
Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales
Departamento de Computación

The Vectorial Lambda Calculus Revisited

Tesis de Licenciatura en Ciencias de la Computación

Francisco José Noriega

Director: Alejandro Dı́az-Caro

Buenos Aires, 2020

A mi familia,

en especial mis abuelos y mi hermano.

Abstract

We revisit the Vectorial λ-Calculus [3], a system that provides a way to model a vector space

of terms by extending the classic terms of the λ-calculus with linear combinations of them; and

by introducing a type system on top. The system can be summarized by the slogan

If Γ ` t : T and Γ ` r : R then Γ ` α · t + β · r : α · T + β ·R.

However, the type system in Vectorial only provides a weakened version of the Subject Reduction

property. We prove that our revised Vectorial λ-Calculus supports the standard version of said

property as well as many others in the original system, such as Progress. We also introduce the

concept of weight of types and terms, and a new property relating the weight of a term with the

weight of its type.

i

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Alejandro Dı́az-Caro, for

being my mentor. He patiently taught me the methodology to carry out this research, but most

importantly, he encouraged me to always do my best.

I am very grateful to Hernan Melgratti, Pablo Barenbaum and Pablo Arrighi, for evaluating

this thesis and for their insightful comments.

I want to thank Juan Mart́ın Noriega and Agustina Coppe for helping me review this thesis

in search for typos and bad English, of which any one remaining is entirely my fault.

To my coworkers at Medallia, specially Nacho, Aditya and Anand, my supervisors, who

always gave me the time and tools needed to work on my research while working for the company.

To my friends: Hambursecta, Kurzgesagtians, La Pálida, to Mica and Toto; and to all of my

friends, who always supported me. Among them, I want to specially thank Rone, who let me

crash at his place to work on my thesis while he recorded his music; and Gabi and Ricardo, who

let me stay with them in Punta del Este, where I finally finished the research.

I could not stop thanking Marcelo Sittoni, my math teacher back in high school, who encour-

aged me to always be curious, and made me fall in love with mathematics, logic and computer

science. I would not have got here had it not been for him.

To my family, who were always there and supported me, and for all their love; specially my

gradparents, to whom I dedicate this thesis.

And lastly, to the person I love the most in the world, my brother Juan Mart́ın, who has

given me his support, and was there for me through all my successes and failures. He continues

to inspire me to do my best.

iii

Contents

1 Introduction 1

1.1 Linear-algebraic λ-Calculus . 1

1.2 The Vectorial λ-Calculus . 2

1.3 Thesis plan . 2

2 The Vectorial λ-Calculus 4

2.1 The terms . 4

2.2 The type system . 7

2.2.1 Intuitions . 7

2.2.2 Formalisation . 8

2.2.3 Example: Typing Hadamard . 11

2.3 Properties . 12

3 Our revision 13

3.1 The terms . 13

3.2 Type system . 14

3.2.1 Typing rules . 14

4 Subject Reduction 17

4.1 Prerequisites for the proof . 17

4.2 Proof . 36

5 Other properties 48

5.1 Progress . 48

5.2 Weight Preservation . 49

6 Conclusion 53

6.1 Summary . 53

6.2 Future directions . 54

6.2.1 Strong Normalisation . 54

Appendices 55

A.1 Interpretation of typing judgements . 55

A.1.1 The general case . 55

A.1.2 The finitary case: Expressing matrices and vectors 55

A.1.3 Useful constructions . 57

Bibliography 59

iv

Chapter 1

Introduction

The study of quantum computing has implications on the way we understand physics today,

and can be considered a new computational paradigm altogether, which also has implications on

the way we understand computers, algorithms and logic. This field of study then proposes that

a computer is in fact a quantum physical system and, as such, it behaves according to the laws of

quantum physics. Modeling computers this way (and more specifically, computer algorithms),

has yielded important algorithmic results in the last few decades [8, 12, 17], which have no

classical counterpart; to such a degree that those algorithms are written using the primitive

model of quantum circuits, akin to how the algorithms of classic computation were modeled back

in the 1950s: there was no higher-level model available to write them. Consequently, several

researchers have started to develop new programming languages that capture the essence of

the quantum systems, while providing a higher-level abstraction. Selinger [16] established the

“quantum data, classic control” paradigm, which proposed that quantum computers will run

in specialized devices attached to classical computers, with the latter instructing the former

which operations to perform over which qubits. In this scheme, the classical computer is the one

that performs the measurements on the qubits to retrieve the classical bits to continue running

the program. Another approach is to model the programming language following a “quantum

data, quantum control” paradigm [1, 5], which avoids any additional classical registers and

programming structures. Recent results suggest that quantum control may turn out to be more

efficient than classical control when dealing with black-box algorithms [7, 15].

1.1 Linear-algebraic λ-Calculus

Following the quantum control paradigm, the untyped linear-algebraic λ-calculus Lineal

(λlin) [5] was introduced. λlin is a minimalistic language that is able to model high-level compu-

tation with linear algebra, and therefore provides a computational definition of vector spaces and

bilinear functions. The first problem addressed by this language was how to model higher-order

computable operators over infinite dimensional vector spaces, which serves as a basis for study-

ing wider notions of computability upon abstract vector spaces, whatever the interpretation of

the vectors might be (probabilities, number of computational paths leading to one result, etc.).

Therefore, the system is able to represent linear combination of terms, which is key to model one

of the most important characteristics of quantum systems: the state vector of a system. Thus,

the terms are modeled as said state vectors, and if t and u are valid terms, then it is possible

to write

α · t + β · u

1

Section 1.2 - The Vectorial λ-Calculus

which is also a valid term that represents the superposition of the state vectors t and u. However,

the downside of this generality in the context of quantum computing, is that the operators are

not restricted to being unitary (as required by quantum physics), but it serves as a starting

point to build more specialized quantum languages by enforcing such restrictions, following for

example [9].

1.2 The Vectorial λ-Calculus

While λlin is enough to model the axioms of vector spaces in the simplest and most general

form, it remains an untyped λ-calculus. Consider then the following example, Yb = (λx.(b +

(x) x)) λx.(b + (x) x). Then Yb is reduced to b + Yb. So the term Yb −Yb is reduced to

0, but also is reduced to b + Yb − Yb and hence to b, breaking confluence. To solve this,

λlin introduced some restrictions to the reduction rules such as restricting the reduction rule

α · t +β · t→ (α+β) · t to be applied only when t is a closed normal term. This rule forbids the

reduction Yb −Yb → 0, thus regaining confluence. However, even then the system still admits

terms that do not normalise, such as the looping term Ω = (λx.(x) x) (λx.(x) x).

The Vectorial λ-calculus [3], denoted as λvec, restricted λlin by providiing a formal account

of linear operators and vectors at the level of the type system, including both scalars and sums

of types, which can then be summarized by the slogan:

If Γ ` t : T and Γ ` r : R then Γ ` α · t + β · r : α · T + β ·R.

The type system exhibits the following accomplishments:

• The typed language features a weakened Subject Reduction property.

• The typed language features strong normalisation.

• In general, if t has type
∑

i αi ·Ui, then it must be reduced to a t′ of the form
∑

ij βij ·bij ,
where: the bij ’s are basis terms of unit type Ui, and

∑
ij βij = αi.

• In particular, finite vectors, matrices and tensorial products can be encoded within λvec. In

this case, the type of the encoded expressions coincides with the result of the expression.

Notice that since the type system features strong normalisation, the terms Yb −Yb and Ω

are no longer an issue, since they are not well-typed, thus allowing us to remove many of the

restrictions and consider a more canonical set of rewritten rules [2, 3, 6, 10].

1.3 Thesis plan

The main focus of this work is to bring back the property of Subject Reduction, while

preserving as many properties of the original system as possible. We also introduce the concept

of weight of terms and types, which represents the sum of all the components of the vectors

being modeled by them.

Chapter 2: In this chapter we study λvec by presenting an in-depth analysis of the design choices

behind the system. We also discuss some of its limitations, particularly the weakened version

of the Subject Reduction property, whose restoration to the standard version of the property is

the main focus of this work.

Chapter 3: We present a revised version of λvec, and discuss the design decisions behind the

revision in order to regain the standard version of the Subject Reduction property.

Francisco J. Noriega 2

Section 1.3 - Thesis plan

Chapter 4: Here we prove that our revised version of the λvec satisfies the standard version

of the Subject Reduction property, and we present and prove all the lemmas and definitions

needed.

Chapter 5: In this chapter we present proof for other desirable properties of the system:

• Progress (Section 5.1).

• Weight Preservation (Section 5.2): We prove that once a term is reduced, the resulting

value has the same weight as its type.

Chapter 6: Finally, we summarize the accomplishments, present several examples of vector

encoding using the new system and show some indications for future work.

Francisco J. Noriega 3

Chapter 2

The Vectorial λ-Calculus

Chapter Summary

We examine the terms and types that constitute λvec, and we show how the system

is able to characterise vectors, using the Hadamard Quantum Gate as an example of

how matrices can be encoded in the system.

We also show two system properties: Strong Normalisation of terms, and λvec’s weak-

ened Subject Reduction, further examining the latter and presenting the reasons why

the standard formulation of the property is not directly satisfied.

We formally present λvec [3], and analyse the different design choices behind it. λvec is

based on λlin [5], which admits the classical constructs of λ-calculi: variables x, y, . . . ,

λ-abstractions λx.s, and application (s) t. It also admits linear combinations of terms:

0, s + t and α · s are terms, where the scalar α ranges over a ring. As in λlin, it follows a

call-by-basis strategy, in the sense that (λx.r) (s + t) is first reduced to (λx.r) s + (λx.r) t until

basis terms (i.e. values in the standard sense) are reached, at which point beta-reduction applies.

The set of normal forms of terms can then be interpreted as a module and the term (λx.r) s

can be seen as the application of the linear operator λx.r to the vector s.

λvec then extends λlin by providing a formal account of linear operators and vectors at the

level of the type system.

Chapter plan. In Section 2.1 we examine the terms and the reduction rules. In Section 2.2 we

present the type system along with the typing rules, and show some examples of how vectorial

computations can be encoded with it. Finally, in Section 2.3 we show the system’s properties

and we study the weakened version of the Subject Reduction property that λvec proposes, and

the reason why its standard formulation cannot be directly satisfied.

2.1 The terms

We begin by considering the untyped language of λvec as described in Figure 2.1. For the

function application, we use the Krivine’s notation [14]: The term (s) t passes the argument t

to the function s.

The terms are divided in two categories:

• Basis terms: The only terms that can be used in a β-reduction step.

• General terms.

4

Section 2.1 - The terms

This design, as in [2,5,10], follows a call-by-basis reduction strategy: only the outermost redexes

are reduced: a redex is reduced only when its right hand side has been reduced to a basis term

(variable or lambda abstraction), cf. Group B in Figure 2.1.

Besides the β-reduction rule, the system presents other reduction rules which follow an ori-

ented version of the axioms of vector spaces, determining the behaviour of sums and products. As

such, they are divided into the following groups: Elementary (E), Factorisation (F), Application

(A) and the Beta Reduction (B).

Essentially, the E and F groups rules, presented in [4], consist in capturing the equations of

vector spaces in an oriented rewrite system. For example, 0 · s is reduced to 0, as 0 · s = 0 is

valid in vector spaces.

It should be noted that this set of algebraic rules is locally confluent [3], and does not

introduce loops. In particular, the two rules stating α·(t+r)→ α·t+α·r and α·t+β·t→ (α+β)·t
are not the inverse of the other when r = t. Indeed,

α · (t + t)→ α · t + α · t→ (α+ α) · t

but not the other way around.

The Group A of rules formalises the fact that a general term t is thought of as a linear

combination of terms α · r+β · r′ and the fact that the application is distributive on the left and

on the right. When s is applied to such a superposition, (s) t is reduced to α · (s) r + β · (s) r′.

The term 0 is the empty linear combination of terms, explaining the last two rules of Group A.

Terms are considered modulo associativity and commutativity of the operator +, making

the reduction into an AC-rewrite system [13].

Scalars (notation α, β, γ, . . .) form a ring (S,+,×), where the scalar 0 is the unit of addition

and 1 the unit of multiplication. We use the shortcut notation s− t instead of s + (−1) · t.

The set of free variables of a term is defined as usual: the only operator binding variables is

the λ-abstraction. The operation of substitution on terms (notation t[b/x]) is also defined as

usual, by taking care of variable renaming to avoid capture.

For a linear combination, the substitution is defined as follows:

(α · t + β · r)[b/x] = α · t[b/x] + β · r[b/x]

Terms: r, s, t,u ::= b | (t) r | 0 | α · t | t + r

Basis terms: b ::= x | λx.t
Group E:

0 · t→ 0

1 · t→ t

α · 0→ 0

α · (β · t)→ (α× β) · t
α · (t+r)→ α · t+α ·r

Group F:

α · t +β · t→ (α+β) · t
α · t + t→ (α+ 1) · t
t + t→ (1 + 1) · t
t + 0→ t

Group B:

(λx.t) b→ t[b/x]

Group A:

(t + r) u→ (t) u + (r) u

(t) (r+u)→ (t) r+(t) u

(α · t) r→ α · (t) r

(t) (α · r)→ α · (t) r

(0) t→ 0

(t) 0→ 0

t→ r

α · t→ α · r
t→ r

u + t→ u + r

t→ r

(u) t→ (u) r

t→ r

(t) u→ (r) u

t→ r

λx.t→ λx.r

Figure 2.1: Syntax, reduction rules and context rules of λvec.

Francisco J. Noriega 5

Section 2.1 - The terms

Booleans in the Vectorial λ-Calculus

Both in λvec and in quantum computing we can interpret the notion of booleans. In the

former, we can consider the usual boolean terms true = λx.λy.x and false = λx.λy.y whereas,

in the latter, we consider the regular quantum bits true = |0〉 and false = |1〉.
In λvec, a representation of if r then s else t needs to take into account the special relation

between sums and applications. It is incorrect to directly encode this test as the usual ((r) s) t.

Indeed, if r, s and t were respectively the terms true, s1 +s2 and t1 +t2, the term ((true) (s1 +

s2)) (t1 +t2) would be reduced to ((true) s1) t1 +((true) s1) t2 +((true) s2) t1 +((true) s2) t2,

then to 2 · s1 + 2 · s2 instead of s1 + s2.

In order to “freeze” the computations in each branch of the test so that the sum does not

distribute over the application, λvec uses thunks [5]: they encode the test as {((r) [s]) [t]}, where

[−] is the term λf.− with f a fresh, unused term variable, and where {−} is the term (−) λx.x.

Then,

{((r) [s]) [t]} = (((r) (λf.s)) (λg.t)) (λx.x)

= (((λx.λy.x) (λf.s1 + s2)) (λg.t1 + t2)) (λx.x)

→ ((λy.λf.s1 + s2) (λg.t1 + t2)) (λx.x)

→ (λf.s1 + s2) (λx.x)

→ s1 + s2

The [−] encoding “freezes” the linearity while the {−} encoding “releases” it. Then the term

if true then (s1 + s2) else (t1 + t2) is reduced to the term s1 + s2 as could be expected. Note

that this test is linear, in the sense that the term if (α · true + β · false) then s else t is reduced

to α · s + β · t, implementing the so-called quantum-if [1].

Quantum computing deals with complex, linear combinations of terms, and a typical com-

putation is run by applying linear unitary operations on the terms, called gates. For example,

the Hadamard gate H acts on the space of booleans spanned by true and false. It sends true

to 1√
2
(true + false) and false to 1√

2
(true− false). If x is a quantum bit, the value (H) x can

be represented as the quantum test

(H) x := if x then

(
1√
2

(true + false)

)
else

(
1√
2

(true− false)

)
.

As developed in [5], we can simulate this operation in λvec using the test construction we just

described:

{(H) x} :=

{(
(x)

[
1√
2
· true +

1√
2
· false

]) [
1√
2
· true− 1√

2
· false

]}
.

Note that the thunks are necessary: without thunks the term(
(x)

(
1√
2
· true +

1√
2
· false

)) (
1√
2
· true− 1√

2
· false

)
would be reduced to the term

1

2
(((x) true) true + ((x) true) false + ((x) false) true + ((x) false) false),

which is fundamentally different from the term H we are trying to emulate. With the same

procedure, λvec can “encode” any matrix. If the space is of some general dimension n, instead of

the basis elements true and false, the terms λx1. · · · .λxn.xi can choosen for i = {1, . . . , n} to

encode the base of the space. We can also take tensor products of qubits. More details of these

encodings are provided in Appendix A.1.

Francisco J. Noriega 6

Section 2.2 - The type system

2.2 The type system

2.2.1 Intuitions

Before diving into the technicalities of the definition, we discuss the rationale behind the

construction of the type-system.

Superposition of types

λvec begins by incorporating the notion of scalars into the type system: If A is a valid type,

the construction α · A is also a valid type and if the terms s and t are of type A, the term

α · s + β · t is of type (α+ β) ·A. This was achieved in [2] and it allows to distinguish between

the functions λx.(1 · x) and λx.(2 · x): the former is of type A→ A whereas the latter is of type

A→ (2 ·A).

The terms true and false can be typed in the usual way with B = X → (X → X), for a

fixed type X. So let us consider the term 1√
2
· (true− false). Using the above addition to the

type system, this term should be of type 0 ·B, a type which fails to exhibit the fact that we have

a superposition of terms.

To address this problem, λvec admits sums of types. For instance, provided that T = X →
(Y → X) and F = X → (Y → Y), we can type the term 1√

2
· (true− false) with 1√

2
· (T −F),

which has L2-norm 1, just like the type of false has norm one.

At this stage the type system is able to type the term

H = λx.

