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ABSTRACT

Technological advances of last decades have allowed the development and expansion of Computer-

Assisted language learning (CALL) systems. These systems assist second language learners in

different tasks regarding grammar, vocabulary and pronunciation. In the current work, we focus

on Pronunciation Assessment, a particular subfield of pronunciation. Pronunciation Assessment

consists in determining whether a recorded speech was correctly or incorrectly pronounced. The

analysis is performed at a predefined level, such as sentence, word or phone level.

Currently, whenever performing pronunciation assessment, the most reliable estimates are

obtained from paragraphs or long sentences. On the other hand, the smaller the unit (and

therefore the smaller the amount of information in the speech segment), the less precise is the

estimate of the assessment. However, pronunciation assessment systems that operate at shorter

levels, such as phone level, not only can point out specific errors produced by the students but

also can be used by children that still have difficulties in pronouncing long sentences. For these

reasons, in the current work we will focus on phone-level pronunciation assessment methods.

The more standard methods in the literature for pronunciation assessment at phone level

usually involve using generative approaches based on Gaussian Mixture Models. Usually, for

each phone two individual GMMs are trained: one using the correctly pronounced instances

of that phone and the other one using the incorrect instances. A standard way to make the

assessment is to compute the Likelihood-Ratio between the two models. In a previous work in

the pronunciation assessment field at phone level, a discriminative approach based on Support

Vector Machines (SVM) trained on special features called supervectors was explored, leading

to slightly better results than generative models such as Gaussian Mixture Models (GMMs).

Supervectors are derived from adapted GMMs that are trained using all the available instances

for a given phone.

In the current work, we use as reference and baseline system the SVM model trained on

supervectors in order to explore new features in the phone-level pronunciation assessment field.

Even though both GMMs and supervectors summarize the low level acoustic information of the

speech segment, they don’t provide information about the temporal dependencies of the fea-

tures. Because of that reason, in the current work we study features that model explicitly the
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dynamics of the acoustic features over time. In order to do so, each feature is modeled indepen-

dently by a parametric function, from which the dynamic features are extracted. Two different

parameterization techiniques are studied: Legendre Polynomials and Discrete Cosine Trans-

form (DCT). The objective is to analyse if the proposed dynamic features carry complementary

information to supervectors features.

We train and test the baseline and the proposed methods on a Latin-American Spanish

speech database. The dataset consists in 2550 utterances adding up to a total of 130,000 phone

instances, labeled by expert phoneticians. Recordings are uttered by 206 native American En-

glish speakers. Results showed that for a subset of the phones, the combination of supervectors

and dynamic features reduce the error compared with using supervectors only, thus supporting

the hypothesis that both set of features carry complementary information.

Keywords: Computer-Assisted Language Learning, Pronunciation Assessment, Phone, Sup-

port Vector Machines, Gaussian Mixture Models, Supervectors, Legendre Polynomials, Discrete

Cosine Transform



RESUMEN

Los avances tecnológicos de las últimas décadas han posibilitado el desarrollo de sistemas au-

tomáticos de Asistencia Computarizada para el Aprendizaje de Idiomas (ACAI). Estos sistemas

brindan ayuda a estudiantes de segundos idiomas en diversos campos, entre las cuales se desta-

can la gramática, el vocabulario y la pronunciación. En el presente trabajo nos concentramos

en una forma particular de asistencia relacionada con el último campo: la evaluación de la

pronunciación, que consiste en decidir si los segmentos de habla presentes en una determinada

grabación fueron pronunciados de forma correcta o incorrecta. Dicho análisis puede realizarse

a distintos niveles tales como oración, palabra o fono.

Actualmente, las estimaciones más confiables de la evaluación de la pronunciación son

obtenidas a nivel de párrafo u oraciones largas, disminuyendo la precisión de los sistemas a

medida que se reduce la duración (y por lo tanto la cantidad de información) del segmento de

habla a considerar. Sin embargo, los sistemas de evaluación de la pronunciación que trabajan

con unidades de habla más cortas, como por ejemplo el fono, permiten poner el foco en errores

espećıficos del estudiante y pueden ser utilizados por niños aún incapaces de pronunciar frases

demasiado largas. Por esta razón, en este trabajo nos concentramos en métodos de evaluación

de la pronunciación a nivel fono.

Los métodos tradicionalmente utilizados para evaluar la pronunciación a nivel fono están

basados en métodos generativos a partir de modelos de mezclas Gaussianas (GMMs). Gen-

eralmente, para cada fono se entrena un GMM por clase (pronunciación correcta e incorrecta),

aplicando luego técnicas tales como el Cociente de Verosimilitud (Likelihood-Ratio en inglés)

entre ambos modelos realizar la evaluación. En un trabajo anterior en el área de evaluación

de la pronunciación a nivel fono, se exploró un método discriminativo basado en Máquinas de

Vectores de Soporte (SVM) entrenado con atributos llamados supervectores, que produce resul-

tados ligeramente mejores a los métodos generativos comúnmente utilizados en el campo. Los

supervectores para cada fono se obtienen a partir de un proceso de adaptación de un GMM

global entrenado con la totalidad de las muestras de dicho fono.

En el presente trabajo, tomamos como base y punto de referencia el modelo SVM entrenado

con supervectores para explorar nuevos atributos en el área de evaluación de la pronunciación
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a nivel fono. Si bien tanto GMMs como supervectores modelan las caracteŕısticas acústicas de

bajo nivel del segmento de habla a considerar, no tienen en cuenta el comportamiento temporal

de las mismas. Por este motivo, en esta ocasión estudiamos atributos dinámicos que modelan de

manera directa el comportamiento temporal de dichas caracteŕısticas acústicas. Para ello, cada

una es aproximada de manera independiente por una función, a partir de la cual se extraen los

atributos dinámicos. Dos técnicas de aproximación son evaluadas como posibles alternativas:

Polinomios de Legendre y Transformada Discreta del Coseno (DCT). El objetivo es analizar

si los atributos dinámicos propuestos tienen información complementaria a la provista por los

supervectores.

Entrenamos y evaluamos los métodos base y los propuestos usando una base de datos no

nativa de Español Latino, correspondiente a 206 hablantes estadounidenses, estudiantes de

Español. La base de datos está conformada por 2550 grabaciones alcanzando un total de 130.000

instancias de fonos etiquetadas por transcriptores profesionales. Los resultados muestran que

para un subconjunto de fonos, la combinación de supervectores con los atributos dinámicos

efectivamente reduce los errores durante la clasificación, soportando la hipótesis de que ambos

tipos de atributos contienen información complementaria.

Palabras claves: Asistencia Computarizada para Aprendizaje de Idiomas, Evaluación de la

Pronunciación, Fono, Máquinas de Vectores de Soporte, Modelo de Mezclas Gaussianas, Super-

vectores, Polinomios de Legendre, Transformada Discreta del Coseno
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1. INTRODUCTION

1.1 Problem Description and Motivation

Technological improvements of last decades allowed the development and expansion of Computer

Assisted Language Learning (CALL) systems. These tools are aimed to help students along

the process of second language acquisition. One of the points where the students should focus

is pronunciation learning, that usually requires a one-to-one teacher interaction. Automatic

pronunciation assessment is very useful in this context because it provides an alternative way

of learning with a performance close to human judgement, cheaper and typically available at

any time and any place.

When working in automatic pronunciation assessment an important decision to be taken is

whether or not considering L1, the native language of the learner, along the process. These sys-

tems have improved speech recognition accuracy because they are designed taking into account

common known errors between L1 and L2. For example, native american English students

that are learning Spanish have difficulties pronouncing the diphtong [eu] (e.g. “eufemismo”) or

/r/ after [l] (e.g. “alrededor”), [n] (e.g. “sonrisa”) and [s] (e.g. “disruptivo”), which should

be thrilled in all cases. On the other hand, native Spanish students that are learning English

may have trouble pronouncing different kind of vowels that are present in English but not in

the former. This approach, however, requires a labeled nonnative speech database which is an

expensive and time-consuming task, and it is not feasible in some cases. A database like that

is available for the current thesis. It contains collected speech from native american English

speakers that are learning Spanish, and it is used to train and test the different models.

In the area of pronunciation assessment, the smaller the unit to be evaluated, the higher

the uncertainty in the associated assessment [1]. Currently, the most reliable estimates are

obtained from paragraphs composed of several sentences that can be used to characterize the

speaker’s overall pronunciation proficiency [2]. However, specific problems can be pointed out

when assessing smaller units, which is of great value because it allows the students to focus on

specific aspects of their speech production.

The current work is part of a bigger project lead by Dra. Ferrer, with the objective of

developing a pronunciation scoring system for argentinian children that are learning English.
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1. Introduction 2

The project has 3 main stages: The collection and annotation of a speech database of argen-

tinian children, the development of an Automatic Speech Recognition (ASR) system and the

development of a pronunciation scoring system that works at phone or word level. The fact

that the system works with short speech segments is specially important in the context of a

pronunciation scoring system for children, because of the difficulty of children in pronouncing

longer segments.

In the current thesis, we based on L1 strategies to explore alternatives to existing techniques

in the pronunciation assessment field at phone level. The explored methods could be helpful

during the development of the CALL system for argentinian children that are learning English.

1.2 Previous work

In this section we will be reviewing representative works in pronunciation assessment at phone

level, which is the topic of interest in this thesis.

One of the simplest ways of assessing phone utterances found in the literature is to use

segment durations ([3, 1]), which are obtained through the following procedure. First, a duration

distribution is generated for each phone using the native training data. Then, phone durations in

frames for nonnative utterances are obtained and its value is normalized to compensate for rate

of speech. Finally, phone-segment-duration scores are computed as the log-probability of the

normalized duration, using the duration distributions previously mentioned. Phone durations

are obtained from Viterbi alignments.

In the same works other two methods, which use Hidden Markov Models (HMMs) to obtain

spectral matches, are tested. Phonetic time alignments for nonnative utterances are generated

from an HMM-based speech recognition system trained with native instances. In order to do

that, the text pronounced by the student must be known. This is achieved by eliciting speech

in a constrained way, such as reading a predefined text. From these phonetic segmentations two

probabilistic measures based on HMMs are computed as scores: log-likelihood and log-posterior

probabilities. The underlying asumption is that the logarithm of the likelihood or the posterior

of the speech data, computed by the Viterbi algorithm using the HMMs trained with speech

from native speakers is a good mesasure of the similarity between the students’s speech and

native-sounding speech.
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For each phone segment the log-likelihood score l̂ is computed as:

l̂ =
1

d

t0+d−1∑
t=t0

log p(yt|qi) (1.1)

where p(yt|qi) is the likelihood at time t with observation vector yt given the phone class qi, d

is the duration in frames of the phone segment and t0 is the starting frame index of the phone

segment. The likelihood is computed through a forced recognition phase by using a known

ortographic transcription of the speech signal. Duration normalization is done to eliminate the

dependency of the pronunciation score on the duration of the phone.

