessary Trait Transformation.

Error Type Definition: This traits error happens when a message aliasing is defined in a trait

composition use clause, but the alias message is not referenced by any method available at the

trait composition client. An alias message not referenced in the trait composition client is valid

when the programmer wants to make that alias message the message name for the aliased

message method in the trait composition client. If it were the case, it would be preferable a

message rename because it is confusing to have the same implementation for two different

messages.

Example:
Trait named: #TExampleTrait1 uses: {} Object subclass: #ExampleClass

uses: TExampleTrait1 - {#m4 -> #m1} +

TExampleTrait2

instanceVariableNames: 'anObject'

classVariableNames: ''

m1

^self aMessage.

m2

^self m1

Trait named: #TExampleTrait2 uses: {} m5

anObject doSomethingWith: self m1 m3

self anotherMessage

Figure 45: Example code showing a message aliasing for which the alias message is not sent in any

trait composition client method.

In this example, ExampleClass defines m4 message alias for TExampleTrait1>>m1, but m4 is not

sent at any method available at ExampleClass.

66

3.2.27 Error Type: Override with Identical Method

Category: Traits Use.

Sub Category: Message Overriding.

Error Type Definition: This traits error happens when a trait composition client defines a message

which overrides one of its used trait composition provided messages, but defining a method

identical to the overridden one.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m3: anObject

^anObject add: self m1

m3: anObject

^anObject add: self m1

Figure 46: Example code showing a class overriding with the same method one of its used trait

composition provided messages.

In this example, ExampleClass implements m3: message with the same method implementation of

TExampleTrait>>m3:. One possible reason for this is that, during a refactoring, the programmer

found that the same method is defined on multiple places, and decides to move it to a trait, but

forgets to remove the method from all the new trait composition clients.

67

3.2.28 Error Type: Overridden Aliasing

Category: Traits Use.

Sub Category: Message Overriding.

Error Type Definition: This traits error happens when a message aliasing is defined in a trait

composition use clause, but its trait composition client overrides the alias message making the

alias message implementation unavailable at the trait composition client.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait@{#m2 -> #m1}

instanceVariableNames: 'anObject'

classVariableNames: ''

m1

^self aMessage.

m3: anObject

^anObject add: self m1

m2

^anObject doSomething

Figure 47: Example code showing a class overriding an alias message from its used trait

composition.

In this example, ExampleClass defines a message aliasing mapping m2 -> m1 on its trait

composition use clause, but also locally defines m2 which overrides m2 alias message.

68

3.2.29 Error Type: Always Overridden Message

Category: Traits Use.

Sub Category: Message Overriding.

Error Type Definition: This traits error happens when an ExampleTrait trait provides an

exampleMessage message which is overridden by all the behavior clients of every trait

composition using ExampleTrait. If this happen, it could show that exampleMessage should not

be included in ExampleTrait protocol.

69

3.2.30 Error Type: Too Many Overridden Messages

Category: Traits Use.

Sub Category: Message Overriding.

Error Type Definition: This traits error happens when an ExampleTrait trait is used in a trait

composition use clause where all or most of the ExampleTrait provided messages are overridden

by its trait composition client. When this happens, it is an indicator against using ExampleTrait in

the trait composition use clause, or maybe for refactoring ExampleTrait to obtain a new trait

which provides just the not overridden messages.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait

instanceVariableNames: ''

classVariableNames: ''

m1

^self aMessage.

m1

^doOtherThing

m2

self anotherMessage

m2

^doSomethingElse

Figure 48: Example code showing a class overriding all the provided messages of a trait on its used

trait composition.

In this example, ExampleClass uses TExampleTrait on its trait composition use clause, but

overrides all the TExampleTrait provided messages. In this scenario, it would be preferable to

remove TExampleTrait from the trait composition use clause.

70

3.2.31 Error Type: Unimplemented Required Message

Category: Traits Use.

Sub Category: Required Messages.

Error Type Definition: This traits error happens when a concrete class does not provide one of its

used trait composition required messages. If the trait composition client is a trait or an abstract

class it does not have to provide all its used trait composition required messages since it does not

have to be complete.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait

instanceVariableNames: 'anObject'

classVariableNames: ''

m1

^self requirement.

m3: anObject

^anObject add: self m1

m2

^anObject doSomething

Figure 49: Example code showing a concrete class which does not provide all its used trait

composition required messages.

In this example, TExampleTrait defines m1 as required message. The concrete class ExampleClass

uses TExampleTrait as its used trait composition, but does not implement m1 message. Because

of this, if an ExampleClass instance receives an m1 message, it would generate an error since

ExampleClass does not provide a valid m1 message implementation.

71

3.2.32 Error Type: Hidden Implementation by Explicitly Required

Message

Category: Traits Use.

Sub Category: Required Messages.

Error Type Definition: This traits error happens when a trait in a class used trait composition

declares an explicit required message which overrides an implementation of the explicit required

message provided by one of the class’ superclasses via inheritance. Ideally an explicit required

message declaration should not override superclass provided messages but in practice they

behave as any other trait composition provided messages.

Example:
Trait named: #TExampleTrait uses: {} Object subclass #ExampleSuperClass

instanceVariableNames: ''

classVariableNames: ''

m1

^self requirement.

m1

^self doSomeStuff

m2

^self m1 add: anObject

ExampleSuperClass subclass: #ExampleClass

uses: TExampleTrait

instanceVariableNames: 'anObject'

classVariableNames: ''

Figure 50: Example code showing a trait explicit required message declaration which “hides” a

valid message implementation defined at the superclass of the trait composition client class.

In this example, ExampleClass should inherit ExampleSuperClass>>m1, but it actually receives m1

explicit required message declaration from TExampleTrait through its used trait composition.

72

3.2.33 Error Type: Not Explicitly Declared Required Message

Category: Traits Use.

Sub Category: Required Messages.

Error Type Definition: This traits error happens when a trait does not define an explicit required

message declaration for some of its required messages. Despite it is valid to have implicit required

messages it is clearer explicitly declaring the required messages.

Example:
Trait named: #TExampleTrait uses: {}

m1: anObject

^anObject add: self m2

Figure 51: Example code showing a required message not explicitly declared.

In this example, TExampleTrait requires m2 message which is not declared as an explicit required

message. For this example it would be preferable to have an explicit required message declaration

for m2 message.

73

3.2.34 Error Type: Unused Required Message

Category: Traits Use.

Sub Category: Required Messages.

Error Type Definition: This traits error happens when a trait defines an explicit required message

declaration for a message that is not required i.e. a declared explicit required message is not self-

sent in any message provided by the trait.

Example:
Trait named: #TExampleTrait uses: {}

m1: anObject

^anObject hash

m2

^self requirement

Figure 52: Example code showing an explicit required message which is not actually required.

In this example, TExampleTrait declares m2 message as an explicit required message but since no

other method self-sends m2, it is not a required message.

74

3.2.35 Error Type: Super-Sent Message Lookup Bypasses Used Trait

Composition Provided Message

Category: Traits Use.

Sub Category: Super Sent Messages.

Error Type Definition: This traits error happens when a trait composition client super-sends a

message which is provided by its used trait composition. If a trait composition client needs to use

a trait composition provided message, it should do a self-send instead of a super-send since the

semantics of a trait composition provided message is the same as it were defined in the trait

composition client. If an implementation extension needs to use the same message name, the

trait composition provided message should be referenced by an alias message since the trait

composition client defined message will override the trait composition provided message.

Example:
Trait named: #TExampleTrait uses: {} Object subclass: #ExampleClass

uses: TExampleTrait

instanceVariableNames: 'anObject'

classVariableNames: ''

m1

^self doSomething.

m3

^anObject: super m1 doSomethingElse

Figure 53: Example code showing a class super-sending a message for which the method lookup

bypasses the used trait composition provided message.

In this example, ExampleClass super-sends m1 message which is provided by TExampleTrait.

Because of flattening property, m1 provided to ExampleClass by using TExampleTrait is

semantically equivalent to defining m1 in ExampleClass. Because of this, super-sending m1 from

an ExampleClass instance will make method lookup to bypass TExampleTrait>>m1 provided

message.

75

3.2.36 Error Type: Trait Method Super-Sends a Message

Category: Traits Use.

Sub Category: Super Sent Messages.

Error Type Definition: This traits error happens when a trait defined method super-sends a

message. Despite super-sending a message is valid; Traits model only defines a mechanism to

declare required messages to be provided by the trait composition client and does not define any

way to declare requirements to be satisfied by one of the trait composition client superclasses.

There are some scenarios where super-sending a message from a trait defined method is valid.

One possible scenario for this is extending a message behavior super-sending the same message,

which is useful to model a generic wrapper [SDNB/03]. Despite of it, super-sending a message

from a trait defined method is not recommended because of the lack of mechanisms to declare

requirements for a trait composition client superclass.

Example:
Trait named: #TExampleTrait uses: {} Object subclass #ExampleSuperClass

instanceVariableNames: ''

classVariableNames: ''

m1

^super m2.

ExampleSuperClass subclass: #ExampleClass

uses: TExampleTrait

instanceVariableNames: 'anObject'

classVariableNames: ''

m2

^doSomeStuff

Figure 54: Example code showing TExampleTrait used by ExampleClass and defining a method

which super-sends a message.

In this example, TExampleTrait implements m1 message, which super-sends m2. ExampleClass

uses TExampleTrait and implements m2, but, because the flattening property, the method lookup

will start looking at a m2 implementation at ExampleSuperClass, missing ExampleClass>>m2

implementation.

76

3.2.37 Error Type: Unused Trait

Category: Best Practices.

Sub Category: Traits Definition and Use.

Error Type Definition: This traits error happens when, a trait is not included in any class or trait

used trait composition. Since this trait is not used at all there is no reason to have it.

77

3.2.38 Error Type: Traits Names Don’t Start with T

Category: Best Practices.

Sub Category: Traits Definition and Use.

Error Type Definition: This traits error happens when a trait name does not start with “T”. As a

convention for naming a trait and easily differentiating it from a class, it is an accepted practice to

name traits with a “T” name prefix. Examples of this are TDrawing and TCircle traits, presented at

“Defining Traits” section in this work.

78

4 Automatic Trait Error Detection Implementation
The chosen platform for implementing automatic Traits error detection is Smalllint, a static code

checking tool inspired on Lint, which is available in several Smalltalk implementations like Pharo,

Squeak and others. The original Smalllint implementation is only able to check classes and

methods, and because of this, it had to be modified to analyze and detect Traits related errors.

