
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Improving Realism of a Medical Surgery
Simulator: From Linear to Quadratic

Interpolation and its Significance in the
Cutting Problem

Tesis presentada para optar al t́ıtulo de
Licenciada en Ciencias de la Computación

Sabrina Izcovich

Directores: Christoph Paulus y Alejandro D. Otero

Buenos Aires, 2018

En la actualidad, la simulación pre-operativa comienza a ganar terreno, y su correcto fun-
cionamiento en tiempo real [10] cobra cada vez mayor importancia a la hora de querer
estudiar posibles comportamientos de los órganos en los quirófanos [18]. Es por esto que
se vuelve fundamental conseguir una representación acertada de los mismos a medida que
son sometidos a deformaciones.

Basado en los modelos matemáticos y f́ısicos de deformación de objetos, la mayoŕıa de
los simuladores quirúrgicos utilizan actualmente el método de los elementos finitos (FEM)
[9]. En el caso de la simulación de cortes en ciruǵıas, la mayoŕıa de los métodos publicados
requieren de un reajuste de las topoloǵıas de malla [19] con el fin de alinear los bordes de
los elementos con el corte.

Existen diversos tipos de elementos finitos para modelización. En particular, la uti-
lización de elementos lineales requiere de una gran cantidad de los mismos para lograr una
descripción realista de los contornos. Esto produce un gran retardo a la hora de calcular
la posición de los elementos luego de la deformación, empeorando la performance de la
simulación en tiempo real. Por otro lado, al momento de querer realizar cortes curvos,
los elementos lineales no otorgan una precisión rigurosa. El uso de elementos cuadráticos
debeŕıa conllevar a mejoras dado que se espera que se alcance una alta precisión con menos
elementos [11].

El trabajo de tesis se basa en mejorar la simulación de tejidos blandos con el fin de
que ésta sea lo más cercana posible a la realidad, sin empeorar la performance del sim-
ulador. El mismo se basa en la implementación de elementos cuadráticos (en particular,
tetraedros) y su utilización en los objetos a modelar en 3D. Por otro lado, se implementó
la adaptación de los métodos necesarios para el reajuste de las topoloǵıas de malla a ele-
mentos cuadráticos con el fin de lograr cortes de órganos modelados con los mismos.

Si bien existen numerosos frameworks dedicados a la representación y simulación de
objetos, nos centramos en SOFA1 [8]. Éste fue desarrollado por el INRIA para simulación
y modelización f́ısica interactiva [12], y es de libre distribución. En particular, se trabajó
con tres plugins: Quadratic Tetrahedra para la representación de elementos cuadráticos,
CGoGN para la incorporación de tetraedros cuadráticos a la más reciente topoloǵıa de
SOFA y Cutting Plugin para la preparación de los objetos para cortes [20].

Las implementaciones y adaptaciones realizadas fueron luego estudiadas anaĺıticamente
para comprobar su correctitud y permitieron comprobar, por medio de distintos análisis,
que las deformaciones de elementos curvos representadas con elementos cuadráticos se
asemejan más a la realidad que las realizadas con elementos lineales para la misma cantidad
de elementos. Luego, pudimos observar que la cantidad de elementos necesaria para una
simulación acertada de órganos y cortes de tejidos en ciruǵıas es menor cuando éstos son
cuadráticos que para el caso de lineales. Esto último nos permitió concluir que el uso
de elementos cuadráticos presenta una mejora para la simulación de ciruǵıas médicas en
tiempo real sin empeorar su performance.

Palabras claves: Simulación, Elementos Cuadráticos, Ciruǵıas, Tetraedros, SOFA.

1 https://www.sofa-framework.org/

In the last decades, the use of minimally invasive surgery has grown exponentially due
to its benefits for the patients in term of haemorrhaging risk reduction and shortened
recovery time, but it remains complex from a surgical point of view because of the re-
duced field of view which considerably impacts depth perception and surgical navigation.
Nowadays, preoperative simulation begins to gain ground, and its correctness in real time
[10] is crucial while studying possible organs behaviors in operating rooms [18]. That’s
why it’s fundamental to find a good representation of them while being deformed.

Based on the mathematical and physical models of objects deformation, most surgical
simulators use nowadays the method of finite elements (FEM) [9]. In the case of cutting in
surgeries simulations, most of the published methods require a readjustment of the mesh
topologies [19] for aligning the element’s borders with every cut.

While using linear elements for modelization, it’s necessary to add a lot of them to get
a realistic description of their outlines. This can induce a big retardation while calculating
the element’s position after a deformation, blowing the simulation’s performance in real
time. On the other hand, while trying to do curved cuts, the linear elements don’t answer
to a rigorous precision. The use of quadratic elements should bring improvements due to
his high precision with less elements [11].

The thesis work is based on the improvement of the soft-tissues simulation in order to
make it as real as possible, without deteriorating the simulator’s performance. The goal
of it consisted of the quadratic elements implementation (in particular, tetrahedra) and
its utilization in 3D modelated objects. On the other hand, all the necessary method’s
adaptations were implemented to readjust the mesh topologies to quadratic elements to
get cut organs modelated with them.

Even if many objects representation and simulation frameworks exist nowadays, we
focus in SOFA2 [8], developed by INRIA for interactive physical simulation and mod-
elization [12], and is open-source. In particular, we worked with three plugins: Quadratic
Tetrahedra for the representation of quadratic elements, CGoGN for the incorporation of
quadratic tetrahedra to the latest SOFA topology and Cutting Plugin for the preparation
of objects to be cut [20].

The implementations and adaptations made were then analyzed analytically to verify
their correctness and allowed to verify, by means of different analyzes, that the deforma-
tions of curved elements represented with quadratic elements resemble reality more than
those made with linear elements for the same amount of elements. In addition, we ob-
served that the amount of elements necessary for a successful simulation of organs and
tissue cuts in surgeries is less when they are quadratic than in the case of linear. The
latter allowed us to conclude that the use of quadratic elements presents an improvement
for the simulation of medical surgeries in real time.

Keywords: Simulation, Quadratic Elements, Surgery, Tetrahedra, Modelling, SOFA,
Medicine.

2 https://www.sofa-framework.org/

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank everyone involved in my career since the
very early stages.

In particular, I would like to point out a few people who supported me in crucial ways.

Christoph Paulus, my director, for his dedication and patience. For answering each
and every one of my emails, always in a positive way and motivating me with his constant
follow-up. Without his help, this would not have been possible.

Alejandro D. Otero, my director, for his time, for being attentive and patient, and for
helping me complying within my timeframes.

My family, my parents and my siblings, for their love, for supporting me in the most
difficult times.

Mat́ıas Garćıa Marset, for always being there for me, for listening and accompanying
me throughout my career.

Lautaro Petaccio, for being my right hand, for helping me whenever I needed it, ad-
vising me and, in particular, nurturing my curiosity.

Francisco Dorr, for coming along with me in the final leg.

Martina Faverio, for helping me make beautiful figures.

All my school friends for making this path much more easy-going.

My close friends Camila Salazar, Agustina Garćıa and Victoria Cravino, for being my
ground wire.

My professors, for their constant help and their willingness to share their knowledge.

The University of Buenos Aires, for changing my entire way of thinking and giving me
everything, including the possibility of teaching.

iii

CONTENTS

1. Theory of Elasticity . 4
1.1 Kinematics . 4
1.2 The strain . 6
1.3 The stress . 8
1.4 Elastic stress-strain law . 9
1.5 Elasticity problem - differential formulation 11
1.6 Cutting problem - differential formulation 11
1.7 Weak formulation . 12

2. The Finite Element Method . 14
2.1 Method description . 14
2.2 Element . 15
2.3 Nodes and Degrees of Freedom . 16
2.4 Finite Element Discretization . 16
2.5 Linear Elements . 20

2.5.1 Linear Tetrahedron Geometry . 21
2.5.2 Tetrahedron coordinates . 22
2.5.3 Linear Interpolation . 23
2.5.4 Coordinate Transformations and Shape Functions 23

2.6 Quadratic Elements . 24
2.6.1 Quadratic Triangle . 24
2.6.2 Quadratic Tetrahedron . 25

3. SOFA - an Open Source framework for medical simulation 27
3.1 Basic structure . 28
3.2 Combinatorial Maps: CGoGN . 30

3.2.1 From Incidence Graph to Cell-Tuples 31

4. Implementation . 33
4.1 2-D Implementation - Python . 34
4.2 3-D Implementation - SOFA . 38
4.3 3-D Implementation - CGoGN . 39

4.3.1 Placement of points . 40

5. Cutting . 43
5.1 Remeshing . 44

5.1.1 Remeshing in 2-D . 45
5.1.2 Remeshing in 3-D . 46

5.2 Cutting . 53

iv

6. Results . 55
6.1 Convergence Analysis . 55

6.1.1 First configuration . 56
6.1.2 Second configuration . 59

6.2 Comparison linear vs quadratic . 63
6.2.1 Analytic comparison . 63
6.2.2 Time comparison . 64

6.3 Visual comparison . 66
6.3.1 Comparison between elements of the same type 69

6.4 Cutting results . 69
6.4.1 Theoretical analysis . 69
6.4.2 Experimental Results . 71

6.5 Organ example: a liver . 72

7. Conclusion . 76

8. Future Work . 78

INTRODUCTION

In the last decades, surgery is experiencing stronger mechanization. In addition to the
development of diagnostic devices that help to reduce the need for surgery, exercise, plan-
ning and assistance software become more relevant. For example, the use of minimally
invasive surgery has grown exponentially due to its benefits for the patients in term of
haemorrhaging risk reduction and shortened recovery time.

In order for the software to be used in surgery, the three-dimensional simulation of soft
tissue deformations with a realistic view of sections under the influence of external and
internal forces and marginal displacements is required.

In addition to the theoretical training of physicians, such an exercise software with
sectional simulations can strengthen the practical training with realistic situations early
on. In particular, computer-based training systems offer an elegant solution to the current
need for better training in Medicine, since realistic and configurable training environments
can be created. This can bridge the gap between basic training and performing the actual
intervention on patients, without any restriction for repetitive training.

The combination of visual and haptic perception in surgery is being trained and the
surgeons have already performed many virtual operations of this kind prior to a real op-
eration.

With planning systems that include three-dimensional simulations, critical situations
can already be identified, discussed, and audited before an intervention. They allow the
planning of the procedure during operations and thus an optimized intervention time on
the patient. The patient is exposed to less stress and thereby hope for medical profession-
als and researchers hope for a faster recovery.

Assistance systems can warn of wrong cuts (for example, through vessels) during
surgery and prevent mistakes. If complications occur, the simulation software helps to
quickly and efficiently prevent the right action.

Therefore, modeling soft tissue by means of continuum mechanics has become an ac-
tive area of research in many fields such as patient-specific surgery simulation, non-rigid
image registration and cardiovascular diagnostics.

The systems mentioned are constantly evolving. The simulation of a cut is and remains
an open challenge, since existing methods suffer from stability or runtime problems, and
organ motion due to respiration and contact with surgical instruments can significantly
degrade the accuracy of image-guided surgery.

In a simulation of the deformation of a body, it must first be discretized. The body
is replaced by a finite number of nodes at which the deformation is calculated. For this
there are two different approaches: First, the finite element method, which connects the

1

2

nodes with elements and applies the material properties to these elements. Second, the
so-called mesh free methods, which work without a mesh and apply physical properties
directly to the nodes.

In this thesis, we seek to improve the representation of organs and simulation of their
cuts in the SOFA3 framework. To achieve it, we make use of the finite element method
since it can be used to calculate the deformation of any body under load. Therefore,
in order to be able to simulate cutting problems with the FEM, the elements must be
adapted in a remeshing process.

The objective of this work is to incorporate the quadratic elements4 (tetrahedra) into
SOFA in order to improve organs simulation in the context of medical operations. Since a
quadratic approximation should be more accurate than the linear one with fewer elements
[14], we adapted an implementation of the quadratic tetrahedra plugin to represent objects
using a quadratic mesh. Beyond that, we incorporated the quadratic tetrahedra in the
CGoGN Plugin5 [15] in order to be able to cut quadratic objects by using the Cutting
Plugin. Then, we modified the remeshing functions to prepare objects to be cut in real-
time.

Within the results of this thesis, the convergence analysis of the quadratic tetrahedra
incorporated in SOFA once added to CGoGN and the evaluation of the remeshing before
cutting them can be found.

Outline

In the first chapter, we lay the physical basis of this work. We begin with the intro-
duction of the elasticity theory, including the concepts of the strain and the stress; and
the stress-strain law. Then, we formulate the cutting problem in the differential - strong
- and variational - weak - form.

In the second chapter, we explain the finite element method in a generic way. To do
so, we introduce the definitions of element, node and degree of freedom. Then, we
present the finite element discretization of the formulations exhibited in the first chapter.
Finally, we present the linear and quadratic tetrahedra shape functions in order to be able
to apply the finite element method to those types of elements.

In the third chapter, we describe the simulation open framework architecture, its
functionality and its basic structure. The CGoGN combinatorial map is also introduced
in this chapter due to its important role throughout this thesis.

In the fourth chapter, we outline the methods used to implement quadratic elements
in the second and third dimensions in space, in Python and C++ respectively. Then, we
explain the CGoGN adaptation pursued in order to introduce quadratic elements without

3 https://www.sofa-framework.org/api/SOFA/index.html
4 Elements with shape functions using quadratic polynoms
5 CGoGN (Combinatorial and Geometric modeling with Generic N-dimensional Maps) is a C++ library

that provides an efficient index-based implementation of n-dimensional combinatorial maps.

3

including a new topology.

In the fifth chapter, we present the cutting procedure and its previous remeshing
process with the quadratic incorporation. The methods are explained in the second and
third dimensions in space.

In the sixth chapter, we exhibit the results. We begin by analyzing the implemented
methods convergence. Then, we compare the linear and quadratic beams deformations
convergence. Finally, we show a visual comparison between linear and quadratic repre-
sentations, and an example of a liver cut.

We finish this thesis by summarizing the work done, presenting relevant conclusions
and pointing out possible future directions.

1. THEORY OF ELASTICITY

In order to achieve an efficient computation and simulation of the deformations of elastic
bodies as a reaction to external forces and to cuts, an interdisciplinary approach has to
be taken. In this chapter, ideas from fields of mechanical engineering, computer science
and mathematics are combined to introduce the key concepts for a better understanding
of this work.

The theory of elasticity considers the deformation of elastic bodies under the influence
of external forces. As it sees the bodies as a continuum, it belongs to the continuum
mechanics [13]. With regard to the deformation of a body, elasticity is the property of a
substance to react to any external force in such a way that the process is reversible [17].
This means that an elastic body returns to its pre-stressed state after being deformed by
a force.

In this case, we restrict detailed examination to elastic isotropic materials. Also, we
make the following material behavior assumptions:

• Macroscopic Model: The material is mathematically modeled as a continuum body.

• Elasticity: The stress-strain response is reversible and consequently the material
has a preferred initial state of stable equilibrium. By convention we assume that the
material is unstressed and undeformed. On applying loads, and possibly temperature
changes, the material develops nonzero stresses and strains, and moves to occupy a
deformed configuration.