{(
(x)

[
1√
2
· true +

1√
2
· false

]) [
1√
2
· true− 1√

2
· false

]}
Indeed, as previously mentioned, the thunk construction [−] is simply λf.(−) where f is a fresh

variable and that {−} is (−) λx.x. So whenever t has type A, [t] has type I → A with I an

identity type of the form Z → Z, and {t} has type A whenever t has type I → A. The term

H can then be typed with
((

I→ 1√
2
.(T + F)

)
→
(
I→ 1√

2
.(T − F)

)
→ I→ T

)
→ T , with T

any fixed type.

Let us now try to type the term (H) true. This is made possible by taking T to be 1√
2
·(T +F).

But then, if we want to type the term (H) false, T needs to be equal to 1√
2
· (T − F). It follows

that we cannot type the term (H)
(

1√
2
· true + 1√

2
· false

)
since it is not possible to conciliate

the two constraints on T .

To address this problem, λvec introduces the universal abstraction in the type system, making

it à la System F. The term H can now be typed with ∀T.((I→ 1√
2
· (T +F))→ (I→ 1√

2
· (T −

F))→ I→ T)→ T and the types T and F are updated to be respectively ∀XY.X → (Y → X)

and ∀XY.X → (Y → Y). The terms (H) true and (H) false can both be well-typed with

respective types 1√
2
· (T + F) and 1√

2
· (T − F), as expected.

Type variables, units and general types

Because of the call-by-basis strategy, variables must range over types that are not linear

combination of other types, i.e. unit types. To illustrate this necessity, consider the following

counterexample. Suppose λvec allows variables to have scaled types, such as α · U . Then the

term λx.x+ y could have type (α ·U)→ α ·U +V (with y of type V). Let b be of type U , then

(λx.x+ y) (α · b) has type α · U + V , however

(λx.x+ y) (α · b)→ α · (λx.x+ y) b→ α · (b + y)→ α · b + α · y ,

Francisco J. Noriega 7

Section 2.2 - The type system

which is problematic since the type α · U + V does not reflect such a superposition. Hence, the

left side of an arrow will be required to be a unit type; that is, not a superposition of types.

This is achieved by the grammar defined in Figure 2.2.

Type variables, however, do not always have to be unit types. In fact, a universal abstraction

of a general type was needed in the previous section in order to type the term H. Therefore,

to distinguish a general type variable from a unit type variable (to make sure that only unit

types appear at the left of arrows), λvec defines two sorts of type variables: the variables X to be

replaced with unit types, and X to be replaced with any type (we use X when we mean either

one). The type X is a unit type whereas the type X is not.

In particular, the type of true, T , is now ∀XY .X → Y → X , the type of false, F , is

∀XY .X → Y → Y and the type of H is

∀X.
((

I→ 1√
2
· (T + F)

)
→
(

I→ 1√
2
· (T − F)

)
→ I→ X

)
→ X.

Note how the left sides of all arrows remain unit types.

The term 0

The term 0 will naturally have the type 0·T , for any inhabited type T (enforcing the intuition

that the term 0 is essentially a normal form of programs of the form t− t).

Even though there are reduction rules such as t + 0→ t, λvec does not allow the equivalence

T + 0 ·R ≡ T . To understand why that decision was made, consider the following example. Let

λx.x be of type U → U and let r be of type R. The term λx.x+r−r is of type (U → U)+ 0 ·R,

and if λvec allowed such equivalence, (U → U). If we were to choose b of type U , we would be

allowed to say that (λx.x+ r− r) b is of type U . This term is reduced to b + (r) b− (r) b. But

if the type system is reasonable enough, it should at least be able to type (r) b. However, since

there are no constraints on the type R, this is difficult to enforce.

The problem comes from the fact that along the typing of r− r, the type of r is lost in the

equivalence (U → U)+0·R ≡ U → U . Therefore, while the terms form a module (semantically),

the types form a weak module in the sense of [10].

2.2.2 Formalisation

We now present the type system of λvec: we first describe the language of types, then present

the typing rules.

Definition of types

Types are defined in Figure 2.2 (top). As with the terms, there are two kinds: unit types and

general types, that is, linear combinations of types. Unit types include all types of System F [11,

Ch. 11] and intuitively they are used to type basis terms. The arrow type admits only a unit

type in its domain. This is due to the fact that the argument of a λ-abstraction can only be

substituted by a basis term, as discussed in Section 2.2.1.

As previously mentioned, the type system features two sorts of variables: unit variables X
and general variables X. The former can only be substituted by a unit type whereas the latter

can be substituted by any type. We use the notation X when the type variable is unspecified.

The substitution of X by U (resp. X by S) in T is defined as usual and is written T [U/X] (resp.

T [S/X]). We use the notation T [A/X] to say: “if X is a unit variable, then A is a unit type,

otherwise A is a general type”.

Francisco J. Noriega 8

Section 2.2 - The type system

Types: T,R, S ::= U | α · T | T +R | X
Unit types: U, V,W ::= X | U → T | ∀X .U | ∀X.U

1 · T ≡ T α · T + β · T ≡ (α+ β) · T
α · (β · T) ≡ (α× β) · T T +R ≡ R+ T

α · T + α ·R ≡ α · (T +R) T + (R+ S) ≡ (T +R) + S

ax
Γ, x : U ` x : U

Γ ` t : T
0I

Γ ` 0 : 0 · T
Γ, x : U ` t : T

→I
Γ ` λx.t : U → T

Γ ` t :

n∑
i=1

αi · ∀ ~X.(U → Ti) Γ ` r :

m∑
j=1

βj · U [~Aj/ ~X]

→E

Γ ` (t) r :
n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/ ~X]

Γ ` t :

n∑
i=1

αi · Ui X /∈ FV (Γ)

∀I
Γ ` t :

n∑
i=1

αi · ∀X.Ui

Γ ` t :

n∑
i=1

αi · ∀X.Ui
∀E

Γ ` t :
n∑
i=1

αi · Ui[A/X]

Γ ` t : T
αI

Γ ` α · t : α · T
Γ ` t : T Γ ` r : R

+I
Γ ` t + r : T +R

Γ ` t : T T ≡ R
≡

Γ ` t : R

Figure 2.2: Types and typing rules of λvec. We use X when we do not want to specify if it is X
or X, that is, unit variables or general variables respectively. In T [A/X], if X = X , then A is a

unit type, and if X = X, then A can be any type. We also write ∀I and ∀I (resp. ∀E and ∀E)

when we need to specify which kind of variable is being used.

Francisco J. Noriega 9

Section 2.2 - The type system

In particular, for a linear combination, the substitution is defined as follows: (α·T+β·R)[A/X] =

α · T [A/X] + β ·R[A/X]. We also use the vectorial notation T [~A/ ~X] for T [A1/X1] · · · [An/Xn]

if ~X = X1, . . . , Xn and ~A = A1, . . . , An, and also ∀ ~X for ∀X1 . . . Xn = ∀X1.∀Xn.

The equivalence relation ≡ on types is defined as a congruence. Notice that this equivalence

makes the types into a weak module over the scalars: they would form a module were it not

for the fact that there is no neutral element for the addition. Indeed, the type 0 · T is not the

neutral element of the addition.

We use the summation (
∑

) notation without ambiguity, due to the associativity and com-

mutativity equivalences of +.

Typing rules

The typing rules are also established in Figure 2.2 (bottom). Contexts are denoted by Γ, ∆,

etc, and are defined as sets {x : U, . . . }, where x is a term variable appearing only once in the

set, and U is a unit type. We usually omit the curly braces and just write x : U, · · · .

• The axiom (ax) and the arrow introduction rule (→I) are the usual ones.

• The ∀I and ∀E allow the introduction and the elimination of universal abstraction for

types (∀), respectively.

• The rule (0I) to type the term 0 takes into account the discussion in Section 2.2.1. This

rule ensures that the type of 0 is inhabited, discarding problematic types such as 0 ·∀X.X.

• Any sum of typed terms can be typed using rule (+I).

• Any scaled typed term can be typed with (αI).

• Rule (≡) ensures that equivalent types can be used to type the same terms.

• Finally, the particular form of the arrow-elimination rule (→E) is due to the rewrite rules

in Group A that distribute sums and scalars over applications. The need and use of this

complicated arrow-elimination rule can be illustrated by the following three examples [3].

Example 2.2.1. Rule (→E) is easier to read for trivial linear combinations. It states that

provided that Γ ` s : ∀X.U → S and Γ ` t : V , if there exists some type W such that V =

U [W/X] then, since the sequent Γ ` s : V → S[W/X] is valid, we also have Γ ` (s) t : S[W/X].

Hence, the arrow elimination here performs an arrow and a universal abstraction elimination at

the same time.

Example 2.2.2. Consider the terms b1 and b2, of respective types U1 and U2. The term b1+b2

is of type U1 + U2. We would reasonably expect the term (λx.x) (b1 + b2) to also be of type

U1 + U2. This is the case thanks to Rule (→E). Indeed, if we type the term λx.x with the type

∀X.X → X the rule can now be applied. Note that we could not type such a term unless we

eliminated the universal abstraction together with the arrow.

Example 2.2.3. The projection of a pair of elements is a slightly more involved example. It

is possible to encode the notion of pairs and projections in System F: 〈b, c〉 = λx.((x) b) c,

〈b′, c′〉 = λx.((x) b′) c′, π1 = λx.(x) (λy.λz.y) and π2 = λx.(x) (λy.λz.z). Provided that b, b′,

c and c′ have respective types U , U ′, V and V ′, the type of 〈b, c〉 is ∀X.(U → V → X)→ X and

the type of 〈b′, c′〉 is ∀X.(U ′ → V ′ → X) → X. The term π1 and π2 can be typed respectively

with ∀XY Z.((X → Y → X) → Z) → Z and ∀XY Z.((X → Y → Y) → Z) → Z. The term

(π1 + π2) (〈b, c〉+ 〈b′, c′〉) is then typable of type U + U ′ + V + V ′, thanks to Rule (→E). Note

that this is consistent with the rewrite system, since it is reduced to b + c + b′ + c′.

Francisco J. Noriega 10

Section 2.2 - The type system

2.2.3 Example: Typing Hadamard

In this Section, we formally show how to retrieve the type that was discussed in Section 2.2.1,

for the term H encoding the Hadamard gate.

Let true = λx.λy.x and false = λx.λy.y. It is simple to check that

` true : ∀XY .X → Y → X ≡ T ,
` false : ∀XY .X → Y → Y ≡ F .

We also define the following superpositions:

|+〉 =
1√
2
· (true + false) and |−〉 =

1√
2
· (true− false).

In the same way, we define

� =
1√
2
· ((∀XY .X → Y → X︸ ︷︷ ︸

T

) + (∀XY .X → Y → Y︸ ︷︷ ︸
F

)),

� =
1√
2
· ((∀XY .X → Y → X︸ ︷︷ ︸

T

)− (∀XY .X → Y → Y︸ ︷︷ ︸
F

)).

Finally, we recall [t] = λx.t, where x /∈ FV (t) and {t} = (t) I. So {[t]} → t. Then it is

easy to check that ` [|+〉] : I → � and ` [|−〉] : I → �. In order to simplify the notation, let

F = (I → �)→ (I → �)→ (I → X). Then

ax
x : F ` x : F x : F ` [|+〉] : I → �

→E
x : F ` (x) [|+〉] : (I → �)→ (I → X) x : F ` [|−〉] : I → �

→E
x : F ` ((x) [|+〉]) [|−〉] : I → X

→E
x : F ` {((x) [|+〉]) [|−〉]} : X

→I` λx. {((x) [|+〉]) [|−〉]} : F → X
∀I` λx. {((x) [|+〉]) [|−〉]} : ∀X.((I → �)→ (I → �)→ (I → X))→ X

Now we can apply Hadamard to a qubit and get the right type. LetH be the term λx. {((x) [|+〉]) [|−〉]}.

` H : ∀X.((I → �)→ (I → �)→ (I → X))→ X
∀E` H : ((I → �)→ (I → �)→ (I → �))→ �

` true : ∀X .∀Y .X → Y → X
∀E` true : ∀Y .(I → �)→ Y → (I → �)
∀E` true : (I → �)→ (I → �)→ (I → �)
→E` (H) true : �

Yet a more interesting example is the following. Let

�I =
1√
2
· (((I → �)→ (I → �)→ (I → �)) + ((I → �)→ (I → �)→ (I → �)))

That is, � where the universal abstractions have been instantiated. It is easy to check that

` |+〉 : �I . Hence,

` H : ∀X.((I → �)→ (I → �)→ (I → X))→ X
→E

` (H) |+〉 :
1√
2
·� +

1√
2
·�

And since 1√
2
·� + 1√

2
·� ≡ ∀XY .X → Y → X , we conclude that

` (H) |+〉 : ∀XY .X → Y → X .

Notice that (H) |+〉 →∗ true.

Francisco J. Noriega 11

Section 2.3 - Properties

2.3 Properties

As previously mentioned, λvec does not directly satisfy the standard formulation of the Subject

Reduction property, but rather a weakened version of it.

Since the terms of λvec are not explicitly typed, the system is bound to have sequents such

as Γ ` t : T1 and Γ ` t : T2 with distinct types T1 and T2 for the same term t. Using Rules

(+I) and (αI) it is possible to obtain the valid typing judgement Γ ` α · t + β · t : α · T1 + β · T2.

Given that α · t + β · t is reduced to (α + β) · t, a regular subject reduction would ask for

the valid sequent Γ ` (α + β) · t : α · T1 + β · T2. But since, in general, the equivalence

α · T1 + β · T2 ≡ (α+ β) · T1 ≡ (α+ β) · T2 is not satisfied, a workaround was needed.

To solve this problem, λvec introduced a notion of order on types. Said order, denoted with

w, was chosen so that the factorisation rules make the types of terms smaller. In particular, it

satisfied that (α+ β) · T1 w α · T1 + β · T2 and (α+ β) · T2 w α · T1 + β · T2 whenever T1 and T2

are types for the same term. This approach was also extended to solve a second pitfall coming

from the rule t+0→ t. Indeed, although x : X ` x+0 : X +0 ·T is well-typed for any inhabited

T , the sequent x : X ` x : X + 0 ·T is not valid in general. Therefore, the ordering was extended

to also have X w X + 0 · T .

Notice that this ordering did not introduce a subtyping relation. For example, although

` (α + β) · λx.λy.x : (α + β) · ∀X .X → (X → X) is valid and (α + β) · ∀X .X → (X → X) w
α · ∀X .X → (X → X) +β · ∀XY .X → (Y → Y), the sequent ` (α+β) ·λx.λy.x : α · ∀X .X → (X →
X) + β · ∀XY .X → (Y → Y) is not valid.

First, the (antisymmetric) ordering relation w is defined on types discussed above as the

smallest reflexive, transitive and congruent relation satisfying the rules:

1. (α+ β) · T w α · T + β · T ′ if there are Γ, t such that Γ ` α · t : α · T and Γ ` β · t : β · T ′.

2. T w T + 0.R for any type R.

3. If T w R and U w V , then T + S w R + S, α · T w α · R, U → T w U → R and

∀X.U w ∀X.V .

Note the fact that Γ ` t : T and Γ ` t : T ′ does not imply that β · T w β · T ′. For instance,

although β · T w 0 · T + β · T ′, this does not mean that 0 · T + β · T ′ ≡ β · T ′.

Let R be any reduction rule from Figure 2.1, and →R a one-step reduction by rule R. A

weak version of the Subject Reduction theorem can be stated as follows.

Theorem 2.3.1 (Weak Subject Reduction [3, Theorem 4.1]). For any terms t, t′, any context

Γ and any type T , if t→R t′ and Γ ` t : T , then:

1. if R /∈ Group F, then Γ ` t′ : T ;

2. if R ∈ Group F, then ∃S w T such that Γ ` t′ : S and Γ ` t : S.

The type system of λvec enforces Strong Normalisation of well-typed terms.

Theorem 2.3.2 (Strong Normalisation [3, Theorem 5.7]). If Γ ` t : T is a valid sequent, then

t is strongly normalising.

Francisco J. Noriega 12

Chapter 3

Our revision

Chapter Summary

We present the revisions we made to the terms and types of λvec, and the decisions

behind the new design.

In this chapter we present a revision of λvec, denoted as λvec∗. As previously discussed, λvec is

not able to satisfy the standard formulation of the Subject Reduction property. This stems

from the polymorphic nature of the system, which allows a single term to have more than

one type; and the fact that the reduction rules from group F collapse a sum of terms into a

single one.

Consider a term t, which types are T and R; and the term α · t + β · t. The latter term would

then be reduced to (α + β) · t, but the system is unable to express all of its possible types: it

will collapse the type to either (α+ β) · T or (α+ β) ·R, but it cannot type it with α · T + β ·R
as expected.

The revision presented in this chapter allows the system to type such terms correctly, and

lays the foundation to prove that this new system satisfies the standard Subject Reduction prop-

erty.

Chapter plan. In Section 2.1 we examine the terms and the reduction rules. In Section 2.2 we

present the type system along with the typing rules.

3.1 The terms

We begin by presenting the untyped version of λvec∗, described in Figure 3.1. In essence, the

system remains the same as the original λvec, except for one major change: the removal of the

term 0.

The term 0 was removed in order to simplify the system. Indeed, to guarantee the Subject

Reduction property is satisfied, rules like t + 0→ t required that more typing rules were added

in order to relate those terms and their types.

13

Section 3.2 - Type system

Terms: r, s, t,u ::= b | (t) r | α · t | t + r

Basis terms: b ::= x | λx.t
Group E:

1 · t→ t

α · (β · t)→ (α× β) · t
α · (t+r)→ α · t+α ·r

Group F:

α · t +β · t→ (α+β) · t
α · t + t→ (α+ 1) · t
t + t→ (1 + 1) · t

Group B:

(λx.t) b→ t[b/x]

Group A:

(t+ r) u→ (t) u+ (r) u

(t) (r+u)→ (t) r+(t) u

(α · t) r→ α · (t) r

(t) (α · r)→ α · (t) r

t→ r

α · t→ α · r
t→ r

u + t→ u + r

t→ r

(u) t→ (u) r

t→ r

(t) u→ (r) u

t→ r

λx.t→ λx.r

Figure 3.1: Syntax, reduction rules and context rules of λvec∗.