This section will describe:

 Smalllint description and implementation.

 Smalllint limitations for Traits error detection.

 Smalllint extension implementation.

 Smalllint Traits error detection rules implementation.

The described Smalllint extension has been implemented modifying the Smalllint version available

in Pharo Smalltalk 1.0. This implementation has been published as Monticello packages in

squeaksource repository at http://www.squeaksource.com/TesisTraitLint. For convenience, the

implementation is distributed in three packages:

 OBLintTraitExtension: It contains the Smallint extension implemented using

OmniBrowser framework, including browsers, environments and other Smalllint related

elements.

 Tesis: It contains all the Traits related rule implementations, including Smallint rules,

Traits inspection framework, rule format adaptation and other rule related elements.

 TesisTest: It contains the unit tests that checks the behavior of the classes included in

Tesis package.

OBLintTraitExtension and Tesis packages can be loaded independently and TesisTest depend on

Tesis package. Despite OBLintTraitExtension and Tesis can be loaded independently, but to get

the full Smalllint extension including Traits related rules both packages have to be loaded.

4.1 Smalllint Description and Implementation
As said previously, Smalllint is a static code analysis tool provided in various Smalltalk dialects like

Squeak and Pharo. Smalllint is based on and works similarly to Lint tool.

To run Smalllint on some code, the programmer has to select a refactoring scope. A refactoring

scope is a set of classes where Smalllint will search for errors. To detect errors, Smalllint defines a

set of rules to evaluate on the defined refactoring scope. Each of these rules is defined to detect a

specific error type. In a rule evaluation the rule receives a class or a method, checks it, and, in case

of positive error detection, adds it to the rule result set.

After filling in the evaluation of all the rules on the selected refactoring scope, Smalllint shows for

each rule, the classes or methods which have been added to the rule’s result set (i.e. shows the

classes and methods with errors).

This section will describe the current implementation of Smalllint and its components, including its

model and UI. Later, we describe Smalllint limitations and problems to detect Traits errors, and

the changes introduced to give Smalllint the ability for Traits related error detection.

http://www.squeaksource.com/TesisTraitLint

79

4.1.1 Smalllint Model

Smalllint is included in the Pharo image, as part of the Refactoring Browser, a framework which

includes several useful tools like refactoring, rewriting rules, etc. The Smalllint (or Lint) model

consists of a set of rules, each of them associated with a specific error type, that check classes

and/or methods finding error occurrences if appropriate. This set of rules will be extended with

traits related rules as result of this thesis.

This chapter will present the Smalllint model in more detail (note that many model classes names

are prefixed with “RB” which comes after Refactoring Browser).

Rules

In the Smalllint model, every rule is implemented by a class, and all the rules are organized in a

class hierarchy with RBLintRule as the root.

There are several types of rules:

 RBBasicLintRule models the individual rules, for which there are two main types.

 RBBlockLintRule lets the programmer define an individual rule in a programmatic way; this

means the programmer defines code to detect the error.

 RBParseTreeLintRule lets the programmer define an individual rule using a special syntax

to analyze methods parse tree in a declarative way.

 RBCompositeLintRule groups other Lint rules and evaluates each of them when executed.

 RBTransformationRule that lets the programmer define code transformations (hopefully,

changing one code chunk to another semantically equivalent chunk of code).
RBLintRule

run
checkClass:
checkMethod:
group
name
rationale

RBBasicLintRule
result
resultClass

RBBlockLintRule
resultClass

RBParseTreeLintRule
matcher
checkMethod:
resultClass

RBCompositeLintRule
checkClass:
checkMethod:
rules

RBTransformationRule
checkMethod:
rewriteRule

Figure 55: Smalllint rules class hierarchy.

80

Rule Evaluation

A Lint rule works as follows:

A rule implements at least one of the messages {checkClass:, checkMethod:}, depending on if the

rule will verify classes or methods. The rule also defines a result class. The result class models a

set of rule results; it can be a set of classes, a set of method selectors or any other kind of set. The

different result sets available are implemented as BrowserEnvironment subclasses.

When a rule is evaluated, it receives a checkClass: or checkMethod: message with a context

containing the entity (a class or a message selector/compiled method) to be analyzed. After

receiving the context, the rule will take the entity to analyze, and check it looking for an

occurrence of the error type for which the rule has been defined. After analyzing the received

entity, the rule, in case of positive error detection, will add a result (usually the analyzed entity)

into its rule result set.

Rule Checker

In Smalllint, rules have the responsibility of checking individual entities for a specific error type;

while the responsibility of evaluating rules on a group of entities relies on SmalllintChecker. A

SmalllintChecker includes a rule, usually a RBCompositeLintRule instance composed by a group of

rules, and also an environment, which includes a set of classes. The environment is usually a

BrowserEnvironment instance, which allows to iterate on a class set, using the classesDo:

message. When a SmalllintChecker receives a run message, it resets its rule result and then

iterates over the classes included in the checker environment.

For each iterated class, SmalllintChecker sends checkClass: and checkMethod: messages to its

rule. checkClass: is sent with the currently iterated class and checkMethod: is sent once with each

of the iterated class defined messages. In case of a composite rule, the composed rule is

responsible of forwarding the received messages (checkClass:, checkMethod: and any other) to its

composing rules. In this way, when a composed rule is evaluated, it is the same as evaluating all of

its composing rules.
SmalllintChecker>>run

 rule resetResult.

 environment classesDo: [:class |

 class isTrait ifFalse: [

 self checkClass: class.

 self checkMethodsForClass: class]]

Figure 56: SmalllintChecker>>run message implementation.

4.1.2 UI

Smalllint UI is implemented using Omnibrowser framework, which is a browser framework that

supports the definition of browsers based on explicit meta-models definition [BDPW/07]. The

basics of Omnibrowser and Smalllint UI implementation will be described next.

81

Omnibrowser Framework

Omnibrowser is a framework to write browser-based tools in Smalltalk. It is used to implement

browsers that are typically included in a Smalltalk IDE, such as the Refactoring Browser (which

includes Smalllint) that runs in Squeak and Pharo1.

In the Omnibrowser model, a meta-graph defines the navigation structure for the displayed data;

each meta-node defines a kind of “real” node with its behavior and a set of transitions to other

meta-nodes i.e. other kind of nodes that can be reached from the current node. The real data is

modeled with a graph which is an “instance” of its meta-graph and where each “real” node is an

“instance” of a meta-node with the properties and transitions like the ones defined by its meta-

node.

Each time an item in the browser is selected, a “real” node is selected in the model. And then, the

browser automatically computes the following possible items to display, coming from the selected

“real” node. To compute them, the browser selects the meta-node for the selected “real” node,

and then from that meta-node all the possible transitions are retrieved. Following that, all the

transitions are sent as messages to the selected “real” node, getting a set of “real” nodes as

response for each “transition” message. Each “real” node coming from the computed transitions

have as its meta-node the meta-node reached in the meta-graph taking that transition.

Example

An implementation of a file browser using Omnibrowser will be described next:

First, the file browser itself has to be defined
OBBrowser subclass: #FileBrowser

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'PBE-Omnibrowser'

Figure 57: FileBrowser browser class definition [OBWeb].

This browser has to implement a meta-graph describing the file system data structure to be

navigated. Since a usual file system includes files and directories, the meta-graph includes a

directory and file meta-nodes. To model the directories ability to contain other files and

directories, two transitions are defined in the meta-graph, directories going from directory to

directory, and files going from directory to file.
FileBrowser class»defaultMetaNode

"returns the directory metanode that acts as the root metanode"

| directory file |

directory := OBMetaNode named: 'Directory'.

file := OBMetaNode named: 'File'.

directory

childAt: #directories put: directory;

childAt: #files put: file.

^directory

Figure 58: FileBrowser method defining the file browser meta-graph [OBWeb].

1
 The Omnibrowser code can be found at http://code.google.com/p/omnibrowser/

http://code.google.com/p/omnibrowser/

82

To implement this meta-graph, the FileBrowser implements defaultMetaNode message.

defaultMetaNode message implementation defines the full meta-graph and returns its root meta-

node.

The next step is to define the concrete nodes. These nodes are wrappers of the domain entities

with the responsibility of adapting them to be handled by the browser. Two different nodes are

defined in this case: FileNode and DirectoryNode.
OBNode subclass: #FileNode

instanceVariableNames: 'path'

classVariableNames: ''

poolDictionaries: ''

category: 'PBE-Omnibrowser'

FileNode subclass: #DirectoryNode

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'PBE-Omnibrowser'

Figure 59: Class definitions for the concrete nodes representing File and Directory domain entities

[OBWeb].

Instances of FileNode and DirectoryNode will represent concrete files and directories of the file
system domain. The first step is to define FileNode class as a OBNode subclass. Instances of this
class will represent files. The other entity in our model is directory, which can contain files and
other directories. A directory can be modeled as a special kind of file. Because of this,
DirectoryNode is defined as a subclass of FileNode.
After defining FileNode and DirectoryNode, the meta-graph defined transitions have to be
defined. As said previously, there are two possible transitions from a directory meta-node,
directories and files.
DirectoryNode»directories

| dir |

dir := FileDirectory on: path.

" dir directoryNames collect: [:each |

DirectoryNode new path: (dir fullNameFor:

each)]

DirectoryNode»files

| dir |

dir := FileDirectory on: path.

" dir fileNames collect: [:each |

FileNode new path: (dir fullNameFor:

each)]

Figure 60: DirectoryNode messages representing the transitions on the meta-model [OBWeb].

When a browsed item is selected, the possible transitions are obtained from its item node’s meta-
node, and then, those transitions are sent to the selected concrete node as messages. Because
this, directories and file messages are defined at DirectoryNode class.
directories will return a set of directory nodes (DirectoryNode instances) and files will return a set
of file nodes (FileNode instances), in both cases, corresponding to the files and directories
contained in the node’s directory. Also note that a directory node will have a directory meta-node,
since it will be obtained after following a directories transition. The same will be applicable to file
nodes with file meta-nodes after taking files transition.

83

files

fileA2

fileA1

fileB1

fileB2

directoryB

directoryC

directoryA

directories files

Figure 61: A file domain concrete graph example.

Figure 61 shows an example of a concrete file browser graph where concrete nodes are grouped
by its taken transition, following its meta-graph defined structure and transitions. Files come from
files transitions and directories come from directories transitions.
As a final step in the browser definition, the concrete root node is defined. The concrete root node

specifies where the domain navigation will start. In this case the concrete root node will represent

the file system root directory.
FileBrowser class»defaultRootNode

^DirectoryNode new path: '/'

Figure 62: Default concrete root node definition [OBWeb].