• Linearity: The relationship between strains and stresses is linear. Doubling stresses
doubles strains, and viceversa.

• Isotropy: The properties of the material are independent of the direction.

• Mass conservation: We assume that the mass stays the same during a motion.

The following section briefly outlines the mathematical and physical notions underlying
our soft body simulator.

1.1 Kinematics

In this section, we analyze the variables that interfere in a body displacement.

We consider a continuum body B that moves and deforms in space, changing its config-
uration dependent on the time t. Hereby, Ω0 is the reference (or undeformed) configuration
(t = 0) and Ω is the current (or deformed) configuration. Points in the reference config-
urations are denoted as X , while points in the current configurations are written as x .
We assume a uniquely inversible vector field ϕ, called motion, that relates each position
in the reference to a position in the current configuration [22].

4

1. Theory of Elasticity 5

Fig. 1.1: Deformation of the body B with material points P, Q and infinitesimal line element dX
from the reference configuration Ω0 to the current configuration Ω. Figure extracted from
[21]

In Figure 1.1, the deformation of a point P or Q ∈ B, from position X in the reference
configuration to position x in the current configuration, can be perceived.

In elasticity theory, the body is seen as a continuum with reversible deformation, which
is a deterministic approach. The deformation ϕ is defined in 1.1 using the displacement
function u, which is sufficient for the calculation since the initial state is already known
as shown in Figure 1.1 [16].

Quantities in relation to the deformed state of the body (e.g. strain) are commonly
expressed in terms of a fixed reference configuration Ω0 ⊃ R3. The configuration mapping
ϕ : Ω0 × [0, T] transforming material particles from their reference positions X to current
positions x can be written as [10]

x(t) = ϕ(X, t) = X + u(X, t) (1.1)

where u is a displacement field from the initial configuration.

For later use, we define the deformation gradient ∇ϕ as

∇ϕ =
dx

dX
= I + ∇u (1.2)

The deformation function ϕ should keep the orientation of the normal of the surfaces
and must not destroy any volume, so det(∇ϕ) > 0 has to be valid.

1. Theory of Elasticity 6

We start by presenting three important notions to define the main principles of the
elasticity problem: a dimensionless deformation measure, called strain ε, the force per unit
area reprented by the stress σ, and a material law relating the two to each other. Then, we
introduce the elasticity problem to be considered: the deformation of a continuum body
and its differential and weak formulation while subjected to a cut.

1.2 The strain

To illustrate the strain, we consider the example of a rod of Figure 1.2 with initial length
L which is stretched to a length L’.

L
0 x

L’
0 x

Fig. 1.2: Rod before and after being stretched. Figure inspired from [2]

The strain measure ε, a dimensionless ratio, is defined as the ratio of elongation with
respect to the original length [2]:

ε =
L′ − L
L

(1.3)

Under the action of applied forces, solid bodies change in shape and volume and its
deformation is described mathematically in the following way: every component Xi will
have a different value xi after the deformation:

ui = xi −Xi

The vector u is called the displacement vector [1]. As the coordinates xi are functions
of the coordinates Xi, then the displacement ui is also a function of the coordinates Xi.

We consider an arbitrary point P in the bar shown in Figure 1.2, which has a position
vector X, and its infinitesimal neighbor dX. Point P shifts to p, which has a position
vector x after the stretch. In the meantime, the small “step” dX is stretched to dx.

1. Theory of Elasticity 7

L
P0

X
dX

dx

x

x

L’

u p

x
0

Fig. 1.3: Strain calculation. Figure inspired from [2]

The strain at point P can be defined as in the global strain measure,

ε =
dx1 − dX1

dX1
(1.4)

Since u1 = x1 −X1, the strain can hence be rewritten as,

ε =
dx1 − dX1

dX1
=

du1

dX1
(1.5)

In the case of a three-dimensional material, the non-linear strain tensor ε is defined as

ε =
1

2
(∇ϕT∇ϕ− I) where I = diag(1)3×3 (1.6)

Then,

∇ϕT∇ϕ = (I + ∇u)T (I + ∇u)

= I + ∇uT + ∇u+ ∇uT∇u
(1.7)

When the deformation is small, ∇uT∇u is negligible, then, from Equation 1.6 we get

ε =
1

2
(∇ϕT∇ϕ− I)

=
1

2
(I + ∇uT + ∇u− I)

=
1

2
(∇uT + ∇u)

(1.8)

The tensor components are

εi,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.9)

which is the linearized Cauchy elasticity tensor [21].

1. Theory of Elasticity 8

We obtain a linear dependency between tension and distortion because of the lineariza-
tion.

Usually, the strain is written as an array in the so-called engineering strain, as defined
by [6]

{ε} = {εxx εyy εzz 2εxy 2εyz 2εxz}T (1.10)

with only six unique components because of its symmetry and the shear components
with twice their value.

1.3 The stress

The stress, represented by σ, can be simply thought as a force distributed over an area.
For example, the force applied to a cylinder in the following way:

F

A

Fig. 1.4: Force being applied to a cylinder.

To calculate the stress, one would divide the force by the cross-sectional area of the
cylinder because the force is constant and perpendicular to the body:

σ = F/A (1.11)

The arrangement of the molecules of a body that is not deformed corresponds to a state
of thermal equilibrium [1]. When a deformation occurs, the arrangement of the body’s
molecules is changed, and the body ceases to be in its original state of equilibrium. Forces
therefore arise which tend to return the body to equilibrium. These internal forces which
occur when a body is deformed are called internal stresses.

The internal stresses are due to molecular forces (i.e. the forces of interaction between
the molecules). An important fact in the theory of elasticity is that the molecular forces
have a very short range of action. Their effect extends only to the neighbourhood of the
molecule exerting them, over a distance of the same order as that between the molecules,
whereas in the theory of elasticity, which is a macroscopic theory, the only distances con-
sidered are large compared with the distances between the molecules.

The stress σ results from the deformation of the body, which is characterized by the
displacements of the points in the body u.

1. Theory of Elasticity 9

The stress is a symmetric second order tensor with axial: those with repeated indices,
and tangential or shear components; those with non repeated indices. It can be seen as
if one of index indicates the normal direction of face where the tension is applied and the
other index indicates the force component in the respective direction. In Figure 1.5, we
can see an illustration of it.

σy

σx

σz

σzy

σzz

σxz

σxy
σyz

σyx

y

x

z

Fig. 1.5: Stress tensor components. Components with non repeated indices are symmetric. Figure
extracted from [3].

In the case of a three-dimensional material, the stress is defined by [6] as

{σ} = {σxx σyy σzz σxy σyz σxz}T (1.12)

In the following section, the relationship between the strain and the stress is described.

1.4 Elastic stress-strain law

We suppose that the body is not subject to tension in the initial configuration and behaves
the same in all directions and at all points, i.e., the material is isotropic1 and homogeneous.

When applying a load a part of the body, the relationship between stress and strain is
initially linear. While the relationship remains linear, it is considered the elastic region of
the material.

In the 1-D context, the elastic stress-strain law, known as Hooke’s law is σ = Eε,
where E is the Young’s modulus2.

1 Material where properties are independent of direction, such as metals, concrete and plastics.
2 The Young’s modulus is the change in stress over the change in strain.

1. Theory of Elasticity 10

Δε Δε
Δσ Δσ

Elastic region

Strain ε

E = Young’s Modulus =

Stress and Strain Relationship: Young’s Modulus

Fig. 1.6: Stress vs strain relationship in the elastic region of a material.

This linear stress-strain relationship yields E, which is the Young’s modulus of the
part or material.

In 3-D, the linear relationship between the stress and the strain is a tensorial form of
the isotropic linear elastic stress-strain relation that connects components of both tensors:

σij = 2µεij + δijλ
3∑

k=1

εkk (1.13)

where ν is the Poisson’s ratio3 and λ and µ are the Lamé constants4, where

λ =
Eν

(1 + ν)(1− 2ν)
(1.14)

µ =
E

2(1 + ν)
(1.15)

While the Young’s modulus can take any positive values, the Poisson’s ratio is inferior
to 0.5 and incompressible materials have a Poisson’s ratio close to 0.5 [22].

In the 2-D and 3-D cases, the constitutive equation written in matricial form becomes

{σ} = D{ε} (1.16)

where
{σ} = {σx σy σz σxy σyz σxz}T

{ε} = {εxx εyy εzz 2εxy 2εyz 2εxz}T

and the material property matrix D is defined as

3 The Poisson’s ratio quantifies the change of the volume, i.e. the expansion of an object perpendicular
to a compression or stretch.

4 The Lamé constants are two material-dependent quantities denoted by λ and µ that arise in strain-
stress relationships.

1. Theory of Elasticity 11

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 (1.17)

1.5 Elasticity problem - differential formulation

In this context, the balance of linear momentum yields [16]

∇.σ + g = ρ
∂v

∂t
(1.18)

where ρ is the material density in spatial form, g : Ω −→ R3 is the body force and v the ve-
locity dependent on time t; which is Cauchy’s equation of motion (CEM) in Eulerian form.

We consider object deformations enforced by boundary conditions like displacements
uD on ΓD – Dirichlet boundary conditions – and surface forces s on ΓN (where ΓN ∩ΓD =
∅) – Neumann boundary conditions. Then we can formulate all boundary conditions

uD : ΓD −→ R3 and

s : ΓN −→ R3.

The differential or strong formulation of the elasticity problem can be obtained by
applying the force equilibrium on infinitesimal small volumes of the object, see [3]:

Find u = ϕ− id ∈ C2(Ω) ∩ C1(Ω), such that

∇.σ + g = ρ
∂v

∂t
σ(x)n(x) = s(x) ∀x ∈ ΓN

u(x) = uD(x) ∀x ∈ ΓD

∂Ω = ΓN ∪ ΓD ΓD ∩ ΓN = ∅

where n is the normal of Ω pointing outwards and ∂Ω is its boundary.

1.6 Cutting problem - differential formulation

In this section we analyze the cutting problem by firstly defining the cut5 surface Γc ⊂ R3.

For simplicity reasons, we only consider one partial cut, i.e. the parameterized cut
boundary is continuous. However, the approach can be extended in order to accomodate
multiple cut configurations.

5 cut related variables use a superscript c, for example vc

1. Theory of Elasticity 12

Since the cut separates the body, the newly considered domain is Ωc = Ω\Γc [16].
As a result of that, the boundary ∂Ωc of the body is larger and more surface is added:
∂Ωc = ∂Ω ∪ (Γc ∩ Ω).

Then, the cutting problem corresponds to an elasticity problem like the one mentioned
above, where the Neumman boundary condition is

ΓcN = ΓN ∪ Γc (1.19)

The introduced problem can be contemplated in the following figure:

, b

(a) Elasticity problem with a cut.

, b

(b) Interpretation as a cutting problem with
extended boundary force condition.

Fig. 1.7: 2D example of a cutting problem with force and displacement boundary conditions. Fig-
ure extracted from [16]

1.7 Weak formulation

To develop the finite element equations, the partial differential equations must be restated
in an integral form called the weak form [9]. A weak form of the differential equations is
equivalent to the governing equation and boundary conditions, i.e. the strong form.

The weak form works as follows: By multiplying the above differential equation with
an arbitrary test function δu ∈ C∞0 (Ω)∩ VD(ΓD,0) and integrating the equation over the
space Ω, we obtain an integral equation that is equivalent to the differential equation.
Using the Gauß integration theorem, this integral formulation can be transformed to the
so-called variational or weak formulation of the problem

Find u = ϕ− id ∈ V = H1(Ω) ∩ VD(ΓD,uD) ∩ VN (ΓcN , s), such that∫
Ω
∂uT .ρ

∂v

∂t
= −

∫
Ω
∇δu : σ dΩ +

∫
ΓN

δuT · s dΓN +

∫
Ω
δuT · g dΩ (1.20)

∀δu ∈ C∞0 (Ω) ∩ VD(ΓD,0)

1. Theory of Elasticity 13

where H1(Ω) is the Sobolev space [21] over Ω.

We can notice that
∇δu : σ =

∑
i,j

(∇δu)ijσji (1.21)

The previous introduction presented all the concepts of elasticity necessary to under-
stand the main problem of this thesis and, in the following chapter, its discretization using
the finite element method is explained.

2. THE FINITE ELEMENT METHOD

In this chapter, we introduce the main notions of the finite element method (FEM), that
replaces an object by a finite number of nodes connected by so-called finite elements that
use the material laws explained in the previous section.

2.1 Method description

The FEM is used to approximate the solution of problems described by partial differential
equations, like the elasticity deformation problem defined in chapter 1. In particular, it is
a numerical approach by which these partial differential equations can be solved approx-
imately. From an engineering standpoint, the FEM is a method for solving engineering
problems such as stress analysis, heat transfer, fluid flow and electromagnetics by com-
puter simulation. It is used to predict the behavior of structural, mechanical, thermal,
electrical and chemical systems for both design and performance analysis as well.

The basic idea of the FEM is to divide the body (e.g. the plate with a hole of Figure
2.1) into finite elements, just called elements (Figure 2.2), connected by nodes (the element
tips). For example, a plate with a hole viewed as a source mathematical object is replaced
by triangles (discrete approximations) and elements could be separated (disassembly) by
disconnecting nodes. This is called the finite element mesh and the process of making the
mesh is called mesh generation.

Fig. 2.1: Plate with a hole. Fig. 2.2: Triangular Finite Element.

14

2. The Finite Element Method 15

Fig. 2.3: Finite Element Model. Figure inspired from [9]

As a first step, an integral equation - the weak formulation - is derived based on the
strong and variational formulation.

In order to discretize the continuous problem, the space is represented by points and
elements that interpolate the positions between the points. Then, these discretizations are
inserted inside of the weak formulation approximating the balance equation at a time t.

Specifically, the finite element method consists of the following five steps [9]:

1. Preprocessing: subdividing the problem domain into the finite elements.

2. Element formulation: development of equations for elements.

3. Assembly: obtaining the equations of the entire system from the equations of indi-
vidual elements.

4. Solving the system of equations.

5. Postprocessing: determining quantities of interest, such as stress and strain, and
obtaining visualizations of the response.

Step 1 is generally performed by automatic mesh generators. Step 2 generally requires
the development of the partial differential equations for the problem and its weak form
1.20. Steps 3 and 5 are programmed and step 4 is solved automatically.

The finite element method has been introduced recently to the field of real-time soft
body deformation [20] and has many benefits such as accuracy and robustness. However,
it also shows some limitations, such as computation time and sensivity to the mesh reso-
lution and mesh quality.

In what follows, some important concepts to understand the finite element discretiza-
tion are defined.

2.2 Element

An element is the basic building block of the finite element analysis. It is a mathematical
relation that defines how the degrees of freedom of a node relate to the next. It also relates

2. The Finite Element Method 16

how the deflections create stresses.

There are several types of elements: lines in 1-D, triangles or quadrilaterals in 2-D and
tetrahedron, penta, hexahedron or pyramid in 3-D. Some of them are presented in Figure
2.4.

2-D 2-node
bar

node

2-D 3-node
triangle

2-D 4-node
quadrilateral

2-D 3-node
bar

2-D 6-node
triangle

2-D 8-node
quadrilateral

3-D 4-node
tetrahedral

3-D 10-node
tetrahedral

3-D 8-node
brick

3-D 20-node
brick element

Fig. 2.4: Example of FEM element types.