Alternatively, log-posterior scores can be computed for each time t:

P (qi|yt) =
p(yt|qi)P (qi)

M∑
j=1

p(yt|qj)P (qj)

(1.2)

Likelihoods in both numerator and denominator are computed in the same way as in Equation

1.1. The sum over j runs over a set of context-independent models for all phone classes. P (qi)

represents the prior probability of the phone class qi.

Finally, the posterior score ρ̂ for the phone segment is defined as:

ρ̂ =
1

d

t0+d−1∑
t=t0

log P (qi|yt) (1.3)

To test each method, a database of nonnative read speech is transcribed and scored for

pronunciation quality by expert human raters. Log-posterior probabilities achieves the highest

correlation with human ratings, outperforming log-likelihood and normalized duration scores.

A very similar approach to log-posterior probabilities named Goodness of Pronunciation

(GOP) was developed at the same time as log-posteriors and is investigated in some works [4,

5, 6]. The quality of pronunciation for any phone p is defined to be the duration-normalized log

of the posterior probability that the speaker uttered phone p given the corresponding vector of

observations y = {yt0 , . . . yt0+d−1}:

GOP (p) =

∣∣∣∣∣log
(

p(y|q)P (p))∑
q∈Q p(y|q)P (q))

)∣∣∣∣∣ / d (1.4)

The likelihoods p(y|q) are obtained from the recognizer as a sum of the likelihoods over

all observations in the phone. The difference between GOP scores and the log-posterior score
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technique previously mentioned is that in GOP, the likelihood for both numerator and every

phone in the denominator is computed at segment level as a sum of log-likelihoods per frame

over the duration of the phone p, while in Equation 1.2 log-posterior probabilities are computed

at the frame level and averaged over the segment’s length.

A different technique is explored in [7], which studies the relationship between phonetic

mispronunciations that occur in a word and the actual word rating. The research is based on a

set of phonological rules representing phonetic mispronunciations between L1 (native language

of the students) and L2 (the target language). In this case, the corpus is obtained from chinese

learners of English and all the speech data of the corpus is phonetically transcribed by trained

linguists. In addition, crowdsourcing is used to collect perceptual gradations of word-level

mispronunciations and the WorkerRank algorithm is used to conduct quality control to filter

crowdsourced data in terms of reliability. The gradation score for a phonological rule is obtained

as the average of the aggregated values of the words (rated via crowdsourcing) containing that

rule. On the other hand, gradation for a word is calculated as either the maximum value

among all phonological rules that are present in that word or a linear combination of them.

Even though the work is focus on the use of phonological rules in word-level mispronunciation

gradation, the same approach can be used to evaluate mispronunciation gradation at phone

level. In order to derive the phonological rules from the mispronunciations, the previous strategy

requires a phonetically labeled nonnative database. Taking that into account, another paper [8]

works well as complement to [7], because it develops a speech recognition system for automatic

mispronunciation detection capable of transcribing the learner’s input speech.

So far, all the aforementioned methods but the last one are based on confidence measures

obtained from Automatic Speech Recognition (ASR) systems. Scores measure how closely the

utterance of the speaker matches the recognizer’s acoustic model. Mismatches result in low

confidence scores, which provide a profile of the speakers’ production errors. Nevertheless, the

accuracy of the assessment based on these confidence scores can be quite low [9]. In addition,

ASR systems based on HMMs are both time-consuming to train and extremely vulnerable to

acoustic interference and variation in speaking style, and the conventional methods for enhancing

ASR performance often require enormous amounts of data collection and annotation, as well as

extensive training on representative material. For those reasons, other types of classifiers are

explored in many works, specially after the 1990s.

Support Vector Machines (SVMs) are a preferred choice due to their excellent generalization



1. Introduction 5

capability and suitability for 2-class classification problems. Moreover, in contrast to the con-

fidence models described above, which do not take into account misspronounced data, SVMs

are trained directly to discriminate the two classes of interest. Of course, this poses a new

requirement: both correctly and incorrectly-pronounced data should be available for training.

In [10], SVMs are used to discriminate between good and mispronounced vowels in Dutch.

Three different types of features for training the models are evaluated: log-posterior-based scores

obtained from HMMs, MFCCs and a set of phonetic features (first three formants, pitch and

intensity). Despite the existence of nonnative-speech databases for Dutch language, they were

considered too small for the purpose of the research. For that reason, phonemic substitutions

that induce vocalic errors are simulated by artificially introducing them in the native corpus.

It is worth mentioning that training and testing the models with artificially generated data is

not recommended because it can lead to models that do not generalize well to real nonnative

data. Having said that, the results show that the best results are obtained by using MFCCs as

features of the SVM models, followed by confidence-measure-based scores and finally phonetic

features, though substantial improvements can be obtained by combining them.

In a different work [11], SVM is used as the classifier and the log-likelihood ratios between all

the acoustic models and the model corresponding to the given phone are employed as features

for the classifier. In other words, given the observation y, the feature vector for the classification

problem is computed as:

[LLR(y|q, q1), LLR(y|q, q2) . . . LLR(y|q, qQ)], (1.5)

where q is the canonical label of the observation being pronounced, q1, q2 . . . qQ represent the

set of acoustic models of all the phones and LLR is defined as:

LLR(y|q, qi) = log p(y|qi)− log p(y|q), where likelihood is computed at segment level as in

Equation 1.4 for GOP scores. The reason for choosing these features is that q can be mispro-

nounced as any other phone and the likelihood ratio is a powerful method to detect this kind

of mispronunciation. Classifiers trained with these features, however, can only effectively deal

with a phone mispronounced as another phone. This type of acoustic models is less effective for

partially changed mispronunciations, that are the most frequent mispronunciations in practice.

In order to detect all kinds of mispronunciation, a technique called Pronunciation Space Models

(PSMs) is introduced. The idea is to represent pronunciation variations of different proficiency
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levels. The traditional phone-based model q is expanded to {q1, q2 . . . qK} by means of an un-

supervised algorithm that does not require speech data labeled with proficiency level. This set

of models represents K types of pronunciation variations ranging from perfect to totally wrong

pronunciations, where K is a tunable parameter. To build the PSM models for a given phone

q, all the instances are sorted according to their posterior probabilities obtained from the orig-

inal acoustic model for q, and then uniformly split into K group of the same size. Finally, an

individual new acoustic model is trained with the observation from each group via maximum

likelihood estimation. The feature vector dimension of Equation 1.5 is therefore increased from

Q to Q ∗K. Experiments are carried out on the Mandarin mispronunciation detection task for

native Chinese speakers with various dialect accents, and data labeled as “correct” or “mispro-

nounced” by experienced human annotators is used to train and test the models. Results show

that SVM based on log-likelihood ratio features outperforms GOP scores (used as baseline),

and some improvements are obtained when adding PSMs.

A last example of SVM-based research is found in [9, 12]. A landmark-based SVM is

introduced and compared with a confidence scoring method over 10 phonemes where L2 English

learners, whose native language is Korean, make frequent errors. Landmark theory relies on

the fact that humans can perceive distinctive features using only spectral features extracted

from the time frame including and adjacent to a landmark (sudden signal change). A particular

SVM for each phoneme is trained. Vowel SVMs are trained using one or more frames from

the vowel center. Frames from both onset and offset (prevocalic and postvocalic position) are

selected and used in the training of consonant SVMs. The confidence score method shows

a similar performance to SVM, though by combining the two scores, statistically significant

improvements are achieved for almost all phonemes.

A different strategy for discrimination of Dutch velar fricative /x/ versus the velar plosive

/k/ is studied in [13]. Linear Discriminant Analysis (LDA) over two different sets of features

are explored and compared with previous approaches: aforementioned GOP scores and Weigelt

algorithm. The latter is based on three simple measures that can be easily obtained: log

root-mean-square (rms) energy, the derivative of log rms energy (Rate of Rise or ROR) and

zero-crossing rate. Weigelt algorithm discriminate plosives from fricatives by using ROR values,

based on the fact that the release of the burst of the plosives causes an abrupt rise in amplitude

therefore yielding higher values compared with fricatives. On the other hand, LDA weights

are assigned to each feature to find the linear combination of features which best separates the
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classes. Selecting the most relevant features turns out to give an advantage compared to other

classifiers. The two LDA methods yielded the best performing scores followed by GOP and

Weigelt.

Finally, some pronunciation assessment approaches based on Deep Neural Networks (DNNs),

the most popular machine learning technique at this moment, have been developed for the last

few years. In [14], the use of context-dependent DNN Hidden Markov models (or CD-DNN-

HMMs) is studied in order to improve the speech recognition performance for a better assessment

of children English language learners. The experimental results showed that the DNN-based

recognition system approach achieved a significant error reduction compared to the GMM-HMM

approach, leading to an improvement in the quality of the extracted features and final spoken

English proficiency scores. In [15, 16], a CD-DNN-HMM acoustic model approach for English

language is also explored as an alternative to conventional GMM-HMM models. The acoustic

models are then used to generate GOP scores at phone level and tested in a language learning

corpus with manual grading of pronunciation quality. The GOP scores, generated from the

DNN-based acoustic models, correlate better with human scores than those generated from the

conventional GMM approaches. The main objective of the current thesis is to explore new

features for pronunciation assessment at phone level. For this reason, we choose to focus on

well-established modeling approaches rather than DNN-based approaches which are still under

development.

Relying on labeled nonnative speech data usually leads to more flexible models with better

performance than those trained with native speech when working on pronunciation assessment

for specific combinations of L1 and L2. On the one hand, the set of common pronunciation

errors tend to be particular for a given <L1, L2> pair. On the other hand, models trained

with nonnative speech are better at capturing the subtle differences between the nonnative

speech realizations that are considered acceptable versus the nonnative speech realizations that

are considered mispronounced, in a similar way that an annotator would do. However, labeled

nonnative speech databases are rarely available. Annotation of nonnative speech is an expensive

and time-consuming task, and in some cases it is not feasible. Models trained with annotated

nonnative speech usually have better performance than those trained with native data, though

the cost of nonnative database collection and annotation is very high.

To conclude this section, the papers that set the starting point for the current thesis will

be reviewed. They are the two latest works in one of the most important lines of investigation
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in the field of pronunciation assessment at phone level. Both use a Latin-American Spanish

speech database that includes recordings from native and nonnative speakers, where nonnative

speech is produced by speakers whose native language is American English.

The first of these works [17] is a continuation of [1], where log-likelihood and log-posterior

scores were proposed as effective methods for assessing pronunciation. In [17], the same log-

posterior method (Equation 1.2 and 1.3) is applied using models trained on native data and is

used as baseline and compared with a proposed technique based on log-likelihood ratio (LLR).