Note that defaultRootNode is a DirectoryNode instance, which matches with the

defaultMetaNode i.e. the Directory meta-node [BDPW/07] [OBWeb].

Smalllint UI Implementation

Smalllint UI is a browser that shows the defined Lint rules and their results on the selected

environment to be validated (after its execution finalization).

Figure 63: Menu option for selecting a refactoring scope from a Class Browser.

84

To run Smalllint the programmer must first define which set of classes will be validated. To do it,

he must select any option under “Refactoring Scope” menu option in a ClassBrowser.

Figure 64: Browser presenting the selected “Refactoring Scope”.

This action will open a browser showing all the selected classes.

After opening the browser displaying the selected “Refactoring Scope”, the Smalllint tool can be

run on the content of that scope, i.e. the selected “Refactoring Scope” will be the environment to

be validated by the tool.

Figure 65: Browser menu options for running “Code Critics”.

The refactor>>code critics menu option will open the Smalllint tool on the browsed environment

(i.e. “Refactoring Scope”).

85

Figure 66: “Code Critics” (Smalllint) browser.

The browser displays all the available rules grouped by categories and displays the rule execution

results after all the rules completed the evaluation on the analyzed environment.

The browser itself is implemented by ORLintBrowser class. It defines a meta-graph with the rules

data structure to navigate through the rules groups reaching individual rules.

CompositeRule LeafRule

leafRules

compositeRules

Figure 67: Smalllint browser meta-graph.

The browser’s meta-graph has two different node types: composite rule, which represents

composite Lint rules, and leaf rule, which represents concrete lint rules. The meta-graph can be

navigated from a composite rule node to other composite rule nodes through a compositeRules

transition, and a set of leaf rule nodes can be reached from a composite node through leafRules

transition (the meta-nodes are instances of OBMetaNode class).

The “concrete” graph for the Lint browser is modeled with nodes wrapping the different kinds of

Lint domain rules i.e. composite and concrete Lint rules. The node class for composite Lint rules is

ORCompositeLintNode, and for concrete ones is ORBasicLintNode.

ORCompositeLintNode implements compositeRules and leafRules messages which return

collections of nodes of the expected rule type (i.e. composite or leaf) for the chosen transition.

After ending the rules execution, the browser refreshes the displayed data, enabling the display of

the computed rule results. The rule results are implemented by BrowserEnvironment or one of its

subclasses and contain the entities that resulting positive in the rule evaluation.

86

4.2 Smalllint Extension for Traits Error Detection
Adapting current Smalllint implementation to detect Traits related errors implies identifying

problems and limitations that do not allow Smalllint to check Traits errors, and defining change

requirements for Smalllint to achieve the Traits related error checking functionality.

This section will list the identified Smalllint limitations and problems and the requirements to

solve them.

Later, each limitation/requirement will be described as well as the change which satisfies the

requirement.

4.2.1 Smalllint Limitations and Requirements

To implement Traits automatic error checking, there are some limitations and problems Smalllint

must solve. These are the Smalllint limitations:

 Environments only list classes.

 Refactoring scope selection browser only shows classes.

 Smalllint rule checker only checks classes and methods defined by classes.

 Smalllint rules only checks classes and methods defined by classes.

 Poor error result information displayed (Only shows which class or method has an error).

 Lack of Traits aspects inspection framework.

Based on these limitations the requirements to change Smalllint are the following:

 Environments must be able to list classes and traits.

 Refactoring scope browser must show classes and traits.

 Smalllint rule checker must be able to check classes, traits and methods defined by both

entities.

 Smalllint rules must be able to check classes, traits and methods defined by both entities.

 Implement an improved Smalllint error result presentation mechanism.

 Implement a Traits aspect inspection framework.

4.3 Smalllint Extension Implementation
This section describes the work done for satisfying each of the requirements.

4.3.1 Environments must be Able to List Classes and Traits

Environments are used by Smalllint, mainly to represent the selected “Refactoring Scope” to be

analyzed. The environments on Smalllint (and Smallltalk, since they are used in several

applications/frameworks) are usually implemented as subclasses of BrowserEnvironment.

Basically, an environment is a kind of set which contains classes, and gives functionality to iterate

on them. The classes iteration functionality is implemented by classesDo: which is similar to do:

message which is available for collections, but in this case it is specific to iterate on the classes

included in the environment. This was valid before Traits since Classes were the only behavior or

structure defining entities in a Smalltalk image.

87

BrowserEnvironment>>classesDo: aBlock

 self allClassesDo: [:each |

 (self includesClass: each)

 ifTrue: [aBlock value: each]]

Figure 68: classesDo: evaluates aBlock on each class included in the BrowserEnvironment.

classesDo: method shows some other class related messages like allClassesDo: and includesClass:

The objective of this change is to extend environments (BrowserEnvironment and its subclasses)

with the ability of iterating on the included classes and/or traits. The shared aspect between

Traits and Classes is that both define object behavior, and, after this, will be considered as

Behavior any entity which defines behavior (i.e. defines behavior in a meta-level. It does not apply

to a compiled method). Considering this definition, the message to iterate on the behaviors

included in an environment will be named behaviorsDo:
BrowserEnvironment>>behaviorsDo: aBlock

 self allBehaviorsDo: [:each |

 (self includesBehavior: each)

 ifTrue: [aBlock value: each]]

Figure 69: behaviorsDo: method for iterating on an environment’s behaviors (classes and traits).

Figure 69 shows behaviorsDo: implementation, where we can also see allBehaviorsDo: and

includesBehavior: messages, which are similar to allClassesDo: and includesClass: messages, but

applicable to any behavior instead of just classes.

4.3.2 Refactoring Scope Selection Browser Must Show Classes and Traits.

When a “Refactoring Scope” is selected, it is displayed on a browser. Currently, this browser is

implemented by ORClassBrowser which defines a meta-graph as follows:
ORClassBrowser>>defaultMetaNode

 | root |

 root := OBMetaNode named: 'Environment'.

 ^ self buildMetagraphOn: root

OBCodeBrowser>> buildMetagraphOn: root

 ^ self

 buildMetagraphOn: root

 class: #classes

 comment: #comments

 metaclass: #metaclasses

OREnvironmentNode>> classes

 ^ self browserEnvironment allNonMetaClasses collect: [:each | each asNode]

Figure 70: ClassBrowser meta-graph definition and concrete node message transition

implementation.

This meta-graph defines the classes transition between the browsed environment and the

displayed items, implying that the browsed items will be only the classes included in the

environment.

A new browser has been implemented at OR2BehaviorBrowser, which displays all the behaviors

included in the environment.

88

ORBehaviorBrowser>>buildMetagraphOn: root

^ self

 buildMetagraphOn: root

 class: #behaviors

 comment: #comments

 metaclass: #metaclasses

OREnvironmentNode>>behaviors

 ^ self browserEnvironment classNames collect:

[:each | (Smalltalk at: each) asNode]

Figure 71: New BehaviorBrowser based on the original ClassBrowser, but displaying all the

environment’s behaviors.

The new browser meta-graph defines behaviors transition instead of classes transition. In this

way the browser displays all the behaviors instead of only classes.

Note that classNames implemented by the environments returns all the behaviors names, not only

classes, and because of this, behaviors message implementation works properly (anyway it should

be renamed for more clarity).

4.3.3 Smalllint Rule Checker Must be Able to Check Classes, Traits and

Methods Defined by Both Entities.

SmalllintChecker has the responsibility of running the rules on the selected “Refactoring Scope”,

but it runs the rules on the environment’s classes and explicitly filters any trait included on it.

Because of this, SmalllintChecker was extended by FullEnvironmentSmalllintChecker, which

overrides run message, extending the rule evaluation to the traits included in the “Refactoring

Scope”.
FullEnvironmentSmalllintChecker >>run

 rule resetResult.

 environment

 behaviorsDo: [:class |

 class isTrait

 ifTrue: [

 self checkTrait: class.

 self checkMethodsForTrait: class]

 ifFalse: [

 self checkClass: class.

 self checkMethodsForClass: class]]

Figure 72: Enhanced SmalllintChecker which evaluates all the behaviors in the “Refactoring

Scope”.

Figure 72 shows that the environment content is iterated using behaviorsDo: instead of classesDo:

and also shows the introduction of checkTrait: and checkMethodsForTrait: which will send

checkTrait: and checkTraitMethod: to each rule, in the same way that checkClass: and

checkMethodsForClass: currently sends checkClass: and checkMethod: to the rules.

89

4.3.4 Smalllint Rules Must be Able to Check Classes, Traits and Methods

Defined by Both Entities.

All the Smalllint rules protocol includes checkClass: and checkMethod: messages which are the

messages sent by SmalllintChecker to evaluate each rule. If any rule wants to check classes or

methods, it has to implement the corresponding message. Following with this schema, Lint rules

protocol has been extended with checkTrait: and checkTraitMethod: messages. These messages

will be sent by FullEnvironmentSmalllintChecker to each trait or trait defined method included in

the environment.

4.3.5 Implement an Improved Smalllint Error Result Presentation

Mechanism.

The original Smalllint rule result presentation consists of listing classes or methods which resulted

positive on a rule evaluation.

Despite this approach seems to be good enough to check classes-based systems, it is not accurate

to show exactly where the error happens (e.g. which sent message inside a method generates the

error), and also does not consider the possibility of other constructions in the class, like a traits

composition use clause.

The objective of the rule result presentation improvement is to let the user navigate through rule

results in the same way that he navigates from composite to leaf rules. In this way, when a rule is

selected, it will display in a new panel the positive rule results grouped by a common denominator,

like the class or the method where the errors happen, (this can be defined by each rule). When

one of these items is selected, another panel will appear and display all the error occurrences on

that entity. This can be done iteratively until reaching the specific place where the error happens

(i.e. it will present the error from the more general to the more specific location). It is also

expected that all the previous rules will be able to present their results as they did before without

any change.

Figure 73: Enhanced Smalllint browser is compatible with the original rule result presentation

schema.

90

Figure 74: Enhanced Smalllint browser rule result presentation.

Figure 75: Detailed description for an individual rule result in the lower panel.

To complete the proposed Smalllint extension, it is convenient to divide it into two aspects:

 Smalllint UI extension.

 New rule result schema for the extended UI.

Smalllint UI Extension

ORExtendedLintBrowser class implements the extended Smalllint browser. It redefined the

previous Smalllint browser meta-graph implemented by ORLintBrowser.