3.2 Type system

We present the type system of λvec∗, described in Figure 3.2. Note that the type grammar

remains the same as the original system, and only the typing rules have changed.

3.2.1 Typing rules

Since the main focus of this work is to provide a revision of λvec to recover the Subject

Reduction property, we deemed necessary to revise the typing rules. We start by analysing the

problem the original system had.

Consider a term t which types are T and R, and the term α·t+β ·t of type α·T+α·R. Upon

reducing the latter using the α · t + β · t→ (α+ β) · t rewrite rule, which in the original system

could not be coherently typed, since the type either collapsed to (α + β) · T or to (α + β) · R,

instead of the expected α · T + β ·R.

We can generalise the problem, so for any term t that can be typed with T1, . . . , Tn, then

the system should be able to type (
∑n

i=1 αi) · t with
∑n

i=1 αi ·Ti. Notice that the only condition

we must satisfy is that the scalar associated with the term is equal to the sum of the scalars of

the type, which in this case is
∑n

i=1 αi.

The S rule was then introduced to solve this problem, and it also served as a replacement

for the αI rule, which can be considered a particular case of the former one, as seen below:

Γ ` t : Ti ∀i ∈ {1}
S

Γ ` α · t : α · T1
≡

Γ ` t : T1
αI

Γ ` α · t : α · T1

However, the S rule alone is not enough to solve the problem. Continuing with the example,

by applying the new S rule

...

Γ ` t : T

...

Γ ` t : R
S

Γ ` (α+ β) · t : α · T + β ·R

Consider now that α + β = 1, so Γ ` 1 · t : α · T + β · R. By applying the 1 · t → t rewrite

rule, then we would want to derive Γ ` t : α · T + β ·R, which cannot be done with the current

system. The 1E rule was introduced to solve this issue.

Francisco J. Noriega 14

Section 3.2 - Type system

Types: T,R, S ::= U | α · T | T +R | X
Unit types: U, V,W ::= X | U → T | ∀X .U | ∀X.U

1 · T ≡ T α · T + β · T ≡ (α+ β) · T
α · (β · T) ≡ (α× β) · T T +R ≡ R+ T

α · T + α ·R ≡ α · (T +R) T + (R+ S) ≡ (T +R) + S

Typing rules

ax
Γ, x : U ` x : U

Γ, x : U ` t : T
→I

Γ ` λx.t : U → T

Γ ` t :

n∑
i=1

αi · ∀ ~X.(U → Ti) Γ ` r :

m∑
j=1

βj · U [~Aj/ ~X]

→E

Γ ` (t) r :
n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/ ~X]

Γ ` t :

n∑
i=1

αi · Ui X /∈ FV (Γ)

∀I
Γ ` t :

n−1∑
i=1

αi · Ui + αn · ∀X.Un

Γ ` t :

n−1∑
i=1

αi · Ui + αn · ∀X.Un
∀E

Γ ` t :
n−1∑
i=1

αi · Ui + αn · Un[A/X]

Γ ` t : T Γ ` r : R
+I

Γ ` t + r : T +R

Γ ` t : T R ≡ T
≡

Γ ` t : R

Γ ` 1 · t : T
1E

Γ ` t : T

Γ ` t : Ti ∀i ∈ {1, . . . , n}
S

Γ `

(
n∑
i=1

αi

)
· t :

n∑
i=1

αi · Ti

Figure 3.2: Types and typing rules of λvec∗. As in λvec, we use X when we do not want to specify

if it is X or X, that is, unit variables or general variables respectively. In T [A/X], if X = X ,

then A is a unit type, and if X = X, then A can be any type. We also may write ∀I and ∀I
(resp. ∀E and ∀E) when we need to specify which kind of variable is being used.

Francisco J. Noriega 15

Section 3.2 - Type system

We also revised the ∀ rules, and we considered necessary to make them introduce or remove

the ∀ to one summand at a time, instead of affecting the whole sum; thus making both rules

(∀I and ∀E) less rigid. We made this change to ease some of the proofs and make them less

complex. Note that since the sum of types is defined as a congruence, it is possible to modify

any of the Ui by simply “swapping” the desired ith unit for the nth one in the sum, and then

applying the ∀ rule.

Lastly, we removed the 0I rule, since we do not have the term 0 anymore.

Francisco J. Noriega 16

Chapter 4

Subject Reduction

Chapter Summary

We prove that the classical formulation of Subject Reduction is satisfied by λvec∗, and

present several intermediate results that further characterise the system, such as the

generation lemmas for every term.

As previously discussed, recovering the Subject Reduction property constitutes the main

focus of this work. In the original system, the Group F was the group of rules that

required special consideration and did not satisfy the property in full.

We will also introduce other intermediate results that, despite being needed for the demon-

stration, have intrinsic value as they help further characterise the system. Such is the case of

the generation lemmas which, given a sequent Γ ` t : T , provide a characterisation of the type

T based on the form of t.

Chapter plan. In Section 4.1 we present all the intermediate results used in the Subject Re-

duction demonstration. In Section 4.2 we prove that the Subject Reduction theorem is satisfied

by λvec∗.

4.1 Prerequisites for the proof

The proof of the Subject Reduction theorem requires some intermediate results that we

develop in this section.

We will use the following notations:

• We use the standard notation for equivalence classes: [x] identifies the equivalence class

that contains the element x.

• Given a derivation tree π as following

π =

{
...

Γ ` t : T

we note that tree as π = Γ ` t : T . We will also note size(π) to the number of sequents

present on it.

We show how types are characterised, in the following lemma.

17

Section 4.1 - Prerequisites for the proof

Lemma 4.1.1 (Characterisation of types [3, Lemma 4.2]). For any type T , there exist n,m ∈
N, α1, . . . , αn, β1, . . . , βm ∈ S, distinct unit types U1, . . . , Un and distinct general variables

X1, . . . ,Xm such that

T ≡
n∑
i=1

αi · Ui +

m∑
j=1

βj · Xj

Our system admits weakening, as stated by the following lemma.

Lemma 4.1.2 (Weakening). Let t be such that x 6∈ FV (t). Then Γ ` t : T is derivable if and

only if Γ, x : U ` t : T is derivable.

Proof. By a straightforward induction on the type derivation.

The following two lemmas present some properties of the equivalence relation.

Lemma 4.1.3 (Equivalence between sums of distinct elements (up to ≡) [3, Lemma 4.4]). Let

U1, . . . , Un be a set of distinct (not equivalent) unit types, and let V1, . . . , Vm be also a set distinct

unit types. If
∑n

i=1 αi · Ui ≡
∑m

j=1 βj · Vj, then m = n and there exists a permutation p of m

such that ∀i, αi = βp(i) and Ui ≡ Vp(i).

Lemma 4.1.4 (Equivalences ∀). The following equivalences hold:

1.
∑n

i=1 αi · Ui ≡
∑m

j=1 βj · Vj implies there exists k ∈ {1, . . . ,m} such that
∑n−1

i=1 αi · Ui +

αn · ∀X.Un ≡
∑k−1

j=1 βj · Vj + βk · ∀X.Vk +
∑m

j=k+1 βj · Vj.

2.
∑n−1

i=1 αi ·Ui+αn ·∀X.Un ≡
∑k−1

j=1 βj ·Vj+βk ·∀X.Vk+
∑m

j=k+1 βj ·Vj for some k ∈ {1, . . . ,m}
implies that

∑n−1
i=1 αi · Ui + αn · Un[A/X] ≡

∑k−1
j=1 βj · Vj + βk · Vk[A/X] +

∑m
j=k+1 βj · Vj.

Proof. Item (1) ··

From Lemma 4.1.3, m = n and there exists a permutation p of m such that for all i ∈
{1, . . . , n} we have that αi = βp(i) and Ui ≡ Vp(i).
Then,

∑n
i=1 αi · Ui ≡

∑n
i=1 βp(i) · Vp(i).

Take k = p(n), therefore

n−1∑
i=1

αi · Ui + αn · ∀X.Un ≡
n−1∑
i=1

βp(i) · Vp(i) + βp(n) · ∀X.Vp(n)

≡
n−1∑
i=1

βp(i) · Vp(i) + βk · ∀X.Vk

≡
k−1∑
j=1

βj · Vj + βk · ∀X.Vk +

m∑
j=k+1

βj · Vj

Item (2) ··

From Lemma 4.1.3, m = n and there exists a permutation p of m such that for all i ∈
{1, . . . , n} we have that αi = βp(i), Ui ≡ Vp(i) if i 6= n, and ∀X.Un ≡ ∀X.Vp(n).

Then,
∑n

i=1 αi · Ui =
∑n

i=1 βp(i) · Vp(i).
Without loss of generality, take k = p(n), therefore

n−1∑
i=1

αi · Ui + αn · Un[A/X] ≡
n−1∑
i=1

βp(i) · Vp(i) + βp(n) · Vp(n)[A/X]

Francisco J. Noriega 18

Section 4.1 - Prerequisites for the proof

≡
n−1∑
i=1

βp(i) · Vp(i) + βk · Vk[A/X]

≡
k−1∑
j=1

βj · Vj + βk · Vk[A/X] +
m∑

j=k+1

βj · Vj

The next lemma extends the way the ∀ typing rules can be applied

Lemma 4.1.5. The following statements hold:

1. If Γ ` t :
∑n

i=1 αi ·Ui and X /∈ FV (Γ), then Γ ` t :
∑k−1

i=1 αi ·Ui+αk ·∀X.Uk+
∑n

i=k+1 αi ·Ui,
for any k ∈ {1, . . . n}.

2. If Γ ` t :
∑k

i=1 αi · Ui + αk · ∀X.Uk +
∑n

i=k+1 αi · Ui, then Γ ` t :
∑k−1

i=1 αi · Ui + αk ·
Uk[A/X] +

∑n
i=k+1 αi · Ui, for any k ∈ {1, . . . n}.

Proof. Consider Γ ` t :
∑n

i=1 αi · Ui, and the following definitions:

F(V) =
k−1∑
i=1

αi · Ui + αk · V +
n∑

i=k+1

αi · Ui G(V) =
k−1∑
i=1

αi · Ui +
n∑

i=k+1

αi · Ui + αk · V

Item (1) ··

Taking any k ∈ {1, . . . n}, we have

Γ ` t :

n∑
i=1

αi · Ui X /∈ FV (Γ)

n∑
i=1

αi · Ui ≡ G(Uk)

≡
Γ ` t : G(Uk) ∀I

Γ ` t : G(∀X.Uk) G(∀X.Uk) ≡ F(∀X.Uk) ≡

Γ ` t : F(∀X.Uk) =

k−1∑
i=1

αi · Ui + αk · ∀X.Uk +

n∑
i=k+1

αi · Ui

Item (2) ··

Taking any k ∈ {1, . . . n}, we have

Γ ` t :
n∑
i=1

αi · Ui = F(∀X.Uk) F(∀X.Uk) ≡ G(∀X.Uk)

≡
Γ ` t : G(∀X.Uk) ∀E
Γ ` t : G(Uk[A/X]) G(Uk[A/X]) ≡ F(Uk[A/X])

≡

Γ ` t : F(Uk[A/X]) =
k−1∑
i=1

αi · Ui + αk · Uk[A/X] +
n∑

i=k+1

αi · Ui

Next, we present the relation � from λvec [3, Definition 4.6], which defines the relation

between types of the form ∀X.T and T , with some alterations.

Francisco J. Noriega 19

Section 4.1 - Prerequisites for the proof

Definition 4.1.6. For any types T,R, and any context Γ such that for some term t

Γ ` t : R

...

Γ ` t : T

1. If X /∈ FV (Γ), write R ≺X,Γ T if either:

• R ≡
∑n

i=1 αi · Ui and T ≡
∑n−1

i=1 αi · Ui + αn · ∀X.Un, or

• R ≡
∑n−1

i=1 αi · Ui + αn · ∀X.Un and T ≡
∑n−1

i=1 αi · Ui + αn · Un[A/X].

2. If V is a set of type variables such that V ∩ FV (Γ) = ∅, we define �V,Γ inductively:

• If R ≺X,Γ T , then R �V∪{X},Γ T .

• If V1,V2 ⊆ V, S �V1,Γ R and R �V2,Γ T , then S �V1∪V2,Γ T .

• If R ≡ T , then R �V,Γ T .

Note that these relations only predicate on the types and the context, thus they hold for

any term t.

Example 4.1.7. Consider the following derivation.

Γ ` t : T T ≡
n∑
i=1

αi · Ui
≡

Γ ` t :

n∑
i=1

αi · Ui X /∈ FV (Γ)

∀I

Γ ` t :
n−1∑
i=1

αi · Ui + αn · ∀X .Un

∀E

Γ ` t :
n−1∑
i=1

αi · Ui + αn · Un[V/X] Y /∈ FV (Γ)

∀I
Γ ` t :

n−1∑
i=1

αi · Ui + αn · ∀Y.Un[V/X]

n−1∑
i=1

αi · Ui + αn · ∀Y.Un[V/X] ≡ R

≡
Γ ` t : R

Then R �{X ,Y},Γ T .

Lemma 4.1.8. For any unit type U 6≡ ∀X.V , if U �V,Γ ∀X.V , then X /∈ FV (Γ).

Proof. By definition of �.

The following lemma states that if two arrow types are ordered, then they are equivalent up

to some substitution.

Lemma 4.1.9 (Arrows comparison). V → R �V,Γ ∀ ~X.(U → T), then U → T ≡ (V →
R)[~A/~Y], with ~Y /∈ FV (Γ).

Proof. Let (·)◦ be a map from types to types defined as follows,

X◦ = X (U → T)◦ = U → T (∀X.T)◦ = T ◦

(α · T)◦ = α · T ◦ (T +R)◦ = T ◦ +R◦

We need three intermediate results:

Francisco J. Noriega 20

Section 4.1 - Prerequisites for the proof

1. If T ≡ R, then T ◦ ≡ R◦.

2. For any types U,A, there exists B such that (U [A/X])◦ = U◦[B/X].

3. For any types V,U , there exists ~A such that if V �V,Γ ∀ ~X.U , then U◦ ≡ V ◦[~A/ ~X].

Proofs.

1. Induction on the equivalence rules. We only give the basic cases since the inductive step,

given by the context where the equivalence is applied, is trivial.

• (1 · T)◦ = 1 · T ◦ ≡ T ◦.

• (α · (β · T))◦ = α · (β · T ◦) ≡ (α× β) · T ◦ = ((α× β) · T)◦.

• (α · T + α ·R)◦ = α · T ◦ + α ·R◦ ≡ α · (T ◦ +R◦) = (α · (T +R))◦.

• (α · T + β · T)◦ = α · T ◦ + β · T ◦ ≡ (α+ β) · T ◦ = ((α+ β) · T)◦.

• (T +R)◦ = T ◦ +R◦ ≡ R◦ + T ◦ = (R+ T)◦.

• (T + (R+ S))◦ = T ◦ + (R◦ + S◦) ≡ (T ◦ +R◦) + S◦ = ((T +R) + S)◦.

2. Structural induction on U .

• U = X . Then (X [V/X])◦ = V ◦ = X [V ◦/X] = X ◦[V ◦/X].

• U = Y . Then (Y [A/X])◦ = Y = Y ◦[A/X].

• U = V → T . Then ((V → T)[A/X])◦ = (V [A/X] → T [A/X])◦ = V [A/X] →
T [A/X] = (V → T)[A/X] = (V → T)◦[A/X].

• U = ∀Y.V . Then ((∀Y.V)[A/X])◦ = (∀Y.V [A/X])◦ = (V [A/X])◦, which by the

induction hypothesis is equivalent to V ◦[B/X] = (∀Y.V)◦[B/X].

3. It suffices to show this for V ≺X,Γ ∀ ~X.U . Cases:

• ∀ ~X.U ≡ ∀Y.V , then notice that (∀ ~X.U)◦ ≡(1) (∀Y.V)◦ = V ◦.

• V ≡ ∀Y.W and ∀ ~X.U ≡W [A/X], then

(∀ ~X.U)◦ ≡(1) (W [A/X])◦ ≡(2) W
◦[B/X] = (∀Y.W)◦[B/X] ≡(1) V

◦[B/X].

Proof of the lemma. U → T ≡ (U → T)◦, by the intermediate result 3, this is equivalent to

(V → R)◦[~A/ ~X] = (V → R)[~A/ ~X].

The following lemmas express the formal relation between the terms and their types.

Five generation lemmas are required: two classical ones, for applications (Lemma 4.1.12) and

abstractions (Lemma 4.1.13); and three new ones for scalars (Lemma 4.1.10), sums (Lemma 4.1.11)

and basis terms (Lemma 4.1.14).

Lemma 4.1.10 (Scalars). For any context Γ, term t, type T , if π = Γ ` α · t : T , there exist

R1, . . . , Rn, α1, . . . , αn such that

• T ≡
∑n

i=1 αi ·Ri.

• πi = Γ ` t : Ri, with size(π) > size(πi), for i ∈ {1, . . . , n}.

•
∑n

i=1 αi = α.

Francisco J. Noriega 21

Section 4.1 - Prerequisites for the proof

Proof. By induction on the typing derivation

··· Case S ···

Γ ` t : Ti ∀i ∈ {1, . . . , n}
S

Γ `

(
n∑
i=1

αi

)
· t :

n∑
i=1

αi · Ti

Trivial case.

··· Case ≡ ···

π′ = Γ ` α · t : T T ≡ R
≡

π = Γ ` α · t : R

By the induction hypothesis there exist S1, . . . , Sn, α1, . . . , αn such that

• T ≡ R ≡
∑n

i=1 αi · Si.