To compute LLRs, the phonetically labeled nonnative database is used to train two different

Gaussian Mixture Models (GMMs) for each phone class: one model is trained with the “correct”

native-like pronunciations of a phone, while the other model is trained with the “mispronounced”

or nonnative pronunciations of the same phone. In the evaluation phase, for each phone segment

qi, a length-normalized log-likelihood ratio LLR(qi) score is computed for the phone segment

by using the “mispronounced” and “correct” pronunciation models λM and λC respectively:

LLR(qi) =
1

d

t0+d−1∑
t=t0

[log p(yt|qi, λM )− log p(yt|qi, λC)] (1.6)

The normalization by d allows the definition of unique thresholds for each phone class, indepen-

dent of the length of the segments. A mispronunciation is detected when the LLR is above the

threshold. The LLR method performed better than the posterior-based method for almost all

phone classes, specially for those with the highest consistency across transcribers. These results

are in line with the fact that models trained on nonnative speech data produce better results

than those trained on native speech, as it was previously mentioned.

Finally, the most recent work of the series [2] extends the research proposing two new meth-

ods that also explicitly model both mispronunciations and correct pronunciations by nonnative

speakers. The LLR method developed in [17] is used as baseline and compared with the new

modeling techniques.

The first proposed method also uses LLR based on GMMs trained on nonnative data (Equa-

tion 1.6). The difference resides in the way these GMMs are obtained. In the baseline approach,

for each phone class two different GMMs are trained: one model is trained with the “correct”

native-like pronunciations of a phone while the other is trained with the “mispronounced” or

nonnative pronunciations of the same phone. In the new approach, the models for each class for

a given phone are obtained by adaptation. The model to which they are adapted is trained using
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all the samples from a given phone, ignoring the class (“correct” or “mispronounced”). Bayesian

adaptation [18] is used to adapt this class-independent GMM to all the “correctly” pronounced

training examples for a phone and obtain the adapted “correct” model for that phone. An

analogous process is followed to obtain the adapted “mispronounced” model. For these class-

dependent GMMs both the means and the mixture weights are adapted to the class-specific

data.

The second proposed method follows a discriminative approach. It uses the class-independent

GMM of the previous experiment to create supervectors by adapting this GMM to each phone

instance. The supervector for a certain phone instance is obtained by adapting the means and

the mixture weights of the original GMM to the acoustic feature vector representing the phone.

These supervectors are then used as features to train a linear SVM classifier. To evaluate test

instances of a given phone, its supervector is calculated by adaptation of the class-independent

GMM to the phone feature vector frames. Finally, the distance of that supervector to the SVM

hyperplane is taken as the score for the phone.

The two methods presented in [2] show better results than the mispronunciation detection

system based on LLR of independently trained GMMs developed in [17], which at the same time

outperforms the standard method that uses phone log-posteriors as scores [1]. This is one of

the most important lines of research in pronunciation assessment at phone level, positioning the

methods described in [2] among the best systems in the field. For that reason, both generative

and discriminative models are used as baseline and as a starting point in the work here presented.

A more detailed explanation of these systems will be provided in the next section.



2. METHOD

In this section we will review the way the pronunciation assessment system works and explain the

concepts and techniques on which it is based. The diagram below shows the overall architecture

of the system:

Fig. 2.1: General System Architecture

Given a recording, the objective is to determine whether each of the phones present in the

utterance was pronounced correctly or incorrectly. In order to do so, the flow goes as follows:

1. The first step is to compute the audio features from the recordings. This is done in order

to summarize the signal information in a measurable way through numeric values. The

chosen features are the Mel Frecuency Cepstral Coefficients (MFCCs) because they are

one of the most standard and widely-spread features in the speech processing field.

2. The MFCCs are then split in segments according to the phones to which they belong.

Each segment is at the same time divided in frames, that represent short intervals where

the audio signal is not supposed to be changing so much.

3. MFCCs of each phone instance present in the utterance are then used to compute the more

complex phone-level features on which the SVMs operates. Supervectors are the base and

proven to work features, while the Dynamic Features are the experimental features to be

studied.

4. SVM classifiers are trained individually for each phone. Two alternative ways of combining

the features are studied:

10
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• Training a single SVM from a combination of both Supervectors and Dynamic Fea-

tures.

• Training two separate SVMs: one using the Supervector features while the other

using the Dynamic Features, and then combining the results.

5. Finally an individual score is obtained for each of the instances of the different phones

present in the utterance. Phone instances with positive score are labelled as correct while

phone instances with negative score are labelled as incorrect. The bigger the magnitude

of the score, the more sure the system is about the decision.

2.1 Features

In this section we describe the chosen features for the current study. The features can be

classified in two different categories: frame-level features and phone-level features.

Frame-level features are computed directly from the speech signal, and they carry spectral

density information. For the current work, the standard Mel Frequency Cepstral Coefficients

were chosen.

The frame-level features are then used as base to compute more complex features: The

phone-level features. These are the features used to train the SVM and classify the instances. In

the current work, two types of phone-level features are studied: Supervectors which are obtained

from an adaptation process of a Gaussian Mixture Model trained on the MFCCs and the

Dynamic Features, which are the coefficients obtained from different parameterization methods

of the MFCCs values through time. The main objective of this work is to find out whether or

not there is a gain in performance when combining the Supervectors with the Dynamic Features.

In the following subsections a detailed description of each of the aforementioned features is

provided.

2.1.1 Frame-level Features: MFCCs

The first step in order to build the system is to extract acoustic features from the speech data.

The feature extraction process aims at approximating the linguistic content that is conveyed

by the speech signal, by identifying relevant aspects such as information about the frequencies

involved during the speech, and discarding unuseful properties.

In this work we base our features in the standard and widely used Mel Frecuency Cepstral
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Coefficients (MFCCs). They were introduced by Davis and Mermelstein in 1980 and have been

state-of-the-art ever since [19]. MFCC coefficients represent the spectral envelope of the speech

signal on the Mel-frequency scale, which relates the perceived frequency of a pure tone to its

actual measured frequency inspired by the human hearing.

The process to compute the MFCCs coefficients can be summarized by the following steps:

1. Preemphasis: Preemphasis aims at increasing the amplitude of high frequency bands

while decreasing the amplitudes of lower bands by means of a high-pass filter. This stage

is performed in order to balance the frequency spectrum since high frequencies usually

have smaller magnitudes compared to lower ones.

2. Windowing: The MFCCs are computed in time intervals where the audio signal is not

supposed to be changing so much. Because of that reason the signal is divided in frames

using a 25 ms duration window and 10 ms shift (standard values). A 25 ms duration

window provides enough samples to get a reliable spectral estimate: 200 samples per

frame at 8 kHz, and at the same time is short enough to minimize the signal changes.

On the other hand, a 10 ms shift leads to a 15 ms overlap between consecutive frames,

ensuring that the information between adjacent frames is also captured in the middle of

another frame.

3. Discrete Fourier Transform: This is the first and main step in regard to spectral analysis.

Frequency domain approaches are proven to be among the best options in speech classi-

fication tasks. The spectral density, which is the distribution of power of the frequencies

composing the signal, is obtained for each frame by using the Discrete Fourier Transform

technique.

4. Mel Filter-bank: At this stage, a perceptual scale of pitches inspired in human hearing

called Mel scale is used. Because humans are much better at discerning small changes

in pitch at low frequencies than they are at high frequencies, the Mel frequency scale is

linear up to 1000Hz and logarithmic thereafter according to the following formula:

M(f) = 1125 ∗ ln(1 +
f

700
) (2.1)

The spectrum obtained in the third step (3) is passed through a series of traingular

filters uniformly spaced on the Mel scale to produce the so called filter-bank energies.
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The original values of these energies are replaced by their natural logarithm values, also

motivated by human hearing, because loudness is not perceived according to a linear but

an exponential scale.

5. Cepstral Coefficients: The Discrete Cosine Transform (DCT) is applied to the logarithm

of the filterbank energies to obtain the Cepstral Coefficients. In general, only the lower 12

Cepstral Coefficients are kept. The resulting features are called Mel Frequency Cepstral

Coefficients. Additionally, a 13th MFCC computed as the sum of the energy in the frame

is included, because it usually improves the performance in phone detection related tasks.

6. Deltas and Double Deltas: Finally, the speech also carries information in the dynamics,

i.e, trajectories of the MFCC coefficients over time. Calculating the MFCC trajectories

and appending them to the original MFCC vector usually increase the performance of the

systems that are based on MFCCs. Both Delta and Delta-Delta features are included,

adding to a total of 39 features per frame.

Even though the frame-level features are made up of different features: 13 MFCCs plus 13

deltas and 13 double-deltas, for the sake of simplicity the expression “MFCCs” will be referring

to the whole 39 features throughout the current work.

2.1.2 Phone-level Features: Supervectors

Supervectors, which have already been succesfully used in [20, 2] are one of the two features

used in this work to train the SVM classifier. Supervectors for a given phone are obtained

by extracting the means and weights of different Gaussian Mixture Models derived from the

adaptation of a class-independent GMM to each of the instances.

So in order to go into more details of the supervectors features, a brief introduction to

GMMs is provided along with an explanation of the adaptation process.

Gaussian Mixture Model

Gaussian Mixture Model is a parametric probability density function represented as a weighted

sum of Gaussian component densities. GMMs are often used in biometric systems, specially in

speaker recognition systems, due to their ability to represent a large class of sample distributions.

One of the powerful attributes of the GMM is to form smooth approximations to arbitrarily

shaped densities [21].
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The densitiy function of a GMM is defined as:

p(x) =
K∑
k=1

πkN (x|µk, Σk) (2.2)

Each Gaussian density N (x|µk, Σk) is called a component of the mixture and has its own

mean µk and variance Σk. The parameters πk are called mixing coefficients and they can be

thought of as the prior probability of picking the kth component [22].

In this work, GMMs are used to model the frame-level features mentioned in the previous

section: MFCCs (13), plus deltas (13) and double deltas (13). So the features for our GMMs

are 39-dimensional vectors corresponding to each frame of each instance of a given phone.

Universal Background Model Adaptation

As in the previous works of the current line of investigation [17, 2], the phone- and class-dependent

GMMs are derived by the adaptation of a Universal Background Model (UBM) [18], a technique

that has been effective on significantly improving the accuracy in the speaker recongition field.

The UBM is a large class-independent GMM intended to represent the class-independent

distribution of the features. In a GMM-UBM system, the GMM is derived by adapting the

parameters of the UBM to a vector of instances with a Maximum a Posteriori (MAP) estimation.

This provides a tighter coupling between the generated models that produces better performance

than using decoupled models such as class-dependent GMMs. In addition, it can be specially

useful when just a small number of training instances is available. In the current work, an

individual class-independent UBM (trained with both correctly and mispronounced instances)

is generated for each phone.

The UBM approach involves adapting weight, mean and variance of each mixture, though in

the current work only weights and means are adapted because of the limited size of the dataset.