The element type to be used for a finite elements analysis depends on the object to
be modeled and the type of analysis to be performed. In our case, we use isoparametric
triangles for 2-D and tetrahedra for 3-D, with conforming meshs.

2.3 Nodes and Degrees of Freedom

A node is a coordinate location in space where each of its entries is called a degree of
freedom (DOF). Usually, nodes are located in the vertices of the elements. However, some
elements have “midside” nodes – i.e. nodes positioned midway between the corner nodes.
The edges of these “higher order” elements can therefore curve – making them suitable
for capturing complex geometrical shapes, as shown in Figure 2.4.

This is possible since these elements permit the solution between the nodes to vary in
non-linear ways [23], which is an important feature when field variables change rapidly.

In finite element analysis, a node may be limited in the calculated motions for a variety
of reasons. For example, we don’t need to calculate the out of plane translation on a 2-D
element because it would not be a 2-D element if its nodes were allowed to move out of
the plane [7]. The results of finite element analysis (deflections and stresses) are usually
given at the nodes.

2.4 Finite Element Discretization

The idea of the finite element discretization technique is to look for an approximated so-
lution uh in a suitable finite-dimensional space to the variational problem in the infinite-
dimensional space V described in 1.20 of continuous functions. uh is defined in the discrete

2. The Finite Element Method 17

sub-space Vh ∈ V .

The so called nodal basis functions NJ is zero at every other node except the associated
J-th node, at which it is one. This is called the δ-property.

In order to discretize the weak formulation described in 1.20, uh is expressed by the
linear combination

uh =
n∑
J=1

UJNJ (2.1)

of the n basis functions NJ with the time dependent coefficients UJ which represent
the displacement vector on node J , UJ = (UJ,1, UJ,2, UJ,3).

Considering uh = (uh,1, uh,2, uh,3), equation 2.1 can be written, for a 4-node element
example, in matrix form as:

uh,1uh,2
uh,3

 =

N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4





U1,1

U1,2

U1,3

U2,1

U2,2

U2,3

U3,1

U3,2

U3,3

U4,1

U4,2

U4,3



(2.2)

As a direct consequence of the δ-property, the coefficients Ui,j coincide with the dis-
placements of the element nodes when using nodal basis functions. The solution uh is
C0-continuous and we have Vh ∈ V , allowing statements on uniqueness and existence of
solutions to be directly transferred from the continuous to the discrete problem [21].

The figure below illustrates this principle for a 1-D problem. In this case, there are
seven elements along the portion of the x-axis, where the function u is defined.

2. The Finite Element Method 18

u0

u1
u7

N7N1N0

1

x

u

Fig. 2.5: The function u (blue line) is approximated by uh (red line), which is a linear combination
of basis functions Ni (represented by the solid black lines). The coefficients are denoted
by u0 through u7. Figure inspired from [25]

For later use, we also introduce the displacement gradient in matrix form. For a 4-node
element example it reads,

∇uh =



∂u
∂x
∂u
∂y
∂u
∂z
∂v
∂x
∂v
∂y
∂v
∂z
∂w
∂x
∂w
∂y
∂w
∂z


=



∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x 0 0
∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y 0 0
∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z 0 0

0 ∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x 0

0 ∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y 0

0 ∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z 0

0 0 ∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x

0 0 ∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y

0 0 ∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z





U1,1

U1,2

U1,3

U2,1

U2,2

U2,3

U3,1

U3,2

U3,3

U4,1

U4,2

U4,3


(2.3)

It is theoretically possible to use different function spaces for uh and the test func-
tions δuh. However, in practice we usually choose these spaces to be the same (Galerkin
method). Thus we have

2. The Finite Element Method 19

∇δuh =



∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x 0 0
∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y 0 0
∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z 0 0

0 ∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x 0

0 ∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y 0

0 ∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z 0

0 0 ∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x

0 0 ∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y

0 0 ∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z





δU1,1

δU1,2

δU1,3

δU2,1

δU2,2

δU2,3

δU3,1

δU3,2

δU3,3

δU4,1

δU4,2

δU4,3


(2.4)

Equations 2.3 and 2.4 can be compactly written as ∇uh = BU and ∇δuh = B δU ,
respectively, defining for a 4-node element example,

B =



∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x 0 0
∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y 0 0
∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z 0 0

0 ∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x 0

0 ∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y 0

0 ∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z 0

0 0 ∂N1
∂x 0 0 ∂N2

∂x 0 0 ∂N3
∂x 0 0 ∂N4

∂x

0 0 ∂N1
∂y 0 0 ∂N2

∂y 0 0 ∂N3
∂y 0 0 ∂N4

∂y

0 0 ∂N1
∂z 0 0 ∂N2

∂z 0 0 ∂N3
∂z 0 0 ∂N4

∂z


(2.5)

We can then approximate

∇δu : σ

in 1.20 by

δUTBTDB∗U

where

B∗U ≈ ∇u
T +∇u

2
and D is defined in 1.17. (2.6)

Then, we obtain

∫
Ω
∇δu : σ dΩ =

∫
Ω
δUTBTDB∗UdΩ = δUT

∫
Ω
BTDB∗dΩ︸ ︷︷ ︸

K

U = δUTKU (2.7)

The element stiffness matrix is of the form

Ke =

∫
Ωe
BTDB∗dΩ (2.8)

2. The Finite Element Method 20

By putting matrix D from 1.17 and matrix B from 2.5 into 2.8, the element stiffness
matrix is computed.

If we assemble all of the Ke for every e, we get K:

K =
∑
e

∫
Ωe
BTDB∗dΩ (2.9)

On the other side, we get∫
ΓN

δuT · s dΓN =

∫
ΓN

δUTNT
s · s dΓN (2.10)

where Ns interpolates a u in surface ΓN . Similarly for the body force g, we can write∫
Ω
δuT · g dΩ =

∫
Ω
δUTNT

s · g dΩ (2.11)

And

δUT

∫
ΓN

NT
s .s dΓN − δUT

∫
Ω
NT

s · g dΩ = δUTF (2.12)

So we get the global system of equations

KU = F (2.13)

because the δU can be cancelled out.

2.5 Linear Elements

Linear elements are characterized by their linear polynomials shape functions.

In this case, we analyze the fournode tetrahedron because they are implemented in
SOFA and are used to compare the quadratic tetrahedra efficiency.

On the other hand, linear elements geometry is the simplest one in three space dimen-
sions, and no numerical integration is needed to construct element equations. Also, it is
a good way to introduce the basic steps of formulation of 3-D solid elements, particularly
as regards use of natural coordinate systems, node numbering conventions and computa-
tional ingredients.

2. The Finite Element Method 21

Fig. 2.6: The four node tetrahedron element.

2.5.1 Linear Tetrahedron Geometry

A tetrahedron has six edges, defined by their two end corners: 12, 23, 31, 14, 24 and 34.

The tetrahedron geometry is defined by giving the position of the four corner nodes
(vertex) with respect to the global rectangular Cartesian coordinate system {x, y, z}:
xi, yi, zi (i = 1, 2, 3, 4).

Fig. 2.7: Rectangular Cartesian coordinate system.

We often use the abbreviations for corner coordinate differences:

xij = xi − xj

yij = yi − yj
zij = zi − zj

with i, j = 1,.. 4.

The four corners are assumed not to be coplanar. The element has six edges and four
faces. Sides are straight because they are defined by two corner points. Faces are planar
because they are defined by three corner points. At each corner three sides and three faces
meet.

The domain occupied by the tetrahedron is denoted by Ωe.

2. The Finite Element Method 22

The volume of the tetrahedron is denoted by V, which should not be confused with
the domain identifier Ω or Ωe. The volume is given by the following determinant in terms
of the corner coordinate values:

V =

∫
Ωe

dΩe = 1
6det


1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 = 1
6det(J) = 1

6J (2.14)

The above displayed matrix (without the 1
6 factor) is called the Jacobian matrix J and

its determinant the Jacobian determinant J .

We deduce from 2.14 that

det(J) = J = 6V (2.15)

We assume that V is positive. This can be insured if the nodes are not coplanar, and
are appropriately numbered. A numbering rule that achieves this goal is as follows [17]:

• Pick a corner (any corner) as initial one. In the figure above, it’s the number 1.

• Pick a face to contain the first three corners. The opposite corner will be numbered
4.

• Number those three corners in a counterclockwise sense when looking at the face
from the opposite one.

Fig. 2.8: Corner node numbering convention. Figure extracted from [17]

An explicit expression for the tetrahedron volume in terms of corner locations is

J = x21(y23z34 − y34z23) + x32(y34z12 − y12z34) + x43(y12z23 − y23z12) (2.16)

in which the abbreviations for coordinate differences are used.

2.5.2 Tetrahedron coordinates

The position of a tetrahedron point may be specified either by its Cartesian coordinates
{x, y, z}, or by its tetrahedral natural coordinates. The latter form a set of four dimension-
less numbers denoted by

2. The Finite Element Method 23

ζ1, ζ2, ζ3, ζ4

The value of ζi is 1 at corner i and 0 at the other 3 corners, including the entire oppo-
site face [17]. It varies linearly with distance as one traverses the distance from the corner
to that face.

Because four coordinates is one too many for 3-D space, there is a constraint between
the ζi:

ζ1 + ζ2 + ζ3 + ζ4 = 1 (2.17)

The equation ζi = constant represents planes parallel to the face opposite to the ith
corner.

2.5.3 Linear Interpolation

Any function linear in x, y, z, say F (x, y, z), that takes the values Fi (i = 1, 2, 3, 4) at the
corners of the linear tetrahedron may be interpolated in terms of the tetrahedron natural
coordinates as

F (ζ1, ζ2, ζ3, ζ4) = F1ζ1 + F2ζ2 + F3ζ3 + F4ζ4 = Fiζi. (2.18)

2.5.4 Coordinate Transformations and Shape Functions

Quantities that are intrinsically linked to the element geometry (e.g., shape functions) are
best expressed in tetrahedral coordinates. On the other hand, quantities such as displace-
ment, strain and stress components are expressed in the Cartesian system {x, y, z}. Ergo,
we need transformation equations to pass from one coordinate system to the other.

The element geometric description in terms of tetrahedral coordinates follows by ap-
plying the linear interpolation 2.18 to x, y and z, so that x = xiζi , y = yiζi , and z = ziζi.
Prepending the sum-of-tetrahedral-coordinates identity (2.17) as first row we build the
matrix relation 

1
x
y
z

 =


1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4



ζ1

ζ2

ζ3

ζ4

 (2.19)

where the 4x4 matrix is the Jacobian matrix of the linear tetrahedron. Its inversion results
in 

ζ1

ζ2

ζ3

ζ4

 =


6V01 a1 b1 c1

6V02 a2 b2 c2

6V03 a3 b3 c3

6V04 a4 b4 c4




1
x
y
z

 (2.20)

where

ai = 6V
∂ζi
∂x

= J
∂ζi
∂x

bi = 6V
∂ζi
∂y

= J
∂ζi
∂y

ci = 6V
∂ζi
∂z

= J
∂ζi
∂z

(2.21)

2. The Finite Element Method 24

The Cartesian partial derivatives of the linear tetrahedron shape functions are

∂F

∂x
= {a1, a2, a3, a4};

∂F

∂y
= {b1, b2, b3, b4};

∂F

∂z
= {c1, c2, c3, c4} (2.22)

The linear tetrahedron is often shunned for stress analysis because of its poor per-
formance. That is because derivatives of shape functions are constant over the element
volume. Strains and stresses recovered from displacement derivatives can be highly in-
accurate, even exhibiting wrong signs. This deficiency makes the element unreliable for
stress analysis when strains and stresses exhibit significant gradients [17]. That is why we
are going to introduce the quadratic elements in the next chapter.

2.6 Quadratic Elements

Quadratic Elements refer to elements with quadratic shape functions, which means that
an edge between 2 points follows a quadratic deformation (ax2+bx+c). In this section,
the quadratic triangle (2-D) and quadratic tetrahedron (3-D) formulations are exposed.

2.6.1 Quadratic Triangle

The quadratic triangle has three corner nodes with local numbers 1 through 3 and three
side nodes with local numbers 4 through 6, as shown in Figure 2.9.

1

6 5

4 2

3

Fig. 2.9: The quadratic triangle.

For later use, we define the quadratic triangle shape functions as:

NT =



N e
1

N e
2

N e
3

N e
4

N e
5

N e
6

 =



ξ1(2ξ1 − 1)
ξ2(2ξ2 − 1)
ξ3(2ξ3 − 1)

4ξ1ξ2

4ξ2ξ3

4ξ3ξ1


And their natural derivatives:

2. The Finite Element Method 25

∂NT

∂ξ1
=



4ξ1 − 1
0
0

4ξ2

0
4ξ3

 ,
∂NT

∂ξ2
=



0
4ξ2 − 1

0
4ξ1

4ξ3

0

 ,
∂NT

∂ξ3
=



0
0

4ξ3 − 1
0

4ξ2

4ξ1


2.6.2 Quadratic Tetrahedron

The quadratic tetrahedron has four corner nodes with local numbers 1 through 4, which
must be traversed following the same convention explained in Figure 2.8. It has six side
nodes, with local numbers 5 through 10. Nodes 5, 6, 7 are located on sides 12, 23 and 31,
respectively, while nodes 8, 9, 10 are located on sides 14, 24, and 34, respectively. The side
nodes are not necessarily placed at the midpoints of the sides but may deviate from those
locations, subjected to positive-Jacobian-determinant constraints. Each element face is
defined by six nodes. These do not necessarily lie on a plane, but they should not deviate
too much from it. This freedom allows the element to have curved sides and faces.

Fig. 2.10: The quadratic tetrahedron.

The definition of the quadratic tetrahedron as an isoparametric element is:



1
x
y
z
ux
uy
uz


=



1 1 1 1 1 ... 1
x1 x2 x3 x4 x5 ... x10

y1 y2 y3 y4 y5 ... y10

z1 z2 z3 z4 z5 ... z10

ux1 ux2 ux3 ux4 ux5 ... ux10

uy1 uy2 uy3 uy4 uy5 ... uy10

uz1 uz2 uz3 uz4 uz5 ... uz10





N e
1

N e
2

N e
3

N e
4

N e
5

N e
6

N e
7

N e
8

N e
9

N e
10



2. The Finite Element Method 26

where ux, uy and uz are the three components of the element displacement field.