• πi = Γ ` t : Si, with size(π′) > size(πi), for i ∈ {1, . . . , n}.

•
∑n

i=1 αi = α.

It is easy to see that size(π) > size(π′), so the lemma holds.

··· Case 1E ···

π = Γ ` 1 · (α · t) : T
1E

Γ ` α · t : T

By induction hypothesis, there exist R1, . . . , Rm, β1, . . . , βm such that

• T ≡
∑m

j=1 βj ·Rj .

• πj = Γ ` α · t : Rj with size(π) > size(πj) for j = {1, . . . ,m}.

•
∑m

j=1 βj = 1.

Since size(π) > size(πj), then by applying the induction hypothesis again for all j = {1, . . . ,m},
we have that there exist S(j,1), . . . , S(j,nj), α(j,1), . . . , α(j,nj) such that

• Rj ≡
∑nj

i=1 α(j,i) · S(j,i).

• π(j,i) = Γ ` t : S(j,i) with size(πj) > size(π(j,i)) for i ∈ {1, . . . , nj}.

•
∑nj

i=1 α(j,i) = α.

Given that Γ ` α · t : T , then

T ≡
m∑
j=1

βj ·Rj ≡
m∑
j=1

βj ·
n∑
i=1

α(j,i) · S(j,i) ≡
m∑
j=1

n∑
i=1

(βj × α(j,i)) · S(j,i)

Finally, we must prove that
∑m

j=1

∑n
i=1(βj × α(j,i)) = α,

m∑
j=1

n∑
i=1

(βj × α(j,i)) =
m∑
j=1

βj ·
n∑
i=1

α(j,i)︸ ︷︷ ︸
= α

=

m∑
j=1

βj · α = α ·
m∑
j=1

βj︸ ︷︷ ︸
= 1

= α

Francisco J. Noriega 22

Section 4.1 - Prerequisites for the proof

··· Case ∀I ···

π′ = Γ ` α · t :

n∑
i=1

αi · Ui X /∈ FV (Γ)

∀I
Γ ` α · t :

n−1∑
i=1

αi · Ui + αn · ∀X.Un

By the induction hypothesis there exist R1, . . . , Rm, µ1, . . . , µm such that

•
∑n

i=1 αi · Ui ≡
∑m

j=1 µj ·Rj .

• πj = Γ ` t : Rj , with size(π′) > size(πj), for j ∈ {1, . . . ,m}.

•
∑m

j=1 µj = α

By applying Lemma 4.1.1 for all j ∈ {1, . . . ,m}, and since
∑n

i=1 αi ·Ui does not have any general

variable X, then Rj ≡
∑hj

k=1 β(j,k) · V(j,k).

Hence
∑n

i=1 αi · Ui ≡
∑m

j=1 µj ·
∑hj

k=1 β(j,k) · V(j,k).

By Lemma 4.1.4 there exists (e, f) ∈ {(j, k) | j ∈ {1, . . . ,m}, k ∈ {1, . . . , hj}} (without loss of

generality, we take (e, f) = (m,hm)) such that

n−1∑
i=1

αi·Ui+αn∀X.Un ≡
m−1∑
j=1

µj ·
hj∑
k=1

β(j,k) · V(j,k)︸ ︷︷ ︸
≡ Rj

+µm·

(
hm−1∑
k=1

β(m,k) · V(m,k) + β(m,hm) · ∀X.V(m,hm)

)
︸ ︷︷ ︸

≡ R′m

We must prove that Γ ` t : R′m.

Since Γ ` t :

hm∑
k=1

β(m,k) · V(m,k)︸ ︷︷ ︸
≡ Rm

and X /∈ FV (Γ), then by Lemma 4.1.5, π′′ = Γ ` t : R′m.

Then,
πj = Γ ` t : Rj ∀j ∈ {1, . . . ,m− 1} π′′ = Γ ` t : R′m

S

Γ ` α · t :

m−1∑
j=1

µj ·Rj + µm ·R′m︸ ︷︷ ︸
≡
∑n−1

i=1 αi·Ui+αn∀X.Un

Finally, we conclude by ≡ rule that π = Γ ` α · t :
∑n−1

i=1 αi · Ui + αn · ∀X.Un, where size(π) >

size(πj) for all j ∈ {1, . . . ,m− 1}, and size(π) > size(π′′).

·· Case ∀E ··

π′ = Γ ` α · t :

n−1∑
i=1

αi · Ui + αn · ∀X.Un
∀E

Γ ` α · t :

n−1∑
i=1

αi · Ui + αn · Un[A/X]

By the induction hypothesis there exist R1, . . . , Rm, µ1, . . . , µm such that

•
∑n−1

i=1 αi · Ui + αn · ∀X.Un ≡
∑m

j=1 µj ·Rj .

• πj = Γ ` t : Rj , with size(π′) > size(πj), for j ∈ {1, . . . ,m}.

Francisco J. Noriega 23

Section 4.1 - Prerequisites for the proof

•
∑m

j=1 µj = α.

By applying Lemma 4.1.1 for all j ∈ {1, . . . ,m}, and since
∑n−1

i=1 αi · Ui + αn · ∀X.Un does not

have any general variable X, then Rj ≡
∑hj

k=1 β(j,k) · V(j,k).

Hence
∑n−1

i=1 αi · Ui + αn · ∀X.Un ≡
∑m

j=1 µj ·
∑hj

k=1 β(j,k) · V(j,k).

Without loss of generality, we assume that all unit types present at both sides of the equivalence

are distinct, then by Lemma 4.1.3, n =
∑m

j=1 hj , and by taking a partition from {1, . . . ,
∑m

j=1 hj}
(defining an equivalence class) and the trivial permutation p of n such that p(i) = i (which we

will omit for readability), we have

• αi = µ[i] × γi, where γi = β(
[i], i

[i]

).

• Ui ≡ V([i], i
[i]

), if i 6= n.

• ∀X.Un ≡ V([n], n
[n]

), so V(
[n], n

[n]

) ≡ ∀X.W ′.
Notice that

(
[n], n[n]

)
= (m,hm), then

n−1∑
i=1

αi ·Ui+αn ·∀X.Un ≡
m−1∑
j=1

µj ·
hj∑
k=1

β(j,k) · V(j,k)︸ ︷︷ ︸
≡ Rj

+µm ·

(
hm−1∑
k=1

β(m,k) · V(m,k) + β(m,hm) · ∀X.W ′
)

︸ ︷︷ ︸
≡ Rm

By Lemma 4.1.4 there exists (e, f) ∈ {(j, k) | j ∈ {1, . . . ,m}, k ∈ {1, . . . , hj}} (without loss of

generality, we take (e, f) = (m,hm)), such that

n−1∑
i=1

αi·Ui+αn·Un[A/X] ≡
m−1∑
j=1

µj ·
h∑
k=1

β(j,k) · V(j,k)︸ ︷︷ ︸
Rj

+µm·

(
hm−1∑
k=1

β(m,k) · V(m,k) + β(m,hm) ·W ′[A/X]

)
︸ ︷︷ ︸

≡ R′m

We must prove that Γ ` t : R′m.

Since Γ ` t : Rm, then by Lemma 4.1.5, π′′ = Γ ` t : R′m.

Then,
πj = Γ ` t : Rj ∀j ∈ {1, . . . ,m− 1} π′′ = Γ ` t : R′m

S

Γ ` α · t :
m−1∑
j=1

µj ·Rj + µm ·R′m︸ ︷︷ ︸∑n−1
i=1 αi·Ui+αn·Un[A/X]

Finally, we conclude by ≡ rule that π = Γ ` α · t :
∑n−1

i=1 αi · Ui + αn · Un[A/X], where

size(π) > size(πj) for all j ∈ {1, . . . ,m− 1}, and size(π) > size(π′′).

Lemma 4.1.11 (Sums). If Γ ` t + r : S, there exist R, T such that

• S ≡ T +R.

• Γ ` t : T .

• Γ ` r : R.

Francisco J. Noriega 24

Section 4.1 - Prerequisites for the proof

Proof. By induction on the typing derivation

·· Case +I ··

Γ ` t : T Γ ` r : R
+I

Γ ` t + r : T +R

Trivial.

··· Case ≡ ···

Γ ` t + r : P S ≡ P
≡

Γ ` t + r : S

By the induction hypothesis, S ≡ P ≡ T +R.

··· Case 1E ···

π = Γ ` 1 · (t + r) : T
1E

Γ ` t + r : T

By Lemma 4.1.10, there exist R1, . . . , Rm, β1, . . . , βm such that

• T ≡
∑m

j=1 βj ·Rj .

• πj = Γ ` t + r : Rj with size(π) > size(πj) for j ∈ {1, . . . ,m}.

•
∑m

j=1 βj = 1

Since size(π) > size(πj), by applying the induction hypothesis for all j ∈ {1, . . . ,m},

• Rj ≡ S(j,1) + S(j,2).

• Γ ` t : S(j,1).

• Γ ` r : S(j,2).

Then,

T ≡
m∑
j=1

βj ·Rj ≡
m∑
j=1

βj · (S(j,1) + S(j,2)) ≡
m∑
j=1

βj · S(j,1) +

m∑
j=1

βj · S(j,2)

We can rewrite T as follows:

P1 =

m∑
j=1

βj · S(j,1) P2 =

m∑
j=1

βj · S(j,2) T ≡ P1 + P2

Finally, we must prove that Γ ` t : P1 and Γ ` r : P2.

Since Γ ` t : S(j,1) and Γ ` r : S(j,2) for all j ∈ {1, . . . ,m}, applying the S rule in both cases we

have
Γ ` t : S(j,1) ∀j ∈ {1, . . . ,m}

S
Γ ` 1 · t : P1

Γ ` t : S(j,2) ∀j ∈ {1, . . . ,m}
S

Γ ` 1 · r : P2

Applying the 1E rule to both sequents, we have

Γ ` t : P1 Γ ` r : P2

Finally, by ≡ rule, Γ ` t + r : T .

Francisco J. Noriega 25

Section 4.1 - Prerequisites for the proof

·· Case ∀ ··

Γ ` t + r :

n∑
i=1

αi · Ui
∀

Γ ` t + r :
n−1∑
i=1

αi · Ui + αn · Vn

Rules ∀I and ∀E both have the same structure as shown above. In any case, by the induction

hypothesis Γ ` t : T and Γ ` r : R with T +R ≡
∑n

i=1 αi · Ui.
Then, there exist N,M ⊆ {1, . . . , n} with N ∪M = {1, . . . , n} such that

T ≡
∑

i∈N\M

αi · Ui +
∑

i∈N∩M
α′i · Ui and R ≡

∑
i∈M\N

αi · Ui +
∑

i∈N∩M
α′′i · Ui

where ∀i ∈ N ∩M , α′i + α′′i = αi.

Therefore, using ≡ (if needed) and the same ∀-rule, we get three possible cases:

1. n ∈ N \M
In this case, then Γ ` t : T ≡

∑
i∈(N\M)\{n} αi · Ui +

∑
i∈N∩M α′i · Ui + αn · Un, and by

applying the ∀-rule, we get Γ ` t : T ≡
∑

i∈(N\M)\{n} αi · Ui +
∑

i∈N∩M α′i · Ui + αn · Vn
and Γ ` r : R ≡

∑
i∈M\N αi · Ui +

∑
i∈N∩M α′′i · Ui.

2. n ∈M \N
Analogous to the previous case.

3. n ∈ N ∩M
In this case, then Γ ` t : T ≡

∑
i∈N\M αi · Ui +

∑
i∈(N∩M)\{n} α

′
i · Ui + α′n · Un and

Γ ` r : R ≡
∑

i∈M\N αi · Ui +
∑

i∈(N∩M)\{n} α
′′
i · Ui + α′′n · Un, and by applying the ∀-rule,

we get Γ ` t : T ≡
∑

i∈N\M) αi · Ui +
∑

i∈(N∩M)\{n} α
′
i · Ui + α′n · Vn and Γ ` r : R ≡∑

i∈M\N) αi · Ui +
∑

i∈(N∩M)\{n} α
′′
i · Ui + α′′n · Vi.

Lemma 4.1.12 (Application). If Γ ` (t) r : T , there exist R1, . . . , Rh, µ1, . . . , µh, V1, . . . ,Vh
such that T ≡

∑h
k=1 µk ·Rk,

∑h
k=1 µk = 1 and for all k ∈ {1, . . . , h}

• Γ ` t :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• Γ ` r :
∑mk

j=1 β(k,j) · U [~A(k,j)/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

Proof. By induction on the typing derivation

·· Case →E ··

Γ ` t :

n∑
i=1

αi · ∀ ~X.(U → Ti) Γ ` r :

m∑
j=1

βj · U [~Aj/ ~X]

→E

Γ ` (t) r :

n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/ ~X]

Take µ1, . . . , µh such that
∑h

k=1 µk = 1, then

n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/ ~X] ≡
h∑
k=1

µk ·
n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/ ~X]

Francisco J. Noriega 26

Section 4.1 - Prerequisites for the proof

So this is the trivial case.

··· Case ≡ ···

Γ ` (t) r : P S ≡ P
≡

Γ ` (t) r : S

By the induction hypothesis, there exist R1, . . . , Rh, µ1, . . . , µh, V1, . . . ,Vh such that P ≡ S ≡∑h
k=1 µk ·Rk,

∑h
k=1 µk = 1 and for all k ∈ {1, . . . , h},

• Γ ` t :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• Γ ` r :
∑mk

j=1 β(k,j) · U [~A(k,j)/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

So the lemma holds.

··· Case 1E ···

π = Γ ` 1 · (t) r : T
1E

Γ ` (t) r : T

By Lemma 4.1.10, there exist R1, . . . , Rh, µ1, . . . , µh such that

• T ≡
∑h

k=1 µk ·Rk.

• πk = Γ ` (t) r : Rk, with size(π) > size(πk), for k ∈ {1, . . . , h}..

•
∑h

k=1 µk = 1.

Since size(π) > size(πk), we apply the inductive hypothesis for all k ∈ {1, . . . , h} (and omiting

the k index for readability), so there exist S1, . . . , Sp, η1, . . . , ηp, V1, . . . ,Vp such that R ≡∑p
q=1 ηq · Sq,

∑p
q=1 ηq = 1 and for all q ∈ {1, . . . , p},

• Γ ` t :
∑nq

i=1 α(q,i) · ∀ ~X.(U → T(q,i)).

• Γ ` r :
∑mq

j=1 β(q,j) · U [~A(q,j)/ ~X].

•
∑nq

i=1

∑mq

j=1 α(q,i) × β(q,j) · T(q,i)[~A(q,j)/ ~X] �Vq ,Γ Sq.

Then

T ≡
h∑
k=1

µk ·Rk ≡
h∑
k=1

µk ·
pk∑
q=1

η(k,q) · S(k,q) ≡
h∑
k=1

pk∑
q=1

(µk × η(k,q)) · S(k,q)

Finally, we must prove that
∑h

k=1

∑pk
q=1(µk × η(k,q)) = 1,

h∑
k=1

pk∑
q=1

(µk × η(k,q)) =
h∑
k=1

µk ·
pk∑
q=1

η(k,q)︸ ︷︷ ︸
= 1

=

h∑
k=1

µk = 1

Francisco J. Noriega 27

Section 4.1 - Prerequisites for the proof

··· Case ∀I ···

π′ = Γ ` (t) r :
b∑

a=1

σa · Va X /∈ FV (Γ)

∀I
Γ ` (t) r :

b−1∑
a=1

σa · Va + σb · ∀X.Vb

By the induction hypothesis there exist R1, . . . , Rh, µ1, . . . , µh, V1, . . . ,Vh such that
∑b

a=1 σa ·
Va ≡

∑h
k=1 µk ·Rk,

∑h
k=1 µk = 1 and for all k ∈ {1, . . . , h},

• Γ ` t :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• Γ ` r :
∑mk

j=1 β(k,j) · U [~A(k,j)/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

By Lemma 4.1.1, and since
∑b

a=1 σa · Va does not have any general variable, then for all k ∈
{1, . . . , h}, Rk ≡

∑dk
c=1 η(k,c) ·W(k,c).

Hence
∑b

a=1 σa · Va ≡
∑h

k=1 µh ·
∑dk

c=1 η(k,c) ·W(k,c).

Then by Lemma 4.1.4 there exists (e, f) ∈ {(k, c) | k ∈ {1, . . . , h}, c ∈ {1, . . . , dk}} (without loss

of generality, we take (e, f) = (h, dh)) such that

b−1∑
a=1

σa ·Va+σb ·∀X.Vb ≡
h−1∑
k=1

µk ·
dk∑
c=1

η(k,c) ·W(k,c)︸ ︷︷ ︸
Rk

+µh ·

(
dh−1∑
c=1

η(h,c) ·W(h,c) + η(h,dh) · ∀X.W(h,dh)

)
︸ ︷︷ ︸

R′h

Finally, we must prove that
∑nh

i=1

∑mh
j=1 α(h,i) × β(h,j) · T(h,i)[~A(h,j)/ ~X] �V ′h,Γ R

′
h.

Notice that Rh �Vh∪{X},Γ R
′
h, then by definition of �, taking V ′h = Vh ∪ {X},∑nh

i=1

∑mh
j=1 α(h,i) × β(h,j) · T(h,i)[~A(h,j)/ ~X] �V ′h,Γ R

′
h.

·· Case ∀E ··

Γ ` (t) r :
b−1∑
a=1

σa · Va + σb · ∀X.Vb
∀E

Γ ` (t) r :

b−1∑
a=1

σa · Va + σb · Vb[A/X]

By the induction hypothesis there exist R1, . . . , Rh, µ1, . . . , µh, V1, . . . ,Vh such that
∑b−1

a=1 σa ·
Va + σb · ∀X.Vb ≡

∑h
k=1 µk ·Rk,

∑h
k=1 µk = 1 and for all k ∈ {1, . . . , h},

• Γ ` t :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• Γ ` r :
∑mk

j=1 β(k,j) · U [~A(k,j)/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

By Lemma 4.1.1, and since
∑b−1

a=1 σa · Va + σb · ∀X.Vb does not have any general variable, Rk ≡∑dk
c=1 η(k,c) ·W(k,c).