For each gaussian k composing the GMM-UBM, the weight and mean parameters are updated

according to the following equations:

πnewk = [αkπ
′
k + (1− αk)πk]γ (2.3)

µnewk = αkEk(x) + (1− αk)µk (2.4)
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αk =
nk

nk + r
(2.5)

nk =
T∑
t=1

Pr(k|xt) (2.6)

where πk and µk are the original values of the weight and mean of the kth component of

the GMM-UBM, π
′
k and Ek(x) are the estimated values for the weight and mean of the kth

component calculated on the vector of instances provided for the adaptation and the scale

factor γ is computed over all the adapted mixture weights to ensure they sum to unity. αk is

the adaptation coefficient that controls the balance between old and new estimates that depends

on two things: nk, which is the sum of the posterior probabilities of the kth component given the

vectors, and the relevance factor r, which is an input parameter. When a mixture component

has a low probabilistic count nk of new data, then αk → 0 causing the deemphasis of the new

(potentially undertrained) parameters and the emphasis of the old (better trained) parameters.

Analogously, when mixture components has high probabilistic counts nk, αk → 1 causing the

use of the new parameters. In addition, a higher value of r produces a decrease in the value

of αk, thus adapting in a more conservative way by assigning more importance to the previous

values. By contrary, a lower value of r produces an increment in the value of αk, thus leading

to a more aggresive adaptation strategy by assigning more importance to the new values [18].

In the current work r is set to 0, taking the most aggresive adaptation strategy. This is again

motivated by the previous work of the current line of investigation [2].

Supervectors computation

In order to compute the supervectors for a given phone, which are then used to train the SVM

classifier, the following steps are performed:

1. At first, a GMM-UBM is trained on the MFCCs of all the available training instances for

that phone, regardless of their class label (mispronounced or correctly pronounced).

2. Once the GMM-UBM is trained, for each of the instances of that phone two additional

steps are performed:

(a) An individual MAP adaptation process of the GMM-UBM to the feature vectors

within the phone instance is carried out, thus generating an adapted GMM for that
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instance.

(b) The supervector for that instance is obtained by stacking the means and the weights

of each of the gaussians composing the adapted GMM.

The supervector computation process for a given phone instance is summarized in Fig. 2.2

shown below:

Fig. 2.2: Adapted figure from Campbell, Sturim, Reynolds, Solomonoff 2006 [20]. A MAP Adaptation of
a GMM-UBM with m gaussians is performed using the frame-level features of a phone instance.
The resulting supervector is made up of the stacked weights πi and means µi ∀ 1 ≤ i ≤ m,
where each weight is a real value and each mean is a 39-dimensional vector.

As each derived GMM has the same number of gaussian components as the initial GMM-

UBM, then the dimension of each supervector is: 39∗m+m, where m is the number of gaussians

of the GMM-UBM. The first term corresponds to the means while the second one to the weights.

2.1.3 Phone-level features: Dynamic features

Supervectors do not include information about the dynamics of the MFCCs over time. Even

though the frame-level features do include deltas and double-deltas, these features only relate

the information of adjacent frames.

The evolution of the MFCCs over time can be modeled by using different parameterization

techniques, and Dynamic Features are obtained by extracting the coefficients of those parametric

functions. Given a phone instance, the values of each of the MFCCs along the whole interval

are modeled separately, so a total of 39 functions are computed. The chosen methods for the

current work are Legendre Polynomials and Discrete Cosine Transform.

The important thing about Dynamic Features is that they may carry information com-

plementary to supervectors’ information, that can be used to improve the performance of the
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SVM classifier. A potential gain in the combination of Supervectors with Dynamic Features is

therefore an interesting subject to be studied and it is the main topic of the current thesis.

2.1.4 Legendre

Legendre polynomials are frequently encountered in physics and engineering. For example,

Legendre is widely used in the determination of wave functions of electrons in the orbits of

an atom, or in the determination of potential functions in the spherically symmetric geometry

[23]. With regard to speech processing, this technique has been used successfully in the speaker

recognition field [24].

Legendre functions are the solutions to Legendre’s differential equation:

(1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0, for − 1 ≤ x ≤ 1 (2.7)

The solution for each particular n = 0, 1, 2 . . . ∈ N is a polynomial of degree n: Pn(x). These

solutions are well known for each n ∈ N, and they can even be generated recursively. The first

five Legendre Polynomials (Fig. 2.3) are:

P0(x) = 1

P1(x) = x

P2(x) = 1
2(3x2 − 1)

P3(x) = 1
2(5x3 − 3x)

P4(x) = 1
8(35x4 − 30x2 + 3)

Fig. 2.3: First five Legendre Polynomials in the
interval [-1, 1]
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Legendre Polynomials are orthogonal with respect to the L2 norm on the interval−1 ≤ x ≤ 1:

∫ 1

−1
Pn(x) ∗ Pm(x)dx = 0, m 6= n (2.8)

Moreover, in the interval −1 ≤ x ≤ 1 any function f can be represented as sum of Legendre

Polynomials, leading to the Fourier-Legendre Series:

f(x) =
∞∑
0

anPn(x) (2.9)

An infinite terms of Legendre Polynomials over the interval −1 ≤ x ≤ 1 can be used to

approximate any function. Each coefficient models a particular aspect of the curve: a0 is the

mean of the segment, a1 is the slope, a2 gives information about the curvature of the segment

and the subsequent coefficients model the finer details.

Given the time instants X = [x1, x2 . . . xt] and their respective values of a particular MFCC

coefficient at those instants: Y = [y1, y2 . . . yt], the problem of finding the coefficients of Legendre

Polynomial of degree k (for a previously defined k) that best approximates the values can be

formulated in terms of a Least Squares minimization problem:

min
C
‖AC − Y ‖2 (2.10)

where the solution of the system C is a (k+ 1) vector that represents the coefficients of the

Legendre Polynomial of degree k that best approximates the curve. A is a t x (k+1) matrix,

where each column i represents the result of computing Legendre’s Pi polynomial for each of

the values [x1, x2, . . . xt], also known as the Legendre-Vandermonde matrix:

A =



P0(x1) P1(x1) · · · Pk(x1)

P0(x2) P1(x2) · · · Pk(x2)

...
...

. . .
...

P0(xt) P1(xt) · · · Pk(xt)


(2.11)

When modeling a particular event is preferable to pick the simplest hypothesis that best

explains the observations, because simpler hypothesis usually generalize better to new observa-

tions than more complex hypotheses. As it was said before, the higher the degree of the Legendre

Polynomial, the more subtle details it models. In order to achieve the right balance between
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decreasing the least squares error and keeping the hypothesis simple two different approaches

are taken. On the one hand the degree of the polynomial k is limited up to a few coefficients.

On the other hand, a regularization technique often used when solving Least Squares problems

is explored.

Lasso Regression

A regularization technique is evaluated along with the Legendre Polynomials. Its name is Lasso

Regression and it modifies the original minimization problem by adding an additional term that

penalizes the L1 norm of the solution:

min
C
‖AC − Y ‖2 + λ‖C‖1 (2.12)

Regularization terms leads to solutions where more responsibility is assigned to the coeffi-

cients that contributes the most in lowering the error term while shrinking the coefficients with

less contribution to lowering the error.

There exists other alternatives to Lasso with regard to regularization. A widely-used one

is Tikhonov Regularization, also known as Ridge Regression, where the square of the L2 norm

(‖C‖22) is used as regularization term.

Unlike the square of the L2 norm, the L1 norm (‖C‖1) leads to an interesting and useful

property: In Ridge Regression, as the penalty is increased, all parameters are reduced while

still remaining non-zero, while in Lasso increasing the penalty will cause more and more of the

parameters to be driven to zero. Thus Lasso automatically selects more relevant features and

discards the others whereas Ridge Regression never fully discards any features.

2.1.5 Discrete Cosine Transform

An alternative to Legendre Polynomials to capture the general aspects of the utterances in

order to summarize the information carried out by the MFCCs across time is the Discrete

Cosine Transform. Variations on the values of MFCCs through time may be better explained

using periodic functions instead of polynomial ones for some phones, making DCT a more

suitable technique for those phones. DCT is used in many processes related with science and

engineering such as lossy compression of audio (e.g. MP3 ) and images (e.g. JPEG), which are

among the most popular formats in their respective fields. This technique has also been used



2. Method 20

to approximate prosodic features in speaker verification tasks [25].

DCT belongs to the family of the Fourier analysis. As a member of the family, it provides a

way to approximate a general function by sums of simpler trigonometric functions. These trans-

formations map a function to a set of coefficients of basis functions, where the basis functions

are sinusoidal and are therefore strongly localized in the frecuency spectrum. In particular,

DCT expresses a finite sequence of data points in terms of a sum of cosine functions oscillating

at different frequencies. Unlike the Fourier Transform that expresses the sequence in terms of

both sine and cosine functions, thus needing a complex number to represent the coefficient of

each frecuency, it only uses real numbers to output the coefficient of each frecuency.

There exists different variants of the DCT, being the type-II the most common and the one

that it is used in the current work:

Xk =

N−1∑
n=0

xncos[
π

N
(n+

1

2
)k], for k = [0, 1, . . . , N − 1] (2.13)

where N is the number of the extracted samples of the signal to be decomposed. In this

way, n coefficients are obtained corresponding to each of the frequencies from 0 to N − 1. An

illustration of the curves with the first two frequencies is shown in Fig. 2.4. Each coefficient is

obtained from the sum of the individual contributions of the samples to the kth frequency.

Fig. 2.4: Basis cosine functions of frequencies 1 and 2 over the interval [-1, 1]

As in Legendre Polynomials, the number of coefficients to be obtained is again limited up

to a few coefficients to avoid overfitting to the training set.
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2.1.6 Comparison between Legendre and DCT

To conclude this section some illustrative visual examples that compare the approximations

made by both techniques for a given set of values and different number of coefficients are

included below (Fig. 2.5a). The values are extracted from the 4th MFCC of an instance of the

phone ’i’, taken from the development set.

(a) Approximations of Legendre Polynomials with
2 coefficients (degree 1), and DCT with 2 co-
efficients.

(b) Approximations of Legendre Polynomials
with 4 coefficients (degree 3), and DCT with
4 coefficients.

(a) Approximations of Legendre Polynomials with
7 coefficients (degree 6), and DCT with 7 co-
efficients.

(b) Approximations of Legendre Polynomials
with 11 coefficients (degree 10), and DCT
with 11 coefficients.

Both techiniques perform pretty well in approximating the curve, and they are also pretty

similar when using the same number of coefficients. It can be observed in the example with 7

coefficients in Fig. 2.6a, though, that in some cases DCT is better at modeling the oscilations

of the curve while Legendre Polynomials prioritize to capture the overall shape of the curve.

Comparative experiments are carried out in this work in order to find which is the dynamic

feature that best complements the supervectors when training the SVM classifier.
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2.2 Support Vector Machines

The chosen model for the discriminative analysis is the Support Vector Machine classifier, an

approach for classification that was developed in the computer science community in the 1990s

and has grown in popularity since then. SVM has been successfully used in many speech

processing fields, such as speaker recognition and pronunciation assessment.

Given a p-dimensional feature space, an SVM (with linear kernel) constructs a hyperplane

of dimension p - 1 that separates the space in two halves, which allows to classify the instances

according to their relative position to the hyperplane [26]. The classification procedure is then

just simply a case of determining which side a test observation falls on.