The conventional shape functions are given by:

N e
1 = ξ1(2ξ1 − 1) N e

2 = ξ2(2ξ2 − 1) N e
3 = ξ3(2ξ3 − 1) N e

4 = ξ4(2ξ4 − 1)

N e
5 = 4ξ1ξ2 N e

6 = 4ξ2ξ3 N e
7 = 4ξ3ξ1 N e

8 = 4ξ1ξ4 N e
9 = 4ξ2ξ4 N e

10 = 4ξ3ξ4

And the table of shape function derivatives for n = 10 is:

∆N =


4ξ1 − 1 0 0 0 4ξ2 0 4ξ3 4ξ4 0 0

0 4ξ2 − 1 0 0 4ξ1 4ξ3 0 0 4ξ4 0
0 0 4ξ3 − 1 0 0 4ξ2 4ξ1 0 0 4ξ4

0 0 0 4ξ4 − 1 0 0 0 4ξ1 4ξ2 4ξ3


where the {i, j} entry is ∂Nk

∂ξi
. Taking dot products with the node coordinates {xk, yk, zk}

yields

J = 4


1
4 x1ζ̄1 + x5ζ2 + x7ζ3 + x8ζ4 y1ζ̄1 + y5ζ2 + y7ζ3 + y8ζ4 z1ζ̄1 + z5ζ2 + z7ζ3 + z8ζ4
1
4 x5ζ1 + x2ζ̄2 + x6ζ3 + x9ζ4 y5ζ1 + y2ζ̄2 + y6ζ3 + y9ζ4 z5ζ1 + z2ζ̄2 + z6ζ3 + z9ζ4
1
4 x7ζ1 + x6ζ2 + x3ζ̄3 + x10ζ4 y7ζ1 + y6ζ2 + y3ζ̄3 + y10ζ4 z7ζ1 + z6ζ2 + z3ζ̄3 + z10ζ4
1
4 x8ζ1 + x9ζ2 + x10ζ3 + x4ζ̄4 y8ζ1 + y9ζ2 + y10ζ3 + y4ζ̄4 z8ζ1 + z9ζ2 + z10ζ3 + z4ζ̄4


T

in which ζ̄i = ζi − 1
4 . Matrix J is displayed in transposed form to fit within page width.

The Jacobian determinant J = 6V over the element domain is constant if and only if
the six midside nodes are collocated at the midpoints between adjacent corners.

The shape function Cartesian derivatives are explicitly given by

∂Nn

∂x
= (4ζn − 1)

an
J
,

∂Nn

∂y
= (4ζn − 1)

bn
J
,

∂Nn

∂z
= (4ζn − 1)

cn
J
,

∂Nm

∂x
= 4

aiζj + ajζi
J

,
∂Nm

∂y
= 4

biζj + bjζi
J

,
∂Nm

∂z
= 4

ciζj + cjζi
J

For the corner node shape functions, n = 1, 2, 3, 4. For the side node shape functions,
m = 5, 6, 7, 8, 9, 10; the corresponding right hand side indices being i = 1, 2, 3, 1, 2, 3 and
j = 2, 3, 1, 4, 4, 4.

In the following chapter, we present SOFA, the framework where the finite element
method for quadratic elements is implemented.

3. SOFA - AN OPEN SOURCE FRAMEWORK FOR MEDICAL
SIMULATION

Our implementation of cutting quadratic tetrahedral elements is based on the SOFA (Sim-
ulation Open Framework Architecture1) Framework, which is mainly applied for medical
simulation.

SOFA facilitates collaborations between specialists from various domains, by decom-
posing complex simulators into components designed independently and organized in a
scenegraph data structure [12]. Each component encapsulates one of the aspects of a sim-
ulation, such as the degrees of freedom, the forces and constraints, the differential equa-
tions, the main loop algorithms, the linear solvers, the collision detection algorithms or the
interaction devices. The simulated objects can be represented using several models, each
of them optimized for a different task such as the computation of internal forces, collision
detection, haptics or visual display. These models are synchronized during the simulation
using a mapping mechanism. CPU and GPU implementations can be transparently com-
bined to exploit the computational power of modern hardware architectures. Thanks to
this flexible yet efficient architecture, SOFA can be used as a test-bed to compare models
and algorithms, or as a basis for the development of complex, high-performance simulators.

Based on an advanced software architecture, SOFA [8] allows to

1. Create complex and evolving simulations by combining new algorithms with algo-
rithms already included in SOFA;

2. Modify most parameters of the simulation – deformable behavior, surface represen-
tation, solver, constraints, collision algorithm, etc. – by editing the XML input
file;

3. Build complex models from simpler ones using a scene-graph description;

4. Efficiently simulate the dynamics of interacting objects using abstract equation
solvers;

5. Reuse and easily compare a variety of available methods.

SOFA allows independently developed algorithms to interact together within a com-
mon simulation while minimizing the development time required for integration.

The SOFA architecture relies on several innovative concepts, in particular the notion of
multi-model representation. Most simulation components – deformable models, collision
models, instruments, etc – can have several representations, connected together through
a mechanism called mapping. Each representation can then be optimized for a particular
task – e.g. collision detection, visualization – while at the same time improving interop-
erability by creating a clear separation between the functional aspects of the simulation

1 https://www.sofa-framework.org/api/SOFA/index.html

27

3. SOFA - an Open Source framework for medical simulation 28

components. As a consequence, it is possible to have models of very different nature in-
teract together, for instance rigid bodies, deformable objects, and fluids. At a finer level
of granularity, it also proposes a decomposition of physical models – i.e. any model that
behaves according to the laws of physics – into a set of basic components. This decom-
position leads for instance to a representation of mechanical models as a set of degrees of
freedom and force fields acting on these degrees of freedom.

Another key aspect of SOFA is the use of a scene-graph to organize and process the
elements of a simulation while clearly separating the computation tasks from their possibly
parallel scheduling.

The main objectives of the SOFA framework are:

• Provide a common software framework for the medical simulation community

• Enable component sharing / exchange and reduce development time

• Promote collaboration among research groups

• Enable validation and comparison of new algorithms

• Help standardize the description of anatomical and biomechanical datasets

One of the most challenging aspect of medical simulation is the computation, in real-
time, of accurate biomechanical models of soft-tissues. Such models being computationally
expensive, many strategies have been used to improve computation times or to reduce the
complexity of the original model: linear elastic models have often been used instead of
more complex non-linear representations, mass-spring methods as an alternative to finite
element methods, etc. Each of these simplifications induces drawbacks, yet the importance
of these drawbacks depends largely on the context in which they are applied. It becomes
then very difficult to choose which particular method is most likely to provide the best
results for a given simulation.

To address this issue in SOFA, a fine level of granularity has been introduced for the
Behavior Model. This permits for instance to switch from one solver to another in or-
der to see the change in performance or robustness of the simulation, or to test different
constitutive models in a matter of seconds, without having to recompile any of the code.
To achieve this level of flexibility, a serie of generic primitives, or components, that are
common to most physics-based simulations: the DoF, the mass, the force field, and the
solver have been defined.

3.1 Basic structure

The DoF component MechanicalObject describes the degrees of freedom, and their deriva-
tives, of the object. This includes positions, velocities, accelerations, as well as other
auxiliary vectors. The Mass component represents the mass of the object. Depending on
the model, the mass can be represented by a single value – all the DoFs have the same
mass, a vector – the DoFs have a different mass, or even a matrix as used in complex
finite element models. The Force Field describes both internal forces associated with the

3. SOFA - an Open Source framework for medical simulation 29

constitutive equations of the model, and external forces that can be applied to this ob-
ject. A variety of forces are currently derived from the abstract force field representation,
including springs, linear and corotational FEM and Mass-Tensor. The solver component
handles the time step integration, i.e. advancing the state of the system from time t to
time t + ∆t. To this end, the solver sends requests to the other components to execute
operations such as summation of forces, computation of accelerations, and vector opera-
tions on the DoFs such as x = x + v∆t. Currently SOFA integrates explicit Euler and
Runge-Kutta 4 solvers, as well as implicit conjugate-gradient based Euler solver.

A simulation in SOFA is described as a scene with an intrinsic generalized hierarchy.
This scene is composed of nodes organized as a tree or as a Directed Acyclic Graph
(DAG). The different simulated objects are described in separate nodes, and different
representations of a same object can be done in different sub-nodes.

Fig. 3.1: A graph with one object and its two representations (mechanics and visual). Figure
extracted from [24]

The scene starts from a parent node, called the “Root” node. All other nodes (called
child nodes) inherit from this main node. In the Figure 3.1, a first child node “Liver” is
defined and represents a first object. It implements the mechanical behavior of the liver
(hexahedral mesh), whereas the sub-node “Visual” describes a surface model (triangular
mesh) of the liver. Usually, one node gathers the components associated with the same
object (same degrees of freedom).

This “Liver” node includes components (solvers, forcefield, mass) used to build the
mechanical simulation of the liver. Each of these components contains attributes. For
instance, a component of mass features an attribute for mass density; an iterative linear
solver needs an attribute defining a maximum of iterations. These attributes are also
called Data. These Data are containers providing a reflective API used for serialization in
XML files and automatic creation of input/output widgets in the user interface.

3. SOFA - an Open Source framework for medical simulation 30

It is possible to write your own SOFA components in C++, and to integrate them with
SOFA by creating a plugin. A SOFA plugin is mainly a collection of SOFA components,
that can be used in a scene. A plugin is actually a dynamic library that respects some
conventions, so that SOFA-based applications can load it at runtime, and retrieve the
components it provides.

In this project, we worked on 3 SOFA plugins: Quadratic Tetrahedra, Cutting Plugin
and CGoGN. In the next section, we explain the CGoGN Plugin, which was adapted to
incorporate the cut of objects represented with quadratic tetrahedra and their respective
remeshing in SOFA.

3.2 Combinatorial Maps: CGoGN

Many data structures are available for the representation and manipulation of meshes, but
CGoGN2 uses the combinatorial map topological structures to be efficient in algorithms
that need to traverse local neihborhoods, such as surface modeling, mesh generation, finite
element analysis, geometry processing, visualization or computational geometry [15].

Combinatorial maps is a mathematical model for the representation of the topology of
the subdivision of objects consistently defined in any dimension, as Figure 3.5 shows. It
is valuable for topological changes in real-time.

CGoGN is a SOFA Plugin that provides the combinatorial map topological models for
neighborhood relations between cells (vertices, edges, faces, volumes), which is mandatory
information for many algorithms, especially in medical simulation.

In order to understand the topological structure, we need to describe what a cellular
decomposition is. For this, we present an example:

Fig. 3.2: Cellular decomposition of a 2-D ob-
ject. Figure extracted from [15].

Fig. 3.3: Incidence graph. Figure extracted from
[15].

Figure 3.2 shows a cellular decomposition of a 2-D object and 3.3 its incidence graph.

Vi (i ∈ {1, 2, 3, 4, 5}) represents the vertices, Ej (j ∈ {1, 2, 3, 4, 5}) the edges and Fk
(k ∈ {1, 2}) the faces of the cellular decomposition.

2 cgogn.unistra.fr

3. SOFA - an Open Source framework for medical simulation 31

3.2.1 From Incidence Graph to Cell-Tuples

In a n-dimensional cellular decomposition, a cell-tuple is defined as an ordered sequence of
cells (Cn, Cn−1, ..., C1, C0) of decreasing dimensions such that ∀i, 0 < i ≤ n, Ci is incident
to Ci−1. In other words, a cell-tuple corresponds to a path in the incidence graph from a n-
cell to a vertex. Figure 3.4 shows the iterative construction of all the cell-tuples generated
by the cellular decomposition of Figure 3.2.

Fig. 3.4: Iterative construction of the cell-tuples corresponding to the cellular decomposition of
3.2. Figure extracted from [15]

Adjacency relations are defined on the cell-tuples: two cell-tuples are said to be i-
adjacent if their path in the incidence graph share all but the i-dimensional cell. For
example, (F1, E2, V1) and (F1, E2, V2) are 0-adjacent.

These maps encode a cellular decomposition with a set D of abstract elements called
darts that are one-to-one correspondance with the cell-tuples and follow the rules:

1. each dart identifies a set of n cells of different dimension, i.e. those contained in the
corresponding cell-tuple.

2. each k-cell is represented by a set of darts, i.e. all the darts whose corresponding
cell-tuple contains this cell.

Fig. 3.5: Combinatorial Map corresponding to the cellular decomposition of Figure 3.2. Figure
extracted from [15]

3. SOFA - an Open Source framework for medical simulation 32

Fig. 3.6: Set of darts representing the vertex, edge and face of dart d. Figure extracted from [15]

In the figure above, we can see that darts are represented like the cell-tuples in Figure
3.4.

The CGoGN library provides a convenient way to traverse all the elements of the rep-
resented maps. The simplest global traversal consists in traversing all the darts of the
map, but any container can be traversed in the same way. Also, the library provides a set
of objects to handle adjacent cells and incident cells.

It is important to notice that a dart is not the half of an edge. A dart is to be consid-
ered as a cell-tuple. This implies that the model is able to represent consistently objects
of any dimension and that each dart represents at the same time a vertex, an edge, a face
and a volume of the mesh.

In this thesis, we incorporated the quadratic tetrahedra to the CGoGN topology by
following a series of steps described in the following chapter.

4. IMPLEMENTATION

One of the objectives of this thesis is the organs modeling, as shown in Figures 4.1 and
4.2.

Fig. 4.1: Organ

→

Fig. 4.2: Organ representation.

In order to simulate curved geometries, any element shown in Figure 2.4 can be used.

In the case of linear tetrahedra, many elements need to be used to represent smooth
surfaces (Figure 4.3). In this chapter, we describe the methods applied to implement
quadratic tetrahedra in 2 and 3 dimensions in order to achieve an improved simulation of
curved surfaces with less tetrahedra (Figure 4.4).

What we had

Fig. 4.3: 1200 linear tetrahedra.

What we needed

Fig. 4.4: 234 quadratic tetrahedra.

In the 2-D case, the algorithm was implemented in Python. In the 3-D case, a Stefan
Suwelack plugin [11] was adapted in order to make it functional in SOFA and, then, the
quadratic tetrahedra were incorporated into the CGoGN Plugin described in 3.2.

33

4. Implementation 34

In the last case, we already had a linear tetrahedra implementation and we wanted
to include the quadratic version in order to be able to represent quadratic objects with
the CGoGN combinatorial map. Also, we wanted to be able to cut objects represented by
quadratic tetrahedra by using the Cutting Plugin, which works with the CGoGN topology.

On the other hand, in order to be able to cut objects represented by quadratic tetrahe-
dra by using the Cutting Plugin, we had to adapt the remeshing functions to incorporate
the element involved.

Besides including quadratic tetrahedra to SOFA and the possibility of cutting objects
represented by them, one of the purposes of the study was to confirm that quadratic
elements have:

• Better shape approximation

• Less stiff elements

• Less degrees of freedom for the same or a better accuracy

• Better convergence

• Less quantity of elements that implies smaller amount of operations

than linear elements, as Suwelack et al [14] proposes.

In the following sections, we present the idea behind the implementations mentioned.

4.1 2-D Implementation - Python

For a better understanding, the project started with the implementation of quadratic tri-
angles in Python.

The idea was to get the result of a beam deformation, caused by an element displace-
ment.

The steps used were:

1. Defining the coordinates of the beam without deformation depending on the input.

2. Calculating the shape functions (2.6.1).

3. Implementing Gauss integration points and weights: In this case, the third Gauss
quadrature rule (Figure 4.5) for curved sided 6-node triangles was used.

4. Implementation 35

Fig. 4.5: Location and weights of sample points (dark circles) of rule 3 Gauss quadrature.

Then, the integration points iP and the integration weights iW used were

iP =

 2/3 1/6 1/6
1/6 2/3 1/6
1/6 1/6 2/3


iW =

[
1/3 1/3 1/3

]
4. Calculating the global stiffness matrix1 from every local stiffness matrix.