Hence
∑b−1

a=1 σa · Va + σb · ∀X.Vb ≡
∑h

k=1 µk ·
∑dk

c=1 η(k,c) ·W(k,c).

Without loss of generality, we assume that all unit types present at both sides of the equivalence

Francisco J. Noriega 28

Section 4.1 - Prerequisites for the proof

are distinct, then by Lemma 4.1.3, b =
∑h

k=1 dk, and by taking a partition from {1, . . . ,
∑h

k=1 dk}
(defining an equivalence class) and the trivial permutation p of b such that p(a) = a (which we

will omit for readability), we have that

• σa = µ[a] × γa, where γa = η(
[a], a

[a]

).

• Va ≡W(
[a], a

[a]

), if a 6= b.

• ∀X.Vb ≡W(
[b], b

[b]

), so W(
[b], b

[b]

) = ∀X.W ′.

Notice that
(

[b], b[b]

)
= (h, dh), then

b−1∑
a=1

σa ·Va+σb ·∀X.Vb ≡
h−1∑
k=1

µk ·
dk∑
c=1

η(k,c) ·W(k,c)︸ ︷︷ ︸
Rk

+µh ·

(
dh−1∑
c=1

η(h,c) ·W(h,c) + β(h,dh) · forallX.W ′
)

︸ ︷︷ ︸
Rh

By Lemma 4.1.4 there exists (e, f) ∈ {(k, c) | k ∈ {1, . . . , h}, c ∈ {1, . . . , dk}} (without loss of

generality, we take (e, f) = (h, dh)) such that

b−1∑
a=1

σa ·Va+σb ·Vb[A/X] ≡
h−1∑
k=1

µj ·
dk∑
c=1

η(k,c) ·W(k,c)︸ ︷︷ ︸
Rk

+µh ·

(
dh−1∑
c=1

η(h,c) ·W(h,c) + β(h,dh) ·W ′[A/X]

)
︸ ︷︷ ︸

R′h

Finally, we must prove that
∑nh

i=1

∑mh
j=1 α(h,i) × β(h,j) · T(h,i)[~A(h,j)/ ~X] �V ′h,Γ R

′
h.

Notice that Rh �Vh,Γ R′h, then taking V ′h = Vh,∑nh
i=1

∑mh
j=1 α(h,i) × β(h,j) · T(h,i)[~A(h,j)/ ~X] �Vh,Γ R′h.

Lemma 4.1.13 (Abstractions). If Γ ` λx.t : T , then there exist T1, . . . , Tn, R1, . . . , Rn,

U1, . . . , Un, α1, . . . , αn, V1, . . . ,Vn such that T ≡
∑n

i=1 αi · Ti,
∑n

i=1 αi = 1 and for all i ∈
{1, . . . , n},

• Γ, x : Ui ` t : Ri.

• Ui → Ri �Vi,Γ Ti.

Proof. By induction on the typing derivation

·· Case →I ··

Γ, x : U ` t : R
→I

Γ ` λx.t : U → R

Trivial.

··· Case ≡ ···

Γ ` λx.t : R R ≡ T
≡

Γ ` λx.t : T

By the induction hypothesis, there exist T1, . . . , Tn, R1, . . . , Rn, U1, . . . , Un, α1, . . . , αn, V1, . . . ,Vn
such that T ≡ R ≡

∑n
i=1 αi · Ti,

∑n
i=1 αi = 1 and for all i ∈ {1, . . . , n},

Francisco J. Noriega 29

Section 4.1 - Prerequisites for the proof

• Γ, x : Ui ` t : Ri.

• Ui → Ri �Vi,Γ Ti.

So the lemma holds.

··· Case 1E ···

π = Γ ` 1 · (λx.t) : T
1E

Γ ` λx.t : T

By Lemma 4.1.10, there exist R1, . . . , Rm, β1, . . . , βm such that

• T ≡
∑m

j=1 βi ·Rj .

• πi = Γ ` t : Rj , with size(π) > size(πj), for j ∈ {1, . . . , n}.

•
∑n

j=1 βi = 1.

Since size(π) > size(πj), by induction hypothesis, for all j ∈ {1, . . . , n} there exist S(j,1), . . . , S(j,nj),

P(j,1), . . . , P(j,nj), U(j,1), . . . , U(j,nj), η(j,1), . . . , η(j,nj), V(j,1), . . . ,V(j,nj) such that Rj ≡
∑nj

i=1 η(j,i) ·
S(j,i),

∑nj

i=1 η(j,i) = 1 and for all i ∈ {1, . . . , nj},

• Γ, x : U(j,i) ` t : P(j,i).

• U(j,i) → P(j,i) �V(j,i),Γ S(j,i).

Then we have

T ≡
m∑
j=1

βj ·Rj ≡
m∑
j=1

βj ·
nj∑
i=1

η(j,i) · S(j,i) ≡
m∑
j=1

nj∑
i=1

(βj × η(j,i)) · S(j,i)

Finally, we must prove that
∑m

j=1

∑nj

i=1(βj × η(j,i)) = 1:

m∑
j=1

nj∑
i=1

(βj × η(j,i)) =
m∑
j=1

βj ·
nj∑
i=1

η(j,i)︸ ︷︷ ︸
= 1

=

m∑
j=1

βj = 1

·· Case ∀ ··

Γ ` λx.t :

n∑
k=1

γk · Vk
∀

Γ ` λx.t :

n−1∑
k=1

γk · Vk + γn ·Wn

∀-rules (∀I and ∀E) both have the same structure as shown above. In both cases, by the

induction hypothesis, there exist T1, . . . , Tm, R1, . . . , Rm, U1, . . . , Um, α1, . . . , αm, V1, . . . ,Vm
such that

∑n
k=1 γk · Vk ≡

∑m
i=1 αi · Ti,

∑m
i=1 αi = 1 and for all i ∈ {1, . . . ,m},

• Γ, x : Ui ` t : Ri.

• Ui → Ri �Vi,Γ Ti.

Francisco J. Noriega 30

Section 4.1 - Prerequisites for the proof

By Lemma 4.1.1, and since
∑n

k=1 γk · Vk does not have any general variable X, then Ti ≡∑bi
a=1 β(i,a) ·W ′(i,a).

Hence
∑n

k=1 γk · Vk ≡
∑m

i=1 αi ·
∑bi

a=1 β(i,a) ·W ′(i,a).

By Lemma 4.1.4 there exists (e, f) ∈ {(i, a) | i ∈ {1, . . . ,m}, a ∈ {1, . . . , bi}} (without loss of

generality, we take (e, f) = (m, bm)) such that

n−1∑
k=1

γk · Vk + γn ·Wn ≡
m−1∑
i=1

αi ·
bi∑
a=1

β(i,a) ·W ′(i,a)︸ ︷︷ ︸
≡ Ti

+αm ·

(
bm−1∑
a=1

β(m,a) ·W ′(m,a) + β(m,bm)·W ′′
(m,bm)

)
︸ ︷︷ ︸

≡ T ′m

Finally, we must prove that Um → Rm �V ′m,Γ T
′
m for some V ′m.

Since Um → Rm �Vm,Γ Tm and Tm �V ′′m,Γ T
′
m, then by � and using V ′m = Vm ∪V ′′m, we conclude

that Um → Rm �V ′m,Γ T
′
m.

Lemma 4.1.14 (Basis terms). For any context Γ, type T and basis term b, if Γ ` b : T there

exist U1, . . . , Un, α1, . . . , αn such that

• T ≡
∑n

i=1 αi · Ui.

• Γ ` b : Ui, for i ∈ {1, . . . , n}.

•
∑n

i=1 αi = 1.

Proof. By induction on the typing derivation

··· Case ax ···

ax
Γ, x : U ` x : U

and
Γ, x : U ` t : T

→I
Γ ` λx.t : U → T

Trivial cases.

··· Case ≡ ···

Γ ` b : R R ≡ T
≡

Γ ` b : T

By the induction hypothesis, there exist U1, . . . , Un, α1, . . . , αn such that

• T ≡ R ≡
∑n

i=1 αi · Ui.

• Γ ` b : Ui, for i ∈ {1, . . . , n}.

•
∑n

i=1 αi = 1.

So the lemma holds.

··· Case 1E ···

π = Γ ` 1 · b : T
1E

Γ ` b : T

By Lemma 4.1.10, there exist R1, . . . , Rm, β1, . . . , βm such that

• T ≡
∑m

j=1 βj ·Rj .

Francisco J. Noriega 31

Section 4.1 - Prerequisites for the proof

•
∑m

j=1 βj = 1, and πj = Γ ` b : Rj with size(π) > size(πj) for j = {1, . . . ,m}.

•
∑m

j=1 βj = 1.

Since size(π) > size(πj), by induction hypothesis, for all j = {1, . . . ,m} there exist U(j,1), . . . , U(j,nj),

α(j,1), . . . , α(j,nj) such that

• Rj ≡
∑nj

i=1 α(j,i) · U(j,i).

• Γ ` b : U(j,i), for i ∈ {1, . . . , nj}.

•
∑nj

i=1 α(j,i) = 1.

Then

T ≡
m∑
j=1

βj ·Rj ≡
m∑
j=1

βj ·
nj∑
i=1

α(j,i) · U(j,i) ≡
m∑
j=1

nj∑
i=1

(βj × α(j,i)) · U(j,i)

Finally, we must prove that
∑m

j=1

∑nj

i=1(βj × α(j,i)) = 1:

m∑
j=1

nj∑
i=1

(βj × α(j,i)) =

m∑
j=1

βj ·
nj∑
i=1

α(j,i)︸ ︷︷ ︸
= 1

=

m∑
j=1

βj = 1

·· Case ∀ ··

Γ ` b :
n∑
k=1

γk · Vk
∀

Γ ` b :

n−1∑
k=1

γk · Vk + γn ·Wn

∀-rules (∀I and ∀E) both have the same structure as shown above.

In both cases, by the induction hypothesis, there exist U1, . . . , Un, α1, . . . , αn such that

•
∑n

k=1 γk · Vk ≡
∑n

i=1 αi · Ui.

• Γ ` b : Ui, for i ∈ {1, . . . , n}.

•
∑n

i=1 αi = 1.

Without loss of generality, we assume that all unit types present at both sides of the equivalence

are distinct, so by Lemma 4.1.3, then m = n and there exists a permutation p of m such that

for all i ∈ {1, . . . , n}, then Vi = Up(i) and γi = αp(i), which means that
∑n

k=1 γk = 1.

Finally, we know that Γ ` b : Vn, and by applying the corresponding ∀ rule, we have that

Γ ` b : Wn.

The following lemma ensures that by substituting type variables for types or term variables

for terms in an adequate manner, the derived type is still valid.

Lemma 4.1.15 (Substitution lemma). For any term t, basis term b, term variable x, context

Γ, types T , U , type variable X and type A, where A is a unit type if X is a unit variable,

otherwise A is a general type, we have,

1. if Γ ` t : T , then Γ[A/X] ` t : T [A/X];

Francisco J. Noriega 32

Section 4.1 - Prerequisites for the proof

2. if Γ, x : U ` t : T and Γ ` b : U , then Γ ` t[b/x] : T .

Proof.

Item (1) ··

Induction on the typing derivation.

··· Case ax ···

ax
Γ, x : U :` x : U

Notice that Γ[A/X], x : U [A/X] ` x : U [A/X] can also be derived with the same rule.

·· Case →I ··

Γ, x : U ` t : T
→I

Γ ` λx.t : U → T

By the induction hypothesis Γ[A/X], x : U [A/X] ` t : T [A/X], so by rule →I , Γ[A/X] ` λx.t :

U [A/X]→ T [A/X] = (U → T)[A/X].

·· Case →E ··

Γ ` t :
n∑
i=1

αi · ∀~Y .(U → Ti) Γ ` r :
m∑
j=1

βj · U [~Bj/~Y]

→E

Γ ` (t) r :
n∑
i=1

m∑
j=1

αi × βj · Ti[~Bj/~Y]

By the induction hypothesis Γ[A/X] ` t : (
∑n

i=1 αi ·∀~Y .(U → Ti))[A/X] and this type is equal to∑n
i=1 αi · ∀~Y .(U [A/X] → Ti[A/X]). Also Γ[A/X] ` r : (

∑m
j=1 βj · U [~Bj/~Y])[A/X] =

∑m
j=1 βj ·

U [~Bj/~Y][A/X]. Since ~Y is bound, we can consider ~Y /∈ FV (A). Hence U [~Bj/~Y][A/X] =

U [A/X][~Bj [A/X]/~Y], and so, by rule →E ,

Γ[A/X] ` (t) r :
n∑
i=1

m∑
j=1

αi × βj · Ti[A/X][~Bj [A/X]/~Y]

= (

n∑
i=1

m∑
j=1

αi × βj · Ti[~Bj/~Y])[A/X]

··· Case ∀I ···

Γ ` t :

n∑
i=1

αi · Ui Y /∈ FV (Γ)

∀I
Γ ` t :

n−1∑
i=1

αi · Ui + αn · ∀Y.Un

By the induction hypothesis, Γ[A/X] ` t : (
∑n

i=1 αi · Ui)[A/X] =
∑n

i=1 αi · Ui[A/X]. Then, by

rule ∀I , Γ[A/X] ` t :
∑n−1

i=1 αi ·Ui[A/X] +αn · ∀Y.Un[A/X] = (
∑n−1

i=1 αi ·Ui +αn · ∀Y.Un)[A/X].

Since Y is bound, we can consider Y /∈ FV (A).

Francisco J. Noriega 33

Section 4.1 - Prerequisites for the proof

·· Case ∀E ··

Γ ` t :

n−1∑
i=1

αi · Ui + αn · ∀Y.Un
∀E

Γ ` t :

n−1∑
i=1

αi · Ui + αn · Un[B/Y]

Since Y is bound, we can consider Y /∈ FV (A).

By the induction hypothesis Γ[A/X] ` t : (
∑n−1

i=1 αi ·Ui+αn ·∀Y.Un)[A/X] =
∑n−1

i=1 αi ·Ui[A/X]+

αn · ∀Y.Un[A/X]. Then by rule ∀E ,

Γ[A/X] ` t :
∑n−1

i=1 αi · Ui[A/X] + αn · Un[A/X][B/Y]. We can consider X /∈ FV (B) (in other

case, just take B[A/X] in the ∀-elimination), hence

n−1∑
i=1

αi · Ui[A/X] + αn · Un[A/X][B/Y] =
n−1∑
i=1

αi · Ui[A/X] + αn · Un[B/Y][A/X]

= (
n−1∑
i=1

αi · Ui + αn · Un[B/Y])[A/X]

··· Case S ···

Γ ` t : Ti ∀i ∈ {1, . . . , n}
S

Γ `

(
n∑
i=1

αi

)
· t :

n∑
i=1

αi · Ti

By the induction hypothesis, for all i ∈ {1, . . . , n}, Γ[A/X] ` t : Ti[A/X], so by rule S, Γ[A/X] `
(
∑n

i=1 αi) · t :
∑n

i=1 αi · Ti[A/X] = (
∑n

i=1 αi · Ti)[A/X].

·· Case +I ··

Γ ` t : T Γ ` r : R
+I

Γ ` t + r : T +R

By the induction hypothesis Γ[A/X] ` t : T [A/X] and Γ[A/X] ` r : R[A/X], so by rule +I ,

Γ[A/X] ` t + r : T [A/X] +R[A/X] = (T +R)[A/X].

··· Case ≡ ···

Γ ` t : T T ≡ R
≡

Γ ` t : R

By the induction hypothesis Γ[A/X] ` t : T [A/X], and since T ≡ R, then T [A/X] ≡ R[A/X],

so by rule ≡, Γ[A/X] ` t : R[A/X].

··· Case 1E ···

Γ ` 1 · t : T
1E

Γ ` t : T

By the induction hypothesis Γ[A/X] ` 1 · t : T [A/X]. By rule 1E , Γ[A/X] ` t : T [A/X].

Francisco J. Noriega 34

Section 4.1 - Prerequisites for the proof

Item (2) ··

We proceed by induction on the typing derivation of Γ, x : U ` t : T .

··· Case ax ···

ax
Γ, x : U ` t : T

Cases:

• t = x, then T = U , and so Γ ` t[b/x] : T and Γ ` b : U are the same sequent.

• t = y. Notice that y[b/x] = y. By Lemma Lemma 4.1.2 Γ, x : U ` y : T implies Γ ` y : T .

·· Case →I ··

Γ, x : U, y : V ` r : R
→I

Γ, x : U ` λx.λy.r : V → R

Since our system admits weakening (Lemma 4.1.2), the sequent Γ, y : V ` b : U is derivable.

Then by the induction hypothesis, Γ, y : V ` r[b/x] : R, from where, by rule →I , we obtain

Γ ` λy.r[b/x] : V → R. We conclude, since λy.r[b/x] = (λy.r)[b/x].

·· Case →E ··

Γ, x : U ` r :
n∑
i=1

αi · ∀~Y .(V → Ti) Γ, x : U ` u :
m∑
j=1

βj · V [~B/~Y]

→E

Γ, x : U ` (r) u :

n∑
i=1

m∑
j=1

αi × βj ·Ri[~B/~Y]

By the induction hypothesis, Γ ` r[b/x] :
∑n

i=1 αi · ∀~Y .(V → Ri) and Γ ` u[b/x] :
∑m

j=1 βj ·
V [~B/~Y]. Then, by rule →E , Γ ` r[b/x] u[b/x] :

∑n
i=1

∑m
j=1 αi × βj ·Ri[~B/~Y].