If the instances are separable by a hyperplane, then there exists potentially infinite sepa-

rating hyperplanes that can be generated from those same instances, because it is possible to

slightly translate or rotate the initial plane without touching any training observation. Among

all of them, SVM generates the hyperplane that has the largest distance to the nearest training

data points of either of both classes. Such a classifier is known as Maximal Margin Classifier,

and in most of the cases generalizes better to unobserved data than any of the other possible

separating hyperplanes.

One of the key features of the Max Margin Classifier is that the location of the hyperplane

only depends on the support vectors, which are the training observations that lie directly on

the margins’ boundaries.

2.2.1 Soft Margin

One of the problems with Max Margin Classifiers is that they can be very sensitive to the

addition of new training observations: The hyperplane may be adjusted substantially to force

every instance to lie in the right side of the margin or hyerplane, thus leading to overfitting

while reducing the value of the margin (Figure 2.7). Moreover, many datasets are not perfectly

separable via a linear hyperplane at all. Because of these reasons, the requirement that a

separating hyperplane will perfectly separate every training observation on the correct side of

the line according to its class label can be relaxed by introducing a new concept developed in

[27]: the Soft Margin.
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(a) An initial training set is optimally divided by
the Max Margin Hyperplane of an SVM

(b) The additon of a single instance substantially
modifies the position of the hyperplane.

Fig. 2.7: Margin adjustment when inserting a new training instance

A Support Vector Classifier or Soft Margin Classifier allows some observations to be on the

incorrect side of the margin or even on the incorrect side of the hyperplane, thus providing a

“soft” separation. The soft margin method will choose a hyperplane that splits the example as

cleanly as possible while still maximizing the distance to the nearest training instances. The

effects of the soft margin can be observed in Fig. 2.8.

Given a labeled dataset D of n tuples of the form: D = { (xi, yi) | xi ∈ Rp, yi ∈ {−1, 1} },

the problem can be formulated as:

min
ω,ξ

{
1

2
‖w‖2 + C

n∑
i=i

ξi

}
, s.t ∀i : yi ∗ (ωt · xi + b ) ≥ 1− ξi, ξi ≥ 0 (2.14)

Each xi is a p-dimensional real number vector. The hyperplane ωt ·x+b = 0 splits the space

in two halves. The condition yi ∗ (ωt · xi + b) ≥ 1 for any instance xi is known as the margin

condition, and ensures a margin γ on each side of at least 1
‖ω‖ :

γ =
|ωt · xi + b|
‖ω‖

≥ 1

‖ω‖
(2.15)

Finally, slack variables ξi allow the individual observations to be on the wrong side of the

margin or hyperplane, while C is an input parameter that determines the cost of the errors,

thus establishing a trade off between a large margin and the error penalty.



2. Method 24

Fig. 2.8: When lowering the cost of misclassifications (C parameter), the SVM still prioritizes maximizing
the margin, though it allows an instance to end in the wrong side of the hyperplane.

2.3 Equal Error Rate

In order to measure the performance of the different systems, the Equal Error Rate metric is

chosen. As its name suggests, the EER prioritizes in an equal manner the False Positive Rate

and the False Negative Rate. This metric was used in the previous works of the current line of

investigation related to pronunciation assessment at phone level [17, 2], so the same approach

was taken in the present work.

The process for evaluating the performance of a classifier usually involves the following steps:

At first, the decision function of the classifier, which can be for example predicted probabilities

or in our case distances to the hyperplane, is computed for each instance of the test set. Then,

the obtained results are used to generate a distribution of the instances count as function of the

values in the domain of the decision function. Finally, a threshold is chosen in order to make

class predictions and the instances with a result of the decision function above that threshold

are classified as positive, while those with results below the threshold are classified as negative.

Most classifiers usually set a threshold by default, such as 0 in the case of Support Vector

Machines that determines a separation of positives and negative instances according to the sign

of their distance to the hyperplane.

The EER can be found by sweeping the threshold until reaching the condition that False

Positive Rate (FPR) equals False Negative Rate (FNR). FPR is computed as the proportion of

negative instances wrongly categorized as positive: FP
TN+FP . Analogously, FNR is computed as

the proportion of positve instances wrongly categorized as negative: FN
TP+FN . A simple example
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of EER threshold is shown in Fig. 2.9.

Fig. 2.9: An example of EER threshold with perfectly balanced classes. Both negative and positive
distributions have the same size and shape. The threshold separates the instances in such way
that FPR equals FNR.

2.4 Statistical Significance Techniques

In order to analyse if there is a statistically significant gain in combining the supervectors and

the dynamic features over using supervectors as the only features, two different techiques are

used in this work: Bootstrapping and McNemar’s Test.

Bootstrapping is a technique that models the underlying distribution by using a resampling

method on the available samples while McNemar’s Test is an statistical test used on paired

data.

An advantage for McNemar’s over Bootstrapping is that it bases its comparisons on cross

information using exactly the same sample. McNemar’s Test however assumes that the samples

are independent, which is not true when considering all the instances of a given phone. Even

though Bootstrapping also assumes that the samples are independent, in the current work

resampling is performed at speaker level, which ensures the independence of the instances being

resampled. For this reason, we use both tests, since both have advantages and disadvantages

with respect to the other one.

2.4.1 Bootstrapping

Bootstrapping [28] is a general intuitive method applicable to almost any kind of sample statistic

and can be understood without much knowledge of sampling distributions. It was introduced

in 1979 by B. Efron and it has been widely used in numerous areas since then.
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Supposing that it were possible to draw repeated samples of the same size from the popula-

tion of interest a large number of times, then a fairly good idea about the sampling distribution

of a particular statistic could be obtained from the collection of values arising from these re-

peated samples. This method, however, does not make sense in practice since it assumes one

has access to the underlying distribution. The idea behind Bootstrapping is to use the data

of a sample study at hand as a “surrogate population” for the purpose of approximating the

sampling distribution of a statistic. This is achieved by resampling with replacement from the

sample data at hand, creating a large number of alternative or duplicated sample sets known

as bootstrap samples. The process is usually repeated between 1 and 10 thousand times, and

the performance metric, EER in our case, is computed on each of the bootstrap samples. A

histogram of these computed values is referred to as the bootstrap distribution of the statistic.

In the current work, resampling is performed at speaker level. In other words, given a set

S of n speakers in the test set, in each iteration of bootstrapping a new set of n speakers S′ is

obtained by drawing speakers with replacement from the original set S. The sample set is then

obtained by gathering the instances of the speakers in S′, which will include repeated samples

for the speakers that appears more than once in S′. Bootstrapping technique is used along

with Confidence Intervals in order to determine if the SVM trained with the combined features

performs better than the one trained only with features derived from the GMM adaptation.

The first step is to generate a distribution of EER for both types of classifiers. After that, a

95% confidence interval is computed for each distribution by finding the interval [θ̂B1, θ̂B2] that

enclose the 95% of the samples composing each distribution. If it is true that the SVM trained

with the combined features performs better than the SVM trained with a single feature source,

then its confidence interval should be shifted with respect to the confidence interval of the latter

system. The bigger the overlap between both intervals, the lesser the evidence of the results

coming from different distributions, thus resulting in less significant results.

2.4.2 McNemar’s Test

McNemar’s Test [29] is used as an alternative to determine whether the SVM based on the

combined features and the SVM based only on the supervectors are significantly different.

Given a set of n test samples labeled by two systems, A1 and A2 the results can be summa-

rized as:
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Correctly Predicted by A2 Incorrectly Predicted by A2

Correctly Predicted by A1 N0,0 N0,1

Incorrectly Predicted by A1 N1,0 N1,1

• N0,0 is the number of samples which A1 classifies correctly and A2 classifies correctly

• N0,1 is the number of samples which A1 classifies correctly and A2 classifies incorrectly

• N1,0 is the number of samples which A1 classifies incorrectly and A2 classifies correctly

• N1,1 is the number of samples which A1 classifies incorrectly and A2 classifies incorrectly

Let p1 be the error rate of the system A1 and p2 the error rate of the system A2.

Let q0,0 be the probability of (A1 correct ∧ A2 correct), q0,1 the probability

of (A1 correct ∧ A2 incorrect), and so on. Hence:

p1 = q1,0 + q1,1 (2.16) p2 = q0,1 + q1,1 (2.17)

The null hypothesis p1 = p2 is equivalent to q1,0 = q0,1. Defining q = q1,0/(q1,0 + q0,1) the

null hypothesis becomes q = 1
2 . The probability q is the probability that given that only one

of the systems made an error, it was system A1 that did. Under the null hypothesis, N1,0 is

distributed as a Binomial Distribution B(n, 1/2), where n is the observed number of samples

for which only one system made an error: N1,0 +N0,1. At this point, a two-tail test is applied

to obtain a p-value that represents the statistical significance of the results.

As it was said before, McNemar’s Test is based on cross information by comparing the results

of evaluating both systems on exactly the same sample. Bootstrapping differs on this point

because each sample is evaluated independently for each system. A complementary analysis

using both different techniques is carried out in this work in order to determine the statistic

significance of the results.



3. EXPERIMENTAL SETUP

In this section, we will describe the database that is used in the current work. In addition, we

will review the way the dataset is partitioned in order to carry out the experiments.

3.1 Database Description

The dataset for the current work is obtained from a Latin-American Spanish speech database

[30]. The same database has been used in the previous work of the current line of investigation [2].

Even though the database includes recordings by natives and nonnative speakers, only the

nonnative recordings were used in the current work. The nonnative data consists in 2550

utterances of read speech of different sentences taken from Spanish newspaper data, adding up

to a total of 130,000 phone instances. The utterances were pronounced by 206 native American

English speakers who had studied some Spanish locally or abroad. Their levels of proficiency

were varied, and an attempt was made to balance the number of speakers by level of proficiency

as well as by gender.

The set of sentences was chosen to maximize the number of occurrences of potential pronun-

ciation problems gathered by a linguist and a Spanish language instructor. It was also intended

to include phones in different contexts that are known to be difficult for native American En-

glish speakers to pronounce. Examples are the dipthtong [eu], /r/ after [l] [n] and [s] (which

should be thrilled), and [p], [t] and [k] in any context (which nonnatives may aspirate).

Four native Spanish-speaking phoneticians provided the detailed phonetic transcriptions for

the nonnative utterances. Labels for each phone instance were then generated by comparing

the phonetician’s transcriptions with the canonical transcriptions of the sentence: transcribed

phone instances that matched the cannonical transcription were labeled as correct, while phone

instances that did not match the cannonical transcription were labeled as mispronounced. When

performing assessment tasks that involve several raters, usually there is a certain level of dis-

agreement among the transcribers. In fact, not all the phones were transcribed with the same

level of reliability. Cohen’s Kappa coefficient K [31] is used to describe how reliably the tran-

scribers agree on the transcriptions for each of the native phones. For eight of the phones (/β/,

/δ/, /γ/, /b/, /w/, /m/, /i/, /s/), all four transcribers showed at least a moderate level of

28
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agreement (using K > 0.4 to mean “moderate” agreement).