To do so, we defined the Young’s modulus E = 288 and the Poisson’s ratio ν = 1.0/3
to get the Lamé parameters defined in 1.14.

Then, we calculated each local stiffness matrix using the following relationship:

Ke =

∫
Ωe

hBTDBdΩ ≈
p∑
i=1

wiF (ξ1i, ξ2i, ξ3i), where F (ξ1i, ξ2i, ξ3i) = hBTDB
1

2
J.

(4.1)

where p denotes the number of sample points of the Gauss rule being used, wi is
the integration weight for the ith sample point and ξ1i, ξ2i, ξ3i are the sample point
triangular coordinates.

Every local stiffness matrix was then added to a global stiffness matrix K in the
following way:

for i in range(nPts) :

for m in range(nPts) :

for j in range(dim) :

for n in range(dim) :

ij = i*dim + j

mn = m*dim + n

1 System of linear equations that needs to be solved to get an approximation to a differential equation.

4. Implementation 36

IJ = elConnect[i]*dim + j

MN = elConnect[m]*dim + n

K[IJ,MN] += Ke[ij,mn]

where elConnect is a vector containing the ids of an element (i.e [0,1,2,5,6,10] in
Figure 4.6 would be an elConnect), nPts is the length of the element connections
and dim is the number of nodes (or coordinates) of an element.

5. Getting the coordinates of each point.

To do so, we calculated the proportion of the minimum and the maximum of each
axis, and the number of elements to be represented.

6. Constructing every triangle with its correct connections.

For that, we had to get the connecting points for each triangle from the elConnect

previously mentioned, which relationship can be seen in the following figure.

P12

x

P11P10

first triangle

P5 P7

P6

P2P1P0

second triangle

y

Fig. 4.6: Example of connection of points in a beam of 4 triangles.

7. Plotting the resulting mesh.

The Python program input is an XML file with the following parameters:

• Young’s modulus

• Poisson’s ratio

• Displacement boundary conditions

• A restricting plane to specify the regions of interest of the object (defined by a point
and the normal)

4. Implementation 37

In Figure 4.7, we can see the result of an example of the described implementation
with the following input:

DOFs ν E Restricting points Displaced point

480 0.45 30000 [(0,0),(0.5,0),(1,0)] (0,10)

Fig. 4.7: Bending of a quadratic beam in Python.

The black beam represents the initial configuration of the beam. The blue beam has
the same configuration as the black one except for the displaced point that causes a de-
formation. The red dashed lines represent the beam’s displacement and the red crosses

4. Implementation 38

the restricting points.

Figure 4.7 shows how the beam is curved because of the intermediate nodes between
each axis, provided by its quadratic representation.

In the following section, we present an approach of the quadratic tetrahedra imple-
mentation made in SOFA.

4.2 3-D Implementation - SOFA

In the following section, we explain the adaptations made in order to include the quadratic
tetrahedra plugin implemented by Stefan Suwelack [11] to the most recent version of SOFA.
The task was based on performing all the necessary processes to put the plugin back into
operation.

First of all, it is important to consider that the elements represented in SOFA are stored
by their ids in separate data arrays. That means that all the elements have their respective
arrays defined: seqPoints, seqEdges, seqTetrahedra, seqQuads, seqHexahedra, among
others. In this context, seqQuadTetrahedra was included in order to store the quadratic
tetrahedra into the model.

Then, all the respective methods had to be adapted, including

• addQuadTetra

• getNbQuadTetrahedra

• getQuadTetrahedra

• createQuadTetrahedra

• createQuadTetrahedraAroundNode

• createQuadTetrahedraAroundEdge

• createQuadTetrahedraAroundFace

The transformation consisted in updating the deprecated methods used to read posi-
tions, to get elements coordinates, to include forces to the objects and to get the potential
energy of the elements, among many others. Also, it was necessary to include new SOFA
tools (BoxROI for quadratic tetrahedra and Dirichlet Boundary Constraints) and an up-
dated version of the Mumps Solver2.

The main improvements were made in the Quadratic Mesh Topology class, where the
topology methods are implemented.

Considering the Quadratic Tetrahedra deformation problem, the steps used to simulate
objects with quadratic tetrahedra were very similar to the ones implemented in Python:

2 MUltifrontal Massively Parallel sparse direct Solver

4. Implementation 39

• Obtaining the mesh (points placement, cells and cell types) from a VTK loader.

• Getting the Young’s modulus and Poisson’s ratio.

• Calculating every element stiffness matrix with the mesh, Young’s modulus and
Poisson’s ratio, and then calculating the global stiffness matrix.

• Getting the Dirichlet condition; and getting points and grid.

• Combining the boundary conditions with the stiffness matrix to get a linear equation
system.

After the code adaptation, we obtained a functional Quadratic Tetrahedra Plugin that
allowed us to simulate objects represented by quadratic tetrahedra and beginning to ana-
lyze their behavior subjected to deformations.

In the following figure, the simulation of a quadratic tetrahedral torus with 680 ele-
ments, a Poisson’s ratio of 0.4 and a Young modulus of 3000 is presented:

Fig. 4.8: Torus represented by quadratic tetrahedral elements.

The correctness of the implementation was verified by means of different simulations
that were the same as those obtained in the old version of SOFA with the respective plugin.

After the code adaptation, quadratic tetrahedra were included in the CGoGN Plugin.
In the following section, the process carried out to achieve it is explained.

4.3 3-D Implementation - CGoGN

As mentioned in section 3.2, the CGoGN library provides a very efficient implementation
of combinatorial maps [15] due to the fast processing times and versatility of implemented
operations. Data structures are saved as attributes related to each cell and updated effi-
ciently, e.g. when a cell is deleted, the entry in the attributes is skipped and when a new

4. Implementation 40

cell of the same dimension is added, this entry is reused.

Maps rely on darts as their basic entity. According to the model and dimension, each
dart has to store a variable number of topological relations (links to other darts) and in-
dices of the embedded cells. For each embedded dimension, a variable number of custom
attributes have to be associated to the indices of the cells.

Attributes are stored in chunk arrays [15] which are sets of chained arrays because it
allows to allocate additional memory while leaving all existing elements in place.

In order to incorporate quadratic tetrahedra in CGoGN, some Quadratic Tetrahedra
Plugin classes and methods were integrated. These included the handling of mass and force
for quadratic tetrahedra, and a mesh loader, among others. These had to be adapted ac-
cordingly for proper operation.

Then, in order to be able to use the existing topology operations of CGoGN and its
respective methods, some modifications were necessary. In the following section, these are
presented.

4.3.1 Placement of points

In this section, we present the implementation carried out to obtain a correct representa-
tion of quadratic elements in CGoGN.

The main difference between linear and quadratic tetrahedra are the middle points so,
instead of including an entire new topology to the plugin with all its methods and addi-
tional complications, we adapted the linear tetrahedra topology to save implementation
time. In order to have an additional node on each edge of a quadratic tetrahedra, we used
attributes to save the ids of the nodes on the edges, see figure 4.9 for a two dimensional
example.

First of all, instead of defining the quadratic tetrahedra as a class like the other el-
ements (triangles, linear tetrahedra, linear hexahedra, pyramids, etc.), we defined it as
an array of size 10 with PointID as element type in the Combinatorial Map Topology of
CGoGN.

Then, we declared the container of all quadratic tetrahedra as a vector of quadratic
tetrahedra.

Subsequently, we created a method to initialize the quadratic tetrahedra. To do so,
we first declared an unsigned edge attribute as a middle point for each volume edge of
the linear tetrahedra topology. The middlePoint attribute incorporates the ID of the
middle point as an unsigned integer, allowing then to go from 4 natural coordinates to
10 natural coordinates.

4. Implementation 41

Fig. 4.9: Example of triangle with middle points.

In the figure above, we can see a triangle with blue nodes on the edges representing
the attributes that save the middle points ids and black nodes representing the original
triangle nodes.

Considering the following functions defined in CGoGN

• phi1: Traverse from one vertex to its right vertex.

• phi2: Traverse from one face to its right face.

• phi_1: Traverse from one vertex to its left vertex.

the quadratic tetrahedra w traversal is the following one:

vertices[0] = vertexID(phi2(w))

vertices[1] = vertexID(w)

vertices[2] = vertexID(phi1(phi1(phi2(w))))

vertices[3] = vertexID(phi_1(w))

vertices[4] = middlePoint[phi2(w)]

vertices[5] = middlePoint[phi1(phi2(w))]

vertices[6] = middlePoint[phi_1(phi2(w))]

vertices[7] = middlePoint[phi1(w)]

vertices[8] = middlePoint[phi_1(w)]

vertices[9] = middlePoint[phi_1(phi2(phi1(w)))]

Where vertexID is a function that returns the vertex id of a dart and middlePoint

is the edge attribute containing its middle point id.

In order to keep track of the middle points, we created a Middle Point Map to store
the middle point of each edge of each Tetrahedra.

Finally, we adapted all the affected methods to achieve a correct representation of
quadratic tetrahedra, which included visualization functions, barycentric mapping func-
tions, mass functions, among others.

In order to get the correct deformation of the Quadratic Tetrahedra, the steps de-
scribed in section 4.2 were implemented using the modified topology.

4. Implementation 42

In the next chapter, we explain the necessary adaptation of the linear remeshing meth-
ods in order to achieve a correct simulation of the cuts of objects represented by quadratic
tetrahedra.

5. CUTTING

Virtual cutting of deformable objects is at the core of many applications in interactive
simulation and especially in computational medicine.

Virtual cutting essentially involves three steps:

1. The update of the geometrical and topological representation of the simulation do-
main

2. The numerical discretization of the governing equations

3. The simulation of the deformable body being cut

The virtual cutting operations should guarantee a minimal quality of the FEM mesh
at any time of the simulation since the numerical stability of the simulation is directly
impacted by the quality of the mesh, at least in the context of finite element methods.
Moreover, the computation time is directly impacted by the number of degrees of freedom
in the discretized domain. Therefore, limiting the introduction of new elements or nodes
during topological changes is an important requirement.

Fig. 5.1: Cutting with non-remeshing (top) vs remeshing (bottom).

As cuts occur in the simulation, the mesh that supports the FEM model has to be
adapted so that the simulation takes account of the expected phenomena and produces
the mesh separation. Figure 5.1 shows the result of a remeshed object and a non-remeshed
object after a cut.

43

5. Cutting 44

The separating surface S (red line in Figure 5.1) may be defined as the trajectory of
a cutting tool or computed by a fracture algorithm describing the occurrences of tearing
or shearing in the material. The tetrahedral elements traversed by this surface have to be
cut, refined or rearranged to reflect the new physical state.

In order to approximate the cut, usual remeshing algorithms sample a cutting surface
using the intersections with the edges (and in three dimensions potentially with faces) of
the mesh, i.e. the boundary of the elements.

For our remeshing approach, we combine the Cutting remeshing presented in [20] with
the CGoGN adaptation described in section 4.3 to provide the simulation of cuts with
quadratic elements. To achieve it, points are not inserted on the boundary of the ele-
ments, but inside the volume. Thus, a cut is sampled by points in the volume, resulting in
a higher freedom of the choice for their positions. Currently these positions are calculated
based on geometric constraints, that are detailed and discussed in the following sections.

In the following section, we describe the steps implemented to achieve a correct quadratic
element cutting procedure.

5.1 Remeshing

During the cut procedure, the mesh should closely approximate the intended separation
surface. In order to achieve it, we adapted the remeshing method presented in [20] that
introduces a separation surface inside a FEM mesh with two main benefits: the number
of inserted vertices (nodes) and elements is kept as low as possible and the quality of the
generated mesh is controlled.

When a surface S cuts the volume mesh, we first introduce vertices positioned on the
surface S in the volume incident to crossed edges. Then, edges between the new vertices
are inserted and finally new elements are introduced connecting the vertices previously
inserted on the cut surface. In this work, we adapted those methods used to prepare the
quadratic elements to be cut to the mentioned combinatorial map.

The position of inserted points on the separation surface is crucial for our method for
the correct approximation of the cut surface and to obtain well-shaped elements.

Our algorithm inserts the middle point at the barycenter of the intersections between
the cut surface S and the edges. That means, the cut is sampled in the volume of the
element using positions of the cut on the element boundary. This choice potentially leads
to an inaccurate approximation of the cut, so we decided to set the middle point positions
on the cut inside of the element. However, this improvement only shows relevance for cuts
that have strong changes in direction inside an element.

In what follows, we describe the technique used to reach a good remeshing in 2-D in
the first place and in 3-D in the second place.

5. Cutting 45

5.1.1 Remeshing in 2-D

In order to facilitate the comprehension of the three-dimensional remeshing methods, we
begin by explaining the process in two dimensions.

Fig. 5.2: Object being cut.

The first step is the sampling or detection of the separation surface at the level of the
edges of the FEM mesh. For each edge e of the mesh, we compute or estimate a cutting
or breaking point and the normal of the separation surface at this point, which we use for
the placement of the points inserted to represent the cut in the mesh.

An edge that crosses the separation surface indicates that incident volumes are cut by
the surface S. To take account of that, we introduce vertices in the triangle incident to
crossed edges. The newly introduced vertices, denoted pk, are positioned on the surface
S, as shown in Figure 5.3.

Fig. 5.3: Edges being detected.

The second step is the insertion of the triangles connecting the newly introduced
vertices, as presented in Figure 5.4 for one volume and in Figure 5.5 for all the affected
volumes.

Fig. 5.4: One split 1 to 3. Fig. 5.5: Split 1 to 3.

Then, the affected triangles are flipped as can be seen in Figure 5.6 for one volume
and in Figure 5.7 for all the affected volumes.

5. Cutting 46

Fig. 5.6: One Flip 2-2. Fig. 5.7: Flip 2-2.

It is important to note that the described methods add a limited amount of new ele-
ments: 3 per cut triangle.

We just presented how triangles emerge from the initial mesh after a series of splits
and flips on the quadratic elements, in order to get a local remeshing of the model and
to approximate the separation surface in 2-D. In the following section, the 3-D linear case
and its quadratic transformation are analyzed.

5.1.2 Remeshing in 3-D

In the CGoGN Plugin, every topology has its own methods and ways of being managed.
In section 4.3, we presented a way to include quadratic tetrahedra without adding a new
topology. In this section, we explain how this adaptation is used to cut objects represented
by quadratic tetrahedra.

To achieve an accurate cutting representation of quadratic elements, we adapted the
3-D linear remeshing methods by including a middle point to every affected edge in order
to maintain the essence of the mentioned topology.

To include the middle points in the remeshing methods, we considered the following:

1. Since every point is identified by an index, we created a method to keep track of
every unused index to avoid duplicates. This method is used to get a free index
every time a point is created.

2. Every edge incident to an affected dart needs a middle point, so these were added
to their combinatorial map topology.

In what follows, we explain the remeshing algorithms adapted in order to achieve an
accurate cut simulation.

• Split 1 to 4: The first step is to subdivide every tetrahedron that is crossed, even
partially, by the separation surface S. The 1-4 split replaces the initial tetrahedron
by four new tetrahedra sharing the inserted vertex pk, as shown in Figure 5.8.