91

CompositeRule

LeafRule

LeafExtendedRule

CompositeResult

LeafResult

compositeRules

leafBasicRules

leafExtendedRules

compositeResults leafResults

leafResults

compositeResults

Figure 76: Extended Smalllint browser meta-graph.

This new meta-graph defines a CompositeRule node for the grouped Lint rules, and a LeafRule

node for rules who does not implement the extended error result presentation (e.g. previously

existing rules). LeafExtendedRule node models the rules which implement the extended error

presentation. Both LeafRule and LeafExtendedRule nodes model concrete rules and not grouped

ones. A tree structured result can be navigated from a LeafExtendedRule node. In this tree

structured result, CompositeResult node represents the internal nodes, and LeafResult node

represents the leaf nodes.

ORCompositeResult
LintNode

text

ORBasicResult
LintNode

text

ORResultLintNode

leafResults
compositeResults
text

ORLintNode

isExtendedRule
hasExtendedResult
name
rationale
rule

leafResults
compositeResults
result
text

ORBasicLintNode

Figure 77: OmniBrowser concrete node classes representing each the Smalllint rules and result

nodes in the Smalllint browser.

Figure 77 shows the concrete graph implementation that was also adapted to comply with the

new meta-graph. The concrete rule node class ORBasicLintNode was extended with leafResults

and compositeResults transition messages to enable the navigation from the rule node to the first

result node. To model the result presentation nodes, ORLintNode was extended by

ORResultLintNode, which also defines leafResults and compositeResults transition messages to

implement the meta-graph defined transitions. The extended Smalllint result nodes also

implements text message to present the current selected node on the lower panel in the same

way the rule result was presented before. Since this result presentation is different for leaf and

92

non-leaf nodes two OR2ResultLintNode subclasses were defined, ORCompositeResultLintNode

and ORBasicResultLintNode, implementing different text versions.

New Rule Result Schema for the Extended UI

The original rule result schema does not fit with the new navigational rule result presentation

schema and it also strongly couples the rule result with what Smalllint UI expects as result. In the

old rule result schema, Smalllint expected classes or methods into the rule result environment,

forcing the rules to produce classes or methods as results to add into the rule result set. An

objective in the new rules result schema is that the rules results can present more information

about the errors instead of just in what class or method is the error produced. To achieve this, the

rule logic will be decoupled from the Smalllint framework and will produce an arbitrary object

with all the information about the displayed errors. This result object will be adapted by the rule to

a rule result structure compatible with the new rule result presentation schema.

Structured Smalllint Rule Result

When a rule is evaluated, it gets a collection of rule result objects. Each rule result is an occurrence

of the analyzed error and is modeled by an ExtendedLintRuleResult subclass. Once a Smalllint

rule computes the rule result collection, it has to adapt it to a tree structure compatible with the

extended Smalllint browser meta-graph.

Every rule result can be considered as a path from a behavior (a class or a trait) to the entity which

produces the error, where each node is closer to the error location. For example, a “Switched

Message Aliasing” error in a class used trait composition clause would be represented by a path

like:

Behavior -> trait transformation included in the used trait composition -> erroneous message

aliasing mapping

Note that each path for the same error type will have the same length since there is not any

involved recursive structure.

TraitLintResult TraitLintResult TraitLintResult

TraitLintResult

TraitLintResult TraitLintResultTraitLintResult

RootTraitLintResult

ExtendedLintRuleResult

ExtendedLintRuleResult

ExtendedLintRuleResult

Figure 78: Smalllint rule result set adapted to a tree like structure.

Figure 78 shows a group of rule results transformed to a path like representation, combined in a

way that each repeated node appears just one time, and with the addition of a root node which

93

represents the entire rule result from where all the rule result paths start. The resulting tree like

structure represents the adapted rule result set is compatible with the one described by the

Smalllint browser meta-graph.

In this tree rule result representation, each leaf node on the tree represents a different rule result

since all the rule results differ in at least one property value, defining each rule result a different

path. Considering this, each leaf node includes its corresponding unique ExtendedLintRuleResult

instance which will let the extended browser present a detailed error description when the leaf

node where selected.

This tree-like structure is implemented by two classes: RootTraitLintResult and TraitLintResult.

RootTraitLintResult is the root of the result tree, playing the role of the rule result set (similar to

the role played by the environments as the rule result set in the previous schema). TraitLintResult

implements each node of the rule result tree, containing all the information corresponding to the

property assigned to the node. Each of these nodes will be adapted to be handled by Smalllint

framework by ORResultLintNode instances which have been already described.

Rule Result Adaptation

The transformation from a set of ExtendedTraitLintResult instances to a tree structured result is

done by an adaptable rule result builder schema, which is configured for each different Smalllint

rule.

Each rule defines a rule result adapter by subclassing LintResultBuilder. This rule result adapter

configures a chain of LintResultNodeBuilder. Each builder in the chain is responsible for building

the nodes corresponding to a specific property, i.e. each level of the rule result tree.

Each LintResultNodeBuilder takes care of a property in the rule results to be transformed. The

property value is obtained by sending a message to the adapted rule result. When the node

builder receives a set with ExtendedTraitLintResult instances, all the rule results are grouped,

having the rule results in each group their defining property value in common. Then, for each

group, a TraitLintResult node is created with the information provided by the group defining

property and all the rule results in the group are sent to the next LintResultNodeBuilder in the

chain to be transformed. The next builder will return a collection of TraitLintResult, which will be

the following nodes for the current group node in the tree structured rule result.

Example

The next “Switched Message Aliasing” rule result example is implemented by

SwitchedAliasRuleResult class which is a subclass of ExtendedTraitLintResult.

The structure of this rule result is:

SwitchedAliasRuleResult

 Error defining behavior.

 Erroneous trait transformation at the behavior’s used trait composition.

 Switched message aliasing mapping.

94

This rule result can be represented as a path like:

Behavior TraitTransformation SwitchedAliasingMapping

Figure 79: Path like representation of an individual “Switched Message Aliasing” rule result.

To obtain this path structure the LintResultBuilder will define a LintResultNodeBuilder chain with

three nodes, one for each rule result property to be displayed.

(Behavior)
LintResultNodeBuilder

(TraitTransformation)
LintResultNodeBuilder

(SwitchedAliasingMapping)
LintResultNodeBuilder

Figure 80: LintResultNodeBuilder chain for building adapted representations of rule

ExtendedTraitLintResult results.

Considering this example scenario
Object subclass: #ClientClass

 uses: CompositionTrait @ {#m1->#m3. #m2->#m4}

Trait named: #CompositionTrait

 uses: {}

Trait named: #ClientTrait

 uses: CompositionTrait @ {#m2->#m3}
m1

 ^doSomething

m2

 ^doSomethingElse

Figure 81: Example code of a class containing positive results of “Switched Message Aliasing”

error.

The “Switched Message Aliasing” Smalllint rule will return three positive rule results:
SwitchedAliasRuleResult

 definingBehavior:ClientClass

 traitTranformation:

CompositionTrait@

{#m1->#m3. #m2->#m4}

 switchedAliasMapping: (#m2-

>#m4)

SwitchedAliasRuleResult

 definingBehavior:ClientClass

 traitTranformation:

CompositionTrait@

{#m1->#m3. #m2->#m4}

 switchedAliasMapping: (#m1-

>#m3)

SwitchedAliasRuleResult

 definingBehavior:ClientTrait

 traitTranformation:

CompositionTrait@

{#m2->#m3}

 switchedAliasMapping: (#m2-

>#m3)

Figure 82: Positive “Switched Message Aliasing” error rule results from example at figure 81.

After adapting the retrieved rule results, the Smalllint tree structured rule result will be like:

95

SwitchedAliasingRuleResult
(RootTraitLintResult)

ClientClass
(TraitLintResult)

ClientTrait
(TraitLintResult)

CompositionTrait@
{#m1->#m3. #m2->#m4}

(TraitLintResult)

#m1->#m3
(TraitLintResult)

#m2->#m4
(TraitLintResult)

CompositionTrait@
{#m2->#m3}

(TraitLintResult)

#m2->#m3
(TraitLintResult)

Figure 83: Positive “Switched Message Aliasing” error rule result set adapted to be displayed by

the extended Smalllint browser.

4.3.6 Implement a Traits Aspect Inspection Framework

In the Traits model, there are two main entities capable of defining behavior: Class and Trait, both

define method dictionaries and can be considered behavior entities. In fact, both inherit from a

behavior class, Behavior and TraitBehavior. They do not inherit from a common class but both

use TPureBehavior trait. There are other two entities with similar capabilities to Traits:

TraitTransformation and TraitComposition, both of them can be used as argument of a trait

composition use clause, but do not share behavior with Trait class. All these four entities have

some similar responsibilities, and some specific ones, but since some of them can play the same

role, would be useful to have a common protocol to simplify the access to some properties

depending on which role is performed.

Instead of modifying the mentioned entities protocol, it has been decided to define a set of new

entities which will give access to the entities properties through a unified protocol. These new

entities act like inspectors or mirrors of the original entities. Since inspector is a central concept

with a specific meaning on Smalltalk, these new entities are going to be called mirrors.

Several entity aspects have been identified, each of them with an associated protocol:

 Provided Messages: Is the set of messages or protocol the entity can provide to other

entities, using Traits use or Class inheritance mechanisms. In the case of Class and Trait, it

is the entity protocol itself. In the case of trait transformation or trait composition, it is the

set of messages provided to a behavior which uses the trait transformation or trait

composition, considering the excluded and aliased messages. The conflicting messages in

a trait composition are not included as provided messages.

o Example Aspect Accessing Messages: providedMessages, localProvidedMessages

 Compiled Method accessing: Are the compiled methods associated to the entity’s

provided messages. For Class and Trait, this mapping is done using the method dictionary.

For trait transformations the message aliasings or exclusions are considered. For trait

composition the conflicting messages are also excluded.