3.2 Development Set and Hold-Out Set Definitions

The previously described dataset is partitioned into different subsets to apply some statistical

methods that usually improves the robustness of the experiments when performing machine

learning tasks. At a higher level, the data is divided into two groups: the development set and

the hold-out or validation set. The former is used to fit the different models while the latter

is used to evaluate the performance of the final model on unseen data. At the same time, the

development set is divided in four subsets in order to apply k-fold cross validation (k = 4), a

technique that leads to more accurate estimates of the errors when exploring different models

in the training phase.

3.2.1 Hold-Out Set

The hold-out set or validation set is a subset of the data that is kept separately of the develop-

ment set and remains untouched until the final model is fitted. It is then used to test the final

model and verify if it generalizes to unseen data. Additionally, it allows an unbiased estimate

for the test error because none of the instances was used in the fitting process. It is worth

noting that in order to keep this condition true, the samples of the hold-out set must come from

speakers that are not used in the development set.

The partitioning is carried out at speaker level. Speakers are randomly split into two groups

that contain 20% and 80% of the total number of speakers. The hold-out set is obtained from the

group with 20% of the speakers by gathering all the utterances pronounced by those speakers.

The development set is obtained from the group with 80% of the speakers in the same way.

3.3 K-Fold Cross Validation

K-Fold Cross Validation [26] is a method which aims to improve the accuracy in the estimate

of the errors for a given model by fitting and testing the model using different subsets of the

available development data. The error estimate is more robust than that computed when fitting

the model only once using all the available training data.

In order to keep the error estimates unbiased the set of speakers in each of the folds must

be disjoint (the same as when splitting the dataset into development and hold-out). The par-
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titioning of the development set is then carried out at speaker level, and each fold is obtained

by gathering all the utterances pronounced by the speakers in that fold.

To apply K-Fold Cross Valdation, the development set is divided in k groups or folds of

approximately equal size. Then, for each fold i (1 ≤ i ≤ k) the following procedure is repeated:

1. A new model is fitted using the instances of all the folds but the ith fold.

2. The fitted model is tested against the instances of the ith fold.

The results of all the iterations are then combined to obtain a final estimate of the error.

K-Fold Cross Validation maximizes the number of both training and testing instances. Every

instance is used exactly once for testing, and k − 1 times for training the different models. It

also allows an unbiased estimation of the results, because in none of the iterations the same

instance is used for both training and testing the model.

In the current work, Cross Validation is performed in the development set using 4 folds. On

each iteration, the different models and features are computed using the instances of three of

the folds and tested on the other one. EER is computed by gathering the scores from all the

folds. This approach for EER computation leads to a more realistic statistic than computing

an EER per fold and taking the average, because the latter would lead to optimistic results.



4. EXPERIMENTS AND RESULTS

In this section we introduce the experiments that were carried throughout this work along with

the obtained results for each of them. The outline of the experiments can be summarized as

follows:

1. At first, initial or baseline experiments are performed in order to replicate the results

obtained in the previous work [2] for both GMM and SVM classifiers.

2. In a second stage, different parameters for the dynamic features are explored. Those

parameters include the optimal weight to be used when combining the supervectors with

the dynamic features.

3. At last, the final model is selected and it is tested against the hold-out data.

4.1 Baseline Experiments

The initial experiments are carried out in order to replicate some of the results obtained in [2].

By succesfully achieving this, it could be assumed that the models are being properly trained

and use them as baseline to build the new system.

The results to be replicated come from the comparison between GMM and SVM models.

The GMMs are obtained by adaptation of UBM-GMMs, as it was previously described in the

method section 2.1.2, and they are based on a likelihood-ratio detection method. The SVM

model approach is based on supervectors, as it was also described in 2.1.2.

Some of the models’ parameters are tuned during the baseline experiments and kept through-

out the subsequent experiments. For each phone’s GMM, the number of gaussian mixtures to be

trained is kept proportional to the number of available training instances. A mixture component

is trained every 15 phone instances in order to keep a similar proportion to what was used in the

previous work [2]. With regard to the SVM classifier, different values of the input parameter

C, which is described in section 2.2.1, were tested. The best results were obtained when using

C = 1
avg(x∗x) , which is the average of the squared norm of the training feature vectors. This

value was taken from the documentation of SVM-Light, a library that implements SVMs in C

language. Finally, sklearn provides a class-weight parameter, that allows to adjust the weight of

31



4. Experiments and Results 32

the C parameter for each class. If not given, all samples are assumed to have the same weight.

This parameter is set to “balanced”, which adjusts the weights inversely proportional to the

class frequencies in the input data. This is particularly useful because the number of instances

for each class is unbalanced for most of the phones.

Only SVMs with linear kernels are used throughout the experiments, i.e, solutions involving

other types of kernels such as polynomial or radial are not explored. This is because of two

reasons: In the first place, the dimension of the features space is relatively high compared with

the number of instances for each phone, and SVMs with linear kernels usually perform better

on this scenarios. Secondly, as it was mentioned before, the current work is based on a previous

work [2], which uses a linear kernel. The strategy used in the current thesis is to keep the

initial configuration for the SVM classifier while focusing on exploring the new set of dynamic

features.

Additionally, features are standardized by removing the mean and scaling to unit variance

before training the models to avoid the dominance of certain features over other ones.

Below is shown the comparison of the results of the GMM models and SVM models obtained

in the development set during the experiment replication (Fig. 4.1). The phones are sorted in

descending order according to their Kappa coefficients. Results show that the SVMs system

produced an overall weighted EER relative reduction of 2.5% with respect to the Adapted

GMMs, which is in line with the results obtained in [2].

Additionally, there seems to be some correlation between the phones with high Kappa

and those who achieved the best results. This seems reasonable, because it may exist clearer

differences between correctly and mispronounced utterances of the phones that produced better

agreement over the transcribers. These differences may lead the classifiers to perform better.

Among the eight phones with higher Kappa values (K> 0.4, which implies moderate agreement):

/β/, /δ/, /γ/, /b/, /w/, /m/, /i/, /s/, only /s/ exceeds an EER of 0.3.
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Fig. 4.1: Comparison of EER between Adapted GMMs and SVM trained on supervectors for all phones
obtained in the development set, sorted in descending order according to their Kappa values.

At the end of the experimental phase, the same experiment was carried out in the heldout

set leading to the results shown below (Fig. 4.2). The models are trained using all the instances

in the development set, namely, the instances of the 4 folds. They both have a very similar

performance for each phone compared with the results obtained in the development set (Fig.

4.1), from which one can deduce that both classifiers generalize well to unobserved data. This

time, however, it was the Adapted GMM model which produced an overall weighted EER

relative reduction of 0.8% with respect to the SVMs trained on supervectors. Even though the

expected result would have been that the SVM performed slightly better than the GMM, as

it happened in the development set, the degradation is less than 1% so it is still a reasonable

result.

Fig. 4.2: Comparison of EER between Adapted GMMs and SVM trained on supervectors for all phones
obtained in the hold-out set, sorted in descending order according to their Kappa values.

After the successful replication of the initial experiments, a validated SVM model based

on supervectors is obtained. This classifier is used as baseline and starting point for the next

experiments.
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4.2 Tunning Experiments

Tunning experiments are carried out in order to compare both alternative dynamic features.

Features are first analysed in isolation to determine their best possible configurations.

After that, the features generated with those configurations are combined with the super-

vectors and the results of those combinations are compared to each other.

Tunning is performed in the development set using 4-Fold Cross Validation. Results are

calculated only for the phones with high Kappa coefficients by averaging them. Only these

phones are considered in the process because they are the most reliable ones.

The most important parameter to be fitted is the number of coefficients to be used for both

methods. We assume this parameter to be phone-independent, so it is shared among all the

phones. This helps to keep the models simple by reducing the number of phone-dependent

configuration parameters.

4.2.1 Legendre Best System

The objective of the Legendre tunning experiments is to find the optimum degree of the Legendre

Polynomials along with the best configuration. Tunning the best Legendre features involves the

analysis of the following factors:

• Legendre Polynomial degree

• Time axis normalization between -1 and 1

• Inclusion of duration

• Lasso-Regression regularization

Results are depicted in Fig. 4.3, which shows the variation of the EER average taken over

the phones with high Kappa as function of the degree of the Legendre Polynomials for different

configurations. The analysis is restricted to polynomials up to degree 6 because no further gains

are obtained when using polynomials of higher degrees.
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Fig. 4.3: EER average over phones with high Kappa for different degrees of Legendre Polynomials ob-
tained in the development set. Additional configurations are also studied along with the degree
and represented by different curves: time normalization, appending the duration and applying
Lasso Regression.

Time normalization before approximating the MFCCs turns out to be an essential property

for the Legendre Polynomials, evidenced by a considerable reduction of the EER average (gap

between the blue and green curves). At the same time, appending the duration to the features

produces a slight improvement in the performance. Lasso Regularization, however, does not

contribute to reduce the average EER. Results show that the optimal configuration is to model

the dynamics of the temporal dependencies using Legendre Polynomials of degree 2, along with

normalizing the time axis and appending the duration of the phone utterances to the features.

4.2.2 DCT Best System and Comparison Between Features

Analogous to Legendre, the objective of the DCT tunning experiments is to find the optimum

number of coefficients of DCT to approximate the dynamics of the temporal dependencies. In

the DCT case, the only additional parameter to be determined is whether or not appending the

duration to the DCT coefficients.

As in the Legendre optimal configuration, DCT tunning experiments also shows that ap-

pending the duration to the coefficients produces a slight reduction in the averaged EER (around

1% relative), so the duration is appended to the DCT coefficients.

A comparative plot between the variation of the EER as function of the number of coef-

ficients for both dynamic features is shown below in Fig. 4.4. The additional parameters are

fixed according to their optimal configuration for both techinques: Normalizing the time axis

and appending the duration for Legendre (without Lasso Regularization), and appending the

duration for DCT. The degree of the Legendre Polynomials is mapped to the number of coeffi-
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cients in the x-axis to allow the comparison: the 0 degree Legendre Polynomial is mapped to 1

coefficient, the 1 degree Legendre Polynomial is mapped to 2 coefficients, and so on.

Fig. 4.4: EER average over phones with high Kappa as function of the number of coefficients for both
Legendre Polynomials and DCT obtained in the development set.

A dot is placed on each curve showing the optimal number of coefficients for both techniques.

As it is known from Fig. 4.3, the optimal number of coefficients for the Legendre Polynomials

is 3 (Polynomials of degree 2). Polynomials with 4 coefficients performs almost as well as

polynomials with 3 coefficients, but it is always preferable to keep the model as simple as

possible. On the other hand, the optimal number of coefficients for DCT is 2.

The results show that when the analysis is done in isolation (in absence of the supervectors

features), Legendre Polynomials lead to a better performance, generating a relative reduction

of the average EER of 3.3% compared with DCT.

4.2.3 Dynamic Features and Supervectors Combination Comparison

Even though the SVM based solely on Legendre performs better than the SVM based solely on

DCT, a new experiment is carried out in order to determine which dynamic feature integrates

better with the supervectors producing the best results. Two types of combination are studied

in the current thesis: a Features Combination and a Score Combination.