5. Cutting 47

Fig. 5.8: A set of tetrahedra incident to an edge before (top left) and after (top right) the 1-4 split;
1-4 split of a tetrahedron (bottom). Figure extracted from [22].

The position of the middle point inserted in the 1-4 split operation in partially cut
elements is not restricted to intersections of the tetrahedral element boundary and
the cut front, but can be displaced along the cutting front inside of the element.

As the remeshing of partially cut elements is prone to yield illshaped elements, we
choose to place the point at the intersection with the edges between a point in the
barycenter and the corners of the element. While this improves the condition num-
ber, it has a negative impact on the approximation of the cut surface, as the partial
cut is performed either too far or not far enough. This could be improved while
preventing flat elements with a 1-4 split of neighboring elements followed by a flip 2
to 3 as shown in Figure 5.10.

In what follows, the middle points in volumes are noted pm, the middle points in
the new edges are noted pm,i (i is the point id) and the coordinates are noted ϕ.

5. Cutting 48

P1

Pm,0

Pm

P2

P3

P0

Pm,1

Pm,2

Pm,3

Fig. 5.9: Tetrahedron with its barycenter point (blue) and intersection edges (red). Midpoints on
original edges are not shown for visual clarity.

For example, in the tetrahedron of Figure 5.9 we consider

ϕ0 = (1, 0, 0, 0) ϕ1 = (0, 1, 0, 0) ϕ2 = (0, 0, 1, 0) ϕ3 = (0, 0, 0, 1)

Then, ϕm = (1
4 ,

1
4 ,

1
4 ,

1
4) and ϕm,j = (ϕm + ϕj)/2 for j ∈ {0, 1, 2, 3}.

We define (ϕm)e = 1
4 for e ∈ {0, 1, 2, 3} and, in order to obtain every new middle

point coordinate, the following process must be performed:

(ϕm,1)1 = ([ϕm + ϕ1)/2]1

= ([(
1

4
,
1

4
,
1

4
,
1

4
) + (0, 1, 0, 0)]/2)1

= (
1

4
+ 1)/2

=
1

8

Generalizing,

(ϕm,j)e =

{
1
8 if e 6= j
5
8 otherwise

(5.1)

• Swap 2 to 3: The second step aims at creating edges between the inserted vertices.
Let us consider the tetrahedra generated by the 1-4 splits around the initial edges e.
They form a sequence of pairwise adjacent tetrahedra. Each pair of tetrahedra tk,
tk+1 share a face f , incident to e, and thus three vertices. Their fourth vertices are
respectively pk and pk+1.

We perform a Swap 2-3 (or flip) around the face f , replacing two adjacent tetra-
hedra by three tetrahedra with the same vertices. The shared face is deleted, but
the three new tetrahedra share the edge {pk, pk+1}. This way, the faces initially

5. Cutting 49

incident to e are replaced by a sequence of edges. These edges form a closed poly-
gon lying on the surface S (see figure 5.10). Finally, new edges middle points are
inserted at the barycenter between the tetrahedral nodes and adjusted to the surface.

Fig. 5.10: A set of tetrahedra before (top left) and after (top right) the 2-3 swaps. Flipping the
faces incident to e creates a closed polygon {p1, ..., pn} (draw in green); (bottom) 2-3
swap of two tetrahedra. Figure extracted from [22].

In order to perform the 2-3 swap, the connection between {pk, pk+1} has to be
completely inside the two neighboring tetrahedra. The vertices {pk, pk+1} inserted
by the 1-4 splits both depend on the intersection of the separation surface with the
tetrahedras’ edges. This choice helps to ensure that the 2-3 swap can be performed.

• Remove Edge: Each crossed edge e is now surrounded by a set of n tetrahedra that
contain the vertices of the crossed edge and two points of the polygon {p1, ..., pn}.
The last step builds a set of n-2 triangles by triangulating the polygon {p1, ..., pn}.

5. Cutting 50

Fig. 5.11: To be cut edge surrounded by tetrahedra in yellow (left); edge removal (middle); trian-
gulation of the separation surface (right), showing the tetrahedra below the cut. Figure
extracted from [22].

As the vertices {pk} are placed to sample the separation surface, the triangles ap-
proximate the separation surface by construction. The n tetrahedra surrounding the
edge are replaced by 2(n - 2) tetrahedra defined by the three vertices of each triangle
and by one of the vertices of e (figure 5.11). This operation is called a general flip
or an edge removal. For newly inserted edges inside of the object, middle points are
inserted on the straight barycenter of the two edge nodes.

When the separation surface crosses the boundary of the simulated object, a specific
refinement of the boundary tetrahedra is needed to build this cut line. The ad-
ditional refinement combines the previous tetrahedral remeshing with an extended
interpolatory refinement (called

√
3-subdivision [4]) of the boundary triangles.

First, the triangles of the boundary surface are remeshed this way: The edges that
are crossed by the cut line are first selected. New vertices are inserted on the cut line
in the adjacent triangles that are split into three. Then the selected edges, except
the boundary edges, are flipped to link the new vertices. The flipped edges define
a polygonal line that smartly approximates the cut line. The boundary edges are
finally split at their intersections with the cut line.

Then, the boundary tetrahedra’s remeshing consists of the following two steps:

• Split 1 to 3: This operation is similar to the Split 1 to 4 but with three tetrahedra.
We obtain a polygon of pk with vertices on the separation but, in contrast to the
inner edges, that polygon is opened, between the points inserted by the 1-3 split.

For quadratic shape functions, the position of the middle point is as essential as
the edge points themselves. When displacing the middle point along the curve of
the edge, the continuous representation changes greatly [22]. Thus when cutting a
boundary edge, special attention has to be paid to set the points in the interpolated

5. Cutting 51

edge barycenter between the cut point and the edge points.

The middle points on the edges of a quadratic triangles and tetrahedra have the
same importance and change the elements shape if not correctly placed. Therefore
cut boundary triangles need a special treatment for the split 1 to 3 operation.

The split 1 to 3 point P13 (see Figure 5.14) is inserted at the intersection of the
cut with the curve connecting the interpolated triangle barycenter with the nodes.
Then, edge points are inserted as the interpolated triangle barycenter between P13

and the triangle corner points.

An example of this procedure in 2-D can be observed in the following figures:

P5

P1

P2

P3P0

P4

Fig. 5.12: Cut scenario.

P5

P1

P2

P3P0

P4

Fig. 5.13: Insertion of the split 1 to 3 point.

P5

P1

P2

P3P0

P4

P13

Fig. 5.14: Split 1 to 3 on surface, new edges and points in blue. Midpoints ids of internal edges
are not shown for visual clarity.

In the first place (Figure 5.12), we can observe a cut triangle. Then, in Figure 5.13,

5. Cutting 52

we can see how the split 1 to 3 point is inserted. Finally, Figure 5.14 shows the split
1 to 3 result, including the new edges and points.

The split 1 to 3 is followed by a bisection of the boundary edges intersecting with
the cut, explained in the next point.

• Bisect Edge: In this step, an intersection point p is inserted on the edge. Then the
tetrahedron is split into two by inserting a node at the interpolation edge barycenter
between p and the nodes of the cut edge. New edges are inserted between the other
nodes of the tetrahedron and the intersection point p. These new edges use the
intersection between the curve between the two existing edge middle points on the
surfaces, that are adjacent to the cut edge. The new vertex p is used to close the
polygon opened by the split 1 to 3.

The following figure illustrates the process:

Fig. 5.15: Bisection of a boundary edge: the incident tetrahedra are split. Figure extrated from
[20].

In this case, as most newly inserted edges lie inside of the object, we insert the edge
points on the straight barycenter of the two edge points.

Note: This method does not support partial cuts because while the integration in com-
pletely cut elements can be handled with algorithms accurately, the integrals in partially
cut elements can only be approximated, which means that we can’t make a difference
between these two cases:

Fig. 5.16: Triangle with a partial cut (left) and a complete cut (right).

5. Cutting 53

Besides, our expansion of the Gauss integration has high computational cost and we
do not expect such an implementation to run in real-time. Moreover, the cut surfaces
inside a cut element do not maintain the δ-property, and thus a treatment of boundary
conditions on these surfaces needs particular methods.

5.2 Cutting

Cutting can be described as a controlled fracture process performed through a precisely
directed path, exerted through sharp-edged devices or laser beams. This process requires
topological updates and computation of data that will influence the physics of the object.

After remeshing the elements, the nodes of the cutting separation are duplicated in
order to allow the surface opening and separating in the following way: As soon as a cycle
of adjacent faces, incident to a same vertex, are disconnected, the vertex is separated
into two vertices (i.e. it is duplicated) triggering an update of the FEM part. This last
condition is automatically checked by the CGoGN library [22].

The methods to achieve it [20] were adapted to work on a quadratic element’s repre-
sentation.

The following is an example of a quadratic beam being remeshed and cut:

Beam properties:

Nb of elements Solver Iterations Threshold ν E Force

24 CGLinearSolver 100 1.0e-9 0.4 3000 (0, 0, 2000)

Fig. 5.17: Beam before cut.
Fig. 5.18: Beam during cut.

5. Cutting 54

Fig. 5.19: Beam after cut. Fig. 5.20: Beam after 0.5s from the cut.

We can observe how the number of tetrahedra is multiplied after the cut due to the
remeshing.

In the following chapter, the results of the exhibited implementations are presented
and analyzed.

6. RESULTS

In this section, we present the results obtained after some experimentation.

When necessary, the meshs for the experimentation were created with Gmsh 3.01, set
in 3D and with set order 2 to get quadratic elements.

6.1 Convergence Analysis

The convergence of the quadratic tetrahedra implemented was studied with the numerical
test presented by Kwon et al [6].

This consists of simulating beam bendings subjected to different configurations and
calculating their vertical displacement in order to compare it to a numerical approxima-
tion.

Beams with different amounts of quadratic tetrahedra were evaluated in order to study
if convergence was reached for any of them. Those were:

Nb of elements 24 97 371 712 1810 4621

Also, two kinds of beams were created: a thin and a thick beam:

• The dimensions of the thin beam were:

L = 1m h = 0.01m b = 0.01m

The following figure illustrates it:

Fig. 6.1: Thin beam representation.

• The dimensions of the thick beam were:

L = 1m h = 0.1m b = 0.1m

The following figure illustrates it:

1 http://gmsh.info/

55

6. Results 56

Fig. 6.2: Thick beam representation.

For this analysis, two different configurations (or scenarios) were considered. In what
follows, the study carried out is detailed.

6.1.1 First configuration

The first test consisted of analyzing the following configuration:

Fig. 6.3: Schematic representation of a bending test with a punctual load.

where P is the punctual load in Newton (N), L is the beam length in meters (m), h
is the beam height in m and b is the beam base length in m.

Then, the obtained vertical displacements were compared to the results of the evalua-
tion of the following equations:

Thin beam: wmax =
PL3

3EI
(6.1)

Thick beam: wmax =
PL3

3EI
+
PLh2

10GI
(6.2)

where wmax is the maximum deflection in m, G is the shear modulus in N
m2 and I is

the moment of inertia in m4, defined by:

G =
E

2(1 + ν)
and I =

bh3

12
(6.3)

The parameters chosen for both beam deflections were:

6. Results 57

E ν Force (f) Gravity Solver Tolerance Threshold

209e9 0.3 1e-3 10 CGLinearSolver 1e-7 1e-7

Mass Density Constant Force Field Fixed Constraint

0.0 (0, 10, 0) [-0.1, -0.1, -0.1]×[0.5, 0.5, 0.001]

These are standard and do not present any particularity. We decided not to modify
them in order to focus the analysis on the beam resolution and on the precision this al-
teration may represent.

In what follows, the evaluated beams are presented.

1. Thin beam

First, we define f = P
A , where f is the load in N

m2 and A is the volume area in m2.
Then, P = 10 ∗ 0.012 = 1e-3N .

Also, I = 0.014

12 = 8.333e-10m4 and, from 6.1, we get

wmax =
1e-3 ∗ 14

3 ∗ 209e9 ∗ 8.333e-10
= 1.914e-6m

The thin beam vertical displacements obtained with the mentioned parameters were:

Nb of elements 24 97 371 712 1810 4621

Vertical displacement (in m) 6.583e-3 1.604e-7 1.464e-8 8.976e-9 8.885e-9 8.920e-9

In the following figure, we can observe the relationship between the beam vertical
displacement and the number of elements of the simulated beams with a logarithmic
scale:

6. Results 58

102 103

Number of Elements

10 8

10 7

10 6

10 5

10 4

10 3

10 2
|V

er
tic

al
 d

isp
la

ce
m

en
t -

 w
m

ax
| i

n
m

et
er

s
Vertical Displacement absolute difference vs Number of Elements

Fig. 6.4: Vertical displacement obtained with a punctual load on a thin beam.

We can observe that the vertical displacement decreases significantly as elements
are added to the beam. In addition, the maximum analytical deflection is achieved
with less than 100 tetrahedra. As convergence is reached with few elements, we can
conclude that the algorithm is efficient in this scenario.

In what follows, we evaluate the same configuration for a thick beam.

2. Thick beam

In this case, we get I = 0.14

12 = 8.333e-6m4, G = 209e9
2(1+0.3) = 8.038e10 N

m2 , P =

10 ∗ 0.12 = 0.1N and, from 6.2, we get

wmax =
0.1 ∗ 12

3 ∗ 209e9 ∗ 8.333e-6
+

1 ∗ 0.1 ∗ 0.12

10 ∗ 8.333e-6 ∗ 8.038e10
= 1.929e-8m

The vertical displacements obtained with the mentioned parameters were:

Nb of elements 24 97 371 712 1810 4621

Vertical displacement (in m) 4.834e-9 3.019e-9 2.992e-9 3.008e-9 1.950e-9 1.032e-9

In the following figure, we can observe the relationship between the beam vertical dis-
placement and the number of elements of the simulated beams with a logarithmic scale:

6. Results 59

0 1000 2000 3000 4000
Number of Elements

0.000

0.001

0.002

0.003

0.004

0.005

0.006

|V
er

tic
al

 d
isp

la
ce

m
en

t -
 w

m
ax

| i
n

m
et

er
s

Vertical Displacement absolute difference vs Number of Elements

Fig. 6.5: Vertical displacement obtained with a punctual load on a thick beam.

As in the previous case, we can see that the vertical displacement decreases signifi-
cantly as elements are added to the beam. In this case, we can observe that the maximum
analytical deflection is achieved with less than 500 tetrahedra. Although the amount of
elements necessary to reach convergence is greater than in the previous case, it remains
low with respect to the number of elements that are used for medical simulation.

The next subsection presents the convergence analysis for a different scenario.

6.1.2 Second configuration

This test consisted in analyzing the behavior of a quadratic tetrahedral beam in the
following scenario:

L

q

Fig. 6.6: Schematic representation of bending test.

where q is the distributed load in N
m .

6. Results 60

The obtained vertical beam displacements were then compared to the results of eval-
uating the following equations:

Thin beam: wmax =
qL4

8EI
(6.4)

Thick beam: wmax =
qL4

8EI
+
L2h2

20GI
(6.5)

where q = ρgA, ρ is the density mass in kg
m3 , g is the gravity in N m

s2
2 and A is the

volume area in m2.