96

o Example Aspect Accessing Messages: compiledMethodProvidedAt:,

selectedMethodAt:

 Required Messages: It is the set of messages the entity needs, and should acquire via

implementation or trait use. There are two different kinds of required messages, explicitly

required messages and implicitly required messages, depending on if there is a message

implementation declaring the requirement (explicit), or if it is just a self-sent message

which has not been implemented nor provided by other entity (implicit). The required

messages are originated by Traits, but can propagate to any entity with a trait composition

use clause.

o Example Aspect Accessing Messages: requiredMessages,

implicitlyRequiredMessages, explicitlyRequiredMessages

 Conflicting Messages: It is the set of messages which are defined by multiple sources in a

trait composition. The conflicting messages can be also present in a Class or Trait if they

do not resolve the conflict generated on its used trait composition.

o Example Aspect Accessing Messages: conflictingMessages

 Overriden Messages: It is the set of messages provided to a Class or Trait, by inheritance

or trait use, but for which the entity has provided its own implementation.

o Example Aspect Accessing Messages: overridenMessages

 Transformations: Are the message aliasings, message exclusions and message renamings

defined by an entity that can be used as a trait composition in a trait composition use

clause i.e. trait, trait transformation and trait composition.

o Example Aspect Accessing Messages: transformations, aliases, exclusions,

renames

Four mirrors were defined grouping the identified different aspects:
Mirror Protocols implemented

BehaviorMirror Provided Messages, Compiled Methods, Overriden Messages,

Conflicting Messages

TraitMirror Provided Messages, Compiled Methods, Overriden Messages,

Conflicting Messages, Transformations

TraitTransformationMirror Provided Messages, Compiled Methods, Required Messages,

Transformations

TraitCompositionMirror Provided Messages, Compiled Methods, Required Messages,

Conflicting Messages, Transformations

Figure 84: Each trait entity mirror and the aspects protocols which each of them have to

implement.

These mirrors unify the protocols for different entities depending on the role they are playing. A

situation where mirrors are useful is when a trait transformation has to be handled. In this

situation, the trait transformation mirror has a single protocol, does not matter if the trait

transformation is a message aliasing or a message exclusion. Another situation were mirrors are

useful is when a used trait composition is analyzed, since a trait, a trait transformation or a trait

composition can play a trait composition role. This unified protocol simplifies the access to the

entities properties and helps on the rules implementation.

97

4.4 Smalllint Traits Error Detection Rules Implementation
After the implementation of the described changes, Smalllint is capable of checking Traits related

errors, without losing the ability of checking all the previously defined rules. Fourteen rules, at

least one from each traits error category have been implemented using the framework extension

as a mode of example. The implemented rules are listed next, including a brief description of the

input, output, rule implementation details, rule algorithm used and rule result presentation for the

new Smalllint schema.

98

4.4.1 Switched Message Aliasing

Input: A behavior (can be a class or trait).

Output: A collection including all the switched message aliasing occurrences defined in the

behavior’s used trait composition. In case the received behavior does not use any trait

composition, it will return an empty collection.

Each switched message aliasing occurrence is defined as follows:

SwitchedAliasing:

1. Behavior: It is the behavior which uses the trait composition that defines the switched

message aliasing.

2. SelectedAliasing: It is message aliasing which defines the switched message aliasing

mapping.

2.1. TraitTransformation: It is the trait transformation from the behavior’s used trait

composition which includes the switched message aliasing mapping.

2.2. Aliasing association: It is the switched message aliasing mapping itself.

Algorithm:
1. Get the received behavior’s used trait composition TC.
2. For each trait transformation TT defined in TC.

2.1. Let TR be TT’s transformed trait.
2.2. For each message aliasing mapping ATT defined in TT.

2.2.1. Let oldM->newM be ATT’s message mapping.
2.2.2. Select ATT as a switched message aliasing mapping if oldM is included in TR

protocol and newM is not included in TR protocol.

Main objects for this rule:
1. BehaviorSwitchedAliasingDetector: It detects the switched message aliasings in a behavior’s

used trait composition and creates the rule SwitchedAliasing results.

2. TraitCompositionSwitchedAliasingDetector: It retrieves the switched message aliasings

defined in the trait transformations of a trait composition.

UI:
The detected switched message aliasing results are grouped and presented in three levels:

1. The behavior where the switched message aliasing is defined.
2. The trait transformation from the behavior used trait composition, where the switched

message aliasing mapping is defined.
3. The switched message aliasing mapping itself (includes a detailed description of the individual

result).

99

4.4.2 Unimplemented Self-Sent Message due Message Renaming

Input: A behavior (can be a class or trait).

Output: A collection including a behavior’s self-sent messages not implemented because a valid

message implementation provided by the behavior’s used trait composition has been renamed.

Each self-sent message not available due message rename is defined as follows:

RenamedAndSentMessage:

1. SentMessage: It is the unimplemented self-sent message, including the behavior and the

method from where it is sent.

1.1. Behavior: It is the behavior where the self-sending message method is available.

1.2. SelectedMethod: It is the behavior’s self-sending message method and its associated

message name.

1.3. SentMessage: It is the unimplemented self-sent message which is sent from

SelectedMethod.

2. SelectedTransformationBehavior: It is the message rename that makes the self-sent message

to be undefined in the behavior’s self-sending method.

2.1. Behavior: It is the behavior for which its used trait composition includes the trait

transformation that defines the message rename.

2.2. SelectedRename: It is the message rename that makes the self-sent message to be

undefined in the behavior’s self-sending method.

2.2.1. TraitTransformation: It is the trait transformation that defines the message rename.

2.2.2. newMessage: It is the new message name for the renamed message.

2.2.3. oldMessage: It is the old message name for the renamed message.

Algorithm:
1. Get all original message names of the renamed messages defined in the behavior's used trait

composition.
2. Get all the self-sent messages sent from any of the behavior’s available methods (the

behavior’s available methods can be defined in the behavior itself or acquired from a
superclass or from its used trait composition).

3. Get all the behaviour protocol messages.
4. Get the behavior's unimplemented self-sent messages (set(2) - set(3)).
5. Get the behavior's unimplemented self-sent messages due message renaming (set(1) ∩

set(4)).

Main objects for this rule:
1. UnimplementedSelfSentMessageDueRenamingDetector: It implements the rule algorithm

and creates the rule’s RenamedAndSentMessage results.

2. BehaviorRenameDetector: It detects the message renames defined in the analyzed behavior’s

used trait composition.

3. SelfSentMessageFinder: It detects self-sent messages from the analyzed behavior’s available

methods.

100

4. BehaviorMirror: It analyses various aspects a behavior, in this case is used to get all the

analyzed behavior protocol, including the inherited messages and their defining classes.

UI:
The renamed and sent message results are grouped and presented in three levels:

1. The behavior for which it’s used trait composition defines the message rename.
2. The behavior where the self-sent message is originally defined.
3. The method where the unimplemented self-sent message is sent (includes a detailed

description of the individual unimplemented self-sent message due message renaming result).

101

4.4.3 Unimplemented Self-Sent Message due Message Exclusion

Input: A behavior (can be a class or trait).

Output: A collection including all the self-sent messages from the methods available at the

received behavior, for which there is no implementation available because a valid message

implementation provided by a trait in the behavior’s used trait composition has been excluded.

Each self-sent message not available due message exclusion is defined as follows:

RemovedAndSentMessage:

1. SentMessage: It is the unimplemented self-sent message, including the behavior and the

method from where it is sent.

1.1. Behavior: It is the analyzed behavior where the self-sending message method is available.

1.2. SelectedMethod: It is the behavior’s self-sending method and its associated message

name.

1.3. SentMessage: It is the unimplemented self-sent message which is sent from

SelectedMethod.

2. SelectedTransformationBehavior: It is the message exclusion that makes the self-sent

message to be undefined in the behavior’s self-sending method.

2.1. Behavior: It is the behavior for which its used trait composition includes the trait

transformation that defines the message exclusion.

2.2. SelectedExclusion: It is the message exclusion that makes the self-sent message to be

undefined in the behavior’s self-sending method.

2.2.1. TraitTransformation: It is the trait transformation that defines the message

exclusion.

2.2.2. Exclusion: It is the excluded message which makes the self-sent message to be

undefined.

Algorithm:
1. Get all the excluded messages defined in the behavior's used trait composition.
2. Get all the self-sent messages from any of the behavior’s available methods (the behavior’s

available methods can be defined in the behavior itself or acquired from a superclass or from
its used trait composition).

3. Get all the behaviour protocol messages.
4. Get the behavior's unimplemented self-sent messages (set(2) - set(3)).
5. Get the behavior’s unimplemented self-sent messages due message exclusion (set(1) ∩

set(4)).

Main objects for this rule:
1. UnimplementedSelfSentMessageDueExclusionDetector: It implements the rule algorithm

and creates the rule’s RemovedAndSentMessage results.

2. SelfSentMessageFinder: It detects the self-sent messages from the behavior’s available

methods.

3. BehaviorMirror: It analyses various aspects a behavior, in this case is used to get all the

analysed behavior’s protocol, including the inherited messages and their defining messages.

102

4. TraitCompositionMirror: It analyses various aspects of a trait composition, in this case is used

to get the message exclusions defined in the analyzed behavior’s used trait composition.

UI:
The excluded and sent message results are grouped and presented in three levels:

1. The behavior for which it’s used trait composition defines the message exclusion.
2. The behavior where the self-sent message is originally defined.
3. The method where the unimplemented self-sent message is sent (includes a detailed

description of the individual unimplemented self-sent message due message exclusion result).

103

4.4.4 Misplaced Meta-Level Class Message Aliasing

Input: A behavior (can be a class or trait).

Output: A collection including all the message aliasings defined in the behavior’s instance

message side used trait composition, but which are applicable to the behavior’s class side used

trait composition.

Each misplaced meta-level instance message aliasing is defined as follows:

WrongMetalevelTransformation:

1. SelectedTransformationBehavior: It is the message aliasing defined in behavior’s instance

message side used trait composition.

1.1. Behavior: It is the behavior where the misplaced meta-level message aliasing is defined.

1.1.1. SelectedAliasing: It is the misplaced meta-level message aliasing and its defining

trait transformation.

1.1.1.1. traitTransformation: It is the trait transformation which defines the

misplaced message aliasing.

1.1.1.2. Aliasing: It is the misplaced meta-level message aliasing mapping.

Algorithm:
1. Get all the instance message side behavior’s used trait composition message aliasings.
2. Get from set(1) all the message aliasings for which its defining trait transformation does not

define the aliased message.
3. For each message aliasing MA from set(2).

3.1. Get trait T from the message aliasing MA.
3.2. Get from T its classTrait CT.
3.3. If there a trait transformation TT in the behavior’s class message side which transforms CT.

3.3.1. If MA applies to TT then add TT to the rule result set.

Main objects for this rule:
1. MisplacedInstanceMethodAliasingDetector: It implements the rule algorithm. Verifies if a

message aliasing mapping applies to a trait transformation in a class or instance message side

of a behavior’s used trait composition.

2. TraitCompositionMirror: It analyses different aspects of a trait composition. In this case it is

used to get instance and class meta-level behavior’s used trait composition provided protocols

and defined message aliasings.