In order to describe how the Features Combination is computed we recall some concepts

previously mentioned in the Method section. As it is described in equation 2.14, a labeled set

D = { (xi, yi) | xi ∈ Rp, yi ∈ {−1, 1} } is used when training the SVM for a given phone, where

xi represents the feature vector for the ith instance of that phone and yi represents the label.
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Let us denote:

xi =


si : [ si1, si2, . . . sin ], when using supervectors features

di : [ di1, di2, . . . dim ], when using dynamic features

(4.1)

Supervectors features are n-dimensional vectors while dynamic features are m-dimensional vec-

tors. When combining the features, dynamic features are appended to supervectors. A factor

c = n
m multiplies the dynamic features in order to compensate the difference in the number

of features between supervectors and dynamic features. Additionally, a weight factor w ∈ R

that also multiplies the dynamic features is chosen to determine the priority, or importance a

priori of the dynamic features with respect to supervectors within the SVM (the weight for

supervectors is implicitly set to 1). The higher the value of w, the less regularized are the

dynamic features at the beginning. The features combination vector for the ith instance is then

computed as:

x′i = si ◦ (w ∗ c ∗ di) = [ si1, si2, . . . sin, w ∗ c ∗ di1, w ∗ c ∗ di2, . . . w ∗ c ∗ dim ] (4.2)

where symbol “◦” represents concatenation.

Score Combination, on the other hand, is computed by combining the scores of the SVM

classifiers trained independently on both supervectors and dynamic features. Again, a weight

w ∈ R is chosen to determine the amount of the score of the dynamic-feature-based system to

be considered in the final score. Let us denote the score of the SVM trained on supervectors

when classifying the ith instance as supi and the score of the SVM trained on dynamic features

when classifying the ith instance as dyni.

The final score for the ith instance is computed as:

scorei = supi + w ∗ dyni (4.3)

The range of values to be explored for the parameter w was adjusted empirically for both

Features Combination and Score Combination. The obtained interval to be explored for w was

[0.0 - 1.0] with steps of 0.1. It is worth noting that choosing a value for w of 0.0 leads to not

considering the dynamic features at all.

The experiment is again scoped to the phones with high Kappa values. Weights to be used
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when combining the features and the scores are kept phone-dependent. The objective is thus to

compute two optimal weights for each phone: one for the features combinations and the other

one for the score combination.

In the Features Combination experiment, the optimal weight for the majority of the phones

for both Legendre and DCT approaches turns out to be 0.1. There are also some phones such

as /γ/ and /b/ for which the best weight is 0.0. This can be interpreted as that no weight

produces an improvement when combining the dynamic features with the supervectors.

On the other hand, in the Score Combination experiment, the optimal weight for the results

of the different phones are more scattered along the whole interval [0.0 - 1.0] for both Legendre

and DCT. Again, there are also some phones for which the optimal weight is 0.0, but they are

considerable fewer than in the features combination case.

For both combination types, the DCT features yield better results than the Legendre fea-

tures, though the results for both features are very close to each other (around 1% of relative

difference), as it is shown in Table 4.1.

Legendre + Supervectors DCT + Supervectors

EER Features Combination (Avg) 0.188 0.187

EER Score Combination (Avg) 0.189 0.187

Tab. 4.1: EER average over phones with high Kappa using the best weight for both Dynamic Features
and combination approaches, obtained in the development set.

At this point, the DCT features are chosen as the Dynamic Features to be combined with

the supervectors when training the final models, and for each of the remaining phones with low

Kappa values the phone-dependent weights are computed.

Even though training a system from the combination of the three features (Supervectors,

Legendre and DCT) was possible, it would have required the tunning of an additional parameter

for each phone, which is costly to mantain. Moreover, this could have lead to overfitting the

model. Because of these reasons, and the fact that we weren’t expecting significant gains in

combining both types of dynamic features because they model the same temporal characteristics,

we didn’t explore a combination of the three features as a solution.
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4.3 Final Models Validation

The final experiments are carried out in order to determine if there is a real gain when combining

supervectors with DCT features compared with training an SVM based only on supervectors.

Additionally, we are interested to see if any of both fusion systems is better than the other one.

The three systems to be compared are then:

• SVM trained only on supervectors, which is used as the baseline system.

• SVM trained on the features combination of DCT and supervectors (using for each phone

the best features combination weights obtained in the tunning phase).

• System based on the score combination of an SVM trained only on supervectors and an

SVM trained only on DCT features (using for each phone the best score combination

weights obtained in the tunning phase).

An initial experiment is performed in the development set followed by a second experiment,

where the final models are tested against the heldout data. The relative gains of the final models

are calculated using the SVM trained only on supervectors as baseline system.

Unlike the tunning phase, where the experimentation is driven by the results obtained

over the phones with higher kappa values, a new criteria is used for the model validation. A

McNemar’s test is performed as previous step to scope the analysis to a subset of phones with

statistically significant gains in the development data (p-value < 0.05). McNemar’s, which is

described in Method Section 2.4.2, is used to estimate the confidence that a final model is

different from the baseline model by using the paired nominal results of both classifiers.

4.3.1 Development Results

The three systems are trained applying 4-Fold Cross Validation in the development set and

then compared to each other. The EER for each of the systems is computed by gathering the

scores from all the folds. In addition, McNemar’s test is also computed over the scores from all

the folds to determine if the results yield statistically significant gains.

The phones for which the McNemar’s test gives significant results in the development set

are:

• /s/, /y/, /e/, /o/, /l/, /n/, /m/ for Features Combination
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• /s/, /y/, /e/, /o/, /l/, /z/, /n/, /m/, /rr/, /t/ for Score Combination

The relative gains for those phones are summarized in Fig. 4.5 (results for all the phones

are available in tables 6.1 and plots 6.2 of the Appendix). It is worth noting that phones that

give statistically significant gains in the Score Combination experiment are a superset of the

phones that give statistically significant gains in the Features Combination experiment. Three

of the phones (/z/, /rr/, /t/) give statistically significant gains when combining the scores but

not when combining the features. For that reason, only the bars associated with the Score

Combination results are included for those phones.

Fig. 4.5: Comparison of relative gains over the Baseline systems between the Features Combination
systems and the Score Combination systems computed on the development set. Results are
sorted in descending order according to their McNemar’s p-values.

A Bootstrapping test is also performed in the development set to provide a complementary

analysis. As it is described in Method Section 2.4.1, the main goal is to compute the confidence

intervals that enclose the 95% of the samples of the target distributions (in our case, EER dis-

tributions) to find out if they are shifted with respect to each other. A thousand bootstrapping

iterations are applied by resampling the speakers and computing the EER over those speakers’

instances. Results are summarized in Fig. 4.6. Plots are split in two in order to adjust the

y-axis and display the intervals with greater detail.

The plots show that most of the fusion system intervals are shifted downwards with respect

to the supervectors-based baseline system, which is a sign that fusion systems perform better

than the baseline systems. The only exception seems to be /z/, which despite having almost

identical confidence intervals for both systems, it yields a significant difference between the

results obtained for the baseline system and the Score Combination system.
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Fig. 4.6: Comparison of 95% confidence intervals for the baseline and fusion systems. A thousand itera-
tions of Bootstrapping are applied in the development set for the phones that gave statistically
significant gains in the McNemar’s test.

4.3.2 Hold-out results

In this experiment, the three aforementioned systems are trained using all the instances of the

development set and tested against the hold-out set.

The analysis is again scoped to our phones of interest, which are those with statistically

significant results in the development set. The results for all the phones, however, are included

in the tables (6.1) and plots (6.2) of the Appendix. Even though a new McNemar’s test is com-

puted on the results obtained in the hold-out data, in many cases it does not yield statistically

significant gains for the phones of interest. This can be explained by the fact that hold-out data

has around 1/4 of the instances of the development set, which results in very little testing data

affecting the efectiveness of the statistical test.

The relative gains for the phones of interest are summarized in Fig. 4.7. Again, the bars for

the three phones (/z/, /rr/, /t/) that gave statistically significant gains when combining the

scores but not when combininig the features in the development set are only included for the

Score Combination experiment.
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Fig. 4.7: Comparison of relative gains over the Baseline systems between Features Combination systems
and Score Combination systems computed on the hold-out set for the phones of interest. Re-
sults are sorted in descending order according to their McNemar’s p-values computed on the
development set.

Results show that, for the phones that gave statistically significant gains in the Score Com-

bination experiment carried out in the development set, only ’z’ degrades its performance com-

pared with the baseline system (around a 6% relative). Among the remaining phones, some

reduce its gain compared with the development set (such as /y/ from 8% to less than 2% and

/rr/ from almost 6% to less than 2%). Others such as /m/ improves its gain from 6% to more

than 8%.

On the other hand, results show that for the phones that gave statistically significant gains

in the Features Combination experiment carried out in the development set, only /o/ degrades

its performance and only slightly. Among the remaining phones, for the Features Combination

experiment there are cases where both improvements and degradations of the performance are

observed.

At the very beginning, when restricting our analysis to this particular subset of the phones,

we picked out some of them such as ’rr’ and ’m’ and inspected their instances in order to figure

out why those instances would benefit from the dynamic features. However, what we found

for example when analysing the utterances of the ’rr’, is that many of the instances labeled as

correct did not sound thrilled, and the other way around too. Many of the instances that sounded

thrilled for us, were labeled as incorrect. In other words, it seems to be a mismatch between

our criteria and annotators’ criteria. A similar thing happend when analysing the utterances

of the ’m’. After these findings, we abandon the initiative of trying to explain the reasons why

some of the phones benefits from the dynamic features. Also, there exists the possibility that

for some of the phones the boundaries of performance imposed by the annotation errors have
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already been reached.

A Bootstrapping test is again performed in the hold-out set to provide a complementary

analysis, and the results are summarized in Fig. 4.8. The plots are again split in two in order

to adjust the y-axis and display the intervals with greater detail.

The most relevant thing to mention is that, unlike in the development set, the overlap

between the confidence intervals of the three systems is very big, to a point such that for some

phones it is difficult to determine if the intervals come from different distributions. There are,

though, some phones for which the intervals for the fusion systems seem to be shifted downwards

with respect to the baseline system. The most representative example is /s/, followed in lesser

extent by other phones such as /l/, /m/, /t/, /e/ and /y/.

A positive aspect to be considered is that none of the phones degrade their results in a

significant manner. In addition, the confidence intervals for the two systems for the phone /z/

are very wide and they almost completely overlap, which is an evidence that the degradation is

not statistically significant.

(a) (b)

Fig. 4.8: Comparison of 95% confidence intervals for the baseline and fusion systems. A thousand itera-
tions of Bootstrapping are applied in the hold-out set for the phones of interest.



5. CONCLUSIONS

In the current thesis, we explored different Dynamic Features to be used as complementary

features to Supervectors when classifying phone instances using an SVM classifier. As in the

previous work [2], Support Vector Machines stands as a suitable model for discriminating mis-

pronounced and correctly pronounced phone instances.