··· Case ∀I ···

Γ, x : U ` t :

n∑
i=1

αi · Vi Y /∈ FV (Γ) ∪ FV (U)

∀I
Γ, x : U ` t :

n−1∑
i=1

αi · Vi + αn · ∀Y.Vn

By the induction hypothesis, Γ ` t[b/x] :
∑n

i=1 αi · Vi. Then by rule ∀I , Γ ` t[b/x] :
∑n−1

i=1 αi ·
Vi + αn · ∀Y.Vn.

·· Case ∀E ··

Γ, x : U ` t :
n−1∑
i=1

αi · Vi + αn · ∀Y.Vn
∀E

Γ, x : U ` t :
n−1∑
i=1

αi · Ui + αn · Un[B/Y]

Francisco J. Noriega 35

Section 4.2 - Proof

By the induction hypothesis, Γ ` t[b/x] :
∑n−1

i=1 αi · Vi + αn · ∀Y.Vn. By rule ∀E , Γ ` t[b/x] :∑n−1
i=1 αi · Vi + αn · Vn[B/Y].

··· Case S ···

Γ, x : U ` t : Ti ∀i ∈ {1, . . . , n}
S

Γ, x : U `

(
n∑
i=1

αi

)
· t :

n∑
i=1

αi · Ti

By the induction hypothesis, for all i ∈ {1, . . . , n}, Γ ` t[b/x] : Ti. Then by rule S, Γ `
(
∑n

i=1 αi) · t[b/x] :
∑n

i=1 αi · Ti. Notice that (
∑n

i=1 αi) · t[b/x] = ((
∑n

i=1 αi) · t)[b/x].

·· Case +I ··

Γ, x : U ` r : R Γ, x : U ` u : S
+I

Γ, x : U ` r + u : R+ S

By the induction hypothesis, Γ ` r[b/x] : R and Γ ` u[b/x] : S. Then by rule +I , Γ `
r[b/x] + u[b/x] : R+ S. Notice that r[b/x] + u[b/x] = (r + u)[b/x].

··· Case ≡ ···

Γ, x : U ` t : T T ≡ R
≡

Γ, x : U ` t : R

By the induction hypothesis, Γ ` t[b/x] : R. Hence, by rule ≡, Γ ` t[b/x] : T .

··· Case 1E ···

Γ, x : U ` 1 · t : T
1E

Γ, x : U ` t : T

By the induction hypothesis, Γ ` 1 · t[b/x] : R. Hence, by rule 1E , Γ ` t[b/x] : T .

We introduce the equivalence relation between contexts.

Definition 4.1.16. The equivalence between contexts Γ ≡ Γ′ is defined by x : A ∈ Γ if and only

if there exists x : A′ ∈ Γ′ such that A ≡ A′.

4.2 Proof

We state the Subject Reduction theorem and prove that λvec∗ satisfies it.

Theorem 4.2.1 (Subject Reduction). For any terms t, t′, any context Γ and any type T , if

t→ t′ and Γ ` t : T , then Γ ` t′ : T

Proof. Let t→ t′ and Γ ` t : T , we proceed by induction on the rewrite relation:

·· Group E ··

·· Case 1 · t→ t ··

Consider Γ ` 1 · t : T , then by 1E rule, then Γ ` t : T .

Francisco J. Noriega 36

Section 4.2 - Proof

··· Case α · (β · t)→ (α× β) · t ···

Consider π = Γ ` α · (β · t) : T , then by applying Lemma 4.1.10, there exist R1, . . . , Rn,

α1, . . . , αn such that

• T ≡
∑n

i=1 αi ·Ri.

• πi = Γ ` β · t : Ri, with size(π) > size(πi), for i ∈ {1, . . . , n}.

•
∑n

i=1 αi = α.

By applying Lemma 4.1.10 for all i ∈ {1, . . . , n}, there exist S(i,1), . . . , S(i,mi), β(i,1), . . . , β(i,mi)

such that

• Ri ≡
∑mi

j=1 β(i,j) · S(i,j).

• π(i,j) = Γ ` t : S(i,j), with size(πi) > size(π(i,j)), for j ∈ {1, . . . ,mi}.

•
∑mi

j=1 β(i,j) = β.

Notice that
n∑
i=1

αi ·
mi∑
j=1

β(i,j)︸ ︷︷ ︸
β

=

n∑
i=1

αi · β = β ·
n∑
i=1

αi︸ ︷︷ ︸
α

= β × α = α× β

Then applying the S rule,

Γ ` t : S(i,j) ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,mi}
S

Γ ` (α× β) · t :
n∑
i=1

αi ·
mi∑
j=1

β(i,j) · S(i,j)

Since for all i ∈ {1, . . . , n},
∑mi

j=1 β(i,j) · S(i,j) ≡ Ri, and since
∑n

i=1 αi ·Ri ≡ T , then by ≡ rule,

we conclude that Γ ` (α× β) · t : T .

··· Case α · (t + r)→ α · t + α · r ···

Consider Γ ` α · (t + r) : T , then by Lemma 4.1.10 there exist R1, . . . , Rn, α1, . . . , αn such

that

• T ≡
∑n

i=1 αi ·Ri.

• πi = Γ ` t + r : Ri, with size(π) > size(πi), for i ∈ {1, . . . , n}.

•
∑n

i=1 αi = α.

Since size(π) > size(πi), then by Lemma 4.1.11, for all i ∈ {1, . . . , n}, there exist Si,1, Si,2 such

that

• Γ ` t : S(i,1).

• Γ ` r : S(i,2).

• S(i,1) + S(i,2) ≡ Ri.

Francisco J. Noriega 37

Section 4.2 - Proof

Then applying the S rule,

Γ ` t : S(i,1) ∀i ∈ {1, . . . , n}
S

Γ ` α · t :

n∑
i=1

αi · S(i,1)

Γ ` r : S(i,2) ∀i ∈ {1, . . . , n}
S

Γ ` α · r :

n∑
i=1

αi · S(i,2)

By applying the +I rule,

Γ ` α · t :

n∑
i=1

αi · S(i,1) Γ ` α · r :

n∑
i=1

αi · S(i,2)

+I

Γ ` α · t + α · r :
n∑
i=1

αi · S(i,1) +
n∑
i=1

αi · S(i,2)

Notice that

n∑
i=1

αi · S(i,1) +
n∑
i=1

αi · S(i,2) ≡
n∑
i=1

αi · (S(i,1) + S(i,2)) ≡
n∑
i=1

αi ·Ri ≡ T

Finally, applying the ≡ rule, we conclude that Γ ` α · t + α · r : T .

·· Group F ··

··· Case α · t + β · t→ (α+ β) · t ···

Consider Γ ` α · t + β · t : T .

For simplicity, we rename α = µ1 and β = µ2, then by Lemma 4.1.11 there exist S1, S2 such

that

• π1 = Γ ` µ1 · t : S1.

• π2 = Γ ` µ2 · t : S2.

• S1 + S2 ≡ T .

And by Lemma 4.1.10, for k = 1, 2, there exist R(k,1), . . . , R(k,nk), γ(k,1), . . . , γ(k,nk) such that

• Sk ≡
∑nk

i=1 γ(k,i) ·R(k,i).

• π(k,i) = Γ ` t : R(k,i), with size(πk) > size(π(k,i)), for i ∈ {1, . . . , nk}.

•
∑nk

i=1 γ(k,i) = µk.

Notice that
n1∑
i=1

µ(1,i)︸ ︷︷ ︸
= µ1

+

n2∑
i=1

µ(2,i)︸ ︷︷ ︸
= µ2

= µ1 + µ2 = α+ β

Then applying the S rule,

Γ ` t : R(1,i) ∀i ∈ {1, . . . , n1} Γ ` t : R(2,i) ∀i ∈ {1, . . . , n2}
S

Γ ` (α+ β) · t :

n1∑
i=1

µ(1,i) ·R(1,i) +

n2∑
i=1

µ(2,i) ·R(2,i)

We also know that

n1∑
i=1

µ(1,i) ·R(1,i) ≡ S1

n2∑
i=1

µ(2,i) ·R(2,i) ≡ S2 S1 + S2 ≡ T

Francisco J. Noriega 38

Section 4.2 - Proof

Finally, we conclude by ≡ rule that Γ ` (α+ β) · t : T .

·· Case α · t + t→ (α+ 1) · t ··

Consider Γ ` α · t + t : T , then by Lemma 4.1.11 there exist S1, S2 such that

• π = Γ ` α · t : S1.

• Γ ` t : S2.

• S1 + S2 ≡ T .

And by Lemma 4.1.10, there exist R1, . . . , Rn, α1, . . . , αn such that

• S1 ≡
∑n

i=1 αi ·Ri.

• πi = Γ ` t : Ri, with size(π) > size(πi), for i ∈ {1, . . . , n}.

•
∑n

i=1 αi = α.

Then applying the S rule,

Γ ` t : Ri ∀i ∈ {1, . . . , n} Γ ` t : S2
S

Γ ` (α+ 1) · t :

n∑
i=1

αi ·Ri + S2

We also know that
n∑
i=1

µi ·Ri ≡ S1 S1 + S2 ≡ T

Finally, we conclude by ≡ rule that Γ ` (α+ 1) · t : T .

·· Case t + t→ (1 + 1) · t ··

Consider Γ ` t + t : T , then by Lemma 4.1.11 there exist T1, T2 such that

• Γ ` t : T1.

• Γ ` t : T2.

• T1 + T2 ≡ T .

Then applying the S rule,
Γ ` t : T1 Γ ` t : T2

S
Γ ` (1 + 1) · t : T1 + T2

Finally, by ≡ rule we conclude that Γ ` (1 + 1) · t : T .

·· Group B ··

·· Case (λx.t) b→ t[b/x] ··

Consider Γ ` (λx.t) b : T , then by Lemma 4.1.12, , there exist R1, . . . , Rh, µ1, . . . , µh,

V1, . . . ,Vh such that T ≡
∑h

k=1 µk ·Rk,
∑h

k=1 µk = 1 and for all k ∈ {1, . . . , h},

• Γ ` λx.t :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• Γ ` b :
∑mk

j=1 β(k,j) · U [~A(k,j)/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

Francisco J. Noriega 39

Section 4.2 - Proof

For the sake of readability, we will split the proof:

1. We will prove that Γ, x : U [~A(k,j)/X] ` t : T(k,i)[~A(k,j)/X], for all k ∈ {1, . . . , h}, j ∈
{1, . . . ,m}, i ∈ {1, . . . , n}.

2. We will prove that Γ ` t[b/x] : T(k,i)[~A(k,j)/X], for all k ∈ {1, . . . , h}, j ∈ {1, . . . ,m},
i ∈ {1, . . . , n}.

3. We will prove that Γ ` t[b/x] : T .

Item (1) ··

We will prove that Γ, x : U [~A(k,j)/X] ` t : T(k,i)[~A(k,j)/X], for all k ∈ {1, . . . , h}, j ∈ {1, . . . ,m},
i ∈ {1, . . . , n}.
For simplicity, we will omit the k index, which would otherwise be present in all the types,

scalars and upper bound of the summations.

Considering λx.t is a basis term, by Lemma 4.1.14 then there exist W1, . . . ,Wb, γ1, . . . , γb such

that

•
∑b

a=1 γa ·Wa ≡
∑n

i=1 αi · ∀ ~X.(U → Ti).

• Γ ` λx.t : Wa, for a ∈ {1, . . . , b}.

•
∑b

a=1 γa = 1.

Without loss of generality, we assume that all unit types present at both sides of the equivalences

are distinct, so by Lemma 4.1.3, then b = n and there exists a permutation of n, p, such that

∀ ~X.(U → Ti) ≡Wp(i) and αi = γp(i), for all i ∈ {1, . . . , n}.
Since for all i ∈ {1, . . . , n} we have Γ ` λx.t : ∀ ~X.(U → Ti), then by Lemma 4.1.13 and

Lemma 4.1.3, we know that Γ, x : Vi ` t : Si, and Vi → Si �Vi,Γ ∀ ~X.(U → Ti).

By applying Lemma 4.1.9, then U ≡ Vi[~B/~Y] and Ti ≡ Si[~B/~Y], with ~Y /∈ FV (Γ).

Then, by Lemma 4.1.15 and ≡ rule, we have that Γ, x : U ` t : Ti for all i ∈ {1, . . . , n}.
By Lemma 4.1.8, since Vi → Si �Vi,Γ ∀ ~X.(U → Ti) for all i ∈ {1, . . . , n}, then we know
~X /∈ FV (Γ) and so by Definition 4.1.16, Γ ≡ Γ[~C/ ~X], for any ~C.

Therefore, by applying Lemma 4.1.15 multiple times, we have Γ, x : U [~Aj/X] ` t : Ti[~Aj/X] for

all j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}.
Following this procedure for all k ∈ {1, . . . , h}, then we proved that Γ, x : U [~A(k,j)/X] ` t :

T(k,i)[~A(k,j)/X], for all k ∈ {1, . . . , h}, j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}.

Item (2) ··

We will prove that Γ ` t[b/x] : T(k,i)[~A(k,j)/X], for all k ∈ {1, . . . , h}, j ∈ {1, . . . ,mk}, i ∈
{1, . . . , nk}.
For simplicity, we will omit the k index, which would otherwise be present in all the types,

scalars and upper bound of the summations.

Since b is a basis term, by Lemma 4.1.14 there exist W ′1, . . . ,W
′
c, η1, . . . , ηc such that

•
∑c

a=1 ηa ·W ′a ≡
∑m

j=1 βj · U [~Aj/ ~X].

• Γ ` b : W ′a, for a ∈ {1, . . . , c}.

•
∑c

a=1 ηa = 1.

Francisco J. Noriega 40

Section 4.2 - Proof

Without loss of generality, we assume that all unit types present at both sides of the equivalences

are distinct, so by Lemma 4.1.3, then c = m, and there exists a permutation q of m, such that

U [~Aj/ ~X] ≡W ′q(j) and βj = ηq(j), for all j ∈ {1, . . . ,m}.
Then, following Item (1), by applying Lemma 4.1.15, we have that Γ ` t[b/x] : Ti[~Aj/X] for all

j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}. Following this procedure for all k ∈ {1, . . . , h}, then we proved

that Γ ` t[b/x] : T(k,i)[~A(k,j)/X], for all k ∈ {1, . . . , h}, j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}.

Item (3) ··

Using the results of Item (1) and Item (2), and since in both items we already proved that for all

k ∈ {1, . . . , h},
∑nk

i=1 αi =
∑mk

j=1 βj = 1, then by applying the S rule for all k ∈ {1, . . . , h} (we

will omit the k index for simplicity, that will be present in all types, scalars and upper bound

of the summations),

Γ ` t[b/x] : Ti[~Aj/X] ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}
S

Γ ` 1 · t[b/x] :
n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/X]

1E

Γ ` t[b/x] :

n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/X]

Since
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/X] �V,Γ Rk, then Γ ` t[b/x] : Rk.

Considering that
∑h

k=1 µk = 1, then by applying the S and the 1E rule again,

Γ ` t[b/x] : Rk ∀k ∈ {1, . . . , h}
S

Γ ` 1 · t[b/x] :
h∑
k=1

µk ·Rk
1E

Γ ` t[b/x] :

h∑
k=1

µk ·Rk

Finally, since µk ·Rk ≡ T , we conclude by ≡ rule that Γ ` t[b/x] : T .

·· Group A ··

·· Case (t + r) u→ (t) u + (r) u ··

Consider Γ ` (t + r) u : T , then by Lemma 4.1.12, there exist R1, . . . , Rh, µ1, . . . , µh,

V1, . . . ,Vh such that T ≡
∑h

k=1 µk ·Rk,
∑h

k=1 µk = 1 and for all k ∈ {1, . . . , h}

• Γ ` t + r :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• Γ ` u :
∑mk

j=1 β(k,j) · U [~Aj/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

We will simplify the rest of this proof by omitting the k index, which would otherwise be present

in all the types, scalars and upper bound of the summations. The rest of this proof then should

be applied to all k ∈ {1, . . . , h}.
By Lemma 4.1.11, there exist S1, S2 such that

• Γ ` t : S1.

Francisco J. Noriega 41

Section 4.2 - Proof

• Γ ` r : S2.

• S1 + S2 ≡
∑n

i=1 αi · ∀ ~X.(U → Ti).

Hence, there exist N1, N2 ⊆ {1, . . . , n} with N1 ∪N2 = {1, . . . , n} such that

S1 ≡
∑

i∈N1\N2

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

ηi · ∀ ~X.(U → Ti) and

S2 ≡
∑

i∈N2\N1

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

η′i · ∀ ~X.(U → Ti)

where for all i ∈ N1 ∩N2, ηi + η′i = αi. Therefore, using ≡ we get

Γ ` t :
∑

i∈N1\N2

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

ηi · ∀ ~X.(U → Ti) and

Γ ` r :
∑

i∈N2\N1

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

η′i · ∀ ~X.(U → Ti)

So, using rule →E , we get

Γ ` (t) u :
∑

i∈N1\N2

m∑
j=1

αi × βj · Ti[~Aj/ ~X] +
∑

i∈N1∩N2

m∑
j=1

η′i × βj · Ti[~Aj/ ~X] and

Γ ` (r) u :
∑

i∈N2\N1

m∑
j=1

αi × βj · Ti[~Aj/ ~X] +
∑

i∈N1∩N2

m∑
j=1

η′i × βj · Ti[~Aj/ ~X]

By rule +I we can conclude

Γ ` (t) u + (r) u :
n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/ ~X]

Since
∑nk

i=1

∑mk
j=1 α(k,i)×β(k,j) ·T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk for all k ∈ {1, . . . , h}, then by definition

of �, we can derive Γ ` (t) u + (r) u : Rk.