The parameters chosen for the tests of thin and thick beams were:

E ν Force (f) Gravity Solver Tolerance Threshold

209e9 0.3 1e-3 10 CGLinearSolver 1e-7 1e-7

Mass Density Fixed Constraint

1000 [-0.1, -0.1, -0.1]×[0.5, 0.5, 0.001]

These are standard and do not present any particularity. We decided not to modify
them in order to focus the analysis on the beam resolution and on the precision this
alteration may represent.

1. Thin beam

In this case, we obtained I = 8.333e-10m4, q = 1000 ∗ 10 ∗ 0.012 = 1Nm and, from 6.4,

wmax =
1 ∗ 14

8 ∗ 209e9 ∗ 8.333e-10
= 7.177e-4m

The vertical deformations obtained with the mentioned parameters were:

Nb of elements 24 97 371 712 1810 4621

Vertical displacement (in m) 8.869e-4 3.556e-8 1.504e-9 7.238e-10 2.000e-10 8.988e-11

2 1N = 1 kg∗m
s2

6. Results 61

102 103

Number of Elements

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

|V
er

tic
al

 d
isp

la
ce

m
en

t -
 w

m
ax

| i
n

m
et

er
s

Vertical Displacement absolute difference vs Number of Elements

Fig. 6.7: Vertical displacement obtained with a distributed load on a thin beam.

We can observe that the vertical displacement decreases notably as the amount of
elements of the evaluated beams increases. In this case, we can observe that the
maximum analytical deflection is achieved with less than 50 tetrahedra, which is
close to the lowest amount of elements tested. Then, convergence is reached more
quickly than in the previous configuration.

In what follows, we evaluate the same configuration but for a thick beam.

2. Thick beam

In this case, we obtained I = 8.333e-6m4, q = 1000∗10∗0.12 = 100Nm , G= 8.038e10 N
m2

and, from 6.5,

wmax =
100 ∗ 14

8 ∗ 209e9 ∗ 8.333e-6
+

12 ∗ 0.12

20 ∗ 8.038e10 ∗ 8.333e-6
= 7.178e-6m

The vertical deformations obtained with the mentioned parameters were:

Nb of elements 24 97 371 712 1810 4621

Vertical displacement (in m) 1.563e-7 1.042e-7 6.598e-8 7.786e-8 5.223e-9 2.000e-10

6. Results 62

102 103

Number of Elements

10 9

10 8

10 7

|V
er

tic
al

 d
isp

la
ce

m
en

t -
 w

m
ax

| i
n

m
et

er
s

Vertical Displacement absolute difference vs Number of Elements

Fig. 6.8: Vertical displacement obtained with a distributed load on a thick beam.

In this case, we can see that the vertical displacement slowly decreases at the be-
ginning and when a sample of 100 elements is reached the decrease accelerates. On
the other hand, we can observe that the vertical displacement is always above the
maximum analytical deflection for all the simulated beams. Then, convergence is
reached for any amount of quadratic tetrahedra over 24 under this configuration and
this parameters.

In conclusion, we could observe that there is no convergence for all the quantities of
quadratic tetrahedra evaluated (from 100 for the case of thin beams and 500 for the case
of thick beams) in the first configuration. It begins to converge where the values are low
with respect to the amount of elements that are used for medical simulations.

On the other hand, in the second configuration there is a convergence for almost all
the quantities of elements evaluated.

In both cases, convergence is quickly achieved.

From this, we can conclude that the implementation is valid and efficient.

In the following section, we present an analytic comparison between the quadratic and
linear tetrahedra implementations.

6. Results 63

6.2 Comparison linear vs quadratic

6.2.1 Analytic comparison

In this subsection, a reference solution on a high resolution3 quadratic mesh (100k ele-
ments) is computed in order to accomplish a quantitative analysis of the discretization
error for each model (linear and quadratic). The reference solution is built by the api of
a sofa simulation runner created by Stefan Suwelack4 in MSML (Media Server Markup
Language).

Then, test models of different resolutions are subsequently compared to this reference
model. We chose the root mean squared (RMS5) error at the nodes of the reference solu-
tion as the error measures.

In this case, we consider the beam deformation under gravity shown in Figure 6.9 with
the configuration described in 6.1.

Fig. 6.9: Linear and Quadratic beams deformation under gravity. Both beams present the same
number of DOFs.

E ν Iterations Gravity dt Solver

300000 0.49 5 (-9.81, 0, 0) 0.5 Direct Linear Solver

Time Integration Processing Unit Fixed Constraint

Dynamic Implicit Euler CPU [-0.1, -0.1, -0.1]×[0.04, 0.07, 0.21]

Tab. 6.1: Parameters used to compare beam convergence.

3 Numerically study consisting in doubling the resolution a couple of times in order to see when the
results are only changing in an insignificant way.

4 https://github.com/ssuwelack/msml-docker-runtime

5 RMSError =

√∑n
i=1(ȳi−yi)2

n
where yi is the observed value for the ith observation and ȳi is the

predicted value.

6. Results 64

The number of tetrahedral elements evaluated are:

Nb of elements 371 712 1810 4621 8990 19128 45418

The RMS errors with respect to the number of elements are depicted in Figure 6.10.

Fig. 6.10: RMS error over number of elements for gravity induced deformation.

The quadratic elements show superior accuracy for the same tetrahedra than the linear
elements.

In the case of the gravity induced deformation, linear elements need much more tetra-
hedra (up to 40x) than quadratic elements in order to achieve the same accuracy.

6.2.2 Time comparison

In this subsection, we study the runtime difference between quadratic and linear beams
deformations subjected to gravity force.

To do so, we used the following configuration:

6. Results 65

E ν Iterations Gravity dt Solver

300000 0.49 5 (-9.81, 0, 0) 0.5 MumpsSolver

Time Integration Processing Unit Fixed Constraint

Dynamic Implicit Euler CPU [-0.1, -0.1, -0.1]×[0.04, 0.07, 0.21]

Tab. 6.2: Parameters used for time comparison.

The Number of elements considered were:

Nb of elements 24 97 371 712 1810 4621 8990 19128 45418

In the case of quadratic beams, more than 4621 tetrahedra are difficult to compute,
then they are not considered.

The result of evaluating the deformation of beams subjected to gravity with different
number of elements with respect to the time of the simulation is the following:

102 103 104

Number of Elements

10 2

10 1

100

101

Ti
m

e
in

 se
co

nd
s

Simulation Time vs Number of Elements
Linear Tetrahedra
Quadratic Tetrahedra

Fig. 6.11: Time comparison.

We can observe that the simulation time of beams under gravity is smaller in the linear
case than in the quadratic one for any number of elements. This occurs because, for the
same number of elements, the number of nodes is greater in the quadratic case, as shown
in Figure 6.12. Then, the number of operations to be performed is greatly increased,

6. Results 66

delaying the simulation process.

The following figure shows the proportion of nodes of a linear and a quadratic tetra-
hedral beam depending on the number of elements:

102 103 104

Number of Elements

101

102

103

104

Nu
m

be
r o

f N
od

es

Number of Nodes vs Number of Elements
Linear Tetrahedra
Quadratic Tetrahedra

Fig. 6.12: Number of nodes vs Number of Elements.

By comparing Figure 6.11 and Figure 6.12, we observe that the simulation time is
almost directly related to the number of nodes of the object, confirming the previous
statement.

6.3 Visual comparison

In order to have a visual idea of the deformation convergence, we compared linear and
quadratic beam simulation results.

To do so, we defined quadratic (in yellow) and linear (in blue) beams with different
numbers of elements and checked their similarity while subjected to the same force.

The configuration used for the beams deformations is:

Solver Iterations Tolerance Threshold ν E Force

CGLinearSolver 5000 1e-7 1e-7 0.0 3000 (0, -9, 0)

6. Results 67

And the Boundary Conditions are:

Force Boundary Conditions Box [-0.1, -0.1. 1] × [0.5, 0.5. 1.001]

Displacement Boundary Conditions Box [-0.1, -0.1. -0.1] × [0.5, 0.5. 0.01]

• With 24 elements:

Fig. 6.13: Before force application.
Fig. 6.14: After force application.

• With 97 (left) and 712 elements (right)

Fig. 6.15: Linear and quadratic beams deforma-
tions with 97 elements.

Fig. 6.16: Linear and quadratic beams deforma-
tions with 712 elements.

• With 1810 DOFs

6. Results 68

Fig. 6.17: Linear and quadratic beams deformations with 1810 elements.

The previous figures show the comparison between deformations of linear and quadratic
beams subjected to forces for different number of elements, starting from the same initial
configuration.

In Figure 6.14, we can see that the quadratic beam deformation is much more pro-
nounced than the linear one for 24 elements.

In the case of 97 elements (Figure 6.15), the difference is still remarkable but not as
pronounced as in Figure 6.13.

In Figure 6.16, we can perceive that the difference between the deformations of linear
and quadratic beams is less important than for the previous cases. This can also be ob-
served in Figure 6.17, for 1810 elements.

We can see that the difference between the deformations with 712 elements and 1810
elements is not significant.

From this, we can conclude that despite having a low number of elements, the beam
deformation is outstanding in the case of quadratic tetrahedra, but not in the case of
linear tetrahedra. Only when a sample of 712 elements is reached, the beam deflection
simulation is not so different for one type of elements than for the other, even though the
quadratic is still better in all cases.

6. Results 69

6.3.1 Comparison between elements of the same type

In the following figures, we can see the visual comparison between beams deformations
with quadratic and linear elements with the following configuration:

Nb of elements Solver Iterations Tolerance Threshold ν E Force

24 vs 712 CGLinearSolver 5000 1e-7 1e-7 0.49 3000 (0, -9, 0)

Fig. 6.18: Linear beam comparison.
Fig. 6.19: Quadratic beam comparison.

In this case, we can see that the linear beam deformation with 24 tetrahedra is notice-
ably different from the one with 712 elements. On the other hand, the difference between
the quadratic beam deformation with 24 elements and the one with 712 elements is not
that substantial. Then, we could visualize that the quadratic representation converges
much faster than the linear one.

6.4 Cutting results

This section contains a theoretical analysis of the number of nodes added during the cut
process and the experiment results obtained.

6.4.1 Theoretical analysis

The following theoretical analysis presented by Paulus et al [22] helps to determine the
impact of the remeshing algorithm on the FEM simulation, as solving the resulting linear
system depends (at best) linearly on the number of nodes in the new mesh [22]. Then, it
is compared to the linear case.

We consider an object represented by quadratic tetrahedra where the cut traverses
n(v) tetrahedra. The number of added nodes on the cutting surface are noted n(kS) and

6. Results 70

the number of added nodes that are not on the cutting surface are noted n(k). This dis-
tinction is necessary to allow for a derivation of the number of nodes, when the two parts
above and below the cut are separated. We assume that an average of 5 tetrahedra are
adjacent to each edge and that the cutting plane intersects all tetrahedra at three (case
A) or four edges (case B). The reality lies between these two cases.

The number of cut edges are noted n(e) and the number of cut faces n(f). In case A,
3 edges are cut for each tetrahedron. Then, n(e) = 3

5 ×n(v) and n(f) = 3
2 ×n(v). In case

B, 4 edges are cut for each tetrahedron resulting in n(e) = 4
5 × n(v) and n(f) = 4

2 × n(v).

In 6.3, we analyze the number of added nodes for the remeshing n(kS) + n(k) and for
the remeshing with separation 2n(kS) + n(k).

Based on the observations in the resulting objects after a cut, the number of newly
inserted nodes calculated is:

Case n(kS) n(k) n(kS) + n(k) 2n(kS)+n(k)

A n(v)+n(f)+n(e) [4n(v)] 7.1n(v) 10.1n(v)

B n(v)︸︷︷︸
split14

+n(f)︸︷︷︸
flip23

+ n(e)︸︷︷︸
edge removal

[4n(v)]︸ ︷︷ ︸
split14

7.8n(v) 11.6n(v)

Tab. 6.3: Remeshing quadratic tetrahedra: the number of added nodes for the remeshing n(kS) +
n(k) and for the remeshing with separation 2n(kS) + n(k); nodes added on the edges,
are surrounded by [].

Then, we compare it with the linear tetrahedra:

Linear Quadratic Quadratic/Linear

Case n(kS) + n(k) 2n(kS) + n(k) n(kS) + n(k) 2n(kS) + n(k) n(kS) + n(k) 2n(kS) + n(k)

A n(v) 2n(v) 7.1n(v) 10.1n(v) 7.1 5.1

B n(v) 2n(v) 7.8n(v) 11.6n(v) 7.8 5.8

Tab. 6.4: Remeshing tetrahedra: comparison between linear and quadratic case.

The theoretical analysis on quadratic tetrahedra of Table 6.4 shows that there are at
least 5 times more nodes inserted than in the linear tetrahedra. For the same accuracy,
the number of elements is greatly reduced when using quadratic instead of linear shape
functions. Similarly, the number of cut edges is greatly reduced. If we consider for
example the subdivision of a quadratic tetrahedral element into eight linear tetrahedral
elements, then there is potentially one additional edge cut per tetrahedra and two per face.
That means, when cutting n(e) quadratic edges we can expect 2n(f) + n(v) cut linear
edges. Thus, for the first case we get 2 ∗ 3

2n(v) + n(v) = 4n(v) and for the second case
2∗2n(v)+n(v) = 5n(v) cut linear edges. This factor is below the factors of inserted nodes,
but it has to be underlined that a quadratic tetrahedron, which has the same number of
degrees of freedom like the eight linear tetrahedra might have a higher accuracy.

6. Results 71

6.4.2 Experimental Results

In order to confirm the theoretic results of the last subsection, we conducted the following
example:

We cut a beam with 371 tetrahedral elements and 124 nodes as shown in Figure 6.20.
The cut advances step by step, separating the beam in two pieces with threshold ε = 1e−1.

Fig. 6.20: Cut beam constructed with 371 tetrahedra. Figure extracted from [20].

The result is given in the following table:

Beam Elements n(v) 2n(kS) + n(k)

371 124 2050− 739 = 1311 ' 10.6n(v)
712 215 3033− 1334 = 2199 ' 10.2n(v)
4621 982 16786− 7334 = 9452 ' 9.6n(v)

Tab. 6.5: Evaluation of beams with different resolutions.

For three different beam resolutions, table 6.5 displays the number of tetrahedral ele-
ments n(v) intersecting with the cut and the number of added nodes using our remeshing
algorithm to allow for a separation. For example, in the case of 371 beam elements, the
number of nodes before the cut is 739 and 2050 after it. Then, the number of inserted
nodes is 1311.

In this example, boundary elements are cut and the split 1 to 3 and the bisect edge add
nodes for cut boundary elements. Those particularities are not considered in the theoret-
ical analysis. Beams with a low resolutions have a higher ratio of cut boundary elements
when compared to cut elements inside the volume. Thus, we expect more nodes added
per cut element for cuts of low resolution beams. Table 6.5 confirms this expectation,
but also reveals that the theoretical values are above our results in the experiment. This
behaviour can be explained by a lower number of tetrahedra adjacent to an edge than in

6. Results 72

the theoretical analysis.