When tested in isolation, Dynamic Features turned out to be effective features in regard to

phone assessment, producing better results than a naive system. The results for both Legendre

and DCT methods were very similar, yet DCT produced slightly better results in combination

with supervectors.

Experiments showed that among all the phones that were analysed in the current work, only

a subset of them benefits from the combination of supervectors and dynamic features. A proper

strategy when following this technique is then to combine the features using a phone-dependent

approach.

The obtained results suggest that in fact dynamic features carry information complementary

to supervectors’ information, which leads to a reduction of the errors made by the classifiers.

For most of the phones for which the combination experiments gave statistically significant

gains in the development set, the experiments in the hold-out set also yielded gains, indicating

that the approach generalizes well to unseen speakers.

The number of instances for each phone was insufficient in many cases. The classes for many

phones are highly unbalanced, which led to training models with high variance an hindered the

computation of reliable statistics for the errors. Some possible consequences of this, that can

be observed in the statistical analysis carried out in the hold-out set, could be the fact that

bootstrapping confidence intervals were very wide for some of the phones, or that McNemar’s

test did not yield statistically significant results for many of the phones for which the same test

had given statistically significant results in the development set.

Finally, it is not possible to determine if any of the combination approaches is better than

the other based on the obtained results. Both Features Combination and Score Combination

approaches yielded similar results with no clearer differences. Again, using a bigger dataset

would have helped to pick out one method over the other.

44
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5.0.1 Future Work

As it was mentioned in section 1.1, a new dataset of argentinian children reading english phrases

is currently being collected and annotated. In the future, we plan to verify our findings on this

dataset, which will be significantly bigger than the one used in this work.

Due to the increasing number of highly effective DNN-based methods that can be found

in many fields (including pronunciation assessment, as it was described in the Previous Work

section 1.2), it would be worthwile to keep exploring DNN-based solutions to phone-based

pronunciation assessment, using some training algorithms and features that we have predefined

as starting point.

Finally, a different approach that is worth studying, even though it is not standard in

the literature on pronunciation assessment, is the usage of Detection Cost Function (DCF)

to explore an alternative performance metric instead of Equal Error Rate. DCF combines

both False Positive Rate and False Negative Rate according to a given cost, which is an input

parameter. As consequence, the system can focus on different operating points by varying the

value of the cost parameter and thus prioritizing, in different degrees, one measure over the

other one. In the context of pronunciation assessment in CALL systems, labeling a correctly

pronounced utterance as incorrect should be penalized stronger than labeling a mispronounced

utterance as correct, in order to avoid discouraging the students. Because of those reasons, we

think that DCF would be a more suitable metric for this scenario.



6. APPENDIX

This appendix provides complementary information obtained in the model validation phase of

the experiments.

6.1 Model Validation Results Tables for All Phones

In this section we include two tables that summarizes the results obtained when validating the

final models for both fusion types: Features Combination and Score Combination.

The tables include information of the results for all phones, and they are split in two: the

left side contains the results obtained in the development set, while the right side contains the

results obtained in the hold-out set. Along with the EER values obtained in each dataset and

the p-values obtained in the McNemar’s test, the number of instances for each class and each

phone are included. The table is sort by decreasing Kappa values of the phones.

Rows with grey background corresponds to the phones for which the McNemar’s test gives

significant results in the development set, which are the phones that are analized in the Exper-

iments and Results section 4.3.
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6.1.1 Features combination

Development Hold-Out

phones base EER F.C EER delta pvalue #pos #neg base EER F.C EER delta pvalue #pos #neg kappa

b 0.122 0.122 %0.0 1 528 395 0.133 0.133 %0.0 1 140 95 0.9

m 0.154 0.144 %6.5 0.047 3234 686 0.186 0.176 %5.4 0.268 801 188 0.76

B 0.206 0.2 %2.9 0.374 428 1169 0.179 0.189 -%5.6 0.523 126 302 0.7

s 0.319 0.283 %11.3 8.32E-19 7555 480 0.252 0.234 %7.1 0.454 1963 107 0.57

D 0.182 0.182 %0.0 1 920 2009 0.185 0.185 %0.0 1 268 486 0.55

G 0.162 0.162 %0.0 1 222 643 0.152 0.152 %0.0 1 61 145 0.51

w 0.151 0.151 %0.0 1 743 500 0.141 0.141 %0.0 1 179 128 0.43

i 0.254 0.252 %0.8 0.481 4929 1238 0.252 0.256 -%1.6 0.714 1224 301 0.41

y 0.338 0.31 %8.3 2.02E-05 2453 574 0.371 0.361 %2.7 0.844 596 156 0.39

p 0.295 0.295 %0.0 0.715 1657 1055 0.315 0.316 -%0.3 1 441 254 0.36

r 0.317 0.315 %0.6 0.561 3650 2617 0.331 0.315 %4.8 0.046 910 641 0.36

z 0.222 0.222 %0.0 1 189 997 0.242 0.242 %0.0 1 49 247 0.35

t 0.295 0.288 %2.4 0.183 2938 1542 0.323 0.314 %2.8 0.207 733 360 0.34

k 0.341 0.335 %1.8 0.339 1708 1472 0.304 0.305 -%0.3 0.913 434 388 0.32

rr 0.324 0.314 %3.1 0.299 491 1739 0.341 0.357 -%4.7 0.359 122 453 0.29

a 0.346 0.345 %0.3 0.712 10144 2069 0.371 0.354 %4.6 0.041 2509 548 0.26

o 0.408 0.396 %2.9 0.002 8040 2077 0.387 0.392 -%1.3 0.598 2030 548 0.23

l 0.279 0.269 %3.6 0.019 3505 1373 0.289 0.264 %8.7 0.009 851 356 0.22

e 0.4 0.392 %2.0 0.022 10597 3484 0.392 0.381 %2.8 0.095 2658 899 0.18

n 0.424 0.399 %5.9 1.27E-04 7152 476 0.382 0.368 %3.7 0.772 1792 125 0.15

u 0.354 0.344 %2.8 0.296 1948 482 0.355 0.336 %5.4 0.308 471 110 0.14

x 0.164 0.164 %0.0 1 590 153 0.135 0.162 -%20.0 1 161 37 -

d 0.364 0.364 %0.0 1 773 89 0.304 0.304 %0.0 1 191 18 -

g 0.234 0.232 %0.9 0.222 887 114 0.236 0.276 -%16.9 2.16E-07 237 29 -

N 0.217 0.198 %8.8 0.088 911 443 0.203 0.217 -%6.9 0.296 246 116 -

Tab. 6.1: Results of SVM system trained on the Features Combination of supervectors and DCT, for both
development and hold-out sets, compared to the SVM trained only on supervectors (baseline
system). F.C. stands for Features Combination.
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6.1.2 Score combination

Development Hold-Out

phones base EER S.C. EER delta pvalue #pos #neg base EER S.C EER delta pvalue #pos #neg kappa

b 0.122 0.122 %0.0 1 528 395 0.133 0.133 %0.0 1 140 95 0.9

m 0.154 0.145 %5.8 0.01 3234 686 0.186 0.17 %8.6 0.233 801 188 0.76

B 0.206 0.199 %3.4 0.096 428 1169 0.179 0.185 -%3.4 0.289 126 302 0.7

s 0.319 0.294 %7.8 3.67E-07 7555 480 0.252 0.236 %6.3 0.004 1963 107 0.57

D 0.182 0.179 %1.6 0.327 920 2009 0.185 0.193 -%4.3 0.146 268 486 0.55

G 0.162 0.162 %0.0 1 222 643 0.152 0.159 -%4.6 1 61 145 0.51

w 0.151 0.151 %0.0 1 743 500 0.141 0.141 %0.0 1 179 128 0.43

i 0.254 0.248 %2.4 0.074 4929 1238 0.252 0.248 %1.6 0.039 1224 301 0.41

y 0.338 0.309 %8.6 7.40E-06 2453 574 0.371 0.365 %1.6 0.842 596 156 0.39

p 0.295 0.295 %0.0 1 1657 1055 0.315 0.315 %0.0 1 441 254 0.36

r 0.317 0.316 %0.3 0.285 3650 2617 0.331 0.328 %0.9 0.832 910 641 0.36

z 0.222 0.206 %7.2 0.002 189 997 0.242 0.259 -%7.0 0.774 49 247 0.35

t 0.295 0.285 %3.4 0.024 2938 1542 0.323 0.31 %4.0 0.056 733 360 0.34

k 0.341 0.333 %2.3 0.102 1708 1472 0.304 0.283 %6.9 8.78E-04 434 388 0.32

rr 0.324 0.307 %5.2 0.022 491 1739 0.341 0.336 %1.5 0.913 122 453 0.29

a 0.346 0.344 %0.6 0.883 10144 2069 0.371 0.362 %2.4 0.139 2509 548 0.26

o 0.408 0.398 %2.5 2.13E-04 8040 2077 0.387 0.385 %0.5 1 2030 548 0.23

l 0.279 0.271 %2.9 4.31E-04 3505 1373 0.289 0.283 %2.1 0.152 851 356 0.22

e 0.4 0.39 %2.5 1.78E-04 10597 3484 0.392 0.381 %2.8 0.022 2658 899 0.18

n 0.424 0.407 %4.0 0.006 7152 476 0.382 0.366 %4.2 0.103 1792 125 0.15

u 0.354 0.343 %3.1 0.134 1948 482 0.355 0.327 %7.9 0.02 471 110 0.14

c 0.44 0.404 %8.2 0.01 405 105 0.308 0.353 -%14.6 0.442 104 24 -

x 0.164 0.159 %3.0 1 590 153 0.135 0.112 %17.0 0.227 161 37 -

d 0.364 0.361 %0.8 0.28 773 89 0.304 0.319 -%4.9 0.031 191 18 -

g 0.234 0.228 %2.6 0.774 887 114 0.236 0.238 -%0.8 0.625 237 29 -

N 0.217 0.203 %6.5 0.303 911 443 0.203 0.215 -%5.9 0.015 246 116 -

Tab. 6.2: Results of the Score Combination between the SVM system trained on supervectors and the
SVM system trained on DCT coefficients, for both development and hold-out sets, compared
to the SVM trained on supervectors only (baseline system). S.C stands for Score Combination.

6.2 Model Validation Plots for All Phones

In this section we include two plots that summarizes the results obtained when validating the

final models in both development and hold-out set.
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Fig. 6.1: Comparison of relative gains over the Baseline Systems between Features Combination systems
and Score Combination systems computed on the development set for all the phones. Results are
sorted in descending order according to their McNemar p-values computed on the development
set. Only the results marked with (*) gave statistically significant gains in the development set.

Fig. 6.2: Comparison of relative gains over the Baseline Systems between Features Combination systems
and Score Combination systems computed on the hold-out set for all the phones. Results are
sorted in descending order according to their McNemar p-values computed on the development
set. Only the results marked with (*) gave statistically significant gains in the development set.
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