By applying the S and 1E rules, then

Γ ` (t) u + (r) u : Rk ∀k ∈ {1, . . . , k}
S

Γ ` 1 · ((t) u + (r) u) :
h∑
k=1

µk ·Rk
1E

Γ ` (t) u + (r) u :

h∑
k=1

µk ·Rk

Finally, by the ≡ rules, then Γ ` (t) u + (r) u : T .

··· Case (t) (r + u)→ (t) r + (t) u ···

Consider Γ ` (t) (r + u) : T , then by Lemma 4.1.12, there exist R1, . . . , Rh, µ1, . . . , µh,

V1, . . . ,Vh such that T ≡
∑h

k=1 µk ·Rk,
∑h

k=1 µk = 1 and for all k ∈ {1, . . . , h}

• Γ ` t :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• Γ ` r + u :
∑mk

j=1 β(k,j) · U [~A(k,j)/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

Francisco J. Noriega 42

Section 4.2 - Proof

We will simplify the rest of this proof by omitting the k index, which would otherwise be present

in all the types, scalars and upper bound of the summations. The rest of this proof then should

be applied to all k ∈ {1, . . . , h}.
By Lemma 4.1.11, there exists S1, S2 such that

• Γ ` r : S1

• Γ ` u : S2

• S1 + S2 ≡
∑m

j=1 βj · U [~Aj/ ~X]

Hence, there exist N1, N2 ⊆ {1, . . . ,m} with N1 ∪N2 = {1, . . . ,m}, such that

S1 ≡
∑

j∈N1\N2

βj · U [~Aj/ ~X] +
∑

j∈N1∩N2

ηkj · U [~Aj/ ~X] and

S2 ≡
∑

i∈N2\N1

βj · U [~Aj/ ~X] +
∑

j∈N1∩N2

η′kj · U [~Aj/ ~X]

where for all j ∈ N1 ∩N2, ηkj + η′kj = βj . Therefore, using ≡ we get

Γ ` r :
∑

j∈N1\N2

βj · U [~Aj/ ~X] +
∑

j∈N1∩N2

ηkj · U [~Aj/ ~X] and

Γ ` u :
∑

j∈N2\N1

βj · U [~Aj/ ~X] +
∑

j∈N1∩N2

η′kj · U [~Aj/ ~X]

So, using rule →E , we get

Γ ` (t) r :
n∑
i=1

∑
j∈N1\N2

αi × βj · Ti[~Aj/ ~X] +
n∑
i=1

∑
j∈N1∩N2

αi × ηkj · Ti[~Aj/ ~X] and

Γ ` (t) u :

n∑
i=1

∑
j∈N2\N1

αi × βj · Ti[~Aj/ ~X] +

n∑
i=1

∑
j∈N1∩N2

αi × η′kj · Ti[~Aj/ ~X]

By rule +I we can conclude

Γ ` (t) r + (t) u :

n∑
i=1

m∑
j=1

αi × βj · Ti[~Aj/ ~X]

Since
∑nk

i=1

∑mk
j=1 α(k,i)×β(k,j) ·T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk for all k ∈ {1, . . . , h}, then by definition

of �, we can derive Γ ` (t) r + (t) u : Rk.

By applying the S and 1E rules, then

Γ ` (t) r + (t) u : Rk ∀k ∈ {1, . . . , h}
S

Γ ` 1 · ((t) r + (t) u) :

h∑
k=1

µk ·Rk
1E

Γ ` (t) r + (t) u :
h∑
k=1

µk ·Rk

Finally, by the ≡ rules, then Γ ` (t) r + (t) u : T .

··· Case (α · t) r→ α · (t) r ···

Consider Γ ` (α · t) r : T , by Lemma 4.1.12, there exist R1, . . . , Rh, µ1, . . . , µh, V1, . . . ,Vh
such that T ≡

∑h
k=1 µk ·Rk,

∑h
k=1 µk = 1 and for all k ∈ {1, . . . , h}

Francisco J. Noriega 43

Section 4.2 - Proof

• πk = Γ ` α · t :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• Γ ` r :
∑mk

j=1 β(k,j) · U [~A(k,j)/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

We will simplify the rest of this proof by omitting the k index, which would otherwise be present

in all the types, scalars and upper bound of the summations. The rest of this proof then should

be applied to all k ∈ {1, . . . , h}.
By Lemma 4.1.10, there exist S1, . . . , Sb, η1, . . . , ηb such that

•
∑n

i=1 αi · ∀ ~X.(U → Ti) ≡
∑b

a=1 ηa · Sa.

• πi = Γ ` t : Sa, with size(π) > size(πa), for a ∈ {1, . . . , b}.

•
∑b

a=1 ηa = α.

Considering
∑n

i=1 αi · ∀ ~X.(U → Ti) does not have any general variable X and that
∑n

i=1 αi · ∀ ~X.(U → Ti) ≡∑b
a=1 ηa · Sa, then by Lemma 4.1.1, Sa ≡

∑da
c=1 γ(a,c) · V(a,c).

Without loss of generality, we assume that all unit types present at both sides of the equiv-

alences are distinct, so by Lemma 4.1.3, then n =
∑b

a=1 da, and by taking a partition from

{1, . . . ,
∑b

a=1 da} (defining an equivalence class) and the trivial permutation p of n such that

p(i) = i (which we will omit for readability), we have

• αi = η[i] × σi, where σi = γ(
[i], i

[i]

).

• ∀ ~X.(U → Ti) ≡ V([i], i
[i]

).

Take f(a) =
∑a−1

e=1 de, so we rewrite Sa ≡
∑da

c=1 γ(a,c) · V(a,c) as

Sa ≡
f(a)+da∑
g=f(a)

σg · V([g], g
[g]

) ≡ f(a)+da∑
g=f(a)

σg · ∀ ~X.(U → Tg)

Applying →E for all a ∈ {1, . . . , b},

Γ ` t :

f(a)+da∑
g=f(a)

σg · ∀ ~X.(U → Tg) Γ ` r :
m∑
j=1

βj · U [~Aj/ ~X]

→E

Γ ` (t) r :

f(a)+da∑
g=f(a)

m∑
j=1

(σg × βj) · Tg[~Aj/ ~X]

We rewrite
∑f(a)+da

g=f(a)

∑m
j=1 (σg × βj) · Tg[~Aj/ ~X] ≡ Pa, then by applying the S rule we have

Γ ` (t) r : Pa ∀a ∈ {1, . . . , b}
S

Γ ` α · (t) r :

b∑
a=1

ηa · Pa

Now we begin to unravel the final result

b∑
a=1

ηa · Pa ≡
b∑

a=1

ηa ·
f(a)+da∑
g=f(a)

m∑
j=1

(σg × βj) · Tg[~Aj/ ~X]

Francisco J. Noriega 44

Section 4.2 - Proof

≡
b∑

a=1

f(a)+da∑
g=f(a)

m∑
j=1

(
η[g] × σg × βj

)
· Tg[~Aj/ ~X]

≡
b∑

a=1

f(a)+da∑
g=f(a)

m∑
j=1

(αg × βj) · Tg[~Aj/ ~X]

≡
n∑
i=1

m∑
j=1

(αi × βj) · Ti[~Aj/ ~X]

Then,

Γ ` α · (t) r :

n∑
i=1

m∑
j=1

(αi × βj) · Ti[~Aj/ ~X]

Since
∑nk

i=1

∑mk
j=1(α(k,i) × β(k,j)) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk, then for all k ∈ {1, . . . , h}, Γ `

α · (t) r : Rk.

By applying the S and 1E rules, then

Γ ` α · (t) r : Rk ∀k ∈ {1, . . . , h}
S

Γ ` 1 · (α · (t) r) :
h∑
k=1

µk ·Rk
1E

Γ ` α · (t) r :

h∑
k=1

µk ·Rk

Finally, by the ≡ rule, then Γ ` α · (t) r : T .

·· Case (t) (α · r)→ α · (t) r ··

Consider Γ ` (t) (α · r) : T , by Lemma 4.1.12, there exist R1, . . . , Rh, µ1, . . . , µh, V1, . . . ,Vh
such that T ≡

∑h
k=1 µk ·Rk,

∑h
k=1 µk = 1 and for all k ∈ {1, . . . , h}

• Γ ` t :
∑nk

i=1 α(k,i) · ∀ ~X.(U → T(k,i)).

• πk = Γ ` α · r :
∑mk

j=1 β(k,j) · U [~A(k,j)/ ~X].

•
∑nk

i=1

∑mk
j=1 α(k,i) × β(k,j) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk.

We will simplify the rest of this proof by omitting the k index, which would otherwise be present

in all the types, scalars and upper bound of the summations. The rest of this proof then should

be applied to all k ∈ {1, . . . , h}.
By Lemma 4.1.10, there exist S1, . . . , Sb, η1, . . . , ηb such that

•
∑m

j=1 βj · U [~Aj/ ~X] ≡
∑b

a=1 ηa · Sa.

• πi = Γ ` r : Sa, with size(π) > size(πa), for a ∈ {1, . . . , b}.

•
∑b

a=1 ηa = α.

Considering
∑m

j=1 βj ·U [~Aj/ ~X] does not have any general variable X and that
∑m

j=1 βj ·U [~Aj/ ~X] ≡∑b
a=1 ηa · Sa, then by Lemma 4.1.1, Sa ≡

∑da
c=1 γ(a,c) · V(a,c).

Without loss of generality, we assume that all unit types present at both sides of the equiv-

alences are distinct, so by Lemma 4.1.3, then m =
∑b

a=1 da, and by taking a partition from

{1, . . . ,
∑b

a=1 da} (defining an equivalence class) and the trivial permutation p of m such that

p(j) = j (which we will omit for readability), we have

Francisco J. Noriega 45

Section 4.2 - Proof

• βj = η[j] × σj , where σj = γ(
[j], j

[j]

).

• U [~Aj/ ~X] ≡ V(
[j], j

[j]

).

Take f(a) =
∑a−1

e=1 de, so we rewrite Sa ≡
∑da

c=1 γ(a,c) · V(a,c) as

Sa ≡
f(a)+da∑
g=f(a)

σg · V([g], g
[g]

) ≡ f(a)+da∑
g=f(a)

σg · U [~Ag/ ~X]

Applying →E for all a ∈ {1, . . . , b},

Γ ` t :
n∑
i=1

αi · ∀ ~X.(U → Ti) Γ ` r :

f(a)+da∑
g=f(a)

σg · U [~Ag/ ~X]

→E

Γ ` (t) r :
n∑
i=1

f(a)+da∑
g=f(a)

(αi × σg) · Ti[~Ag/ ~X]

We rewrite
∑n

i=1

∑f(a)+da
g=f(a) (αi × σg) · Ti[~Ag/ ~X] ≡ Pa, then by applying the S rule we have

Γ ` (t) r : Pa ∀a ∈ {1, . . . , b}
S

Γ ` α · (t) r :
b∑

a=1

ηa · Pa

Now we begin to unravel the final result

b∑
a=1

ηa · Pa ≡
b∑

a=1

ηa ·
n∑
i=1

f(a)+da∑
g=f(a)

(αi × σg) · Ti[~Ag/ ~X]

≡
b∑

a=1

f(a)+da∑
g=f(a)

m∑
j=1

(
αi × η[g] × σg

)
· Ti[~Ag/ ~X]

≡
b∑

a=1

f(a)+da∑
g=f(a)

m∑
j=1

(αi × βg) · Ti[~Ag/ ~X]

≡
n∑
i=1

m∑
j=1

(αi × βj) · Ti[~Aj/ ~X]

Then,

Γ ` α · (t) r :
n∑
i=1

m∑
j=1

(αi × βj) · Ti[~Aj/ ~X]

Since
∑nk

i=1

∑mk
j=1(α(k,i) × β(k,j)) · T(k,i)[~A(k,j)/ ~X] �Vk,Γ Rk, then for all k ∈ {1, . . . , h}, Γ `

α · (t) r : Rk.

Francisco J. Noriega 46

Section 4.2 - Proof

By applying the S and 1E rules, then

Γ ` α · (t) r : Rk ∀k ∈ {1, . . . , h}
S

Γ ` 1 · (α · (t) r) :
h∑
k=1

µk ·Rk
1E

Γ ` α · (t) r :

h∑
k=1

µk ·Rk

Finally, by the ≡ rule, then Γ ` α · (t) r : T .

Francisco J. Noriega 47

Chapter 5

Other properties

Chapter Summary

We present the Progress property and we prove it is satisfied by λvec∗. We also

formalise the concept of weight of terms and types, and prove that the weight of

normalized terms is the same as the weight of their types.

We present two additional properties that are satisfied by λvec∗. One of them is the

property of Progress, satisfied by λvec [3, Theorem 6.1], which allows us to characterise

the form of the values. We prove that λvec∗ also satisfies this property.

In this chapter we also formalise the concept of weight for both types and terms, which refers

to the sum of all the components of the vectors they model. From this definition we formulate

a new property, Weight Preservation, which guarantees that for any typed term ` t : T , upon

normalizing t→∗ v, the weight of v is the same as the weight of T . This result provides a way

to statically characterise the weight of a term before it is reduced, by looking at the weight of

its type.

Plan of this chapter. In Section 5.1 we prove the Progress property is satisfied by λvec∗.

In Section 5.2 we formalise the concept of weight of terms and types, and we state and prove

the property of Weight Preservation.

5.1 Progress

We state and prove the Progress property.

Theorem 5.1.1 (Progress). Given V =
{∑n

i=1 αi · bi +
∑m

j=n+1 bj | ∀i, j,bi 6= bj

}
and NF the

set of terms in normal form (the terms that cannot be reduced any further), then if ` t : T and

t ∈ NF, it follows that t ∈ V.

Proof. By induction on t:

································ Case t =
∑n

i=1 αi · bi +
∑m

j=n+1 bj | ∀i, j,bi 6= bj ································

Trivial case.

································ Case t =
∑n

i=1 αi · bi +
∑m

j=n+1 bj | ∃i, j,bi = bj ································

t /∈ NF, since at least one reduction rule from Group F can be applied.

48

Section 5.2 - Weight Preservation

·· Case t = (r) s ··

By induction hypothesis, we know that r =
∑n

i=1 αi · bi +
∑m

j=n+1 bj ∈ V. We consider the

following cases:

• If m > n + 1 or n 6= 0, then at least one reduction rule from Group A can be applied,

hence (r) s /∈ NF.

• If m = n + 1 and n = 0, then r = bn+1 ∈ V. Since FV (r) = ∅, then r = λx.r′, which

implies (r) s is a beta-redex or at least one reduction rule from Group A can be applied,

hence (r) s /∈ NF.

·· Case t = α · r ··

By induction hypothesis, we know that r =
∑n

i=1 αi · bi +
∑m

j=n+1 bj ∈ V. We consider the

following cases:

• If m 6= n + 1 or n 6= 0, then at least one reduction rule from Group E can be applied,

hence (r) s /∈ NF.

• If m = n+ 1, n = 0 and α = 1, then r = b ∈ V, but 1 · r = 1 · b→ b, hence α · r /∈ NF.

• If m = n+ 1, n = 0 and α 6= 1, then r = b ∈ V and α · r = α · b ∈ V.

·· Case t = t1 + t2 ··

By induction hypothesis, we know that tk =
∑nk

i=1 α
k
i · bki +

∑mk

j=n+1 bkj ∈ V, with k = 1, 2.

We consider the following cases:

• ∃i, j / b1
i = b2

j , then at least one reduction rule from Group F can be applied, hence

t1 + t2 /∈ NF.

• ∀i, j / b1
i 6= b2

j , then by definition of V, t1 + t2 ∈ NF.

5.2 Weight Preservation

As previously discussed, the objective of the system is to be able to model vector spaces. In

this context, we know that the basis terms represent base vectors, while general terms represent

any vector. From here, it follows that if v = α · b1 + β · b2, then b1 represents the vector [1, 0],

b2 represents the vector [0, 1], and v represents the vector [α, β] = α · [1, 0]+β · [0, 1]. Therefore,

the weight of v should be α+ β, since that is effectively the weight of [α, β].

This is analogous for types: the unit types represent base vectors (which is why they type

basis terms), and the general types represent any vector.

We proceed then to formalise the concept of weight of types and terms. It is worth mentioning

that our definition of weight for terms is not complete, in the sense that we define it inductively

and only consider the cases we need for our proof: the terms representing applications are not

included, since for Weight Preservation we are only considering the weight of value, which means

that all the application terms have already been reduced, due to Theorem 5.1.1.

Definition 5.2.1 (Weight of types). We define the relation W (•): Type → Scalar inductively

as follows:

• W (U)= 1.

Francisco J. Noriega 49

Section 5.2 - Weight Preservation

• W (α · T)= α· W (T).

• W (T +R)=W (T) +W (R).

Example 5.2.2. Consider the type
∑n

i=1 αi · Ui, then

W

(
n∑
i=1

αi · Ui

)
=

n∑
i=1

αi· W (Ui)

=
n∑
i=1

αi

Definition 5.2.3 (Weight of terms). We define the relation W (•): Term→ Scalar inductively

as follows:

• W (b)= 1.

• W (α · t)= α· W (t).

• W (t + r)=W (t) +W (r).

Example 5.2.4. Consider the term
∑n

i=1 αi · bi, then

W

(
n∑
i=1

αi · bi

)
=

n∑
i=1

αi· W (bi)

=

n∑
i=1

αi

Lemma 5.2.5. If T ≡ R, then W (T)=W (R).

Proof. We prove the lemma holds for every definition of ≡

··· Case 1 · T ≡ T ···

Trivial case.