Results on a beam with different resolutions 6.5 show that while the number of nodes
per element increases by a factor of 10/4 = 2.5, the number of added nodes increases by
a factor around 5. This is reasonable, due to the higher accuracy per degree of freedom
of and the lower number of cut edges for quadratic elements.

6.5 Organ example: a liver

For the curved surfaces of organs or other structures like eye membrane, many linear tetra-
hedra need to be used to represent the smooth surface. In this particular context, cutting
and cauterizing movement trajectories are smooth and thus difficult to represent by the
straight lines and planar surfaces of the linear tetrahedra. In this section, we present the
result of a liver represented by quadratic tetrahedra being remeshed and cut, as shown in
Figure 6.21.

Fig. 6.21: Remeshing of a cut liver.

In what follows, we analyze the result of cutting a quadratic liver with a low resolution
mesh created with the following parameters:

Solver Iterations Tolerance Threshold ν E Force

CGLinearSolver 1000 1e-5 1e-7 0.4 3000 (0, 0, 0)

About the cut:

Threshold Cut Node Cut Left Cut Right Cut Direction Boundary Condition

0.001 (15, -50, 0) (15, 50, 0) (0, 0, 5) [0, 0, 0]×[10,30,30]

The process of cutting and remeshing of the liver configured as presented above can
be seen in the following figures:

6. Results 73

Fig. 6.22: Liver before the cut. Fig. 6.23: Liver during the cut.

Fig. 6.24: Liver separated after the cut.

The pink dots represent the points of contact between the boundary conditions and
the liver. The black dots represent the new created nodes.

We can observe that before the cut, the liver is made of 9 quadratic tetrahedra, during
the cut it is remeshed and, after it, it is made of 34 elements.

Every split 1 to 4 inserts five new nodes: one on the cut and four on the edges, see
table 6.3. Thus for the cut of the liver we have n(v) = 45/9 = 5 tetrahedral cut elements
and we get for the number of added nodes 2n(kS) +n(k) = (278− 36)/5 = 48.4n(v). This
is equivalent to a factor close to five, when comparing to theoretic results. Note that the
presented case could be considered as worst case scenario: due to the low resolution most
cut elements are boundary elements and since their surface is curved, the general flip can
not get applied.

Every step adds the following number of nodes:

6. Results 74

Number of Nodes

Initial mesh 36

Split 1 to 4 81

Split 1 to 3 126

Flip 2 to 3 136

Bisect edge 198

Duplicate nodes 278

Tab. 6.6: Added nodes after the subsequent operations of the cut of a quadratic liver.

Then, the following result can be exposed:

Fig. 6.25: Cut of quadratic liver, impact of the different topological operations on the number of
nodes: pie chart. Figure extracted from [22].

Finally, we tested an example with more elements in order to observe its behavior.
The configuration used in this case was the following one:

Number of elements Solver Iterations Tolerance Threshold ν E Mass Force

297 CGLinearSolver 1000 1e-5 1e-7 0.4 3000 1.0 (0, 0, 0)

In this case, the liver is not subjected to any force. The following figures present the
result obtained:

6. Results 75

Fig. 6.26: Before cut. Fig. 6.27: After cut.

In this case, n(v) = 124 and the number of elements goes from 297 to 1787 after the
cut. Then, 2n(ks) + n(k) ' 12.0n(v), which is closer to the factor presented in 6.4.1 than
the liver with few elements exhibited above. This confirms that by increasing the number
of elements in the simulated object, the number of nodes inserted by the cut approaches
the value exposed in the theoretical analysis of 6.4.1.

7. CONCLUSION

Interactive numerical simulations of surgical procedures, aimed at training, rehearsal or
per-operative guidance are now considered important avenues to improve patient care and
reduce risks [5]. Such interactions involve deformations, cutting, or tearing of the modeled
soft tissues. Being able to handle all these interactions in real-time is of major importance
and several conditions need to be met: the deformations should be computed accurately,
computations must remain fast enough to allow interactivity, and topological changes need
to cover a wide range of cases, yet not hinder computational efficiency.

A geometrical representation that uses linear tetrahedra is sufficient for applications
in engineering, as the objects often have sharp corners. But for the curved surfaces of
organs, many linear tetrahedra need to be used to represent the smooth surface. In this
particular context, cut is smooth and difficult to represent by the straight lines and planar
surfaces of the linear tetrahedra.

Suwelack et al [14] proposes to use quadratic tetrahedra as a robust and accurate model
for real-time soft tissue simulations. The paper gives a detailed numerical analysis on the
improved accuracy of quadratic shape functions and even shows an improved efficiency for
the same accuracy.

The objetive of this thesis was to implement quadratic tetrahedra and to be able to
cut objects represented by them in real-time in SOFA: a simulation framework dedicated
to research in medical simulation 3. We mainly considered the deformation and cutting
of deformable objects, based on elasticity theory and computed using the finite element
method.

We began this thesis by introducing the theory of elasticity applied to our problem
in 1 and the procedure of the finite element method followed to discretize it in 2. Then,
in 3, we presented the structure of the SOFA framework and the CGoGN Plugin, where
the implementation was included. After that, in 4, we detailed the implementation pro-
cess applied, from 2-D in Python to 3-D in SOFA CGoGN, including the 3-D SOFA
implementation without the CGoGN combinatorial map. Later, in 5, we explained the
cutting process including the necessary methods to prepare the object to be cut (remesh-
ing). Also, we described how the middle points were inserted in the introduced edges
and we presented cutting results with an organ structure view, considering the remeshing
algorithm expansion. Finally, we exhibited the results in 6, focusing the analysis in the
quadratic tetrahedra implementation and in the remeshing with quadratic tetrahedra.

The results exposed in 6 allow us to conclude that quadratic tetrahedra have a better
convergence 6.10, better shape approximation 6.14 and need less operations to converge
6.11 than linear elements, which confirms that quadratic elements are superior.

On the other hand, the theorical analysis 6.4.1 shows that in the case of quadratic
tetrahedra, the remeshing inserts at least 5 times more nodes than in the linear tetrahe-

76

7. Conclusion 77

dra and, for the same accuracy, the number of elements is greatly reduced when using
quadratic instead of linear shape functions.

Finally, experimental results show that while the number of nodes per element increases
by a factor of 2.5, the number of added nodes expands by a factor of around 5, which is
reasonable due to the higher accuracy per degree of freedom and the lower number of cut
edges for quadratic elements.

8. FUTURE WORK

The research presented in this thesis raised many questions. There are several lines of
research arising from this work which should be pursued.

Among them, diverse studies could be done in order to compare more in detail the de-
formation differences between linear and quadratic tetrahedra by varying different param-
eters. In the case of the convergence analysis, for example, different Solvers (ODESolvers,
MumpsSolver, EulerSolver, etc) could be evaluated in order to try to find distinct results.
Besides, the number of iterations, the mass density and the tolerance of the solver could
be varied.

In the context of the cut, inserting the middle point at the barycenter of the inter-
sections between the cut surface S and the edges in the remeshing process leads to an
inaccurate approximation of the cut. It is more natural, to set the middle point positions
on the cut inside of the element [22], by averaging all the barycentric coordinates of the
points and then inserting this averaged barycentric coordinate into the interpolation inside
the element (an edge, a triangle or a tetrahedron). Even if this improvement only shows
relevance for cuts that have strong changes in direction inside an element, it could be
implemented in the future in order to have a more accurate cut simulation.

Finally, an important improvement would be to work with augmented-reality [18] while
simulating cuts. Current methods dealing with non-rigid augmented reality only provide
an augmented view when the topology of the tracked object is not modified, which is
an important limitation. Paulus et al [19] introduces a method for physics-based non-
rigid augmented reality, where singularities caused by topological changes are detected by
analyzing the displacement field of the underlying deformable model. These topological
changes are used to approximate the real cut and all its steps, from deformation to cutting
simulation, and are performed in real-time. In the future, this could be included in the
implementation to improve the coherence between the actual view and the model, and
provide added value.

78

BIBLIOGRAPHY

[1] Lipshitz EM. Landau LD. Theory of Elasticity. Pergamon Press Ltd., 1970. Chap. 1.

[2] Johnston Jr. E.R. Beer F.P. Mechanics of Materials. McGraw-Hill, Inc., 1981. isbn:
978-0073398235.

[3] K.J. Bathe. Finite Element Procedures. Prentice Hall, 1996.

[4] Leif Kobbelt. “√3subdivisionn”. In: Proceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques. SIGGRAPH ’00. New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp. 103–112. isbn: 1-
58113-208-5. doi: 10.1145/344779.344835. url: http://dx.doi.org/10.1145/
344779.344835.

[5] L.T. Kohn et al. Toerr is human: building a safer health system. Vol. 627. National
Academies Press, 2000.

[6] Young W. Kwon and Hyochoong Bang. The Finite Element Method Using MATLAB.
2nd. Boca Raton, FL, USA: CRC Press, Inc., 2000. isbn: 0849309182.

[7] David V. Hutton. Fundamentals of Finite Element Analysis. McGraw-Hill, 2003.

[8] Jérémie Allard et al. “SOFA - an Open Source Framework for Medical Simulation”.
In: MMVR 15 - Medicine Meets Virtual Reality. Vol. 125. Studies in Health Technol-
ogy and Informatics. Palm Beach, United States: IOP Press, Feb. 2007, pp. 13–18.
url: https://hal.inria.fr/inria-00319416.

[9] J. Fish and T. Belytschoko. A First Course in Finite Elements. John Wiley & Sons,
Ltd, 2007. Chap. 3.

[10] Johannes Mezger et al. “Interactive Physically-Based Shape Editing”. In: ACM Solid
and Physical Modeling Symposium (SPM). 2008.

[11] Stephan Suwelack et al. “Quadratic Corotated Finite Elements for Real-Time Soft
Tissue Registration”. In: (2010).

[12] François Faure et al. “SOFA: A Multi-Model Framework for Interactive Physical
Simulation”. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery.
Ed. by Yohan Payan. Vol. 11. Studies in Mechanobiology, Tissue Engineering and
Biomaterials. Springer, June 2012, pp. 283–321. doi: 10.1007/8415_2012_125.
url: https://hal.inria.fr/hal-00681539.

[13] Christoph J. Paulus. “Simulation of any section of soft-tissues with the Extended
Finite Element Method (German)”. MA thesis. Karlsruhe Institute of Technology,
2012.

[14] Stefan Suwelack et al. “Quadratic Corotated Finite Elements for Real-Time Soft
Tissue Registration”. In: Computational Biomechanics for Medicine. Ed. by Poul
M.F. Nielsen, Adam Wittek, and Karol Miller. New York, NY: Springer New York,
2012, pp. 39–50. isbn: 978-1-4614-3172-5.

79

https://doi.org/10.1145/344779.344835
http://dx.doi.org/10.1145/344779.344835
http://dx.doi.org/10.1145/344779.344835
https://hal.inria.fr/inria-00319416
https://doi.org/10.1007/8415_2012_125
https://hal.inria.fr/hal-00681539

BIBLIOGRAPHY 80

[15] Pierre Kraemer et al. “CGoGN: N-dimensional Meshes with Combinatorial Maps”.
In: 22nd International Meshing Roundtable. Ed. by Josep Sarrate and Matthew
Staten. Strasbourg, France: Springer International Publishing, 2013, pp. 485–503.
doi: 10.1007/978-3-319-02335-9_27. url: https://hal.archives-ouvertes.
fr/hal-01162100.

[16] Christoph J. Paulus et al. “Simulation of Complex Cuts in Soft Tissue with the
Extended Finite Element Method (X-FEM)”. In: Preprint Series of the Engineering
Mathematics and Computing Lab 0.02 (2014). issn: 2191-0693. url: http://heiup.
uni-heidelberg.de/journals/index.php/emcl-pp/article/view/17635.

[17] Introduction to Finite Element Methods [(ASEN 5007)]. Department of Aerospace
Engineering Sciences, University of Colorado at Boulder. 2015. url: http://www.
colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html.

[18] Christoph J. Paulus et al. “Augmented Reality during Cutting and Tearing of De-
formable Objects”. In: The 14th IEEE International Symposium on Mixed and Aug-
mented Reality. Fukuoka, Japan, Sept. 2015, p. 6. url: https://hal.inria.fr/
hal-01184495.

[19] Christoph J. Paulus et al. “Surgical Augmented Reality with Topological Changes”.
In: Medical Image Computing and Computer Assisted Interventions. München, Ger-
many, Oct. 2015. url: https://hal.inria.fr/hal-01184498.

[20] Christoph J. Paulus et al. “Virtual Cutting of Deformable Objects based on Efficient
Topological Operations”. In: Computer Graphics International. Strasbourg, France,
2015. url: https://hal.archives-ouvertes.fr/hal-01208546.

[21] Stefan Suwelack. A short introduction to soft tissue simulation. 2015.

[22] Christoph J. Paulus. “Topological Changes in Simulations of Deformable Objects”.
PhD thesis. University of Strasbourg, 2017.

[23] Dissemination of IT for the Promotion of Materials Science Kernel Description.
https://www.doitpoms.ac.uk/tlplib/fem/node.php. University of Cambridge.

[24] SOFA Documentation. www.sofa-framework.org.

[25] The Finite Element Method. https://www.comsol.com/multiphysics/finite-
element-method. Multiphysics Cyclopedia.

https://doi.org/10.1007/978-3-319-02335-9_27
https://hal.archives-ouvertes.fr/hal-01162100
https://hal.archives-ouvertes.fr/hal-01162100
http://heiup.uni-heidelberg.de/journals/index.php/emcl-pp/article/view/17635
http://heiup.uni-heidelberg.de/journals/index.php/emcl-pp/article/view/17635
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html
https://hal.inria.fr/hal-01184495
https://hal.inria.fr/hal-01184495
https://hal.inria.fr/hal-01184498
https://hal.archives-ouvertes.fr/hal-01208546
https://www.doitpoms.ac.uk/tlplib/fem/node.php
www.sofa-framework.org
https://www.comsol.com/multiphysics/finite-element-method
https://www.comsol.com/multiphysics/finite-element-method

	Theory of Elasticity
	Kinematics
	The strain
	The stress
	Elastic stress-strain law
	Elasticity problem - differential formulation
	Cutting problem - differential formulation
	Weak formulation

	The Finite Element Method
	Method description
	Element
	Nodes and Degrees of Freedom
	Finite Element Discretization
	Linear Elements
	Linear Tetrahedron Geometry
	Tetrahedron coordinates
	Linear Interpolation
	Coordinate Transformations and Shape Functions

	Quadratic Elements
	Quadratic Triangle
	Quadratic Tetrahedron

	SOFA - an Open Source framework for medical simulation
	Basic structure
	Combinatorial Maps: CGoGN
	From Incidence Graph to Cell-Tuples

	Implementation
	2-D Implementation - Python
	3-D Implementation - SOFA
	3-D Implementation - CGoGN
	Placement of points

	Cutting
	Remeshing
	Remeshing in 2-D
	Remeshing in 3-D

	Cutting

	Results
	Convergence Analysis
	First configuration
	Second configuration

	Comparison linear vs quadratic
	Analytic comparison
	Time comparison

	Visual comparison
	Comparison between elements of the same type

	Cutting results
	Theoretical analysis
	Experimental Results

	Organ example: a liver

	Conclusion
	Future Work