UI:
The misplaced meta-level instance message aliasing results are grouped and presented in two

levels:

1. The behavior where the misplaced meta-level message aliasing is defined.
2. The misplaced meta-level message aliasing (includes a detailed description of the individual

misplaced meta-level instance message aliasing result).

104

4.4.5 Misplaced Meta-Level Class Message Exclusion

Input: A behavior (can be a class or trait).

Output: A collection including all the message exclusions defined in the behavior’s instance

message side used trait composition, but which are applicable to the behavior’s class side used

trait composition.

Each misplaced meta-level instance message exclusion is defined as follows:

WrongMetalevelTransformation:

1. SelectedTransformationBehavior: It is the message exclusion defined in behavior’s instance

message side used trait composition.

1.1. Behavior: It is the behavior where the misplaced meta-level message exclusion is defined.

1.1.1. SelectedExclusion: It is the misplaced meta-level message exclusion and its defining

trait transformation.

1.1.1.1. traitTransformation: It is the trait transformation which defines the

misplaced message exclusion.

1.1.1.2. Exclusion: It is the misplaced meta-level excluded message.

Algorithm:
1. Get all the instance message side behavior’s used trait composition message exclusions.
2. Get from set(1) all the message exclusion for which its defining trait transformation does not

define the excluded message.
3. For each message exclusion ME from set(2).

3.1. Get trait T from the message exclusion ME.
3.2. Get from T its classTrait CT.
3.3. If there a trait transformation TT in the behavior’s class message side which transforms CT.

3.3.1. If ME applies to TT then add TT to the rule result set.

Main objects for this rule:
1. MisplacedInstanceMethodExclusionDetector: It implements the rule algorithm. It verifies if a

message exclusion applies to a trait transformation in a class or instance message side of a

behavior’s used trait composition.

2. TraitCompositionMirror: It analyses different aspects of a trait composition. In this case it is

used to get instance and class meta-level behavior’s used trait composition provided protocols

and defined message exclusions.

UI:
The misplaced meta-level instance message exclusion results are grouped and presented in two

levels:

1. The behavior where the misplaced meta-level message exclusion is defined.
2. The specific misplaced meta-level message exclusion (includes a detailed description of the

individual misplaced meta-level instance message exclusion result).

105

4.4.6 Trait Composition Conflict Method

Input: A behavior (can be a class or trait).

Output: A collection including all the behavior’s trait composition conflict methods (those that

self-send traitConflict message) and their defining trait transformations from the behavior’s used

trait composition (the defining trait transformations can be an empty collection in case the trait

composition conflict method where directly defined in the behavior).

Each trait conflict is defined as follows:

TraitConflict:

1. SelectedMethod: It is the trait composition conflict marked method.

1.1. Behavior: It is the behavior that includes the trait composition conflict marked method as

part of its protocol.

1.2. Message: It is the message name for the trait composition conflict marked method

included in the behavior protocol.

2. ConflictingTraitTransformations: It is the collection of the trait transformations included in

the behavior’s used trait composition that provides the conflicting messages that generates

the trait composition conflict method.

Algorithm:
1. Get all the behavior’s protocol.
2. Select all the trait composition conflict marked methods messages from set(1).
3. For each message M at set(2), select from the behavior’s used trait composition the trait

transformations that defines the conflicting message M.

Main objects for this rule:
1. TraitConflictDetector: It implements the rule algorithm, searches the behaviour’s trait

composition conflict methods and selects the behavior’s used trait composition defined trait

transformations that provides the conflicting messages.

2. SourceCodeAnalyzer: It analyses compiled method source code aspects. In this case it is used

to find if a specific method self-sends a traitConflict message, indicating a trait composition

conflict method.

UI:
The trait conflict results are grouped and presented in two levels:

1. The behavior where the trait composition conflict marked method is defined.
2. The behavior’s trait composition conflict marked method (includes a detailed description of

the individual trait composition conflict result).

106

4.4.7 Unnecessary Message Exclusion

Input: A behavior (can be a class or trait). It is required that the behavior’s used trait

composition is free of any trait composition conflict, since the rule algorithm detects the positive

results through the trait composition conflicts.

Output: A collection including the unnecessary message exclusions defined at the trait

transformations in the behavior’s used trait composition. A message exclusion is not necessary if it

can be removed from its defining trait transformation at the behavior’s used trait composition

without producing any trait composition conflict. In case that the behavior’s used trait

composition defines a trait composition conflict, the rule will return an empty result set.

Each unnecessary message exclusion is defined as follows:

UnnecesaryMessageExclusion:

1. SelectedTransformationBehavior: It is the message exclusion defined in behavior’s instance

message side used trait composition.

1.1. Behavior: It is the behavior where the unnecessary message exclusion is defined.

1.1.1. SelectedExclusion: It is the unnecessary message exclusion and its defining trait

transformation.

1.1.1.1. traitTransformation: It is the trait transformation which defines the

unnecessary message exclusion.

1.1.1.2. Exclusion: It is the unnecessarily excluded message.

Algorithm:
1. Get all the message exclusion trait transformations from the behavior’s used trait composition.
2. For each message exclusion me at set(1).

2.1. Create a new trait composition copying the behavior’s used trait composition but removing
me from it.

2.2. Check if the new trait composition defines any trait composition conflict.

Main objects for this rule:
1. UnnecesaryExclusionDetector: It implements the rule algorithm. Creates new trait

compositions stripping individual message exclusions from the original trait composition and

check for any trait composition conflict.

2. TraitCompositionHandler: It manipulates trait composition components and allows modifying

some of them to create a new trait composition. In this case it is used to remove individual

message exclusions from the trait transformations in the handled trait composition.

3. TraitCompositionConflictDetector: It detects if there is any message provided to the trait

composition by more than one trait transformation, defining a trait composition conflict.

4. BehaviorTraitCompositionConflictDetector: It gets the trait composition conflict from a

behavior’s used trait composition and check which of them are resolved overriding the

conflicting message at the behavior.

UI:
The unnecessary message exclusion results are grouped and presented in two levels:

107

1. The behavior where the unnecessary message exclusion trait transformation is defined at its
used trait composition.

2. The unnecessary message exclusion that could be removed without generating any trait
composition conflict (includes a detailed description of the individual unnecessary message
exclusion result).

108

4.4.8 Override with Identical Method

Input: A behavior (can be a class or trait).

Output: A collection including the behavior’s locally defined methods that overrides an identical

message implementation provided by the behavior’s used trait composition.

Each one overrides with identical method is defined as follows:

OverridenWithIdenticalMethod:

1. OriginalSelectedMethod: It is the message implementation method provided by the

behavior’s used trait composition.

1.1. definingEntity: It is the trait transformation that provides the overridden message to the

behavior’s used trait composition.

1.2. message: It is the message name for the overridden message implementation method.

2. OverridingSelectedMethod: It is the locally defined behavior’s method that overrides a

behavior’s used trait composition provided message with an identical method implementation.

2.1. definingEntity: It is the behavior that defines the method which overrides a used trait

composition provided message with an identical method.

2.2. message: It is the message name for the overriding method.

Algorithm:
1. Get all the behavior’s used trait composition provided messages that are overridden by the

behavior.

2. For each message M from set(1) which does not define a trait composition conflict (If the

overridden message defines a trait composition conflict, the message override fix the conflict).

2.1. Get M If behavior’s used trait composition provided M message implementation is equals

to behavior’s locally defined M message implementation.

Main objects for this rule:
1. OverrideWithIdenticalMethodDetector: It implements the rule algorithm. It gets the trait

composition messages overridden by its defining behavior, check if the overrides fixes a trait

composition conflict and gets the compiled methods from the trait composition and from the

behavior to compare them.

2. BehaviorMirror: It analyzes different aspects of a behavior. In this case it is used to find the

behavior’s used trait composition provided messages that are overridden by the behavior. It

also gets the overriding message implementation method defined by the behavior.

3. TraitCompositionMirror: It analyzes different aspects of a trait composition. In this case it is

used to get the behavior’s used trait composition provided message implementation method

overridden by the behavior.

4. CompiledMethodComparator: It compares the parse trees of two compiled methods. In this

case, it decides if the trait composition provided message implementation method and the

overriding behavior’s locally defined method are equivalent or not.

UI:

109

The override with identical method results are grouped and presented in three levels:

1. The behavior that overrides a message provided by its used trait composition.
2. The trait transformation from the behavior used trait composition that defines the overridden

message.
3. The overridden message (includes a detailed description of the individual override with

identical method result).

110

4.4.9 Unimplemented Required Message

Input: A concrete class (it should not declare any subclassResponsibility message).

Output: A collection including the class’ used trait composition required messages not

implemented at the client class. The required messages can be explicitly required (the trait

composition defines the message and self-sends requirement message on the associated method)

or implicitly required (the trait composition defines a message that self-sends a message for which

there is not any implementation at the trait composition nor in its client behavior)

Each unimplemented required message is defined as follows:

UnimplementedRequiredMessage:

1. Behavior: It is the class which does not provide an implementation for one or more of its used

trait composition required messages.

1.1. RequiredMessage: It is the required message and all its definition details. A required

message can be implicitly or explicitly required, created by a message aliasing or directly

required by a trait. In this case this required message is not implemented at the behavior.

1.1.1. requiredMessage: It is the required message with no implementation provided by

the used trait composition client concrete class.

1.1.2. requiringMessage: It is the method where the message requirement is defined

through self-sending requirement message (explicitly required) or self-sending the

required unimplemented message (implicitly required).

Algorithm:
1. Get all the class’ used trait composition required messages.
2. Get all the class’ used trait composition explicitly required messages.
3. Get all the class provided message (they can be locally defined, inherited or provided by its

used trait composition).
4. Get all the locally defined class provided messages.
5. Get set(1) - set(3) the class’ used trait composition required messages not implemented at the

client class.
6. Get set(2) - set(4) the class’ used trait composition explicitly required messages for which the

requirement declaration method is the required message implementation available at the
client class. i.e. the explicit required message is not provided by the client class or the explicit
required message declaration is “hiding” a superclass provided required message
implementation.

7. Get set(5) U set(6) all the explicit and implicit required messages not implemented at the client
class.

Main objects for this rule:
1. UnimplementedRequiredMethodDetector: It implements the rule algorithm. It gets the

implicitly and explicitly required messages and check on the concrete class if there is any valid

implementation for them.

2. BehaviorMirror: It analyses aspects of a behavior. In this case is used to get the locally

defined and the full behavior protocol and its implementation.