·· Case α · (β · T) ≡ (α× β) · T ··

W (α · (β · T)) = α· W (β · T)= (α× β)· W (T)=W ((α× β) · T)

··· Case α · T + α ·R ≡ α · (T +R) ···

W (α · T + α ·R) =W (α · T) +W (α ·R)

= α· W (T) +α· W (R)= α · (W (T) +W (R))

= α · (W (T +R)) =W (α · (T +R))

·· Case α · T + β · T ≡ (α+ β) · T ··

W (α · T + β · T) =W (α · T) +W (β · T)= α· W (T) +β· W (T)

= (α+ β)· W (T)=W ((α+ β) · T)

·· Case T +R ≡ R+ T ··

W (T +R)=W (T) +W (R)=W (R) +W (T)=W (T +R)

Francisco J. Noriega 50

Section 5.2 - Weight Preservation

··· Case T + (R+ S) ≡ (T +R) + S ···

W (T + (R+ S)) =W (T) +W (R+ S)=W (T) +W (R) +W (S)

=W (T +R) +W (S)=W ((T +R) + S)

Lemma 5.2.6. If ` v =
∑k

i=1 αi · bi +
∑n

i=k+1 bi : T , then W (T)≡W (v).

Proof. We proceed by induction on n.

·· Case n = 1 ··

There are two possible escenarios:

k = 1 ···

In this scenario, consider π =` α1 ·b1 : T . By Lemma 4.1.10, there exist R1, . . . , Rm, β1, . . . , βm
such that

• T ≡
∑m

j=1 βj ·Rj .

• πi = Γ ` b1 : Rj , with size(π) > size(πj), for j ∈ {1, . . . ,m}.

•
∑m

i=1 βj = α1.

Then by Lemma 4.1.14, for each j ∈ {1, . . . ,m} (we will omit the j index for readability), there

exist U1, . . . , Uh, σ1, . . . , σh such that

• R ≡
∑h

k=1 σk · Uk.

• Γ ` b1 : Uk, for k ∈ {1, . . . , h}.

•
∑h

k=1 σk = 1.

Then,

T ≡
m∑
j=1

βj ·Rj ≡
m∑
j=1

βj · (
hj∑
k=1

σ(j,k) · U(j,k))

Finally, by definition of W (•), we have

W (v) =W

(
1∑
i=1

αi · bi

)
=

1∑
i=1

αi· W (bi)

=

1∑
i=1

αi = α1 =

m∑
i=1

βj =

m∑
i=1

βj ·

 hj∑
k=1

σ(j,k)


︸ ︷︷ ︸

= 1

=

m∑
i=1

βj ·

 hj∑
k=1

σ(j,k)· W
(
U(j,k)

)
=

m∑
i=1

βj · W

 hj∑
k=1

σ(j,k) · U(j,k)

=W

 m∑
i=1

βj ·

 hj∑
k=1

σ(j,k) · U(j,k)


=W (T)

Francisco J. Noriega 51

Section 5.2 - Weight Preservation

k = 0 ···

In this scenario, consider ` b1 : T . By Lemma 4.1.14, there exist U1, . . . , Um, β1, . . . , βm such

that

• T ≡
∑m

j=1 βk · Uj .

• Γ ` b1 : Uj , for j ∈ {1, . . . ,m}.

•
∑m

j=1 βj = 1.

Finally, by definition of W (•), we have

W (v) =W (b1)= 1 =

m∑
j=1

βj

=
m∑
j=1

βj · W (Uj)=W

 m∑
j=1

βj · Uj


=W (T)

·· Induction step ··

Consider now that ` v = v′ + v′′ : T , where v′ =
∑k

i=1 αi · bi +
∑n

j=k+1 bj and either

v′′ = β · b, or v′′ = b. By Lemma 4.1.11, we know there exists R and S such that

• T ≡ R+ S.

• Γ ` v′ : R.

• Γ ` v′′ : S.

By induction hypothesis, since ` v′ =
∑k

i=1 αi · bi +
∑n

j=k+1 bj : R, then W (R)=W (v′); and

since either v′′ = β · b or v′′ = b, in both cases we know that W (S)=W (v′′). Finally, and

considering by Lemma 5.2.5 that W (T)=W (R) +W (S), we have

W (v) =W
(
v′ + v′′

)
=W

(
v′
)

+W
(
v′′
)

=W (R) +W (S)

=W (T)

Theorem 5.2.7 (Weight Preservation). If ` t : T and t→∗ v, then W (T)=W (v).

Proof. Since t →∗ v, by Theorem 5.1.1, v =
∑n

i=1 αi · bi +
∑m

j=1 bj , where bi 6= bj for all

i ∈ {1, . . . , n}, j ∈ {1, . . .m}. Also, by Theorem 4.2.1, we know then that ` v : T . Finally, by

Lemma 5.2.6, we know that W (T)=W (v).

Francisco J. Noriega 52

Chapter 6

Conclusion

6.1 Summary

We have introduced λvec∗ and proved that it satisfies the standard formulation of the Subject

Reduction property (Theorem 4.2.1), which guarantees that upon reducing a term, its type will

be preserved. It is worth mentioning that in the process of doing so, we faced several problems

regarding the changes we needed to make to the original λvec system. Indeed, one of the first

approaches we considered involved keeping most of the typing rules as in the original system,

adding subtyping. The main problem with such approach was that, besides making the system

more complex, the proofs became unnecessarily complex as well.

In the end, we realized that the property could be satisfied just by modifying the typing

rules, which yielded a simpler and more elegant system than the one we first devised. The

summary of the changes made to the original system is:

• We added the S rule, that deals with superposition of types of a single term:

Γ ` t : Ti ∀i ∈ {1, . . . , n}
S

Γ `

(
n∑
i=1

αi

)
t :

n∑
i=1

αi · Ti

• We added the 1E rule, to allow the removal of the scalar if said scalar is equal to 1:

Γ ` 1 · t : T
1E

Γ ` t : T

• We relaxed the ∀ rules to only predicate over a given summand at a time, instead of all

the summands at once:

Γ ` t :

n∑
i=1

αi · Ui X /∈ FV (Γ)

∀I
Γ ` t :

n−1∑
i=1

αi · Ui + αn · ∀X.Un

Γ ` t :
n−1∑
i=1

αi · Ui + αn · ∀X.Un
∀E

Γ ` t :
n−1∑
i=1

αi · Ui + αn · Un[A/X]

• We removed the term 0, to avoid introducing typing rules just to handle the rewrite rules

associated with it in the Subject Reduction proof.

We were also able to prove Progress (Section 5.1), which allowed us to characterise the terms

that cannot be reduced any further. This particular result was very significant since it enabled

us to formalise the concept of weight of types and terms, and to prove that terms had the same

weight as their types (Section 5.2).

53

Section 6.2 - Future directions

6.2 Future directions

In the following paragraphs, we present some unproven intuitions of properties that we

believe can serve as a starting point for future work.

6.2.1 Strong Normalisation

In Section 2.3 we mentioned that one of the properties satisfied by λvec was Strong Nor-

malisation. Since the main focus of our revision was to recover the standard formulation of the

Subject Reduction property, we did not prove if λvec∗ satisfied the Strong Normalisation property

as well. However, we believe that λvec∗ satisfies this property since it could be possible to prove

the sequents of λvec∗ and λvec are related:

If Γ ` t : T , then there exists R such that Γ `λVec t : R.

If that statement is proved, and since the terms in λvec are strongly normalising, then it follows

that the terms in λvec∗ must be strongly normalising as well.

Francisco J. Noriega 54

Section A.1 - Interpretation of typing judgements

A.1 Interpretation of typing judgements

A.1.1 The general case

In the general case the calculus can represent infinite-dimensional linear operators such as

λx.x, λx.λy.y, λx.λf.(f)x,. . . and their applications. Even for such general terms t, the vectorial

type system provides much information about the superposition of basis terms
∑

i αi ·bi to which

t is reduced to, as proven in Section 5.1. How much information is brought by the type system

in the finitary case is the topic of Section A.1.2.

A.1.2 The finitary case: Expressing matrices and vectors

In what we call the “finitary case”, we show how to encode finite-dimensional linear operators,

i.e. matrices, together with their applications to vectors, as well as matrix and tensor products.

The encoding of 2-dimensional vectors differs from that of λvec, but the general encodings are

the same [3, 6. Interpretation of typing judgements]. We still show all the encodings in this

section.

In 2 dimensions

In this section we come back to the motivating example introducing the type system and we

show how λvec∗ handles the Hadamard gate, and how to encode matrices and vectors.

With an empty typing context, the booleans true = λx.λy.x and false = λx.λy.y can be

respectively typed with the types T = ∀XY .X → (Y → X) and F = ∀XY .X → (Y → Y). The

superposition has the following type ` α · true + β · false : α · T + β · F . (Note that it can also

be typed with (α+ β) · ∀X .X → X → X).

The linear map U sending true to a · true + b · false and false to c · true + d · false, that is

true 7→ a · true + b · false,

false 7→ c · true + d · false

is written as

U = λx. {((x) [a · true + b · false]) [c · true + d · false]}.

The following sequent is valid:

` U : ∀X.((I → (a · T + b · F))→ (I → (c · T + d · F))→ I → X)→ X.

This is consistent with the discussion in the introduction: the Hadamard gate is the case a =

b = c = 1√
2

and d = − 1√
2
. One can check that with an empty typing context, (U) true is well

typed of type a · T + b · F , as expected since it is reduced to a · true + b · false:

(U) true = (λx. {((x) [a · true + b · false]) [c · true + d · false]}) (λx.λy.x)

= λx. ((((x) (λf.a · true + b · false)) (λg.c · true + d · false)) (λx.x)) (λx.λy.x)

→ (((λx.λy.x) (λf.a · true + b · false)) (λg.c · true + d · false)) (λx.x)

→ ((λy.λf.a · true + b · false) (λg.c · true + d · false)) (λx.x)

→ (λf.a · true + b · false) (λx.x)

→ a · true + b · false

Francisco J. Noriega 55

Section A.1 - Interpretation of typing judgements

The term (H) 1√
2
· (true + false) is well-typed of type T + 0 · F .

(H)

(
1√
2
· (true + false)

)
→∗

(
(H)

(
1√
2
· true

))
+

(
(H)

(
1√
2
· false

))
→∗ 1√

2
· ((H) true) +

1√
2
· ((H) false)

→∗ 1√
2
·
(

1√
2
· true +

1√
2
· false

)
+

1√
2
·
(

1√
2
· true− 1√

2
· false

)
→∗ 1

2
· true +

1

2
· false +

1

2
· true− 1

2
· false

→ 1 · true + 0 · false

→ true + 0 · false

Since the term is reduced to true + 0 · false, this is consistent with the subject reduction.

But we can do more than typing 2-dimensional vectors or 2 × 2-matrices: using the same

technique we can encode vectors and matrices of any size.

Vectors in n dimensions

The 2-dimensional space is represented by the span of λx1x2.x1 and λx1x2.x2: the n-

dimensional space is simply represented by the span of all the λx1 · · ·xn.xi, for i ∈ {1, . . . , n}.
As for the two dimensional case where

` α1 · λx1x2.x1 + α2 · λx1x2.x2 : α1 · ∀X1X2.X1 + α2 · ∀X1X2.X2,

an n-dimensional vector is typed with

`
n∑
i=1

αi · λx1 · · ·xn.xi :
n∑
i=1

αi · ∀X1 · · ·Xn.Xi.

We use the notations

eni = λx1 · · ·xn.xi, En
i = ∀X1 · · ·Xn.Xi

and we write

u

w
v

α1

...

αn

}

�
~

term

n

=


α1 · en1

+

· · ·
+

αn · enn

 =
n∑
i=1

αi · eni ,

u

w
v

α1

...

αn

}

�
~

type

n

=


α1 ·En

1

+

· · ·
+

αn ·En
n

 =
n∑
i=1

αi ·En
i .

n×m matrices

Once the representation of vectors is chosen, it is easy to generalise the representation of

2× 2 matrices to the n×m case. Suppose that the matrix U is of the form

U =

 α11 · · · α1m

...
...

αn1 · · · αnm

 ,

Francisco J. Noriega 56

Section A.1 - Interpretation of typing judgements

then its representation is

JUKterm
n×m = λx.



· · ·
(x)


α11 · en1

+

· · ·
+

αn1 · enn



 · · ·

α1m · en1

+

· · ·
+

αnm · enn






and its type is

JUKtype
n×m = ∀X.




α11 ·En

1

+

· · ·
+

αn1 ·En
n

→ · · · →

α1m ·En

1

+

· · ·
+

αnm ·En
n

→ [X]

→ X,

that is, an almost direct encoding of the matrix U .

We also use the shortcut notation

mat(t1, . . . , tn) = λx.(. . . ((x) [t1]) . . .) [tn]

A.1.3 Useful constructions

In this section, we describe a few terms representing constructions that will be used later on.

Projections The first useful family of terms are the projections, sending a vector to its ith

coordinate: 

α1

...

αi
...

αn


7−→



0
...

αi
...

0


.

Using the matrix representation, the term projecting the ith coordinate of a vector of size n is

ith position

pni = mat(0, · · · ,0, eni , 0, · · · ,0).

We can easily verify that

` pni :

u

wwwwwww
v

0 · · · 0 · · · 0
...

. . .
...

0 1 0
...

. . .
...

0 · · · 0 · · · 0

}

�������
~

type

n×n

and that

(pnk)

(
n∑
i=1

αi · eni

)
−→∗ αk · enk .

Francisco J. Noriega 57

Section A.1 - Interpretation of typing judgements

Vectors and diagonal matrices Using the projections defined in the previous section, it is

possible to encode the map sending a vector of size n to the corresponding n× n matrix: α1

...

αn

 7−→
 α1 0

. . .

0 αn


with the term

diagn = λb.mat((pn1) {b}, . . . , (pnn) {b})

of type

` diagn :


u

w
v

α1

...

αn

}

�
~

type

n

→
u

w
v

α1 0
. . .

0 αn

}

�
~

type

n×n

.

It is easy to check that

(diagn)

[
n∑
i=1

αi · eni

]
7−→∗ mat(α1 · en1 , . . . , αn · enn)

Extracting a column vector out of a matrix Another construction that is worth exhibiting

is the operation  α11 · · · α1n

...
...

αm1 · · · αmn

 7−→
 α1i

...

αmi

 .

It is simply defined by multiplying the input matrix with the ith base column vector:

colni = λx.(x) eni

and one can easily check that this term has type

` colni :

u

w
v

α11 · · · α1n

...
...

αm1 · · · αmn

}

�
~

type

m×n

→

u

w
v

α1i

...

αmi

}

�
~

type

m

.

Note that the same term colni can be typed with several values of m.

Francisco J. Noriega 58

Bibliography

[1] Thorsten Altenkirch and Jonathan J. Grattage. A functional quantum programming lan-

guage. In 20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pages

249–258. IEEE Computer Society, 2005.

[2] Pablo Arrighi and Alejandro Dı́az-Caro. A System F accounting for scalars. Logical Methods

in Computer Science, Volume 8, Issue 1, Feb 2012.

[3] Pablo Arrighi, Alejandro Dı́az-Caro, and Benôıt Valiron. The vectorial lambda-calculus.

Information and Computation, 254(1):105–139, 2017.

[4] Pablo Arrighi and Gilles Dowek. A computational definition of the notion of vectorial space.

In N. Mart́ı-Oliet, editor, Proceedings of the Fifth International Workshop on Rewriting

Logic and Its Applications (WRLA 2004), volume 117 of Electronic Notes in Computer

Science, pages 249–261, 2005.

[5] Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic lambda-calculus. Logical Meth-

ods in Computer Science, 13(1:8), 2017.

[6] Ali Assaf, Alejandro Dı́az-Caro, Simon Perdrix, Christine Tasson, and Benôıt Valiron.

Call-by-value, call-by-name and the vectorial behaviour of the algebraic λ-calculus. Logical

Methods in Computer Science, Volume 10, Issue 4, Dec 2014.

[7] Giulio Chiribella, Giacomo Mauro D’Ariano, Paolo Perinotti, and Benôıt Valiron. Quantum

computations without definite causal structure. Physical Review A, 88(2), Aug 2013.

[8] David Deutsch and Richard Jozsa. Rapid Solution of Problems by Quantum Computation.

Proceedings of the Royal Society of London Series A, 439(1907):553–558, Dec 1992.

[9] Alejandro Dı́az-Caro, Mauricio Guillermo, Alexandre Miquel, and Benôıt Valiron. Real-

izability in the unitary sphere. 2019 34th Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS), Jun 2019.

[10] Alejandro Dı́az-Caro and Barbara Petit. Linearity in the non-deterministic call-by-value

setting. In Luke Ong and Ruy de Queiroz, editors, 19th International Workshop on Logic,

Language, Information and Computation (WoLLIC 2012), volume 7456 of Lecture Notes

in Computer Science, pages 216–231. Springer Berlin Heidelberg, 2012.

[11] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

[12] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical

Review Letters, 79(2):325–328, Jul 1997.

59

[13] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of

equations. SIAM Journal on Computing, 15(4):1155–1194, 1986.

[14] Jean-Louis Krivine. Lambda-calcul: Types et Modèles. Études et Recherches en Informa-

tique. Masson, 1990.

[15] Ognyan Oreshkov, Fabio Costa, and Časlav Brukner. Quantum correlations with no causal

order. Nature Communications, 3(1), Jan 2012.

[16] Peter Selinger. Towards a quantum programming language. Mathematical Structures in

Computer Science, 14(4):527–586, 2004.

[17] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, Oct 1997.

	Introduction
	Linear-algebraic Lambda-Calculus
	The Vectorial Lambda-Calculus
	Thesis plan

	The Vectorial lambda-Calculus
	The terms
	The type system
	Intuitions
	Formalisation
	Example: Typing Hadamard

	Properties

	Our revision
	The terms
	Type system
	Typing rules

	Subject Reduction
	Prerequisites for the proof
	Proof

	Other properties
	Progress
	Weight Preservation

	Conclusion
	Summary
	Future directions
	Strong Normalisation

	Appendices
	Interpretation of typing judgements
	The general case
	The finitary case: Expressing matrices and vectors
	Useful constructions

	Bibliography