111

3. TraitCompositionMirror: It analyses aspects of a trait composition. In this case is used to get

the class’ used trait composition explicitly and implicitly required messages.

UI:
The unimplemented required message results are grouped and presented in three levels:

1. The class where some of its used trait composition required messages are not implemented.
2. The required message declaring trait transformation at the class’ used trait composition.
3. The unimplemented required message (includes a detailed description of the individual

unimplemented required message result).

112

4.4.10 Hidden Implementation by Explicitly Required Message

Input: A class.

Output: A collection including the class’ used trait composition explicitly required messages that

hide a superclass’ provided explicit required message implementation.

Each hidden implementation by an explicitly required message is defined as follows:

HiddenImplementationByRequiredMessage:

1. Behavior: It is the class where some of its used trait composition explicitly required messages

hide superclass provided required message implementations.

1.1. RequiredMessage: It is the explicit required message that “hides” a superclass provided

implementation for itself.

1.1.1. requiredMessage: It is the class’ used trait composition required message.

1.1.2. requiringMessage: It is the class’ used trait composition required message declaring

method (since it is an explicit required message, requiredMessage and

requiringMessage are equals).

1.2. SelectedMethod: It is the superclass provided required message implementation hidden

by the class’ used trait composition explicitly required message declaration.

1.2.1. Behavior: It is the behavior where the hidden required message implementation is

defined.

1.2.2. Message: It is the message name for the hidden required message implementation.

Algorithm:
1. Get all the class’ used trait composition required messages not implemented at the class.
2. Get all the class’ superclass provided messages.
3. Get set(1) ∩ set(2) the messages implemented at the class’ superclass but overridden by a

class’ used trait composition explicitly required message declaration.

Main objects for this rule:
1. HiddenByTraitRequiredMessageDetector: It implements the rule algorithm. It gets the class

and superclass provided messages, the class’ used trait composition explicitly required

messages and looks for the overridden messages.

2. BehaviorMirror: It analyses aspects of a behavior. In this case is used to get the class and

superclass provided messages.

3. TraitCompositionMirror: It analyses aspects of a trait composition. In this case is used to get

the class’ used trait composition explicitly required messages.

UI:
The hidden implementation by explicitly required message results are grouped and presented in

three levels:

1. The class where some of its used trait composition explicitly required messages hide valid
superclass provided required message implementations.

2. The trait transformation from the class’ used trait composition that defines the explicit
required message.

113

3. The explicitly required message that hides a superclass provided required message
implementation (includes a detailed description of the individual unimplemented required
message result).

114

4.4.11 Not Explicitly Declared Required Message

Input: A trait

Output: A collection including the not explicitly declared trait required messages (i.e. the

implicit required messages).

Each not explicitly declared required message is defined as follows:

ImplicitRequiredMessage:

1. Behavior: It is the trait where the not explicitly declared required message is sent.

2. SentMessage: It is the self-sent message not implemented by the trait.

3. SelectedMethod: It is the trait defined method which self-sends the not explicitly declared

required message.

Algorithm:
1. Get all the trait provided messages.
2. For each trait provided message implementation get the self-sent messages not included in

set(1).

Main objects for this rule:
1. TraitMirror: It analyses different aspects of a trait. In this case is used by get the trait’s

implicitly required messages.

UI:
The not explicitly declared required message results are grouped and presented in two levels:

1. The trait where the not explicitly declared required messages are self-sent.
2. The trait defined method where implicitly required message is sent (includes a detailed

description of the individual not explicitly declared required message result).

115

4.4.12 Super-Sent Message Lookup Bypasses Used Trait Composition

Provided Message

Input: A class.

Output: A collection including the class’ available methods (can be not locally defined) that

super-sends messages provided by the class’ used trait composition. The method lookup bypasses

the super-sent messages implemented at the class’ used trait composition because they are

considered as if they were defined in the trait composition client itself (flattening property).

Each super-sending lookup bypasses used trait composition provided message is defined as

follows:

SuperSentTraitCompositionBypassedMethod:

1. superSentMessage: It is the super-sent message that bypasses the class’ used trait

composition provided message.

1.1. Behavior: It is the behavior from where the super-sent message is sent, bypassing one of

its used trait composition provided messages.

1.2. SentMessage: It is the super-sent message for which the method lookup bypasses the

behavior’s used trait composition provided message implementation.

1.3. SelectedMethod: It is the behavior defined method from where the bypassed message is

super-sent.

1.3.1. Behavior: It is the behavior where the super-sending method is defined.

1.3.2. Message: It is the message name for the super-sending method.

2. traitCompositionBypassedMessage: It is the bypassed class’ used trait composition provided

message.

2.1. TraitTransformation: It is the trait transformation included in the class’ used trait

composition which defines the bypassed message.

2.2. Message: It is the bypassed class’ used trait composition defined message.

Algorithm:
1. Get all the class provided message implementation methods.
2. For each message from set(1), get all the super-sent messages.
3. Get the class’ used trait composition provided messages.
4. Get set(2) ∩ set(3) the set of all the super-sent messages that are also provided by the class

used trait composition (since the message is super-sent, the method lookup will bypass the
class used trait composition provided message implementation).

NOTE: The class’ used trait composition conflicting provided messages ignored because there is no

way to decide which implementation of the conflicting trait composition provided messages is

meant to be extended.

Main objects for this rule:
1. SuperSendLookupTraitCompositionBypassDetector: It implements the rule algorithm. It gets

the class’ used trait composition provided messages, the class available message

116

implementations, theirs super-sent messages and checks if the super-sent messages bypass

any trait composition provided message.

2. BehaviorMirror: It analyses different aspects of a behavior. In this case is used to get the

class’ available message implementation methods.

3. TraitCompositionMirror: It analyses different aspects of a trait composition. In this case is

used to get the class used trait composition provided messages.

4. SourceCodeAnalyzer: It analyses compiled methods source code aspects. In this case is used

to get the super-sent messages from class’ available message implementation methods.

UI:
The super-sending lookup bypasses used trait composition messages results are grouped and

presented in three levels:

1. The class that implements the method which super-sends the bypassed message.
2. The message name for the method which super-sends the bypassed message.
3. The bypassed message provided by the class’ used trait composition (includes a detailed

description of the individual super-sending lookup bypasses used trait composition method
result).

117

4.4.13 Trait Method Super-Sends a Messages

Input: A trait.

Output: A collection including the trait’s defined methods that super-sends messages.

Each trait method super-sends messages is defined as follows:

SentMessage:

1. Behavior: It is the trait which defines the method from where a message is super-sent.

2. SentMessage: It is the message super-sent from the trait’s defined method.

3. SelectedMethod: It is the trait’s defined method that super-sends a message.

3.1. Behavior: It is the trait which defines the method from where a message is super-sent.

3.2. Message: It is the super-sending trait’s defined method message name.

Algorithm:
1. Get the trait defined methods.
2. For each method at set(1) get all its super-sent messages.

Main objects for this rule:
1. TraitSuperMessageSendingDetector: It implements the rule algorithm. Gets the trait’s

defined methods and search all the super-sent messages from each of them.

2. TraitInspector: It Analyses different aspects of a trait. In this case is used to get the trait

defined methods.

3. SourceCodeAnalyzer: It analyses compiled methods source code aspects. In this case is used

to get the messages super-sent from a trait defined method.

UI:
The trait method super-sends message results are grouped and presented in three levels:

1. The trait which defines the method from where a message is super-sent.
2. The trait’s defined super-sending method.
3. The message super-sent from a trait defined method (includes a detailed description of the

individual trait method super-sends message result).

118

4.4.14 Unused Trait

Input: A trait.

Output: A collection including the analyzed trait if it is not included in any behavior’s used trait

composition, an empty collection otherwise.

Each unused trait is defined as follows:

UnusedTrait:

1. Trait: Is the trait that is not included in any behavior’s used trait composition.

Algorithm:
1. Get all the behavior’s used trait compositions available in the image.
2. Get the analysed trait if it is not included in any trait composition on set(1).

Main objects for this rule:
1. UnusedTraitDetector: It implements the rule algorithm. It iterates the entire image looking

for the analysed trait on every defined used trait composition.

2. TraitCompositionMirror: It analyses different aspects of a trait composition. In this case it is

used to check if the analyzed trait is part of a trait composition.

3. SystemNavigation: It supports the navigation of the system. In this case it is used to go

through all the defined behaviors in the Smalltalk image and analyze each used trait

composition.

UI:
The unused trait results are grouped and presented in one level:

1. The trait that is not part of any behavior’s used trait composition (includes a detailed
description of the individual unused trait result).

119

5 Smalllint Traits Error Rules Use Results Analysis
After completing the Traits error typification and the Smalllint tool extension, including Traits

error rules implementation, the next step is testing the extended Smalllint on real Traits using

code. The intention of this testing is to verify how effective the extended tool is and the incidence

of the typified traits error types on real scenarios.

The selected Traits using code to run the proposed test is a group of packages included in Pharo

1.0 image and Traits related Thesis implementations followed by this computer science

department:

 “Reingeniería de Jerarquías Polimórficas Utilizando Traits” Acciaresi, Claudio;Buttarelli,

Nicolás Martín [AB/07].

 “Análisis de Lenguajes con Traits y sin Clasificación” Campodonico, Diego *C/11+.

 Kernel-Classes included at Pharo 1.0 image package.

 Traits (Traits-xxx) included at Pharo 1.0 image package.
Positive Smalllint Trait Related Results found total

Package

Rule

[AB/07] [C/11] Kernel-

Classes

Traits-xxx

Switched Message

Aliasing

0 0 0 0 0

Unimplemented Self-

Sent Message due

Message Renaming

0 0 0 0 0

Unimplemented Self-

Sent Message due

Message Exclusion

0 0 0 0 0

Misplaced Meta-

Level Class Message

Aliasing

0 0 0 0 0

Misplaced Meta-

Level Class Message

Exclusion

0 0 0 0 0

Trait Composition

Conflict Method

0 1 0 0 1

Unnecessary

Message Exclusion

36 1 0 0 37

Override with

Identical Method

45 816 4 1 866

Unimplemented

Required Message

5 6 0 8 19

120

Hidden

Implementation by

Explicitly Required

Message

3 0 0 1 4

Not Explicitly

Declared Required

Message

686 255 0 103 1044

Super-Sent Message

Lookup Bypasses

Used Trait

Composition

Provided Message

5 2 3 3 13

Trait Method Super-

Sends a Message

4 1 0 3 8

Unused trait 0 6 0 0 6

Total 784 1088 7 119 1998

Figure 85: Smalllint Traits error rules results chart.

Figure 85 shows the Smalllint Trait related rule results evaluated on the proposed packages. The

results show that the tool could find problems in all the analyzed packages. Packages included in

Pharo image present less traits errors, possibly because their maturity, but anyway they still

contain some traits errors. Other issue to note is that most traits error found belong to types that

do not always mean problems in the object behavior.

The trait errors with more occurrences are:

 “Not Explicitly Declared Required Message”: The lack of an explicit required message

declaration makes more difficult to detect a trait requirements, but it does not affect its

behavior.

 “Override with Identical Method”: It does not affect the behavior in any aspect, but

implies a problem since one of Traits objectives is to avoid code duplication, even more in

this case where duplicated code can be removed without any concecuence.

 “Unnecessary Message Exclusion”: It removes a message in a trait composition, without

avoiding any trait composition conflict, but losing behavior provided the excluded

message.

 “Unimplemented Required Message”: It shows when a concrete class does not provide all

the required messages from its used trait composition. One reason for this high error

occurrence can be that the client classes are actually abstract classes but they have not

been declared (no subclass responsibility message are defined in the class).

The more frequent traits errors with impact in object’s behavior are:

 “Super-Sent Message Lookup Bypasses Used Trait Composition Provided Message”: The

code in a trait composition client bypasses message implementations provided by its used

traits.

121

 “Trait Composition Conflict Method”: The Trait composition client shows unresolved

traits composition errors.

It can be noted that most of the traits errors found are errors that do not explicitly impact on the

object’s behavior and that some errors with a few or no occurrences are more likely to happen in

an early stage of a development, or with programmers not familiar with Traits. Examples of these

error types are “Switched Message Aliasing”, “Misplaced Meta-Level Instance Message

Aliasing”, “Misplaced Meta-Level Instance message exclusion” or “Trait Composition Conflict

Method”, but since they have impact in the behavior, they can be found through usual testing.

122

6 Conclusions
This work identifies and typifies a set of errors produced by the use of Traits. It also describes and

implements tools to detect the identified error types.

Traits error types and their categorization add knowledge to Traits using language domain,

describing Traits domain elements like trait composition, trait transformation, etc. During this

thesis it has been also identified other domain related concepts not previously identified, like

Behavior for describing the shared role of Class and Trait as behavior defining entities.

The identified Traits error types and Traits error categories also provides an organizational frame

which eases the understanding of Traits domain, and describes possible problems that can arise

from Traits use.

Different methods have been applied to discover Traits errors, some errors have been discovered

by plain Traits use, while others have been discovered by domain and implementation analysis,

defining possible scenarios which do not follow the model preconditions, somehow similar to a QA

testing process (this technique was more effective on finding errors than only Traits use).

Other important step on Traits error discovery process was the categorization of the Trait errors,

partitioning Traits domain by their characteristics. This decision simplified the traits error

discovery process, since the partition of the domain to analyze into smaller sub-domains reduced

the domain complexity and the size of the elements to analyze looking for possible problem.

Traits error categorization also avoided Traits error types overlapping, since each error can belong

to a single category.

Smalllint use for checking Traits related errors on already working software have been more

effective than the expectations, finding an important number of errors, which are difficult to find

using usual testing techniques. It is also important to note that many errors with few occurrences

in the tests are the ones that happen in early stages of development, or with inexperienced Traits

programmers, like syntax or composition errors. In this case the use of the extended Smalllint

helps on their early detection. Because of extended Smalllint effectiveness, its use on every

software development stage will aid on Improving development time and quality on Traits using

software.

Smalllint adaptation implied overcoming several Smalllint tool and language environment

problems and limitations.

Smalllint was initially designed to work on an “only classes” environment, and had to be adapted

for using it on an environment which includes classes and traits.

Original Smalllint error presentation was found not good enough, especially for Traits errors

where the error is a combination of problems spread along several entities like classes,

superclasses and traits. Because of these limitations an alternative error presentation schema has

been proposed. This alternative error presentation schema adds information about errors and

their locations, improving in this aspect the previous schema. Despite of this improvement, the

alternative schema also implies a more complex process for Smalllint rule definition. This aspect

can be subject of study for future works.

123

The language environment also suffered limitations on Traits handling. Despite the amount of

Traits related works, some basic tools like several browsers and environment objects had problem

on handling Traits. Some of them were adapted for Traits handling, but have been evident the

lack of a unifying concept covering Classes and Traits. In this thesis the idea of Behavior is

proposed. A Behavior has been defined as any entity able to define a behavior or protocol (i.e. it

defines a method dictionary). Considering this, the already existing tools should be adapted to

handle Behaviors instead of only Classes whenever is reasonable.

The lack of some unifying abstractions showed the need for defining Mirrors framework. It was

usual that different entities were playing the same role under a defined scenario, without having a

common protocol for that role. Mirrors framework was created trying to provide that unifying

protocols, but avoiding changes to the current Traits framework. It would be useful to do a Traits

framework refactoring to obtain a more consistent Traits model considering the experience using

mirrors.

124

7 Future Work
There are several fields related to the work presented in this thesis that are worth mentioning

Traits model refactoring: This thesis shows the need of having a better type definition on the

Traits model implementation, because the lack of a common protocol for the shared role or

responsibility on different scenarios where different Traits related entities are used. The

implemented mirror framework can be taken as a starting point on this subject. It could also be

interesting to unify Class and Trait concepts under the unifying Behavior concept proposed in this

thesis. Another item to consider is to add a required message declaration mechanism for super-

sent messages.

Traits implementation improvement: We have found several problems on the current Traits

implementation. It has some problems like letting the programmer do invalid trait composition

definition, explicit message requirement declaration hiding inherited implementations, etc. Traits

implementation should be improved trying to avoid preventable problems, providing in this way a

more reliable and mature framework implementation to the programmer. Also the environment

tools like browser and others should be adapted/extended to handle Traits properly.

Smalllint tool improvement: Smalllint tool is able to be improved, especially in its error result

presentation mechanism. This improvement can be focused on letting the programmer define

rules with more information about the result, without adding much complexity to the current rule

definition methodology. Some possible topics to consider are:

 Add source code highlight to spot errors on the code.

 Extend rule analysis coverage to Class and Trait definition clauses and used trait

composition clause.

 Extend parse tree analysis language to cover Class and Traits declaration and trait

composition use clause.

Improve Class/Trait extension/versioning mechanism: During this thesis we have problems on

adding packages or extending classes because incompatible class versions or missing packages.

Other problem was that it was not possible to add classes and traits to test only purposes without

polluting the image. A more flexible image management model is needed. It should allow the

applications to have different classes or traits in the image without affecting other applications. In

this way, it would be possible to avoid classes or traits version conflicts during package loads, and

to create classes or trait for testing purposes without actually add them into the global image.

125

8 Bibliography and References
[AB/07] Claudio Acciaresi, Nicolás Martín Buttarelli. “Reingeniería de Jerarquías

Polimorfitas Utilizando Traits”. Universidad de Buenos Aires 2007.

[BDPW/07] Alexandre Bergel, Stéphane Ducasse, Colin Putney and Roel Wuyts, “Meta
Driven Browsers” Advances in Smalltalk, Proceedings of 14th International
Smalltalk Conference (ISC 2006),LNCS, vol. 4406, Springer, 2007, pp. 134-156

[BLAC/04]

A. P. Black and N. Schärli. Traits: Tools and Methodology. In Proceedings ICSE
2004, pages 676–686. ACM Press, Mai 2004.

[BSD/02]

Andrew Black, Nathanael Schärli, and Stéphane Ducasse. Applying traitsto the
Smalltalk collection hierarchy. Technical Report IAM-02-007, Institutf¨ur
Informatik, Universit¨at Bern, Switzerland, November 2002. Also availableas
Technical Report CSE-02-014, OGI School of Science & Engineering,Beaverton,
Oregon, USA

[CDW/07] Damien Cassou, Stéphane Ducasse, and Roel Wuyts. “Redesigning with Traits:
the Nile Stream trait-based Library”. 2007

[CodAnWeb] http://en.wikipedia.org/wiki/Program_analysis_(computer_science)

[DiProblWeb] http://en.wikipedia.org/wiki/Diamond_problem

[DNSWB/06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts and Andrew
Black, “Traits: A Mechanism for fine-grained Reuse” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 28, no. 2, March 2006, pp.
331-388

[DynCodAnWeb] http://en.wikipedia.org/wiki/Dynamic_program_analysis

[G/07] Alejandro González. “Trait refactorings: mejorando la utilidad de las
herramientas de refactoring”. Universidad de Buenos Aires 2007.

[J/77] Stephen Johnson. “Lint, a C program checker”. Computer Science Technical
Report 65, Bell Laboratories, December 1977.

[LintWeb] http://st-www.cs.uiuc.edu/users/brant/Refactory/LintChecks.html

[MIWeb] http://en.wikipedia.org/wiki/Multiple_inheritance. Multiple inheritance
definition at Wikipedia.com

[MixWeb] http://c2.com/cgi/wiki?MixIn. Mixins definition at Cunningham & Cunningham,
Inc.

[NDRS/05] Oscar Nierstrasz, Stéphane Ducasse, Stefan Reichhart and Nathanael Schärli.
“Adding Traits to (Statically Typed) Languages”. Technical Report, no. IAM-05-
006, Institut für Informatik, December 2005, Technical Report, Universität Bern,
Switzerland.

http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/Diamond_problem
http://en.wikipedia.org/wiki/Dynamic_program_analysis
http://st-www.cs.uiuc.edu/users/brant/Refactory/LintChecks.html
http://en.wikipedia.org/wiki/Multiple_inheritance
http://c2.com/cgi/wiki?MixIn
http://c2.com/
http://c2.com/

126

[OBWeb] https://gforge.inria.fr/frs/download.php/27418/Omnibrowser.pdf

[PharoWeb] http://www.pharo-project.org

[S/05] Nathanael Schärli. “Traits — Composing Classes from Behavioral Building
Blocks”, Ph.D. thesis, University of Berne, February 2005.

[SDNB/03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz and Andrew Black,
“Traits: Composable Units of Behavior,” Proceedings of European Conference
on Object-Oriented Programming (ECOOP'03), LNCS, vol. 2743, Springer Verlag,
July 2003, pp. 248-274.

[StAnWeb] http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

[StCodAnWeb] http://en.wikipedia.org/wiki/Static_code_analysis

https://gforge.inria.fr/frs/download.php/27418/Omnibrowser.pdf
http://www.pharo-project.org/
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/Static_code_analysis

